CINXE.COM
Effects of the telescope central obstruction
<html xmlns="http://www.w3.org/TR/REC-html40" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:v="urn:schemas-microsoft-com:vml"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"><meta http-equiv="Content-Language" content="en-us"> <title>Effects of the telescope central obstruction</title> <meta name="keywords" content="central obstruction effect, telescope central obstruction"><meta name="description" content="Central obstruction effect on image quality in telescopes."> <style fprolloverstyle="" type="text/css">A:hover {color: #FF8204} </style> </head> <body alink="#FF0000" bgcolor="#EFEFDC" link="#0000FF" style="font-family: Verdana; font-size: 10px" vlink="#993399"> <div align="center"> <table bgcolor="#FFE066" border="0" cellpadding="0" cellspacing="0" height="770" width="800"><!-- MSTableType="layout" --> <tbody> <tr> <td height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px" valign="top"><!-- MSCellType="ContentBody" --> <p align="center" style="text-indent: 0"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">Ѳ</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font> <font size="1" color="#95AAA6">▪</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1"> </font></font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪▪▪▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font face="Verdana" color="#518FBD"><b><font size="2"> </font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><br /> <font size="2"><span style="font-weight: 400"><font face="Arial" size="2"> </font></span></font></p> <p align="center" style="text-indent: 0"><font size="2"><span style="font-weight: 400"><font color="#336699" face="Arial" size="2">◄</font></span><font face="Verdana" size="2"> <a href="mtf2.htm">6.7. Coherent transfer function, Fourier transform</a> </font><font face="Arial" size="2"><font color="#C0C0C0"> </font> <font color="#999999">▐</font> </font> <font face="Verdana" size="2"><font face="Arial" size="2"> </font><span style="font-weight: 400"><font size="2"><a href="central_obstruction_effect.htm">7.1.1. Inconsistencies in the theoretical concept?</a></font></span> </font> <font color="#336699" face="Arial" size="2">►</font><br /> </font></p> <div style="padding-left: 22px; padding-right: 22px; padding-top: 4px; padding-bottom: 4px; "> <div style="border-style:solid; border-width:0px; "> <h1 align="center" style="text-indent: 0"><b><font color="#336699" face="Trebuchet MS" size="3">7. THE EFFECTS OF APERTURE OBSTRUCTION</font></b></h1> <div style="background-color: #FFFFCC"> <p align="center" style="text-indent: 0"><font size="2">PAGE HIGHLIGHTS (for central obstruction effect)<br /> • <a href="#not">Effect on peak diffraction intensity</a> • <a href="#intensity">Effect on intensity distribution</a> <br /> • <a href="#clear">Effect in terms of RMS wavefront error</a> • <a href="#edge">Effect on the size of central maxima</a></font></p> </div> </div> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"> Any obstruction placed in the light path of an imaging system prevents waves from a portion of the wavefront to reach the focal zone. The consequence is change in wave contribution at every point of the <a href="diffraction_image.htm">diffraction pattern</a>. The effect is similar to that of wavefront aberrations in that it changes pattern's intensity distribution, the specifics of it depending on the form and size of obstruction. Those common to amateur telescopes are: (1) <i>central obstruction,</i> a solid circular obstruction usually caused by the secondary mirror or its cell, <i>(2) secondary holder vanes</i> and <i>(3) apodizing mask</i>. The light loss is significant only with apodizing mask. Real concern is the change in point-object image intensity distribution caused by the changes in pupil transmission properties, and its effect on image quality. <p align="justify" style="line-height:150%"> Diffraction effect of unusual spider vane forms, mirror clips and protruding focuser tube can be found on the <a href="miscellaneous_optics.htm">Miscellaneous optics</a> page. Also, <a href="two_mirror_telescope_aberrations.htm"> obstruction effect of baffles on off axis point imaging</a> is shown with two-mirror reflecting systems. <h1 align="center" style="text-indent: 0"><font size="2"><span style="font-weight: 400"><font color="#336699" face="Trebuchet MS" size="3">7.1. <span style="text-transform: uppercase">Central obstruction effects</span></font></span></font></h1> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"> Much has been said about the <b> <font color="#000080">effect of central obstruction</font></b> in the amateurs circles, most of it being speculation. The common notion is that it reduces effective linear aperture for low-contrast details by as much as obstruction diameter. Informal attempts have been made to find a theoretical basis for this empirical "rule". Not a few amateurs "tested" it and often concluded that it "works". What tends to be neglected is the pretty obvious fact that in any such comparison there is more than just a single factor - central obstruction - affecting low-contrast performance. Most of these factors - seeing error, overall optical quality, sensitivity to miscollimation and thermal errors, light scatter, baffling - favor smaller unobstructed aperture, usually a high-quality apochromatic refractor, over the larger reflector or catadioptric. Consequently, if the rule "works" empirically, it inadvertently proves it incorrect, as long as it insists on the difference in performance coming from the effect of central obstruction alone.</font></font></p> <p align="justify" style="line-height: 150%"><font size="2"> <img align="left" border="0" height="222" src="images/central_obstruction.PNG" width="244" /> While the effect on image contrast is the most important one in most cases, it is not the only one. All of the effects of central obstruction are dependent on its size relative to the aperture. Hereafter, the relative central obstruction diameter in units of aperture diameter <b>D</b> is denoted by <i><b> ο</b></i> (left). As it will show ahead, the effects of central obstruction are more closely related to its relative area vs. area of clear aperture (or, alternately, to the relative annulus area), than to its relative linear size. While specialized optical instruments can have central obstruction well in excess of 0.5D, in most of amateur telescopes it is in the 0.2D to 0.5D range. Effects of obstructions significantly larger than 0.5D is <a name="not">not</a> addressed, but they are mostly covered by given general relations.