CINXE.COM
Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity | Nature Genetics
<!DOCTYPE html> <html lang="en" class="grade-c"> <head> <title>Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity | Nature Genetics</title> <link rel="alternate" type="application/rss+xml" href="https://www.nature.com/ng.rss"/> <script id="save-data-connection-testing"> function hasConnection() { return navigator.connection || navigator.mozConnection || navigator.webkitConnection || navigator.msConnection; } function createLink(src) { var preloadLink = document.createElement("link"); preloadLink.rel = "preload"; preloadLink.href = src; preloadLink.as = "font"; preloadLink.type = "font/woff2"; preloadLink.crossOrigin = ""; document.head.insertBefore(preloadLink, document.head.firstChild); } var connectionDetail = { saveDataEnabled: false, slowConnection: false }; var connection = hasConnection(); if (connection) { connectionDetail.saveDataEnabled = connection.saveData; if (/\slow-2g|2g/.test(connection.effectiveType)) { connectionDetail.slowConnection = true; } } if (!(connectionDetail.saveDataEnabled || connectionDetail.slowConnection)) { createLink("/static/fonts/HardingText-Regular-Web-cecd90984f.woff2"); } else { document.documentElement.classList.add('save-data'); } </script> <link rel="preconnect" href="https://cmp.nature.com" crossorigin> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=5,user-scalable=yes"> <meta name="360-site-verification" content="5a2dc4ab3fcb9b0393241ffbbb490480" /> <script data-test="dataLayer"> window.dataLayer = [{"content":{"category":{"contentType":"article","legacy":{"webtrendsPrimaryArticleType":"research","webtrendsSubjectTerms":"chemical-biology;gene-regulation;transcriptomics","webtrendsContentCategory":null,"webtrendsContentCollection":null,"webtrendsContentGroup":"Nature Genetics","webtrendsContentGroupType":null,"webtrendsContentSubGroup":"Article","status":null}},"article":{"doi":"10.1038/s41588-024-01911-7"},"attributes":{"cms":null,"deliveryPlatform":"oscar","copyright":{"open":true,"legacy":{"webtrendsLicenceType":"http://creativecommons.org/licenses/by-nc-nd/4.0/"}}},"contentInfo":{"authors":["Samuel J. Taylor","Jacob Stauber","Oliver Bohorquez","Goichi Tatsumi","Rajni Kumari","Joyeeta Chakraborty","Boris A. Bartholdy","Emily Schwenger","Sriram Sundaravel","Abdelbasset A. Farahat","Justin C. Wheat","Mendel Goldfinger","Amit Verma","Arvind Kumar","David W. Boykin","Kristy R. Stengel","Gregory M. K. Poon","Ulrich Steidl"],"publishedAt":1726617600,"publishedAtString":"2024-09-18","title":"Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity","legacy":null,"publishedAtTime":null,"documentType":"aplusplus","subjects":"Chemical biology,Gene regulation,Transcriptomics"},"journal":{"pcode":"ng","title":"nature genetics","volume":"56","issue":"10","id":41588,"publishingModel":"Hybrid Access"},"authorization":{"status":true},"features":[{"name":"furtherReadingSection","present":true}],"collection":null},"page":{"category":{"pageType":"article"},"attributes":{"template":"mosaic","featureFlags":[{"name":"nature-onwards-journey","active":false}],"testGroup":null},"search":null},"privacy":{},"version":"1.0.0","product":null,"session":null,"user":null,"backHalfContent":true,"country":"HK","hasBody":true,"uneditedManuscript":false,"twitterId":["o3xnx","o43y9","o3ef7"],"baiduId":"d38bce82bcb44717ccc29a90c4b781ea","japan":false}]; window.dataLayer.push({ ga4MeasurementId: 'G-ERRNTNZ807', ga360TrackingId: 'UA-71668177-1', twitterId: ['3xnx', 'o43y9', 'o3ef7'], baiduId: 'd38bce82bcb44717ccc29a90c4b781ea', ga4ServerUrl: 'https://collect.nature.com', imprint: 'nature' }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card--major .c-card__title,.c-card__title,.u-h2,.u-h3,h2,h3{-webkit-font-smoothing:antialiased;font-family:Harding,Palatino,serif;font-weight:700;letter-spacing:-.0117156rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,.u-h3,h3{font-size:1.25rem;line-height:1.4rem}.c-reading-companion__figure-title,.u-h4,h4{-webkit-font-smoothing:antialiased;font-weight:700;line-height:1.4rem}html{text-size-adjust:100%;box-sizing:border-box;font-size:100%;height:100%;line-height:1.15;overflow-y:scroll}body{background:#eee;color:#222;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;line-height:1.76;margin:0;min-height:100%}details,main{display:block}h1{font-size:2em;margin:.67em 0}a,sup{vertical-align:baseline}a{background-color:transparent;color:#069;overflow-wrap:break-word;text-decoration:underline;text-decoration-skip-ink:auto;word-break:break-word}b{font-weight:bolder}sup{font-size:75%;line-height:0;position:relative;top:-.5em}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input,select{font-family:inherit;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}[type=submit],button{-webkit-appearance:button}[type=checkbox]{box-sizing:border-box;padding:0}summary{display:list-item}[hidden]{display:none}button{border-radius:0;cursor:pointer;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}h1{-webkit-font-smoothing:antialiased;font-family:Harding,Palatino,serif;font-size:2rem;font-weight:700;letter-spacing:-.0390625rem;line-height:2.25rem}.c-card--major .c-card__title,.u-h2,.u-h3,h2{font-family:Harding,Palatino,serif;letter-spacing:-.0117156rem}.c-card--major .c-card__title,.u-h2,h2{-webkit-font-smoothing:antialiased;font-size:1.5rem;font-weight:700;line-height:1.6rem}.u-h3{font-size:1.25rem}.c-card__title,.c-reading-companion__figure-title,.u-h3,.u-h4,h4,h5,h6{-webkit-font-smoothing:antialiased;font-weight:700;line-height:1.4rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,h3{font-family:Harding,Palatino,serif;font-size:1.25rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,h3{-webkit-font-smoothing:antialiased;font-weight:700;letter-spacing:-.0117156rem;line-height:1.4rem}.c-reading-companion__figure-title,.u-h4,h4{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;letter-spacing:-.0117156rem}button:focus{outline:3px solid #fece3e;will-change:transform}input+label{padding-left:.5em}nav ol,nav ul{list-style:none none}p:empty{display:none}.sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.article-page{background:#fff}.c-article-header{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-bottom:40px}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}.c-article-title{font-size:1.5rem;line-height:1.25;margin:0 0 16px}@media only screen and (min-width:768px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list svg{margin-left:4px}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:539px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#069;border-color:transparent;color:#fff}.c-article-info-details{font-size:1rem;margin-bottom:8px;margin-top:16px}.c-article-info-details__cite-as{border-left:1px solid #6f6f6f;margin-left:8px;padding-left:8px}.c-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3}.c-article-metrics-bar__wrapper{margin:16px 0}.c-article-metrics-bar__item{align-items:baseline;border-right:1px solid #6f6f6f;margin-right:8px}.c-article-metrics-bar__item:last-child{border-right:0}.c-article-metrics-bar__count{font-weight:700;margin:0}.c-article-metrics-bar__label{color:#626262;font-style:normal;font-weight:400;margin:0 10px 0 5px}.c-article-metrics-bar__details{margin:0}.c-article-main-column{font-family:Harding,Palatino,serif;margin-right:8.6%;width:60.2%}@media only screen and (max-width:1023px){.c-article-main-column{margin-right:0;width:100%}}.c-article-extras{float:left;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;width:31.2%}@media only screen and (max-width:1023px){.c-article-extras{display:none}}.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{border-bottom:2px solid #d5d5d5;font-size:1.25rem;margin:0;padding-bottom:8px}@media only screen and (min-width:768px){.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{font-size:1.5rem;line-height:1.24}}.c-article-associated-content__container .c-article-associated-content__title{margin-bottom:8px}.c-article-body p{margin-bottom:24px;margin-top:0}.c-article-section{clear:both}.c-article-section__content{margin-bottom:40px;padding-top:8px}@media only screen and (max-width:1023px){.c-article-section__content{padding-left:0}}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-article-license__badge,c-card__section{margin-top:8px}.c-code-block{border:1px solid #eee;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#069;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-editorial-summary__container{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem}.c-article-editorial-summary__container .c-article-editorial-summary__content p:last-child{margin-bottom:0}.c-article-editorial-summary__container .c-article-editorial-summary__content--less{max-height:9.5rem;overflow:hidden}.c-article-editorial-summary__container .c-article-editorial-summary__button{background-color:#fff;border:0;color:#069;font-size:.875rem;margin-bottom:16px}.c-article-editorial-summary__container .c-article-editorial-summary__button.active,.c-article-editorial-summary__container .c-article-editorial-summary__button.hover,.c-article-editorial-summary__container .c-article-editorial-summary__button:active,.c-article-editorial-summary__container .c-article-editorial-summary__button:hover{text-decoration:underline;text-decoration-skip-ink:auto}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-context-bar{box-shadow:0 0 10px 0 rgba(51,51,51,.2);position:relative;width:100%}.c-context-bar__title{display:none}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__sticky{max-width:389px}.c-reading-companion__scroll-pane{margin:0;min-height:200px;overflow:hidden auto}.c-reading-companion__tabs{display:flex;flex-flow:row nowrap;font-size:1rem;list-style:none;margin:0 0 8px;padding:0}.c-reading-companion__tabs>li{flex-grow:1}.c-reading-companion__tab{background-color:#eee;border:1px solid #d5d5d5;border-image:initial;border-left-width:0;color:#069;font-size:1rem;padding:8px 8px 8px 15px;text-align:left;width:100%}.c-reading-companion__tabs li:first-child .c-reading-companion__tab{border-left-width:1px}.c-reading-companion__tab--active{background-color:#fff;border-bottom:1px solid #fff;color:#222;font-weight:700}.c-reading-companion__sections-list{list-style:none;padding:0}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__sections-list{margin:0 0 8px;min-height:50px}.c-reading-companion__section-item{font-size:1rem;padding:0}.c-reading-companion__section-item a{display:block;line-height:1.5;overflow:hidden;padding:8px 0 8px 16px;text-overflow:ellipsis;white-space:nowrap}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:8px 8px 8px 16px}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-reading-companion__figure-full-link svg{height:.8em;margin-left:2px}.c-reading-companion__panel{border-top:none;display:none;margin-top:0;padding-top:0}.c-cod,.c-reading-companion__panel--active{display:block}.c-cod{font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-basis:75%;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#069;border:1px solid #069;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#069}.c-pdf-download__link .u-icon{padding-top:2px}.c-pdf-download{display:flex;margin-bottom:16px;max-height:48px}@media only screen and (min-width:540px){.c-pdf-download{max-height:none}}@media only screen and (min-width:1024px){.c-pdf-download{max-height:48px}}.c-pdf-download__link{display:flex;flex:1 1 0%}.c-pdf-download__link:hover{text-decoration:none}.c-pdf-download__text{padding-right:4px}@media only screen and (max-width:539px){.c-pdf-download__text{text-transform:capitalize}}@media only screen and (min-width:540px){.c-pdf-download__text{padding-right:8px}}.c-context-bar--sticky .c-pdf-download{display:block;margin-bottom:0;white-space:nowrap}@media only screen and (max-width:539px){.c-pdf-download .u-sticky-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}}.c-pdf-container{display:flex;justify-content:flex-end}@media only screen and (max-width:539px){.c-pdf-container .c-pdf-download{display:flex;flex-basis:100%}}.c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:16px}.c-article-extras .c-pdf-container .c-pdf-download{width:100%}.c-article-extras .c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:0}@media only screen and (min-width:540px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:none}@media only screen and (max-width:1023px){.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:block}}.c-status-message--success{border-bottom:2px solid #00b8b0;justify-content:center;margin-bottom:16px;padding-bottom:8px}.c-recommendations-list__item .c-card{flex-basis:100%}.c-recommendations-list__item .c-card__image{align-items:baseline;flex:1 1 40%;margin:0 0 0 16px;max-width:150px}.c-recommendations-list__item .c-card__image img{border:1px solid #cedbe0;height:auto;min-height:0;position:static}@media only screen and (max-width:1023px){.c-recommendations-list__item .c-card__image{display:none}}.c-card__layout{display:flex;flex:1 1 auto;justify-content:space-between}.c-card__title-recommendation{-webkit-box-orient:vertical;-webkit-line-clamp:4;display:-webkit-box;font-size:1rem;font-weight:700;line-height:1.4;margin:0 0 8px;max-height:5.6em;overflow:hidden!important;text-overflow:ellipsis}.c-card__title-recommendation .c-card__link{color:inherit}.c-card__title-recommendation .c-card__link:hover{text-decoration:underline}.c-card__title-recommendation .MathJax_Display{display:inline!important}.c-card__link:not(.c-card__link--no-block-link):before{z-index:1}.c-article-metrics__heading a,.c-article-metrics__posts .c-card__title a,.c-article-recommendations-card__link{color:inherit}.c-recommendations-column-switch .c-meta{margin-top:auto}.c-article-recommendations-card__meta-type,.c-meta .c-meta__item:first-child{font-weight:700}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:539px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-metrics__posts .c-card__title{font-size:1.05rem}.c-article-metrics__posts .c-card__title+span{color:#6f6f6f;font-size:1rem}p{overflow-wrap:break-word;word-break:break-word}.c-ad{text-align:center}@media only screen and (min-width:320px){.c-ad{padding:8px}}.c-ad--728x90{background-color:#ccc;display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:768px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-author-list{color:#6f6f6f;font-family:inherit;font-size:1rem;line-height:inherit;list-style:none;margin:0;padding:0}.c-author-list>li,.c-breadcrumbs>li,.c-footer__links>li,.js .c-author-list,.u-list-comma-separated>li,.u-list-inline>li{display:inline}.c-author-list>li:not(:first-child):not(:last-child):before{content:", "}.c-author-list>li:not(:only-child):last-child:before{content:" & "}.c-author-list--compact{font-size:.875rem;line-height:1.4}.c-author-list--truncated>li:not(:only-child):last-child:before{content:" ... "}.js .c-author-list__hide{display:none;visibility:hidden}.js .c-author-list__hide:first-child+*{margin-block-start:0}.c-meta{color:inherit;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;list-style:none;margin:0;padding:0}.c-meta--large{font-size:1rem}.c-meta--large .c-meta__item{margin-bottom:8px}.c-meta__item{display:inline-block;margin-bottom:4px}.c-meta__item:not(:last-child){border-right:1px solid #d5d5d5;margin-right:4px;padding-right:4px}@media only screen and (max-width:539px){.c-meta__item--block-sm-max{display:block}.c-meta__item--block-sm-max:not(:last-child){border-right:none;margin-right:0;padding-right:0}}@media only screen and (min-width:1024px){.c-meta__item--block-at-lg{display:block}.c-meta__item--block-at-lg:not(:last-child){border-right:none;margin-right:0;padding-right:0}}.c-meta__type{font-weight:700;text-transform:none}.c-skip-link{background:#069;bottom:auto;color:#fff;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:link{color:#fff}.c-status-message{align-items:center;box-sizing:border-box;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;position:relative;width:100%}.c-card__summary>p:last-child,.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #eee;border-radius:2px;line-height:1.4;padding:16px}.c-status-message__heading{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.c-breadcrumbs{color:#000;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs__link{color:#666}svg.c-breadcrumbs__chevron{fill:#888;height:10px;margin:4px 4px 0;width:10px}@media only screen and (max-width:539px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-card{background-color:transparent;border:0;box-shadow:none;display:flex;flex-direction:column;font-size:14px;min-width:0;overflow:hidden;padding:0;position:relative}.c-card--no-shape{background:0 0;border:0;box-shadow:none}.c-card__image{display:flex;justify-content:center;overflow:hidden;padding-bottom:56.25%;position:relative}@supports (aspect-ratio:1/1){.c-card__image{padding-bottom:0}}.c-card__image img{left:0;min-height:100%;min-width:100%;position:absolute}@supports ((-o-object-fit:cover) or (object-fit:cover)){.c-card__image img{height:100%;object-fit:cover;width:100%}}.c-card__body{flex:1 1 auto;padding:16px}.c-card--no-shape .c-card__body{padding:0}.c-card--no-shape .c-card__body:not(:first-child){padding-top:16px}.c-card__title{letter-spacing:-.01875rem;margin-bottom:8px;margin-top:0}[lang=de] .c-card__title{hyphens:auto}.c-card__summary{line-height:1.4}.c-card__summary>p{margin-bottom:5px}.c-card__summary a{text-decoration:underline}.c-card__link:not(.c-card__link--no-block-link):before{bottom:0;content:"";left:0;position:absolute;right:0;top:0}.c-card--flush .c-card__body{padding:0}.c-card--major{font-size:1rem}.c-card--dark{background-color:#29303c;border-width:0;color:#e3e4e5}.c-card--dark .c-card__title{color:#fff}.c-card--dark .c-card__link,.c-card--dark .c-card__summary a{color:inherit}.c-header{background-color:#fff;border-bottom:5px solid #000;font-size:1rem;line-height:1.4;margin-bottom:16px}.c-header__row{padding:0;position:relative}.c-header__row:not(:last-child){border-bottom:1px solid #eee}.c-header__split{align-items:center;display:flex;justify-content:space-between}.c-header__logo-container{flex:1 1 0px;line-height:0;margin:8px 24px 8px 0}.c-header__logo{transform:translateZ(0)}.c-header__logo img{max-height:32px}.c-header__container{margin:0 auto;max-width:1280px}.c-header__menu{align-items:center;display:flex;flex:0 1 auto;flex-wrap:wrap;font-weight:700;gap:8px 8px;line-height:1.4;list-style:none;margin:0 -8px;padding:0}@media print{.c-header__menu{display:none}}@media only screen and (max-width:1023px){.c-header__menu--hide-lg-max{display:none;visibility:hidden}}.c-header__menu--global{font-weight:400;justify-content:flex-end}.c-header__menu--global svg{display:none;visibility:hidden}.c-header__menu--global svg:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__menu--global svg{display:block;visibility:visible}}.c-header__menu--journal{font-size:.875rem;margin:8px 0 8px -8px}@media only screen and (min-width:540px){.c-header__menu--journal{flex-wrap:nowrap;font-size:1rem}}.c-header__item{padding-bottom:0;padding-top:0;position:static}.c-header__item--pipe{border-left:2px solid #eee;padding-left:8px}.c-header__item--padding{padding-bottom:8px;padding-top:8px}@media only screen and (min-width:540px){.c-header__item--dropdown-menu{position:relative}}@media only screen and (min-width:1024px){.c-header__item--hide-lg{display:none;visibility:hidden}}@media only screen and (max-width:767px){.c-header__item--hide-md-max{display:none;visibility:hidden}.c-header__item--hide-md-max:first-child+*{margin-block-start:0}}.c-header__link{align-items:center;color:inherit;display:inline-flex;gap:4px 4px;padding:8px;white-space:nowrap}.c-header__link svg{transition-duration:.2s}.c-header__show-text{display:none;visibility:hidden}.has-tethered .c-header__heading--js-hide:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__show-text{display:inline;visibility:visible}}.c-header__dropdown{background-color:#000;border-bottom:1px solid #2f2f2f;color:#eee;font-size:.875rem;line-height:1.2;padding:16px 0}@media print{.c-header__dropdown{display:none}}.c-header__heading{display:inline-block;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:400;line-height:1.4;margin-bottom:8px}.c-header__heading--keyline{border-top:1px solid;border-color:#2f2f2f;margin-top:16px;padding-top:16px;width:100%}.c-header__list{display:flex;flex-wrap:wrap;gap:0 16px;list-style:none;margin:0 -8px}.c-header__flush{margin:0 -8px}.c-header__visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}.c-header__search-form{margin-bottom:8px}.c-header__search-layout{display:flex;flex-wrap:wrap;gap:16px 16px}.c-header__search-layout>:first-child{flex:999 1 auto}.c-header__search-layout>*{flex:1 1 auto}.c-header__search-layout--max-width{max-width:720px}.c-header__search-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #fff;border-radius:2px;color:#fff;cursor:pointer;display:flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.15;margin:0;padding:8px 16px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:100%}.u-button svg,.u-button--primary svg{fill:currentcolor}.c-header__input,.c-header__select{border:1px solid;border-radius:3px;box-sizing:border-box;font-size:1rem;padding:8px 16px;width:100%}.c-header__select{-webkit-appearance:none;background-image:url("data:image/svg+xml,%3Csvg height='16' viewBox='0 0 16 16' width='16' xmlns='http://www.w3.org/2000/svg'%3E%3Cpath d='m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z' fill='%23333' fill-rule='evenodd' transform='matrix(0 1 -1 0 11 3)'/%3E%3C/svg%3E");background-position:right .7em top 50%;background-repeat:no-repeat;background-size:1em;box-shadow:0 1px 0 1px rgba(0,0,0,.04);display:block;margin:0;max-width:100%;min-width:150px}@media only screen and (min-width:540px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:auto;right:0}}@media only screen and (min-width:768px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:0;right:auto}}.c-header__dropdown.has-tethered{border-bottom:0;border-radius:0 0 2px 2px;left:0;position:absolute;top:100%;transform:translateY(5px);width:100%;z-index:1}@media only screen and (min-width:540px){.c-header__dropdown.has-tethered{transform:translateY(8px);width:auto}}@media only screen and (min-width:768px){.c-header__dropdown.has-tethered{min-width:225px}}.c-header__dropdown--full-width.has-tethered{padding:32px 0 24px;transform:none;width:100%}.has-tethered .c-header__heading--js-hide{display:none;visibility:hidden}.has-tethered .c-header__list--js-stack{flex-direction:column}.has-tethered .c-header__item--keyline,.has-tethered .c-header__list~.c-header__list .c-header__item:first-child{border-top:1px solid #d5d5d5;margin-top:8px;padding-top:8px}.c-header__item--snid-account-widget{display:flex}.c-header__container{padding:0 4px}.c-header__list{padding:0 12px}.c-header__menu .c-header__link{font-size:14px}.c-header__item--snid-account-widget .c-header__link{padding:8px}.c-header__menu--journal{margin-left:0}@media only screen and (min-width:540px){.c-header__container{padding:0 16px}.c-header__menu--journal{margin-left:-8px}.c-header__menu .c-header__link{font-size:16px}.c-header__link--search{gap:13px 13px}}.u-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #069;border-radius:2px;color:#069;cursor:pointer;display:inline-flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.3;margin:0;padding:8px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:auto}.u-button--primary{background-color:#069;background-image:none;border:1px solid #069;color:#fff}.u-button--full-width{display:flex;width:100%}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-hide:first-child+*{margin-block-start:0}.u-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}@media print{.u-hide-print{display:none}}@media only screen and (min-width:1024px){.u-hide-at-lg{display:none;visibility:hidden}.u-hide-at-lg:first-child+*{margin-block-start:0}}.u-clearfix:after,.u-clearfix:before{content:"";display:table}.u-clearfix:after{clear:both}.u-color-open-access{color:#b74616}.u-float-left{float:left}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-full-height{height:100%}.u-list-reset{list-style:none;margin:0;padding:0}.u-sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-16{margin-bottom:16px}.u-mb-24{margin-bottom:24px}.u-mb-32{margin-bottom:32px}.c-nature-box svg+.c-article__button-text,.u-ml-8{margin-left:8px}.u-pa-16{padding:16px}html *,html :after,html :before{box-sizing:inherit}.c-article-section__title,.c-article-title{font-weight:700}.c-card__title{line-height:1.4em}.c-article__button{background-color:#069;border:1px solid #069;border-radius:2px;color:#fff;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;margin-bottom:16px;padding:13px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-article__button,.c-article__button:hover{text-decoration:none}.c-article__button--inverted,.c-article__button:hover{background-color:#fff;color:#069}.c-article__button--inverted:hover{background-color:#069;color:#fff}.c-header__link{text-decoration:inherit}.grade-c-hide{display:block}.u-lazy-ad-wrapper{background-color:#ccc;display:none;min-height:137px}@media only screen and (min-width:768px){.u-lazy-ad-wrapper{display:block}}.c-nature-box{background-color:#fff;border:1px solid #d5d5d5;border-radius:2px;box-shadow:0 0 5px 0 rgba(51,51,51,.1);line-height:1.3;margin-bottom:24px;padding:16px 16px 3px}.c-nature-box__text{font-size:1rem;margin-bottom:16px}.c-nature-box .c-pdf-download{margin-bottom:16px!important}.c-nature-box--version{background-color:#eee}.c-nature-box__wrapper{transform:translateZ(0)}.c-nature-box__wrapper--placeholder{min-height:165px}.c-pdf-download__link{padding:13px 24px} } </style> <link data-test="critical-css-handler" data-inline-css-source="critical-css" rel="stylesheet" href="/static/css/enhanced-article-nature-branded-68c4876c28.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <noscript> <link rel="stylesheet" type="text/css" href="/static/css/enhanced-article-nature-branded-68c4876c28.css" media="only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)"> </noscript> <link rel="stylesheet" type="text/css" href="/static/css/article-print-122346e276.css" media="print"> <link rel="apple-touch-icon" sizes="180x180" href=/static/images/favicons/nature/apple-touch-icon-f39cb19454.png> <link rel="icon" type="image/png" sizes="48x48" href=/static/images/favicons/nature/favicon-48x48-b52890008c.png> <link rel="icon" type="image/png" sizes="32x32" href=/static/images/favicons/nature/favicon-32x32-3fe59ece92.png> <link rel="icon" type="image/png" sizes="16x16" href=/static/images/favicons/nature/favicon-16x16-951651ab72.png> <link rel="manifest" href=/static/manifest.json crossorigin="use-credentials"> <link rel="mask-icon" href=/static/images/favicons/nature/safari-pinned-tab-69bff48fe6.svg color="#000000"> <link rel="shortcut icon" href=/static/images/favicons/nature/favicon.ico> <meta name="msapplication-TileColor" content="#000000"> <meta name="msapplication-config" content=/static/browserconfig.xml> <meta name="theme-color" content="#000000"> <meta name="application-name" content="Nature"> <script> (function () { if ( typeof window.CustomEvent === "function" ) return false; function CustomEvent ( event, params ) { params = params || { bubbles: false, cancelable: false, detail: null }; var evt = document.createEvent( 'CustomEvent' ); evt.initCustomEvent( event, params.bubbles, params.cancelable, params.detail ); return evt; } CustomEvent.prototype = window.Event.prototype; window.CustomEvent = CustomEvent; })(); </script> <!-- Google Tag Manager --> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <!-- End Google Tag Manager --> <script> (function(w,d,t) { function cc() { var h = w.location.hostname; if (h.indexOf('preview-www.nature.com') > -1) return; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('nature.com') > -1) { if (h.indexOf('test-www.nature.com') > -1) { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-68.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-68.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else { e.src = '/static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window,document,'script'); </script> <script id="js-position0"> (function(w, d) { w.idpVerifyPrefix = 'https://verify.nature.com'; w.ra21Host = 'https://wayf.springernature.com'; var moduleSupport = (function() { return 'noModule' in d.createElement('script'); })(); if (w.config.mustardcut === true) { w.loader = { index: 0, registered: [], scripts: [ {src: '/static/js/global-article-es6-bundle-c8a573ca90.js', test: 'global-article-js', module: true}, {src: '/static/js/global-article-es5-bundle-d17603b9e9.js', test: 'global-article-js', nomodule: true}, {src: '/static/js/shared-es6-bundle-606cb67187.js', test: 'shared-js', module: true}, {src: '/static/js/shared-es5-bundle-e919764a53.js', test: 'shared-js', nomodule: true}, {src: '/static/js/header-150-es6-bundle-5bb959eaa1.js', test: 'header-150-js', module: true}, {src: '/static/js/header-150-es5-bundle-994fde5b1d.js', test: 'header-150-js', nomodule: true} ].filter(function (s) { if (s.src === null) return false; if (moduleSupport && s.nomodule) return false; return !(!moduleSupport && s.module); }), register: function (value) { this.registered.push(value); }, ready: function () { if (this.registered.length === this.scripts.length) { this.registered.forEach(function (fn) { if (typeof fn === 'function') { setTimeout(fn, 0); } }); this.ready = function () {}; } }, insert: function (s) { var t = d.getElementById('js-position' + this.index); if (t && t.insertAdjacentElement) { t.insertAdjacentElement('afterend', s); } else { d.head.appendChild(s); } ++this.index; }, createScript: function (script, beforeLoad) { var s = d.createElement('script'); s.id = 'js-position' + (this.index + 1); s.setAttribute('data-test', script.test); if (beforeLoad) { s.defer = 'defer'; s.onload = function () { if (script.noinit) { loader.register(true); } if (d.readyState === 'interactive' || d.readyState === 'complete') { loader.ready(); } }; } else { s.async = 'async'; } s.src = script.src; return s; }, init: function () { this.scripts.forEach(function (s) { loader.insert(loader.createScript(s, true)); }); d.addEventListener('DOMContentLoaded', function () { loader.ready(); var conditionalScripts; conditionalScripts = [ {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es6-bundle-464a2af269.js', test: 'pan-zoom-js', module: true }, {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es5-bundle-98fb9b653b.js', test: 'pan-zoom-js', nomodule: true }, {match: 'math,span.mathjax-tex', src: '/static/js/math-es6-bundle-23597ae350.js', test: 'math-js', module: true}, {match: 'math,span.mathjax-tex', src: '/static/js/math-es5-bundle-6532c6f78b.js', test: 'math-js', nomodule: true} ]; if (conditionalScripts) { conditionalScripts.filter(function (script) { return !!document.querySelector(script.match) && !((moduleSupport && script.nomodule) || (!moduleSupport && script.module)); }).forEach(function (script) { loader.insert(loader.createScript(script)); }); } }, false); } }; loader.init(); } })(window, document); </script> <meta name="robots" content="noarchive"> <meta name="access" content="Yes"> <link rel="search" href="https://www.nature.com/search"> <link rel="search" href="https://www.nature.com/opensearch/opensearch.xml" type="application/opensearchdescription+xml" title="nature.com"> <link rel="search" href="https://www.nature.com/opensearch/request" type="application/sru+xml" title="nature.com"> <script type="application/ld+json">{"mainEntity":{"headline":"Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity","description":"Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.1, a pioneer TF pertinent to many hematopoietic malignancies. Through an innovative technique, ‘CLICK-on-CUT&Tag’, we characterize the hierarchy of de novo PU.1 motifs, predicting occupancy in the PU.1 cistrome under binding site restriction. Temporal and single-molecule studies of binding site restriction uncover the pioneering dynamics of native PU.1 and identify the paradoxical activation of an alternate target gene set driven by PU.1 localization to second-tier binding sites. These transcriptional changes were corroborated by genetic blockade and site-specific reporter assays. Binding site restriction and subsequent PU.1 network rewiring causes primary human leukemia cells to differentiate. In summary, pharmacologically induced TF redistribution can be harnessed to govern TF localization, actuate alternate gene networks and direct cell fate. Chemically driven blockade of PU.1 binding sites leads to its genome-wide redistribution. PU.1 network rewiring causes human acute myeloid leukemia cells to differentiate.","datePublished":"2024-09-18T00:00:00Z","dateModified":"2024-09-18T00:00:00Z","pageStart":"2213","pageEnd":"2227","license":"http://creativecommons.org/licenses/by-nc-nd/4.0/","sameAs":"https://doi.org/10.1038/s41588-024-01911-7","keywords":["Chemical biology","Gene regulation","Transcriptomics","Biomedicine","general","Human Genetics","Cancer Research","Agriculture","Gene Function","Animal Genetics and Genomics"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig4_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig5_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig6_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig7_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig8_HTML.png"],"isPartOf":{"name":"Nature Genetics","issn":["1546-1718","1061-4036"],"volumeNumber":"56","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Nature Publishing Group US","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Samuel J. Taylor","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Jacob Stauber","url":"http://orcid.org/0000-0002-9410-8527","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Oliver Bohorquez","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Goichi Tatsumi","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Rajni Kumari","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Joyeeta Chakraborty","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Boris A. Bartholdy","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Emily Schwenger","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Sriram Sundaravel","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Abdelbasset A. Farahat","affiliation":[{"name":"Mansoura University","address":{"name":"Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt","@type":"PostalAddress"},"@type":"Organization"},{"name":"California Northstate University","address":{"name":"Master of Pharmaceutical Sciences Program, California Northstate University, Elk Grove, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Justin C. Wheat","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Mendel Goldfinger","affiliation":[{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Department of Oncology, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Blood Cancer Institute, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Amit Verma","affiliation":[{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Department of Oncology, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Blood Cancer Institute, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine","address":{"name":"Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Department of Medicine, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Arvind Kumar","affiliation":[{"name":"Georgia State University","address":{"name":"Department of Chemistry, Georgia State University, Atlanta, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"David W. Boykin","affiliation":[{"name":"Georgia State University","address":{"name":"Department of Chemistry, Georgia State University, Atlanta, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Kristy R. Stengel","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Blood Cancer Institute, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine","address":{"name":"Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Gregory M. K. Poon","url":"http://orcid.org/0000-0001-5107-9458","affiliation":[{"name":"Georgia State University","address":{"name":"Department of Chemistry, Georgia State University, Atlanta, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Georgia State University","address":{"name":"Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Ulrich Steidl","url":"http://orcid.org/0000-0002-9458-1795","affiliation":[{"name":"Albert Einstein College of Medicine","address":{"name":"Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Department of Oncology, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Blood Cancer Institute, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine","address":{"name":"Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"},{"name":"Albert Einstein College of Medicine – Montefiore Medical Center","address":{"name":"Department of Medicine, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA","@type":"PostalAddress"},"@type":"Organization"}],"email":"ulrich.steidl@einsteinmed.edu","@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> <link rel="canonical" href="https://www.nature.com/articles/s41588-024-01911-7"> <meta name="journal_id" content="41588"/> <meta name="dc.title" content="Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity"/> <meta name="dc.source" content="Nature Genetics 2024 56:10"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Nature Publishing Group"/> <meta name="dc.date" content="2024-09-18"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2024 The Author(s)"/> <meta name="dc.rights" content="2024 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.1, a pioneer TF pertinent to many hematopoietic malignancies. Through an innovative technique, ‘CLICK-on-CUT&amp;Tag’, we characterize the hierarchy of de novo PU.1 motifs, predicting occupancy in the PU.1 cistrome under binding site restriction. Temporal and single-molecule studies of binding site restriction uncover the pioneering dynamics of native PU.1 and identify the paradoxical activation of an alternate target gene set driven by PU.1 localization to second-tier binding sites. These transcriptional changes were corroborated by genetic blockade and site-specific reporter assays. Binding site restriction and subsequent PU.1 network rewiring causes primary human leukemia cells to differentiate. In summary, pharmacologically induced TF redistribution can be harnessed to govern TF localization, actuate alternate gene networks and direct cell fate. Chemically driven blockade of PU.1 binding sites leads to its genome-wide redistribution. PU.1 network rewiring causes human acute myeloid leukemia cells to differentiate."/> <meta name="prism.issn" content="1546-1718"/> <meta name="prism.publicationName" content="Nature Genetics"/> <meta name="prism.publicationDate" content="2024-09-18"/> <meta name="prism.volume" content="56"/> <meta name="prism.number" content="10"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="2213"/> <meta name="prism.endingPage" content="2227"/> <meta name="prism.copyright" content="2024 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://www.nature.com/articles/s41588-024-01911-7"/> <meta name="prism.doi" content="doi:10.1038/s41588-024-01911-7"/> <meta name="citation_pdf_url" content="https://www.nature.com/articles/s41588-024-01911-7.pdf"/> <meta name="citation_fulltext_html_url" content="https://www.nature.com/articles/s41588-024-01911-7"/> <meta name="citation_journal_title" content="Nature Genetics"/> <meta name="citation_journal_abbrev" content="Nat Genet"/> <meta name="citation_publisher" content="Nature Publishing Group"/> <meta name="citation_issn" content="1546-1718"/> <meta name="citation_title" content="Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity"/> <meta name="citation_volume" content="56"/> <meta name="citation_issue" content="10"/> <meta name="citation_publication_date" content="2024/10"/> <meta name="citation_online_date" content="2024/09/18"/> <meta name="citation_firstpage" content="2213"/> <meta name="citation_lastpage" content="2227"/> <meta name="citation_article_type" content="Article"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1038/s41588-024-01911-7"/> <meta name="DOI" content="10.1038/s41588-024-01911-7"/> <meta name="size" content="270746"/> <meta name="citation_doi" content="10.1038/s41588-024-01911-7"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1038/s41588-024-01911-7&api_key="/> <meta name="description" content="Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.1, a pioneer TF pertinent to many hematopoietic malignancies. Through an innovative technique, ‘CLICK-on-CUT&amp;Tag’, we characterize the hierarchy of de novo PU.1 motifs, predicting occupancy in the PU.1 cistrome under binding site restriction. Temporal and single-molecule studies of binding site restriction uncover the pioneering dynamics of native PU.1 and identify the paradoxical activation of an alternate target gene set driven by PU.1 localization to second-tier binding sites. These transcriptional changes were corroborated by genetic blockade and site-specific reporter assays. Binding site restriction and subsequent PU.1 network rewiring causes primary human leukemia cells to differentiate. In summary, pharmacologically induced TF redistribution can be harnessed to govern TF localization, actuate alternate gene networks and direct cell fate. Chemically driven blockade of PU.1 binding sites leads to its genome-wide redistribution. PU.1 network rewiring causes human acute myeloid leukemia cells to differentiate."/> <meta name="dc.creator" content="Taylor, Samuel J."/> <meta name="dc.creator" content="Stauber, Jacob"/> <meta name="dc.creator" content="Bohorquez, Oliver"/> <meta name="dc.creator" content="Tatsumi, Goichi"/> <meta name="dc.creator" content="Kumari, Rajni"/> <meta name="dc.creator" content="Chakraborty, Joyeeta"/> <meta name="dc.creator" content="Bartholdy, Boris A."/> <meta name="dc.creator" content="Schwenger, Emily"/> <meta name="dc.creator" content="Sundaravel, Sriram"/> <meta name="dc.creator" content="Farahat, Abdelbasset A."/> <meta name="dc.creator" content="Wheat, Justin C."/> <meta name="dc.creator" content="Goldfinger, Mendel"/> <meta name="dc.creator" content="Verma, Amit"/> <meta name="dc.creator" content="Kumar, Arvind"/> <meta name="dc.creator" content="Boykin, David W."/> <meta name="dc.creator" content="Stengel, Kristy R."/> <meta name="dc.creator" content="Poon, Gregory M. K."