CINXE.COM
Search results for: sustainable energy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sustainable energy</title> <meta name="description" content="Search results for: sustainable energy"> <meta name="keywords" content="sustainable energy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sustainable energy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sustainable energy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11975</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sustainable energy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11975</span> Exploring Unexplored Horizons: Advanced Fluid Mechanics Solutions for Sustainable Energy Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elvira%20S.%20Castillo">Elvira S. Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Surupa%20Shaw"> Surupa Shaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores advanced applications of fluid mechanics in the context of sustainable energy. By examining the integration of fluid dynamics with renewable energy technologies, the research uncovers previously underutilized strategies for improving efficiency. Through theoretical analyses, the study demonstrates how fluid mechanics can be harnessed to optimize renewable energy systems. The findings contribute to expanding knowledge in sustainable energy by offering practical insights and methodologies for future research and technological advancements to address global energy challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title="fluid mechanics">fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a> </p> <a href="https://publications.waset.org/abstracts/185372/exploring-unexplored-horizons-advanced-fluid-mechanics-solutions-for-sustainable-energy-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11974</span> Biomass Energy in Improving Sustainable Economic Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahiru%20Muhammad">Dahiru Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Danladi"> Muhammad Danladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Garba"> Adamu Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yahaya"> Muhammad Yahaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper put forward the potentialities of biomass for energy as divers means of sustainable economic development. The paper explains in brief the ways or methods that are used to generate energy from biomass, such as combustion, pyrolysis, anaerobic, and gasification, and also how biomass for energy can enhance the sustainable economic development of a Nation. Currently, the nation depends on fossil fuels as a sources of generating its energy which is finite and deflectable with time, while on the other hand, biomass is an alternative and endless product which consists of a forest biomass, agricultural residues, and energy crops. Finally, recommendations and conclusion were made on the role of biomass for energy in improving sustainable economic development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=economic" title=" economic"> economic</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/160583/biomass-energy-in-improving-sustainable-economic-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11973</span> Biomass For Energy In Improving Sustainable Economic Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahiru%20Muhammad">Dahiru Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Danladi"> Muhammad Danladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yahaya"> Muhammad Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Garba"> Adamu Garba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper put forward the potentialities of biomass for energy as divers means of sustainable economic development. The paper explains, in brief, the ways or methods that are used to generate energy from biomass, such as combustion, pyrolysis, anaerobic, and gasification, and also how biomass for energy can enhance the sustainable economic development of a Nation. Currently, the nation depends on fossil fuels as a sources of generating its energy which is finite and deflectable with time, while on the other hand, biomass is an alternative and endless product which consists of forest biomass, agricultural residues, and energy crops. Finally, recommendations and conclusion were made on the role of biomass for energy in improving sustainable economic development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=economic" title=" economic"> economic</a> </p> <a href="https://publications.waset.org/abstracts/160578/biomass-for-energy-in-improving-sustainable-economic-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11972</span> Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet">Hussain Ali Bekhet</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Hamisham%20Harun"> Nor Hamisham Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title="Malaysia">Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=non-renewable%20energy" title=" non-renewable energy"> non-renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a> </p> <a href="https://publications.waset.org/abstracts/54485/role-of-non-renewable-and-renewable-energy-for-sustainable-electricity-generation-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11971</span> Magnetotelluric Method Approach for the 3-D Inversion of Geothermal System’s Dissemination in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pelangi%20Wiyantika">Pelangi Wiyantika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable energy is the main concern in According to solve any problems on energy sectors. One of the sustainable energy that has lack of presentation is Geothermal energy which has developed lately as the new promising sustainable energy. Indonesia as country that has been passed by the ring of fire zone has many geothermal sources. This is the good opportunity to elaborate and learn more about geothermal as sustainable and renewable energy. Geothermal systems have special characteristic whom the zone of sources can be detected by measuring the resistivity of the subsurface. There are many methods to measuring the anomaly of the systems. One of the best method is Magnetotelluric approchment. Magnetotelluric is the passive method which the resistivity is obtained by injecting the eddy current of rocks in the subsurface with the sources. The sources of Magnetotelluric method can be obtained from lightning or solar wind which has the frequencies each below 1 Hz and above 1 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal" title="geothermal">geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetotelluric" title=" magnetotelluric"> magnetotelluric</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a> </p> <a href="https://publications.waset.org/abstracts/61743/magnetotelluric-method-approach-for-the-3-d-inversion-of-geothermal-systems-dissemination-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11970</span> Sustainable Agriculture in Nigeria: Integrating Energy Efficiency and