</font></p> <p align="justify" style="line-height:150%"> Before going to the specifics of central obstruction effect, a few words about the standard mathematical formalism used to express them. It assumes coherent light, same as with a clear aperture PSF, where intensity (energy) is obtained by adding individual wave amplitudes, and squaring the sum. Central obstruction is treated as inverse aperture, whose amplitude spread function (ASF) is deducted from the clear-aperture-ASF, and the differential is then squared for the corresponding PSF (shown below for <i>o</i>=0.33 obstruction). <p><img border="0" src="images/cobs3.png" width="730" height="554"> <p align="justify" style="line-height:150%"> The inverse aperture PSFs are shown below for selected obstruction sizes, with the ring area magnified vertically (bottom box). <p><img border="0" src="images/cobs.png" width="730" height="745"> <p align="justify" style="line-height:150%"> The resulting PSF of an obstructed aperture - as the PSF differential between unobstructed aperture and inverse aperture equaling obstruction diameter (i.e. unobstructed minus inverse PSF) - for some common obstruction sizes, are shown below. <p><img border="0" src="images/cobs2.png" width="730" height="554"> <p align="justify" style="line-height:150%"> However, light typically encountered in amateur observations is generally incoherent. The two interfere differently: as already mentioned, coherent light adds up at the amplitude level, with the intensity given as the square of complex amplitude, while incoherent light sums up at the intensity level, as a sum of squared amplitudes of individual waves. This greatly affects the actual intensity (below, for the actual intensity of coherent light normalized to 1), <p><img border="0" src="images/coh.png" width="732" height="459"> <p align="justify" style="line-height:150%"> but the relative intensity distribution of the diffraction image of a point source (PSF) is identical for either light form for unobstructed aperture. This generally should hold for obstructed aperture as well, which means that the numerical central intensity for an obstructed aperture for any given obstruction size will be lower for coherent vs. incoherent light. For instance, according to the standard formalism, peak PSF intensity of obstructed aperture is lower by a factor (1-<i>o</i><sup>2</sup>)<sup>2</sup>, i.e. obstruction <i>o</i>=0.33 lowers peak intensity to 0.794, but it is only valid for coherent light; for incoherent light central intensity will be lower in proportion to the relative obstruction area, i.e. 0.891. It is consistent with the known fact that for incoherent light the energy is proportional to the aperture area (standard formalism also uses the peak intensity proportional to aperture area, but only when a constant flux is assumed). <p><img border="0" src="images/cobs4.png" width="730" height="568"> <p align="justify" style="line-height: 150%"><font size="2"> With that stated, the effects of central obstruction are: </font></p> <p align="center" style="line-height: 150%"><font size="2"> (1) reduction in light transmission by a factor of (1-<i>ο</i><font size="1"><span style="vertical-align: super">2</span></font>), resulting from pupil obscuration,</font></p> <p align="center" style="line-height: 150%"><font size="2"> (2) reduction in the relative peak diffraction intensity - and the energy content of the central maxima - by a factor (1-<i>ο</i><font size="1"><span style="vertical-align: super">2</span></font>)<font size="1"><span style="vertical-align: super">2</span></font>, for coherent light, </p> <p align="center" style="line-height:150%"> (3) reduction in the size of central maxima, by a ratio closely approximated with 1-<i>o</i><sup>2</sup>+<i>o</i><sup>4</sup>, and <p align="center" style="line-height: 150%"><font size="2"> (4) longitudinal extension of the diffraction pattern by a factor 1+<i>ο</i><font size="1"><span style="vertical-align: super">2</span></font>. </font></p> <p align="justify" style="line-height: 150%"><font size="2"> For incoherent light, the effective peak intensity reduction in the context of the relative intensity distribution is given by (1-<i>ο</i><font size="1"><span style="vertical-align: super">2</span></font>). However, since the first minima shrinks in size, the total loss of energy from the central maxima is correspondingly larger, approximately by a factor 1-<i>o</i><sup>2</sup>+<i>o</i><sup>4</sup>. For coherent light, the loss of actual energy is higher, since its central intensity is lower, but the relative energy loss vs. total energy in the pattern is the same (i.e. the central peak is lover, but so are the ring maximas). </font></p> <p align="justify" style="line-height: 150%"><font size="2"> <img align="left" border="0" height="363" src="images/psf_obstructed.png" width="477" /> The consequence of the shrinking central maxima in aperture with CO, unlike, generally, apertures with aberrations, is that it retains the average brightness of aberration-free aperture. As illustration, at left are plotted PSFs for 1/4 wave of primary spherical aberration and for 0.33D CO, both having nearly equal proportion of energy in the central maxima, with the former often used as comparable in effect on image quality. The plots show the difference in energy distribution, and the diffraction images of equally bright stars at 1.75x the diffraction limit of λ/D in radians (multiplied with 206.265 for arc seconds), correponding to MTF spatial frequency of about 0.57, show beter contrast of the obstructed aperture. It can be attributed to the brighter central maxima, and also less energy in the first dark ring.