/> <meta name="dc.creator" content="Steidl, Ulrich"/> <meta name="dc.subject" content="Chemical biology"/> <meta name="dc.subject" content="Gene regulation"/> <meta name="dc.subject" content="Transcriptomics"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=The human transcription factors; citation_author=SA Lambert; citation_volume=172; citation_publication_date=2018; citation_pages=650-665; citation_id=CR1"/> <meta name="citation_reference" content="citation_journal_title=Annu. Rev. Cancer Biol.; citation_title=Biology and therapy of dominant fusion oncoproteins involving transcription factor and chromatin regulators in sarcomas; citation_author=JA Perry, BKA Seong, K Stegmaier; citation_volume=3; citation_publication_date=2019; citation_pages=299-321; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=Advances in targeting ‘undruggable’ transcription factors with small molecules; citation_author=MJ Henley, AN Koehler; citation_volume=20; citation_publication_date=2021; citation_pages=669-688; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=Immunity; citation_title=Transcription Factor PU.1 represses and activates gene expression in early T cells by redirecting partner transcription factor binding; citation_author=H Hosokawa; citation_volume=48; citation_publication_date=2018; citation_pages=1119-1134.e7; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Blood; citation_title=PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding; citation_author=P Zhang; citation_volume=96; citation_publication_date=2000; citation_pages=2641-2648; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Genes Dev.; citation_title=Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells; citation_author=N Rekhtman, F Radparvar, T Evans, AI Skoultchi; citation_volume=13; citation_publication_date=1999; citation_pages=1398-1411; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=Cell Stem Cell; citation_title=Interconversion between tumorigenic and differentiated states in acute myeloid leukemia; citation_author=MD McKenzie; citation_volume=25; citation_publication_date=2019; citation_pages=258-272.e9; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Nucleic Acids Res.; citation_title=Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines; citation_author=M Munde; citation_volume=42; citation_publication_date=2014; citation_pages=1379-1390; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=J. Clin. Invest.; citation_title=Pharmacological inhibition of the transcription factor PU.1 in leukemia; citation_author=I Antony-Debré; citation_volume=127; citation_publication_date=2017; citation_pages=4297-4313; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=PROTAC targeted protein degraders: the past is prologue; citation_author=M Békés, DR Langley, CM Crews; citation_volume=21; citation_publication_date=2022; citation_pages=181-200; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=Genome Res.; citation_title=Pioneering, chromatin remodeling, and epigenetic constraint in early T-cell gene regulation by SPI1 (PU.1); citation_author=J Ungerbäck; citation_volume=28; citation_publication_date=2018; citation_pages=1508-1519; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages; citation_author=EW Scott, MC Simon, J Anastasi, H Singh; citation_volume=265; citation_publication_date=1994; citation_pages=1573-1577; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Nucleic Acids Res.; citation_title=Pharmacologic efficacy of PU.1 inhibition by heterocyclic dications: a mechanistic analysis; citation_author=DC Stephens; citation_volume=44; citation_publication_date=2016; citation_pages=4005-4013; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Bioorg. Med. Chem.; citation_title=Drug design and DNA structural research inspired by the Neidle laboratory: DNA minor groove binding and transcription factor inhibition by thiophene diamidines; citation_author=EN Ogbonna; citation_volume=68; citation_publication_date=2022; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=Leukemia; citation_title=Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia; citation_author=JI Sive; citation_volume=30; citation_publication_date=2016; citation_pages=14-23; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=Nat. Med.; citation_title=Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia; citation_author=B Will; citation_volume=21; citation_publication_date=2015; citation_pages=1172-1181; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=J. Clin. Invest.; citation_title=A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia; citation_author=U Steidl; citation_volume=117; citation_publication_date=2007; citation_pages=2611-2620; citation_id=CR17"/> <meta name="citation_reference" content="citation_journal_title=Nat. Genet.; citation_title=Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells; citation_author=U Steidl; citation_volume=38; citation_publication_date=2006; citation_pages=1269-1277; citation_id=CR18"/> <meta name="citation_reference" content="citation_journal_title=Blood; citation_title=Heterozygous deletion of the PU.1 locus in human AML; citation_author=N Bonadies, T Pabst, BU Mueller; citation_volume=115; citation_publication_date=2010; citation_pages=331-334; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Blood; citation_title=Heterozygous PU.1 mutations are associated with acute myeloid leukemia; citation_author=BU Mueller; citation_volume=100; citation_publication_date=2002; citation_pages=998-1007; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=Cell Stem Cell; citation_title=Cohesin members Stag1 and Stag2 display distinct roles in chromatin accessibility and topological control of HSC self-renewal and differentiation; citation_author=AD Viny; citation_volume=25; citation_publication_date=2019; citation_pages=682-696.e8; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=Blood; citation_title=Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations; citation_author=M Mizuki; citation_volume=101; citation_publication_date=2003; citation_pages=3164-3173; citation_id=CR22"/> <meta name="citation_reference" content="citation_journal_title=Blood; citation_title=The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia; citation_author=RK Vangala; citation_volume=101; citation_publication_date=2003; citation_pages=270-277; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=Cancer Discov.; citation_title=Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia; citation_author=MWM Kühn; citation_volume=6; citation_publication_date=2016; citation_pages=1166; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=J. Clin. Invest.; citation_title=Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates; citation_author=X Gu; citation_volume=128; citation_publication_date=2018; citation_pages=4260-4279; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=J. Exp. Med.; citation_title=A novel molecular class that recruits HDAC/MECP2 complexes to PU.1 motifs reduces neuroinflammation; citation_author=WT Ralvenius; citation_volume=220; citation_publication_date=2023; citation_pages=e20222105; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=J. Mol. Biol.; citation_title=Probing the electrostatics and pharmacological modulation of sequence-specific binding by the DNA-binding domain of the ETS family transcription factor PU.1: a binding affinity and kinetics investigation; citation_author=M Munde, GMK Poon, WD Wilson; citation_volume=425; citation_publication_date=2013; citation_pages=1655-1669; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=PLoS Genet.; citation_title=A large gene network in immature erythroid cells is controlled by the myeloid and B cell transcriptional regulator PU.1; citation_author=SN Wontakal; citation_volume=7; citation_publication_date=2011; citation_pages=e1001392; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1; citation_author=J Minderjahn; citation_volume=11; citation_publication_date=2020; citation_pages=402; citation_id=CR29"/> <meta name="citation_reference" content="citation_journal_title=Nucleic Acids Res.; citation_title=Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1; citation_author=TH Pham; citation_volume=41; citation_publication_date=2013; citation_pages=6391-6402; citation_id=CR30"/> <meta name="citation_reference" content="citation_journal_title=J. Phys. Chem. B; citation_title=Heterocyclic diamidine Interactions at AT base pairs in the DNA minor groove: effects of heterocycle differences, DNA AT sequence and length; citation_author=Y Liu; citation_volume=112; citation_publication_date=2008; citation_pages=11809; citation_id=CR31"/> <meta name="citation_reference" content="citation_journal_title=Nat. Genet.; citation_title=Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution; citation_author=MR Corces; citation_volume=48; citation_publication_date=2016; citation_pages=1193-1203; citation_id=CR32"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=Reversible disruption of specific transcription factor–DNA interactions using CRISPR/Cas9; citation_author=SA Shariati; citation_volume=74; citation_publication_date=2019; citation_pages=622-633.e4; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=Crystal structure of PU.1/IRF-4/DNA ternary complex; citation_author=CR Escalante; citation_volume=10; citation_publication_date=2002; citation_pages=1097-1105; citation_id=CR34"/> <meta name="citation_reference" content="citation_journal_title=J. Interferon Cytokine Res.; citation_title=Immune cell-specific amplification of interferon signaling by the IRF-4/8-PU.1 complex; citation_author=Y Kanno, BZ Levi, T Tamura, K Ozato; citation_volume=25; citation_publication_date=2005; citation_pages=770-779; citation_id=CR35"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities; citation_author=S Heinz; citation_volume=38; citation_publication_date=2010; citation_pages=576-589; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=Cell Rep.; citation_title=A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia; citation_author=A Konstantinos Tzelepis; citation_volume=17; citation_publication_date=2016; citation_pages=1193-1205; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency; citation_author=Z Cao; citation_volume=81; citation_publication_date=2021; citation_pages=3604; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=J. Mol. Biol.; citation_title=Base coupling in sequence-specific site recognition by the ETS domain of murine PU.1; citation_author=GMK Poon, RB Macgregor; citation_volume=328; citation_publication_date=2003; citation_pages=805-819; citation_id=CR39"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=Sequence discrimination by DNA-binding domain of ETS family transcription factor PU.1 is linked to specific hydration of protein–DNA interface; citation_author=GMK Poon; citation_volume=287; citation_publication_date=2012; citation_pages=18297-18307; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=Immunity; citation_title=Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages; citation_author=S Ghisletti; citation_volume=32; citation_publication_date=2010; citation_pages=317-328; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=Co-regulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers; citation_author=I Barozzi; citation_volume=54; citation_publication_date=2014; citation_pages=844; citation_id=CR42"/> <meta name="citation_reference" content="citation_journal_title=J. Immunol.; citation_title=Enforced expression of Hoxa3 inhibits classical and promotes alternative activation of macrophages in vitro and in vivo; citation_author=H Al Sadoun, M Burgess, KE Hentges, KA Mace; citation_volume=197; citation_publication_date=2016; citation_pages=872-884; citation_id=CR43"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell. Biol.; citation_title=PU.1 (Spi-1) and C/EBPα regulate expression of the granulocyte–macrophage colony-stimulating factor receptor α gene; citation_author=S Hohaus; citation_volume=15; citation_publication_date=1995; citation_pages=5830-5845; citation_id=CR44"/> <meta name="citation_reference" content="citation_journal_title=EMBO J.; citation_title=Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin; citation_author=A Bancaud; citation_volume=28; citation_publication_date=2009; citation_pages=3785-3798; citation_id=CR45"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Chemical-induced phase transition and global conformational reorganization of chromatin; citation_author=T Wang; citation_volume=14; citation_publication_date=2023; citation_id=CR46"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia; citation_author=CC Bell; citation_volume=10; citation_publication_date=2019; citation_pages=2723; citation_id=CR47"/> <meta name="citation_reference" content="citation_journal_title=Biochemistry; citation_title=Targeting a DNA binding motif of the EVI1 protein by a pyrrole–imidazole polyamide; citation_author=Y Zhang; citation_volume=50; citation_publication_date=2011; citation_pages=10431-10441; citation_id=CR48"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=Targeting the Ets binding site of the HER2/neu promoter with pyrrole–imidazole polyamides; citation_author=SY Chiang; citation_volume=275; citation_publication_date=2000; citation_pages=24246-24254; citation_id=CR49"/> <meta name="citation_reference" content="citation_journal_title=Nucleic Acids Res.; citation_title=Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication; citation_author=P Peixoto; citation_volume=36; citation_publication_date=2008; citation_pages=3341-3353; citation_id=CR50"/> <meta name="citation_reference" content="citation_journal_title=J. Mol. Biol.; citation_title=Specific Interactions of the wing domains of FOXA1 transcription factor with DNA; citation_author=LA Cirillo, KS Zaret; citation_volume=366; citation_publication_date=2007; citation_pages=720; citation_id=CR51"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer; citation_author=X Fu; citation_volume=113; citation_publication_date=2016; citation_pages=E6600-E6609; citation_id=CR52"/> <meta name="citation_reference" content="citation_journal_title=Front. Oncol.; citation_title=Pharmacologic targeting of chromatin modulators as therapeutics of acute myeloid leukemia; citation_author=R Lu, GG Wang; citation_volume=7; citation_publication_date=2017; citation_pages=241; citation_id=CR53"/> <meta name="citation_reference" content="citation_journal_title=Blood; citation_title=Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia; citation_author=B Xu; citation_volume=125; citation_publication_date=2015; citation_pages=346-357; citation_id=CR54"/> <meta name="citation_reference" content="citation_journal_title=Pharmacol. Res.; citation_title=Targeting LSD1 for acute myeloid leukemia (AML) treatment; citation_author=S Zhang, M Liu, Y Yao, B Yu, H Liu; citation_volume=164; citation_publication_date=2021; citation_pages=1043-6618; citation_id=CR55"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Designed compounds for recognition of 10 base pairs of DNA with two at binding sites; citation_author=Y Liu; citation_volume=134; citation_publication_date=2012; citation_pages=5290-5299; citation_id=CR56"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=Nucleophilic aryl fluorination and aryl halide exchange mediated by a CuI/CuIII catalytic cycle; citation_author=A Casitas, M Canta, M Solà, M Costas, X Ribas; citation_volume=133; citation_publication_date=2011; citation_pages=19386-19392; citation_id=CR57"/> <meta name="citation_reference" content="citation_journal_title=Arch. Pharm. (Weinheim); citation_title=Synthesis and potent antimicrobial activities of some novel retinoidal monocationic benzimidazoles; citation_author=Z Ates-Alagöz; citation_volume=339; citation_publication_date=2006; citation_pages=74-80; citation_id=CR58"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=CUT&Tag for efficient epigenomic profiling of small samples and single cells; citation_author=HS Kaya-Okur; citation_volume=10; citation_publication_date=2019; citation_id=CR59"/> <meta name="citation_reference" content="citation_journal_title=J. Phys. Chem. B; citation_title=Distinct roles for interfacial hydration in site-specific DNA recognition by ETS-family transcription factors; citation_author=S Xhani, S Esaki, K Huang, N Erlitzki, GMK Poon; citation_volume=121; citation_publication_date=2017; citation_pages=2748; citation_id=CR60"/> <meta name="citation_reference" content="citation_journal_title=Nat. Methods; citation_title=Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position; citation_author=JD Buenrostro, PG Giresi, LC Zaba, HY Chang, WJ Greenleaf; citation_volume=10; citation_publication_date=2013; citation_pages=1213-1218; citation_id=CR61"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Click chemistry enables preclinical evaluation of targeted epigenetic therapies; citation_author=DS Tyler; citation_volume=356; citation_publication_date=2017; citation_pages=1397-1401; citation_id=CR62"/> <meta name="citation_reference" content="citation_journal_title=Nat. Methods; citation_title=An improved ATAC–seq protocol reduces background and enables interrogation of frozen tissues; citation_author=MR Corces; citation_volume=14; citation_publication_date=2017; citation_pages=959-962; citation_id=CR63"/> <meta name="citation_reference" content="citation_journal_title=Blood; citation_title=Characterization of the myeloid-specific CD11b promoter; citation_author=H Pahl, A Rosmarin, D Tenen; citation_volume=79; citation_publication_date=1992; citation_pages=865-870; citation_id=CR64"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1; citation_author=Y Sancak; citation_volume=320; citation_publication_date=2008; citation_pages=1496-1501; citation_id=CR65"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell; citation_title=PAX3-FOXO1 coordinates enhancer architecture, eRNA transcription, and RNA polymerase pause release at select gene targets; citation_author=S Zhang; citation_volume=82; citation_publication_date=2022; citation_pages=4428-4442.e7; citation_id=CR66"/> <meta name="citation_reference" content="citation_journal_title=BMC Genomics; citation_title=Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation; citation_author=J Wang; citation_volume=19; citation_publication_date=2018; citation_id=CR67"/> <meta name="citation_reference" content="citation_journal_title=Cell Rep.; citation_title=High-resolution mapping of RNA polymerases identifies mechanisms of sensitivity and resistance to BET inhibitors in t(8;21) AML; citation_author=Y Zhao; citation_volume=16; citation_publication_date=2016; citation_pages=2003-2016; citation_id=CR68"/> <meta name="citation_reference" content="citation_journal_title=Nat. Methods; citation_title=PaintSHOP enables the interactive design of transcriptome- and genome-scale oligonucleotide FISH experiments; citation_author=EA Hershberg; citation_volume=18; citation_publication_date=2021; citation_pages=937; citation_id=CR69"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Single-molecule imaging of transcription dynamics in somatic stem cells; citation_author=JC Wheat; citation_volume=583; citation_publication_date=2020; citation_pages=431-436; citation_id=CR70"/> <meta name="citation_reference" content="citation_journal_title=RNA; citation_title=FISH-quant v2: a scalable and modular tool for smFISH image analysis; citation_author=A Imbert; citation_volume=28; citation_publication_date=2022; citation_pages=786-795; citation_id=CR71"/> <meta name="citation_reference" content="Stark, R. & Brown, G. DiffBind: differential binding analysis of ChIP-Seq peak data. Bioconductor https://bioconductor.org/packages/release/bioc/html/DiffBind.html (2021)."/> <meta name="citation_reference" content="citation_journal_title=Bioinformatics; citation_title=STAR: ultrafast universal RNA-seq aligner; citation_author=A Dobin; citation_volume=29; citation_publication_date=2013; citation_pages=15-21; citation_id=CR73"/> <meta name="citation_reference" content="citation_journal_title=Genome Biol.; citation_title=Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2; citation_author=MI Love, W Huber, S Anders; citation_volume=15; citation_publication_date=2014; citation_pages=1-21; citation_id=CR74"/> <meta name="citation_reference" content="Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at https://doi.org/10.1101/060012 (2021)."/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles; citation_author=A Subramanian; citation_volume=102; citation_publication_date=2005; citation_pages=15545-15550; citation_id=CR76"/> <meta name="citation_reference" content="citation_journal_title=Cell Syst.; citation_title=The Molecular Signatures Database (MSigDB) hallmark gene set collection; citation_author=A Liberzon; citation_volume=1; citation_publication_date=2015; citation_pages=417-425; citation_id=CR77"/> <meta name="citation_reference" content="citation_journal_title=BMC Bioinformatics; citation_title=Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool; citation_author=EY Chen; citation_volume=14; citation_publication_date=2013; citation_pages=128; citation_id=CR78"/> <meta name="citation_reference" content="citation_journal_title=Nucleic Acids Res.; citation_title=Enrichr: a comprehensive gene set enrichment analysis web server 2016 update; citation_author=MV Kuleshov; citation_volume=44; citation_publication_date=2016; citation_pages=W90-W97; citation_id=CR79"/> <meta name="citation_reference" content="citation_journal_title=Curr. Protoc.; citation_title=Gene set knowledge discovery with Enrichr; citation_author=Z Xie; citation_volume=1; citation_publication_date=2021; citation_pages=e90; citation_id=CR80"/> <meta name="citation_reference" content="Stauber, J. steidl-lab/rePU.1sitioning: rerePU.1sitioning. Zenodo https://zenodo.org/records/13313910 (2024)."/> <meta name="citation_author" content="Taylor, Samuel J."/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Stauber, Jacob"/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Bohorquez, Oliver"/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Tatsumi, Goichi"/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Kumari, Rajni"/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Chakraborty, Joyeeta"/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Bartholdy, Boris A."/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Schwenger, Emily"/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Sundaravel, Sriram"/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Farahat, Abdelbasset A."/> <meta name="citation_author_institution" content="Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt"/> <meta name="citation_author_institution" content="Master of Pharmaceutical Sciences Program, California Northstate University, Elk Grove, USA"/> <meta name="citation_author" content="Wheat, Justin C."/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Goldfinger, Mendel"/> <meta name="citation_author_institution" content="Department of Oncology, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author_institution" content="Blood Cancer Institute, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author_institution" content="Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author" content="Verma, Amit"/> <meta name="citation_author_institution" content="Department of Oncology, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author_institution" content="Blood Cancer Institute, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author_institution" content="Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author_institution" content="Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author_institution" content="Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author_institution" content="Department of Medicine, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author" content="Kumar, Arvind"/> <meta name="citation_author_institution" content="Department of Chemistry, Georgia State University, Atlanta, USA"/> <meta name="citation_author" content="Boykin, David W."/> <meta name="citation_author_institution" content="Department of Chemistry, Georgia State University, Atlanta, USA"/> <meta name="citation_author" content="Stengel, Kristy R."/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author_institution" content="Blood Cancer Institute, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author_institution" content="Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author_institution" content="Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author" content="Poon, Gregory M. K."/> <meta name="citation_author_institution" content="Department of Chemistry, Georgia State University, Atlanta, USA"/> <meta name="citation_author_institution" content="Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, USA"/> <meta name="citation_author" content="Steidl, Ulrich"/> <meta name="citation_author_institution" content="Department of Cell Biology, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author_institution" content="Department of Oncology, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author_institution" content="Blood Cancer Institute, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author_institution" content="Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="citation_author_institution" content="Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, USA"/> <meta name="citation_author_institution" content="Department of Medicine, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, USA"/> <meta name="access_endpoint" content="https://www.nature.com/platform/readcube-access"/> <meta name="twitter:site" content="@NatureGenet"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity"/> <meta name="twitter:description" content="Nature Genetics - Chemically driven blockade of PU.1 binding sites leads to its genome-wide redistribution. PU.1 network rewiring causes human acute myeloid leukemia cells to differentiate."/> <meta name="twitter:image" content="https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig1_HTML.png"/> <meta property="og:url" content="https://www.nature.com/articles/s41588-024-01911-7"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="Nature"/> <meta property="og:title" content="Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity - Nature Genetics"/> <meta property="og:description" content="Chemically driven blockade of PU.1 binding sites leads to its genome-wide redistribution. PU.1 network rewiring causes human acute myeloid leukemia cells to differentiate."/> <meta property="og:image" content="https://media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig1_HTML.png"/> <script> window.eligibleForRa21 = 'false'; </script> </head> <body class="article-page"> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <div class="position-relative cleared z-index-50 background-white" data-test="top-containers"> <a class="c-skip-link" href="#content">Skip to main content</a> <div class="c-grade-c-banner u-hide"> <div class="c-grade-c-banner__container"> <p>Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.</p> </div> </div> <div class="u-hide u-show-following-ad"></div> <aside class="c-ad c-ad--728x90"> <div class="c-ad__inner" data-container-type="banner-advert"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-top-1" class="div-gpt-ad advert leaderboard js-ad text-center hide-print grade-c-hide" data-ad-type="top" data-test="top-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/genetics.nature.com/article" data-gpt-sizes="728x90" data-gpt-targeting="type=article;pos=top;artid=s41588-024-01911-7;doi=10.1038/s41588-024-01911-7;subjmeta=200,2019,208,337,631,92;kwrd=Chemical+biology,Gene+regulation,Transcriptomics"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/genetics.nature.com/article&sz=728x90&c=1377853473&t=pos%3Dtop%26type%3Darticle%26artid%3Ds41588-024-01911-7%26doi%3D10.1038/s41588-024-01911-7%26subjmeta%3D200,2019,208,337,631,92%26kwrd%3DChemical+biology,Gene+regulation,Transcriptomics"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/genetics.nature.com/article&sz=728x90&c=1377853473&t=pos%3Dtop%26type%3Darticle%26artid%3Ds41588-024-01911-7%26doi%3D10.1038/s41588-024-01911-7%26subjmeta%3D200,2019,208,337,631,92%26kwrd%3DChemical+biology,Gene+regulation,Transcriptomics" alt="Advertisement" width="728" height="90"></a> </noscript> </div> </div> </aside> <header class="c-header" id="header" data-header data-track-component="nature-150-split-header" style="border-color:#008b68"> <div class="c-header__row"> <div class="c-header__container"> <div class="c-header__split"> <div class="c-header__logo-container"> <a href="/ng" data-track="click" data-track-action="home" data-track-label="image"> <picture class="c-header__logo"> <source srcset="https://media.springernature.com/full/nature-cms/uploads/product/ng/header-86354a9310f9a70499b39a78fcfed72c.svg" media="(min-width: 875px)"> <img src="https://media.springernature.com/full/nature-cms/uploads/product/ng/header-86354a9310f9a70499b39a78fcfed72c.svg" height="32" alt="Nature Genetics"> </picture> </a> </div> <ul class="c-header__menu c-header__menu--global"> <li class="c-header__item c-header__item--padding c-header__item--hide-md-max"> <a class="c-header__link" href="https://www.nature.com/siteindex" data-test="siteindex-link" data-track="click" data-track-action="open nature research index" data-track-label="link"> <span>View all journals</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--pipe"> <a class="c-header__link c-header__link--search" href="#search-menu" data-header-expander data-test="search-link" data-track="click" data-track-action="open search tray" data-track-label="button"> <svg role="img" aria-hidden="true" focusable="false" height="22" width="22" viewBox="0 0 18 18" xmlns="http://www.w3.org/2000/svg"><path d="M16.48 15.455c.283.282.29.749.007 1.032a.738.738 0 01-1.032-.007l-3.045-3.044a7 7 0 111.026-1.026zM8 14A6 6 0 108 2a6 6 0 000 12z"/></svg><span>Search</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--snid-account-widget c-header__item--pipe"> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.nature.com/auth/personal/springernature?redirect_uri=https://www.nature.com/articles/s41588-024-01911-7?error=cookies_not_supported&code=27e86ab5-bc19-4979-b7ca-18aa705a33ce'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </li> </ul> </div> </div> </div> <div class="c-header__row"> <div class="c-header__container" data-test="navigation-row"> <div class="c-header__split"> <ul class="c-header__menu c-header__menu--journal"> <li class="c-header__item c-header__item--dropdown-menu" data-test="explore-content-button"> <a href="#explore" class="c-header__link" data-header-expander data-test="menu-button--explore" data-track="click" data-track-action="open explore expander" data-track-label="button"> <span><span class="c-header__show-text">Explore</span> content</span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu"> <a href="#about-the-journal" class="c-header__link" data-header-expander data-test="menu-button--about-the-journal" data-track="click" data-track-action="open about the journal expander" data-track-label="button"> <span>About <span class="c-header__show-text">the journal</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu" data-test="publish-with-us-button"> <a href="#publish-with-us" class="c-header__link c-header__link--dropdown-menu" data-header-expander data-test="menu-button--publish" data-track="click" data-track-action="open publish with us expander" data-track-label="button"> <span>Publish <span class="c-header__show-text">with us</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> </ul> <ul class="c-header__menu c-header__menu--hide-lg-max"> <li class="c-header__item"> <a class="c-header__link" href="https://idp.nature.com/auth/personal/springernature?redirect_uri=https%3A%2F%2Fwww.nature.com%2Fmy-account%2Falerts%2Fsubscribe-journal%3Flist-id%3D4%26journal-link%3Dhttps%253A%252F%252Fwww.nature.com%252Fng%252F" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-label="link (desktop site header)" data-track-external> <span>Sign up for alerts</span><svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#222"/></svg> </a> </li> <li class="c-header__item c-header__item--pipe"> <a class="c-header__link" href="https://www.nature.com/ng.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </div> </div> </header> <nav class="u-mb-16" aria-label="breadcrumbs"> <div class="u-container"> <ol class="c-breadcrumbs" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:nature"><span itemprop="name">nature</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/ng" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:nature genetics"><span itemprop="name">nature genetics</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/ng/articles?type=article" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:articles"><span itemprop="name">articles</span></a><meta itemprop="position" content="3"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb3" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"> <span itemprop="name">article</span><meta itemprop="position" content="4"></li> </ol> </div> </nav> </div> <div class="u-container u-mt-32 u-mb-32 u-clearfix" id="content" data-component="article-container" data-container-type="article"> <main class="c-article-main-column u-float-left js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container" data-track-context="sticky banner"> <div class="c-context-bar__title"> Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity </div> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41588-024-01911-7.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <article lang="en"> <div class="c-pdf-button__container u-mb-16 u-hide-at-lg js-context-bar-sticky-point-mobile"> <div class="c-pdf-container" data-track-context="article body"> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41588-024-01911-7.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-identifiers" data-test="article-identifier"> <li class="c-article-identifiers__item" data-test="article-category">Article</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item">Published: <time datetime="2024-09-18">18 September 2024</time></li> </ul> <h1 class="c-article-title" data-test="article-title" data-article-title="">Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity</h1> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Samuel_J_-Taylor-Aff1" data-author-popup="auth-Samuel_J_-Taylor-Aff1" data-author-search="Taylor, Samuel J.">Samuel J. Taylor</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Jacob-Stauber-Aff1" data-author-popup="auth-Jacob-Stauber-Aff1" data-author-search="Stauber, Jacob">Jacob Stauber</a><span class="u-js-hide"> <a class="js-orcid" href="http://orcid.org/0000-0002-9410-8527"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-9410-8527</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Oliver-Bohorquez-Aff1" data-author-popup="auth-Oliver-Bohorquez-Aff1" data-author-search="Bohorquez, Oliver">Oliver Bohorquez</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Goichi-Tatsumi-Aff1" data-author-popup="auth-Goichi-Tatsumi-Aff1" data-author-search="Tatsumi, Goichi">Goichi Tatsumi</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Rajni-Kumari-Aff1" data-author-popup="auth-Rajni-Kumari-Aff1" data-author-search="Kumari, Rajni">Rajni Kumari</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Joyeeta-Chakraborty-Aff1" data-author-popup="auth-Joyeeta-Chakraborty-Aff1" data-author-search="Chakraborty, Joyeeta">Joyeeta Chakraborty</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Boris_A_-Bartholdy-Aff1" data-author-popup="auth-Boris_A_-Bartholdy-Aff1" data-author-search="Bartholdy, Boris A.">Boris A. Bartholdy</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Emily-Schwenger-Aff1" data-author-popup="auth-Emily-Schwenger-Aff1" data-author-search="Schwenger, Emily">Emily Schwenger</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Sriram-Sundaravel-Aff1" data-author-popup="auth-Sriram-Sundaravel-Aff1" data-author-search="Sundaravel, Sriram">Sriram Sundaravel</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Abdelbasset_A_-Farahat-Aff2-Aff3" data-author-popup="auth-Abdelbasset_A_-Farahat-Aff2-Aff3" data-author-search="Farahat, Abdelbasset A.">Abdelbasset A. Farahat</a><sup class="u-js-hide"><a href="#Aff2">2</a>,<a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Justin_C_-Wheat-Aff1" data-author-popup="auth-Justin_C_-Wheat-Aff1" data-author-search="Wheat, Justin C.">Justin C. Wheat</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Mendel-Goldfinger-Aff4-Aff5-Aff6" data-author-popup="auth-Mendel-Goldfinger-Aff4-Aff5-Aff6" data-author-search="Goldfinger, Mendel">Mendel Goldfinger</a><sup class="u-js-hide"><a href="#Aff4">4</a>,<a href="#Aff5">5</a>,<a href="#Aff6">6</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Amit-Verma-Aff4-Aff5-Aff6-Aff7-Aff8-Aff9" data-author-popup="auth-Amit-Verma-Aff4-Aff5-Aff6-Aff7-Aff8-Aff9" data-author-search="Verma, Amit">Amit Verma</a><sup class="u-js-hide"><a href="#Aff4">4</a>,<a href="#Aff5">5</a>,<a href="#Aff6">6</a>,<a href="#Aff7">7</a>,<a href="#Aff8">8</a>,<a href="#Aff9">9</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Arvind-Kumar-Aff10" data-author-popup="auth-Arvind-Kumar-Aff10" data-author-search="Kumar, Arvind">Arvind Kumar</a><sup class="u-js-hide"><a href="#Aff10">10</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-David_W_-Boykin-Aff10" data-author-popup="auth-David_W_-Boykin-Aff10" data-author-search="Boykin, David W.">David W. Boykin</a><sup class="u-js-hide"><a href="#Aff10">10</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Kristy_R_-Stengel-Aff1-Aff5-Aff6-Aff8" data-author-popup="auth-Kristy_R_-Stengel-Aff1-Aff5-Aff6-Aff8" data-author-search="Stengel, Kristy R.">Kristy R. Stengel</a><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff5">5</a>,<a href="#Aff6">6</a>,<a href="#Aff8">8</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Gregory_M__K_-Poon-Aff10-Aff11" data-author-popup="auth-Gregory_M__K_-Poon-Aff10-Aff11" data-author-search="Poon, Gregory M. K.">Gregory M. K. Poon</a><span class="u-js-hide"> <a class="js-orcid" href="http://orcid.org/0000-0001-5107-9458"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0001-5107-9458</a></span><sup class="u-js-hide"><a href="#Aff10">10</a>,<a href="#Aff11">11</a></sup> & </li><li class="c-article-author-list__show-more" aria-label="Show all 18 authors for this article" title="Show all 18 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Ulrich-Steidl-Aff1-Aff4-Aff5-Aff6-Aff8-Aff9" data-author-popup="auth-Ulrich-Steidl-Aff1-Aff4-Aff5-Aff6-Aff8-Aff9" data-author-search="Steidl, Ulrich" data-corresp-id="c1">Ulrich Steidl<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide"> <a class="js-orcid" href="http://orcid.org/0000-0002-9458-1795"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-9458-1795</a></span><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff4">4</a>,<a href="#Aff5">5</a>,<a href="#Aff6">6</a>,<a href="#Aff8">8</a>,<a href="#Aff9">9</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <p class="c-article-info-details" data-container-section="info"> <a data-test="journal-link" href="/ng" data-track="click" data-track-action="journal homepage" data-track-category="article body" data-track-label="link"><i data-test="journal-title">Nature Genetics</i></a> <b data-test="journal-volume"><span class="u-visually-hidden">volume</span> 56</b>, <span class="u-visually-hidden">pages </span>2213–2227 (<span data-test="article-publication-year">2024</span>)<a href="#citeas" class="c-article-info-details__cite-as u-hide-print" data-track="click" data-track-action="cite this article" data-track-label="link">Cite this article</a> </p> <div class="c-article-metrics-bar__wrapper u-clear-both"> <ul class="c-article-metrics-bar u-list-reset"> <li class=" c-article-metrics-bar__item" data-test="access-count"> <p class="c-article-metrics-bar__count">5866 <span class="c-article-metrics-bar__label">Accesses</span></p> </li> <li class="c-article-metrics-bar__item" data-test="citation-count"> <p class="c-article-metrics-bar__count">1 <span class="c-article-metrics-bar__label">Citations</span></p> </li> <li class="c-article-metrics-bar__item" data-test="altmetric-score"> <p class="c-article-metrics-bar__count">21 <span class="c-article-metrics-bar__label">Altmetric</span></p> </li> <li class="c-article-metrics-bar__item"> <p class="c-article-metrics-bar__details"><a href="/articles/s41588-024-01911-7/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Metrics <span class="u-visually-hidden">details</span></a></p> </li> </ul> </div> </header> <div class="u-js-hide" data-component="article-subject-links"> <h3 class="c-article__sub-heading">Subjects</h3> <ul class="c-article-subject-list"> <li class="c-article-subject-list__subject"><a href="/subjects/chemical-biology" data-track="click" data-track-action="view subject" data-track-label="link">Chemical biology</a></li><li class="c-article-subject-list__subject"><a href="/subjects/gene-regulation" data-track="click" data-track-action="view subject" data-track-label="link">Gene regulation</a></li><li class="c-article-subject-list__subject"><a href="/subjects/transcriptomics" data-track="click" data-track-action="view subject" data-track-label="link">Transcriptomics</a></li> </ul> </div> </div> <div class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.1, a pioneer TF pertinent to many hematopoietic malignancies. Through an innovative technique, ‘CLICK-on-CUT&Tag’, we characterize the hierarchy of de novo PU.1 motifs, predicting occupancy in the PU.1 cistrome under binding site restriction. Temporal and single-molecule studies of binding site restriction uncover the pioneering dynamics of native PU.1 and identify the paradoxical activation of an alternate target gene set driven by PU.1 localization to second-tier binding sites. These transcriptional changes were corroborated by genetic blockade and site-specific reporter assays. Binding site restriction and subsequent PU.1 network rewiring causes primary human leukemia cells to differentiate. In summary, pharmacologically induced TF redistribution can be harnessed to govern TF localization, actuate alternate gene networks and direct cell fate.</p></div></div></section> <noscript> </noscript> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41467-019-13960-2/MediaObjects/41467_2019_13960_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41467-019-13960-2?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1038/s41467-019-13960-2">Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1 </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">21 January 2020</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41594-023-01189-z/MediaObjects/41594_2023_1189_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41594-023-01189-z?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1038/s41594-023-01189-z">Structural mechanism of synergistic targeting of the <i>CX3CR1</i> nucleosome by PU.1 and C/EBPα </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">24 January 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41467-023-43780-4/MediaObjects/41467_2023_43780_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41467-023-43780-4?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1038/s41467-023-43780-4">PAX3-FOXO1 uses its activation domain to recruit CBP/P300 and shape RNA Pol2 cluster distribution </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">15 December 2023</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732699342, embedded_user: 'null' } }); </script> <div class="main-content"> <section data-title="Main"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1">Main</h2><div class="c-article-section__content" id="Sec1-content"><p>Transcription factor (TF) networks regulate gene expression and are a key determinant of cell fate decisions and identity<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018)." href="/articles/s41588-024-01911-7#ref-CR1" id="ref-link-section-d1586494e829">1</a></sup>. In cancer and other disorders, these networks are frequently corrupted and are often driven by genomic mutations that alter the function, expression or genomic localization of key TFs<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Perry, J. A., Seong, B. K. A. & Stegmaier, K. Biology and therapy of dominant fusion oncoproteins involving transcription factor and chromatin regulators in sarcomas. Annu. Rev. Cancer Biol. 3, 299–321 (2019)." href="/articles/s41588-024-01911-7#ref-CR2" id="ref-link-section-d1586494e833">2</a></sup>. However, despite the importance of aberrant TF networks in disease development, our understanding of the intricacies of TF dynamics is limited and the repertoire of small molecules available to specifically target TF networks is inadequate<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Henley, M. J. & Koehler, A. N. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat. Rev. Drug Discov. 20, 669–688 (2021)." href="/articles/s41588-024-01911-7#ref-CR3" id="ref-link-section-d1586494e837">3</a></sup>.</p><p>Given the importance of TF DNA binding site occupancy in dictating cell fate<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Hosokawa, H. et al. Transcription Factor PU.1 represses and activates gene expression in early T cells by redirecting partner transcription factor binding. Immunity 48, 1119–1134.e7 (2018)." href="#ref-CR4" id="ref-link-section-d1586494e844">4</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Zhang, P. et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96, 2641–2648 (2000)." href="#ref-CR5" id="ref-link-section-d1586494e844_1">5</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Rekhtman, N., Radparvar, F., Evans, T. & Skoultchi, A. I. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev. 13, 1398–1411 (1999)." href="#ref-CR6" id="ref-link-section-d1586494e844_2">6</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="McKenzie, M. D. et al. Interconversion between tumorigenic and differentiated states in acute myeloid leukemia. Cell Stem Cell 25, 258–272.e9 (2019)." href="/articles/s41588-024-01911-7#ref-CR7" id="ref-link-section-d1586494e847">7</a></sup>, we decided to investigate a chemical approach to selectively block TF occupancy by using DNA-binding heterocyclic diamidines. These compounds are designed to non-covalently bind to adenine–thymine (AT)-rich minor grooves adjacent to ETS family core binding motifs and destabilize specific TF–DNA interactions, leading to TF displacement in a sequence-selective manner<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Munde, M. et al. Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines. Nucleic Acids Res. 42, 1379–1390 (2014)." href="/articles/s41588-024-01911-7#ref-CR8" id="ref-link-section-d1586494e851">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Antony-Debré, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J. Clin. Invest. 127, 4297–4313 (2017)." href="/articles/s41588-024-01911-7#ref-CR9" id="ref-link-section-d1586494e854">9</a></sup>. This pharmacological approach is unique in that it specifically inhibits the TF–DNA interaction, distinct from other approaches whereby the TF protein itself is inhibited or targeted for degradation<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022)." href="/articles/s41588-024-01911-7#ref-CR10" id="ref-link-section-d1586494e858">10</a></sup>. We leverage select versions of these compounds to gain insight into TF dynamics and cell fate, with a particular focus on the hematopoietic TF PU.1 (also known as SPI1). This TF is an ideal candidate for investigation as it directs a well-characterized transcriptional program that governs cell fate<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hosokawa, H. et al. Transcription Factor PU.1 represses and activates gene expression in early T cells by redirecting partner transcription factor binding. Immunity 48, 1119–1134.e7 (2018)." href="/articles/s41588-024-01911-7#ref-CR4" id="ref-link-section-d1586494e862">4</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Ungerbäck, J. et al. Pioneering, chromatin remodeling, and epigenetic constraint in early T-cell gene regulation by SPI1 (PU.1). Genome Res. 28, 1508–1519 (2018)." href="/articles/s41588-024-01911-7#ref-CR11" id="ref-link-section-d1586494e865">11</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994)." href="/articles/s41588-024-01911-7#ref-CR12" id="ref-link-section-d1586494e868">12</a></sup>, has demonstrated proof-of-concept sensitivity to binding site inhibition, specifically compared to other ETS family TFs<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Munde, M. et al. Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines. Nucleic Acids Res. 42, 1379–1390 (2014)." href="/articles/s41588-024-01911-7#ref-CR8" id="ref-link-section-d1586494e872">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Antony-Debré, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J. Clin. Invest. 127, 4297–4313 (2017)." href="/articles/s41588-024-01911-7#ref-CR9" id="ref-link-section-d1586494e875">9</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Stephens, D. C. et al. Pharmacologic efficacy of PU.1 inhibition by heterocyclic dications: a mechanistic analysis. Nucleic Acids Res. 44, 4005–4013 (2016)." href="/articles/s41588-024-01911-7#ref-CR13" id="ref-link-section-d1586494e878">13</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Ogbonna, E. N. et al. Drug design and DNA structural research inspired by the Neidle laboratory: DNA minor groove binding and transcription factor inhibition by thiophene diamidines. Bioorg. Med. Chem. 68, 116861 (2022)." href="/articles/s41588-024-01911-7#ref-CR14" id="ref-link-section-d1586494e881">14</a></sup>, and is commonly dysregulated in leukemia and other diseases<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Sive, J. I. et al. Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia. Leukemia 30, 14–23 (2016)." href="#ref-CR15" id="ref-link-section-d1586494e886">15</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Will, B. et al. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat. Med. 21, 1172–1181 (2015)." href="#ref-CR16" id="ref-link-section-d1586494e886_1">16</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Steidl, U. et al. A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. J. Clin. Invest. 117, 2611–2620 (2007)." href="#ref-CR17" id="ref-link-section-d1586494e886_2">17</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Steidl, U. et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat. Genet. 38, 1269–1277 (2006)." href="#ref-CR18" id="ref-link-section-d1586494e886_3">18</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Bonadies, N., Pabst, T. & Mueller, B. U. Heterozygous deletion of the PU.1 locus in human AML. Blood 115, 331–334 (2010)." href="#ref-CR19" id="ref-link-section-d1586494e886_4">19</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Mueller, B. U. et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 100, 998–1007 (2002)." href="#ref-CR20" id="ref-link-section-d1586494e886_5">20</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Viny, A. D. et al. Cohesin members Stag1 and Stag2 display distinct roles in chromatin accessibility and topological control of HSC self-renewal and differentiation. Cell Stem Cell 25, 682–696.e8 (2019)." href="#ref-CR21" id="ref-link-section-d1586494e886_6">21</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Mizuki, M. et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 101, 3164–3173 (2003)." href="#ref-CR22" id="ref-link-section-d1586494e886_7">22</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Vangala, R. K. et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101, 270–277 (2003)." href="#ref-CR23" id="ref-link-section-d1586494e886_8">23</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kühn, M. W. M. et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov. 6, 1166 (2016)." href="#ref-CR24" id="ref-link-section-d1586494e886_9">24</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Gu, X. et al. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. J. Clin. Invest. 128, 4260–4279 (2018)." href="#ref-CR25" id="ref-link-section-d1586494e886_10">25</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="Ralvenius, W. T. et al. A novel molecular class that recruits HDAC/MECP2 complexes to PU.1 motifs reduces neuroinflammation. J. Exp. Med. 220, e20222105 (2023)." href="/articles/s41588-024-01911-7#ref-CR26" id="ref-link-section-d1586494e889">26</a></sup>.</p><p>We uncover that chemically driven binding site restriction drives a phenomenon that we refer to as ‘pharmacologically induced TF redistribution’. Binding site restriction caused a redistribution of PU.1 genomic binding and a seemingly paradoxical increase in PU.1-driven transcription at a subset of target genes. As a consequence, these chemical agents drive a robust myeloid differentiation program in both cell lines and primary samples from patients with acute myeloid leukemia (AML). We use CLICK chemistry-tagged versions of these PU.1-redistributing agents to catalog the sensitivity of the entire PU.1 cistrome to canonical binding site restriction and provide insight into the fast biology of endogenous PU.1, particularly into its pioneering ability and chromatin occupancy kinetics. In principle, the chemically induced TF redistribution we describe herein can be used not only to broaden our understanding of transcriptional processes but also as a mechanism to designate a new class of agents—‘TF redistributors’—which can be used in the fight against transcriptional aberrations in disease.</p></div></div></section><section data-title="Results"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2">Results</h2><div class="c-article-section__content" id="Sec2-content"><h3 class="c-article__sub-heading" id="Sec3">Pharmacological binding site restriction repositions PU.1</h3><p>Proof-of-concept studies into the inhibition of TF binding using synthetic heterocyclic diamidines in cell-free systems have established pharmacological displacement of PU.1 as a viable pharmacological strategy<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Munde, M. et al. Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines. Nucleic Acids Res. 42, 1379–1390 (2014)." href="/articles/s41588-024-01911-7#ref-CR8" id="ref-link-section-d1586494e908">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="Munde, M., Poon, G. M. K. & Wilson, W. D. Probing the electrostatics and pharmacological modulation of sequence-specific binding by the DNA-binding domain of the ETS family transcription factor PU.1: a binding affinity and kinetics investigation. J. Mol. Biol. 425, 1655–1669 (2013)." href="/articles/s41588-024-01911-7#ref-CR27" id="ref-link-section-d1586494e911">27</a></sup> but have provided little insight into the molecular and cellular consequences of such treatment. To characterize the consequences of PU.1 binding site restriction in a cellular context, we investigated the genomic localization of PU.1 following exposure to the tool compound DB2115 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1a</a>). A 5 µM dose of DB2115 was administered to PU.1-expressing MOLM13 cells to exert maximal functional effect (~90% growth inhibition) without altering the levels of PU.1 transcript or protein (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1b,c</a>) before PU.1-directed CUT&Tag was performed.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="PU.1 binding site blockade causes a GC content-biased repositioning of genomic PU.1 binding."><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1: PU.1 binding site blockade causes a GC content-biased repositioning of genomic PU.1 binding.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig1_HTML.png?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="935"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p><b>a</b>, Schematic of the experimental approach to preparing MOLM13 cells for CUT&Tag following a 12 h 5 µM DB2115 treatment. <b>b</b>,<b>c</b>, Representative western blot displaying protein (<b>b</b>) and RNA expression of PU.1 following 12 h of 5 µM DB2115 treatment (mean ± s.e.m., <i>n</i> = 3 experimental replicates) (<b>c</b>). <b>d</b>, Proportions of lost, gained and unchanged PU.1 peaks following DB2115 treatment. Differential binding was calculated by Diffbind with an FDR < 0.1, <i>n</i> = 3. <b>e</b>, <i>Z</i>-score heatmap of ETS motif enrichments. Known ETS motifs were identified from Homer analysis of lost, gained and unchanged PU.1 peaks. <b>f</b>, Log odds ratio score for the PU.1 consensus sequence (from a previous publication<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="Pham, T. H. et al. Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1. Nucleic Acids Res. 41, 6391–6402 (2013)." href="/articles/s41588-024-01911-7#ref-CR30" id="ref-link-section-d1586494e966">30</a></sup>) in lost, gained and unchanged PU.1 peaks. PWM, position weight matrix. <b>g</b>, Representative viewer tracks of genomic loci displaying lost (blue boxes), gained (red boxes) and unchanged (unmarked) PU.1 binding. <b>h</b>, Annotation in relation to distance to gene transcription start site of lost, gained and unchanged PU.1 peaks. UTR, untranslated region; TTS, transcription termination site. <b>i</b>, Proportion of GC content from the central 100 bp of lost, gained and unchanged PU.1 peaks. ****<i>P</i> < 0.0001, two-sided Mann–Whitney test. <b>j</b>, Comparison of log<sub>2</sub>fold change (FC) in PU.1 peak score (DB2115-treated/vehicle) versus GC content of central 100 bp of all peaks (colored according to peak groups). <b>k</b>, GC content position frequency matrix of lost, gained and unchanged peaks that have been centered on a short consensus ETS motif (GAGGAAGT) and examined ±25 bp. <b>l</b>, Single-nucleotide position frequency matrices for adenine, thymine, guanine and cytosine, comparing lost, gained and unchanged PU.1-centered peaks. <b>m</b>, Motif generation from PU.1-centered, lost (DB-sensitive) and gained (DB-resistant) peaks displaying a robust and extended upstream enrichment of A nucleotides in lost peaks. Also shown is the PU.1 motif used for centering peaks. VEH, vehicle.</p><p><a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM7">Source data</a></p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Strikingly, robust redistribution of PU.1 binding rather than global PU.1 displacement was uncovered. CUT&Tag identified 34,904 total PU.1 binding sites, consistent with the number of PU.1 peaks found in prior localization studies<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Wontakal, S. N. et al. A large gene network in immature erythroid cells is controlled by the myeloid and B cell transcriptional regulator PU.1. PLoS Genet. 7, e1001392 (2011)." href="#ref-CR28" id="ref-link-section-d1586494e1013">28</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Minderjahn, J. et al. Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nat. Commun. 11, 402 (2020)." href="#ref-CR29" id="ref-link-section-d1586494e1013_1">29</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="Pham, T. H. et al. Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1. Nucleic Acids Res. 41, 6391–6402 (2013)." href="/articles/s41588-024-01911-7#ref-CR30" id="ref-link-section-d1586494e1016">30</a></sup>, with 19% of sites being lost and 15% being gained following DB2115 exposure (<i>n</i> = 3, Diffbind false discovery rate (FDR) < 0.1; Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1d,g</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig9">1a,b,e</a>). Log odds ratio scoring of a canonical PU.1 motif<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="Pham, T. H. et al. Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1. Nucleic Acids Res. 41, 6391–6402 (2013)." href="/articles/s41588-024-01911-7#ref-CR30" id="ref-link-section-d1586494e1029">30</a></sup> and Homer analyses confirmed the enrichment of high-affinity PU.1 motifs (Class III ETS) within PU.1 CUT&Tag peaks, indicating a direct interaction between PU.1 and the DNA at gained, lost and unchanged sites (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1e,f</a> and Supplementary Data <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM3">1</a>). Interestingly, fewer lost PU.1 sites were found in promoter regions (4.4%) compared to gained sites (21.9%) (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1h</a>).</p><p>Given that DB2115 was designed to inhibit canonical PU.1 sites by blocking key AT-rich minor groove interactions surrounding the core GGAA<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Munde, M. et al. Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines. Nucleic Acids Res. 42, 1379–1390 (2014)." href="/articles/s41588-024-01911-7#ref-CR8" id="ref-link-section-d1586494e1046">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Antony-Debré, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J. Clin. Invest. 127, 4297–4313 (2017)." href="/articles/s41588-024-01911-7#ref-CR9" id="ref-link-section-d1586494e1049">9</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Stephens, D. C. et al. Pharmacologic efficacy of PU.1 inhibition by heterocyclic dications: a mechanistic analysis. Nucleic Acids Res. 44, 4005–4013 (2016)." href="/articles/s41588-024-01911-7#ref-CR13" id="ref-link-section-d1586494e1052">13</a></sup>, we examined the guanine–cytosine (GC) content of the central 100 bp of lost, gained and unchanged PU.1 sites. As expected, the GC content was significantly less in lost PU.1 binding sites (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1i</a>) compared to gained and unchanged sites. Indeed, the majority of PU.1 peak losses occurred in regions with <50% GC content (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1j</a>), suggesting that DB2115 specifically displaced PU.1 from AT-rich binding sites.</p><p>To understand the AT bias surrounding PU.1 motifs, we aligned all peaks to a central motif (GAGGAAGT) and examined the GC content of the adjacent nucleotides (±25 bp). There was robust depletion of GC content surrounding the core GGAA ETS motif for the lost PU.1 sites compared to gained or unchanged sites (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1k</a>). Further examination of the nucleotide composition identified that adenines were the predominant nucleotide enriched in the upstream and downstream regions of lost sites (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1l</a>). This was reflected in a de novo motif generated from DB-sensitive (lost) PU.1 sites containing more than six adenines upstream of the core motif (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1m</a>). Although heterocyclic diamidines do not have a preference for poly-A or poly-T minor grooves<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="Liu, Y. et al. Heterocyclic diamidine Interactions at AT base pairs in the DNA minor groove: effects of heterocycle differences, DNA AT sequence and length. J. Phys. Chem. B 112, 11809 (2008)." href="/articles/s41588-024-01911-7#ref-CR31" id="ref-link-section-d1586494e1074">31</a></sup>, thymines were not equivalently enriched. This is partially explained by overall motif occurrence, with poly-A flanked ETS sites being more common than poly-T flanked sites (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig9">1f,g</a>).</p><p>To confirm that pharmacological PU.1 redistribution was not an artefact of DB2115-mediated Tn5 transposase inhibition, we performed classical chromatin immunoprecipitation (ChIP). Despite some differences in peak number and distribution, the ChIP dataset corroborated the PU.1 redistributive phenomenon, characterized by profound losses and gains of PU.1 binding sites occurring with similar biases in GC content (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig10">2</a>).</p><h3 class="c-article__sub-heading" id="Sec4">PU.1 repositioning is a class-specific and selective phenomenon</h3><p>Pharmacological redistribution of PU.1 occurred consistently across several PU.1-expressing cell lines, THP1, HL60 and MV411, with similar GC content biases (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig2">2a</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig11">3a–c</a>). Despite differences in baseline PU.1 localization, drug-induced PU.1 redistribution showed similarity across cell lines (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig11">3d,e</a>). This was most profound amongst losses (71% of peaks lost in MOLM13 were commonly lost in ≥1 other cell line) compared to gains (32% of peaks gained in MOLM13 were commonly gained in ≥1 other cell line; Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig2">2b</a>). Examination of these common sites identifies AT-richness and PU.1 motif score as contributing factors for consistent redistribution (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig10">2f–i</a>). We generated a reference list of 347 high-confidence PU.1 binding sites that are consistently displaced with DB2115 (Supplementary Data <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM4">2</a>). Overall, we posit that PU.1 loss is context-independent in nature, driven predominantly by sequence-specific drug affinity, whereas PU.1 relocalization is less predictable by sequence and more dependent on cellular context.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="TF redistributors mediate selective, class-specific PU.1 repositioning in cell lines and primary AML samples."><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2: TF redistributors mediate selective, class-specific PU.1 repositioning in cell lines and primary AML samples.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig2_HTML.png?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="756"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p><b>a</b>, Comparison of log<sub>2</sub>fold change of PU.1 peak score (12 h of 5 µM DB2115-treated/vehicle) versus GC content of the central 100 bp for all peaks for THP1, HL60 and MV411, showing the number and percentage of peaks redistributed in each cell line (<i>n</i> = 2 for each cell line). <b>b</b>, Similarity between MOLM13 PU.1 peak changes with the other three cell lines. Peaks were classed as either common change to MOLM13 in one, two or three other cell lines or not commonly changed to MOLM13. Lost peaks were first filtered to exclude peaks not detected in other cell lines. <b>c</b>, Scatter plots comparing log<sub>2</sub>fold change of PU.1 peak score (DB2115-treated/vehicle) versus GC content of the central 100 bp for all peaks from two AML primary patient samples, including the number and percentage of peaks that are lost and gained in each sample. <b>d</b>, Motif generation from PU.1-centered, pooled primary AML sample redistributed peaks displaying a robust and extended upstream enrichment of A nucleotides in lost peaks. Also shown is the PU.1 motif used for centering peaks. <b>e</b>,<b>f</b>, Representative genomic loci displaying lost (<b>e</b>; blue boxes), gained (<b>f</b>; red boxes) and unchanged (unmarked) PU.1 binding in primary AML samples. <b>g</b>, Percentage of lost and gained CUT&Tag peaks of the TFs PU.1, RUNX1, ELF1 and GABPA in MOLM13 cells treated for 12 h with 5 µM DB2115. The dashed line represents the percentage of PU.1 lost or gained peaks. <b>h</b>, The percentage of lost or gained TF peaks that overlap with redistributed PU.1. N/A, not applicable. <b>i</b>, Percentage of lost and gained CUT&Tag peaks of the TFs GATA3, RUNX1, ELF1 and FLI1 in JURKAT cells treated for 12 h with 5 µM DB2115. The dashed line represents the percentage of PU.1 lost or gained peaks found in MOLM13 cells. <b>j</b>,<b>k</b>, Scatter plots comparing log<sub>2</sub>fold change of PU.1 peaks (drug-treated/vehicle) versus GC content of the central 100 bp following 12 h of 5 µM DB2373, DB2313 and DB2826 (<b>j</b>), or 400 nM cytarabine (ARA-C) and 200 nM daunorubicin (DAUN.; <b>k</b>). Shown as an inset in each graph are the numbers and percentage of lost or gained PU.1 peaks, <i>n</i> = 1.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Encouragingly, primary AML or myelodysplastic syndrome (MDS)/myeloproliferative neoplasm cells exhibited robust TF redistribution following 12 h of DB2115 treatment in liquid culture (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig2">2c,e,f</a>). Similar biases in lost PU.1 peak GC content, including the enrichment for upstream A nucleotides, were evident (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig2">2d</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig11">3j</a>). Comparison of primary AML against the MOLM13 dataset revealed that there was more similarity between lost regions (33%) than gained regions (6%) (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig11">3k</a>).</p><p>To evaluate the selectivity of the compounds for causing PU.1 redistribution, we performed CUT&Tag on other TFs (non-ETS family: RUNX1; other ETS family factors: ELF1 and GABPA). DB2115 exerted minimal (ELF1, GABPA) to mild (RUNX1) TF redistribution in MOLM13 cells (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig2">2g</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig12">4a</a>). However, a significant proportion of these minor TF redistribution events could be attributable to the redistribution of PU.1 itself, with 39–52% co-occurring with PU.1 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig2">2h</a>). Furthermore, we examined drug-induced TF redistribution (RUNX1, GATA3, ELF1 and FLI1) in JURKAT cells (which express minimal to no PU.1). Minor redistribution was evident (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig2">2i</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig12">4b</a>) but this was ~fivefold less than the redistribution observed for PU.1 in MOLM13. Overall, these data indicate that PU.1 is uniquely sensitive to DB2115-mediated binding site inhibition compared to these other TFs.</p><p>To determine whether PU.1 redistribution was a drug class effect, we examined newly developed heterocyclic diamidine PU.1 binding site inhibitors DB2373 and DB2826 plus one previously described compound, DB2313 (ref. <sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Antony-Debré, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J. Clin. Invest. 127, 4297–4313 (2017)." href="/articles/s41588-024-01911-7#ref-CR9" id="ref-link-section-d1586494e1230">9</a></sup>) (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig11">3l</a>). Encouragingly, all compounds caused PU.1 redistribution, characterized by robust GC-content-specific gains and losses (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig2">2j</a>). Furthermore, to confirm that this is a class-specific effect, we examined PU.1 localization in MOLM13 cells after 12 h of exposure to 400 nM cytarabine or 200 nM daunorubicin and found that neither triggered PU.1 redistribution (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig2">2k</a>).</p><h3 class="c-article__sub-heading" id="Sec5">CLICK-on-CUT&Tag identifies A-rich PU.1 site drug targeting</h3><p>To test whether TF redistributors directly displace PU.1 and which genomic loci experience direct displacement, we generated an alkyne-linker-tagged version of DB2115 that is amenable to click chemistry (DB2750). This linker-tagged compound (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3a</a>) was viable for copper-catalyzed cycloaddition with azide-AF488 and localized to the nucleus (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3b</a>). Furthermore, the antiproliferative activity of the molecule was similar to DB2115 (inhibitory concentration 50 (IC<sub>50</sub>) DB2750, 270 ± 20 nM versus DB2115, 630 ± 8 nM; Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3c</a>) and we found that DB2750 caused GC-content-dependent PU.1 redistribution (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3d</a>) with >70% equivalence in peak gains and losses compared to DB2115 treatment (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig13">5a–c</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="CLICK-on-CUT&Tag identifies sensitive, A-rich PU.1 sites as direct targets of drug binding."><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3: CLICK-on-CUT&Tag identifies sensitive, A-rich PU.1 sites as direct targets of drug binding.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig3_HTML.png?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig3_HTML.png" alt="figure 3" loading="lazy" width="685" height="646"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p><b>a</b>, Chemical structure of DB2750, an alkyne-linker-tagged version of DB2115. <b>b</b>, Representative immunofluorescence image of MOLM13 cells treated with vehicle or 5 µM DB2750, and CLICK-chemistry stained with azide-AF488 (green) and DAPI (gray). <b>c</b>, Dose–response curve of MOLM13 proliferation (cell titer blue assay) for DB2750 and DB2115; <i>n</i> = 3 experimental replicates displaying mean ± s.e.m. <b>d</b>, Scatter plots comparing log<sub>2</sub>fold change of PU.1 peaks (DB2115-treated/vehicle) with GC content of the central 100 bp following 12 h of DB2750. Shown as an inset in the graph are the number and percentage of lost or gained PU.1 peaks; <i>n</i> = 1. <b>e</b>, Schematic of CLICK-on-CUT&Tag and artificial fragment CLICK pulldown experimental procedures. NGS, next-generation sequencing. <b>f</b>, Enrichment of the two artificial DNA fragments (AT-rich and AT-poor; see Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig10">2</a>) following pulldown with DB2750-coated or non-drug-coated magnetic beads. Data are represented as a percentage of input cycle threshold score ± s.e.m.; <i>n</i> = 3 experimental replicates, *<i>P</i> < 0.05 (<i>P</i> = 0.0312) with two-sided Student’s <i>t</i>-test. <b>g</b>, Proportion of DB2750 binding sites out of all PU.1 binding sites (drug binding was determined to be log<sub>2</sub>fold change > log<sub>2</sub>(0.5)). <b>h</b>, Representative genome viewer tracks of vehicle or DB2115-treated PU.1 CUT&Tag (gray) as well as CLICK-on-CUT&Tag (purple), showing drug binding at specific PU.1 loci only. <b>i</b>, Summary enrichment scores of CLICK-on-CUT&Tag data, represented as the log<sub>2</sub>fold change of DB2750-pulldown/input. <b>j</b>, Highest ranked de novo motif found enriched in drug binding and non-drug-binding PU.1 sites. <b>k</b>,<b>l</b>, Scatter plot comparing CLICK-on-CUT&Tag enrichment score versus GC content of central 100 bp of each peak (<b>k</b>) or log<sub>2</sub>fold change of DB2115 over vehicle-treated PU.1 peak score (<b>l</b>). <b>m</b>, Color-coded scatter plot of CLICK-on-CUT&Tag enrichment score versus GC content displaying only lost (blue) and gained (red) peaks.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>To investigate the sequence specificity of TF redistributors, we developed an in vitro click chemistry approach to screen affinity in select synthesized PU.1 binding sites or the entire PU.1 cistrome (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3e</a>). Initially, to test the viability of this approach, we mixed two 68-bp DNA fragments from either an AT-rich, DB2115-sensitive PU.1 binding site (SENP2 intergenic, TAAAAGGA<u>GGAA</u>GTG) or an AT-poor, DB2115-resistant PU.1 binding site (SPI1 upstream regulatory element, GCTGTTAG<u>GGAA</u>GGG) and performed a pulldown with DB2750-coated magnetic beads (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3e</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig13">5d,e</a>). There was a strong enrichment of AT-rich over AT-poor fragments, demonstrating that the drug is indeed binding preferably to AT-rich DNA and that the CLICK-pulldown approach is viable (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3f</a>).</p><p>To identify drug-binding sites amongst the entire PU.1 cistrome, we developed ‘CLICK-on-CUT&Tag’, in which the input DNA for the pulldown is the output from PU.1 CUT&Tag (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3e</a>). CLICK-on-CUT&Tag identified drug binding at many PU.1 binding sites (16,447 out of 38,549 sites >log(0.5) enrichment; Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3g,h</a>). The strongest enrichment occurred at DB2115-lost PU.1 sites, denoting direct drug-mediated displacement of PU.1 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3i</a>). Furthermore, de novo motif enrichment of drug-bound sites identified an upstream A-rich ETS motif similar to the motif identified from DB2115-lost PU.1 sites (Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3j</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1e</a>). Conversely, motif enrichment of non-drug-bound sites generated a motif without upstream A-bias and predicted low-affinity PU.1 binding (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3j</a>). There was an inverse relationship between CLICK-pulldown enrichment and both GC content and fold change of PU.1 peaks following DB2115 treatment (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3k,l</a>). Notably, there was a pattern of lost PU.1 sites with low GC content corresponding with high CLICK enrichment compared to gained PU.1 sites (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3m</a>). Overall, these findings support a model of direct compound-mediated displacement of PU.1 from AT-rich flanking sites.</p><h3 class="c-article__sub-heading" id="Sec6">PU.1 repositioning restructures chromatin and transcriptome</h3><p>To determine whether pharmacological TF repositioning could alter the accessible chromatin landscape, we performed assay for transposase-accessible chromatin with sequencing (ATAC–seq) following 12 h of DB2115 exposure (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4a</a>). Profound changes to chromatin accessibility were evident; 33% of the total 149,462 accessible regions were closing and 20% were opening (FDR < 0.1; Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4b</a>). ETS motifs were strongly enriched in closing, opening and unchanged regions, suggesting that PU.1/ETS factors are key chromatin accessibility-controlling factors in these cells (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4c</a>). Closing sites displayed a lower occurrence in promoter regions than unchanged and opening sites (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4e</a>). Similarly, closed sites displayed a profound deficiency of GC content compared to gained or unchanged sites (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4d</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="PU.1 repositioning restructures the accessible chromatin landscape and rewires the PU.1-driven transcriptome."><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4: PU.1 repositioning restructures the accessible chromatin landscape and rewires the PU.1-driven transcriptome.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig4_HTML.png?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig4_HTML.png" alt="figure 4" loading="lazy" width="685" height="806"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p><b>a</b>, Schematic of the experimental approach to preparing MOLM13 cells for ATAC and RNA sequencing. <b>b</b>, Venn diagram of chromatin accessibility changes following DB2115 treatment (analyzed using Diffbind with an FDR < 0.1, <i>n</i> = 2). <b>c</b>, De novo motifs found in closing, opening or unchanged accessible chromatin regions (binomial exact test, Homer). <b>d</b>, GC content of the central 100 bp of closing, opening and unchanged accessible chromatin. <b>e</b>, Annotation of closing, opening or unchanged accessible chromatin. <b>f</b>, Summary pie charts of lost, gained and unchanged PU.1 peaks displaying their chromatin accessibility status following treatment. <b>g</b>, Representative viewer tracks of genomic loci displaying lost (blue box), gained (red boxes) or unchanged (unmarked) PU.1 binding regions with both PU.1 CUT&Tag (top) and ATAC data (bottom). <b>h</b>, Enriched de novo motifs from the following categories of peaks: lost PU.1 and closing, lost PU.1 and unchanged, gained PU.1 and opening and gained PU.1 and unchanged (Homer analysis with background of lost PU.1 and unchanged for lost PU.1 and closing peaks (and vice versa) or background of gained PU.1 and unchanged for gained PU.1 and opening peaks (and vice versa)). <b>i</b>, Differentially expressed genes (DEGs) identified following 20 h of DB2115 treatment (DESeq2, log<sub>2</sub>fold change >/< 0.5 and FDR < 0.1, <i>n</i> = 3). <b>j</b>,<b>k</b>, Gene set enrichment analysis (GSEA; MSigDB) of upstream TF pathways (<b>j</b>) and chemical and genetic perturbations (<b>k</b>). <b>l</b>, Volcano plots of gained, lost and unchanged PU.1 peak-associated gene expression. Accompanying pie charts illustrate the proportions of DEGs that are up-regulated and down-regulated. <b>m</b>,<b>n</b>, Volcano plots of the transcriptional changes of gained (<b>m</b>) and lost (<b>n</b>) PU.1 peak-associated genes filtered on opening or closing chromatin, and in promoter–intron–exon regions only. Accompanying pie charts illustrate the proportion of DEGs that are up-regulated and down-regulated. <b>o</b>, The promoter–intronic–exonic DB2115-target genes that were lost and closing (194) or gained and opening (506) were analyzed for cell identity from the human gene atlas (Enrichr). Average expression, <i>P</i> value (Fisher’s exact test) and odds ratio (OR) are shown. RPKM, reads per kilobase per million mapped reads. <b>p</b>, <i>K</i>-means clustering of binarized human cell ATAC peaks<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 32" title="Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016)." href="/articles/s41588-024-01911-7#ref-CR32" id="ref-link-section-d1586494e1531">32</a></sup> uncovered ten clusters associating with differing cell identities. <b>q</b>, Using this <i>k</i>-means cluster as a reference, the ‘identity’ of PU.1 CUT&Tag lost, gained and unchanged peaks was determined; only clusters showing enrichment were labeled.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Next, we filtered PU.1 peaks on redistribution status and examined chromatin accessibility. The majority of PU.1-lost sites were found in closing areas of the chromatin (84%), whereas the majority of PU.1-gained sites were found in opening areas (78%; Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4f,g</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig14">6a</a>). Overall, these data support the notion that PU.1 exerts powerful pioneering control over chromatin accessibility<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="Minderjahn, J. et al. Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nat. Commun. 11, 402 (2020)." href="/articles/s41588-024-01911-7#ref-CR29" id="ref-link-section-d1586494e1558">29</a></sup>. Given that some sites with PU.1 loss remained unchanged in accessibility (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4f</a>), we investigated whether other chromatin factors were cooperating with PU.1 to mediate chromatin accessibility changes. We examined enriched motifs in the four different classes of PU.1 changed sites (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4h</a>). Interestingly, lost PU.1 and closing sites, as well as gained PU.1 and unchanged sites were enriched for A-rich motifs such as SOX5, IRF4 and ZNF384. An opposite effect was observed in the lost PU.1 and unchanged chromatin, and gained PU.1 and opening chromatin, with a strong enrichment of G-rich motifs such as ETS1, BORIS and SMAD3. These data suggest that surrounding co-factor binding may have a role in determining the chromatin accessibility changes of regions experiencing PU.1 redistribution.</p><p>To investigate the effects of PU.1 redistribution on the transcriptome, we performed RNA sequencing 20 h after exposure to DB2115 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4a</a>). Gene set enrichment analysis of differentially expressed genes identified the PU.1/ETS pathways as predominant upstream networks driven by DB2115 treatment (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4i,j</a>). In addition, there was positive enrichment of differentiation signatures and negative enrichment of proliferative and stem cell signatures, which would be expected during myeloid differentiation driven by high levels of PU.1 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4k</a>).</p><p>Overlap of transcriptomic changes with PU.1 CUT&Tag was evaluated by examining gene expression near annotated CUT&Tag peaks (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig14">6b</a>). PU.1-gained sites were enriched for up-regulation of gene expression, whereas PU.1-lost sites had an equivalent level of up-regulation and down-regulation (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4l</a>). The low enrichment of down-regulated genes in PU.1-lost sites is probably a result of the time required to degrade pre-existing transcripts, with long half-life transcripts unlikely to show reductions at this time point.</p><p>To identify high-confidence redistributed PU.1 target genes, we filtered on PU.1-gained and PU.1-lost sites that occurred within close proximity to gene bodies (that is, promoter, intron, exon and transcription termination site regions only) and that resulted in respective changes in ATAC status or gene expression (that is, opening and up-regulation for gained PU.1 sites and vice versa) (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4m,n</a>). This produced lists of 194 PU.1-lost genes that showed enrichments in homeostatic and cell-cycle-related pathways and signatures of bone marrow and hematopoietic progenitor cells, and 506 PU.1-gained genes that showed enrichment in developmental and maturation pathways and signatures of differentiated myeloid cells (Supplementary Data <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM5">3</a>, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4o</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig14">6c</a>).</p><p>To further investigate the signatures found in TF redistributor exposed cells, we generated a cellular identity map<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 32" title="Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016)." href="/articles/s41588-024-01911-7#ref-CR32" id="ref-link-section-d1586494e1608">32</a></sup> (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig14">6d</a>). This generated ten distinct open chromatin region clusters that associated with human hematopoietic cell types (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4p</a>). By applying our PU.1 CUT&Tag data, we identified a unique enrichment of lost PU.1 sites in the stem cell or progenitor cluster (progenitor no. 2), whereas gained PU.1 sites were enriched in ubiquitous regions found in all cell types, including myeloid cell types (common no. 1 and common no. 2). Thus, pharmacological PU.1 redistribution directs cells away from a progenitor or stem cell identity and towards a differentiated state (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4q</a>). Taken together with the transcriptomic data, these findings indicate that DB2115 directly displaces PU.1 from progenitor or stem cell-essential gene regulatory regions, leading to PU.1 relocation at pro-differentiation regions.</p><h3 class="c-article__sub-heading" id="Sec7">Temporally resolved consequences of redistributed PU.1</h3><p>Although PU.1 has been described as possessing ‘non-classical’ pioneering abilities<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="Minderjahn, J. et al. Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nat. Commun. 11, 402 (2020)." href="/articles/s41588-024-01911-7#ref-CR29" id="ref-link-section-d1586494e1630">29</a></sup>, to our knowledge, the ability of PU.1 to pioneer chromatin under steady-state endogenous conditions has not been investigated. To understand the kinetics of PU.1 redistribution, we examined PU.1 localization after 1 h, 4 h and 12 h of DB2115 exposure. A total of 30,683 PU.1 binding regions were identified, with 11,487 sites changing in occupancy. A substantial proportion of these changes occurred after just 1 h (10%) or 4 h (22%) of incubation (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5a</a>). These early changes predominantly consisted of PU.1 losses (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5a</a>, right panels), but equilibrated to equivalent gains and losses at the later time points. Examination of the relationship of drug affinity or GC content over the PU.1 redistribution time course identified that the earliest losses exhibited the lowest GC content and highest CLICK enrichment score (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7a,b</a>, left panels), reflective of ordered and affinity-driven PU.1 displacement. Early PU.1 gains also exhibited lower GC content and higher CLICK enrichment, suggesting that PU.1 is ushered to the most GC-rich, drug-free PU.1 binding sites over time (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7a,b</a>, right panels). These findings suggest that PU.1 is rapidly displaced from chromatin by DB2115 but then requires a ‘searching’ period to locate and bind to alternative lower-affinity chromatin sites.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Temporally resolved pioneering of chromatin accessibility and nascent transcription by redistributed endogenous PU.1."><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5: Temporally resolved pioneering of chromatin accessibility and nascent transcription by redistributed endogenous PU.1.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/5" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig5_HTML.png?as=webp"><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig5_HTML.png" alt="figure 5" loading="lazy" width="685" height="871"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p>MOLM13 cells were treated with 5 µM DB2115 for 1 h, 4 h or 12 h and CUT&Tag, ATAC–seq and PRO–seq were performed. <b>a</b>, Time of PU.1 peak changes and corresponding gains and losses at each time point. <b>b</b>, Time of chromatin accessibility changes and corresponding opening and closing at each time point. <b>c</b>, Known motif enrichment <i>z</i>-scores from closing and opening regions at 1 h, 4 h and 12 h (Homer analyses). <b>d</b>,<b>e</b>, Representative viewer tracks of genomic loci displaying both PU.1 CUT&Tag (top tracks) and ATAC–seq (bottom tracks) over the time course. Arrows indicate time of first detection of gain (<b>d</b>) or loss (<b>e</b>) of PU.1 or opening (<b>d</b>) and closing (<b>e</b>) chromatin. <b>f</b>,<b>g</b>, Heatmap depicting the time of chromatin opening for PU.1-gained sites (<b>f</b>) or depicting the time of chromatin closing for PU.1-lost sites over the time course (<b>g</b>). Sites were filtered to remove gained and lost PU.1 sites without changes in chromatin accessibility. <b>h</b>, Comparison of log<sub>2</sub>fold change of gene expression from PRO–seq data versus associated PU.1 peak log<sub>2</sub>fold change from PU.1 CUT&Tag conducted over the time course. The proportions of reduced DEGs out of all lost PU.1-associated DEGs (blue font) and increased DEGs out of gained PU.1-associated DEGs (red font) are shown in each dot plot. <b>i</b>,<b>j</b>, Representative IGV tracks of positive and negative sense PRO–seq data displaying loss (<b>i</b>) or gain (<b>j</b>) of transcription over the time course. <b>k</b>, Cumulative pie charts depicting time of gene up-regulation or down-regulation from PRO–seq data grouped by time (1 h, 4 h or 12 h) of associated PU.1 loss or gain. <b>l</b>, Representative smFISH images from MOLM13 cells for the lost and gained PU.1-associated genes <i>MYC</i> (upper panels), and <i>FGR</i> (lower panels) over the DB2115 time course. <i>MYC</i> and <i>FGR</i> transcripts are in white pseudo-color; DNA is in blue pseudo-color. <b>m</b>,<b>n</b>, Transcription site (TS) burst frequency per cell for <i>MYC</i> (<b>m</b>) and <i>FGR</i> (<b>n</b>) over the time course. <b>o</b>,<b>p</b>, Number of nascent mRNA molecules per cell of <i>MYC</i> (<b>o</b>) and <i>FGR</i> (<b>p</b>) over the time course. PU.1 CUT&Tag and ATAC sequencing peaks were created using Diffbind, <i>n</i> = 2 and FDR < 0.1. PRO–seq DEGs were called using the NRSA pipeline; <i>n</i> = 2 and <i>P</i><sub>adj</sub> < 0.05.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>To understand the dynamics of chromatin accessibility changes in relation to PU.1 redistribution, we performed an identical DB2115 time course with ATAC–seq. Approximately 78,271 sites exhibited changing chromatin status, with a substantial proportion occurring after just 1 h (10%) and 4 h (23%) (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5b</a>). Interestingly, both the 1 h and 4 h changes predominated with closing events, but this equilibrated to equal opening and closing events by 12 h. Homer motif analysis revealed that the early closing regions and late opening regions were most highly enriched for ETS motifs (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5c</a>).