Renewables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vicx%20Farm">Vicx Farm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the critical role of energy efficiency management and renewable energy in fostering sustainable agricultural practices in Nigeria. With the growing concerns over energy security, environmental degradation, and climate change, there is an urgent need to transition towards more sustainable energy sources and practices in the agricultural sector. Nigeria, being a significant player in the global agricultural market, stands to benefit immensely from integrating energy efficiency measures and renewable energy solutions into its agricultural activities. This paper discusses the current energy challenges facing Nigerian agriculture, explores the potential benefits of energy efficiency and renewable energy adoption, and proposes strategies for effective implementation. The paper concludes with recommendations for policymakers, stakeholders, and practitioners to accelerate the adoption of energy-efficient and renewable energy technologies in Nigerian agriculture, thereby promoting sustainable development and resilience in the sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a> </p> <a href="https://publications.waset.org/abstracts/183031/sustainable-agriculture-in-nigeria-integrating-energy-efficiency-and-renewables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11969</span> Comparison the Energy Consumption with Sustainability in Campus: Case Study of Four American Universities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bifeng%20Zhu">Bifeng Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhekai%20Wang"> Zhekai Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaoyang%20Sun"> Chaoyang Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Bart%20Dewancker"> Bart Dewancker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the tide of promoting sustainable development in the world, American universities that have been committed to sustainable practice and innovation, not only have its sustainable campus construction been in the forefront of the world, but also have developed STARS (The Sustainability Tracking, Assessment & Rating System), which is widely used in the world and highly recognized. At the same time, in the process of global sustainable campus construction, energy problem is often regarded as one of the most important sustainable aspects, even equivalent to the sustainability of campus. Therefore, the relationship between campus energy and sustainability is worth discussing. In this study, four American universities with the highest level evaluated by STARS are selected as examples to compare and analyze the campus energy consumption and the use of new energy, GHG emissions and the overall sustainability of the campus, in order to explore the relationship between campus energy and sustainable construction. It is found that the advantages of sustainable campus construction in the United States are mainly focused on the "software" of management, education, activities, etc. Although different energy-saving measures have been taken in campus energy, the construction results are quite different. Moreover, as an important aspect of sustainable campus, energy can not fully represent the sustainability of campus, but because of the various measures it takes, it can greatly promote the sustainable construction of the whole campus. These measures and construction experiences are worthy of summary and promotion, and have positive reference significance for other universities even communities around the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20campus" title="sustainable campus">sustainable campus</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=STARS%20assessment" title=" STARS assessment"> STARS assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a> </p> <a href="https://publications.waset.org/abstracts/119859/comparison-the-energy-consumption-with-sustainability-in-campus-case-study-of-four-american-universities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11968</span> Household Energy Usage in Nigeria: Emerging Advances for Sustainable Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Akinsanya">O. A. Akinsanya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the emerging trends in household energy usage in Nigeria for sustainable development. The paper relied on a direct appraisal of energy use in the residential sector and the use of a structured questionnaire to establish the usage pattern, energy management measures and emerging advances. The use of efficient appliances, retrofitting, smart building and smart attitude are some of the benefitting measures. The paper also identified smart building, prosumer activities, hybrid energy use, improved awareness, and solar stand-alone street/security lights as the trend and concluded that energy management strategies would result in a significant reduction in the monthly bills and peak loads as well as the total electricity consumption in Nigeria and therefore it is good for sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=household" title="household">household</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=trends" title=" trends"> trends</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/173180/household-energy-usage-in-nigeria-emerging-advances-for-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11967</span> Low Electrical Energy Access Rate in Burundi as a Barrier to Achieving the United Nations' Sustainable Development Goals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gatoto%20Placide">Gatoto Placide</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Roddy%20Lollchund"> Michel Roddy Lollchund</a>, <a href="https://publications.waset.org/abstracts/search?q=Gace%20Athanase%20Dalson"> Gace Athanase Dalson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper first presents a review of the current situation of energy access rate in Burundi, which is relatively low compared to other countries. The paper aims to identify the key gaps in improving the electrical energy access in Burundi and proposes a solution to overcome these gaps. It is shown that the electrical power grid is old and concentrated in north-west and in Bujumbura city while other regions lack access to national grids. Next to that, the link between electricity access and sustainable development in Burundi is clarified. Further, some solutions are suggested to solve energy access problems such as the electricity transmission lines extension and renovation, diversification of energy sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burundi" title="Burundi">Burundi</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20access" title=" energy access"> energy access</a>, <a href="https://publications.waset.org/abstracts/search?q=hydropower" title=" hydropower"> hydropower</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/128188/low-electrical-energy-access-rate-in-burundi-as-a-barrier-to-achieving-the-united-nations-sustainable-development-goals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11966</span> Realization