</p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"> The total relative loss of energy from the Airy disc is well approximated with double the relative obstruction area in the pupil, or 2<i>ο</i><font size="1"><span style="vertical-align: super">2</span></font>. Consequences of the latter in regard to intensity distribution within diffraction pattern differ somewhat for near-perfect wavefront on one side, and aberrated wavefronts on the other. Depending on the type and size of wavefront deformation, presence of central obstruction may improve, worsen, or have no appreciable effect on wavefront quality within the annulus, compared to the quality of the entire wavefront. This effect is small to negligible for the usual range of central obstruction sizes.</font></font></p> <p align="center"></p> <p align="justify" style="line-height: 150%"><font size="2"> <font face="Verdana" size="2"><font face="Verdana" size="2"> Since the central maxima volume, representing its share of energy, changes nearly in proportion to its base area (figure of the bell-shaped curve does not stay strictly identical with the change of CO size, but the deviations are near-negligible), the energy loss from the central maxima due to CO can be conditionally expressed as the relative peak diffraction intensity drop </font><font face="Comic Sans MS"> <b>I'</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">(0)</span></font><font face="Comic Sans MS"> </font><font face="Verdana" size="2"> in an obstructed aberration-free aperture vs. that in a clear aberration-free aperture, </font><font face="Comic Sans MS"> <b>I</b></font><font face="Terminal" size="1"><span style="vertical-align: sub">(0)</span></font><font face="Verdana" size="2">, normalized to 1, as: </font> </font> </font></font></font></font></p> <p align="center" style="text-indent: 0"><font size="2"><font face="Verdana" size="2"><font face="Comic Sans MS"> <img align="left" border="0" height="272" src="images/psf_peak_obstructed.PNG" vspace="11" width="328" />I'</font><font size="2"><b><font face="Terminal" size="1"><span style="vertical-align: sub">(0)</span></font></b></font> <font face="Comic Sans MS" size="1"><span style="vertical-align: sub"><b> </b></span></font> <font face="Comic Sans MS">= (1-ο</font><b><font face="Comic Sans MS" size="1"><span style="vertical-align: super">2</span></font></b><font face="Comic Sans MS">)</font> <b><font face="Comic Sans MS" size="1"><span style="vertical-align: super">2</span></font></b><font size="2"><font face="Verdana" size="2"> </font> <font face="Comic Sans MS" size="2">(60)</font></font></font></font></p> <p style="text-indent: 0; line-height:150%"><font size="2"><font face="Verdana" size="2"><font size="2"> which is, in effect, the relative annulus area (in units of the clear aperture area) squared (keeping in mind that it is different in what it represents from the formally identical expression for the drop in the absolute peak intensity). In this context, it implies that the size of CO corresponding to a given peak diffraction intensity <b>I</b><font face="Verdana" size="2"><b>'</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">(0)</span></font></b> is <i>ο</i>=(1-<b><font face="Verdana" size="2">√</font></b><span style="text-decoration: overline">I</span>)<font size="1"><span style="vertical-align: super">1/2</span></font>. With the relative intensity distribution - the basis for contrast transfer - being independent of the actual peak intensity, PSF of an obstructed aperture is conventionally normalized to unity for its actual peak intensity, i.e. given as <br><font face="Verdana" size="2">I'</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">(0)</span></font></b> <font face="Verdana" size="2">/(1-</font><i>ο</i><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">)</font> <font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana">. </font> </font></font></font></p> <p style="text-indent: 0; line-height:150%"><font size="2"><font face="Verdana" size="2"><font size="2"> Changes in the incident flux (point-source intensity) do affect actual pattern brightness, but not the relative intensity distribution within diffraction pattern, which is what determines the efficiency of contrast transfer.</font></font></font></p> <h3 style="center"; line-height:"150%"><font size="2"><font face="Verdana" size="2"><font size="2"> NOMINAL CHANGES IN INTENSITY DISTRIBUTION WITH THE CHANGE OF C.O.</h3> <p style="text-indent: 0; line-height:150%"><font size="2"><font face="Verdana" size="2"><font size="2"> <font face="Verdana">Following table presents intensity distribution within the fourth minima for unobstructed and selected obstructed apertures. Pattern radius<b> r</b> is in units of λF, and intensity </font> <b><font face="Verdana" size="2">I'</font><font face="Terminal" size="1"><span style="vertical-align: sub">(r) </span></font> </b><font face="Verdana">is normalized to peak diffraction intensity, to reflect more clearly relative changes in intensity distribution; <b>EE'</b> is encircled energy. Analogously to the central intensity, the actual relative encircled energy of the obstructed aperture is smaller by a factor </font> <font face="Verdana" size="2"> (1-</font><i>ο</i><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">)</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana">, or </font><font face="Verdana" size="2">EE=(1-</font><i>ο</i><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">)</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana">EE'. For </font><i>ο</i><font face="Verdana">=0.30, energy encircled within first minima is 0.565, with 0.263 in the rings, but their values relative to the peak intensity - which is what matters for contrast transfer - are as shown in the table. If the photon flux in the annulus would equal that in the unobstructed aperture, both figures would be larger by a factor of 1/</font><font face="Verdana" size="2">(1-</font><i>ο</i><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">)</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana">, or 0.682 and 0.318, respectively, and the central <a name="intensity">intensity</a> would be identical to that of the clear aperture.