CINXE.COM

Search results for: geometric string mechanics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: geometric string mechanics</title> <meta name="description" content="Search results for: geometric string mechanics"> <meta name="keywords" content="geometric string mechanics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="geometric string mechanics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="geometric string mechanics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1152</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: geometric string mechanics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1152</span> Gravity and Geometric String Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joe%20Price%20LeClair">Joe Price LeClair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the geometry of the universe using hydrogen as a representation of a balance point between energy and matter in motion while using the neutron to explain the stability in threes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity" title="gravity">gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics" title=" geometric string mechanics"> geometric string mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=physics" title=" physics"> physics</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20physics" title=" theoretical physics"> theoretical physics</a> </p> <a href="https://publications.waset.org/abstracts/194933/gravity-and-geometric-string-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> Automata-Based String Analysis for Detecting Malware in Android Programs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assad%20Maalouf">Assad Maalouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Lunjin%20Lu"> Lunjin Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Lynott"> James Lynott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We design and implement a precise model of string operations using finite state machine transformers and state transformers to approximate the values string variables can take throughout the execution of the program.We use our model to analyze Android program string variables. Our experimental results show that our string analysis is very efficient at detecting the contextual effect of string operations on the string variables. Our model proved to be very useful when it came to verifying statements about the string variables of the program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abstract%20interpretation" title="abstract interpretation">abstract interpretation</a>, <a href="https://publications.waset.org/abstracts/search?q=android" title=" android"> android</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20analysis" title=" string analysis"> string analysis</a> </p> <a href="https://publications.waset.org/abstracts/130342/automata-based-string-analysis-for-detecting-malware-in-android-programs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1150</span> Improving Taint Analysis of Android Applications Using Finite State Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assad%20Maalouf">Assad Maalouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Lunjin%20Lu"> Lunjin Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Lynott"> James Lynott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a taint analysis that can automatically detect when string operations result in a string that is free of taints, where all the tainted patterns have been removed. This is an improvement on the conservative behavior of previous taint analyzers, where a string operation on a tainted string always leads to a tainted string unless the operation is manually marked as a sanitizer. The taint analysis is built on top of a string analysis that uses finite state automata to approximate the sets of values that string variables can take during the execution of a program. The proposed approach has been implemented as an extension of FlowDroid and experimental results show that the resulting taint analyzer is much more precise than the original FlowDroid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android" title="android">android</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20analysis" title=" string analysis"> string analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=taint%20analysis" title=" taint analysis"> taint analysis</a> </p> <a href="https://publications.waset.org/abstracts/130148/improving-taint-analysis-of-android-applications-using-finite-state-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1149</span> Dual Duality for Unifying Spacetime and Internal Symmetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20C.%20Ni">David C. Ni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current efforts for Grand Unification Theory (GUT) can be classified into General Relativity, Quantum Mechanics, String Theory and the related formalisms. In the geometric approaches for extending General Relativity, the efforts are establishing global and local invariance embedded into metric formalisms, thereby additional dimensions are constructed for unifying canonical formulations, such as Hamiltonian and Lagrangian formulations. The approaches of extending Quantum Mechanics adopt symmetry principle to formulate algebra-group theories, which evolved from Maxwell formulation to Yang-Mills non-abelian gauge formulation, and thereafter manifested the Standard model. This thread of efforts has been constructing super-symmetry for mapping fermion and boson as well as gluon and graviton. The efforts of String theory currently have been evolving to so-called gauge/gravity correspondence, particularly the equivalence between type IIB string theory compactified on AdS5 × S5 and N = 4 supersymmetric Yang-Mills theory. Other efforts are also adopting cross-breeding approaches of above three formalisms as well as competing formalisms, nevertheless, the related symmetries, dualities, and correspondences are outlined as principles and techniques even these terminologies are defined diversely and often generally coined as duality. In this paper, we firstly classify these dualities from the perspective of physics. Then examine the hierarchical structure of classes from mathematical perspective referring to Coleman-Mandula theorem, Hidden Local Symmetry, Groupoid-Categorization and others. Based on Fundamental Theorems of Algebra, we argue that rather imposing effective constraints on different algebras and the related extensions, which are mainly constructed by self-breeding or self-mapping methodologies for sustaining invariance, we propose a new addition, momentum-angular momentum duality at the level of electromagnetic duality, for rationalizing the duality algebras, and then characterize this duality numerically with attempt for addressing some unsolved problems in physics and astrophysics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20theory" title=" string theory"> string theory</a>, <a href="https://publications.waset.org/abstracts/search?q=duality" title=" duality"> duality</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetry" title=" symmetry"> symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=correspondence" title=" correspondence"> correspondence</a>, <a