</p><p>Focusing specifically on chromatin accessibility changes at PU.1 redistributed sites highlighted that many gained sites displayed PU.1 binding before chromatin opening (<i>FGR</i> and <i>CSF1R</i>; Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5d</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7c</a>), whereas lost sites predominantly exhibited simultaneous closing (<i>RUNX1</i> and <i>POMP</i>; Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5e</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7c</a>). Global examination of these redistribution versus chromatin accessibility events revealed that PU.1 gains were preceding the opening of the chromatin (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7d</a>). This effect was most noticeable when examining PU.1-gained sites at 4 h, with the majority opening at the later 12 h time point (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5f</a>). Conversely, the relationship between loss of PU.1 and closing of chromatin appeared more synchronous (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7e</a>), with predominant simultaneous losses and closing (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5g</a>).</p><p>To determine the effect of pharmacologically mediated PU.1 redistribution on nascent transcription, we performed precision nuclear run-on with sequencing (PRO–seq). Overall, the number of differentially transcribed genes increased from 185 to 2,358 to 8,387 at 1 h, 4 h and 12 h of DB2115 exposure, respectively (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7f</a>). Focusing on genes associated with changes in PU.1 binding, gained sites typically led to increases in transcription at all time points and vice versa for lost sites (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5h</a>), consistent with our RNA sequencing data (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4m</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7g</a>). Redistributed PU.1-associated nascent transcripts changed at later time points than the corresponding changes in PU.1 binding or chromatin accessibility, with the majority of nascent RNA transcription fluctuations occurring at 12 h (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5k</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7h</a>; for example, <i>MYC</i> and <i>FGR</i> loci in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5i,j</a>).</p><p>To examine the transcriptional dynamics of PU.1 redistribution at single-molecule resolution, we performed targeted single-molecule RNA-fluorescence in situ hybridization (smFISH) for genes associated with loss (<i>MYC</i>), gain (<i>FGR</i>) or unchanged (<i>SPI1</i>) PU.1 binding (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5l</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7i</a>). For <i>MYC</i>, we observed significant reductions in transcription site burst frequency (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5m</a>) and total nascent transcripts per cell (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5o</a>). By contrast, for <i>FGR</i>, we observed significant increases in transcription site burst frequency (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5n</a>) and total nascent transcripts per cell (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig5">5p</a>). <i>SPI1</i> nascent transcripts and transcription site burst frequency did not change at any time point analyzed (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig15">7j,k</a>). Overall, the dynamics of pharmacologically mediated PU.1 redistribution provide evidence for both the pioneering ability of endogenous PU.1 within native chromatin and, in turn, the ability of DB2115 to redirect transcriptional activity.</p><h3 class="c-article__sub-heading" id="Sec8">PU.1 redistribution activates genes at alternate PU.1 target sites</h3><p>To identify direct regulation of PU.1 at candidate target sites, we used a genetic system to imitate pharmacological PU.1 displacement, whereby a catalytically dead Cas9 (dCas9) occupies <i>cis</i>-regulatory regions to block TF binding<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 33" title="Shariati, S. A. et al. Reversible disruption of specific transcription factor–DNA interactions using CRISPR/Cas9. Mol. Cell 74, 622–633.e4 (2019)." href="/articles/s41588-024-01911-7#ref-CR33" id="ref-link-section-d1586494e1936">33</a></sup>. We designed sgRNA against a DB2115-sensitive PU.1 binding site in the enhancer of the <i>STRAP</i> gene (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig16">8a</a>) (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig6">6a</a>). Characteristic pharmacological displacement of PU.1 by DB2115 in MOLM13 cells was recapitulated in sg<i>STRAP</i>+ dCas9 cells (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig6">6b</a>, top and middle panels). A dCas9 peak was evident at the identical location as PU.1 loss, indicating dCas9-mediated PU.1 displacement. Quantification of <i>STRAP</i> mRNA confirmed a DB2115-like reduction in expression in sg<i>STRAP</i>+ dCas9 cells, thereby confirming that PU.1 displacement from <i>cis</i>-regulatory sites has direct effects on gene expression (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig6">6c</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Both genetic and pharmacological PU.1 redistribution activates gene expression at known and newly identified alternate PU.1 target sites."><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6: Both genetic and pharmacological PU.1 redistribution activates gene expression at known and newly identified alternate PU.1 target sites.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig6_HTML.png?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig6_HTML.png" alt="figure 6" loading="lazy" width="685" height="754"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p><b>a</b>, Experimental schematic for generation and evaluation of dCas9 and sgRNA-expressing MOLM13 cells <b>b</b>, Representative viewer tracks of genomic loci displaying PU.1 CUT&Tag of vehicle or DB2115-treated cells (top two tracks), sgNT-expressing or sg<i>STRAP</i>-expressing cells (middle two tracks) and dCas9 CUT&Tag of sgNT-expressing and sg<i>STRAP</i>-expressing cells (bottom two tracks). Arrows highlight the PU.1 or dCas9 binding at the <i>STRAP</i> enhancer. sgNT, non-targeting control sgRNA. <b>c</b>, Relative mRNA expression of <i>STRAP</i> by qPCR for DB2115-treated cells (for 24 h, compared to vehicle) and sg<i>STRAP</i> dCas9+ cells (48 h of doxycycline, compared to sgNT dCas9+); <i>n</i> = 4 experimental replicates displaying mean ± s.e.m. <b>d</b>, Experimental schematic for the design and evaluation of the native PU.1-driven eGFP reporter assay in MOLM13 cells. <b>e</b>,<b>f</b>, Representative eGFP fluorescence histograms (<b>e</b>) and summary mean fluorescence intensity (MFI) data for the three eGFP reporter-transduced MOLM13 cells (unchanged-<i>CD11b</i> site, lost-<i>POMP</i> site and gained-<i>CSF1R</i> PU.1 binding sites; see Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig16">8b</a>) following 24 h treatment with 5 µM DB2115 or vehicle (<b>f</b>); <i>n</i> = 4–5 experimental replicates, two-sided, paired Student’s <i>t</i>-tests, **<i>P</i> < 0.001 (<i>P</i> = 0.0096), ***<i>P</i> < 0.0005 (<i>P</i> = 0.0005). <b>g</b>, Mean change in eGFP MFI for the three reporter MOLM13 cell lines following 24 h treatment with 5 µM DB2115 (black), DB2373 (purple) or DB2836 (orange) compared to vehicle ± s.e.m., <i>n</i> = 3–5 experimental replicates.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>To further investigate the effects of PU.1 redistribution on target gene expression, we designed several genetic eGFP reporter systems in which eGFP fluorescence is driven by an endogenous PU.1 binding site (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig6">6d</a>). The PU.1 binding sites selected were from a gained (<i>CSF1R</i> alternative promoter), lost (<i>POMP</i> intergenic enhancer) and an unchanged (<i>CD11b</i> promoter) site (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig16">8b</a>). Upon stable transduction of these reporters, we found that the baseline level of eGFP was different for each reporter but was reflective of our CUT&Tag results (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig6">6e</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig16">8c</a>). Upon DB2115 exposure, the lost-site reporter showed a robust decrease in eGFP fluorescence whereas the gained-site reporter showed a significant increase in fluorescence (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig6">6e,f</a>). Additionally, two second-generation compounds, DB2373 and DB2826, demonstrated comparable changes to eGFP expression in the three reporters (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig6">6g</a>). These data establish that pharmacological PU.1 redistribution has both positive and negative effects on gene expression.</p><h3 class="c-article__sub-heading" id="Sec9">Myeloid differentiation is driven by PU.1 repositioning</h3><p>Many myeloid surface receptor transcripts were directly up-regulated by pharmacologically induced PU.1 redistribution (Supplementary Data <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM5">3</a>). To understand whether PU.1 redistribution can enhance protein expression or function, we investigated two myeloid and immune surface receptors, CSF1R (known PU.1 target) and IL-4R (non-canonical PU.1 target). Encouragingly, surface expression of CSF1R drastically increased from 0% to 30% (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7a</a>) and IL-4R increased by 15% following DB2115 exposure (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7b</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7" data-title="Pharmacological TF redistribution induces myeloid lineage receptor responsiveness and promotes differentiation of leukemic cells."><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 7: Pharmacological TF redistribution induces myeloid lineage receptor responsiveness and promotes differentiation of leukemic cells.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/7" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig7_HTML.png?as=webp"><img aria-describedby="Fig7" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig7_HTML.png" alt="figure 7" loading="lazy" width="685" height="883"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-7-desc"><p><b>a</b>,<b>b</b>, Proportion of CSF1R+ (<b>a</b>) and IL-4R+ MOLM13 cells (<b>b</b>) after 24 h or 48 h of treatment with vehicle or 1 µM DB2115, and a representative histogram of staining intensity after 48 h; <i>n</i> = 7 experimental replicates displaying mean ± s.e.m. **<i>P</i> < 0.01 (<i>P</i> = 0.0057 (24 h IL-4) and <i>P</i> = 0.0096 (48 h IL-4)) and ****<i>P</i> < 0.0001. <b>c</b>, Schematic of approach to invoke surface receptor expression on MOLM13 cells and assess response to ligands (CSF1 and IL-4). <b>d</b>, Fold change of pS6 MFI versus baseline for CSF1 stimulations of drug-invoked MOLM13 cells, including representative histograms; <i>n</i> = 3 experimental replicates displaying mean ± s.e.m.; *<i>P</i> < 0.05 (<i>P</i> = 0.0234) and **<i>P</i> < 0.01 (<i>P</i> = 0.005). <b>e</b>, Fold change of pSTAT6 MFI versus baseline for IL-4 stimulations of drug-invoked MOLM13 cells, including representative histograms; <i>n</i> = 3 experimental replicates displaying mean ± s.e.m.; *<i>P</i> < 0.05 (<i>P</i> = 0.0164) and **<i>P</i> < 0.01 (<i>P</i> = 0.006 (3 ng ml<sup>−1</sup>) and <i>P</i> = 0.0025 (10 ng ml<sup>−1</sup>)). <b>f</b>, Representative day 7 colony assay images of drug-invoked or vehicle-invoked MOLM13 cells grown in methylcellulose containing no growth factors, +100 ng ml<sup>−1</sup> CSF1 or +100 ng ml<sup>−1</sup> IL-4. <b>g</b>, Summary D7 colony numbers from DB2115-pretreated or vehicle-pretreated MOLM13 cells in the absence or presence of ligands, <i>n</i> = 3–4 experimental replicates displaying mean ± s.e.m, *<i>P</i> < 0.05 (<i>P</i> = 0.0248). <b>h</b>, May-Grünwald Giemsa cytospin image of MOLM13 cells treated with vehicle or 1 µM DB2115 for 5 days. The experiment was repeated independently three times with similar results. <b>i</b>,<b>j</b>, Representative histograms (<b>i</b>) and fold change in MFI versus vehicle for cell surface markers from 5-day treated cells, <i>n</i> = 7 experimental replicates displaying mean ± s.e.m (<b>j</b>). <b>k</b>, Experimental schema illustrating the evaluation of primary AML samples following vehicle or DB2115 exposure in methylcellulose colony assays. <b>l</b>, Representative light microscope images of AML colonies (sample 6) after vehicle or 5 µM DB2115 treatment for 8 days. Example image is from one experiment with two technical replicates with similar results. <b>m</b>, Colony counts from samples from the seven patients with AML exposed to vehicle, 1 µM or 5 µM DB2115 for 8–13 days, <i>n</i> = 2 technical replicates per sample. <b>n</b>, Summary heatmap of the percentage change in CD marker expression in primary AML cells following 5 µM DB2115 compared to vehicle. All statistical tests displayed were unpaired, two-sided Student’s <i>t</i>-tests.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/7" data-track-dest="link:Figure7 Full size image" aria-label="Full size image figure 7" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>To investigate the functional effects of pharmacological induction of CSF1R or IL-4R expression, we induced receptor expression with DB2115 before assessing ligand stimulation responses via phospho-protein flow cytometry (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7c</a>). Vehicle-pretreated MOLM13 cells did not respond to CSF1 stimulation at any dose, whereas DB2115-pretreatment led to dose-dependent increases in pS6 levels (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7d</a>). Similarly, IL-4 stimulations led to enhanced pSTAT6 activity in drug-invoked over vehicle-invoked MOLM13 cells (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7e</a>). Next, we grew drug-invoked MOLM13 cells in methylcellulose containing either CSF1 or IL-4 for 1 week (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7c</a>). DB2115-pretreatment led to reduced frequency and size of MOLM13 colonies compared to vehicle (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7f</a>). Addition of CSF1 or IL-4 increased the number of colonies in the DB2115-invoked group (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7g</a>); however, the surviving cells displayed high expression of the myeloid marker CD15, indicating a commitment to differentiation (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig17">9a–e</a>).</p><p>Next, we sought to investigate whether MOLM13 cells would differentiate following longer-term TF redistributor exposure. After a 5 day exposure to low-dose DB2115 in liquid culture, MOLM13 cells displayed myeloid differentiation, gaining macrophage-like morphology (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7h</a>) and increased surface expression of myeloid markers CD11b and CD86, but not the stem cell marker CD34 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7i,j</a>). Consistently, THP1 cells displayed a similar myeloid differentiation phenotype under TF redistributor exposure, with macrophagic morphology (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig17">9f</a>) and changes to myeloid surface marker expression (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig17">9g,h</a>).</p><p>To test whether pharmacological repositioning of PU.1 can drive myeloid differentiation in primary cells, we examined the effect of TF redistributor exposure on seven samples from patients with AML or MDS that were grown in methylcellulose for 8–13 days. Cell growth and colony formation were severely hampered by DB2115 in a dose-dependent manner in all seven primary AML or MDS samples (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7l,m</a>). Flow cytometry showed that the remaining viable DB2115-treated cells exhibited increases in myeloid surface markers, including CD11b, CD14, CD15 and CD86 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7n</a> and Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig18">10a–c</a>). Overall, this provides proof of concept that TF redistributors can be wielded to redeploy PU.1 to drive a differentiation program and induce cellular cytokine sensitivity.</p></div></div></section><section data-title="Discussion"><div class="c-article-section" id="Sec10-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec10">Discussion</h2><div class="c-article-section__content" id="Sec10-content"><p>In this study, we document evidence for TF redistribution caused by genome-wide, small-molecule blockade of <i>cis</i>-regulatory PU.1 binding sites (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig8">8a</a>). Consequentially, redistribution of PU.1 leads to robust and rapid changes in chromatin accessibility and rewires PU.1 transcriptional networks to drive increased expression of alternative PU.1 gene targets, which encourages myeloid differentiation of AML cells (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig8">8b</a>). Therefore, use of ‘TF redistributors’ such as DB2115, DB2313, DB2373 and DB2826 can provide unique insight into the behavior and dynamics of TFs while maintaining the stoichiometry of endogenous protein, and offers a molecular strategy to abrogate the aberrant transcriptional circuits in cancer and other diseases.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-8" data-title="The molecular mechanism of action and cellular consequences of pharmacological PU.1 redistribution."><figure><figcaption><b id="Fig8" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 8: The molecular mechanism of action and cellular consequences of pharmacological PU.1 redistribution.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/8" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig8_HTML.png?as=webp"><img aria-describedby="Fig8" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig8_HTML.png" alt="figure 8" loading="lazy" width="685" height="467"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-8-desc"><p><b>a</b>, TF ‘redistributors’ (for example, DB2115, DB2313, DB2373 or DB2826) directly and rapidly displace PU.1 from canonical adenine-rich ETS binding sites and subsequently redistribute it to second-tier, sequence-unbiased ETS binding sites. <b>b</b>, Under steady-state conditions, canonical PU.1 binding and the ensuing PU.1-driven transcriptome is essential for leukemia cell survival; however, this is perturbed through the administration of TF redistributors. PU.1 is repositioned to alternate binding sites, redirecting its pioneer activity leading to subsequent chromatin opening and a rewiring of the PU.1-driven transcriptome, ultimately driving myeloid differentiation.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41588-024-01911-7/figures/8" data-track-dest="link:Figure8 Full size image" aria-label="Full size image figure 8" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>We identified that A-rich surrounding PU.1 binding motifs were most sensitive to inhibition by the described class of agents. One possible explanation for this could be that specific A-rich binding co-factors are aiding or stabilizing PU.1 binding at these sites. This could include the reported A-rich binding and PU.1 interacting TFs SATB1 (ref. <sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hosokawa, H. et al. Transcription Factor PU.1 represses and activates gene expression in early T cells by redirecting partner transcription factor binding. Immunity 48, 1119–1134.e7 (2018)." href="/articles/s41588-024-01911-7#ref-CR4" id="ref-link-section-d1586494e2370">4</a></sup>), IRF4/8 (refs. <sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 34" title="Escalante, C. R. et al. Crystal structure of PU.1/IRF-4/DNA ternary complex. Mol. Cell 10, 1097–1105 (2002)." href="/articles/s41588-024-01911-7#ref-CR34" id="ref-link-section-d1586494e2374">34</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 35" title="Kanno, Y., Levi, B. Z., Tamura, T. & Ozato, K. Immune cell-specific amplification of interferon signaling by the IRF-4/8-PU.1 complex. J. Interferon Cytokine Res. 25, 770–779 (2005)." href="/articles/s41588-024-01911-7#ref-CR35" id="ref-link-section-d1586494e2377">35</a></sup>) or C/EBP family factors<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 36" title="Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010)." href="/articles/s41588-024-01911-7#ref-CR36" id="ref-link-section-d1586494e2381">36</a></sup>. It is possible that the anti-leukemic effects of the compounds are linked to the blockade of co-factor–PU.1 complexes forming on the DNA<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 37" title="Konstantinos Tzelepis, A. et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193–1205 (2016)." href="/articles/s41588-024-01911-7#ref-CR37" id="ref-link-section-d1586494e2385">37</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 38" title="Cao, Z. et al. ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency. Mol. Cell 81, 3604 (2021)." href="/articles/s41588-024-01911-7#ref-CR38" id="ref-link-section-d1586494e2388">38</a></sup>. Thus, further investigation is required to uncover which co-factors are essential for stabilizing PU.1 binding to adenine-biased sites and whether the co-factors themselves are sensitive to TF redistributors, thus contributing to the observed anti-leukemic effects of the drug class<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Antony-Debré, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J. Clin. Invest. 127, 4297–4313 (2017)." href="/articles/s41588-024-01911-7#ref-CR9" id="ref-link-section-d1586494e2392">9</a></sup>.</p><p>As a direct result of PU.1 displacement, PU.1 was redeployed to alternative binding sites throughout the genome. It is noteworthy that the motifs derived from the localization data were in line with in vitro PU.1 affinity assays<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 39" title="Poon, G. M. K. & Macgregor, R. B. Base coupling in sequence-specific site recognition by the ETS domain of murine PU.1. J. Mol. Biol. 328, 805–819 (2003)." href="/articles/s41588-024-01911-7#ref-CR39" id="ref-link-section-d1586494e2399">39</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="Poon, G. M. K. Sequence discrimination by DNA-binding domain of ETS family transcription factor PU.1 is linked to specific hydration of protein–DNA interface. J. Biol. Chem. 287, 18297–18307 (2012)." href="/articles/s41588-024-01911-7#ref-CR40" id="ref-link-section-d1586494e2402">40</a></sup>, with GC-rich, low-affinity ETS sites only becoming populated with PU.1 once the high-affinity, A-rich ETS sites were blocked. Additionally, our temporal investigations into PU.1 redistribution provided evidence for the pioneering ability of endogenous PU.1, which supports the ‘non-classical’ pioneering function of PU.1 and dependence on other remodeling factors to modify the chromatin landscape<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Ungerbäck, J. et al. Pioneering, chromatin remodeling, and epigenetic constraint in early T-cell gene regulation by SPI1 (PU.1). Genome Res. 28, 1508–1519 (2018)." href="/articles/s41588-024-01911-7#ref-CR11" id="ref-link-section-d1586494e2406">11</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 41" title="Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010)." href="/articles/s41588-024-01911-7#ref-CR41" id="ref-link-section-d1586494e2409">41</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Barozzi, I. et al. Co-regulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. Mol. Cell 54, 844 (2014)." href="/articles/s41588-024-01911-7#ref-CR42" id="ref-link-section-d1586494e2412">42</a></sup>.</p><p>Interestingly, some PU.1 binding loci were unchanged following pharmacological binding site blockade despite these loci containing a typical PU.1 binding motif. There are a number of possibilities to explain this finding, including that PU.1 co-factors or nearby chromatin binding proteins may stabilize the PU.1–DNA interaction and prevent pharmacological displacement (this could include any of the known PU.1 interactors; for example, HOX, IRF or C/EBP family factors)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 35" title="Kanno, Y., Levi, B. Z., Tamura, T. & Ozato, K. Immune cell-specific amplification of interferon signaling by the IRF-4/8-PU.1 complex. J. Interferon Cytokine Res. 25, 770–779 (2005)." href="/articles/s41588-024-01911-7#ref-CR35" id="ref-link-section-d1586494e2419">35</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 38" title="Cao, Z. et al. ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency. Mol. Cell 81, 3604 (2021)." href="/articles/s41588-024-01911-7#ref-CR38" id="ref-link-section-d1586494e2422">38</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 43" title="Al Sadoun, H., Burgess, M., Hentges, K. E. & Mace, K. A. Enforced expression of Hoxa3 inhibits classical and promotes alternative activation of macrophages in vitro and in vivo. J. Immunol. 197, 872–884 (2016)." href="/articles/s41588-024-01911-7#ref-CR43" id="ref-link-section-d1586494e2425">43</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 44" title="Hohaus, S. et al. PU.1 (Spi-1) and C/EBPα regulate expression of the granulocyte–macrophage colony-stimulating factor receptor α gene. Mol. Cell. Biol. 15, 5830–5845 (1995)." href="/articles/s41588-024-01911-7#ref-CR44" id="ref-link-section-d1586494e2428">44</a></sup> or that the drug is unequally distributed throughout the chromatin landscape. It has been reported that pharmacological compounds can be hindered in their ability to freely diffuse throughout the dense and fractal nuclear compartments<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 45" title="Bancaud, A. et al. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 28, 3785–3798 (2009)." href="/articles/s41588-024-01911-7#ref-CR45" id="ref-link-section-d1586494e2432">45</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="Wang, T. et al. Chemical-induced phase transition and global conformational reorganization of chromatin. Nat. Commun. 14, 5556 (2023)." href="/articles/s41588-024-01911-7#ref-CR46" id="ref-link-section-d1586494e2435">46</a></sup>. Additional research will be required to interrogate the underlying forces driving sensitivity and insensitivity to PU.1 displacement.</p><p>TF redistribution is a biological phenomenon that can be driven by changes in the chromatin context and/or the protein millieu<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hosokawa, H. et al. Transcription Factor PU.1 represses and activates gene expression in early T cells by redirecting partner transcription factor binding. Immunity 48, 1119–1134.e7 (2018)." href="/articles/s41588-024-01911-7#ref-CR4" id="ref-link-section-d1586494e2443">4</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="McKenzie, M. D. et al. Interconversion between tumorigenic and differentiated states in acute myeloid leukemia. Cell Stem Cell 25, 258–272.e9 (2019)." href="/articles/s41588-024-01911-7#ref-CR7" id="ref-link-section-d1586494e2446">7</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 47" title="Bell, C. C. et al. Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nat. Commun. 10, 2723 (2019)." href="/articles/s41588-024-01911-7#ref-CR47" id="ref-link-section-d1586494e2449">47</a></sup>. This study has highlighted an interesting form of TF redistribution: direct pharmacological TF displacement and redistribution, which not only has therapeutic potential but also allows for rapid and tunable investigations into the fast biology and temporal chromatin dynamics of endogenous TFs. Pharmacological redistribution of TF localization could be applied to investigate the global behaviors of many TFs, including those that have been documented to be displaced by DNA binding site inhibitors (for example EVI1, PIT-1 and HER2 (refs. <sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Zhang, Y. et al. Targeting a DNA binding motif of the EVI1 protein by a pyrrole–imidazole polyamide. Biochemistry 50, 10431–10441 (2011)." href="#ref-CR48" id="ref-link-section-d1586494e2453">48</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Chiang, S. Y. et al. Targeting the Ets binding site of the HER2/neu promoter with pyrrole–imidazole polyamides. J. Biol. Chem. 275, 24246–24254 (2000)." href="#ref-CR49" id="ref-link-section-d1586494e2453_1">49</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 50" title="Peixoto, P. et al. Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication. Nucleic Acids Res. 36, 3341–3353 (2008)." href="/articles/s41588-024-01911-7#ref-CR50" id="ref-link-section-d1586494e2456">50</a></sup>)) or those unexplored disease regulatory factors which rely upon AT-rich minor-groove contacts (for example, FOXA1 in breast cancer<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="Cirillo, L. A. & Zaret, K. S. Specific Interactions of the wing domains of FOXA1 transcription factor with DNA. J. Mol. Biol. 366, 720 (2007)." href="/articles/s41588-024-01911-7#ref-CR51" id="ref-link-section-d1586494e2460">51</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 52" title="Fu, X. et al. FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc. Natl Acad. Sci. USA 113, E6600–E6609 (2016)." href="/articles/s41588-024-01911-7#ref-CR52" id="ref-link-section-d1586494e2463">52</a></sup>).</p><p>Although still in its infancy, the potential for TF redistributors to be used for therapeutic application is highly attractive and theoretically plausible. Pharmacological targeting of transcriptional dysregulation found in diseases such as MDS and AML has proven enigmatic, with most approaches limited to targeting protein–protein interactions in the chromatin rather than TF–DNA interactions<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Kühn, M. W. M. et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov. 6, 1166 (2016)." href="/articles/s41588-024-01911-7#ref-CR24" id="ref-link-section-d1586494e2470">24</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Lu, R. & Wang, G. G. Pharmacologic targeting of chromatin modulators as therapeutics of acute myeloid leukemia. Front. Oncol. 7, 241 (2017)." href="#ref-CR53" id="ref-link-section-d1586494e2473">53</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Xu, B. et al. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood 125, 346–357 (2015)." href="#ref-CR54" id="ref-link-section-d1586494e2473_1">54</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="Zhang, S., Liu, M., Yao, Y., Yu, B. & Liu, H. Targeting LSD1 for acute myeloid leukemia (AML) treatment. Pharmacol. Res. 164, 1043–6618 (2021)." href="/articles/s41588-024-01911-7#ref-CR55" id="ref-link-section-d1586494e2476">55</a></sup>. Initial pre-clinical investigations in mouse models of AML have demonstrated that these tool TF redistributors display on-target efficacy for eliminating leukemia<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Antony-Debré, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J. Clin. Invest. 127, 4297–4313 (2017)." href="/articles/s41588-024-01911-7#ref-CR9" id="ref-link-section-d1586494e2480">9</a></sup>, warranting further development of next-generation versions of these agents pursuing superior pharmacokinetics. Additionally, it will be important to determine how best to use the molecular PU.1 redistribution phenomenon therapeutically and investigate whether a combination with other drugs can synergize to better control the aberrant PU.1 transcriptional network. Thus, with further investigation, TF redistributors offer an exciting potential therapeutic class of small molecules that could have far-reaching effects for the treatment of leukemias and other aberrant TF-mediated diseases.</p></div></div></section><section data-title="Methods"><div class="c-article-section" id="Sec11-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec11">Methods</h2><div class="c-article-section__content" id="Sec11-content"><h3 class="c-article__sub-heading" id="Sec12">Study approval</h3><p>Human samples were collected after informed consent was obtained from patients and upon approval of the Institutional Review Board of Albert Einstein College of Medicine (protocol 2005–536).</p><h3 class="c-article__sub-heading" id="Sec13">Small molecules</h3><p>The synthesis of DB2115 (ref. <sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="Liu, Y. et al. Designed compounds for recognition of 10 base pairs of DNA with two at binding sites. J. Am. Chem. Soc. 134, 5290–5299 (2012)." href="/articles/s41588-024-01911-7#ref-CR56" id="ref-link-section-d1586494e2504">56</a></sup>) and DB2313 (ref. <sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Antony-Debré, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J. Clin. Invest. 127, 4297–4313 (2017)." href="/articles/s41588-024-01911-7#ref-CR9" id="ref-link-section-d1586494e2508">9</a></sup>) has been previously reported; the synthesis of DB2373, DB2826 and DB2750 is provided in the <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM1">Supplementary Information</a><sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 57" title="Casitas, A., Canta, M., Solà, M., Costas, M. & Ribas, X. Nucleophilic aryl fluorination and aryl halide exchange mediated by a CuI/CuIII catalytic cycle. J. Am. Chem. Soc. 133, 19386–19392 (2011)." href="/articles/s41588-024-01911-7#ref-CR57" id="ref-link-section-d1586494e2514">57</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 58" title="Ates-Alagöz, Z. et al. Synthesis and potent antimicrobial activities of some novel retinoidal monocationic benzimidazoles. Arch. Pharm. (Weinheim) 339, 74–80 (2006)." href="/articles/s41588-024-01911-7#ref-CR58" id="ref-link-section-d1586494e2517">58</a></sup>. Following synthesis, all compounds were dissolved in 10% dimethylsulfoxide and water at a stock concentration of 5 mM and stored at −20 °C.</p><h3 class="c-article__sub-heading" id="Sec14">Cell culture and drug treatment</h3><p>THP1, MOLM13, MV411, JURKAT and HL60 cells were originally purchased from ATCC. MOLM13, THP1, JURKAT and MV411 were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated FBS and 1% penicillin–streptomycin. HL60 were cultured in IMDM medium supplemented with 20% heat-inactivated FBS and 1% penicillin–streptomycin. All cell lines were maintained in an incubator at 37 °C and 5% CO<sub>2</sub>.</p><p>Cells were treated with 5 µM of DB2115, DB2313, DB2373 or DB2750 at a starting concentration of one million cells per ml for the specified time.</p><h3 class="c-article__sub-heading" id="Sec15">CUT&Tag</h3><p>CUT&Tag was performed as previously reported<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 59" title="Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019)." href="/articles/s41588-024-01911-7#ref-CR59" id="ref-link-section-d1586494e2542">59</a></sup> but with a few technical alterations. In brief, 5 × 10<sup>5</sup> cells per cell line were collected and, to prevent the osmotic displacement of PU.1 (or other factors) from chromatin during the high-salt downstream protocol<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="Xhani, S., Esaki, S., Huang, K., Erlitzki, N. & Poon, G. M. K. Distinct roles for interfacial hydration in site-specific DNA recognition by ETS-family transcription factors. J. Phys. Chem. B 121, 2748 (2017)." href="/articles/s41588-024-01911-7#ref-CR60" id="ref-link-section-d1586494e2548">60</a></sup>, lightly fixed with 2% formaldehyde for 2 min. The cells were bound to Concavalin A-coated beads (Bangs Laboratories) and incubated with the primary antibodies (anti-PU.1, Santa Cruz, sc-352; anti-RUNX1, Cell Signaling, 4334S; anti-ELF1, Proteintech, 22565-1-AP; anti-FLI1, Invitrogen, PA5-29597; anti-GAPBA, Invitrogen, PA5-27735; and anti-GATA3, Cell Signaling, 5852T) or IgG control (Santa Cruz, sc-3888; Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig9">1e</a>) at 4 °C overnight. Samples were then incubated with a secondary antibody (guinea pig anti-rabbit; Antibodies Online, ABIN101961) followed by a pre-loaded pA-Tn5 adaptor complex (generated in-house). Tagmentation buffer with magnesium was used to induce fragmentation. DNA was extracted by phenol–chloroform–isoamyl alcohol and amplified with NEBNext HiFi 2× PCR Master Mix and universal i5 and barcoded i7 primers<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013)." href="/articles/s41588-024-01911-7#ref-CR61" id="ref-link-section-d1586494e2555">61</a></sup> for 13 cycles. AMPure XP beads (A63880) were used for post-PCR clean-up of libraries. Libraries were subjected to 35-bp paired-end sequencing using an Illumina NextSeq 500 platform on high output mode at the Einstein Epigenomics Core. Fastq files were generated using Picard tools (v.2.17.1), with adaptor trimming by TrimGalore (v.0.3.7) and QC assessment using FASTQC (v.0.11.4).</p><h3 class="c-article__sub-heading" id="Sec16">CLICK-on-CUT&Tag</h3><p>To determine binding preferences for DB2115 within the genome, we examined an alkyne-linker-tagged DB2115 (called DB2750) for in vitro DNA binding ability. Preparation of drug-coated magnetic beads was performed as previously described<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="Tyler, D. S. et al. Click chemistry enables preclinical evaluation of targeted epigenetic therapies. Science 356, 1397–1401 (2017)." href="/articles/s41588-024-01911-7#ref-CR62" id="ref-link-section-d1586494e2568">62</a></sup>, whereby a 25 µM solution of DB2750 in H<sub>2</sub>0 was incubated with 150 µM Biotin Azide (Click Chemistry tools), 100 µM E301 (Sigma-Aldrich) and 4 mM CuSO<sub>4</sub> for 1 h at 4 °C before adding streptavidin-coupled Dynabeads (MyOne Streptavidin T1, Invitrogen) and incubating for 1 h. Coated beads were washed and incubated overnight with either a 25 mM equal mix of the two synthesized 68-bp dsDNA fragments (AT-rich and AT-poor; see Supplementary Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM6">1b</a>) or DNA libraries from PU.1 CUT&Tag of vehicle-treated MOLM13 cells. Beads were washed three times with 25 mM Tris-HCl, 1% Triton-X, 0.5% SDS, 150 mM NaCl and 5 mM EDTA wash buffer before being eluted in 50 µl of 0.1 M NaHC0<sub>3</sub>, 0.1% SDS solution. QiaQuick PCR Purification Kit (Qiagen) was used to purify fragments. Synthesized fragment purified samples were quantified by quantitative PCR with reverse transcription (RT–qPCR) (see Supplementary Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM6">1b</a> for AT-rich and AT-poor primers). CUT&Tag pulldown samples were amplified with NEBNext HiFi 2× PCR Master Mix and universal i5 and barcoded i7 primers<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013)." href="/articles/s41588-024-01911-7#ref-CR61" id="ref-link-section-d1586494e2585">61</a></sup> for five cycles before being sequenced with Illumina NextSeq 500 35-bp PE sequencing (Einstein Epigenomics Core). Bioinformatic processing was performed identically to CUT&Tag.</p><h3 class="c-article__sub-heading" id="Sec17">Classical PU.1 ChIP</h3><p>ChIP was performed similarly to the previously described protocol<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Antony-Debré, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J. Clin. Invest. 127, 4297–4313 (2017)." href="/articles/s41588-024-01911-7#ref-CR9" id="ref-link-section-d1586494e2597">9</a></sup>. In brief, MOLM13 cells were treated with 5 µM DB2115 for 12 h before cells were crosslinked in 0.5% formaldehyde for 7 min at room temperature (25 °C). Samples were sonicated for 12 min before being incubated with 5 µg of PU.1 antibody (Santa Cruz, sc-352) or rabbit IgG (Santa Cruz, sc-3888). Also included was Activ-motif <i>Drosophila</i> normalization control DNA and antibody (cat. nos. 53083 and 61686). Following pulldown with Dynabeads Protein A (Thermo Fisher Scientific), DNA fragments were purified using QIAquick PCR Purification Kit (Qiagen). Library preparation was carried out using the NEB Ultra II DNA Prep Kit following the manufacturer's recommendations. Next-generation sequencing was performed with Illumina NextSeq 500, 75-bp paired-end reads on high output at Einstein Epigenomics Core. Fastq files were generated using Picard tools (v.2.17.1), with adaptor trimming by TrimGalore (v.0.3.7) and QC assessment using FASTQC (v.0.11.4).</p><h3 class="c-article__sub-heading" id="Sec18">Cell titer blue proliferation assay</h3><p>To assess the IC<sub>50</sub> of the small molecules in MOLM13 cells, we used the resazurin cell viability assay (Cell Titer Blue, Promega) following the manufacturer's guidelines. In brief, cells were plated at a density of 1 × 10<sup>3</sup> per 100 µl and incubated with vehicle or compounds for 48 h at a range of concentrations (0.01–50 µM) before 20 µl of Cell Titer Blue reagent was added and fluorescence (560<sub>EX</sub>/590<sub>EM</sub>) was measured using a FLUOstar Omega instrument (BMG Labtech).</p><h3 class="c-article__sub-heading" id="Sec19">Omni-ATAC–sequencing</h3><p>Omni-ATAC–seq was performed as previously described<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 63" title="Corces, M. R. et al. An improved ATAC–seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017)." href="/articles/s41588-024-01911-7#ref-CR63" id="ref-link-section-d1586494e2628">63</a></sup>. In brief, 50,000 MOLM13 cells treated with either 5 µM DB2115 or vehicle were subjected to nuclei isolation with ATAC resuspension buffer (containing 0.1% NP-40, 0.1% Tween20 and 0.01% digitonin) before transposition was performed using Tn5 transposase in TD buffer (Illumina Tagment DNA kit). Transposed DNA was purified using Minelute PCR purification (Qiagen) before DNA was amplified by PCR with custom PCR primers<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013)." href="/articles/s41588-024-01911-7#ref-CR61" id="ref-link-section-d1586494e2632">61</a></sup> and cycle number was determined using a KAPA Library Quantification Kit (KAPA Biosystems). Libraries were sequenced on an Illumina NextSeq 500, with 75-bp paired-end reads on high output at Einstein Epigenomics Core. Fastq files were generated using Picard tools (v.2.17.1), with adaptor trimming by TrimGalore (v.0.3.7) and QC assessment using FASTQC (v.0.11.4).</p><h3 class="c-article__sub-heading" id="Sec20">GFP reporter assays</h3><p>Reporter constructs were designed around the promoter–enhancer cassette as previously described<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Munde, M. et al. Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines. Nucleic Acids Res. 42, 1379–1390 (2014)." href="/articles/s41588-024-01911-7#ref-CR8" id="ref-link-section-d1586494e2644">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Antony-Debré, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J. Clin. Invest. 127, 4297–4313 (2017)." href="/articles/s41588-024-01911-7#ref-CR9" id="ref-link-section-d1586494e2647">9</a></sup>. In brief, a minimal promoter (TATA box) was placed upstream from an open reading frame encoding destabilized D<sub>2</sub>EGFP. The original enhancer element was a five-repeat tandem of the λB motif of the murine Igλ2-4 enhancer. For this study, the λB motifs were replaced by POMP, CSF1R-alt or NS sequences (Supplementary Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM6">1c</a>). PU.1 binding site underlined between NdeI and SdaI/PstI cleavage sites upstream of the TATA box. For the myeloid <i>CD11b</i> promoter, the entire regulatory region, including the TATA box, was replaced by the −412 to +98 sequence of the 5′ flanking region of the human <i>CD11b</i> gene (GenBank accession no. <a href="https://www.ncbi.nlm.nih.gov/nuccore/M84477.1">M84477.1</a>)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="Pahl, H., Rosmarin, A. & Tenen, D. Characterization of the myeloid-specific CD11b promoter. Blood 79, 865–870 (1992)." href="/articles/s41588-024-01911-7#ref-CR64" id="ref-link-section-d1586494e2670">64</a></sup>. The cassettes plus open reading frames were inserted between the NdeI/EcoRI sites of pLJM1–EGFP, a puromycin-selectable lentiviral vector (Addgene, plasmid no. 19319)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 65" title="Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008)." href="/articles/s41588-024-01911-7#ref-CR65" id="ref-link-section-d1586494e2674">65</a></sup>. The inserts replaced the CMV–EGFP construct in the vector and the resultant plasmids were notated with the suffix pLJM1. All insertions were sequenced-verified by Sanger sequencing in the forward direction with a hU6-F primer (5′-GAGGGCCTATTTCCCATGATT-3′) and/or in the reverse direction with a standard EGFP-NR primer.</p><p>Next, 10 μg of pLJM1 vectors were transfected to 293T cells spread in a 100 mm culture dish with helpers (10 μg psPAX2 and 4 μg VSV-G) using lipofectamine 2000 reagent (Invitrogen). Virus-containing supernatant was collected and filtered at 48 h from transfection and was transduced into MOLM13 cells by centrifuging at 1,000<i>g</i>, 37 °C, 1 h with Transdux reagent (System Biosciences). Following 3 days of puromycin selection, pLJM1 MOLM13 cell lines were treated for 24 h with 5 µM DB2115 (or other drugs) before analysis on an LSRII flow cytometer was performed (Becton–Dickinson). Forward scatter and side scatter gated, DAPI-negative cells were quantified for GFP fluorescence using FlowJo software.