<br /> </font></font></font></font></p> <table border="1" cellspacing="0" style="font-family: Tahoma; font-size: 8pt" width="722"> <tbody> <tr> <td bgcolor="#E8E9CD" colspan="20"> <p align="center" style="text-indent: 0"><font size="2"><b>TABLE 10</b>: EFFECT OF CENTRAL OBSTRUCTION ON NORMALIZED PSF INTENSITY DISTRIBUTION</font><br> (Source: <i>Aberration Theory Made Simple</i>, Mahajan)</font></p> </td> </tr> <tr> <td bgcolor="#FFFFFF" colspan="2"> <p align="center" style="text-indent: 0"><font size="2">Parameter</font></p> </td> <td bgcolor="#FFFFFF" colspan="6"> <p align="center" style="text-indent: 0"><font size="2"><b><font size="2">Radius (r)</font></b></font></p> </td> <td bgcolor="#FFFFFF" colspan="6"> <p align="center" style="text-indent: 0"><font size="2"><b><font size="2">Normalized intensity [I'<font face="Terminal" size="1"><span style="vertical-align: sub">(r)</span></font>]</font></b></font></p> </td> <td bgcolor="#FFFFFF" colspan="6"> <p align="center" style="text-indent: 0"><font size="2"><b><font size="2">Encircled energy (EE')</font></b></font></p> </td> </tr> <tr> <td bgcolor="#FFFFFF" colspan="2"> <p align="center" style="text-indent: 0"><font size="2"><b><i>o</i> <font face="Arial">►</font></b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.10</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.20</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.30</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.40</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.50</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.10</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.20</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.30</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.40</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.50</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.10</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.20</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.30</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.40</b></font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><b>0.50</b></font></p> </td> </tr> <tr> <td bgcolor="#EFEFDC" rowspan="2"> <p align="center" style="text-indent: 0"><font size="2"><b>1ST</b></font></p> </td> <td align="center" bgcolor="#EFEFDC"> <p style="text-indent: 0"><font size="2">Max.</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> </tr> <tr> <td align="center" bgcolor="#EFEFDC"> <p style="text-indent: 0"><font size="2">Min.</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1.22</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1.21</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1.17</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1.11</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1.06</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">1</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.838</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.818</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.764</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.682</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.584</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.479</font></p> </td> </tr> <tr> <td bgcolor="#FFFFFF" rowspan="2"> <p align="center" style="text-indent: 0"><font size="2"><b>2ND</b></font></p> </td> <td align="center" bgcolor="#FFFFFF"> <p style="text-indent: 0"><font size="2">Max.</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">1.63</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">1.63</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">1.63</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">1.61</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">1.58</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">1.54</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0175</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0206</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0304</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0475</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0707</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0963</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.867</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.853</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.818</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.766</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.702</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.618</font></p> </td> </tr> <tr> <td align="center" bgcolor="#FFFFFF"> <p style="text-indent: 0"><font size="2">Min.</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">2.23</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">2.27</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">2.36</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">2.42</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">2.39</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">2.29</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.910</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.906</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.900</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.899</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.885</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.829</font></p> </td> </tr> <tr> <td bgcolor="#EFEFDC" rowspan="2"> <p align="center" style="text-indent: 0"><font size="2"><b>3RD</b></font></p> </td> <td align="center" bgcolor="#EFEFDC"> <p style="text-indent: 0"><font size="2">Max.</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">2.68</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">2.68</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">2.69</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">2.73</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">2.77</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">2.76</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.0042</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.0031</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.0015</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.0011</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.0033</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.0124</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.922</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.914</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.904</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.902</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.893</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.859</font></p> </td> </tr> <tr> <td align="center" bgcolor="#EFEFDC"> <p style="text-indent: 0"><font size="2">Min.