of Sustainable Urban Society by Personal Electric Transporter and Natural Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuichi%20Miyamoto">Yuichi Miyamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In regards to the energy sector in the modern period, two points were raised. First is a vast and growing energy demand, and second is an environmental impact associated with it. The enormous consumption of fossil fuel to the mobile unit is leading to its rapid depletion. Nuclear power is not the only problem. A modal shift that utilizes personal transporters and independent power, in order to realize a sustainable society, is very effective. The paper proposes that the world will continue to work on this. Energy of the future society, innovation in battery technology and the use of natural energy is a big key. And it is also necessary in order to save on energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20energy" title="natural energy">natural energy</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20shift" title=" modal shift"> modal shift</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20transportation" title=" personal transportation"> personal transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a> </p> <a href="https://publications.waset.org/abstracts/8079/realization-of-sustainable-urban-society-by-personal-electric-transporter-and-natural-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11965</span> The Linkage of Urban and Energy Planning for Sustainable Cities: The Case of Denmark and Germany</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jens-Phillip%20Petersen">Jens-Phillip Petersen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of GHG emissions in buildings is a focus area of national energy policies in Europe, because buildings are responsible for a major share of the final energy consumption. It is at local scale where policies to increase the share of renewable energies and energy efficiency measures get implemented. Municipalities, as local authorities and responsible entity for land-use planning, have a direct influence on urban patterns and energy use, which makes them key actors in the transition towards sustainable cities. Hence, synchronizing urban planning with energy planning offers great potential to increase society’s energy-efficiency; this has a high significance to reach GHG-reduction targets. In this paper, the actual linkage of urban planning and energy planning in Denmark and Germany was assessed; substantive barriers preventing their integration and driving factors that lead to successful transitions towards a holistic urban energy planning procedures were identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20planning" title="energy planning">energy planning</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energies" title=" renewable energies"> renewable energies</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20cities" title=" sustainable cities"> sustainable cities</a> </p> <a href="https://publications.waset.org/abstracts/42208/the-linkage-of-urban-and-energy-planning-for-sustainable-cities-the-case-of-denmark-and-germany" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11964</span> Designing Sustainable Building Based on Iranian's Windmills </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negar%20Sartipzadeh">Negar Sartipzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy-conscious design, which coordinates with the Earth ecological systems during its life cycle, has the least negative impact on the environment with the least waste of resources. Due to the increasing in world population as well as the consumption of fossil fuels that cause the production of greenhouse gasses and environmental pollution, mankind is looking for renewable and also sustainable energies. The Iranian native construction is a clear evidence of energy-aware designing. Our predecessors were forced to rely on the natural resources and sustainable energies as well as environmental issues which have been being considered in the recent world. One of these endless energies is wind energy. Iranian traditional architecture foundations is a appropriate model in solving the environmental crisis and the contemporary energy. What will come in this paper is an effort to recognition and introduction of the unique characteristics of the Iranian architecture in the application of aerodynamic and hydraulic energies derived from the wind, which are the most common and major type of using sustainable energies in the traditional architecture of Iran. Therefore, the recent research attempts to offer a hybrid system suggestions for application in new constructions designing in a region such as Nashtifan, which has potential through reviewing windmills and how they deal with sustainable energy sources, as a model of Iranian native construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20building" title=" sustainable building"> sustainable building</a>, <a href="https://publications.waset.org/abstracts/search?q=windmill" title=" windmill"> windmill</a>, <a href="https://publications.waset.org/abstracts/search?q=Iranian%20architecture" title=" Iranian architecture "> Iranian architecture </a> </p> <a href="https://publications.waset.org/abstracts/11242/designing-sustainable-building-based-on-iranians-windmills" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11963</span> Perspective and Challenge of Tidal Power in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Alamgir%20Hossain">Md. Alamgir Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zakir%20Hossain"> Md. Zakir Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Atiqur%20Rahman"> Md. Atiqur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tidal power can play a vital role in integrating as new source of renewable energy to the off-grid power connection in isolated areas, namely Sandwip, in Bangladesh. It can reduce the present energy crisis and improve the social, environmental and economic perspective of Bangladesh. Tidal energy is becoming popular around the world due to its own facilities. The development of any country largely depends on energy sector improvement. Lack of energy sector is because of hampering progress of any country development, and the energy sector will be stable by only depend on sustainable energy sources. Renewable energy having environmental friendly is the only sustainable solution of secure energy system. Bangladesh has a huge potential of tidal power at different locations, but effective measures on this issue have not been considered sincerely. This paper summarizes the current energy scenario, and Bangladesh can produce power approximately 53.19 MW across the country to reduce the growing energy demand utilizing tidal energy as well as it is shown that Sandwip is highly potential place to produce tidal power, which is