href="https://publications.waset.org/abstracts/search?q=algebra" title=" algebra"> algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum-angular-momentum" title=" momentum-angular-momentum"> momentum-angular-momentum</a> </p> <a href="https://publications.waset.org/abstracts/45918/dual-duality-for-unifying-spacetime-and-internal-symmetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1148</span> Kemmer Oscillator in Cosmic String Background</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Messai">N. Messai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boumali"> A. Boumali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we aim to solve the two dimensional Kemmer equation including Dirac oscillator interaction term, in the background space-time generated by a cosmic string which is submitted to an uniform magnetic field. Eigenfunctions and eigenvalues of our problem have been found and the influence of the cosmic string space-time on the energy spectrum has been analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemmer%20oscillator" title="Kemmer oscillator">Kemmer oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20string" title=" cosmic string"> cosmic string</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirac%20oscillator" title=" Dirac oscillator"> Dirac oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfunctions" title=" eigenfunctions"> eigenfunctions</a> </p> <a href="https://publications.waset.org/abstracts/22318/kemmer-oscillator-in-cosmic-string-background" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1147</span> Data Quality Enhancement with String Length Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qi%20Xiu">Qi Xiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromu%20Hota"> Hiromu Hota</a>, <a href="https://publications.waset.org/abstracts/search?q=Yohsuke%20Ishii"> Yohsuke Ishii</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuya%20Oda"> Takuya Oda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=string%20classification" title="string classification">string classification</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20quality" title=" data quality"> data quality</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20distribution" title=" probability distribution"> probability distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20length" title=" string length"> string length</a> </p> <a href="https://publications.waset.org/abstracts/57244/data-quality-enhancement-with-string-length-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1146</span> Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Loumi-Fergane">H. Loumi-Fergane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belaidi"> A. Belaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincar&eacute;-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used.&nbsp; In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in q<sup>i</sup>, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20laws" title="conservation laws">conservation laws</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20theories" title=" field theories"> field theories</a>, <a href="https://publications.waset.org/abstracts/search?q=multisymplectic%20geometry" title=" multisymplectic geometry"> multisymplectic geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20mechanics" title=" relativistic mechanics"> relativistic mechanics</a> </p> <a href="https://publications.waset.org/abstracts/74108/multisymplectic-geometry-and-noether-symmetries-for-the-field-theories-and-the-relativistic-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1145</span> Preparation of Bead-On-String Alginate/Soy Protein Isolated Nanofibers via Water-Based Electrospinning and Its Application for Drug Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patcharakamon%20Nooeaid">Patcharakamon Nooeaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyachat%20Chuysrinuan"> Piyachat Chuysrinuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrospun natural polymers-based nanofibers are one of the most interesting materials used in tissue engineering and drug delivery applications. Bead-on-string nanofibers have gained considerable interest for sustained drug release. Vancomycin was used as the model drug and sodium alginate (SA)/soy protein isolated (SPI) as the polymer blend to fabricate the bead-on-string nanofibers by aqueous-based electrospinning. The bead-on-string SA/SPI nanofibers were successfully fabricated by the addition of poly(ethylene oxide) (PEO) as a co-blending polymer. SA-PEO with mass ratio of 70/30 showed the best spinnability with continuous nanofibers without the occurrence of beads. Bead structure formed with the addition of SPI and bead number increased with increasing SPI content. The electrospinning of 80/20 SA-PEO/SPI was obtained as a great promising bead-on-string nanofibers for drug loading, while the solution of 50/50 was not able to obtain continuous fibers. In vitro release tests showed that a more sustainable release profile up to 14 days with less initial burst release on day 1 could be obtained from the bead-on-string fibers than from smooth fibers with uniform diameter. In addition, vancomycin-loaded beaded fibers inhibited the growth of Staphylococcus aureus (S. aureus) bacteria. Therefore, the SA-PEO/SPI nanofibers showed the potential to be used as biomaterials for tissue engineering and drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bead-on-string%20fibers" title="bead-on-string fibers">bead-on-string fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering "> tissue engineering </a> </p> <a href="https://publications.waset.org/abstracts/49420/preparation-of-bead-on-string-alginatesoy-protein-isolated-nanofibers-via-water-based-electrospinning-and-its-application-for-drug-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1144</span> Islamic Geometric Design: Infinite Point or Creativity through Compass and Digital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridzuan%20Hussin">Ridzuan Hussin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zaihidee%20Arshad"> Mohd Zaihidee Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The creativity of earlier artists and sculptors in designing geometric is extraordinary provided with only a compass. Indeed, geometric in Islamic art and design are unique and have their own aesthetic values. In order to further understand geometric, self-learning with the approach of hands on would be appropriate. For this study, Islamic themed geometric designed and created, concerning only; i. The Square Repetition Unit and √2, ii. The Hexagonal Repetition Unit and √3 and iii. Double Hexagon. The aim of this research is to evaluate the creativity of Islamic geometric pattern artworks, through Fundamental Arts and Gestalt theory. Data was collected using specific tasks, and this research intends to identify the difference of Islamic geometric between 21 untitled selected geometric artworks (conventional design method), and 25 digital untitled geometric pattern artworks method. The evaluation of creativity, colors, layout, pattern and unity is known to be of utmost importance, although there are differences in the conventional or the digital approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Islamic%20geometric%20design" title="Islamic geometric design">Islamic geometric