</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">3.24</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">3.18</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">3.09</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">3.10</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">3.30</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">3.49</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.938</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.925</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.908</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.904</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.903</font></p> </td> <td bgcolor="#EFEFDC"> <p align="center" style="text-indent: 0"><font size="2">0.901</font></p> </td> </tr> <tr> <td bgcolor="#FFFFFF" rowspan="2"> <p align="center" style="text-indent: 0"><font size="2"><b>4TH</b></font></p> </td> <td align="center" bgcolor="#FFFFFF"> <p style="text-indent: 0"><font size="2">Max.</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">3.70</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">3.70</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">3.68</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">3.64</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">3.66</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">3.78</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0016</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0024</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0037</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0028</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0007</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.0004</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.944</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.936</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.926</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.916</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.905</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.902</font></p> </td> </tr> <tr> <td align="center" bgcolor="#FFFFFF"> <p style="text-indent: 0"><font size="2">Min.</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">4.24</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">4.32</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">4.37</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">4.22</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">4.04</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">4.12</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.952</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.949</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.947</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.929</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.907</font></p> </td> <td bgcolor="#FFFFFF"> <p align="center" style="text-indent: 0"><font size="2">0.903</font></p> </td> </tr> <tr> <td bgcolor="#FFFFFF" colspan="20"> <p align="center" style="text-indent: 0"><font size="2"><img border="0" height="699" src="images/central_obstruction_PSF.PNG" width="711" /></font></p> </td> </tr> </tbody> </table> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> As plots above indicate, most of the energy lost to the central maxima is transferred to the first bright ring with obstructions of 0.4D and smaller, while larger obstructions also brighten the 2nd bright ring. Logarithmic PSF shows much better the effect of obstruction on intensity and pattern of fainter rings (for clarity, given only for the <b><i>ο</i></b> values of 0, 0.30 and 0.50).</font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> The increase of energy transferred farther away is moderate up to about 0.3D CO. With 0.4D, energy beyond six Airy disc radii from the pattern center is more than 50% greater than for unobstructed aperture, and for 0.5 CO it is more than doubled. This is not unusual; for instance, primary spherical aberration (0.4 wave P-V) causing near identical relative drop in the peak PSF intensity as 0.5D CO increases the energy beyond that point less than 20% below the increase due to the obstruction. Coma (2/3 wave P-V) more than 40% below, but considering its magnitude in the outer field of fast paraboloids, it will brighten background much more than central obstruction (which is normally significantly smaller than 0.5D). Astigmatism (0.6 wave P-V) actually reduces the energy level beyond that point, and so on.</font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> N<font face="Verdana">ominal change in the normalized peak intensity, given by ΔI</font> = 1-I'<b><font face="Terminal" size="1"><span style="vertical-align: sub">(0)</span></font></b>,<font face="Verdana"> closely approximates the relative amount of energy transferred from the disc to the rings area. For instance, 30% CO (</font><i>ο</i><font face="Verdana">=0.3) will lower normalized central diffraction intensity produced by a perfect wavefront from 1 to 0.828; at the same time, relative transfer of energy from the Airy disc to the rings area is ~0.17, or 17%. A simple rule of thumb is that the relative loss of energy up to </font> <i>ο</i><font face="Verdana"> ~0.4 is closely approximated - as a ratio number - by 2</font><i>ο</i><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana">, and for </font><i>ο</i><font face="Verdana">~0.5 and larger by 1.9</font><i>ο</i><font size="1"><span style="vertical-align: super">2</span></font><font face="Verdana">.