estimated approximately 16.49 MW by investing only US $10.37 million. Besides this, cost management for tidal power plant has been also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title="sustainable energy">sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=tidal%20power" title=" tidal power"> tidal power</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20demand" title=" power demand"> power demand</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20crisis" title=" gas crisis "> gas crisis </a> </p> <a href="https://publications.waset.org/abstracts/13732/perspective-and-challenge-of-tidal-power-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11962</span> A Sustainable Energy Portfolio for Greater Kampala Metropolitan Area by the Mid-Century</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Kimuli">Ismail Kimuli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With a steadfast economic development, the Greater Kampala metropolitan area (GKMA) faces increasing pressures to increasetheshare of low-carbon electricity in the energy balance, abate CO2 emissions and also restructure the transportation sector for a sustainable 2050. GKMA, is Uganda’s commercial, political, social, and industrial hub with a population of 4.1 million, contributing 60% tothe nation’s GDP and accounts for 80% of Uganda’s industrial sector.However, with the rampant anthropogenic interference that causes climate change, CO2 emissions in the metropolitan are contributing to global warming. Many economies across the globe are addressing this challengethrough development and analysis of sustainable energy portfolios.A sustainable energy portfolio is a low-carbon scenario. The study reviews the literature to establish the current energy management situation of GKMA and finds it wanting in addressing the immediate challenges associated with energy management of the metropolitan. Then, the study develops and examines a sustainable energy portfolio for GKMA using TIMES-VEDA and then presents it as an investigative low-carbon energy scenario that could propel the metropolitan sustainably towards 2050.Sustainability is plausible by optimizing the total primary energy supply, generating low-carbon electricity from hydropower and PV-solar renewables, improving heating technologies for residential & commercial sectors, and switching 90% of land passengers from road to a Kampala metro for a sustainable mid-century. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GKMA" title="GKMA">GKMA</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=TIMES-VEDA" title=" TIMES-VEDA"> TIMES-VEDA</a>, <a href="https://publications.waset.org/abstracts/search?q=low-carbon%20scenario" title=" low-carbon scenario"> low-carbon scenario</a> </p> <a href="https://publications.waset.org/abstracts/147164/a-sustainable-energy-portfolio-for-greater-kampala-metropolitan-area-by-the-mid-century" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11961</span> A Paradigm Shift in Energy Policy and Use: Exergy and Hybrid Renewable Energy Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adavbiele%20Airewe%20Stephen">Adavbiele Airewe Stephen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable energy use is exploiting energy resources within acceptable levels of global resource depletion without destroying the ecological balance of an area. In the context of sustainability, the rush to quell the energy crisis of the fossil fuels of the 1970's by embarking on nuclear energy technology has now been seen as a disaster. In the circumstance, action (policy) suggested in this study to avoid future occurrence is exergy maximization/entropy generation minimization and the use is renewable energy technologies that are hybrid based. Thirty-two (32) selected hybrid renewable energy technologies were assessed with respect to their energetic efficiencies and entropy generation. The results indicated that determining which of the hybrid technologies is the most efficient process and sustainable is a matter of defining efficiency and knowing which of them possesses the minimum entropy generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20renewable%20energy%20technologies" title=" hybrid renewable energy technologies"> hybrid renewable energy technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/20261/a-paradigm-shift-in-energy-policy-and-use-exergy-and-hybrid-renewable-energy-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11960</span> Energy Service Companies as a Facilitator for Implementation of Energy-Environment Conventions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Arghand">Bahareh Arghand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The establishment of rules and regulations for more effective energy-environment interactions are essential to achieving sustainable development. Sustainable development requires mechanisms that can promote compliance in energy-environment conventions. There are many binding agreements and non-binding instruments at regional and international levels on energy and the environment. These conventions try to decrease conflicts of interest between energy, environment and economic by legal principles and practical mechanisms. The major core of conventions is their implementations because the poor implementation and enforcement power affect their success. In this regard, the main goal of this study is proposing the effective implementation mechanisms. Energy service companies' (ESCOs) activities can improve energy efficiency and decrease the environmental degradations. Therefore, it can be proposed and assessed the merit mechanism of ESCO performance as a facilitator to implement energy-environment conventions. An assessment of ESCO performance, including its potentials, problems, and limitations, as a facilitator for effective implementation of the energy-environment convention, is included. This study is oriented towards effective development and application of laws and the function of ESCOs as appropriate economic instruments and facilitator for implementation of energy-environment conventions. The resulting system of close cooperation between the energy-environment conventions and ESCOs is geared toward advancing environmental protection and economic factors by the transfer of environmentally-sound technologies that meet sustainable development objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-environment%20conventions" title="energy-environment conventions">energy-environment conventions</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20service%20company" title=" energy service company"> energy service company</a>, <a href="https://publications.waset.org/abstracts/search?q=facilitator%20mechanism" title=" facilitator mechanism"> facilitator mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/86388/energy-service-companies-as-a-facilitator-for-implementation-of-energy-environment-conventions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11959</span> Sustainable Building Design for Energy