design</a>, <a href="https://publications.waset.org/abstracts/search?q=Gestalt" title=" Gestalt"> Gestalt</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamentals%20of%20art" title=" fundamentals of art"> fundamentals of art</a>, <a href="https://publications.waset.org/abstracts/search?q=patterns" title=" patterns"> patterns</a> </p> <a href="https://publications.waset.org/abstracts/59119/islamic-geometric-design-infinite-point-or-creativity-through-compass-and-digital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1143</span> Metaphysics of the Unified Field of the Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kaware">Santosh Kaware</a>, <a href="https://publications.waset.org/abstracts/search?q=Dnyandeo%20Patil"> Dnyandeo Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Moninder%20Modgil"> Moninder Modgil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Bhoir"> Hemant Bhoir</a>, <a href="https://publications.waset.org/abstracts/search?q=Debendra%20Behera"> Debendra Behera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Unified Field Theory has been an area of intensive research since many decades. This paper focuses on philosophy and metaphysics of unified field theory at Planck scale - and its relationship with super string theory and Quantum Vacuum Dynamic Physics. We examined the epistemology of questions such as - (1) what is the Unified Field of universe? (2) can it actually - (a) permeate the complete universe - or (b) be localized in bound regions of the universe - or, (c) extend into the extra dimensions? - -or (d) live only in extra dimensions? (3) What should be the emergent ontological properties of Unified field? (4) How the universe is manifesting through its Quantum Vacuum energies? (5) How is the space time metric coupled to the Unified field? We present a number of ansatz - which we outline below. It is proposed that the unified field possesses consciousness as well as a memory - a recording of past history - analogous to ‘Consistent Histories’ interpretation of quantum mechanics. We proposed Planck scale geometry of Unified Field with circle like topology and having 32 energy points on its periphery which are the connected to each other by 10 dimensional meta-strings which are sources for manifestation of different fundamentals forces and particles of universe through its Quantum Vacuum energies. It is also proposed that the sub energy levels of ‘Conscious Unified Field’ are used for the process of creation, preservation and rejuvenation of the universe over a period of time by means of negentropy. These epochs can be for the complete universe, or for localized regions such as galaxies or cluster of galaxies. It is proposed that Unified field operates through geometric patterns of its Quantum Vacuum energies - manifesting as various elementary particles by giving spins to zero point energy elements. Epistemological relationship between unified field theory and super-string theories is examined. Properties of ‘consciousness’ and 'memory' cascades from universe, into macroscopic objects - and further onto the elementary particles - via a fractal pattern. Other properties of fundamental particles - such as mass, charge, spin, iso-spin also spill out of such a cascade. The manifestations of the unified field can reach into the parallel universes or the ‘multi-verse’ and essentially have an existence independent of the space-time. It is proposed that mass, length, time scales of the unified theory are less than even the Planck scale - and can be called at a level which we call that of 'Super Quantum Gravity (SQG)'. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20string%20theory" title="super string theory">super string theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Planck%20scale%20geometry" title=" Planck scale geometry"> Planck scale geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=negentropy" title=" negentropy"> negentropy</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20quantum%20gravity" title=" super quantum gravity"> super quantum gravity</a> </p> <a href="https://publications.waset.org/abstracts/53809/metaphysics-of-the-unified-field-of-the-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1142</span> Discursively Examination of 8th Grade Students’ Geometric Thinking Levels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferda%C4%9F%20%C3%87ulhan">Ferdağ Çulhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Gaye%20%C3%87ontay"> Emine Gaye Çontay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geometric thinking levels created by Van Hiele are used to determine students' progress in geometric thinking. Many studies have been conducted on geometric thinking levels and they have taken their place in teaching curricula over time. It is thought that geometric thinking levels, which have become so important in teaching, can be examined in depth. In order to make an in-depth analysis, it was decided that the most appropriate management was discourse analysis. In this study, the focus is on examining the geometric thinking levels of 8th grade students from a discursive point of view. Sfard (2008)'s "Commognitive" theory will be used to conduct discursive analysis. The "Global Van Hiele Questionnaire" created by Patkin (2014) and translated into Turkish for this research will be used in the research. The "Global Van Hiele Questionnaire" contains questions from the sub-learning domain of triangles and quadrilaterals, circles and geometric objects. It has a wider scope than many "Van Hiele Questionnaires". “Global Van Hiele Questionnaire” will be applied to 8th grade students. Then, the geometric thinking levels of the students will be determined and interviews will be held with two students from each of the 1st, 2nd and 3rd levels. The interviews will be recorded and the students' discourses will be examined. By evaluating the relations between the students' geometric thinking levels and their discourses, it will be examined how much their discourse reflects their level of thinking. In this way, it is thought that students' geometric thinking processes can be better understood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20discourses" title="mathematical discourses">mathematical discourses</a>, <a href="https://publications.waset.org/abstracts/search?q=commognitive%20framework" title=" commognitive framework"> commognitive framework</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20thinking%20levels" title=" geometric thinking levels"> geometric thinking levels</a>, <a href="https://publications.waset.org/abstracts/search?q=van%20hiele" title=" van hiele"> van hiele</a> </p> <a href="https://publications.waset.org/abstracts/148315/discursively-examination-of-8th-grade-students-geometric-thinking-levels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1141</span> Using ε Value in Describe Regular Languages by Using Finite Automata, Operation on Languages and the Changing Algorithm Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmajid%20Mukhtar%20Afat">Abdulmajid Mukhtar Afat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at introducing nondeterministic finite automata with &epsilon; value which is used to perform some operations on languages. a program is created to implement the algorithm that converts