</p><h3 class="c-article__sub-heading" id="Sec21">CRISPRd: dCas9 blocking studies</h3><p>Lentiviral vectors for constitutive TET3G expression driven by a CMV promoter (hygromycin selection marker), and TRE3G-inducible dCas9 (blasticidin selection marker) were designed and produced by VectorBuilder and transduced using Transdux (System Biosciences) into MOLM13 cells. Successful transduction was selected with 100 µg ml<sup>−1</sup> hygromycin and 10 µg ml<sup>−1</sup> blasticidin treatment for 1 week. Expression of dCas9 was confirmed following 48 h of 1 µg ml<sup>−1</sup> doxycycline by western blot; however, partial or leaky dCas9 expression was evident in untreated cells. A constitutive sgRNA-expressing lentiviral vector against <i>STRAP</i> or a non-targeting control were synthesized by Cellecta and subsequently transduced into TET3G-dCas9-expressing MOLM13 cells. Selection was performed for 3 days post transduction with puromycin before cells were treated with 1 µg ml<sup>−1</sup> doxycycline for 48 h and collected for CUT&Tag or RT–PCR analysis.</p><h3 class="c-article__sub-heading" id="Sec22">Western blotting</h3><p>Whole-cell extracts were prepared using lysis buffer (150 mM NaCl, 50 mM Tris-HCl, 5 mM EDTA, 1% NP-40, 1% phosphatase inhibitor cocktail, 1× Protease Inhibitor Cocktail, 1 mM phenylmethyl sulfonyl fluoride (PMSF), 10% glycerol). SDS–PAGE was performed with equal protein per sample. PVDF membranes were used for western blot transfer, and immunoblotting using primary antibodies (1:5,000 for actin, Sigma-Aldrich, A2066; 1:1,000 for PU.1, Santa Cruz, sc-352; 1:500 Cas9, Cell Signaling, 14697S) followed by HRP-conjugated secondary antibodies (1:5,000). Imaging of western blots was performed using chemiluminescent ECL substrate on a LI-COR Odyssey Fc imager.</p><h3 class="c-article__sub-heading" id="Sec23">CLICK-chemistry immunofluorescence staining</h3><p>MOLM13 cells were attached to lysine-coated coverslips following 6 h of 5 µM DB2750 or vehicle treatment and subjected to processing as directed by a Click-iT EdU imaging Kit (Invitrogen) but with a substitution of DB2750 for the Click-Edu reagent. In brief, cells were fixed (3.7% formaldehyde) and permeabilized (0.5% Triton-X) before being stained with a Click-iT reaction mix containing Alexa Fluor 488 Azide. Prolong gold containing DAPI (Thermo Fisher) was added to stain DNA before imaging on an Olympus BX83 microscope with an X-Cite 120 PC lamp (EXFO) and an ORCA-R2 digital charge-coupled device camera (Hamamatsu) with a ×100 objective.</p><h3 class="c-article__sub-heading" id="Sec24">RT–qPCR and mRNA sequencing</h3><p>RNA was extracted from 5 µM DB2115-treated cells using an RNeasy Mini Kit (Qiagen) and RT–qPCR was performed using iScript cDNA Synthesis Kit (Bio-Rad). qPCR reactions were performed on a ViiA7 instrument using Power SYBR Green PCR Master Mix (Thermo Fisher). Expression levels were normalized to <i>GAPDH</i>, and the primers used are listed in Supplementary Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM6">1a</a>. For mRNA sequencing, library preparation and transcriptome sequencing were performed by Novogene.</p><h3 class="c-article__sub-heading" id="Sec25">Primary AML samples</h3><p>Adult AML or MDS bone marrow and peripheral blood samples were obtained after written informed consent and following Albert Einstein College of Medicine Institutional Review Board approval (2005–536). Characteristics of the primary MDS and AML samples used for experiments are listed in Supplementary Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM6">1f</a>.</p><p>For CUT&Tag experiments, primary AML cells were subjected to CD34<sup>+</sup> column enrichment (Miltenyi Biotech) before being viably frozen. Upon thawing, one to two million CD34<sup>+</sup> enriched cells were thawed and incubated in 1 ml StemSpan SFEMII medium plus 1× CC100 growth cocktail (StemCell Tech) and TPO (50 ng ml<sup>−1</sup>, R&D Systems) in the presence of 5 µM DB2115 or vehicle for 12 h before viable cells were collected for PU.1 CUT&Tag.</p><p>For colony assays, 50–100,000 unfractionated mononuclear AML cells were plated per ml of Methocult H4435 enriched medium (StemCell Tech) along with 1 µM or 5 µM of DB2115 or vehicle. After 8–13 days, colonies were counted and cells were collected for flow cytometry.</p><h3 class="c-article__sub-heading" id="Sec26">Surface receptor induction colony assays</h3><p>For MOLM13 colony assays, cells were first ‘invoked’ for receptor expression with a 1 µM dose of DB2115 or vehicle for 24 h in 10% FBS, RPMI medium. After a washout, 3,000 cells were immediately plated per ml of methylcellulose in HSC002SF (R&D Systems) containing added recombinant IL-4 (100 ng ml<sup>−1</sup>, R&D Systems) or CSF1 (100 ng ml<sup>−1</sup>, R&D Systems) and scored after 7 days.</p><p>Light microscopy images to detail colony morphology were obtained using an EVOS FL Auto microscope (Life Technologies) with an objective at ×4 or ×10 magnification.</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec27">Cytomorphology</h4><p>Cell morphology was assessed after cytospin of 100,000 cells onto a glass slide (5 min at 500 rpm) and May-Grünwald Giemsa staining, according to standard protocols. Images were obtained using an EVOS FL Auto microscope (Life Technologies) with an objective at ×10 or ×50 magnification.</p><h3 class="c-article__sub-heading" id="Sec28">Flow cytometry</h3><p>Antibody staining was performed for 30 min before flow cytometry analyses, using the following Biolegend antibodies; CD14 FITC (no. 325603), CD15 APCCy7 (no. 323048), CD86 PECy7 (no. 374210), CD34 PE (no. 343506), CD209 AF647 (no. 330112), CD11b PerCPCy5.5 (no. 101228), CSF1R APC (no. 347306), IL-4R BV421 (no. 355014) and DAPI for alive cell gating. Flow cytometry analysis was performed on a BD LSRII containing a yellow laser running FACSDiva 8 software. Flow cytometry data was analyzed using FlowJo (v.10.6.1). Log<sub>10</sub> scales are used for plots showing flow cytometry fluorescence intensity data.</p><h3 class="c-article__sub-heading" id="Sec29">Phospho-flow cytometry</h3><p>MOLM13 cells were ‘invoked’ for surface receptor tyrosine kinase (RTK) expression with a 1 µM DB2115 treatment for 24 h, followed by a washout and incubation with media-only for 24 h. Cells were then incubated for 1 h in serum-free IMDM at 37 °C before a 5 min stimulation with recombinant mouse huCSF-1 (10–100 ng ml<sup>−1</sup>, R&D Systems) or huIL-4 (3–100 ng ml<sup>−1</sup>, R&D Systems). After fixation with 1% PFA and permeabilization with ice-cold acetone, intracellular staining for phospho-S6 ribosomal protein (608604, Biolegend) and pSTAT6 (686012, Biolegend) before flow cytometry analysis.</p><h3 class="c-article__sub-heading" id="Sec30">PRO–seq</h3><p>Initially, 30 million MOLM13 cells were treated with 5 µM DB2115 or vehicle and collected at the indicated time points for nuclei extraction. Cells were washed with ice-cold PBS and lysed with cell lysis buffer (10 mM Tris-Cl pH 7.4, 300 mM sucrose, 3 mM CaCl<sub>2</sub>, 2 mM MgCl<sub>2</sub>, 0.5% NP-40, 5 mM dithiothreitol, 1 mM PMSF, EDTA-free protease cocktail inhibitor tablet). Using Dounce homogenization, nuclei were pelleted by centrifugation and washed with nuclei storage buffer (50 mM Tris-Cl pH 8.3, 40% glycerol, 5 mM MgCl<sub>2</sub>, 5 mM dithiothreitol, 0.1 mM EDTA, 1 mM PMSF, EDTA-free protease cocktail inhibitor tablet). After counting, pelleted nuclei were resuspended in storage buffer and stored at −80 °C.</p><p>PRO–seq was performed in two biological replicates as previously described using approximately 20 million nuclei per run on with GTP, ATP, UTP and biotin-11-CTP (PerkinElmer) using 0.5% Sarkosyl (Fisher Scientific) to prevent transcription initiation<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Zhang, S. et al. PAX3-FOXO1 coordinates enhancer architecture, eRNA transcription, and RNA polymerase pause release at select gene targets. Mol. Cell 82, 4428–4442.e7 (2022)." href="#ref-CR66" id="ref-link-section-d1586494e2820">66</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Wang, J. et al. Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation. BMC Genomics 19, 633 (2018)." href="#ref-CR67" id="ref-link-section-d1586494e2820_1">67</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 68" title="Zhao, Y. et al. High-resolution mapping of RNA polymerases identifies mechanisms of sensitivity and resistance to BET inhibitors in t(8;21) AML. Cell Rep. 16, 2003–2016 (2016)." href="/articles/s41588-024-01911-7#ref-CR68" id="ref-link-section-d1586494e2823">68</a></sup>. RNA was reversed-transcribed and amplified to make the cDNA library for sequencing by the Vanderbilt University Medical Center (VANTAGE Genome Sciences Shared Resource on an Illumina NovaSeq 6000 (PE-150, 50 million reads). Following adaptor trimming with Cutadapt (v.1.18), the sequences were aligned and mapped using bowtie2 (v.2.5.1). Samtools (v.1.9) was used for the file format conversion before using the Nascent RNA Sequencing Analysis (NRSA)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 67" title="Wang, J. et al. Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation. BMC Genomics 19, 633 (2018)." href="/articles/s41588-024-01911-7#ref-CR67" id="ref-link-section-d1586494e2827">67</a></sup> pipeline to determine the gene body changes.</p><h3 class="c-article__sub-heading" id="Sec31">smFISH</h3><p>To design mRNA-specific probes for sequential smFISH, a full-length transcript of each gene was used as input for PaintSHOP (<a href="https://paintshop.io/">https://paintshop.io</a>)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 69" title="Hershberg, E. A. et al. PaintSHOP enables the interactive design of transcriptome- and genome-scale oligonucleotide FISH experiments. Nat. Methods 18, 937 (2021)." href="/articles/s41588-024-01911-7#ref-CR69" id="ref-link-section-d1586494e2846">69</a></sup> to retrieve 10–29 primary targeting sequences (23–39 bp). Sequences were screened for off-target activity using NCBI Blast (<a href="https://blast.ncbi.nlm.nih.gov/Blast.cgi">https://blast.ncbi.nlm.nih.gov/Blast.cgi</a>). Selected sequences were then concatenated on both 5′ and 3′ ends with flanking 20-mer sequences (RO1, ATACTGGAGCGACGCGTGAT; RO2, GTTTGAAGATTCGACCTGGA; or RO4, CTAAGGTACCTAATTGCCTAG), generating a final ‘primary probe’ (Supplementary Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM6">1d,e</a>). SmFISH immunofluorescence staining procedure and analysis were performed as described previously<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 70" title="Wheat, J. C. et al. Single-molecule imaging of transcription dynamics in somatic stem cells. Nature 583, 431–436 (2020)." href="/articles/s41588-024-01911-7#ref-CR70" id="ref-link-section-d1586494e2860">70</a></sup>. In brief, MOLM13 cells treated with 5 µM DB2115 for 0 h, 1 h, 4 h and 12 h were fixed and permeabilized before primary and secondary hybridization reactions were performed. Samples were mounted in Prolong Diamond Antifade reagent plus DAPI (Invitrogen). Images were acquired using an oil immersion ×100 objective on a Leica Thunder fluorescence microscope. For data analysis, single-molecule mRNA and transcription site detection was performed using FISH-quant<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 71" title="Imbert, A. et al. FISH-quant v2: a scalable and modular tool for smFISH image analysis. RNA 28, 786–795 (2022)." href="/articles/s41588-024-01911-7#ref-CR71" id="ref-link-section-d1586494e2865">71</a></sup> by 3D Gaussian fitting of thresholded spots implemented in MATLAB R2024a.</p><h3 class="c-article__sub-heading" id="Sec32">Data processing</h3><p>CUT&Tag-generated fastq files were mapped to the human genome (hg38) using bowtie2 (v.2.2.3) with options –end-to-end –very-sensitive –no-mixed –no-discordant –phred33 −I 10 −X 700. Normalized bedgraph files were generated by using bedtools genomecov with a normalization factor of 1,000,000/oo. total human reads. Peak calling was performed using bdgpeakcall from MACS2 (v.2.1.0) with options −l 100 and −c 2. Bigwig files were generated using bedGraphToBigWig for visualization in IGV_2.4.15. Motif analysis and peak annotation was performed using the Homer package (v.4.11.1)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 36" title="Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010)." href="/articles/s41588-024-01911-7#ref-CR36" id="ref-link-section-d1586494e2877">36</a></sup>.</p><p>Differential peak analysis was performed in RStudio with either the Diffbind package (v.3.12.0) using DESEQ2 analyses<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 72" title="Stark, R. & Brown, G. DiffBind: differential binding analysis of ChIP-Seq peak data. Bioconductor 
 https://bioconductor.org/packages/release/bioc/html/DiffBind.html
 
 (2021)." href="/articles/s41588-024-01911-7#ref-CR72" id="ref-link-section-d1586494e2884">72</a></sup> if <i>n</i> > 2 or a custom script we termed ‘GoodpeaksScript’ (<a href="https://github.com/steidl-lab/rePU.1sitioning">https://github.com/steidl-lab/rePU.1sitioning</a>) if <i>n</i> = 1. In Diffbind, the FDR cutoff was set to 0.1 for determining significantly changed peaks, and technical variability between replicates is displayed in PCA and heatmap plots (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig9">1a,b</a>). Additionally, Diffbind analysis was performed on a randomization of vehicle and DB2115 pairs, with no differential peaks identified (FDR < 0.1), providing confidence in the redistribution phenomenon (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig9">1c,d</a>). For GoodpeakAnalysis, three stringent filters were used for the differential peak analysis of the average peak intensity: minimum intensity of >7.5, minimum fold change of >4 and minimum summit of >3.</p><p>For CLICK-on-CUT&Tag, the average MACS2 peak scores across three replicates were calculated and compared to input vehicle-treated PU.1 CUT&Tag peak scores to generate a log<sub>2</sub>fold change CLICK score. Peaks with CLICK scores above 0.5 were considered enriched for drug binding, whereas scores below 0.5 were considered non-drug-binding.</p><p>Classical ChIP-generated fastq files were mapped to the human or <i>Drosophila melanogaster</i> genome (hg38 or dm3) using bowtie2 (v.2.2.3). Duplicates were then removed with Picard, and normalization was performed by subsampling .bam files by a <i>Drosophila</i> reads ratio of vehicle over DB2115. The MACS2 package and callpeaks function was used to identify peaks in normalized files, and bigwig files were generated for Integrative Genomics Viewer (IGV) visualization. Differential peak analysis was performed in RStudio with ‘GoodpeakAnalysis’.</p><p>For RNA sequencing datasets, quality control was performed based on error distribution along the length or reads, GC distribution, N content, base quality and adaptor content. Reads were mapped to the hg38 transcriptome using STAR aligner<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 73" title="Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013)." href="/articles/s41588-024-01911-7#ref-CR73" id="ref-link-section-d1586494e2926">73</a></sup>. Raw counts were subsequently normalized and analyzed for differential expression in R using the Bioconductor package DESeq2 (ref. <sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014)." href="/articles/s41588-024-01911-7#ref-CR74" id="ref-link-section-d1586494e2930">74</a></sup>). An enrichment score was generated using the negative logarithm of the adjusted <i>P</i> value multiplied by the sign of the fold change for each gene and input into Fast Gene Set Enrichment Analysis (FGSEA, Bioconductor<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 75" title="Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at 
 https://doi.org/10.1101/060012
 
 (2021)." href="/articles/s41588-024-01911-7#ref-CR75" id="ref-link-section-d1586494e2937">75</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 76" title="Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)." href="/articles/s41588-024-01911-7#ref-CR76" id="ref-link-section-d1586494e2940">76</a></sup>). Pre-ranked gene lists were queried against standard c1–8 and hallmark MSigDB gene lists (v.7.4, Broad Institute<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 77" title="Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015)." href="/articles/s41588-024-01911-7#ref-CR77" id="ref-link-section-d1586494e2944">77</a></sup>). Additional gene list enrichments were conducted with Enrichr<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013)." href="#ref-CR78" id="ref-link-section-d1586494e2949">78</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016)." href="#ref-CR79" id="ref-link-section-d1586494e2949_1">79</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90 (2021)." href="/articles/s41588-024-01911-7#ref-CR80" id="ref-link-section-d1586494e2952">80</a></sup>.</p><p>For the <i>k</i>-means ATAC cell identity mapping, raw ATAC sequencing counts were obtained for healthy donor cell populations<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 32" title="Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016)." href="/articles/s41588-024-01911-7#ref-CR32" id="ref-link-section-d1586494e2962">32</a></sup>. The raw counts were normalized using variance stabilizing transformation (DESeq2)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014)." href="/articles/s41588-024-01911-7#ref-CR74" id="ref-link-section-d1586494e2966">74</a></sup>, and each locus was then binarized into open or closed chromatin regions using mean normalized count followed by <i>k</i>-means clustering of the binarized data (Extended Data Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig13">5</a>). The loci in each cluster was overlapped with the PU.1 CUT&Tag data, and the significance of the overlap was calculated using hypergeometric distribution <i>P</i> value.</p><h3 class="c-article__sub-heading" id="Sec33">Statistics and reproducibility</h3><p>Statistical tests were performed in RStudio (2023.12.1+402) or GraphPad Prism (v.9.5). No statistical method was used to predetermine sample size. No data were excluded from the analyses. The investigators were not blinded to allocation during experiments and outcome assessment. The experiments were not randomized.</p><h3 class="c-article__sub-heading" id="Sec34">Reporting summary</h3><p>Further information on research design is available in the <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41588-024-01911-7#MOESM2">Nature Portfolio Reporting Summary</a> linked to this article.</p></div></div></section> </div> <div> <section data-title="Data availability"><div class="c-article-section" id="data-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability">Data availability</h2><div class="c-article-section__content" id="data-availability-content"> <p>All datasets are available online in the Gene Expression Omnibus under SuperSeries <a href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE267389">GSE267389</a>. The hg38 human genome dataset was used for alignment and analysis and is available at <a href="https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26">https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26</a>. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/articles/s41588-024-01911-7#Sec38">Source data</a> are provided with this paper.</p> </div></div></section><section data-title="Code availability"><div class="c-article-section" id="code-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="code-availability">Code availability</h2><div class="c-article-section__content" id="code-availability-content"> <p>Custom code used to generate results in this study is available via GitHub at <a href="https://github.com/steidl-lab/rePU.1sitioning">https://github.com/steidl-lab/rePU.1sitioning</a> or Zenodo<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 81" title="Stauber, J. steidl-lab/rePU.1sitioning: rerePU.1sitioning. Zenodo 
 https://zenodo.org/records/13313910
 
 (2024)." href="/articles/s41588-024-01911-7#ref-CR81" id="ref-link-section-d1586494e3151">81</a></sup>.</p> </div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Lambert, S. A. et al. The human transcription factors. <i>Cell</i> <b>172</b>, 650–665 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXis1amsbs%3D" aria-label="CAS reference 1">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29425488" aria-label="PubMed reference 1">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&title=The%20human%20transcription%20factors&journal=Cell&volume=172&pages=650-665&publication_year=2018&author=Lambert%2CSA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Perry, J. A., Seong, B. K. A. & Stegmaier, K. Biology and therapy of dominant fusion oncoproteins involving transcription factor and chromatin regulators in sarcomas. <i>Annu. Rev. Cancer Biol.</i> <b>3</b>, 299–321 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&title=Biology%20and%20therapy%20of%20dominant%20fusion%20oncoproteins%20involving%20transcription%20factor%20and%20chromatin%20regulators%20in%20sarcomas&journal=Annu.%20Rev.%20Cancer%20Biol.&volume=3&pages=299-321&publication_year=2019&author=Perry%2CJA&author=Seong%2CBKA&author=Stegmaier%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Henley, M. J. & Koehler, A. N. Advances in targeting ‘undruggable’ transcription factors with small molecules. <i>Nat. Rev. Drug Discov.</i> <b>20</b>, 669–688 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtFahurzI" aria-label="CAS reference 3">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34006959" aria-label="PubMed reference 3">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&title=Advances%20in%20targeting%20%E2%80%98undruggable%E2%80%99%20transcription%20factors%20with%20small%20molecules&journal=Nat.%20Rev.%20Drug%20Discov.&volume=20&pages=669-688&publication_year=2021&author=Henley%2CMJ&author=Koehler%2CAN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Hosokawa, H. et al. Transcription Factor PU.1 represses and activates gene expression in early T cells by redirecting partner transcription factor binding. <i>Immunity</i> <b>48</b>, 1119–1134.e7 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtFOrsb%2FO" aria-label="CAS reference 4">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29924977" aria-label="PubMed reference 4">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063530" aria-label="PubMed Central reference 4">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&title=Transcription%20Factor%20PU.1%20represses%20and%20activates%20gene%20expression%20in%20early%20T%E2%80%89cells%20by%20redirecting%20partner%20transcription%20factor%20binding&journal=Immunity&volume=48&pages=1119-1134.e7&publication_year=2018&author=Hosokawa%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Zhang, P. et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. <i>Blood</i> <b>96</b>, 2641–2648 (2000).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3cXnt12gsLw%3D" aria-label="CAS reference 5">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11023493" aria-label="PubMed reference 5">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&title=PU.1%20inhibits%20GATA-1%20function%20and%20erythroid%20differentiation%20by%20blocking%20GATA-1%20DNA%20binding&journal=Blood&volume=96&pages=2641-2648&publication_year=2000&author=Zhang%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Rekhtman, N., Radparvar, F., Evans, T. & Skoultchi, A. I. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. <i>Genes Dev.</i> <b>13</b>, 1398–1411 (1999).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK1MXjvVahs7c%3D" aria-label="CAS reference 6">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364157" aria-label="PubMed reference 6">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC316770" aria-label="PubMed Central reference 6">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&title=Direct%20interaction%20of%20hematopoietic%20transcription%20factors%20PU.1%20and%20GATA-1%3A%20functional%20antagonism%20in%20erythroid%20cells&journal=Genes%20Dev.&volume=13&pages=1398-1411&publication_year=1999&author=Rekhtman%2CN&author=Radparvar%2CF&author=Evans%2CT&author=Skoultchi%2CAI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">McKenzie, M. D. et al. Interconversion between tumorigenic and differentiated states in acute myeloid leukemia. <i>Cell Stem Cell</i> <b>25</b>, 258–272.e9 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhsFemtbzE" aria-label="CAS reference 7">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31374198" aria-label="PubMed reference 7">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&title=Interconversion%20between%20tumorigenic%20and%20differentiated%20states%20in%20acute%20myeloid%20leukemia&journal=Cell%20Stem%20Cell&volume=25&pages=258-272.e9&publication_year=2019&author=McKenzie%2CMD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Munde, M. et al. Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines. <i>Nucleic Acids Res.</i> <b>42</b>, 1379–1390 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtlShsb8%3D" aria-label="CAS reference 8">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24157839" aria-label="PubMed reference 8">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&title=Structure-dependent%20inhibition%20of%20the%20ETS-family%20transcription%20factor%20PU.1%20by%20novel%20heterocyclic%20diamidines&journal=Nucleic%20Acids%20Res.&volume=42&pages=1379-1390&publication_year=2014&author=Munde%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Antony-Debré, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. <i>J. Clin. Invest.</i> <b>127</b>, 4297–4313 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29083320" aria-label="PubMed reference 9">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707147" aria-label="PubMed Central reference 9">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&title=Pharmacological%20inhibition%20of%20the%20transcription%20factor%20PU.1%20in%20leukemia&journal=J.%20Clin.%20Invest.&volume=127&pages=4297-4313&publication_year=2017&author=Antony-Debr%C3%A9%2CI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. <i>Nat. Rev. Drug Discov.</i> <b>21</b>, 181–200 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35042991" aria-label="PubMed reference 10">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765495" aria-label="PubMed Central reference 10">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&title=PROTAC%20targeted%20protein%20degraders%3A%20the%20past%20is%20prologue&journal=Nat.%20Rev.%20Drug%20Discov.&volume=21&pages=181-200&publication_year=2022&author=B%C3%A9k%C3%A9s%2CM&author=Langley%2CDR&author=Crews%2CCM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Ungerbäck, J. et al. Pioneering, chromatin remodeling, and epigenetic constraint in early T-cell gene regulation by SPI1 (PU.1). <i>Genome Res.</i> <b>28</b>, 1508–1519 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30171019" aria-label="PubMed reference 11">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169891" aria-label="PubMed Central reference 11">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&title=Pioneering%2C%20chromatin%20remodeling%2C%20and%20epigenetic%20constraint%20in%20early%20T-cell%20gene%20regulation%20by%20SPI1%20%28PU.1%29&journal=Genome%20Res.&volume=28&pages=1508-1519&publication_year=2018&author=Ungerb%C3%A4ck%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. <i>Science</i> <b>265</b>, 1573–1577 (1994).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK2cXmtVWmtb4%3D" aria-label="CAS reference 12">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8079170" aria-label="PubMed reference 12">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&title=Requirement%20of%20transcription%20factor%20PU.1%20in%20the%20development%20of%20multiple%20hematopoietic%20lineages&journal=Science&volume=265&pages=1573-1577&publication_year=1994&author=Scott%2CEW&author=Simon%2CMC&author=Anastasi%2CJ&author=Singh%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Stephens, D. C. et al. Pharmacologic efficacy of PU.1 inhibition by heterocyclic dications: a mechanistic analysis. <i>Nucleic Acids Res.</i> <b>44</b>, 4005–4013 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsFSisLjL" aria-label="CAS reference 13">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27079976" aria-label="PubMed reference 13">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872103" aria-label="PubMed Central reference 13">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&title=Pharmacologic%20efficacy%20of%20PU.1%20inhibition%20by%20heterocyclic%20dications%3A%20a%20mechanistic%20analysis&journal=Nucleic%20Acids%20Res.&volume=44&pages=4005-4013&publication_year=2016&author=Stephens%2CDC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Ogbonna, E. N. et al. Drug design and DNA structural research inspired by the Neidle laboratory: DNA minor groove binding and transcription factor inhibition by thiophene diamidines. <i>Bioorg. Med. Chem.</i> <b>68</b>, 116861 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB38XhsFCqsrvN" aria-label="CAS reference 14">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35661929" aria-label="PubMed reference 14">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707304" aria-label="PubMed Central reference 14">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&title=Drug%20design%20and%20DNA%20structural%20research%20inspired%20by%20the%20Neidle%20laboratory%3A%20DNA%20minor%20groove%20binding%20and%20transcription%20factor%20inhibition%20by%20thiophene%20diamidines&journal=Bioorg.%20Med.%20Chem.&volume=68&publication_year=2022&author=Ogbonna%2CEN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Sive, J. I. et al. Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia. <i>Leukemia</i> <b>30</b>, 14–23 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXht1Wqsr7J" aria-label="CAS reference 15">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26126967" aria-label="PubMed reference 15">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&title=Genome-scale%20definition%20of%20the%20transcriptional%20programme%20associated%20with%20compromised%20PU.1%20activity%20in%20acute%20myeloid%20leukaemia&journal=Leukemia&volume=30&pages=14-23&publication_year=2016&author=Sive%2CJI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Will, B. et al. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. <i>Nat. Med.</i> <b>21</b>, 1172–1181 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsVGntbnE" aria-label="CAS reference 16">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26343801" aria-label="PubMed reference 16">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144917" aria-label="PubMed Central reference 16">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&title=Minimal%20PU.1%20reduction%20induces%20a%20preleukemic%20state%20and%20promotes%20development%20of%20acute%20myeloid%20leukemia&journal=Nat.%20Med.&volume=21&pages=1172-1181&publication_year=2015&author=Will%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Steidl, U. et al. A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. <i>J. Clin. Invest.</i> <b>117</b>, 2611–2620 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtVCms7jF" aria-label="CAS reference 17">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17694175" aria-label="PubMed reference 17">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1937499" aria-label="PubMed Central reference 17">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&title=A%20distal%20single%20nucleotide%20polymorphism%20alters%20long-range%20regulation%20of%20the%20PU.1%20gene%20in%20acute%20myeloid%20leukemia&journal=J.%20Clin.%20Invest.&volume=117&pages=2611-2620&publication_year=2007&author=Steidl%2CU"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Steidl, U. et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. <i>Nat. Genet.</i> <b>38</b>, 1269–1277 (2006).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD28XhtFeisbjO" aria-label="CAS reference 18">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17041602" aria-label="PubMed reference 18">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&title=Essential%20role%20of%20Jun%20family%20transcription%20factors%20in%20PU.1%20knockdown-induced%20leukemic%20stem%20cells&journal=Nat.%20Genet.&volume=38&pages=1269-1277&publication_year=2006&author=Steidl%2CU"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Bonadies, N., Pabst, T. & Mueller, B. U. Heterozygous deletion of the PU.1 locus in human AML. <i>Blood</i> <b>115</b>, 331–334 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXhtlKlsb4%3D" aria-label="CAS reference 19">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19890096" aria-label="PubMed reference 19">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&title=Heterozygous%20deletion%20of%20the%20PU.1%20locus%20in%20human%20AML&journal=Blood&volume=115&pages=331-334&publication_year=2010&author=Bonadies%2CN&author=Pabst%2CT&author=Mueller%2CBU"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Mueller, B. U. et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. <i>Blood</i> <b>100</b>, 998–1007 (2002).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD38XlvVCltbg%3D" aria-label="CAS reference 20">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12130514" aria-label="PubMed reference 20">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&title=Heterozygous%20PU.1%20mutations%20are%20associated%20with%20acute%20myeloid%20leukemia&journal=Blood&volume=100&pages=998-1007&publication_year=2002&author=Mueller%2CBU"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Viny, A. D. et al. Cohesin members Stag1 and Stag2 display distinct roles in chromatin accessibility and topological control of HSC self-renewal and differentiation. <i>Cell Stem Cell</i> <b>25</b>, 682–696.e8 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhslChu7fO" aria-label="CAS reference 21">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31495782" aria-label="PubMed reference 21">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842438" aria-label="PubMed Central reference 21">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&title=Cohesin%20members%20Stag1%20and%20Stag2%20display%20distinct%20roles%20in%20chromatin%20accessibility%20and%20topological%20control%20of%20HSC%20self-renewal%20and%20differentiation&journal=Cell%20Stem%20Cell&volume=25&pages=682-696.e8&publication_year=2019&author=Viny%2CAD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Mizuki, M. et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. <i>Blood</i> <b>101</b>, 3164–3173 (2003).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3sXjtFCqtLk%3D" aria-label="CAS reference 22">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12468433" aria-label="PubMed reference 22">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&title=Suppression%20of%20myeloid%20transcription%20factors%20and%20induction%20of%20STAT%20response%20genes%20by%20AML-specific%20Flt3%20mutations&journal=Blood&volume=101&pages=3164-3173&publication_year=2003&author=Mizuki%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">Vangala, R. K. et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. <i>Blood</i> <b>101</b>, 270–277 (2003).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3sXhtFWhsQ%3D%3D" aria-label="CAS reference 23">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12393465" aria-label="PubMed reference 23">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&title=The%20myeloid%20master%20regulator%20transcription%20factor%20PU.1%20is%20inactivated%20by%20AML1-ETO%20in%20t%288%3B21%29%20myeloid%20leukemia&journal=Blood&volume=101&pages=270-277&publication_year=2003&author=Vangala%2CRK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">Kühn, M. W. M. et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. <i>Cancer Discov.</i> <b>6</b>, 1166 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27535106" aria-label="PubMed reference 24">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584808" aria-label="PubMed Central reference 24">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&title=Targeting%20chromatin%20regulators%20inhibits%20leukemogenic%20gene%20expression%20in%20NPM1%20mutant%20leukemia&journal=Cancer%20Discov.&volume=6&publication_year=2016&author=K%C3%BChn%2CMWM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">Gu, X. et al. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. <i>J. Clin. Invest.</i> <b>128</b>, 4260–4279 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30015632" aria-label="PubMed reference 25">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6159976" aria-label="PubMed Central reference 25">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&title=Leukemogenic%20nucleophosmin%20mutation%20disrupts%20the%20transcription%20factor%20hub%20that%20regulates%20granulomonocytic%20fates&journal=J.%20Clin.%20Invest.&volume=128&pages=4260-4279&publication_year=2018&author=Gu%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">Ralvenius, W. T. et al. A novel molecular class that recruits HDAC/MECP2 complexes to PU.1 motifs reduces neuroinflammation. <i>J. Exp. Med.</i> <b>220</b>, e20222105 (2023).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3sXitVWltr3L" aria-label="CAS reference 26">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37642942" aria-label="PubMed reference 26">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465325" aria-label="PubMed Central reference 26">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&title=A%20novel%20molecular%20class%20that%20recruits%20HDAC%2FMECP2%20complexes%20to%20PU.1%20motifs%20reduces%20neuroinflammation&journal=J.%20Exp.%20Med.&volume=220&publication_year=2023&author=Ralvenius%2CWT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">Munde, M., Poon, G. M. K. & Wilson, W. D. Probing the electrostatics and pharmacological modulation of sequence-specific binding by the DNA-binding domain of the ETS family transcription factor PU.1: a binding affinity and kinetics investigation. <i>J. Mol. Biol.</i> <b>425</b>, 1655–1669 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXjsFClu7c%3D" aria-label="CAS reference 27">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23416556" aria-label="PubMed reference 27">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762459" aria-label="PubMed Central reference 27">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&title=Probing%20the%20electrostatics%20and%20pharmacological%20modulation%20of%20sequence-specific%20binding%20by%20the%20DNA-binding%20domain%20of%20the%20ETS%20family%20transcription%20factor%20PU.1%3A%20a%20binding%20affinity%20and%20kinetics%20investigation&journal=J.%20Mol.%20Biol.&volume=425&pages=1655-1669&publication_year=2013&author=Munde%2CM&author=Poon%2CGMK&author=Wilson%2CWD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">Wontakal, S. N. et al. A large gene network in immature erythroid cells is controlled by the myeloid and B cell transcriptional regulator PU.1. <i>PLoS Genet.</i> <b>7</b>, e1001392 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXnslCnsLo%3D" aria-label="CAS reference 28">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21695229" aria-label="PubMed reference 28">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111485" aria-label="PubMed Central reference 28">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&title=A%20large%20gene%20network%20in%20immature%20erythroid%20cells%20is%20controlled%20by%20the%20myeloid%20and%20B%20cell%20transcriptional%20regulator%20PU.1&journal=PLoS%20Genet.&volume=7&publication_year=2011&author=Wontakal%2CSN"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">Minderjahn, J. et al. Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. <i>Nat. Commun.</i> <b>11</b>, 402 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXksFahs7o%3D" aria-label="CAS reference 29">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31964861" aria-label="PubMed reference 29">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972792" aria-label="PubMed Central reference 29">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&title=Mechanisms%20governing%20the%20pioneering%20and%20redistribution%20capabilities%20of%20the%20non-classical%20pioneer%20PU.1&journal=Nat.%20Commun.&volume=11&publication_year=2020&author=Minderjahn%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">Pham, T. H. et al. Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1. <i>Nucleic Acids Res.</i> <b>41</b>, 6391–6402 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtFSrtbjE" aria-label="CAS reference 30">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23658224" aria-label="PubMed reference 30">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711439" aria-label="PubMed Central reference 30">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 30" href="http://scholar.google.com/scholar_lookup?&title=Mechanisms%20of%20in%20vivo%20binding%20site%20selection%20of%20the%20hematopoietic%20master%20transcription%20factor%20PU.1&journal=Nucleic%20Acids%20Res.&volume=41&pages=6391-6402&publication_year=2013&author=Pham%2CTH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">Liu, Y. et al. Heterocyclic diamidine Interactions at AT base pairs in the DNA minor groove: effects of heterocycle differences, DNA AT sequence and length. <i>J. Phys. Chem. B</i> <b>112</b>, 11809 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXhtVWktLrM" aria-label="CAS reference 31">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18717551" aria-label="PubMed reference 31">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556899" aria-label="PubMed Central reference 31">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&title=Heterocyclic%20diamidine%20Interactions%20at%20AT%20base%20pairs%20in%20the%20DNA%20minor%20groove%3A%20effects%20of%20heterocycle%20differences%2C%20DNA%20AT%20sequence%20and%20length&journal=J.%20Phys.%20Chem.%20B&volume=112&publication_year=2008&author=Liu%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. <i>Nat. Genet.</i> <b>48</b>, 1193–1203 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhtlChsr3J" aria-label="CAS reference 32">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27526324" aria-label="PubMed reference 32">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042844" aria-label="PubMed Central reference 32">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 32" href="http://scholar.google.com/scholar_lookup?&title=Lineage-specific%20and%20single-cell%20chromatin%20accessibility%20charts%20human%20hematopoiesis%20and%20leukemia%20evolution&journal=Nat.%20Genet.&volume=48&pages=1193-1203&publication_year=2016&author=Corces%2CMR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">Shariati, S. A. et al. Reversible disruption of specific transcription factor–DNA interactions using CRISPR/Cas9. <i>Mol. Cell</i> <b>74</b>, 622–633.e4 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXovVOlu70%3D" aria-label="CAS reference 33">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31051141" aria-label="PubMed reference 33">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599634" aria-label="PubMed Central reference 33">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&title=Reversible%20disruption%20of%20specific%20transcription%20factor%E2%80%93DNA%20interactions%20using%20CRISPR%2FCas9&journal=Mol.%20Cell&volume=74&pages=622-633.e4&publication_year=2019&author=Shariati%2CSA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">Escalante, C. R. et al. Crystal structure of PU.1/IRF-4/DNA ternary complex. <i>Mol. Cell</i> <b>10</b>, 1097–1105 (2002).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD38Xptl2ksbw%3D" aria-label="CAS reference 34">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12453417" aria-label="PubMed reference 34">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&title=Crystal%20structure%20of%20PU.1%2FIRF-4%2FDNA%20ternary%20complex&journal=Mol.%20Cell&volume=10&pages=1097-1105&publication_year=2002&author=Escalante%2CCR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">Kanno, Y., Levi, B. Z., Tamura, T. & Ozato, K. Immune cell-specific amplification of interferon signaling by the IRF-4/8-PU.1 complex. <i>J. Interferon Cytokine Res.</i> <b>25</b>, 770–779 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXhtlCnsrjF" aria-label="CAS reference 35">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16375605" aria-label="PubMed reference 35">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 35" href="http://scholar.google.com/scholar_lookup?&title=Immune%20cell-specific%20amplification%20of%20interferon%20signaling%20by%20the%20IRF-4%2F8-PU.1%20complex&journal=J.%20Interferon%20Cytokine%20Res.&volume=25&pages=770-779&publication_year=2005&author=Kanno%2CY&author=Levi%2CBZ&author=Tamura%2CT&author=Ozato%2CK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime <i>cis</i>-regulatory elements required for macrophage and B cell identities. <i>Mol. Cell</i> <b>38</b>, 576–589 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXns1SlsLc%3D" aria-label="CAS reference 36">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20513432" aria-label="PubMed reference 36">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898526" aria-label="PubMed Central reference 36">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&title=Simple%20combinations%20of%20lineage-determining%20transcription%20factors%20prime%20cis-regulatory%20elements%20required%20for%20macrophage%20and%20B%20cell%20identities&journal=Mol.