</p> <h3 align="center" style="line-height: 150%" text-indent:0"><font face="Verdana" size="2"> THE CONDITIONAL "RELATIVE PEAK INTENSITY" OF OBSTRUCTED APERTURE VS. STREHL RATIO; MTF</font></font></font></font></h3> <p align="justify" style="text-indent: 0; line-height:150%"><font size="2"><font face="Verdana" size="2"><font size="2"> For instance, 33% linear CO (<font face="Comic Sans MS" size="2">ο</font>=0.33) effectively reduces normalized central intensity to 0.79. Does that make its effect comparable to that of 0.79 Strehl wavefront error equivalent? Yes and no. </font></font></font></p> <p align="justify" style="text-indent: 0; line-height:150%"><font size="2"><font face="Verdana" size="2"><font size="2"> There is a distinct difference in the energy distribution change caused by CO compared to, say, primary spherical aberration at the best focus. Looking at the energy in the central maxima as the volume under the bell-shaped curve, the main effect of spherical aberration is reducing the height of this volume, with the reduction of volume base (width) being nearly negligible in comparison (for given energy density under the volume, as illustrated on <a href="diffraction_image.htm#size">FIG. 2</a>). Specifically, 1/4 wave P-V wavefront error reduces central intensity by 20%, while shrinking the central maxima less than 3% linearly. The difference in volume (energy) vs. aberration-free volume is transferred to the rings area; it is approximately 20%, closely approximated by the relative reduction in central intensity.</font></font></font></p> <p align="justify" style="text-indent: 0; line-height:150%"><font size="2"><font face="Verdana" size="2"><font size="2"> On the other hand, the relative volume height corresponding to the central maxima is reduced only by 11% due to the effect of 33% CO, but its base is also reduced by nearly as much linearly. When normalized to 1 for the new (reduced) peak, the relative energy loss comes from its base radius smaller by a 1-o<font size="1"><span style="vertical-align: super">2</span></font> factor; since it is the square of it that determines the volume for given height, the relative energy loss is also around 21%. </font></font></font></p> <p align="justify" style="text-indent: 0; line-height:150%"><font size="2"><font face="Verdana" size="2"><font size="2"> Thus, the relative volume reduction - i.e. energy loss to the rings - is nearly identical to that caused by 1/4 wave P-V of spherical aberration. Another similarity is that most of this energy goes to the 1st bright ring in either case. As a result, contrast transfer over the range of MTF frequencies where the rings energy is dominant factor - from 0 to about 0.4 - is also very similar.</font></font></font></p> <p align="justify" style="text-indent: 0; line-height:150%"><font size="2"><font face="Verdana" size="2"><font size="2"> However, due to the smaller central maxima, the obstructed pattern rebounds in contrast transfer not only above the aberrated clear aperture level. In the range of MTF frequencies where the dominant factor of contrast transfer becomes the size of central maxima, generally from about 0.4 to 1, contrast transfer for aperture with D/3 CO also rises above that for <a name="clear">clear</a> aberration-free aperture. </font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"><font face="Verdana" size="2"> The similarity extends to the contrast drop-off for the range of spatial frequencies below ~0.5 (approximately, left side of the <a href="mtf.htm">MTF</a> graph), which is the range of resolvable low-contrast details. In other words, for this range of spatial frequencies, the peak intensity<b> I'</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">(0)</span></font></b><font face="Verdana" size="2"><b> </b> resulting from CO<b> </b> is comparable to the Strehl ratio</font> <font face="Verdana"> for wavefront aberrations with respect to the effect on contrast and resolution. They both indicate relative amount of energy transferred to the rings area, the main factor determining contrast level at low- to mid-frequencies of the MTF.</font><font face="Arial"> </font> </font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"><font face="Verdana"> Thus, with the RMS wavefront error <b>ω</b> in terms of the <a href="Strehl.htm">Strehl ratio</a> <b>S</b> being given by ω=0.24</font><b><font face="Verdana" size="2">√</font></b><font face="Verdana" size="2"><span style="text-decoration: overline">-logS</span>, direct relation can be established between the relative linear size </font><b><font face="Georgia" size="2">ο</font></b><font face="Verdana" size="2"> of CO and similar in <a name="effect_RMS">effect RMS</a> wavefront error <b>ω</b> (in units of the wavelength) with respect to low-contrast detail effect as: </font> </font> </font></font></p> <p align="center" style="text-indent: 0"><font size="2"><font face="Verdana" size="2"><b> <font face="Verdana">ω</font></b><font face="Comic Sans MS">~0.24[-log(1-ο</font><b><font face="Comic Sans MS" size="1"><span style="vertical-align: super">2</span></font></b><font face="Comic Sans MS">)</font><b> <font face="Comic Sans MS" size="1"><span style="vertical-align: super">2</span></font></b> <font face="Comic Sans MS">]</font><font size="2"><b><font face="Comic Sans MS" size="1"><span style="vertical-align: super">1/2</span></font></b> <font face="Verdana"> </font> <font face="Comic Sans MS"> (61)</font></font></font></font></p> <p align="justify" style="text-indent: 0; line-height:150%"><font size="2"><font face="Verdana" size="2"><font size="2"><font face="Verdana" size="2"> (it can be simplified to an empirical approximation, </font> <font face="Verdana">ω</font><font face="Verdana" size="2">~0.24</font> <font face="Comic Sans MS" size="2">ο</font> <font face="Verdana" size="2"> for </font><i>ο</i> <font face="Verdana" size="2"><0.3 and </font><font face="Verdana">ώ</font> <font face="Verdana" size="2">~0.25</font><font face="Comic Sans MS" size="2">ο</font> <font face="Verdana" size="2"> for 0.15<</font><i>ο</i><font face="Verdana" size="2"><0.3). </font> </font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> <font face="Verdana" size="2">For </font> <i>ο</i> <font face="Verdana" size="2">=0.325, this gives <b>ώ</b>~0.075, practically equal to 1/4 wave P-V of primary spherical aberration level. Comparison with the effect of spherical aberration is most appropriate, due to both CO and spherical aberration causing radially symmetric intensity distribution, with the predominant pattern change being brightening and widening of the first bright ring.