nondeterministic finite automata with &epsilon; value (&epsilon;-NFA) to deterministic finite automata (DFA).The program is written in c++ programming language. The program inputs are FA 5-tuples from text file and then classifies it into either DFA/NFA or &epsilon; -NFA. For DFA, the program will get the string <em>w</em> and decide whether it is accepted or rejected. The tracking path for an accepted string is saved by the program. In case of NFA or &epsilon;-NFA automation, the program changes the automation to DFA to enable tracking and to decide if the string <em>w</em> exists in the regular language or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFA" title="DFA">DFA</a>, <a href="https://publications.waset.org/abstracts/search?q=NFA" title=" NFA"> NFA</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B5-NFA" title=" ε-NFA"> ε-NFA</a>, <a href="https://publications.waset.org/abstracts/search?q=eclose" title=" eclose"> eclose</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20automata" title=" finite automata"> finite automata</a>, <a href="https://publications.waset.org/abstracts/search?q=operations%20on%20languages" title=" operations on languages"> operations on languages</a> </p> <a href="https://publications.waset.org/abstracts/21029/using-e-value-in-describe-regular-languages-by-using-finite-automata-operation-on-languages-and-the-changing-algorithm-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1140</span> Geometric Calibration of Computed Tomography Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Hung%20Liao">Chia-Hung Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Chieh%20Lin"> Shih-Chieh Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-ray computed tomography (CT) technology has been used in the electronics industry as one of the non-destructive inspection tools for years. The key advantage of X-ray computed tomography technology superior to traditional optical inspection is the penetrating characteristics of X-rays can be used to detect defects in the interior of objects. The objective of this study is to find a way to estimate the system geometric deviation of X-ray CT equipment. Projection trajectories of the characteristic points of standard parts were tracked, and ways to calculate the deviation of various geometric parameters of the system will be proposed and evaluated. A simulation study will be conducted to first find out the effects of system geometric deviation on projected trajectories. Then ways to estimate geometric deviation with collected trajectories will be proposed and tested through simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20calibration" title="geometric calibration">geometric calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20computed%20tomography" title=" X-ray computed tomography"> X-ray computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracing" title=" trajectory tracing"> trajectory tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20optimization" title=" reconstruction optimization"> reconstruction optimization</a> </p> <a href="https://publications.waset.org/abstracts/163099/geometric-calibration-of-computed-tomography-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1139</span> Geometric Continuity in the Form of Iranian Domes, Study of Prominent Safavid and Sasanian Domes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Valibeig">Nima Valibeig</a>, <a href="https://publications.waset.org/abstracts/search?q=Haniyeh%20Mohammadi"> Haniyeh Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Sadat%20Abdelahi"> Neda Sadat Abdelahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Persian domes follow different forms depending on the materials used to construct and other factors. One of the factors that shape the form of a dome is the geometric proportion used in the drawing and construction of the dome. Some commonly used proportions are revealed by analysing the shapes and geometric ratio of the monuments’ domes. The proportions are achieved by the proficiency of the skilled architects of the buildings. These proportions can be used to reconstruct damaged parts of the historical monuments. Most of the research on domes is about the historical or stability features of domes, and less attention is made to the geometric system in domes. Therefore, in this study, we study the explicit and implicit geometric proportions in Iranian dome structures for the first time. The study is done based on a literature review and field survey. This research reveals that the permanent geometric rules are perfectly used in the design and construction of the prominent domes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometry%20in%20architecture" title="geometry in architecture">geometry in architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20proportions" title=" architectural proportions"> architectural proportions</a>, <a href="https://publications.waset.org/abstracts/search?q=prominent%20domes" title=" prominent domes"> prominent domes</a>, <a href="https://publications.waset.org/abstracts/search?q=iranian%20golden%20ratio" title=" iranian golden ratio"> iranian golden ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20proportion" title=" geometric proportion"> geometric proportion</a> </p> <a href="https://publications.waset.org/abstracts/149514/geometric-continuity-in-the-form-of-iranian-domes-study-of-prominent-safavid-and-sasanian-domes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1138</span> Finding a Set of Long Common Substrings with Repeats from m Input Strings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiantian%20Li">Tiantian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lusheng%20Wang"> Lusheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaohui%20Zhan"> Zhaohui Zhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Daming%20Zhu"> Daming Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose two string problems, and study algorithms and complexity of various versions for those problems. Let S = {s₁, s₂, . . . , sₘ} be a set of m strings. A common substring of S is a substring appearing in every string in S. Given a set of m strings S = {s₁, s₂, . . . , sₘ} and a positive integer k, we want to find a set C of k common substrings of S such that the k common substrings in C appear in the same order and have no overlap among the m input strings in S, and the total length of the k common substring in C is maximized. This problem is referred to as the longest total length of k common substrings from m input strings (LCSS(k, m) for short). The other problem we study here is called the longest total length of a set of common substrings with length more than l from m input string (LSCSS(l, m) for short). Given a set of m strings S = {s₁, s₂, . . . , sₘ} and a positive integer l, for LSCSS(l, m), we want to find a set of common substrings of S, each is of length more than l, such that the total length of all the common substrings is maximized. We show that both problems are NP-hard when k and m are variables. We propose dynamic programming algorithms with time complexity O(k n₁n₂) and O(n₁n₂) to solve LCSS(k, 2) and LSCSS(l, 2), respectively, where n1 and n₂ are the lengths of the two input strings. We then design an algorithm for LSCSS(l, m) when every length > l common