Efficiency and Healthier Electromagnetic Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Habash">Riadh Habash</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Djukic"> Kristina Djukic</a>, <a href="https://publications.waset.org/abstracts/search?q=Gandhi%20Habash"> Gandhi Habash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable design is one of the emerging milestones in building construction. This concept is defined as buildings that on a yearly average consume as much energy as they generate using renewable energy sources. Realization of sustainable buildings requires a wide range of technologies, systems and solutions with varying degrees of complexity and sophistication, depending upon the location and surrounding environmental conditions. This paper will address not only the role of the above technologies and solutions but will provide solutions to reduce the electromagnetic fields (EMFs) in the building as much as possible so that the occupiers can recover from electro-hyper-sensitivity, if any. The objective is to maximize energy efficiency, optimize occupant comfort, reduce dependency on the grid and provide safer and healthier EMF environment especially for hypersensitive people. Creative architectural and engineering solutions that capitalize on the design of energy efficient technologies; combined cooling, heating and power (CCHP) microgrid (MG); and EMF mitigation will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20buildings" title="sustainable buildings">sustainable buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20simulation" title=" thermal simulation"> thermal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20environment" title=" electromagnetic environment"> electromagnetic environment</a> </p> <a href="https://publications.waset.org/abstracts/52235/sustainable-building-design-for-energy-efficiency-and-healthier-electromagnetic-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11958</span> A Review of Sustainable Energy-Saving Solutions in Active and Passive Solar Systems of Zero Energy Buildings Based on the Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanieh%20Sadat%20Jannesari">Hanieh Sadat Jannesari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoori%20Jannesar"> Hoori Jannesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Hajian%20HosseinAbadi"> Alireza Hajian HosseinAbadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, buildings are responsible for a considerable share of consumed energy and carbon emissions worldwide and play a significant role in formulating sustainable development strategies. Therefore, a lot of effort is put into the design and construction of zero-energy buildings (ZEBs) to help eliminate the problems associated with the reduction of energy resources and environmental degradation. Two strategies are significant in designing ZEBs: minimizing the need for energy utilization in buildings (particularly for cooling and heating) through highly energy-efficient designs and using renewable energies and other technologies to meet the remaining energy needs. This paper reviews the works related to these two strategies concerning sustainable energy-saving solutions using renewable energy technologies and the Internet of Things in ZEBs. Drawing on the theories and recently implemented projects of energy engineers in ZEBs, we have reported the required technologies within the framework of this paper’s objectives. Overall, solutions based on renewable and sustainable technologies such as photovoltaic (PV) modules, thermal collectors, Phase Change Material (PCM) techniques, etc., are used in active and passive systems designed for various applications in such buildings as cooling, heating, lighting, cooking, etc. The results obtained from examining these projects show that it is possible to minimize the amount of energy required to be produced for and consumed by these buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20and%20passive%20renewable%20energy%20systems" title="active and passive renewable energy systems">active and passive renewable energy systems</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20energy%20buildings" title=" zero energy buildings"> zero energy buildings</a> </p> <a href="https://publications.waset.org/abstracts/188935/a-review-of-sustainable-energy-saving-solutions-in-active-and-passive-solar-systems-of-zero-energy-buildings-based-on-the-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11957</span> Designing a Smart City Relying on Renewable Energies: A Solution in the Concept of Sustainable Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Bakhshi">Mina Bakhshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, issues such as various types of pollution, problems caused by energy consumption, population density, social activities, difficulties related to urban access and communication, transportation, etc., have challenged different communities and become the subject of their discussions. In response to this issue, theories and movements have emerged to achieve sustainable urban development, including the smart growth movement. This theory emphasizes that the physical growth and expansion of cities should serve the community and the environment, aiming to improve the quality of life and promote the use of renewable energy resources for sustainability. The smart city network system not only improves the economic situation of the society and benefits the environment but also enables the achievement of important issues such as sustainable development, continuity, and diversity of energy resources. In this article, we investigate the impact of using renewable energy sources on optimizing energy consumption and reducing pollution caused by fossil fuels with the help of smart city development. The aim of this article is to introduce renewable energy sources and their utilization as a solution to address the energy crisis and reduce environmental pollution. This research has attempted to introduce the smart city and the use of renewable energy sources as a method for solving many urban problems and achieving efficient urban control and management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title="smart city">smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20city" title=" sustainable city"> sustainable city</a> </p> <a href="https://publications.waset.org/abstracts/169290/designing-a-smart-city-relying-on-renewable-energies-a-solution-in-the-concept-of-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11956</span> Insulation, Sustainable Construction, and Architectural Design to Reduce Energy Consumption in Sustainable Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Namavar">Gholamreza Namavar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bayati"> Ali Bayati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities show one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In construction industry we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaption with environment is critical. Otherwise, the isolation should be use and mention in long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectural%20design" title="architectural design">architectural design</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title=" sustainable construction"> sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20energy%20consumption" title=" reducing energy consumption"> reducing energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/36227/insulation-sustainable-construction-and-architectural-design-to-reduce-energy-consumption-in-sustainable-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11955</span> Sustainable Interiors: An Inquiry into Design Approach to Imbibe Energy Efficiency and Well-Being in Corporate Offices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lipi%20Agarwal">Lipi Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Siddhant%20Patni"> Siddhant Patni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corporate organizations are seeking for the spaces that are energy efficient and maximize occupant health and productivity. Thus, designing workplaces that effectively steward resources and supports the health, the well-being of its occupants has become a dire need of the hour. The purpose of this paper is to understand the design approach for creating sustainable interiors in corporate offices. The objective is to identify the factors that aid energy efficient design and elevates the well-being in building and communities. The paper will employ qualitative methodology and undertake case study approach to comprehend the role of Leadership in Energy and Environmental Design (LEED) and WELL (a global rating system for health and wellness) in providing sustainable interiors. The findings help the design fraternity in designing a workspace that optimizes the use of resources and advances the human health inside the built environment. The paper suggests the framework that leads to interior environment which is sustainable in nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corporate%20interiors" title="corporate interiors">corporate interiors</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=LEED" title=" LEED"> LEED</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=WELL" title=" WELL"> WELL</a>, <a href="https://publications.waset.org/abstracts/search?q=well-being" title=" well-being"> well-being</a> </p> <a href="https://publications.waset.org/abstracts/108538/sustainable-interiors-an-inquiry-into-design-approach-to-imbibe-energy-efficiency-and-well-being-in-corporate-offices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11954</span> The Use of Energy Efficiency and Renewable Energy in Building for Sustainable Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakariya%20B.%20H.">Zakariya B. H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Idris%20M.%20I."> Idris M. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungudo%20M.%20A."> Jungudo M. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High energy consumptions of urban settlements in Nigeria are escalating due to strong population growth and migration as a result of crises. The demand for lighting, heating, ventilation and air conditioning (LHVAC) is becoming higher. Conversely, there is a poor electricity supply to both rural and urban settlement in Nigeria. Generators were mostly used in Nigeria as a source of energy for LHVAC. Energy efficiency can be defined as any measure taken to reduce the amount of energy consumed for heating ventilation and air-conditioning (HVAC), and house hold appliances like computers, stoves, refrigerators, televisions etc. The aim of the study was to minimize energy consumption in building through the integration of energy efficiency and renewable energy in building sector. Some of the energy efficient buildings within the study area were identified, the study covers there major cities of Nigeria namely, Abuja, Kaduna and Lagos city. The cost of investment on the energy efficiency and renewable energy was determined and compared with other fossil energy source for conventional building. Findings revealed that the low energy and energy efficient buildings in Nigeria are cheaper than the conventional ones. Based on the finding of the research, construction stake holders are strongly encouraged to abandon the conventional buildings and consider energy efficiency and renewable energy in buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=LHVAC" title=" LHVAC"> LHVAC</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/35904/the-use-of-energy-efficiency-and-renewable-energy-in-building-for-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">581</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11953</span> SWOT Analysis of Renewable Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahad%C4%B1r%20Ayd%C4%B1n">Bahadır Aydın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Being one of the most important elements of social evolution, energy has a vital role for a sustainable economy and development. Energy has great importance to level up the welfare. By this importance, countries having rich resources can apply energy as an political instrument. While needs of energy is increasing, sources to respond this need is very limited. Therefore, countries seek for alternative resources to meet their needs. Renewable energy sources have firstly taken into consideration. Being clean and belonging to countries own sources, renewable energy resources have been widely applied during the last decades. However, renewable energy cannot meet all the expectation of energy needs. In this respect, energy efficiency can be seen as an alternative. Energy efficiency can minimize energy consumption without degrading standard of living, lessening quality of products and without increasing energy bills. In this article, energy resources, SWOT analysis of renewable sources, and energy efficiency topics are mainly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20regulations" title=" energy regulations"> energy regulations</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20relations" title=" international relations"> international relations</a> </p> <a href="https://publications.waset.org/abstracts/4120/swot-analysis-of-renewable-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11952</span> The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Scalisi">Francesca Scalisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesare%20Sposito"> Cesare Sposito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title="embodied energy">embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20construction" title=" material construction"> material construction</a> </p> <a href="https://publications.waset.org/abstracts/77543/the-eco-efficient-construction-a-review-of-embodied-energy-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11951</span> Dynamic Interaction between Renwable Energy Consumption and Sustainable Development: Evidence from Ecowas Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maman%20Ali%20%20M.