</font></font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"><font face="Verdana" size="2"> However, the actual MTF graph (<b>FIG. 104</b>) indicates that the above formula is somewhat pessimistic in regard to the effect of CO. Obstructed aperture has significantly better contrast transfer - even better than that of a perfect aperture - in the right half of MTF frequency range (i.e. for details smaller than about 2</font> <font face="Trebuchet MS" size="2">λ</font><font face="Verdana" size="2">F linear, or 2</font> <font face="Trebuchet MS" size="2">λ</font><font face="Verdana" size="2">/D in radians. Even in the left half of the graph (range of resolvable low contrast details), obstructed aperture has an <a name="edge">edge</a>. </font> </font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> The<font face="Verdana" size="2"> reason is the effect unique to CO (at least in its extent), namely, the reduction in size of central maxima caused by it. The linear reduction is closely approximated by a factor (1-</font><i>ο</i><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font> <font face="Verdana" size="2">) for obstructions of ~D/3 and smaller, and by a factor (1-</font><i>ο</i><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font> <font face="Verdana" size="2">+</font><i>ο</i><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font> <font face="Verdana" size="2">) for larger obstructions, up to ~0.7D. Good approximation for the 1st minima reduction ratio for any obstruction size is 1-</font><i>ο</i><font face="Verdana" size="1"><span style="vertical-align: super">n</span></font> <font face="Verdana" size="2">, with n=2+[</font><i>ο</i><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font> <font face="Verdana" size="2">/(1-</font><i>ο</i><font face="Verdana" size="2">)], or n=a+(1/a), with a=1-</font><font face="Comic Sans MS" size="2">ο</font><font face="Verdana" size="2">. The smaller central maxima, combined with more of the outer energy contained in the 1st bright ring, gives to the obstructed aperture an edge in contrast transfer efficiency with respect to the spherical aberration error of near identical nominal energy loss from the Airy disc. In effect, point-object-resolution-wise, central obstruction makes the aperture act as larger by a 1/(1-</font><i>ο</i><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font> <font face="Verdana" size="2">) factor with added equivalent of (1-</font><i>ο</i><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font> <font face="Verdana" size="2">)</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font> <font face="Verdana" size="2"> Strehl of primary spherical aberration.</font></font></font></font></p> <p align="center"></p> <div style="background-color: #FFFFFF; padding-left:3px; padding-right:3px"> <p align="center" style="text-indent: 0"><font size="2"><font face="Verdana" size="2"><font size="2"><b><font face="Arial" size="2"> <img border="0" height="288" src="images/mtf_co.PNG" width="716" /></font><br /> <font face="Tahoma" size="2">FIGURE 104</font></b><font face="Tahoma" size="2">: <span style="background-color: #FFFFCC">LEFT</span>: Standard polychromatic* MTF plot by OSLO showing contrast loss vs. perfect unobstructed wavefront <font color="#339933">(<b>green</b></font>), for aberrated wavefront with 1/4 wave P-V of spherical aberration (<b><font color="#0000FF">blue</font></b>) and perfect wavefront with 0.325D central obstruction (<font color="#FF0000"><b>red</b></font>). Despite nearly identical amounts of energy inside and outside the Airy disc, the two imperfect apertures show noticeably different contrast transfer, with the obstructed aperture being generally more efficient, particularly in the high-frequency range. The likely cause of better contrast transfer in mid-to-lower frequencies is less energy beyond the 1st bright ring in the obstructed aperture. In the high frequency range, higher contrast results not from the smaller central disc, which seems to be neglected in the MTF formalism (i.e. as MTF given in terms of pupil correlation function - determining MTF as pupil autocorrelation, i.e. the relative overlap area vs. annulus area of two circles of unit diameter whose center separation equals the normalized spatial frequency </font><b> <font face="Tahoma" size="2">ν</font></b> <font face="Tahoma" size="2"> - the spike in contrast level above that of perfect unobstructed aperture results directly from the reduced pupil area, with the contrast transfer given by the ratio of overlapping vs. annulus area, as illustrated at right). It is more likely due to already mentioned brigther central maxima of the obstructed aperture, and its darker first dark ring.<br> Typical resolution threshold for bright low-contrast details (<b>LCB</b>) indicates slight advantage of the perfect over the obstructed aperture in bright low-contrast detail resolution. The 1/4 wave aberrated aperture is more adversely affected in this respect. Resolution difference is more pronounced for dim low-contrast (<b>LCD</b>) details, where both obstructed and aberrated aperture are at roughly 2/3 the resolution limit of a perfect aperture (note that this limit is additionally subject to rod resolution). However, considering that eye acuity and resolution for faint objects are already compromised by the shift toward rods-dominant mode, this may have little or no practical effect.<br /> <span style="background-color: #FFFFCC">RIGHT</span>: Relative contrast transfer of annular aperture is, similarly to clear aperture, given by the overlap pupil area as a function of the normalized frequency </font><b><font face="Tahoma" size="2">ν</font></b> <font face="Tahoma" size="2">. The only difference is that the overlap area measures up against the annulus area, not that of the full circle. It illustrates quite clearly why contrast transfer of obstructed aperture drops at low frequencies, and then bounces upward toward high frequencies, to exceed that of a perfect clear aperture. However, despite its smaller central maxima, which correspondingly increases its limiting stellar resolution, the theory states that obstructed aperture has cutoff frequency identical to that of a clear aperture, regardless of the size of obstruction. And it seems to be controversial. With the MTF of imaging system being <a href="mtf2.htm#overview">Fourier transform</a> of its PSF, it cannot produce two or more different outcomes for a given PSF. And that is exactly what cutoff frequency independent of the size of central obstruction would imply. For instance, 1/4 wave P-V of primary spherical aberration and 10% smaller linearly aberration-free aperture with D/3 central obstruction will produce nearly identical diffraction pattern, both in the angular size of central maxima, and angular size and intensity of the first bright ring.