substring appears once in each of the m − 1 input strings. The running time is O(n₁²m), where n1 is the length of the input string with no restriction on length > l common substrings. Finally, we propose a fixed parameter algorithm for LSCSS(l, m), where each length > l common substring appears m − 1 + c times among the m − 1 input strings (other than s1). In other words, each length > l common substring may repeatedly appear at most c times among the m − 1 input strings {s₂, s₃, . . . , sₘ}. The running time of the proposed algorithm is O((n12ᶜ)²m), where n₁ is the input string with no restriction on repeats. The LSCSS(l, m) is proposed to handle whole chromosome sequence alignment for different strains of the same species, where more than 98% of letters in core regions are identical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20programming" title="dynamic programming">dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20substrings" title=" common substrings"> common substrings</a>, <a href="https://publications.waset.org/abstracts/search?q=string" title=" string"> string</a> </p> <a href="https://publications.waset.org/abstracts/193213/finding-a-set-of-long-common-substrings-with-repeats-from-m-input-strings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1137</span> Spatial Interpolation Technique for the Optimisation of Geometric Programming Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debjani%20Chakraborty">Debjani Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Chatterjee"> Abhijit Chatterjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Aishwaryaprajna"> Aishwaryaprajna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Posynomials, a special type of polynomials, having singularities, pose difficulties while solving geometric programming problems. In this paper, a methodology has been proposed and used to obtain extreme values for geometric programming problems by nth degree polynomial interpolation technique. Here the main idea to optimise the posynomial is to fit a best polynomial which has continuous gradient values throughout the range of the function. The approximating polynomial is smoothened to remove the discontinuities present in the feasible region and the objective function. This spatial interpolation method is capable to optimise univariate and multivariate geometric programming problems. An example is solved to explain the robustness of the methodology by considering a bivariate nonlinear geometric programming problem. This method is also applicable for signomial programming problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20programming%20problem" title="geometric programming problem">geometric programming problem</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20optimisation%20technique" title=" multivariate optimisation technique"> multivariate optimisation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=posynomial" title=" posynomial"> posynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20interpolation" title=" spatial interpolation"> spatial interpolation</a> </p> <a href="https://publications.waset.org/abstracts/70385/spatial-interpolation-technique-for-the-optimisation-of-geometric-programming-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1136</span> Ureteral Stents with Extraction Strings: Patient-Reported Outcomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rammah%20Abdlbagi">Rammah Abdlbagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Similoluwa%20Biyi"> Similoluwa Biyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Pai"> Aakash Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Short-term ureteric stents are commonly placed after ureteroscopy procedures. The removal usually entails having a flexible cystoscopy, which entails a further invasive procedure. There are often delays in removing the stent as departments have limited cystoscopy availability. However, if stents with extraction strings are used, the patient or a clinician can remove them. The aim of the study is to assess the safety and effectiveness of the use of a stent with a string. Method: A retrospective, single-institution study was conducted over a three-month period. Twenty consecutive patients had ureteric stents with string insertion. Ten of the patients had a stent removal procedure previously with flexible cystoscopy. A validated questionnaire was used to assess outcomes. Primary outcomes included: dysuria, hematuria, urinary frequency, and disturbance of the patient’s daily activities. Secondary outcomes included pain experience during the stent removal. Result: Fifteen patients (75%) experienced hematuria and frequency. Two patients experienced pain and discomfort during the stent removal (10%). Two patients had experienced a disturbance in their daily activity (10%). All patients who had stent removal before using flexible cystoscopy preferred the removal of the stent using a string. None of the patients had stent displacement. The median stent dwell time was five days. Conclusion: Patient reported outcomes measures for the indwelling period of a stent with extraction string are equivalent to the published data on stents. Extraction strings mean that the stent dwell time can be reduced. The removal of the stent on extraction strings is more tolerable than the conventional stent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ureteric%20stent" title="ureteric stent">ureteric stent</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20flexible%20cystoscopy" title=" string flexible cystoscopy"> string flexible cystoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=stent%20symptoms" title=" stent symptoms"> stent symptoms</a>, <a href="https://publications.waset.org/abstracts/search?q=validated%20questionnaire" title=" validated questionnaire"> validated questionnaire</a> </p> <a href="https://publications.waset.org/abstracts/157309/ureteral-stents-with-extraction-strings-patient-reported-outcomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1135</span> Global Modeling of Drill String Dragging and Buckling in 3D Curvilinear Bore-Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valery%20Gulyayev">Valery Gulyayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Glazunov"> Sergey Glazunov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Andrusenko"> Elena Andrusenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Nataliya%20Shlyun"> Nataliya Shlyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enhancement of technology and techniques for drilling deep directed oil and gas bore-wells are of essential industrial significance because these wells make it possible to increase their productivity and output. Generally, they are used for drilling in hard and shale formations, that is why their drivage processes are followed by the emergency and failure effects. As is corroborated by practice, the principal drilling drawback occurring in drivage of long curvilinear bore-wells is conditioned by the need to obviate essential force hindrances caused by simultaneous action of the gravity, contact and friction forces. Primarily, these forces depend on the type of the technological regime, drill string stiffness, bore-hole tortuosity and its length. They can lead to the Eulerian buckling of the drill string and its sticking. To