%20Moustapha">Maman Ali M. Moustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20%20Yu"> Qian Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Adjei%20%20%20Danquah"> Benjamin Adjei Danquah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the dynamic interaction between renewable energy consumption (REC) and economic growth using dataset from the Economic Community of West African States (ECOWAS) from 2002 to 2016. For this study the Autoregressive Distributed Lag- Bounds test approach (ARDL) was used to examine the long run relationship between real gross domestic product and REC, while VECM based on Granger causality has been used to examine the direction of Granger causality. Our empirical findings indicate that REC has significant and positive impact on real gross domestic product. In addition, we found that REC and the percentage of access to electricity had unidirectional Granger causality to economic growth while carbon dioxide emission has bidirectional Granger causality to economic growth. Our findings indicate also that 1 per cent increase in the REC leads to an increase in Real GDP by 0.009 in long run. Thus, REC can be a means to ensure sustainable economic growth in the ECOWAS sub-region. However, it is necessary to increase further support and investments on renewable energy production in order to speed up sustainable economic development throughout the region <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Economic%20Growth" title="Economic Growth">Economic Growth</a>, <a href="https://publications.waset.org/abstracts/search?q=Renewable%20Energy" title=" Renewable Energy"> Renewable Energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sustainable%20Development" title=" Sustainable Development"> Sustainable Development</a>, <a href="https://publications.waset.org/abstracts/search?q=Sustainable%20Energy" title=" Sustainable Energy"> Sustainable Energy</a> </p> <a href="https://publications.waset.org/abstracts/118507/dynamic-interaction-between-renwable-energy-consumption-and-sustainable-development-evidence-from-ecowas-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11950</span> Multi-Dimensional Energy Resource Evaluation in Climate Change beyond the 21st Century</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hameed%20Alshammari">Hameed Alshammari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decarbonisation of the energy sector beyond the 21ˢᵗ century is akin to establishing morally responsible mechanisms that can propagate sustainable livelihoods (Denina et al., 2021). It implies that Kuwait undertakes a re-evaluation of energy generation gaps so as to tap the potential to reduce overreliance on fossil fuel (Si et al., 2020) and align with global views on sustainable energy generation and consumption.(Herrero, Pineda, Villar, & Zambrano, 2020). Without the economic pressure to switch to alternative sources of energy, Kuwait requires a multi-dimensional analysis the energy policies andsources of energy other than fossil fuels (Alsaad, 2021).Currently, Kuwait has an energy system that is highly skewed towards fossil fuels (Alsaad, 2021); hence, the reliance on burning fossil fuels forms part of the core elements of the general inefficient energy systems that have negative consequences to global environmental and economic systems (Kang et al., 2020). This paper undertakes a detailed literature review on factors needed for the development of a framework for the multi-dimensional energy resource analysis in Kuwait. The framework aims aligning the current energy policies in Kuwait with the global decarbonisation drive, to promote sustainable energy strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decarbonisation" title="decarbonisation">decarbonisation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20fuels" title=" fossil fuels"> fossil fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-dimensional%20analysis" title=" multi-dimensional analysis"> multi-dimensional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/149672/multi-dimensional-energy-resource-evaluation-in-climate-change-beyond-the-21st-century" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11949</span> Energy Resilience in the Sustainable Built Environment: the Use of Biogas to Reduce Vulnerabilities and Risks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janaina%20Camile%20Pasqual%20Lofhagen">Janaina Camile Pasqual Lofhagen</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Savarese"> David Savarese</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronika%20Vazhnik"> Veronika Vazhnik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The built environment is considered as a key element in transitioning to clean energy, needed to create resilient buildings and cities, enhance their adaptability to changes, and pursue energy saving. For such energy transition, this paper presents biogas as one of the sustainable sources of energy, as it is produced from organic materials often available in both urban and rural areas and can be converted into electrical and thermal energy, or into vehicular energies fuel. The resilience benefits of this fuel is being a localized alternative energy, and also provides tangible benefits for water, air, and soil quality. Through bibliographic and empirical research, this study analyzed the biogas potential and applications in Brazil and in the U.S. The results indicated that biogas emits 85% less CO2 to the atmosphere compared to diesel and could supply 40% of domestic electricity demand and 70% of diesel consumption in Brazil, with a similar scenario for the U.S. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resilience" title="resilience">resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=built%20environment" title=" built environment"> built environment</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas." title=" biogas."> biogas.</a> </p> <a href="https://publications.waset.org/abstracts/154073/energy-resilience-in-the-sustainable-built-environment-the-use-of-biogas-to-reduce-vulnerabilities-and-risks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11948</span> Applying Systems Thinking and a System of Systems Approach to Facilitate Sustainable Grid Integration of Variable Renewable Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edward%20B.