%20Cell&volume=38&pages=576-589&publication_year=2010&author=Heinz%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">Konstantinos Tzelepis, A. et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. <i>Cell Rep.</i> <b>17</b>, 1193–1205 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27760321" aria-label="PubMed reference 37">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081405" aria-label="PubMed Central reference 37">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 37" href="http://scholar.google.com/scholar_lookup?&title=A%20CRISPR%20dropout%20screen%20identifies%20genetic%20vulnerabilities%20and%20therapeutic%20targets%20in%20acute%20myeloid%20leukemia&journal=Cell%20Rep.&volume=17&pages=1193-1205&publication_year=2016&author=Konstantinos%20Tzelepis%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">Cao, Z. et al. ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency. <i>Mol. Cell</i> <b>81</b>, 3604 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXhslGisrfM" aria-label="CAS reference 38">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34358447" aria-label="PubMed reference 38">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8932643" aria-label="PubMed Central reference 38">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="http://scholar.google.com/scholar_lookup?&title=ZMYND8-regulated%20IRF8%20transcription%20axis%20is%20an%20acute%20myeloid%20leukemia%20dependency&journal=Mol.%20Cell&volume=81&publication_year=2021&author=Cao%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">Poon, G. M. K. & Macgregor, R. B. Base coupling in sequence-specific site recognition by the ETS domain of murine PU.1. <i>J. Mol. Biol.</i> <b>328</b>, 805–819 (2003).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3sXjt1Ojtr4%3D" aria-label="CAS reference 39">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12729756" aria-label="PubMed reference 39">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&title=Base%20coupling%20in%20sequence-specific%20site%20recognition%20by%20the%20ETS%20domain%20of%20murine%20PU.1&journal=J.%20Mol.%20Biol.&volume=328&pages=805-819&publication_year=2003&author=Poon%2CGMK&author=Macgregor%2CRB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40">Poon, G. M. K. Sequence discrimination by DNA-binding domain of ETS family transcription factor PU.1 is linked to specific hydration of protein–DNA interface. <i>J. Biol. Chem.</i> <b>287</b>, 18297–18307 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XnsF2ntLk%3D" aria-label="CAS reference 40">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22474303" aria-label="PubMed reference 40">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365747" aria-label="PubMed Central reference 40">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&title=Sequence%20discrimination%20by%20DNA-binding%20domain%20of%20ETS%20family%20transcription%20factor%20PU.1%20is%20linked%20to%20specific%20hydration%20of%20protein%E2%80%93DNA%20interface&journal=J.%20Biol.%20Chem.&volume=287&pages=18297-18307&publication_year=2012&author=Poon%2CGMK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="41."><p class="c-article-references__text" id="ref-CR41">Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. <i>Immunity</i> <b>32</b>, 317–328 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXlsVSntr8%3D" aria-label="CAS reference 41">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20206554" aria-label="PubMed reference 41">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&title=Identification%20and%20characterization%20of%20enhancers%20controlling%20the%20inflammatory%20gene%20expression%20program%20in%20macrophages&journal=Immunity&volume=32&pages=317-328&publication_year=2010&author=Ghisletti%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="42."><p class="c-article-references__text" id="ref-CR42">Barozzi, I. et al. Co-regulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. <i>Mol. Cell</i> <b>54</b>, 844 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXnslGms7s%3D" aria-label="CAS reference 42">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24813947" aria-label="PubMed reference 42">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048654" aria-label="PubMed Central reference 42">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 42" href="http://scholar.google.com/scholar_lookup?&title=Co-regulation%20of%20transcription%20factor%20binding%20and%20nucleosome%20occupancy%20through%20DNA%20features%20of%20mammalian%20enhancers&journal=Mol.%20Cell&volume=54&publication_year=2014&author=Barozzi%2CI"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="43."><p class="c-article-references__text" id="ref-CR43">Al Sadoun, H., Burgess, M., Hentges, K. E. & Mace, K. A. Enforced expression of Hoxa3 inhibits classical and promotes alternative activation of macrophages in vitro and in vivo. <i>J. Immunol.</i> <b>197</b>, 872–884 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhtFOktL3N" aria-label="CAS reference 43">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27342843" aria-label="PubMed reference 43">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947829" aria-label="PubMed Central reference 43">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 43" href="http://scholar.google.com/scholar_lookup?&title=Enforced%20expression%20of%20Hoxa3%20inhibits%20classical%20and%20promotes%20alternative%20activation%20of%20macrophages%20in%20vitro%20and%20in%20vivo&journal=J.%20Immunol.&volume=197&pages=872-884&publication_year=2016&author=Al%20Sadoun%2CH&author=Burgess%2CM&author=Hentges%2CKE&author=Mace%2CKA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="44."><p class="c-article-references__text" id="ref-CR44">Hohaus, S. et al. PU.1 (Spi-1) and C/EBPα regulate expression of the granulocyte–macrophage colony-stimulating factor receptor α gene. <i>Mol. Cell. Biol.</i> <b>15</b>, 5830–5845 (1995).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK2MXotlamsrk%3D" aria-label="CAS reference 44">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7565736" aria-label="PubMed reference 44">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC230835" aria-label="PubMed Central reference 44">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 44" href="http://scholar.google.com/scholar_lookup?&title=PU.1%20%28Spi-1%29%20and%20C%2FEBP%CE%B1%20regulate%20expression%20of%20the%20granulocyte%E2%80%93macrophage%20colony-stimulating%20factor%20receptor%20%CE%B1%20gene&journal=Mol.%20Cell.%20Biol.&volume=15&pages=5830-5845&publication_year=1995&author=Hohaus%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="45."><p class="c-article-references__text" id="ref-CR45">Bancaud, A. et al. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. <i>EMBO J.</i> <b>28</b>, 3785–3798 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsVSmu7rN" aria-label="CAS reference 45">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19927119" aria-label="PubMed reference 45">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797059" aria-label="PubMed Central reference 45">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 45" href="http://scholar.google.com/scholar_lookup?&title=Molecular%20crowding%20affects%20diffusion%20and%20binding%20of%20nuclear%20proteins%20in%20heterochromatin%20and%20reveals%20the%20fractal%20organization%20of%20chromatin&journal=EMBO%20J.&volume=28&pages=3785-3798&publication_year=2009&author=Bancaud%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="46."><p class="c-article-references__text" id="ref-CR46">Wang, T. et al. Chemical-induced phase transition and global conformational reorganization of chromatin. <i>Nat. Commun.</i> <b>14</b>, 5556 (2023).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvV2isbbN" aria-label="CAS reference 46">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37689690" aria-label="PubMed reference 46">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492836" aria-label="PubMed Central reference 46">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 46" href="http://scholar.google.com/scholar_lookup?&title=Chemical-induced%20phase%20transition%20and%20global%20conformational%20reorganization%20of%20chromatin&journal=Nat.%20Commun.&volume=14&publication_year=2023&author=Wang%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="47."><p class="c-article-references__text" id="ref-CR47">Bell, C. C. et al. Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. <i>Nat. Commun.</i> <b>10</b>, 2723 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31222014" aria-label="PubMed reference 47">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586637" aria-label="PubMed Central reference 47">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 47" href="http://scholar.google.com/scholar_lookup?&title=Targeting%20enhancer%20switching%20overcomes%20non-genetic%20drug%20resistance%20in%20acute%20myeloid%20leukaemia&journal=Nat.%20Commun.&volume=10&publication_year=2019&author=Bell%2CCC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="48."><p class="c-article-references__text" id="ref-CR48">Zhang, Y. et al. Targeting a DNA binding motif of the EVI1 protein by a pyrrole–imidazole polyamide. <i>Biochemistry</i> <b>50</b>, 10431–10441 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtlyqsLnP" aria-label="CAS reference 48">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22039883" aria-label="PubMed reference 48">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 48" href="http://scholar.google.com/scholar_lookup?&title=Targeting%20a%20DNA%20binding%20motif%20of%20the%20EVI1%20protein%20by%20a%20pyrrole%E2%80%93imidazole%20polyamide&journal=Biochemistry&volume=50&pages=10431-10441&publication_year=2011&author=Zhang%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="49."><p class="c-article-references__text" id="ref-CR49">Chiang, S. Y. et al. Targeting the Ets binding site of the HER2/<i>neu</i> promoter with pyrrole–imidazole polyamides. <i>J. Biol. Chem.</i> <b>275</b>, 24246–24254 (2000).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3cXlslyqtbk%3D" aria-label="CAS reference 49">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10818092" aria-label="PubMed reference 49">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 49" href="http://scholar.google.com/scholar_lookup?&title=Targeting%20the%20Ets%20binding%20site%20of%20the%20HER2%2Fneu%20promoter%20with%20pyrrole%E2%80%93imidazole%20polyamides&journal=J.%20Biol.%20Chem.&volume=275&pages=24246-24254&publication_year=2000&author=Chiang%2CSY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="50."><p class="c-article-references__text" id="ref-CR50">Peixoto, P. et al. Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication. <i>Nucleic Acids Res.</i> <b>36</b>, 3341–3353 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXmvFWguro%3D" aria-label="CAS reference 50">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18440973" aria-label="PubMed reference 50">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2425483" aria-label="PubMed Central reference 50">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&title=Direct%20inhibition%20of%20the%20DNA-binding%20activity%20of%20POU%20transcription%20factors%20Pit-1%20and%20Brn-3%20by%20selective%20binding%20of%20a%20phenyl-furan-benzimidazole%20dication&journal=Nucleic%20Acids%20Res.&volume=36&pages=3341-3353&publication_year=2008&author=Peixoto%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="51."><p class="c-article-references__text" id="ref-CR51">Cirillo, L. A. & Zaret, K. S. Specific Interactions of the wing domains of FOXA1 transcription factor with DNA. <i>J. Mol. Biol.</i> <b>366</b>, 720 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtleiur8%3D" aria-label="CAS reference 51">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17189638" aria-label="PubMed reference 51">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 51" href="http://scholar.google.com/scholar_lookup?&title=Specific%20Interactions%20of%20the%20wing%20domains%20of%20FOXA1%20transcription%20factor%20with%20DNA&journal=J.%20Mol.%20Biol.&volume=366&publication_year=2007&author=Cirillo%2CLA&author=Zaret%2CKS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="52."><p class="c-article-references__text" id="ref-CR52">Fu, X. et al. FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. <i>Proc. Natl Acad. Sci. USA</i> <b>113</b>, E6600–E6609 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xhs1aksb3I" aria-label="CAS reference 52">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27791031" aria-label="PubMed reference 52">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087040" aria-label="PubMed Central reference 52">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 52" href="http://scholar.google.com/scholar_lookup?&title=FOXA1%20overexpression%20mediates%20endocrine%20resistance%20by%20altering%20the%20ER%20transcriptome%20and%20IL-8%20expression%20in%20ER-positive%20breast%20cancer&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&volume=113&pages=E6600-E6609&publication_year=2016&author=Fu%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="53."><p class="c-article-references__text" id="ref-CR53">Lu, R. & Wang, G. G. Pharmacologic targeting of chromatin modulators as therapeutics of acute myeloid leukemia. <i>Front. Oncol.</i> <b>7</b>, 241 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29075615" aria-label="PubMed reference 53">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643408" aria-label="PubMed Central reference 53">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 53" href="http://scholar.google.com/scholar_lookup?&title=Pharmacologic%20targeting%20of%20chromatin%20modulators%20as%20therapeutics%20of%20acute%20myeloid%20leukemia&journal=Front.%20Oncol.&volume=7&publication_year=2017&author=Lu%2CR&author=Wang%2CGG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="54."><p class="c-article-references__text" id="ref-CR54">Xu, B. et al. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. <i>Blood</i> <b>125</b>, 346–357 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXht12gt7w%3D" aria-label="CAS reference 54">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25395428" aria-label="PubMed reference 54">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287641" aria-label="PubMed Central reference 54">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 54" href="http://scholar.google.com/scholar_lookup?&title=Selective%20inhibition%20of%20EZH2%20and%20EZH1%20enzymatic%20activity%20by%20a%20small%20molecule%20suppresses%20MLL-rearranged%20leukemia&journal=Blood&volume=125&pages=346-357&publication_year=2015&author=Xu%2CB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="55."><p class="c-article-references__text" id="ref-CR55">Zhang, S., Liu, M., Yao, Y., Yu, B. & Liu, H. Targeting LSD1 for acute myeloid leukemia (AML) treatment. <i>Pharmacol. Res.</i> <b>164</b>, 1043–6618 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 55" href="http://scholar.google.com/scholar_lookup?&title=Targeting%20LSD1%20for%20acute%20myeloid%20leukemia%20%28AML%29%20treatment&journal=Pharmacol.%20Res.&volume=164&pages=1043-6618&publication_year=2021&author=Zhang%2CS&author=Liu%2CM&author=Yao%2CY&author=Yu%2CB&author=Liu%2CH"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="56."><p class="c-article-references__text" id="ref-CR56">Liu, Y. et al. Designed compounds for recognition of 10 base pairs of DNA with two at binding sites. <i>J. Am. Chem. Soc.</i> <b>134</b>, 5290–5299 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XivVOgt7o%3D" aria-label="CAS reference 56">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22369366" aria-label="PubMed reference 56">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526804" aria-label="PubMed Central reference 56">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 56" href="http://scholar.google.com/scholar_lookup?&title=Designed%20compounds%20for%20recognition%20of%2010%20base%20pairs%20of%20DNA%20with%20two%20at%20binding%20sites&journal=J.%20Am.%20Chem.%20Soc.&volume=134&pages=5290-5299&publication_year=2012&author=Liu%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="57."><p class="c-article-references__text" id="ref-CR57">Casitas, A., Canta, M., Solà, M., Costas, M. & Ribas, X. Nucleophilic aryl fluorination and aryl halide exchange mediated by a Cu<sup>I</sup>/Cu<sup>III</sup> catalytic cycle. <i>J. Am. Chem. Soc.</i> <b>133</b>, 19386–19392 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtlKgs7bO" aria-label="CAS reference 57">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22026511" aria-label="PubMed reference 57">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 57" href="http://scholar.google.com/scholar_lookup?&title=Nucleophilic%20aryl%20fluorination%20and%20aryl%20halide%20exchange%20mediated%20by%20a%20CuI%2FCuIII%20catalytic%20cycle&journal=J.%20Am.%20Chem.%20Soc.&volume=133&pages=19386-19392&publication_year=2011&author=Casitas%2CA&author=Canta%2CM&author=Sol%C3%A0%2CM&author=Costas%2CM&author=Ribas%2CX"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="58."><p class="c-article-references__text" id="ref-CR58">Ates-Alagöz, Z. et al. Synthesis and potent antimicrobial activities of some novel retinoidal monocationic benzimidazoles. <i>Arch. Pharm. (Weinheim)</i> <b>339</b>, 74–80 (2006).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16470650" aria-label="PubMed reference 58">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 58" href="http://scholar.google.com/scholar_lookup?&title=Synthesis%20and%20potent%20antimicrobial%20activities%20of%20some%20novel%20retinoidal%20monocationic%20benzimidazoles&journal=Arch.%20Pharm.%20%28Weinheim%29&volume=339&pages=74-80&publication_year=2006&author=Ates-Alag%C3%B6z%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="59."><p class="c-article-references__text" id="ref-CR59">Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. <i>Nat. Commun.</i> <b>10</b>, 1930 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31036827" aria-label="PubMed reference 59">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488672" aria-label="PubMed Central reference 59">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 59" href="http://scholar.google.com/scholar_lookup?&title=CUT%26Tag%20for%20efficient%20epigenomic%20profiling%20of%20small%20samples%20and%20single%20cells&journal=Nat.%20Commun.&volume=10&publication_year=2019&author=Kaya-Okur%2CHS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="60."><p class="c-article-references__text" id="ref-CR60">Xhani, S., Esaki, S., Huang, K., Erlitzki, N. & Poon, G. M. K. Distinct roles for interfacial hydration in site-specific DNA recognition by ETS-family transcription factors. <i>J. Phys. Chem. B</i> <b>121</b>, 2748 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXktlSjtr0%3D" aria-label="CAS reference 60">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28296403" aria-label="PubMed reference 60">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541755" aria-label="PubMed Central reference 60">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 60" href="http://scholar.google.com/scholar_lookup?&title=Distinct%20roles%20for%20interfacial%20hydration%20in%20site-specific%20DNA%20recognition%20by%20ETS-family%20transcription%20factors&journal=J.%20Phys.%20Chem.%20B&volume=121&publication_year=2017&author=Xhani%2CS&author=Esaki%2CS&author=Huang%2CK&author=Erlitzki%2CN&author=Poon%2CGMK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="61."><p class="c-article-references__text" id="ref-CR61">Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. <i>Nat. Methods</i> <b>10</b>, 1213–1218 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsFOiu7jO" aria-label="CAS reference 61">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24097267" aria-label="PubMed reference 61">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959825" aria-label="PubMed Central reference 61">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 61" href="http://scholar.google.com/scholar_lookup?&title=Transposition%20of%20native%20chromatin%20for%20fast%20and%20sensitive%20epigenomic%20profiling%20of%20open%20chromatin%2C%20DNA-binding%20proteins%20and%20nucleosome%20position&journal=Nat.%20Methods&volume=10&pages=1213-1218&publication_year=2013&author=Buenrostro%2CJD&author=Giresi%2CPG&author=Zaba%2CLC&author=Chang%2CHY&author=Greenleaf%2CWJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="62."><p class="c-article-references__text" id="ref-CR62">Tyler, D. S. et al. Click chemistry enables preclinical evaluation of targeted epigenetic therapies. <i>Science</i> <b>356</b>, 1397–1401 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtVKgsb%2FN" aria-label="CAS reference 62">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28619718" aria-label="PubMed reference 62">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865750" aria-label="PubMed Central reference 62">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 62" href="http://scholar.google.com/scholar_lookup?&title=Click%20chemistry%20enables%20preclinical%20evaluation%20of%20targeted%20epigenetic%20therapies&journal=Science&volume=356&pages=1397-1401&publication_year=2017&author=Tyler%2CDS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="63."><p class="c-article-references__text" id="ref-CR63">Corces, M. R. et al. An improved ATAC–seq protocol reduces background and enables interrogation of frozen tissues. <i>Nat. Methods</i> <b>14</b>, 959–962 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtl2gtL7F" aria-label="CAS reference 63">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28846090" aria-label="PubMed reference 63">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623106" aria-label="PubMed Central reference 63">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 63" href="http://scholar.google.com/scholar_lookup?&title=An%20improved%20ATAC%E2%80%93seq%20protocol%20reduces%20background%20and%20enables%20interrogation%20of%20frozen%20tissues&journal=Nat.%20Methods&volume=14&pages=959-962&publication_year=2017&author=Corces%2CMR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="64."><p class="c-article-references__text" id="ref-CR64">Pahl, H., Rosmarin, A. & Tenen, D. Characterization of the myeloid-specific CD11b promoter. <i>Blood</i> <b>79</b>, 865–870 (1992).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK38XhsV2rsbc%3D" aria-label="CAS reference 64">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1346576" aria-label="PubMed reference 64">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 64" href="http://scholar.google.com/scholar_lookup?&title=Characterization%20of%20the%20myeloid-specific%20CD11b%20promoter&journal=Blood&volume=79&pages=865-870&publication_year=1992&author=Pahl%2CH&author=Rosmarin%2CA&author=Tenen%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="65."><p class="c-article-references__text" id="ref-CR65">Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. <i>Science</i> <b>320</b>, 1496–1501 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXntVWqsr4%3D" aria-label="CAS reference 65">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18497260" aria-label="PubMed reference 65">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475333" aria-label="PubMed Central reference 65">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 65" href="http://scholar.google.com/scholar_lookup?&title=The%20Rag%20GTPases%20bind%20raptor%20and%20mediate%20amino%20acid%20signaling%20to%20mTORC1&journal=Science&volume=320&pages=1496-1501&publication_year=2008&author=Sancak%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="66."><p class="c-article-references__text" id="ref-CR66">Zhang, S. et al. PAX3-FOXO1 coordinates enhancer architecture, eRNA transcription, and RNA polymerase pause release at select gene targets. <i>Mol. Cell</i> <b>82</b>, 4428–4442.e7 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB38XivFSrs77K" aria-label="CAS reference 66">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36395771" aria-label="PubMed reference 66">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731406" aria-label="PubMed Central reference 66">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 66" href="http://scholar.google.com/scholar_lookup?&title=PAX3-FOXO1%20coordinates%20enhancer%20architecture%2C%20eRNA%20transcription%2C%20and%20RNA%20polymerase%20pause%20release%20at%20select%20gene%20targets&journal=Mol.%20Cell&volume=82&pages=4428-4442.e7&publication_year=2022&author=Zhang%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="67."><p class="c-article-references__text" id="ref-CR67">Wang, J. et al. Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation. <i>BMC Genomics</i> <b>19</b>, 633 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30139328" aria-label="PubMed reference 67">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107967" aria-label="PubMed Central reference 67">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 67" href="http://scholar.google.com/scholar_lookup?&title=Nascent%20RNA%20sequencing%20analysis%20provides%20insights%20into%20enhancer-mediated%20gene%20regulation&journal=BMC%20Genomics&volume=19&publication_year=2018&author=Wang%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="68."><p class="c-article-references__text" id="ref-CR68">Zhao, Y. et al. High-resolution mapping of RNA polymerases identifies mechanisms of sensitivity and resistance to BET inhibitors in t(8;21) AML. <i>Cell Rep.</i> <b>16</b>, 2003–2016 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhtlWjt7fN" aria-label="CAS reference 68">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27498870" aria-label="PubMed reference 68">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996374" aria-label="PubMed Central reference 68">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 68" href="http://scholar.google.com/scholar_lookup?&title=High-resolution%20mapping%20of%20RNA%20polymerases%20identifies%20mechanisms%20of%20sensitivity%20and%20resistance%20to%20BET%20inhibitors%20in%20t%288%3B21%29%20AML&journal=Cell%20Rep.&volume=16&pages=2003-2016&publication_year=2016&author=Zhao%2CY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="69."><p class="c-article-references__text" id="ref-CR69">Hershberg, E. A. et al. PaintSHOP enables the interactive design of transcriptome- and genome-scale oligonucleotide FISH experiments. <i>Nat. Methods</i> <b>18</b>, 937 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXhsVylt7nI" aria-label="CAS reference 69">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34226720" aria-label="PubMed reference 69">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349872" aria-label="PubMed Central reference 69">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 69" href="http://scholar.google.com/scholar_lookup?&title=PaintSHOP%20enables%20the%20interactive%20design%20of%20transcriptome-%20and%20genome-scale%20oligonucleotide%20FISH%20experiments&journal=Nat.%20Methods&volume=18&publication_year=2021&author=Hershberg%2CEA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="70."><p class="c-article-references__text" id="ref-CR70">Wheat, J. C. et al. Single-molecule imaging of transcription dynamics in somatic stem cells. <i>Nature</i> <b>583</b>, 431–436 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXht1Cmu7bE" aria-label="CAS reference 70">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32581360" aria-label="PubMed reference 70">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577313" aria-label="PubMed Central reference 70">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 70" href="http://scholar.google.com/scholar_lookup?&title=Single-molecule%20imaging%20of%20transcription%20dynamics%20in%20somatic%20stem%20cells&journal=Nature&volume=583&pages=431-436&publication_year=2020&author=Wheat%2CJC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="71."><p class="c-article-references__text" id="ref-CR71">Imbert, A. et al. FISH-quant v2: a scalable and modular tool for smFISH image analysis. <i>RNA</i> <b>28</b>, 786–795 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB38XitFKmtbjM" aria-label="CAS reference 71">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35347070" aria-label="PubMed reference 71">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074904" aria-label="PubMed Central reference 71">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 71" href="http://scholar.google.com/scholar_lookup?&title=FISH-quant%20v2%3A%20a%20scalable%20and%20modular%20tool%20for%20smFISH%20image%20analysis&journal=RNA&volume=28&pages=786-795&publication_year=2022&author=Imbert%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="72."><p class="c-article-references__text" id="ref-CR72">Stark, R. & Brown, G. DiffBind: differential binding analysis of ChIP-Seq peak data. <i>Bioconductor</i> <a href="https://bioconductor.org/packages/release/bioc/html/DiffBind.html" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://bioconductor.org/packages/release/bioc/html/DiffBind.html">https://bioconductor.org/packages/release/bioc/html/DiffBind.html</a> (2021).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="73."><p class="c-article-references__text" id="ref-CR73">Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. <i>Bioinformatics</i> <b>29</b>, 15–21 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhvV2gsbnF" aria-label="CAS reference 73">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23104886" aria-label="PubMed reference 73">PubMed</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 73" href="http://scholar.google.com/scholar_lookup?&title=STAR%3A%20ultrafast%20universal%20RNA-seq%20aligner&journal=Bioinformatics&volume=29&pages=15-21&publication_year=2013&author=Dobin%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="74."><p class="c-article-references__text" id="ref-CR74">Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. <i>Genome Biol.</i> <b>15</b>, 1–21 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 74" href="http://scholar.google.com/scholar_lookup?&title=Moderated%20estimation%20of%20fold%20change%20and%20dispersion%20for%20RNA-seq%20data%20with%20DESeq2&journal=Genome%20Biol.&volume=15&pages=1-21&publication_year=2014&author=Love%2CMI&author=Huber%2CW&author=Anders%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="75."><p class="c-article-references__text" id="ref-CR75">Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at <a href="https://doi.org/10.1101/060012" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1101/060012">https://doi.org/10.1101/060012</a> (2021).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="76."><p class="c-article-references__text" id="ref-CR76">Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. <i>Proc. Natl Acad. Sci. USA</i> <b>102</b>, 15545–15550 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXht1ShtrnO" aria-label="CAS reference 76">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517" aria-label="PubMed reference 76">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1239896" aria-label="PubMed Central reference 76">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 76" href="http://scholar.google.com/scholar_lookup?&title=Gene%20set%20enrichment%20analysis%3A%20a%20knowledge-based%20approach%20for%20interpreting%20genome-wide%20expression%20profiles&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&volume=102&pages=15545-15550&publication_year=2005&author=Subramanian%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="77."><p class="c-article-references__text" id="ref-CR77">Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. <i>Cell Syst.</i> <b>1</b>, 417–425 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtFaltLc%3D" aria-label="CAS reference 77">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26771021" aria-label="PubMed reference 77">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707969" aria-label="PubMed Central reference 77">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 77" href="http://scholar.google.com/scholar_lookup?&title=The%20Molecular%20Signatures%20Database%20%28MSigDB%29%20hallmark%20gene%20set%20collection&journal=Cell%20Syst.&volume=1&pages=417-425&publication_year=2015&author=Liberzon%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="78."><p class="c-article-references__text" id="ref-CR78">Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. <i>BMC Bioinformatics</i> <b>14</b>, 128 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23586463" aria-label="PubMed reference 78">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637064" aria-label="PubMed Central reference 78">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 78" href="http://scholar.google.com/scholar_lookup?&title=Enrichr%3A%20interactive%20and%20collaborative%20HTML5%20gene%20list%20enrichment%20analysis%20tool&journal=BMC%20Bioinformatics&volume=14&publication_year=2013&author=Chen%2CEY"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="79."><p class="c-article-references__text" id="ref-CR79">Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. <i>Nucleic Acids Res.</i> <b>44</b>, W90–W97 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtV2itrfF" aria-label="CAS reference 79">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27141961" aria-label="PubMed reference 79">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987924" aria-label="PubMed Central reference 79">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 79" href="http://scholar.google.com/scholar_lookup?&title=Enrichr%3A%20a%20comprehensive%20gene%20set%20enrichment%20analysis%20web%20server%202016%20update&journal=Nucleic%20Acids%20Res.&volume=44&pages=W90-W97&publication_year=2016&author=Kuleshov%2CMV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="80."><p class="c-article-references__text" id="ref-CR80">Xie, Z. et al. Gene set knowledge discovery with Enrichr. <i>Curr. Protoc.</i> <b>1</b>, e90 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXntl2gtb0%3D" aria-label="CAS reference 80">CAS</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33780170" aria-label="PubMed reference 80">PubMed</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152575" aria-label="PubMed Central reference 80">PubMed Central</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 80" href="http://scholar.google.com/scholar_lookup?&title=Gene%20set%20knowledge%20discovery%20with%20Enrichr&journal=Curr.%20Protoc.&volume=1&publication_year=2021&author=Xie%2CZ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="81."><p class="c-article-references__text" id="ref-CR81">Stauber, J. steidl-lab/rePU.1sitioning: rerePU.1sitioning. <i>Zenodo</i> <a href="https://zenodo.org/doi/10.5281/zenodo.13313909" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://zenodo.org/doi/10.5281/zenodo.13313909">https://zenodo.org/records/13313910</a> (2024).</p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41588-024-01911-7?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>We thank A. Skoultchi, W. D. Wilson, B. Will and L. LaFave for insightful discussion and manuscript review, as well as S. Healton for providing us with the recombinant pA-Tn5 used in the CUT&Tag experiments. We thank the Einstein Epigenomics and Flow Cytometry Cores, as well as the Stem Cell Isolation and Xenotransplantation Core Facility (funded by NYSTEM grant no. C029154) of the Gottesman Institute for Stem Cell Research and Regenerative Medicine for expert services and support. This work was supported by National Institutes of Health grants R35CA253127 (to U.S.), HL155178 (to G.M.K.P.) and a National Science Foundation grant MCB2028902 (to G.M.K.P.). S.J.T. was supported by a Young Investigator award from the Edward P. Evans Foundation, a Leukemia & Lymphoma Society Fellowship, a NYSCF Druckenmiller Fellowship and the Einstein Training Program in Stem Cell Research from the Empire State Stem Cell Fund through NYSDOH Contract C3029266. R.K. was supported by a Leukemia & Lymphoma Society Fellowship. S.S. was supported by grants from the National Cancer Institute (K00CA223044) and the Leukemia & Lymphoma Society (3439-25). This work was supported by Jane A. and Myles P. Dempsey. U.S. holds the Edward P. Evans Endowed Professorship in Myelodysplastic Syndromes at Albert Einstein College of Medicine. The Endowed Professorship was supported by a grant from the Edward P. Evans Foundation. Some panels in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig7">7</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig8">8</a> were created with <a href="https://www.biorender.com">Biorender.com</a>.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA</p><p class="c-article-author-affiliation__authors-list">Samuel J. Taylor, Jacob Stauber, Oliver Bohorquez, Goichi Tatsumi, Rajni Kumari, Joyeeta Chakraborty, Boris A. Bartholdy, Emily Schwenger, Sriram Sundaravel, Justin C. Wheat, Kristy R. Stengel & Ulrich Steidl</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt</p><p class="c-article-author-affiliation__authors-list">Abdelbasset A. Farahat</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Master of Pharmaceutical Sciences Program, California Northstate University, Elk Grove, CA, USA</p><p class="c-article-author-affiliation__authors-list">Abdelbasset A. Farahat</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">Department of Oncology, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, NY, USA</p><p class="c-article-author-affiliation__authors-list">Mendel Goldfinger, Amit Verma & Ulrich Steidl</p></li><li id="Aff5"><p class="c-article-author-affiliation__address">Blood Cancer Institute, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, NY, USA</p><p class="c-article-author-affiliation__authors-list">Mendel Goldfinger, Amit Verma, Kristy R. Stengel & Ulrich Steidl</p></li><li id="Aff6"><p class="c-article-author-affiliation__address">Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, NY, USA</p><p class="c-article-author-affiliation__authors-list">Mendel Goldfinger, Amit Verma, Kristy R. Stengel & Ulrich Steidl</p></li><li id="Aff7"><p class="c-article-author-affiliation__address">Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA</p><p class="c-article-author-affiliation__authors-list">Amit Verma</p></li><li id="Aff8"><p class="c-article-author-affiliation__address">Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA</p><p class="c-article-author-affiliation__authors-list">Amit Verma, Kristy R. Stengel & Ulrich Steidl</p></li><li id="Aff9"><p class="c-article-author-affiliation__address">Department of Medicine, Albert Einstein College of Medicine – Montefiore Medical Center, Bronx, NY, USA</p><p class="c-article-author-affiliation__authors-list">Amit Verma & Ulrich Steidl</p></li><li id="Aff10"><p class="c-article-author-affiliation__address">Department of Chemistry, Georgia State University, Atlanta, GA, USA</p><p class="c-article-author-affiliation__authors-list">Arvind Kumar, David W. Boykin & Gregory M. K. Poon</p></li><li id="Aff11"><p class="c-article-author-affiliation__address">Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA</p><p class="c-article-author-affiliation__authors-list">Gregory M. K. Poon</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Samuel_J_-Taylor-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Samuel J. Taylor</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Samuel%20J.%20Taylor" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Samuel%20J.%20Taylor" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Samuel%20J.%20Taylor%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Jacob-Stauber-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Jacob Stauber</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Jacob%20Stauber" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Jacob%20Stauber" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Jacob%20Stauber%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Oliver-Bohorquez-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Oliver Bohorquez</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Oliver%20Bohorquez" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Oliver%20Bohorquez" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Oliver%20Bohorquez%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Goichi-Tatsumi-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Goichi Tatsumi</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Goichi%20Tatsumi" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Goichi%20Tatsumi" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Goichi%20Tatsumi%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Rajni-Kumari-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Rajni Kumari</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Rajni%20Kumari" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Rajni%20Kumari" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Rajni%20Kumari%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Joyeeta-Chakraborty-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Joyeeta Chakraborty</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Joyeeta%20Chakraborty" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Joyeeta%20Chakraborty" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Joyeeta%20Chakraborty%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Boris_A_-Bartholdy-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Boris A. Bartholdy</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Boris%20A.%20Bartholdy" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Boris%20A.%20Bartholdy" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Boris%20A.%20Bartholdy%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Emily-Schwenger-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Emily Schwenger</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Emily%20Schwenger" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Emily%20Schwenger" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Emily%20Schwenger%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Sriram-Sundaravel-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Sriram Sundaravel</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Sriram%20Sundaravel" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Sriram%20Sundaravel" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Sriram%20Sundaravel%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Abdelbasset_A_-Farahat-Aff2-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Abdelbasset A. Farahat</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Abdelbasset%20A.%20Farahat" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Abdelbasset%20A.%20Farahat" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Abdelbasset%20A.%20Farahat%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Justin_C_-Wheat-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Justin C. Wheat</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Justin%20C.%20Wheat" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Justin%20C.%20Wheat" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Justin%20C.%20Wheat%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Mendel-Goldfinger-Aff4-Aff5-Aff6"><span class="c-article-authors-search__title u-h3 js-search-name">Mendel Goldfinger</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Mendel%20Goldfinger" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Mendel%20Goldfinger" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Mendel%20Goldfinger%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Amit-Verma-Aff4-Aff5-Aff6-Aff7-Aff8-Aff9"><span class="c-article-authors-search__title u-h3 js-search-name">Amit Verma</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Amit%20Verma" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Amit%20Verma" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Amit%20Verma%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Arvind-Kumar-Aff10"><span class="c-article-authors-search__title u-h3 js-search-name">Arvind Kumar</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Arvind%20Kumar" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Arvind%20Kumar" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Arvind%20Kumar%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-David_W_-Boykin-Aff10"><span class="c-article-authors-search__title u-h3 js-search-name">David W. Boykin</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=David%20W.%20Boykin" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=David%20W.%20Boykin" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22David%20W.%20Boykin%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Kristy_R_-Stengel-Aff1-Aff5-Aff6-Aff8"><span class="c-article-authors-search__title u-h3 js-search-name">Kristy R. Stengel</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Kristy%20R.%20Stengel" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Kristy%20R.%20Stengel" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Kristy%20R.