predict and exclude these states, special mathematic models and methods of computer simulation should play a dominant role. At the same time, one might note that these mechanical phenomena are very complex and only simplified approaches (‘soft string drag and torque models’) are used for their analysis. Taking into consideration that now the cost of directed wells increases essentially with complication of their geometry and enlargement of their lengths, it can be concluded that the price of mistakes of the drill string behavior simulation through the use of simplified approaches can be very high and so the problem of correct software elaboration is very urgent. This paper deals with the problem of simulating the regimes of drilling deep curvilinear bore-wells with prescribed imperfect geometrical trajectories of their axial lines. On the basis of the theory of curvilinear flexible elastic rods, methods of differential geometry, and numerical analysis methods, the 3D ‘stiff-string drag and torque model’ of the drill string bending and the appropriate software are elaborated for the simulation of the tripping in and out regimes and drilling operations. It is shown by the computer calculations that the contact and friction forces can be calculated and regulated, providing predesigned trouble-free modes of operation. The elaborated mathematic models and software can be used for the emergency situations prognostication and their exclusion at the stages of the drilling process design and realization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curvilinear%20drilling" title="curvilinear drilling">curvilinear drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=drill%20string%20tripping%20in%20and%20out" title=" drill string tripping in and out"> drill string tripping in and out</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20forces" title=" contact forces"> contact forces</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20forces" title=" resistance forces"> resistance forces</a> </p> <a href="https://publications.waset.org/abstracts/96213/global-modeling-of-drill-string-dragging-and-buckling-in-3d-curvilinear-bore-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1134</span> Geometric Design to Improve the Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ghodbane">H. Ghodbane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Taleb"> A. A. Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Kraa"> O. Kraa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents geometric design of induction heating system. The objective of this design is to improve the temperature distribution in the load. The study of such a device requires the use of models or modeling representation, physical, mathematical, and numerical. This modeling is the basis of the understanding, the design, and optimization of these systems. The optimization technique is to find values of variables that maximize or minimize the objective function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20design%20system" title=" geometric design system"> geometric design system</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20increase" title=" temperature increase"> temperature increase</a> </p> <a href="https://publications.waset.org/abstracts/1847/geometric-design-to-improve-the-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1133</span> Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Lyu">Yan Lyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiqun%20Pan"> Yiqun Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhizhong%20Huang"> Zhizhong Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20model" title="building energy model">building energy model</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20simplification" title=" geometric simplification"> geometric simplification</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/139548/geometric-simplification-method-of-building-energy-model-based-on-building-performance-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1132</span> Solving the Pseudo-Geometric Traveling Salesman Problem with the “Union Husk” Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boris%20Melnikov">Boris Melnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Zhang"> Ye Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitrii%20Chaikovskii"> Dmitrii Chaikovskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the pseudo-geometric version of the extensively researched Traveling Salesman Problem (TSP), proposing a novel generalization of existing algorithms which are traditionally confined to the geometric version. By adapting the "onion husk" method and introducing auxiliary algorithms, this research fills a notable gap in the existing literature. Through computational experiments using randomly generated data, several metrics were analyzed to validate the proposed approach's efficacy. Preliminary results align with expected outcomes, indicating a promising advancement in TSP solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization%20problems" title="optimization problems">optimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms" title=" heuristic algorithms"> heuristic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%9Conion%20husk%E2%80%9D%20algorithm" title=" “onion husk” algorithm"> “onion husk” algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-geometric%20version" title=" pseudo-geometric version"> pseudo-geometric version</a> </p> <a href="https://publications.waset.org/abstracts/172842/solving-the-pseudo-geometric-traveling-salesman-problem-with-the-union-husk-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1131</span> Comparative Analysis of Photovoltaic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irtaza%20M.%20Syed">Irtaza M. Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaameran%20Raahemifar"> Kaameran Raahemifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents comparative analysis of photovoltaic systems (PVS) and proposes practical techniques to improve operational efficiency of the PVS. The best engineering and construction practices for PVS are identified and field oriented recommendation are made. Comparative analysis of central and string inverter based, as well as 600 and 1000 VDC PVS are performed. In addition, direct current (DC) and alternating current (AC) photovoltaic (PV) module based systems are compared. Comparison shows that 1000 V DC String Inverters based PVS is the best choice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20module" title="photovoltaic module">photovoltaic module</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20systems" title=" photovoltaic systems"> photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20efficiency%20improvement" title=" operational efficiency improvement"> operational efficiency improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a> </p> <a href="https://publications.waset.org/abstracts/40123/comparative-analysis-of-photovoltaic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1130</span> Investigation of Airship Motion Sensitivity to Geometric Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Ding">Han Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xiaoliang"> Wang Xiaoliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Duan%20Dengping"> Duan