%20Ssekulima">Edward B. Ssekulima</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Etemadi"> Amir Etemadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a Systems Thinking and System of Systems (SoS) viewpoint for managing requirements complexity in the grid integration of Variable Renewable Energy (VRE). To achieve a SoS approach, it is often necessary to inculcate a Systems Thinking (ST) perspective in the planning and design of the attendant system. We show how this approach can support the enhanced integration of VRE (wind, solar small hydro) for which intermittency is a key inhibiting factor to their sustainable grid integration. The results indicate that a ST and SoS approach are a critical tool for decision makers in the planning, design and deployment of VRE Sources for their sustainable grid-integration in accordance with relevant techno-economic, social and environmental requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20grid-integration" title="sustainable grid-integration">sustainable grid-integration</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20of%20systems" title=" system of systems"> system of systems</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20thinking" title=" systems thinking"> systems thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20energy%20resources" title=" variable energy resources"> variable energy resources</a> </p> <a href="https://publications.waset.org/abstracts/158837/applying-systems-thinking-and-a-system-of-systems-approach-to-facilitate-sustainable-grid-integration-of-variable-renewable-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11947</span> Energy Transition in the Netherlands - the Best Way to Motivate Citizens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nayden%20Takev">Nayden Takev</a>, <a href="https://publications.waset.org/abstracts/search?q=Remy%20van%20Leeuwen"> Remy van Leeuwen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Chotoe"> Shiva Chotoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hani%20Alers"> Hani Alers</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Peng"> Xiao Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Citizens, businesses, and public authorities all around the world are becoming aware of the impact that they have on the environment. Currently, climate change is an apparent cause to urge everyone to act and move to sustainable energy solutions. After the Paris Climate Agreement, every country has thought of a way to cut down carbon emissions. The Netherlands formulated the National Climate Agreement. “The government’s central goal with the National Climate Agreement is to reduce greenhouse gas emissions in the Netherlands by 49% compared to 1990 levels. At a European level, the government is advocating a 55% reduction of greenhouse gas emissions by 2030.” [5]. From a survey of the CBS, it is apparent that citizens are not putting in as much effort into the transition to sustainable energy as the government would like them to. After analysing the data, it became clear that the citizens miss the motivation to switch to sustainable energy because they do not believe it is urgent at this point and it is too expensive for them [2]. This needs to be changed. The citizens need to be aware of their impact on the climate and the advantages that this process will bring them. For example, the implementation of smart home displays 4 for real time energy measuring will give the citizens an overview of their energy usage so they are aware of the impact they have. Researchers have also found that the citizens must be included in the decision-making aimed at changing their behaviour [4, 3, 1]. In the future, the government will need to include the citizens when they create campaigns, strategies or introduce new policies [7, 6]. By including and informing the citizens about the policies it will be more attractive for them to choose sustainable energy. However, is all of this enough to motivate the citizens towards energy transition? Or are there other and better ways to do it? <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awereness" title="Awereness">Awereness</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20Transition" title="Energy Transition">Energy Transition</a>, <a href="https://publications.waset.org/abstracts/search?q=Netherlands" title="Netherlands">Netherlands</a>, <a href="https://publications.waset.org/abstracts/search?q=citizens" title="citizens">citizens</a> </p> <a href="https://publications.waset.org/abstracts/146651/energy-transition-in-the-netherlands-the-best-way-to-motivate-citizens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11946</span> Sustainable Design Features Implementing Public Rental Housing for Remodeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=So-Young%20Lee">So-Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Myoung-Won%20Oh"> Myoung-Won Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Cheol%20Eom"> Soon-Cheol Eom</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeon-Won%20Suh"> Yeon-Won Suh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Buildings produce more than one thirds of the total energy consumption and CO₂ emissions. Korean government agency pronounced and initiated Zero Energy Buildings policy for construction as of 2025. The net zero energy design features include passive (daylight, layout, materials, insulation, finishes, etc.) and active (renewable energy sources) elements. The Zero Energy House recently built in Nowon-gu, Korea is provided for 121 households as a public rental housing complex. However most of public rental housing did not include sustainable features which can reduce housing maintaining cost significantly including energy cost. It is necessary to implement net zero design features to the obsolete public rental housing during the remodeling procedure since it can reduce housing cost in long term. The purpose of this study is to investigate sustainable design elements implemented in Net Zero Energy House in Korea and passive and active housing design features in order to apply the sustainable features to the case public rental apartment for remodeling. Housing complex cases in this study are Nowan zero Energy house, Gangnam Bogemjari House, and public rental housings built in more than 20 years in Seoul areas. As results, energy consumption in public rental housing built in 5-years can be improved by exterior surfaces. Energy optimizing in case housing built in more than 20 years can be enhanced by renovated materials, insulation, replacement of windows, exterior finishes, lightings, gardening, water, renewable energy installation, Green IT except for sunlight and layout of buildings. Further life costing analysis is needed for energy optimizing for case housing alternatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=affordable%20housing" title="affordable housing">affordable housing</a>, <a href="https://publications.waset.org/abstracts/search?q=remodeling" title=" remodeling"> remodeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20design" title=" sustainable design"> sustainable design</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-energy%20house" title=" zero-energy house"> zero-energy house</a> </p> <a href="https://publications.waset.org/abstracts/92001/sustainable-design-features-implementing-public-rental-housing-for-remodeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=399">399</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=400">400</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sustainable%20energy&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>