%20Stengel%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Gregory_M__K_-Poon-Aff10-Aff11"><span class="c-article-authors-search__title u-h3 js-search-name">Gregory M. K. Poon</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Gregory%20M.%20K.%20Poon" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Gregory%20M.%20K.%20Poon" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Gregory%20M.%20K.%20Poon%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Ulrich-Steidl-Aff1-Aff4-Aff5-Aff6-Aff8-Aff9"><span class="c-article-authors-search__title u-h3 js-search-name">Ulrich Steidl</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Ulrich%20Steidl" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Ulrich%20Steidl" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Ulrich%20Steidl%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>U.S. and S.J.T. conceived the study. S.J.T., U.S., O.B., G.M.K.P., J.C.W., S.S., G.T., J.C., K.R.S., M.G. and A.V. developed the methodology. A.A.F., A.K. and D.W.B. performed chemical synthesis. S.J.T., O.B. and G.M.K.P. performed the investigation. S.J.T., B.A.B., J.S., E.S., J.C. and R.K. conducted the formal data analysis. S.J.T. and U.S. wrote and edited the paper. S.J.T., J.S., R.K. and E.S. were involved with data visualization. U.S. supervised the project and acquired funding.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:ulrich.steidl@einsteinmed.edu">Ulrich Steidl</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar4">Competing interests</h3> <p>U.S. has received research funding from GlaxoSmithKline, Bayer Healthcare, Aileron Therapeutics and Novartis; has received compensation for consultancy services and for serving on scientific advisory boards from GlaxoSmithKline, Bayer Healthcare, Celgene, Aileron Therapeutics, Stelexis Therapeutics and Pieris Pharmaceuticals; and has equity ownership in and is serving on the board of directors of Stelexis Therapeutics. The other authors declare no competing interests.</p> </div></div></section><section data-title="Peer review"><div class="c-article-section" id="peer-review-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="peer-review">Peer review</h2><div class="c-article-section__content" id="peer-review-content"> <h3 class="c-article__sub-heading" id="FPar3">Peer review information</h3> <p><i>Nature Genetics</i> thanks Jason Carroll and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><p><b>Publisher’s note</b> Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Extended data"><div class="c-article-section" id="Sec36-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec36">Extended data</h2><div class="c-article-section__content" id="Sec36-content"><div data-test="supplementary-info"><div id="figshareContainer" class="c-article-figshare-container" data-test="figshare-container"></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig9"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 1 pu.1 redistribution in molm13" href="/articles/s41588-024-01911-7/figures/9" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig9_ESM.jpg">Extended Data Fig. 1 PU.1 redistribution in MOLM13.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(<b>a</b>) Correlation heatmap of the differentially bound PU.1 peaks from Diffbind analysis of MOLM13 VEH vs DB2115 treated samples. (<b>b</b>) PCA plot showing association between replicates of VEH vs DB2115 treated MOLM13 differential peaks from Diffbind analysis. (<b>c</b>) Randomization of the VEHvsDB2115 treatment pairs to determine Diffbind peak calling robustness. PCA plot of differential peaks from randomized treatment pairs and (<b>d</b>) numbers of significantly changed peaks, FDR < 0.1, are shown. (<b>e</b>) Representative viewer tracks of genomic loci displaying lost, gained and unchanged PU.1 binding from Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig1">1g</a>, plus an additional track displaying minimal reads detected from IgG CUT&Tag.The FIMO tool (MEME suite, p-value cut-off of p < 0.0001) was used to identify (<b>f</b>) poly-A upstream and (<b>g</b>) poly-T upstream PU.1 motifs (AAAAAWRRGGAAGT and TTTTTWRRGGAAGT respectively) in the entire human (hg38) genome. Also shown is the overlap between these genomic sites and total PU.1 CUT&Tag sites.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig10"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 2 classical chip examination of" href="/articles/s41588-024-01911-7/figures/10" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig10_ESM.jpg">Extended Data Fig. 2 Classical ChIP examination of PU.1 redistribution in MOLM13.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(<b>a</b>) Summary of the overlap of MACS2 called peaks between classical PU.1 ChIP (n = 1) and PU.1 CUT&Tag (n = 3). (<b>b</b>) The proportion of GC content in the central 100 bp of lost, gained and unchanged classical ChIP PU.1 peaks. (<b>c</b>) Comparison of log2fold change in classical ChIP PU.1 peak score (DB2115-treated/Vehicle) with GC content of central 100 bp of all peaks (colored according to peak groups). (<b>d</b>) The top <i>de novo</i> motif identified from homer analysis of each group of classical PU.1 peaks. (<b>e</b>) Representative viewer tracks of genomic loci displaying PU.1 CUT&Tag (top tracks) and classical PU.1 ChIP (bottom tracks). Highlighted are lost (blue boxes), gained (red boxes) and unchanged (unmarked) PU.1 binding instances.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig11"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 3 multi-cell line analysis of p" href="/articles/s41588-024-01911-7/figures/11" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig11_ESM.jpg">Extended Data Fig. 3 Multi-cell line analysis of PU.1 redistribution.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(a-c) GC content of the central 100 bp of lost, gained and unchanged PU.1 peaks from the three cell lines THP1, HL60 and MV411 following 12 hr of 5 µM DB2115. (d & e) Representative viewer tracks of genomic loci displaying lost (blue boxes), gained (red boxes) and unchanged (unmarked) PU.1 binding for all four cell lines. (<b>f</b>) Log odds ratio score for the PU.1 consensus sequence (Pham et al., 2013) in the 8 categories of commonly lost/gained peaks identified from MOLM13,THP1,HL60 and MV411 cell lines. (<b>g</b>) GC content of the central 100 bp of PU.1 gained and lost peaks which were classified according to their degree of commonality across the 4 cell lines (MOLM only, common to 1, 2 or 3 other cell lines). One-way ANOVA with Tukey multiple comparisons was performed, *p < 0.05(p = 0.0445[MOLMonly vs +1 cell line]), ****p < 0.0001. (<b>h</b>) Central PU.1 motif identified in the 4 categories of commonly lost PU.1 peaks or (<b>i</b>) 4 categories of commonly gained peaks. (<b>j</b>) GC-content position frequency matrix of lost and gained pooled primary AML sample peaks, which have been centered on a short consensus ETS motif (GAGGAAGT) and examined ±25 bp. (<b>k</b>) Similarity between primary AML PU.1 peak changes and MOLM13 data. (<b>l</b>) Dose-response curve for MOLM13 viability (Cell titer blue assay) for the four diamidine compounds, DB2115, DB2373, DB2313 and DB2826, n = 3 experimental replicates per drug displaying mean ± SEM.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig12"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 4 other transcription factor re" href="/articles/s41588-024-01911-7/figures/12" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig12_ESM.jpg">Extended Data Fig. 4 Other transcription factor redistribution after DB2115 treatment.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(<b>a</b>) Comparison of log2fold change of RUNX1, ELF1 and GABPA peak score (12 hr of 5 µM DB2115-treated/Vehicle) versus GC content of the central 100 bp in MOLM13 cells. n = 1, except for RUNX1 where n = 2 (<b>b</b>) Comparison of log2fold change of RUNX1, GATA3, ELF1 and GABPA peak score (12 hr of 5 µM DB2115-treated/Vehicle) versus GC content of the central 100 bp in the PU.1-null cell line, JURKAT. n = 1 and differential analyses was conducted via Goodpeaks script.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig13"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 5 characterization of linker-ta" href="/articles/s41588-024-01911-7/figures/13" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig13_ESM.jpg">Extended Data Fig. 5 Characterization of linker-tagged DB2115 (known as DB2750).</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(<b>a</b>) Correlation heatmap of the differentially bound PU.1 peaks from Diffbind analysis of MOLM13 VEH vs DB2115 vs DB2750 treated samples, showing grouping of DB2750 with DB2115 samples. (<b>b</b>) Overlap of all PU.1 peaks from DB2750 versus DB2115 CUT&Tag. (<b>c</b>) DB2750 PU.1 peaks grouped as gain, loss or unchanged and examined for the peak status in the DB2115 peak dataset. Representative viewer tracks of PU.1 CUT&Tag from vehicle and DB2115 treated MOLM13 cells showing the (<b>d</b>) AT-rich/SENP2 and (<b>e</b>) AT-poor/SPI1 upstream sequences used to synthesize artificial fragments used in experiments from Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig3">3e</a>.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig14"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 6 additional transcriptomic and" href="/articles/s41588-024-01911-7/figures/14" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig14_ESM.jpg">Extended Data Fig. 6 Additional transcriptomic and chromatin accessibility characterization following DB2115 exposure.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(<b>a</b>) Comparison of log2fold change in PU.1 peak score (DB2115-treated/Vehicle) with log2fold change of ATAC peak score (colored according to PU.1 CUT&Tag groups). (<b>b</b>) Comparison of log2fold change in PU.1 peak score (DB2115-treated/Vehicle) with log2fold change of RNA expression of associated genes (colored according to PU.1 peak groups). (<b>c</b>) A high confidence list of promoter/intronic/exonic DB2115-target genes being either lost/closing (194) or gained/opening (506) were analyzed for enrichment of pathways from GO biological processes using the molecular signature database. (<b>d</b>) K-means clustering of normalized and binarized raw count ATAC data from Corces et al., 2016; confirming correct groupings of cellular identity, used for Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41588-024-01911-7#Fig4">4p, q</a>.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig15"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 7 additional pu.1 redistributio" href="/articles/s41588-024-01911-7/figures/15" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig15_ESM.jpg">Extended Data Fig. 7 Additional PU.1 redistribution time course data.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(<b>a</b>) Proportion of GC content or (<b>b</b>) CLICK enrichment score of lost and gained PU.1 peaks (left & right panels respectively) for each timepoint of DB2115 treatment (1,4 and 12 hr). (<b>c</b>) Representative viewer tracks of genomic loci displaying both PU.1 CUT&Tag (top tracks) and ATAC sequencing (bottom tracks) over the time course. Arrows indicate time of first detection of gain/loss of PU.1, or opening/closing chromatin. (<b>d</b>) Occurrence of first detectable PU.1 gained sites over time (as a % of total gained sites, red) compared to the occurrence of detectable open chromatin at these same PU.1 gained sites over time (black). (<b>e</b>) Occurrence of first detectable PU.1 loss over time (as a % of total lost sites, blue) compared to the occurrence of detectable open chromatin at these same PU.1 lost sites over time (black). (<b>f</b>) The time at which DEGs (NRSA pipeline with a p-adj. cut-off <0.1) are first detected and the corresponding proportion of increases and decreases at 1, 4, and 12 hr. (<b>g</b>) Comparison of 20 hr RNA-seq. log2FC and 12 hr PRO-seq log2FC expression values from DB2115 treated MOLM13 cells. (<b>h</b>) Heatmaps depicting the time of chromatin opening versus the time of nascent transcript increase of PU.1 gained sites from 1, 4 or 12 hrs, (left panels) or depicting the time of chromatin closing versus the time of nascent transcript decrease for PU.1 lost sites from 1, 4, or 12 hrs. (<b>i</b>) Representative smFISH images from MOLM13 cells for the unchanged PU.1-associated gene, <i>SPI1</i>, over the DB2115 time course. <i>SPI1</i> transcripts are in white pseudo-color, DNA is in blue pseudo-color. (<b>j</b>) Total nascent transcript counts for <i>SPI1</i> mRNA per cell and (<b>k</b>) frequency of transcription burst sites per cell for <i>SPI1</i> over the DB2115 time course.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig16"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 8 dcas9 and gfp reporter assay " href="/articles/s41588-024-01911-7/figures/16" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig16_ESM.jpg">Extended Data Fig. 8 dCAS9 and GFP reporter assay details.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(<b>a</b>) Representative viewer tracks of PU.1 CUT&Tag from vehicle and DB2115 treated MOLM13 cells showing the STRAP locus. Identified is the PU.1 binding site where the sgRNA was designed to enable dCas9 targeting (sequence is highlighted in red). (<b>b</b>) Representative viewer tracks of PU.1 CUT&Tag from vehicle and DB2115 treated MOLM13 cells showing the lost POMP, gained CSF1R (alternate promoter) and unchanged CD11b sites. Identified in green is the PU.1 peak and corresponding sequence which was used as the enhancer for eGFP expression in the lentiviral vector. (<b>c</b>) Raw baseline MFI value of the unchanged, lost and gained eGFP reporter cells without drug treatment, n = 5.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig17"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 9 additional data from drug-ind" href="/articles/s41588-024-01911-7/figures/17" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig17_ESM.jpg">Extended Data Fig. 9 Additional data from drug-induced differentiated cell lines.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(<b>a</b>) Representative histograms and (<b>b–e</b>) average percentage positive for CD15, CD14, CD86 and CD11b in drug-invoked (or vehicle) MOLM13 cells following 7 days of culture in methylcellulose, n = 3 experimental replicate displaying mean ± SEM. (<b>f</b>) May-Grunwald Giemsa cytospin image of THP1 cells treated with vehicle or 1 µM DB2115 for 5 days. Experiment was repeated independently 3 times with similar results. (<b>g</b>) Representative histograms and (<b>h</b>) fold change in MFI vs vehicle for CD209, CD15, CD14, CD86, CD34 and CD11b in 5 day treated cells, n = 3 experimental replicates displaying mean ± SEM.</p></div></div><div class="c-article-supplementary__item js-c-reading-companion-figures-item" data-test="supp-item" id="Fig18"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="extended data fig. 10 raw flow cytometry data for " href="/articles/s41588-024-01911-7/figures/18" data-supp-info-image="//media.springernature.com/lw685/springer-static/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_Fig18_ESM.jpg">Extended Data Fig. 10 Raw flow cytometry data for primary AML samples.</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(<b>a</b>) Representative gating schema for primary AML samples grown in methylcellulose with vehicle, 1 µM or 5 µM DB2115 for 8–13 days. (<b>b</b>) Histograms displaying expression of CD15, CD14, CD86 and CD11b in primary AML samples following treatment with DB2115 or vehicle after 8–13 days. (<b>c</b>) Summary heatmap displaying changes in expression of CD15, CD14, CD86 and CD11b after 8-13 days of 1 µM DB2115 vs vehicle.</p></div></div></div></div></div></section><section data-title="Supplementary information"><div class="c-article-section" id="Sec37-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec37">Supplementary information</h2><div class="c-article-section__content" id="Sec37-content"><div data-test="supplementary-info"><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM1"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="supplementary information" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_MOESM1_ESM.pdf" data-supp-info-image="">Supplementary Information</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>Methods of chemical synthesis of the compounds used in the study.</p></div></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM2"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="reporting summary" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_MOESM2_ESM.pdf" data-supp-info-image="">Reporting Summary</a></h3></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM3"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="supplementary data 1" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_MOESM3_ESM.xlsx" data-supp-info-image="">Supplementary Data 1</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>Homer analysis identification of de novo (A–C) and known motifs (D–F) from gained, lost and unchanged PU.1 CUT&Tag peaks from MOLM13 cells treated with 5 µM DB2115 for 12 h.</p></div></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM4"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="supplementary data 2" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_MOESM4_ESM.xlsx" data-supp-info-image="">Supplementary Data 2</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>Peak details of the commonly gained (A) or commonly lost (B) PU.1 binding sites following DB2115 treatment that were identified in all four cell lines (MOLM13, MV411, THP1 and HL60).</p></div></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM5"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="supplementary data 3" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_MOESM5_ESM.xlsx" data-supp-info-image="">Supplementary Data 3</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>PU.1 CUT&Tag peaks which are (A) gaining PU.1 (Diffbind, FDR < 0.1), opening chromatin accessibility (Diffbind, FDR < 0.1) and the associated gene is increasing in expression (log<sub>2</sub>FC > 0.5), or conversely, (B) losing PU.1 (Diffbind, FDR < 0.1), closing chromatin accessibility (Diffbind, FDR < 0.1) and the associated gene is decreasing in expression (log<sub>2</sub>FC > 0.5).</p></div></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM6"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="supplementary table 1" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_MOESM6_ESM.xlsx" data-supp-info-image="">Supplementary Table 1</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>(A) RT–qPCR primer sequences used in the study. (B) Primers and fragment sequences used for the artificial CLICK drug pulldown experiments in Fig. 3. (C) Sequences of insert DNA from a gained, lost and unchanged site for the GFP reporter assays used in Fig. 6. Sequences and details of the (D) primary and (E) secondary smFISH probes used in Fig. 5. (F) Characteristics, including mutations, age and gender, of the primary patient samples used in Figs. 2 and 7.</p></div></div></div></div></div></section><section data-title="Source data"><div class="c-article-section" id="Sec38-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec38">Source data</h2><div class="c-article-section__content" id="Sec38-content"><div data-test="supplementary-info"><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM7"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="source data fig. 1" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-024-01911-7/MediaObjects/41588_2024_1911_MOESM7_ESM.pdf" data-supp-info-image="">Source Data Fig. 1</a></h3><div class="c-article-supplementary__description" data-component="thumbnail-container"><p>Unmodified western blot images from Fig. 1.</p></div></div></div></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/" rel="license">http://creativecommons.org/licenses/by-nc-nd/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Pharmacological%20restriction%20of%20genomic%20binding%20sites%20redirects%20PU.1%20pioneer%20transcription%20factor%20activity&author=Samuel%20J.%20Taylor%20et%20al&contentID=10.1038%2Fs41588-024-01911-7&copyright=The%20Author%28s%29&publication=1061-4036&publicationDate=2024-09-18&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY-NC-ND">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1038/s41588-024-01911-7" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1038/s41588-024-01911-7" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Taylor, S.J., Stauber, J., Bohorquez, O. <i>et al.</i> Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity. <i>Nat Genet</i> <b>56</b>, 2213–2227 (2024). https://doi.org/10.1038/s41588-024-01911-7</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41588-024-01911-7?format=refman&flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-07-25">25 July 2023</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-08-14">14 August 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-09-18">18 September 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Issue Date<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-10">October 2024</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1038/s41588-024-01911-7</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="article-info-list"></div></div></div></div></div></section> </div> </div> </article> </main> <aside class="c-article-extras u-hide-print" aria-label="Article navigation" data-component-reading-companion data-container-type="reading-companion" data-track-component="reading companion"> <div class="js-context-bar-sticky-point-desktop" data-track-context="reading companion"> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41588-024-01911-7.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> <div class="c-article-associated-content__container"> <section> <h2 class="c-article-associated-content__title u-mb-24">Associated content</h2> <div class="u-full-height u-mb-24"> <article class="u-full-height c-card c-card--flush"> <div class="c-card__layout u-full-height"> <div class="c-card__body"> <h3 class="c-card__title"> <a href="https://www.nature.com/articles/s41588-024-01912-6" class="c-card__link u-link-inherit" data-track="click" data-track-action="view article" data-track-category="associated content" data-track-label="news_and_views">Chemical restriction of PU.1 genomic binding sites activates alternate gene networks</a> </h3> <div class="c-card__section c-meta"> <span class="c-meta__item">Nature Genetics</span> <span class="c-meta__item" data-test="article.type"><span class="c-meta__type">Research Briefing</span></span> <time class="c-meta__item" datetime="2024-09-18">18 Sept 2024</time> </div> </div> </div> </article> </div> </section> </div> <script> window.dataLayer = window.dataLayer || []; window.dataLayer[0] = window.dataLayer[0] || {}; window.dataLayer[0].content = window.dataLayer[0].content || {}; window.dataLayer[0].content.associatedContentTypes = "news_and_views"; </script> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu> <div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-right-2" class="div-gpt-ad advert medium-rectangle js-ad text-center hide-print grade-c-hide" data-ad-type="right" data-test="right-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/genetics.nature.com/article" data-gpt-sizes="300x250" data-gpt-targeting="type=article;pos=right;artid=s41588-024-01911-7;doi=10.1038/s41588-024-01911-7;subjmeta=200,2019,208,337,631,92;kwrd=Chemical+biology,Gene+regulation,Transcriptomics"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/genetics.nature.com/article&sz=300x250&c=1133981351&t=pos%3Dright%26type%3Darticle%26artid%3Ds41588-024-01911-7%26doi%3D10.1038/s41588-024-01911-7%26subjmeta%3D200,2019,208,337,631,92%26kwrd%3DChemical+biology,Gene+regulation,Transcriptomics"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/genetics.nature.com/article&sz=300x250&c=1133981351&t=pos%3Dright%26type%3Darticle%26artid%3Ds41588-024-01911-7%26doi%3D10.1038/s41588-024-01911-7%26subjmeta%3D200,2019,208,337,631,92%26kwrd%3DChemical+biology,Gene+regulation,Transcriptomics" alt="Advertisement" width="300" height="250"></a> </noscript> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> <nav class="c-header__dropdown" aria-labelledby="Explore-content" data-test="Explore-content" id="explore" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Explore-content" class="c-header__heading c-header__heading--js-hide">Explore content</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/ng/research-articles" data-track="click" data-track-action="research articles" data-track-label="link" data-test="explore-nav-item"> Research articles </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/reviews-and-analysis" data-track="click" data-track-action="reviews & analysis" data-track-label="link" data-test="explore-nav-item"> Reviews & Analysis </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/news-and-comment" data-track="click" data-track-action="news & comment" data-track-label="link" data-test="explore-nav-item"> News & Comment </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/current-issue" data-track="click" data-track-action="current issue" data-track-label="link" data-test="explore-nav-item"> Current issue </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/collections" data-track="click" data-track-action="collections" data-track-label="link" data-test="explore-nav-item"> Collections </a> </li> </ul> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="https://www.facebook.com/NatureGenet" data-track="click" data-track-action="facebook" data-track-label="link">Follow us on Facebook </a> </li> <li class="c-header__item"> <a class="c-header__link" href="https://twitter.com/NatureGenet" data-track="click" data-track-action="twitter" data-track-label="link">Follow us on Twitter </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/my-account/alerts/subscribe-journal?list-id=4" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-external data-track-label="link (mobile dropdown)">Sign up for alerts<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#fff"/></svg> </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/ng.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="About-the-journal" id="about-the-journal" data-test="about-the-journal" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="About-the-journal" class="c-header__heading c-header__heading--js-hide">About the journal</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/ng/aims" data-track="click" data-track-action="aims & scope" data-track-label="link"> Aims & Scope </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/journal-information" data-track="click" data-track-action="journal information" data-track-label="link"> Journal Information </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/journal-impact" data-track="click" data-track-action="journal metrics" data-track-label="link"> Journal Metrics </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/our-publishing-models" data-track="click" data-track-action="our publishing models" data-track-label="link"> Our publishing models </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/editorial-values-statement" data-track="click" data-track-action="editorial values statement" data-track-label="link"> Editorial Values Statement </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/editorial-policies" data-track="click" data-track-action="editorial policies" data-track-label="link"> Editorial Policies </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/content" data-track="click" data-track-action="content types" data-track-label="link"> Content Types </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/editors" data-track="click" data-track-action="about the editors" data-track-label="link"> About the Editors </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/research-cross-journal-editorial-team" data-track="click" data-track-action="research cross-journal editorial team" data-track-label="link"> Research Cross-Journal Editorial Team </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/reviews-cross-journal-editorial-team" data-track="click" data-track-action="reviews cross-journal editorial team" data-track-label="link"> Reviews Cross-Journal Editorial Team </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/web-feeds" data-track="click" data-track-action="web feeds" data-track-label="link"> Web Feeds </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/posters" data-track="click" data-track-action="posters" data-track-label="link"> Posters </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/contact" data-track="click" data-track-action="contact" data-track-label="link"> Contact </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="Publish-with-us-label" id="publish-with-us" data-test="publish-with-us" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Publish-with-us-label" class="c-header__heading c-header__heading--js-hide">Publish with us</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/ng/submission-guidelines" data-track="click" data-track-action="submission guidelines" data-track-label="link"> Submission Guidelines </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/ng/for-reviewers" data-track="click" data-track-action="for reviewers" data-track-label="link"> For Reviewers </a> </li> <li class="c-header__item"> <a class="c-header__link" data-test="nature-author-services" data-track="nav_language_services" data-track-context="header publish with us dropdown menu" data-track-action="manuscript author services" data-track-label="link manuscript author services" href="https://authorservices.springernature.com/go/sn/?utm_source=For+Authors&utm_medium=Website_Nature&utm_campaign=Platform+Experimentation+2022&utm_id=PE2022"> Language editing services </a> </li> <li class="c-header__item c-header__item--keyline"> <a class="c-header__link" href="https://mts-ng.nature.com/" data-track="click_submit_manuscript" data-track-context="submit link in Nature header dropdown menu" data-track-action="submit manuscript" data-track-label="link (publish with us dropdown menu)" data-track-external>Submit manuscript<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m15 0c1.1045695 0 2 .8954305 2 2v5.5c0 .27614237-.2238576.5-.5.5s-.5-.22385763-.5-.5v-5.5c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-9v3c0 1.1045695-.8954305 2-2 2h-3v10c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h7.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-7.5c-1.1045695 0-2-.8954305-2-2v-10.17157288c0-.53043297.21071368-1.0391408.58578644-1.41421356l3.82842712-3.82842712c.37507276-.37507276.88378059-.58578644 1.41421356-.58578644zm-.5442863 8.18867991 3.3545404 3.35454039c.2508994.2508994.2538696.6596433.0035959.909917-.2429543.2429542-.6561449.2462671-.9065387-.0089489l-2.2609825-2.3045251.0010427 7.2231989c0 .3569916-.2898381.6371378-.6473715.6371378-.3470771 0-.6473715-.2852563-.6473715-.6371378l-.0010428-7.2231995-2.2611222 2.3046654c-.2531661.2580415-.6562868.2592444-.9065605.0089707-.24295423-.2429542-.24865597-.6576651.0036132-.9099343l3.3546673-3.35466731c.2509089-.25090888.6612706-.25227691.9135302-.00001728zm-.9557137-3.18867991c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm-8.5-3.587-3.587 3.587h2.587c.55228475 0 1-.44771525 1-1zm8.5 1.587c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill="#fff"/></svg> </a> </li> </ul> </div> </nav> <div id="search-menu" class="c-header__dropdown c-header__dropdown--full-width" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 class="c-header__visually-hidden">Search</h2> <form class="c-header__search-form" action="/search" method="get" role="search" autocomplete="off" data-test="inline-search"> <label class="c-header__heading" for="keywords">Search articles by subject, keyword or author</label> <div class="c-header__search-layout c-header__search-layout--max-width"> <div> <input type="text" required="" class="c-header__input" id="keywords" name="q" value=""> </div> <div class="c-header__search-layout"> <div> <label for="results-from" class="c-header__visually-hidden">Show results from</label> <select id="results-from" name="journal" class="c-header__select"> <option value="" selected>All journals</option> <option value="ng">This journal</option> </select> </div> <div> <button type="submit" class="c-header__search-button">Search</button> </div> </div> </div> </form> <div class="c-header__flush"> <a class="c-header__link" href="/search/advanced" data-track="click" data-track-action="advanced search" data-track-label="link"> Advanced search </a> </div> <h3 class="c-header__heading c-header__heading--keyline">Quick links</h3> <ul class="c-header__list"> <li><a class="c-header__link" href="/subjects" data-track="click" data-track-action="explore articles by subject" data-track-label="link">Explore articles by subject</a></li> <li><a class="c-header__link" href="/naturecareers" data-track="click" data-track-action="find a job" data-track-label="link">Find a job</a></li> <li><a class="c-header__link" href="/authors/index.html" data-track="click" data-track-action="guide to authors" data-track-label="link">Guide to authors</a></li> <li><a class="c-header__link" href="/authors/editorial_policies/" data-track="click" data-track-action="editorial policies" data-track-label="link">Editorial policies</a></li> </ul> </div> </div> <footer class="composite-layer" itemscope itemtype="http://schema.org/Periodical"> <meta itemprop="publisher" content="Springer Nature"> <div class="u-mt-16 u-mb-16"> <div class="u-container"> <div class="u-display-flex u-flex-wrap u-justify-content-space-between"> <p class="c-meta u-ma-0 u-flex-shrink"> <span class="c-meta__item"> Nature Genetics (<i>Nat Genet</i>) </span> <span class="c-meta__item"> <abbr title="International Standard Serial Number">ISSN</abbr> <span itemprop="onlineIssn">1546-1718</span> (online) </span> <span class="c-meta__item"> <abbr title="International Standard Serial Number">ISSN</abbr> <span itemprop="printIssn">1061-4036</span> (print) </span> </p> </div> </div> </div> <div class="c-footer"> <div class="u-hide-print" data-track-component="footer"> <h2 class="u-visually-hidden">nature.com sitemap</h2> <div class="c-footer__container"> <div class="c-footer__grid c-footer__group--separator"> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">About Nature Portfolio</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/company_info/index.html" data-track="click" data-track-action="about us" data-track-label="link">About us</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/press_room/press_releases.html" data-track="click" data-track-action="press releases" data-track-label="link">Press releases</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://press.nature.com/" data-track="click" data-track-action="press office" data-track-label="link">Press office</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://support.nature.com/support/home" data-track="click" data-track-action="contact us" data-track-label="link">Contact us</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Discover content</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/siteindex" data-track="click" data-track-action="journals a-z" data-track-label="link">Journals A-Z</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/subjects" data-track="click" data-track-action="article by subject" data-track-label="link">Articles by subject</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.protocols.io/" data-track="click" data-track-action="protocols.io" data-track-label="link">protocols.io</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureindex.com/" data-track="click" data-track-action="nature index" data-track-label="link">Nature Index</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Publishing policies</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/authors/editorial_policies" data-track="click" data-track-action="Nature portfolio policies" data-track-label="link">Nature portfolio policies</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nature-research/open-access" data-track="click" data-track-action="open access" data-track-label="link">Open access</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Author & Researcher services</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/reprints" data-track="click" data-track-action="reprints and permissions" data-track-label="link">Reprints & permissions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/authors/research-data" data-track="click" data-track-action="data research service" data-track-label="link">Research data</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/language-editing/" data-track="click" data-track-action="language editing" data-track-label="link">Language editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/scientific-editing/" data-track="click" data-track-action="scientific editing" data-track-label="link">Scientific editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://masterclasses.nature.com/" data-track="click" data-track-action="nature masterclasses" data-track-label="link">Nature Masterclasses</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://solutions.springernature.com/" data-track="click" data-track-action="research solutions" data-track-label="link">Research Solutions</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Libraries & institutions</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/tools-services" data-track="click" data-track-action="librarian service and tools" data-track-label="link">Librarian service & tools</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/manage-your-account/librarianportal" data-track="click" data-track-action="librarian portal" data-track-label="link">Librarian portal</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/openresearch/about-open-access/information-for-institutions" data-track="click" data-track-action="open research" data-track-label="link">Open research</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/recommend-to-your-library" data-track="click" data-track-action="Recommend to library" data-track-label="link">Recommend to library</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Advertising & partnerships</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/digital-advertising/" data-track="click" data-track-action="advertising" data-track-label="link">Advertising</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/" data-track="click" data-track-action="partnerships and services" data-track-label="link">Partnerships & Services</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/media-kits/" data-track="click" data-track-action="media kits" data-track-label="link">Media kits</a> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/branded-content-native-advertising/" data-track-action="branded content" data-track-label="link">Branded content</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Professional development</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/naturecareers/" data-track="click" data-track-action="nature careers" data-track-label="link">Nature Careers</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://conferences.nature.com" data-track="click" data-track-action="nature conferences" data-track-label="link">Nature<span class="u-visually-hidden"> </span> Conferences</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Regional websites</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natafrica" data-track="click" data-track-action="nature africa" data-track-label="link">Nature Africa</a></li> <li class="c-footer__item"><a class="c-footer__link" href="http://www.naturechina.com" data-track="click" data-track-action="nature china" data-track-label="link">Nature China</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nindia" data-track="click" data-track-action="nature india" data-track-label="link">Nature India</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natitaly" data-track="click" data-track-action="nature Italy" data-track-label="link">Nature Italy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureasia.com/ja-jp" data-track="click" data-track-action="nature japan" data-track-label="link">Nature Japan</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nmiddleeast" data-track="click" data-track-action="nature middle east" data-track-label="link">Nature Middle East</a></li> </ul> </div> </div> </div> <div class="c-footer__container"> <ul class="c-footer__links"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/privacy" data-track="click" data-track-action="privacy policy" data-track-label="link">Privacy Policy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/cookies" data-track="click" data-track-action="use of cookies" data-track-label="link">Use of cookies</a></li> <li class="c-footer__item"> <button class="optanon-toggle-display c-footer__link" onclick="javascript:;" data-cc-action="preferences" data-track="click" data-track-action="manage cookies" data-track-label="link">Your privacy choices/Manage cookies </button> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/legal-notice" data-track="click" data-track-action="legal notice" data-track-label="link">Legal notice</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/accessibility-statement" data-track="click" data-track-action="accessibility statement" data-track-label="link">Accessibility statement</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/terms-and-conditions" data-track="click" data-track-action="terms and conditions" data-track-label="link">Terms & Conditions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/ccpa" data-track="click" data-track-action="california privacy statement" data-track-label="link">Your US state privacy rights</a></li> </ul> </div> </div> <div class="c-footer__container"> <a href="https://www.springernature.com/" class="c-footer__link"> <img src="/static/images/logos/sn-logo-white-ea63208b81.