Dengping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the process of airship design, the layout and the geometric shape of the hull and fins are crucial to the motion characteristics of the airship. In this paper, we obtained the quantification motion sensitivity of the airship to geometric parameters through turning circles and horizontal/vertical zigzag maneuvers by the parameterization of airship shape and building the dynamic model using Lagrangian approach and MATLAB Simulink program. In the dynamics simulation program, the affection of geometric parameters to the mass, center of gravity, moments of inertia, product of inertia, added mass and the aerodynamic forces and moments have been considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airship" title="airship">airship</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20approach" title=" Lagrangian approach"> Lagrangian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=turning%20circles" title=" turning circles"> turning circles</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%2Fvertical%20zigzag%20maneuvers" title=" horizontal/vertical zigzag maneuvers"> horizontal/vertical zigzag maneuvers</a> </p> <a href="https://publications.waset.org/abstracts/40146/investigation-of-airship-motion-sensitivity-to-geometric-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1129</span> Portuguese Guitar Strings Characterization and Comparison</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Serr%C3%A3o">P. Serrão</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Costa"> E. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ribeiro"> A. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Infante"> V. Infante</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characteristic sonority of the Portuguese guitar is in great part what makes Fado so distinguishable from other traditional song styles. The Portuguese guitar is a pear-shaped plucked chordophone with six courses of double strings. This study compares the two types of plain strings available for Portuguese guitar and used by the musicians. One is stainless steel spring wire, the other is high carbon spring steel (music wire). Some musicians mention noticeable differences in sound quality between these two string materials, such as a little more brightness and sustain in the steel strings. Experimental tests were performed to characterize string tension at pitch; mechanical strength and tuning stability using the universal testing machine; dimensional control and chemical composition analysis using the scanning electron microscope. The string dynamical behaviour characterization experiments, including frequency response, inharmonicity, transient response, damping phenomena and were made in a monochord test set-up designed and built in-house. Damping factor was determined for the fundamental frequency. As musicians are able to detect very small damping differences, an accurate a characterization of the damping phenomena for all harmonics was necessary. With that purpose, another improved monochord was set and a new system identification methodology applied. Due to the complexity of this task several adjustments were necessary until obtaining good experimental data. In a few cases, dynamical tests were repeated to detect any evolution in damping parameters after break-in period when according to players experience a new string sounds gradually less dull until reaching the typically brilliant timbre. Finally, each set of strings was played on one guitar by a distinguished player and recorded. The recordings which include individual notes, scales, chords and a study piece, will be analysed to potentially characterize timbre variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20factor" title="damping factor">damping factor</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20wire" title=" music wire"> music wire</a>, <a href="https://publications.waset.org/abstracts/search?q=portuguese%20guitar" title=" portuguese guitar"> portuguese guitar</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20dynamics" title=" string dynamics"> string dynamics</a> </p> <a href="https://publications.waset.org/abstracts/35885/portuguese-guitar-strings-characterization-and-comparison" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1128</span> Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Lorang">Xavier Lorang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Tahmasebimoradi"> Ahmadali Tahmasebimoradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chetra%20Mang"> Chetra Mang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Girard"> Sylvain Girard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20imperfections" title=" geometric imperfections"> geometric imperfections</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structures" title=" lattice structures"> lattice structures</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20of%20uncertainty" title=" propagation of uncertainty"> propagation of uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/130259/geometric-imperfections-in-lattice-structures-a-simulation-strategy-to-predict-strength-variability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1127</span> Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidal%20F.%20Shilbayeh">Nidal F. Shilbayeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Remah%20W.%20Al-Khatib"> Remah W. Al-Khatib</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20A.%20Nooh"> Sameer A. Nooh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.&nbsp; This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=handwritten%20numerals" title="handwritten numerals">handwritten numerals</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=courtesy%20amount" title=" courtesy amount"> courtesy amount</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=numeral%20recognition" title=" numeral recognition"> numeral recognition</a> </p> <a href="https://publications.waset.org/abstracts/88377/segmentation-of-arabic-handwritten-numeral-strings-based-on-watershed-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1126</span> Structural Analysis of the Burkh Anticline in Fars Zone, in the Zagros Fold-Thrust Belt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Afroogh">A. Afroogh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ramazani%20Omali"> R. Ramazani Omali</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hafezi%20Moghaddas"> N. Hafezi Moghaddas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nohegar"> A. Nohegar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Burkh anticline is located in Southeast of Zagros fold-thrust belt in the Fars Province. Geometric analyses of the anticline have been carried out to estimate the closure of the Dehram Group in order to evaluate its potential for gas reservoirs. Geometric analyses of the Burkh anticline indicate that the fold geometry is rather similar to that of the detachment folds. Based on the data from the geometric analysis, seven structural cross section the anticlines are drawn and using the cross sections, a structural contour for Dehram Group is constructed. The calculated values for the anticline closure prohibits this structure as it is not an appropriate host to gas reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burkh%20anticline" title="Burkh anticline">Burkh anticline</a>, <a href="https://publications.waset.org/abstracts/search?q=Zagros%20fold-thrust%20belt" title=" Zagros fold-thrust belt"> Zagros fold-thrust belt</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20analyses" title=" geometric analyses"> geometric analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20and%20horizontal%20closure" title=" vertical and horizontal closure"> vertical and horizontal closure</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehram%20group" title=" Dehram group"> Dehram group</a> </p> <a href="https://publications.waset.org/abstracts/2277/structural-analysis-of-the-burkh-anticline-in-fars-zone-in-the-zagros-fold-thrust-belt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1125</span> An Authentic Algorithm for Ciphering and Deciphering Called Latin Djokovic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diogen%20Babuc">Diogen Babuc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The question that is a motivation of writing is how many devote themselves to discovering something in the world of science where much is discerned and revealed, but at the same time, much is unknown. Methods: The insightful elements of this algorithm are the ciphering and deciphering algorithms of Playfair, Caesar, and Vigenère. Only a few of their main properties are taken and modified, with the aim of forming a specific functionality of the algorithm called Latin Djokovic. Specifically, a string is entered as input data. A key k is given, with a random value between the values a and b = a+3. The obtained value is stored in a variable with the aim of being constant during the run of the algorithm. In correlation to the given key, the string is divided into several groups of substrings, and each substring has a length of k characters. The next step involves encoding each substring from the list of existing substrings. Encoding is performed using the basis of Caesar algorithm, i.e., shifting with k characters. However, that k is incremented by 1 when moving to the next substring in that list. When the value of k becomes greater than b+1, it’ll return to its initial value. The algorithm is executed, following the same procedure, until the last substring in the list is traversed. Results: Using this polyalphabetic method, ciphering and deciphering of strings are achieved. The algorithm also works for a 100-character string. The x character isn’t used when the number of characters in a substring is incompatible with the expected length. The algorithm is simple to implement, but it’s questionable if it works better than the other methods from the point of view of execution time and storage space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ciphering" title="ciphering">ciphering</a>, <a href="https://publications.waset.org/abstracts/search?q=deciphering" title=" deciphering"> deciphering</a>, <a href="https://publications.waset.org/abstracts/search?q=authentic" title=" authentic"> authentic</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=polyalphabetic%20cipher" title=" polyalphabetic cipher"> polyalphabetic cipher</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20key" title=" random key"> random key</a>, <a href="https://publications.waset.org/abstracts/search?q=methods%20comparison" title=" methods comparison"> methods comparison</a> </p> <a href="https://publications.waset.org/abstracts/158121/an-authentic-algorithm-for-ciphering-and-deciphering-called-latin-djokovic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1124</span> Exploring Unexplored Horizons: Advanced Fluid Mechanics Solutions for Sustainable Energy Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elvira%20S.%20Castillo">Elvira S. Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Surupa%20Shaw"> Surupa Shaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores advanced applications of fluid mechanics in the context of sustainable energy. By examining the integration of fluid dynamics with renewable energy technologies, the research uncovers previously underutilized strategies for improving efficiency. Through theoretical analyses, the study demonstrates how fluid mechanics can be harnessed to optimize renewable energy systems. The findings contribute to expanding knowledge in sustainable energy by offering practical insights and methodologies for future research and technological advancements to address global energy challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title="fluid mechanics">fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a> </p> <a href="https://publications.waset.org/abstracts/185372/exploring-unexplored-horizons-advanced-fluid-mechanics-solutions-for-sustainable-energy-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1123</span> Kýklos Dimensional Geometry: Entity Specific Core Measurement System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steven%20D.%20P%20Moore">Steven D. P Moore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel method referred to asKýklos(Ky) dimensional geometry is proposed as an entity specific core geometric dimensional measurement system. Ky geometric measures can constructscaled multi-dimensionalmodels using regular and irregular sets in IRn. This entity specific-derived geometric measurement system shares similar fractal methods in which a ‘fractal transformation operator’ is applied to a set S to produce a union of N copies. The Kýklos’ inputs use 1D geometry as a core measure. One-dimensional inputs include the radius interval of a circle/sphere or the semiminor/semimajor axes intervals of an ellipse or spheroid. These geometric inputs have finite values that can be measured by SI distance units. The outputs for each interval are divided and subdivided 1D subcomponents with a union equal to the interval geometry/length. Setting a limit of subdivision iterations creates a finite value for each 1Dsubcomponent. The uniqueness of this method is captured by allowing the simplest 1D inputs to define entity specific subclass geometric core measurements that can also be used to derive length measures. Current methodologies for celestial based measurement of time, as defined within SI units, fits within this methodology, thus combining spatial and temporal features into geometric core measures. The novel Ky method discussed here offers geometric measures to construct scaled multi-dimensional structures, even models. Ky classes proposed for consideration include celestial even subatomic. The application of this offers incredible possibilities, for example, geometric architecture that can represent scaled celestial models that incorporates planets (spheroids) and celestial motion (elliptical orbits). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyklos" title="Kyklos">Kyklos</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry" title=" geometry"> geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=celestial" title=" celestial"> celestial</a>, <a href="https://publications.waset.org/abstracts/search?q=dimension" title=" dimension"> dimension</a> </p> <a href="https://publications.waset.org/abstracts/141798/kyklos-dimensional-geometry-entity-specific-core-measurement-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10