</font></font></font></font></p> </div> <p align="center"><font size="2"><font face="Verdana" size="2"><font size="2"><b>*<font size="1"> There is a small difference between polychromatic (photopic) and monochromatic MTF plot even for non-refractive optics, showing as lower contrast transfer in the ~0.4-0.6 frequency range of the polychromatic MTF, due to the longer wavelengths forming slightly larger Airy disc. However, it doesn't change appreciably plot appearance, due to perfect <a name="aperture">aperture</a> being affected in the same manner.</font></b></font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> This effect is present at all obstruction sizes. As a result, size of CO causing similar contrast drop to that caused by the amount of low spherical aberration indicated by <b> Eq. 60</b> is, for the range of resolvable low contrast details (left half of the MTF graph), nearly 10% larger, linearly. Thus better approximation for the RMS error of spherical aberration similar in effect to that of the central obstruction <i> <b><font face="Georgia" size="2"> ο</font></b></i> for this frequency range is given by:</font></font></font></p> <p align="center" style="text-indent: 0; line-height:150%"><font size="2"><font face="Verdana" size="2"><b> <font face="Verdana">ω</font></b><font face="Comic Sans MS">~0.22[-log(1-ο</font><b> <font face="Comic Sans MS" size="1"><span style="vertical-align: super">2</span></font></b> <font face="Comic Sans MS">)</font><font face="Comic Sans MS" size="2"><b><font size="1"><span style="vertical-align: super">2</span></font></b></font> <font face="Comic Sans MS">]</font><font size="2"><b><font face="Comic Sans MS" size="1"><span style="vertical-align: super">1/2</span></font></b> <font face="Verdana"> </font> <font face="Comic Sans MS">(61.1)</font></font></font></font></p> <p align="justify" style="text-indent: 0; line-height:150%"><font size="2"> <font face="Verdana" size="2"><font size="2"><font face="Verdana" size="2"> (it can also be simplified to an empirical approximation, </font> <font face="Verdana">ω</font><font face="Verdana" size="2">~0.21</font> <i>ο</i>;<font face="Georgia" size="2"> </font> <font face="Verdana" size="2">it is within a couple of percentage points from the true value for </font><i>ο</i> <font face="Verdana" size="2">~0.4 and smaller</font>) <font face="Verdana" size="2">. </font> </font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> Note that the MTF output varies somewhat from one program to another. For instance, Aberrator and ATMOS show more of a contrast drop resulting from CO. It still has an edge over spherical aberration, but the numerical constant in the above approximation is between 0.22 and 0.23.</font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> Analogous to the contrast transfer of a perfect aperture (<a href="mtf.htm#The_OTF">FIG. 45</a>, top right), that of an obstructed aperture is given by the overlapping area of two unit-diameter circles, but this time for the two annuli, and relative to the annulus <a name="area">area</a>. </font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> As mentioned on the MTF page, the standard MTF plot, as the one above, shows contrast transfer for sinusoidal intensity distribution. As the pattern of intensity distribution and/or detail shape, changes, so does its contrast transfer. This can be illustrated comparing MTF for standard sinusoidal pattern with the contrast transfer function (CTF) for square-wave distribution (i.e. clear dark and bright lines), as shown on <b>FIG. 105</b>.</font></font></font></p> <div style="background-color: #FFFFFF"> <p align="center" style="text-indent: 0"><font size="2"><font face="Verdana" size="2"><font size="2"> <img border="0" height="522" src="images/mtf22.PNG" width="716" /><br /> <font face="Tahoma"><b>FIGURE 105</b>: The effect of D/3 c. obstruction on contrast transfer with sinusoidal pattern (left) and square-wave pattern (right). Bottom plots show a direct comparison of contrast transfers for unobstructed (left) and obstructed aperture (right). Central obstruction does lower contrast for both, sinusoidal and square-wave patterns, but it degrades the low-contrast resolution limit only with the former.</font></font></font></font></p> </div> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> The overall effect on contrast transfer here is similar, with probably the most significant difference being that the limiting low-contrast resolution (the pattern in top right corners are high-contrast patterns, for which cutoff frequency lies at the horizontal scale) is somewhat reduced for the standard sinusoidal MTF pattern, but not for the square-wave pattern.</font></font></font></p> <p align="justify" style="line-height: 150%"><font size="2"><font face="Verdana" size="2"><font size="2"> Next page addresses apparent inconsistencies and the question of applicable concept in the standard theoretical treatment of the effect of central obstruction.</font></font></font></p> </div> <p align="center" style="text-indent: 0"><font size="2"><font face="Verdana" size="2"><font face="Verdana" size="2"><span style="font-weight: 400"><font color="#336699" face="Arial" size="2">◄</font> </span><a href="mtf2.htm">6.7. Coherent transfer function, Fourier transform</a><font size="2"> </font> <font face="Arial" size="2"><font color="#C0C0C0"> </font> <font color="#999999">▐ </font> </font><span style="font-weight: 400"><font size="2"><a href="central_obstruction_effect.htm">7.1.1. Inconsistencies in the theoretical concept?</a></font> </span> <font color="#336699" face="Arial" size="2">►</font></font></font></font></p> <p align="center" style="text-indent: 0"><font size="2"><font face="Verdana" size="2"><font face="Verdana" size="2"><a href="index.htm">Home</a> | <font size="2"> <a href="mailto:webpub@fastmail.com">Comments</a></font></font></font></font></p> <p><font size="2"><font face="Verdana" size="2"><font face="Verdana" size="2"> </font></font></font></p> </td> </tr> </tbody> </table> </div> </body> </html>