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="c-footer__legal" data-test="copyright">© 2024 Springer Nature Limited</p> </div> </div> <div class="u-visually-hidden" aria-hidden="true"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="a" d="M0 .74h56.72v55.24H0z"/></defs><symbol id="icon-access" viewBox="0 0 18 18"><path d="m14 8c.5522847 0 1 .44771525 1 1v7h2.5c.2761424 0 .5.2238576.5.5v1.5h-18v-1.5c0-.2761424.22385763-.5.5-.5h2.5v-7c0-.55228475.44771525-1 1-1s1 .44771525 1 1v6.9996556h8v-6.9996556c0-.55228475.4477153-1 1-1zm-8 0 2 1v5l-2 1zm6 0v7l-2-1v-5zm-2.42653766-7.59857636 7.03554716 4.92488299c.4162533.29137735.5174853.86502537.226108 1.28127873-.1721584.24594054-.4534847.39241464-.7536934.39241464h-14.16284822c-.50810197 0-.92-.41189803-.92-.92 0-.30020869.1464741-.58153499.39241464-.75369337l7.03554714-4.92488299c.34432015-.2410241.80260453-.2410241 1.14692468 0zm-.57346234 2.03988748-3.65526982 2.55868888h7.31053962z" fill-rule="evenodd"/></symbol><symbol id="icon-account" viewBox="0 0 18 18"><path d="m10.2379028 16.9048051c1.3083556-.2032362 2.5118471-.7235183 3.5294683-1.4798399-.8731327-2.5141501-2.0638925-3.935978-3.7673711-4.3188248v-1.27684611c1.1651924-.41183641 2-1.52307546 2-2.82929429 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.30621883.83480763 2.41745788 2 2.82929429v1.27684611c-1.70347856.3828468-2.89423845 1.8046747-3.76737114 4.3188248 1.01762123.7563216 2.22111275 1.2766037 3.52946833 1.4798399.40563808.0629726.81921174.0951949 1.23790281.0951949s.83226473-.0322223 1.2379028-.0951949zm4.3421782-2.1721994c1.4927655-1.4532925 2.419919-3.484675 2.419919-5.7326057 0-4.418278-3.581722-8-8-8s-8 3.581722-8 8c0 2.2479307.92715352 4.2793132 2.41991895 5.7326057.75688473-2.0164459 1.83949951-3.6071894 3.48926591-4.3218837-1.14534283-.70360829-1.90918486-1.96796271-1.90918486-3.410722 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.44275929-.763842 2.70711371-1.9091849 3.410722 1.6497664.7146943 2.7323812 2.3054378 3.4892659 4.3218837zm-5.580081 3.2673943c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-alert" viewBox="0 0 18 18"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-broad" viewBox="0 0 16 16"><path d="m6.10307866 2.97190702v7.69043288l2.44965196-2.44676915c.38776071-.38730439 1.0088052-.39493524 1.38498697-.01919617.38609051.38563612.38643641 1.01053024-.00013864 1.39665039l-4.12239817 4.11754683c-.38616704.3857126-1.01187344.3861062-1.39846576-.0000311l-4.12258206-4.11773056c-.38618426-.38572979-.39254614-1.00476697-.01636437-1.38050605.38609047-.38563611 1.01018509-.38751562 1.4012233.00306241l2.44985644 2.4469734v-8.67638639c0-.54139983.43698413-.98042709.98493125-.98159081l7.89910522-.0043627c.5451687 0 .9871152.44142642.9871152.98595351s-.4419465.98595351-.9871152.98595351z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 14 15)"/></symbol><symbol id="icon-arrow-down" viewBox="0 0 16 16"><path d="m3.28337502 11.5302405 4.03074001 4.176208c.37758093.3912076.98937525.3916069 1.367372-.0000316l4.03091977-4.1763942c.3775978-.3912252.3838182-1.0190815.0160006-1.4001736-.3775061-.39113013-.9877245-.39303641-1.3700683.003106l-2.39538585 2.4818345v-11.6147896l-.00649339-.11662112c-.055753-.49733869-.46370161-.88337888-.95867408-.88337888-.49497246 0-.90292107.38604019-.95867408.88337888l-.00649338.11662112v11.6147896l-2.39518594-2.4816273c-.37913917-.39282218-.98637524-.40056175-1.35419292-.0194697-.37750607.3911302-.37784433 1.0249269.00013556 1.4165479z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-left" viewBox="0 0 16 16"><path d="m4.46975946 3.28337502-4.17620792 4.03074001c-.39120768.37758093-.39160691.98937525.0000316 1.367372l4.1763942 4.03091977c.39122514.3775978 1.01908149.3838182 1.40017357.0160006.39113012-.3775061.3930364-.9877245-.00310603-1.3700683l-2.48183446-2.39538585h11.61478958l.1166211-.00649339c.4973387-.055753.8833789-.46370161.8833789-.95867408 0-.49497246-.3860402-.90292107-.8833789-.95867408l-.1166211-.00649338h-11.61478958l2.4816273-2.39518594c.39282216-.37913917.40056173-.98637524.01946965-1.35419292-.39113012-.37750607-1.02492687-.37784433-1.41654791.00013556z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-right" viewBox="0 0 16 16"><path d="m11.5302405 12.716625 4.176208-4.03074003c.3912076-.37758093.3916069-.98937525-.0000316-1.367372l-4.1763942-4.03091981c-.3912252-.37759778-1.0190815-.38381821-1.4001736-.01600053-.39113013.37750607-.39303641.98772445.003106 1.37006824l2.4818345 2.39538588h-11.6147896l-.11662112.00649339c-.49733869.055753-.88337888.46370161-.88337888.95867408 0 .49497246.38604019.90292107.88337888.95867408l.11662112.00649338h11.6147896l-2.4816273 2.39518592c-.39282218.3791392-.40056175.9863753-.0194697 1.3541929.3911302.3775061 1.0249269.3778444 1.4165479-.0001355z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-sub" viewBox="0 0 16 16"><path d="m7.89692134 4.97190702v7.69043288l-2.44965196-2.4467692c-.38776071-.38730434-1.0088052-.39493519-1.38498697-.0191961-.38609047.3856361-.38643643 1.0105302.00013864 1.3966504l4.12239817 4.1175468c.38616704.3857126 1.01187344.3861062 1.39846576-.0000311l4.12258202-4.1177306c.3861843-.3857298.3925462-1.0047669.0163644-1.380506-.3860905-.38563612-1.0101851-.38751563-1.4012233.0030624l-2.44985643 2.4469734v-8.67638639c0-.54139983-.43698413-.98042709-.98493125-.98159081l-7.89910525-.0043627c-.54516866 0-.98711517.44142642-.98711517.98595351s.44194651.98595351.98711517.98595351z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-up" viewBox="0 0 16 16"><path d="m12.716625 4.46975946-4.03074003-4.17620792c-.37758093-.39120768-.98937525-.39160691-1.367372.0000316l-4.03091981 4.1763942c-.37759778.39122514-.38381821 1.01908149-.01600053 1.40017357.37750607.39113012.98772445.3930364 1.37006824-.00310603l2.39538588-2.48183446v11.61478958l.00649339.1166211c.055753.4973387.46370161.8833789.95867408.8833789.49497246 0 .90292107-.3860402.95867408-.8833789l.00649338-.1166211v-11.61478958l2.39518592 2.4816273c.3791392.39282216.9863753.40056173 1.3541929.01946965.3775061-.39113012.3778444-1.02492687-.0001355-1.41654791z" fill-rule="evenodd"/></symbol><symbol id="icon-article" viewBox="0 0 18 18"><path d="m13 15v-12.9906311c0-.0073595-.0019884-.0093689.0014977-.0093689l-11.00158888.00087166v13.00506804c0 .5482678.44615281.9940603.99415146.9940603h10.27350412c-.1701701-.2941734-.2675644-.6357129-.2675644-1zm-12 .0059397v-13.00506804c0-.5562408.44704472-1.00087166.99850233-1.00087166h11.00299537c.5510129 0 .9985023.45190985.9985023 1.0093689v2.9906311h3v9.9914698c0 1.1065798-.8927712 2.0085302-1.9940603 2.0085302h-12.01187942c-1.09954652 0-1.99406028-.8927712-1.99406028-1.9940603zm13-9.0059397v9c0 .5522847.4477153 1 1 1s1-.4477153 1-1v-9zm-10-2h7v4h-7zm1 1v2h5v-2zm-1 4h7v1h-7zm0 2h7v1h-7zm0 2h7v1h-7z" fill-rule="evenodd"/></symbol><symbol id="icon-audio" viewBox="0 0 18 18"><path d="m13.0957477 13.5588459c-.195279.1937043-.5119137.193729-.7072234.0000551-.1953098-.193674-.1953346-.5077061-.0000556-.7014104 1.0251004-1.0168342 1.6108711-2.3905226 1.6108711-3.85745208 0-1.46604976-.5850634-2.83898246-1.6090736-3.85566829-.1951894-.19379323-.1950192-.50782531.0003802-.70141028.1953993-.19358497.512034-.19341614.7072234.00037709 1.2094886 1.20083761 1.901635 2.8250555 1.901635 4.55670148 0 1.73268608-.6929822 3.35779608-1.9037571 4.55880738zm2.1233994 2.1025159c-.195234.193749-.5118687.1938462-.7072235.0002171-.1953548-.1936292-.1954528-.5076613-.0002189-.7014104 1.5832215-1.5711805 2.4881302-3.6939808 2.4881302-5.96012998 0-2.26581266-.9046382-4.3883241-2.487443-5.95944795-.1952117-.19377107-.1950777-.50780316.0002993-.70141031s.5120117-.19347426.7072234.00029682c1.7683321 1.75528196 2.7800854 4.12911258 2.7800854 6.66056144 0 2.53182498-1.0120556 4.90597838-2.7808529 6.66132328zm-14.21898205-3.6854911c-.5523759 0-1.00016505-.4441085-1.00016505-.991944v-3.96777631c0-.54783558.44778915-.99194407 1.00016505-.99194407h2.0003301l5.41965617-3.8393633c.44948677-.31842296 1.07413994-.21516983 1.39520191.23062232.12116339.16823446.18629727.36981184.18629727.57655577v12.01603479c0 .5478356-.44778914.9919441-1.00016505.9919441-.20845738 0-.41170538-.0645985-.58133413-.184766l-5.41965617-3.8393633zm0-.991944h2.32084805l5.68047235 4.0241292v-12.01603479l-5.68047235 4.02412928h-2.32084805z" fill-rule="evenodd"/></symbol><symbol id="icon-block" viewBox="0 0 24 24"><path d="m0 0h24v24h-24z" fill-rule="evenodd"/></symbol><symbol id="icon-book" viewBox="0 0 18 18"><path d="m4 13v-11h1v11h11v-11h-13c-.55228475 0-1 .44771525-1 1v10.2675644c.29417337-.1701701.63571286-.2675644 1-.2675644zm12 1h-13c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1h13zm0 3h-13c-1.1045695 0-2-.8954305-2-2v-12c0-1.1045695.8954305-2 2-2h13c.5522847 0 1 .44771525 1 1v14c0 .5522847-.4477153 1-1 1zm-8.5-13h6c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1 2h4c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-4c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-broad" viewBox="0 0 24 24"><path d="m9.18274226 7.81v7.7999954l2.48162734-2.4816273c.3928221-.3928221 1.0219731-.4005617 1.4030652-.0194696.3911301.3911301.3914806 1.0249268-.0001404 1.4165479l-4.17620796 4.1762079c-.39120769.3912077-1.02508144.3916069-1.41671995-.0000316l-4.1763942-4.1763942c-.39122514-.3912251-.39767006-1.0190815-.01657798-1.4001736.39113012-.3911301 1.02337106-.3930364 1.41951349.0031061l2.48183446 2.4818344v-8.7999954c0-.54911294.4426881-.99439484.99778758-.99557515l8.00221246-.00442485c.5522847 0 1 .44771525 1 1s-.4477153 1-1 1z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 20.182742 24.805206)"/></symbol><symbol id="icon-calendar" viewBox="0 0 18 18"><path d="m12.5 0c.2761424 0 .5.21505737.5.49047852v.50952148h2c1.1072288 0 2 .89451376 2 2v12c0 1.1072288-.8945138 2-2 2h-12c-1.1072288 0-2-.8945138-2-2v-12c0-1.1072288.89451376-2 2-2h1v1h-1c-.55393837 0-1 .44579254-1 1v3h14v-3c0-.55393837-.4457925-1-1-1h-2v1.50952148c0 .27088381-.2319336.49047852-.5.49047852-.2761424 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.2319336-.49047852.5-.49047852zm3.5 7h-14v8c0 .5539384.44579254 1 1 1h12c.5539384 0 1-.4457925 1-1zm-11 6v1h-1v-1zm3 0v1h-1v-1zm3 0v1h-1v-1zm-6-2v1h-1v-1zm3 0v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-3-2v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-5.5-9c.27614237 0 .5.21505737.5.49047852v.50952148h5v1h-5v1.50952148c0 .27088381-.23193359.49047852-.5.49047852-.27614237 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.23193359-.49047852.5-.49047852z" fill-rule="evenodd"/></symbol><symbol id="icon-cart" viewBox="0 0 18 18"><path d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"/></symbol><symbol id="icon-chevron-less" viewBox="0 0 10 10"><path d="m5.58578644 4-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 -1 -1 0 9 9)"/></symbol><symbol id="icon-chevron-more" viewBox="0 0 10 10"><path d="m5.58578644 6-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4.00000002c-.39052429.3905243-1.02368927.3905243-1.41421356 0s-.39052429-1.02368929 0-1.41421358z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-chevron-right" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-circle-fill" viewBox="0 0 16 16"><path d="m8 14c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-circle" viewBox="0 0 16 16"><path d="m8 12c2.209139 0 4-1.790861 4-4s-1.790861-4-4-4-4 1.790861-4 4 1.790861 4 4 4zm0 2c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-citation" viewBox="0 0 18 18"><path d="m8.63593473 5.99995183c2.20913897 0 3.99999997 1.79084375 3.99999997 3.99996146 0 1.40730761-.7267788 2.64486871-1.8254829 3.35783281 1.6240224.6764218 2.8754442 2.0093871 3.4610603 3.6412466l-1.0763845.000006c-.5310008-1.2078237-1.5108121-2.1940153-2.7691712-2.7181346l-.79002167-.329052v-1.023992l.63016577-.4089232c.8482885-.5504661 1.3698342-1.4895187 1.3698342-2.51898361 0-1.65683828-1.3431457-2.99996146-2.99999997-2.99996146-1.65685425 0-3 1.34312318-3 2.99996146 0 1.02946491.52154569 1.96851751 1.36983419 2.51898361l.63016581.4089232v1.023992l-.79002171.329052c-1.25835905.5241193-2.23817037 1.5103109-2.76917113 2.7181346l-1.07638453-.000006c.58561612-1.6318595 1.8370379-2.9648248 3.46106024-3.6412466-1.09870405-.7129641-1.82548287-1.9505252-1.82548287-3.35783281 0-2.20911771 1.790861-3.99996146 4-3.99996146zm7.36897597-4.99995183c1.1018574 0 1.9950893.89353404 1.9950893 2.00274083v5.994422c0 1.10608317-.8926228 2.00274087-1.9950893 2.00274087l-3.0049107-.0009037v-1l3.0049107.00091329c.5490631 0 .9950893-.44783123.9950893-1.00275046v-5.994422c0-.55646537-.4450595-1.00275046-.9950893-1.00275046h-14.00982141c-.54906309 0-.99508929.44783123-.99508929 1.00275046v5.9971821c0 .66666024.33333333.99999036 1 .99999036l2-.00091329v1l-2 .0009037c-1 0-2-.99999041-2-1.99998077v-5.9971821c0-1.10608322.8926228-2.00274083 1.99508929-2.00274083zm-8.5049107 2.9999711c.27614237 0 .5.22385547.5.5 0 .2761349-.22385763.5-.5.5h-4c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm3 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-1c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm4 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238651-.5-.5 0-.27614453.2238576-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-close" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-collections" viewBox="0 0 18 18"><path d="m15 4c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2h1c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-1v-1zm-4-3c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2v-9c0-1.1045695.8954305-2 2-2zm0 1h-8c-.51283584 0-.93550716.38604019-.99327227.88337887l-.00672773.11662113v9c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227zm-1.5 7c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-compare" viewBox="0 0 18 18"><path d="m12 3c3.3137085 0 6 2.6862915 6 6s-2.6862915 6-6 6c-1.0928452 0-2.11744941-.2921742-2.99996061-.8026704-.88181407.5102749-1.90678042.8026704-3.00003939.8026704-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6c1.09325897 0 2.11822532.29239547 3.00096303.80325037.88158756-.51107621 1.90619177-.80325037 2.99903697-.80325037zm-6 1c-2.76142375 0-5 2.23857625-5 5 0 2.7614237 2.23857625 5 5 5 .74397391 0 1.44999672-.162488 2.08451611-.4539116-1.27652344-1.1000812-2.08451611-2.7287264-2.08451611-4.5460884s.80799267-3.44600721 2.08434391-4.5463015c-.63434719-.29121054-1.34037-.4536985-2.08434391-.4536985zm6 0c-.7439739 0-1.4499967.16248796-2.08451611.45391156 1.27652341 1.10008123 2.08451611 2.72872644 2.08451611 4.54608844s-.8079927 3.4460072-2.08434391 4.5463015c.63434721.2912105 1.34037001.4536985 2.08434391.4536985 2.7614237 0 5-2.2385763 5-5 0-2.76142375-2.2385763-5-5-5zm-1.4162763 7.0005324h-3.16744736c.15614659.3572676.35283837.6927622.58425872 1.0006671h1.99892988c.23142036-.3079049.42811216-.6433995.58425876-1.0006671zm.4162763-2.0005324h-4c0 .34288501.0345146.67770871.10025909 1.0011864h3.79948181c.0657445-.32347769.1002591-.65830139.1002591-1.0011864zm-.4158423-1.99953894h-3.16831543c-.13859957.31730812-.24521946.651783-.31578599.99935097h3.79988742c-.0705665-.34756797-.1771864-.68204285-.315786-.99935097zm-1.58295822-1.999926-.08316107.06199199c-.34550042.27081213-.65446126.58611297-.91825862.93727862h2.00044041c-.28418626-.37830727-.6207872-.71499149-.99902072-.99927061z" fill-rule="evenodd"/></symbol><symbol id="icon-download-file" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.5046024 4c.27614237 0 .5.21637201.5.49209595v6.14827645l1.7462789-1.77990922c.1933927-.1971171.5125222-.19455839.7001689-.0069117.1932998.19329992.1910058.50899492-.0027774.70277812l-2.59089271 2.5908927c-.19483374.1948337-.51177825.1937771-.70556873-.0000133l-2.59099079-2.5909908c-.19484111-.1948411-.19043735-.5151448-.00279066-.70279146.19329987-.19329987.50465175-.19237083.70018565.00692852l1.74638684 1.78001764v-6.14827695c0-.27177709.23193359-.49209595.5-.49209595z" fill-rule="evenodd"/></symbol><symbol id="icon-download" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-editors" viewBox="0 0 18 18"><path d="m8.72592184 2.54588137c-.48811714-.34391207-1.08343326-.54588137-1.72592184-.54588137-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400182l-.79002171.32905522c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274v.9009805h-1v-.9009805c0-2.5479714 1.54557359-4.79153984 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4 1.09079823 0 2.07961816.43662103 2.80122451 1.1446278-.37707584.09278571-.7373238.22835063-1.07530267.40125357zm-2.72592184 14.45411863h-1v-.9009805c0-2.5479714 1.54557359-4.7915398 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.40732121-.7267788 2.64489414-1.8254829 3.3578652 2.2799093.9496145 3.8254829 3.1931829 3.8254829 5.7411543v.9009805h-1v-.9009805c0-2.1155483-1.2760206-4.0125067-3.2099783-4.8180274l-.7900217-.3290552v-1.02400184l.6301658-.40892721c.8482885-.55047139 1.3698342-1.489533 1.3698342-2.51900785 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400184l-.79002171.3290552c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274z" fill-rule="evenodd"/></symbol><symbol id="icon-email" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-.0049107 2.55749512v1.44250488l-7 4-7-4v-1.44250488l7 4z" fill-rule="evenodd"/></symbol><symbol id="icon-error" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm2.8630343 4.71100931-2.8630343 2.86303426-2.86303426-2.86303426c-.39658757-.39658757-1.03281091-.39438847-1.4265779-.00062147-.39651227.39651226-.39348876 1.03246767.00062147 1.4265779l2.86303426 2.86303426-2.86303426 2.8630343c-.39658757.3965875-.39438847 1.0328109-.00062147 1.4265779.39651226.3965122 1.03246767.3934887 1.4265779-.0006215l2.86303426-2.8630343 2.8630343 2.8630343c.3965875.3965876 1.0328109.3943885 1.4265779.0006215.3965122-.3965123.3934887-1.0324677-.0006215-1.4265779l-2.8630343-2.8630343 2.8630343-2.86303426c.3965876-.39658757.3943885-1.03281091.0006215-1.4265779-.3965123-.39651227-1.0324677-.39348876-1.4265779.00062147z" fill-rule="evenodd"/></symbol><symbol id="icon-ethics" viewBox="0 0 18 18"><path d="m6.76384967 1.41421356.83301651-.8330165c.77492941-.77492941 2.03133823-.77492941 2.80626762 0l.8330165.8330165c.3750728.37507276.8837806.58578644 1.4142136.58578644h1.3496361c1.1045695 0 2 .8954305 2 2v1.34963611c0 .53043298.2107137 1.03914081.5857864 1.41421356l.8330165.83301651c.7749295.77492941.7749295 2.03133823 0 2.80626762l-.8330165.8330165c-.3750727.3750728-.5857864.8837806-.5857864 1.4142136v1.3496361c0 1.1045695-.8954305 2-2 2h-1.3496361c-.530433 0-1.0391408.2107137-1.4142136.5857864l-.8330165.8330165c-.77492939.7749295-2.03133821.7749295-2.80626762 0l-.83301651-.8330165c-.37507275-.3750727-.88378058-.5857864-1.41421356-.5857864h-1.34963611c-1.1045695 0-2-.8954305-2-2v-1.3496361c0-.530433-.21071368-1.0391408-.58578644-1.4142136l-.8330165-.8330165c-.77492941-.77492939-.77492941-2.03133821 0-2.80626762l.8330165-.83301651c.37507276-.37507275.58578644-.88378058.58578644-1.41421356v-1.34963611c0-1.1045695.8954305-2 2-2h1.34963611c.53043298 0 1.03914081-.21071368 1.41421356-.58578644zm-1.41421356 1.58578644h-1.34963611c-.55228475 0-1 .44771525-1 1v1.34963611c0 .79564947-.31607052 1.55871121-.87867966 2.12132034l-.8330165.83301651c-.38440512.38440512-.38440512 1.00764896 0 1.39205408l.8330165.83301646c.56260914.5626092.87867966 1.3256709.87867966 2.1213204v1.3496361c0 .5522847.44771525 1 1 1h1.34963611c.79564947 0 1.55871121.3160705 2.12132034.8786797l.83301651.8330165c.38440512.3844051 1.00764896.3844051 1.39205408 0l.83301646-.8330165c.5626092-.5626092 1.3256709-.8786797 2.1213204-.8786797h1.3496361c.5522847 0 1-.4477153 1-1v-1.3496361c0-.7956495.3160705-1.5587112.8786797-2.1213204l.8330165-.83301646c.3844051-.38440512.3844051-1.00764896 0-1.39205408l-.8330165-.83301651c-.5626092-.56260913-.8786797-1.32567087-.8786797-2.12132034v-1.34963611c0-.55228475-.4477153-1-1-1h-1.3496361c-.7956495 0-1.5587112-.31607052-2.1213204-.87867966l-.83301646-.8330165c-.38440512-.38440512-1.00764896-.38440512-1.39205408 0l-.83301651.8330165c-.56260913.56260914-1.32567087.87867966-2.12132034.87867966zm3.58698944 11.4960218c-.02081224.002155-.04199226.0030286-.06345763.002542-.98766446-.0223875-1.93408568-.3063547-2.75885125-.8155622-.23496767-.1450683-.30784554-.4531483-.16277726-.688116.14506827-.2349677.45314827-.3078455.68811595-.1627773.67447084.4164161 1.44758575.6483839 2.25617384.6667123.01759529.0003988.03495764.0017019.05204365.0038639.01713363-.0017748.03452416-.0026845.05212715-.0026845 2.4852814 0 4.5-2.0147186 4.5-4.5 0-1.04888973-.3593547-2.04134635-1.0074477-2.83787157-.1742817-.21419731-.1419238-.5291218.0722736-.70340353.2141973-.17428173.5291218-.14192375.7034035.07227357.7919032.97327203 1.2317706 2.18808682 1.2317706 3.46900153 0 3.0375661-2.4624339 5.5-5.5 5.5-.02146768 0-.04261937-.0013529-.06337445-.0039782zm1.57975095-10.78419583c.2654788.07599731.419084.35281842.3430867.61829728-.0759973.26547885-.3528185.419084-.6182973.3430867-.37560116-.10752146-.76586237-.16587951-1.15568824-.17249193-2.5587807-.00064534-4.58547766 2.00216524-4.58547766 4.49928198 0 .62691557.12797645 1.23496.37274865 1.7964426.11035133.2531347-.0053975.5477984-.25853224.6581497-.25313473.1103514-.54779841-.0053975-.65814974-.2585322-.29947131-.6869568-.45606667-1.43097603-.45606667-2.1960601 0-3.05211432 2.47714695-5.50006595 5.59399617-5.49921198.48576182.00815502.96289603.0795037 1.42238033.21103795zm-1.9766658 6.41091303 2.69835-2.94655317c.1788432-.21040373.4943901-.23598862.7047939-.05714545.2104037.17884318.2359886.49439014.0571454.70479387l-3.01637681 3.34277395c-.18039088.1999106-.48669547.2210637-.69285412.0478478l-1.93095347-1.62240047c-.21213845-.17678204-.24080048-.49206439-.06401844-.70420284.17678204-.21213844.49206439-.24080048.70420284-.06401844z" fill-rule="evenodd"/></symbol><symbol id="icon-expand"><path d="M7.498 11.918a.997.997 0 0 0-.003-1.411.995.995 0 0 0-1.412-.003l-4.102 4.102v-3.51A1 1 0 0 0 .98 10.09.992.992 0 0 0 0 11.092V17c0 .554.448 1.002 1.002 1.002h5.907c.554 0 1.002-.45 1.002-1.003 0-.539-.45-.978-1.006-.978h-3.51zm3.005-5.835a.997.997 0 0 0 .003 1.412.995.995 0 0 0 1.411.003l4.103-4.103v3.51a1 1 0 0 0 1.001 1.006A.992.992 0 0 0 18 6.91V1.002A1 1 0 0 0 17 0h-5.907a1.003 1.003 0 0 0-1.002 1.003c0 .539.45.978 1.006.978h3.51z" fill-rule="evenodd"/></symbol><symbol id="icon-explore" viewBox="0 0 18 18"><path d="m9 17c4.418278 0 8-3.581722 8-8s-3.581722-8-8-8-8 3.581722-8 8 3.581722 8 8 8zm0 1c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9zm0-2.5c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5c2.969509 0 5.400504-2.3575119 5.497023-5.31714844.0090007-.27599565.2400359-.49243782.5160315-.48343711.2759957.0090007.4924378.2400359.4834371.51603155-.114093 3.4985237-2.9869632 6.284554-6.4964916 6.284554zm-.29090657-12.99359748c.27587424-.01216621.50937715.20161139.52154336.47748563.01216621.27587423-.20161139.50937715-.47748563.52154336-2.93195733.12930094-5.25315116 2.54886451-5.25315116 5.49456849 0 .27614237-.22385763.5-.5.5s-.5-.22385763-.5-.5c0-3.48142406 2.74307146-6.34074398 6.20909343-6.49359748zm1.13784138 8.04763908-1.2004882-1.20048821c-.19526215-.19526215-.19526215-.51184463 0-.70710678s.51184463-.19526215.70710678 0l1.20048821 1.2004882 1.6006509-4.00162734-4.50670359 1.80268144-1.80268144 4.50670359zm4.10281269-6.50378907-2.6692597 6.67314927c-.1016411.2541026-.3029834.4554449-.557086.557086l-6.67314927 2.6692597 2.66925969-6.67314926c.10164107-.25410266.30298336-.45544495.55708602-.55708602z" fill-rule="evenodd"/></symbol><symbol id="icon-filter" viewBox="0 0 16 16"><path d="m14.9738641 0c.5667192 0 1.0261359.4477136 1.0261359 1 0 .24221858-.0902161.47620768-.2538899.65849851l-5.6938314 6.34147206v5.49997973c0 .3147562-.1520673.6111434-.4104543.7999971l-2.05227171 1.4999945c-.45337535.3313696-1.09655869.2418269-1.4365902-.1999993-.13321514-.1730955-.20522717-.3836284-.20522717-.5999978v-6.99997423l-5.69383133-6.34147206c-.3731872-.41563511-.32996891-1.0473954.09653074-1.41107611.18705584-.15950448.42716133-.2474224.67571519-.2474224zm-5.9218641 8.5h-2.105v6.491l.01238459.0070843.02053271.0015705.01955278-.0070558 2.0532976-1.4990996zm-8.02585008-7.5-.01564945.00240169 5.83249953 6.49759831h2.313l5.836-6.499z"/></symbol><symbol id="icon-home" viewBox="0 0 18 18"><path d="m9 5-6 6v5h4v-4h4v4h4v-5zm7 6.5857864v4.4142136c0 .5522847-.4477153 1-1 1h-5v-4h-2v4h-5c-.55228475 0-1-.4477153-1-1v-4.4142136c-.25592232 0-.51184464-.097631-.70710678-.2928932l-.58578644-.5857864c-.39052429-.3905243-.39052429-1.02368929 0-1.41421358l8.29289322-8.29289322 8.2928932 8.29289322c.3905243.39052429.3905243 1.02368928 0 1.41421358l-.5857864.5857864c-.1952622.1952622-.4511845.2928932-.7071068.2928932zm-7-9.17157284-7.58578644 7.58578644.58578644.5857864 7-6.99999996 7 6.99999996.5857864-.5857864z" fill-rule="evenodd"/></symbol><symbol id="icon-image" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm-3.49645283 10.1752453-3.89407257 6.7495552c.11705545.048464.24538859.0751995.37998328.0751995h10.60290092l-2.4329715-4.2154691-1.57494129 2.7288098zm8.49779013 6.8247547c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v13.98991071l4.50814957-7.81026689 3.08089884 5.33809539 1.57494129-2.7288097 3.5875735 6.2159812zm-3.0059397-11c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm0 1c-.5522847 0-1 .44771525-1 1s.4477153 1 1 1 1-.44771525 1-1-.4477153-1-1-1z" fill-rule="evenodd"/></symbol><symbol id="icon-info" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-institution" viewBox="0 0 18 18"><path d="m7 16.9998189v-2.0003623h4v2.0003623h2v-3.0005434h-8v3.0005434zm-3-10.00181122h-1.52632364c-.27614237 0-.5-.22389817-.5-.50009056 0-.13995446.05863589-.27350497.16166338-.36820841l1.23156713-1.13206327h-2.36690687v12.00217346h3v-2.0003623h-3v-1.0001811h3v-1.0001811h1v-4.00072448h-1zm10 0v2.00036224h-1v4.00072448h1v1.0001811h3v1.0001811h-3v2.0003623h3v-12.00217346h-2.3695309l1.2315671 1.13206327c.2033191.186892.2166633.50325042.0298051.70660631-.0946863.10304615-.2282126.16169266-.3681417.16169266zm3-3.00054336c.5522847 0 1 .44779634 1 1.00018112v13.00235456h-18v-13.00235456c0-.55238478.44771525-1.00018112 1-1.00018112h3.45499992l4.20535144-3.86558216c.19129876-.17584288.48537447-.17584288.67667324 0l4.2053514 3.86558216zm-4 3.00054336h-8v1.00018112h8zm-2 6.00108672h1v-4.00072448h-1zm-1 0v-4.00072448h-2v4.00072448zm-3 0v-4.00072448h-1v4.00072448zm8-4.00072448c.5522847 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.4477153-1.00018112 1-1.00018112zm-12 0c.55228475 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.44771525-1.00018112 1-1.00018112zm5.99868798-7.81907007-5.24205601 4.81852671h10.48411203zm.00131202 3.81834559c-.55228475 0-1-.44779634-1-1.00018112s.44771525-1.00018112 1-1.00018112 1 .44779634 1 1.00018112-.44771525 1.00018112-1 1.00018112zm-1 11.00199236v1.0001811h2v-1.0001811z" fill-rule="evenodd"/></symbol><symbol id="icon-location" viewBox="0 0 18 18"><path d="m9.39521328 16.2688008c.79596342-.7770119 1.59208152-1.6299956 2.33285652-2.5295081 1.4020032-1.7024324 2.4323601-3.3624519 2.9354918-4.871847.2228715-.66861448.3364384-1.29323246.3364384-1.8674457 0-3.3137085-2.6862915-6-6-6-3.36356866 0-6 2.60156856-6 6 0 .57421324.11356691 1.19883122.3364384 1.8674457.50313169 1.5093951 1.53348863 3.1694146 2.93549184 4.871847.74077492.8995125 1.53689309 1.7524962 2.33285648 2.5295081.13694479.1336842.26895677.2602648.39521328.3793207.12625651-.1190559.25826849-.2456365.39521328-.3793207zm-.39521328 1.7311992s-7-6-7-11c0-4 3.13400675-7 7-7 3.8659932 0 7 3.13400675 7 7 0 5-7 11-7 11zm0-8c-1.65685425 0-3-1.34314575-3-3s1.34314575-3 3-3c1.6568542 0 3 1.34314575 3 3s-1.3431458 3-3 3zm0-1c1.1045695 0 2-.8954305 2-2s-.8954305-2-2-2-2 .8954305-2 2 .8954305 2 2 2z" fill-rule="evenodd"/></symbol><symbol id="icon-minus" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-newsletter" viewBox="0 0 18 18"><path d="m9 11.8482489 2-1.1428571v-1.7053918h-4v1.7053918zm-3-1.7142857v-2.1339632h6v2.1339632l3-1.71428574v-6.41967746h-12v6.41967746zm10-5.3839632 1.5299989.95624934c.2923814.18273835.4700011.50320827.4700011.8479983v8.44575236c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-8.44575236c0-.34479003.1776197-.66525995.47000106-.8479983l1.52999894-.95624934v-2.75c0-.55228475.44771525-1 1-1h12c.5522847 0 1 .44771525 1 1zm0 1.17924764v3.07075236l-7 4-7-4v-3.07075236l-1 .625v8.44575236c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-8.44575236zm-10-1.92924764h6v1h-6zm-1 2h8v1h-8z" fill-rule="evenodd"/></symbol><symbol id="icon-orcid" viewBox="0 0 18 18"><path d="m9 1c4.418278 0 8 3.581722 8 8s-3.581722 8-8 8-8-3.581722-8-8 3.581722-8 8-8zm-2.90107518 5.2732337h-1.41865256v7.1712107h1.41865256zm4.55867178.02508949h-2.99247027v7.14612121h2.91062487c.7673039 0 1.4476365-.1483432 2.0410182-.445034s1.0511995-.7152915 1.3734671-1.2558144c.3222677-.540523.4833991-1.1603247.4833991-1.85942385 0-.68545815-.1602789-1.30270225-.4808414-1.85175082-.3205625-.54904856-.7707074-.97532211-1.3504481-1.27883343-.5797408-.30351132-1.2413173-.45526471-1.9847495-.45526471zm-.1892674 1.07933542c.7877654 0 1.4143875.22336734 1.8798852.67010873.4654977.44674138.698243 1.05546001.698243 1.82617415 0 .74343221-.2310402 1.34447791-.6931277 1.80315511-.4620874.4586773-1.0750688.6880124-1.8389625.6880124h-1.46810075v-4.98745039zm-5.08652545-3.71099194c-.21825533 0-.410525.08444276-.57681478.25333081-.16628977.16888806-.24943341.36245684-.24943341.58071218 0 .22345188.08314364.41961891.24943341.58850696.16628978.16888806.35855945.25333082.57681478.25333082.233845 0 .43390938-.08314364.60019916-.24943342.16628978-.16628977.24943342-.36375592.24943342-.59240436 0-.233845-.08314364-.43131115-.24943342-.59240437s-.36635416-.24163862-.60019916-.24163862z" fill-rule="evenodd"/></symbol><symbol id="icon-plus" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-print" viewBox="0 0 18 18"><path d="m16.0049107 5h-14.00982141c-.54941618 0-.99508929.4467783-.99508929.99961498v6.00077002c0 .5570958.44271433.999615.99508929.999615h1.00491071v-3h12v3h1.0049107c.5494162 0 .9950893-.4467783.9950893-.999615v-6.00077002c0-.55709576-.4427143-.99961498-.9950893-.99961498zm-2.0049107-1v-2.00208688c0-.54777062-.4519464-.99791312-1.0085302-.99791312h-7.9829396c-.55661731 0-1.0085302.44910695-1.0085302.99791312v2.00208688zm1 10v2.0018986c0 1.103521-.9019504 1.9981014-2.0085302 1.9981014h-7.9829396c-1.1092806 0-2.0085302-.8867064-2.0085302-1.9981014v-2.0018986h-1.00491071c-1.10185739 0-1.99508929-.8874333-1.99508929-1.999615v-6.00077002c0-1.10435686.8926228-1.99961498 1.99508929-1.99961498h1.00491071v-2.00208688c0-1.10341695.90195036-1.99791312 2.0085302-1.99791312h7.9829396c1.1092806 0 2.0085302.89826062 2.0085302 1.99791312v2.00208688h1.0049107c1.1018574 0 1.9950893.88743329 1.9950893 1.99961498v6.00077002c0 1.1043569-.8926228 1.999615-1.9950893 1.999615zm-1-3h-10v5.0018986c0 .5546075.44702548.9981014 1.0085302.9981014h7.9829396c.5565964 0 1.0085302-.4491701 1.0085302-.9981014zm-9 1h8v1h-8zm0 2h5v1h-5zm9-5c-.5522847 0-1-.44771525-1-1s.4477153-1 1-1 1 .44771525 1 1-.4477153 1-1 1z" fill-rule="evenodd"/></symbol><symbol id="icon-search" viewBox="0 0 22 22"><path d="M21.697 20.261a1.028 1.028 0 01.01 1.448 1.034 1.034 0 01-1.448-.01l-4.267-4.267A9.812 9.811 0 010 9.812a9.812 9.811 0 1117.43 6.182zM9.812 18.222A8.41 8.41 0 109.81 1.403a8.41 8.41 0 000 16.82z" fill-rule="evenodd"/></symbol><symbol id="icon-social-facebook" viewBox="0 0 24 24"><path d="m6.00368507 20c-1.10660471 0-2.00368507-.8945138-2.00368507-1.9940603v-12.01187942c0-1.10128908.89451376-1.99406028 1.99406028-1.99406028h12.01187942c1.1012891 0 1.9940603.89451376 1.9940603 1.99406028v12.01187942c0 1.1012891-.88679 1.9940603-2.0032184 1.9940603h-2.9570132v-6.1960818h2.0797387l.3114113-2.414723h-2.39115v-1.54164807c0-.69911803.1941355-1.1755439 1.1966615-1.1755439l1.2786739-.00055875v-2.15974763l-.2339477-.02492088c-.3441234-.03134957-.9500153-.07025255-1.6293054-.07025255-1.8435726 0-3.1057323 1.12531866-3.1057323 3.19187953v1.78079225h-2.0850778v2.414723h2.0850778v6.1960818z" fill-rule="evenodd"/></symbol><symbol id="icon-social-twitter" viewBox="0 0 24 24"><path d="m18.8767135 6.87445248c.7638174-.46908424 1.351611-1.21167363 1.6250764-2.09636345-.7135248.43394112-1.50406.74870123-2.3464594.91677702-.6695189-.73342162-1.6297913-1.19486605-2.6922204-1.19486605-2.0399895 0-3.6933555 1.69603749-3.6933555 3.78628909 0 .29642457.0314329.58673729.0942985.8617704-3.06469922-.15890802-5.78835241-1.66547825-7.60988389-3.9574208-.3174714.56076194-.49978171 1.21167363-.49978171 1.90536824 0 1.31404706.65223085 2.47224203 1.64236444 3.15218497-.60350999-.0198635-1.17401554-.1925232-1.67222562-.47366811v.04583885c0 1.83355406 1.27302891 3.36609966 2.96411421 3.71294696-.31118484.0886217-.63651445.1329326-.97441718.1329326-.2357461 0-.47149219-.0229194-.69466516-.0672303.47149219 1.5065703 1.83253297 2.6036468 3.44975116 2.632678-1.2651707 1.0160946-2.85724264 1.6196394-4.5891906 1.6196394-.29861172 0-.59093688-.0152796-.88011875-.0504227 1.63450624 1.0726291 3.57548241 1.6990934 5.66104951 1.6990934 6.79263079 0 10.50641749-5.7711113 10.50641749-10.7751859l-.0094298-.48894775c.7229547-.53478659 1.3516109-1.20250585 1.8419628-1.96190282-.6632323.30100846-1.3751855.50422736-2.1217148.59590507z" fill-rule="evenodd"/></symbol><symbol id="icon-social-youtube" viewBox="0 0 24 24"><path d="m10.1415 14.3973208-.0005625-5.19318431 4.863375 2.60554491zm9.963-7.92753362c-.6845625-.73643756-1.4518125-.73990314-1.803375-.7826454-2.518875-.18714178-6.2971875-.18714178-6.2971875-.18714178-.007875 0-3.7861875 0-6.3050625.18714178-.352125.04274226-1.1188125.04620784-1.8039375.7826454-.5394375.56084773-.7149375 1.8344515-.7149375 1.8344515s-.18 1.49597903-.18 2.99138042v1.4024082c0 1.495979.18 2.9913804.18 2.9913804s.1755 1.2736038.7149375 1.8344515c.685125.7364376 1.5845625.7133337 1.9850625.7901542 1.44.1420891 6.12.1859866 6.12.1859866s3.78225-.005776 6.301125-.1929178c.3515625-.0433198 1.1188125-.0467854 1.803375-.783223.5394375-.5608477.7155-1.8344515.7155-1.8344515s.18-1.4954014.18-2.9913804v-1.4024082c0-1.49540139-.18-2.99138042-.18-2.99138042s-.1760625-1.27360377-.7155-1.8344515z" fill-rule="evenodd"/></symbol><symbol id="icon-subject-medicine" viewBox="0 0 18 18"><path d="m12.5 8h-6.5c-1.65685425 0-3 1.34314575-3 3v1c0 1.6568542 1.34314575 3 3 3h1v-2h-.5c-.82842712 0-1.5-.6715729-1.5-1.5s.67157288-1.5 1.5-1.5h1.5 2 1 2c1.6568542 0 3-1.34314575 3-3v-1c0-1.65685425-1.3431458-3-3-3h-2v2h1.5c.8284271 0 1.5.67157288 1.5 1.5s-.6715729 1.5-1.5 1.5zm-5.5-1v-1h-3.5c-1.38071187 0-2.5-1.11928813-2.5-2.5s1.11928813-2.5 2.5-2.5h1.02786405c.46573528 0 .92507448.10843528 1.34164078.31671843l1.13382424.56691212c.06026365-1.05041141.93116291-1.88363055 1.99667093-1.88363055 1.1045695 0 2 .8954305 2 2h2c2.209139 0 4 1.790861 4 4v1c0 2.209139-1.790861 4-4 4h-2v1h2c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2h-2c0 1.1045695-.8954305 2-2 2s-2-.8954305-2-2h-1c-2.209139 0-4-1.790861-4-4v-1c0-2.209139 1.790861-4 4-4zm0-2v-2.05652691c-.14564246-.03538148-.28733393-.08714006-.42229124-.15461871l-1.15541752-.57770876c-.27771087-.13885544-.583937-.21114562-.89442719-.21114562h-1.02786405c-.82842712 0-1.5.67157288-1.5 1.5s.67157288 1.5 1.5 1.5zm4 1v1h1.5c.2761424 0 .5-.22385763.5-.5s-.2238576-.5-.5-.5zm-1 1v-5c0-.55228475-.44771525-1-1-1s-1 .44771525-1 1v5zm-2 4v5c0 .5522847.44771525 1 1 1s1-.4477153 1-1v-5zm3 2v2h2c.5522847 0 1-.4477153 1-1s-.4477153-1-1-1zm-4-1v-1h-.5c-.27614237 0-.5.2238576-.5.5s.22385763.5.5.5zm-3.5-9h1c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-success" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm3.4860198 4.98163161-4.71802968 5.50657859-2.62834168-2.02300024c-.42862421-.36730544-1.06564993-.30775346-1.42283677.13301307-.35718685.44076653-.29927542 1.0958383.12934879 1.46314377l3.40735508 2.7323063c.42215801.3385221 1.03700951.2798252 1.38749189-.1324571l5.38450527-6.33394549c.3613513-.43716226.3096573-1.09278382-.115462-1.46437175-.4251192-.37158792-1.0626796-.31842941-1.4240309.11873285z" fill-rule="evenodd"/></symbol><symbol id="icon-table" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587l-4.0059107-.001.001.001h-1l-.001-.001h-5l.001.001h-1l-.001-.001-3.00391071.001c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm-11.0059107 5h-3.999v6.9941413c0 .5572961.44630695 1.0058587.99508929 1.0058587h3.00391071zm6 0h-5v8h5zm5.0059107-4h-4.0059107v3h5.001v1h-5.001v7.999l4.0059107.001c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-12.5049107 9c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.22385763-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1.499-5h-5v3h5zm-6 0h-3.00391071c-.54871518 0-.99508929.44887827-.99508929 1.00585866v1.99414134h3.999z" fill-rule="evenodd"/></symbol><symbol id="icon-tick-circle" viewBox="0 0 24 24"><path d="m12 2c5.5228475 0 10 4.4771525 10 10s-4.4771525 10-10 10-10-4.4771525-10-10 4.4771525-10 10-10zm0 1c-4.97056275 0-9 4.02943725-9 9 0 4.9705627 4.02943725 9 9 9 4.9705627 0 9-4.0294373 9-9 0-4.97056275-4.0294373-9-9-9zm4.2199868 5.36606669c.3613514-.43716226.9989118-.49032077 1.424031-.11873285s.4768133 1.02720949.115462 1.46437175l-6.093335 6.94397871c-.3622945.4128716-.9897871.4562317-1.4054264.0971157l-3.89719065-3.3672071c-.42862421-.3673054-.48653564-1.0223772-.1293488-1.4631437s.99421256-.5003185 1.42283677-.1330131l3.11097438 2.6987741z" fill-rule="evenodd"/></symbol><symbol id="icon-tick" viewBox="0 0 16 16"><path d="m6.76799012 9.21106946-3.1109744-2.58349728c-.42862421-.35161617-1.06564993-.29460792-1.42283677.12733148s-.29927541 1.04903009.1293488 1.40064626l3.91576307 3.23873978c.41034319.3393961 1.01467563.2976897 1.37450571-.0948578l6.10568327-6.660841c.3613513-.41848908.3096572-1.04610608-.115462-1.4018218-.4251192-.35571573-1.0626796-.30482786-1.424031.11366122z" fill-rule="evenodd"/></symbol><symbol id="icon-update" viewBox="0 0 18 18"><path d="m1 13v1c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-1h-1v-10h-14v10zm16-1h1v2c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-2h1v-9c0-.55228475.44771525-1 1-1h14c.5522847 0 1 .44771525 1 1zm-1 0v1h-4.5857864l-1 1h-2.82842716l-1-1h-4.58578644v-1h5l1 1h2l1-1zm-13-8h12v7h-12zm1 1v5h10v-5zm1 1h4v1h-4zm0 2h4v1h-4z" fill-rule="evenodd"/></symbol><symbol id="icon-upload" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.85576936 4.14572769c.19483374-.19483375.51177826-.19377714.70556874.00001334l2.59099082 2.59099079c.1948411.19484112.1904373.51514474.0027906.70279143-.1932998.19329987-.5046517.19237083-.7001856-.00692852l-1.74638687-1.7800176v6.14827687c0 .2717771-.23193359.492096-.5.492096-.27614237 0-.5-.216372-.5-.492096v-6.14827641l-1.74627892 1.77990922c-.1933927.1971171-.51252214.19455839-.70016883.0069117-.19329987-.19329988-.19100584-.50899493.00277731-.70277808z" fill-rule="evenodd"/></symbol><symbol id="icon-video" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-8.30912922 2.24944486 4.60460462 2.73982242c.9365543.55726659.9290753 1.46522435 0 2.01804082l-4.60460462 2.7398224c-.93655425.5572666-1.69578148.1645632-1.69578148-.8937585v-5.71016863c0-1.05087579.76670616-1.446575 1.69578148-.89375851zm-.67492769.96085624v5.5750128c0 .2995102-.10753745.2442517.16578928.0847713l4.58452283-2.67497259c.3050619-.17799716.3051624-.21655446 0-.39461026l-4.58452283-2.67497264c-.26630747-.15538481-.16578928-.20699944-.16578928.08477139z" fill-rule="evenodd"/></symbol><symbol id="icon-warning" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-checklist-banner" viewBox="0 0 56.69 56.69"><path style="fill:none" d="M0 0h56.69v56.69H0z"/><clipPath id="b"><use xlink:href="#a" style="overflow:visible"/></clipPath><path d="M21.14 34.46c0-6.77 5.48-12.26 12.24-12.26s12.24 5.49 12.24 12.26-5.48 12.26-12.24 12.26c-6.76-.01-12.24-5.49-12.24-12.26zm19.33 10.66 10.23 9.22s1.21 1.09 2.3-.12l2.09-2.32s1.09-1.21-.12-2.3l-10.23-9.22m-19.29-5.92c0-4.38 3.55-7.94 7.93-7.94s7.93 3.55 7.93 7.94c0 4.38-3.55 7.94-7.93 7.94-4.38-.01-7.93-3.56-7.93-7.94zm17.58 12.99 4.14-4.81" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round"/><path d="M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5m14.42-5.2V4.86s0-2.93-2.93-2.93H4.13s-2.93 0-2.93 2.93v37.57s0 2.93 2.93 2.93h15.01M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round;stroke-linejoin:round"/></symbol><symbol id="icon-chevron-down" viewBox="0 0 16 16"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="m19.462 0c1.413 0 2.538 1.184 2.538 2.619v12.762c0 1.435-1.125 2.619-2.538 2.619h-16.924c-1.413 0-2.538-1.184-2.538-2.619v-12.762c0-1.435 1.125-2.619 2.538-2.619zm.538 5.158-7.378 6.258a2.549 2.549 0 0 1 -3.253-.008l-7.369-6.248v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619zm-.538-3.158h-16.924c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-expand-image" viewBox="0 0 18 18"><path d="m7.49754099 11.9178212c.38955542-.3895554.38761957-1.0207846-.00290473-1.4113089-.39324695-.3932469-1.02238878-.3918247-1.41130883-.0029047l-4.10273549 4.1027355.00055454-3.5103985c.00008852-.5603185-.44832171-1.006032-1.00155062-1.0059446-.53903074.0000852-.97857527.4487442-.97866268 1.0021075l-.00093318 5.9072465c-.00008751.553948.44841131 1.001882 1.00174994 1.0017946l5.906983-.0009331c.5539233-.0000875 1.00197907-.4486389 1.00206646-1.0018679.00008515-.5390307-.45026621-.9784332-1.00588841-.9783454l-3.51010549.0005545zm3.00571741-5.83449376c-.3895554.38955541-.3876196 1.02078454.0029047 1.41130883.393247.39324696 1.0223888.39182478 1.4113089.00290473l4.1027355-4.10273549-.0005546 3.5103985c-.0000885.56031852.4483217 1.006032 1.0015506 1.00594461.5390308-.00008516.9785753-.44874418.9786627-1.00210749l.0009332-5.9072465c.0000875-.553948-.4484113-1.00188204-1.0017499-1.00179463l-5.906983.00093313c-.5539233.00008751-1.0019791.44863892-1.0020665 1.00186784-.0000852.53903074.4502662.97843325 1.0058884.97834547l3.5101055-.00055449z" fill-rule="evenodd"/></symbol><symbol id="icon-github" viewBox="0 0 100 100"><path fill-rule="evenodd" clip-rule="evenodd" d="M48.854 0C21.839 0 0 22 0 49.217c0 21.756 13.993 40.172 33.405 46.69 2.427.49 3.316-1.059 3.316-2.362 0-1.141-.08-5.052-.08-9.127-13.59 2.934-16.42-5.867-16.42-5.867-2.184-5.704-5.42-7.17-5.42-7.17-4.448-3.015.324-3.015.324-3.015 4.934.326 7.523 5.052 7.523 5.052 4.367 7.496 11.404 5.378 14.235 4.074.404-3.178 1.699-5.378 3.074-6.6-10.839-1.141-22.243-5.378-22.243-24.283 0-5.378 1.94-9.778 5.014-13.2-.485-1.222-2.184-6.275.486-13.038 0 0 4.125-1.304 13.426 5.052a46.97 46.97 0 0 1 12.214-1.63c4.125 0 8.33.571 12.213 1.63 9.302-6.356 13.427-5.052 13.427-5.052 2.67 6.763.97 11.816.485 13.038 3.155 3.422 5.015 7.822 5.015 13.2 0 18.905-11.404 23.06-22.324 24.283 1.78 1.548 3.316 4.481 3.316 9.126 0 6.6-.08 11.897-.08 13.526 0 1.304.89 2.853 3.316 2.364 19.412-6.52 33.405-24.935 33.405-46.691C97.707 22 75.788 0 48.854 0z"/></symbol><symbol id="icon-springer-arrow-left"><path d="M15 7a1 1 0 000-2H3.385l2.482-2.482a.994.994 0 00.02-1.403 1.001 1.001 0 00-1.417 0L.294 5.292a1.001 1.001 0 000 1.416l4.176 4.177a.991.991 0 001.4.016 1 1 0 00-.003-1.42L3.385 7H15z"/></symbol><symbol id="icon-springer-arrow-right"><path d="M1 7a1 1 0 010-2h11.615l-2.482-2.482a.994.994 0 01-.02-1.403 1.001 1.001 0 011.417 0l4.176 4.177a1.001 1.001 0 010 1.416l-4.176 4.177a.991.991 0 01-1.4.016 1 1 0 01.003-1.42L12.615 7H1z"/></symbol><symbol id="icon-submit-open" viewBox="0 0 16 17"><path d="M12 0c1.10457 0 2 .895431 2 2v5c0 .276142-.223858.5-.5.5S13 7.276142 13 7V2c0-.512836-.38604-.935507-.883379-.993272L12 1H6v3c0 1.10457-.89543 2-2 2H1v8c0 .512836.38604.935507.883379.993272L2 15h6.5c.276142 0 .5.223858.5.5s-.223858.5-.5.5H2c-1.104569 0-2-.89543-2-2V5.828427c0-.530433.210714-1.039141.585786-1.414213L4.414214.585786C4.789286.210714 5.297994 0 5.828427 0H12Zm3.41 11.14c.250899.250899.250274.659726 0 .91-.242954.242954-.649606.245216-.9-.01l-1.863671-1.900337.001043 5.869492c0 .356992-.289839.637138-.647372.637138-.347077 0-.647371-.285256-.647371-.637138l-.001043-5.869492L9.5 12.04c-.253166.258042-.649726.260274-.9.01-.242954-.242954-.252269-.657731 0-.91l2.942184-2.951303c.250908-.250909.66127-.252277.91353-.000017L15.41 11.14ZM5 1.413 1.413 5H4c.552285 0 1-.447715 1-1V1.413ZM11 3c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Zm0 2c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Z" fill-rule="nonzero"/></symbol></svg> </div> </footer> <div class="c-site-messages message u-hide u-hide-print c-site-messages--nature-briefing c-site-messages--nature-briefing-email-variant c-site-messages--nature-briefing-redesign-2020 sans-serif " data-component-id="nature-briefing-banner" data-component-expirydays="30" data-component-trigger-scroll-percentage="15" data-track="in-view" data-track-action="in-view" data-track-category="nature briefing" data-track-label="Briefing banner visible: Flagship"> <div class="c-site-messages__banner-large"> <div class="c-site-messages__close-container"> <button class="c-site-messages__close" data-track="click" data-track-category="nature briefing" data-track-label="Briefing banner dismiss: Flagship"> <svg width="25px" height="25px" focusable="false" aria-hidden="true" viewBox="0 0 25 25" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <title>Close banner</title> <defs></defs> <g stroke="none" stroke-width="1" fill="none" fill-rule="evenodd"> <rect opacity="0" x="0" y="0" width="25" height="25"></rect> <path d="M6.29679575,16.2772478 C5.90020818,16.6738354 5.90240728,17.3100587 6.29617427,17.7038257 C6.69268654,18.100338 7.32864195,18.0973145 7.72275218,17.7032043 L12,13.4259564 L16.2772478,17.7032043 C16.6738354,18.0997918 17.3100587,18.0975927 17.7038257,17.7038257 C18.100338,17.3073135 18.0973145,16.671358 17.7032043,16.2772478 L13.4259564,12 L17.7032043,7.72275218 C18.0997918,7.32616461 18.0975927,6.68994127 17.7038257,6.29617427 C17.3073135,5.89966201 16.671358,5.90268552 16.2772478,6.29679575 L12,10.5740436 L7.72275218,6.29679575 C7.32616461,5.90020818 6.68994127,5.90240728 6.29617427,6.29617427 C5.89966201,6.69268654 5.90268552,7.32864195 6.29679575,7.72275218 L10.5740436,12 L6.29679575,16.2772478 Z" fill="#ffffff"></path> </g> </svg> <span class="visually-hidden">Close</span> </button> </div> <div class="c-site-messages__form-container"> <div class="grid grid-12 last"> <div class="grid grid-4"> <img alt="Nature Briefing" src="/static/images/logos/nature-briefing-logo-n150-white-d81c9da3ec.svg" width="250" height="40"> <p class="c-site-messages--nature-briefing__strapline extra-tight-line-height">Sign up for the <em>Nature Briefing</em> newsletter — what matters in science, free to your inbox daily.</p> </div> <div class="grid grid-8 last"> <form action="https://www.nature.com/briefing/briefing" method="post" data-location="banner" data-track="signup_nature_briefing_banner" data-track-action="transmit-form" data-track-category="nature briefing" data-track-label="Briefing banner submit: Flagship"> <input id="briefing-banner-signup-form-input-track-originReferralPoint" type="hidden" name="track_originReferralPoint" value="MainBriefingBanner"> <input id="briefing-banner-signup-form-input-track-formType" type="hidden" name="track_formType" value="DirectEmailBanner"> <input type="hidden" value="false" name="gdpr_tick" id="gdpr_tick_banner"> <input type="hidden" value="false" name="marketing" id="marketing_input_banner"> <input type="hidden" value="false" name="marketing_tick" id="marketing_tick_banner"> <input type="hidden" value="MainBriefingBanner" name="brieferEntryPoint" id="brieferEntryPoint_banner"> <label class="nature-briefing-banner__email-label" for="emailAddress">Email address</label> <div class="nature-briefing-banner__email-wrapper"> <input class="nature-briefing-banner__email-input box-sizing text14" type="email" id="emailAddress" name="emailAddress" value="" placeholder="e.g. jo.smith@university.ac.uk" required data-test-element="briefing-emailbanner-email-input"> <input type="hidden" value="true" name="N:nature_briefing_daily" id="defaultNewsletter_banner"> <button type="submit" class="nature-briefing-banner__submit-button box-sizing text14" data-test-element="briefing-emailbanner-signup-button">Sign up</button> </div> <div class="nature-briefing-banner__checkbox-wrapper grid grid-12 last"> <input class="nature-briefing-banner__checkbox-checkbox" id="gdpr-briefing-banner-checkbox" type="checkbox" name="gdpr" value="true" data-test-element="briefing-emailbanner-gdpr-checkbox" required> <label class="nature-briefing-banner__checkbox-label box-sizing text13 sans-serif block tighten-line-height" for="gdpr-briefing-banner-checkbox">I agree my information will be processed in accordance with the <em>Nature</em> and Springer Nature Limited <a href="https://www.nature.com/info/privacy">Privacy Policy</a>.</label> </div> </form> </div> </div> </div> </div> <div class="c-site-messages__banner-small"> <div class="c-site-messages__close-container"> <button class="c-site-messages__close" data-track="click" data-track-category="nature briefing" data-track-label="Briefing banner dismiss: Flagship"> <svg width="25px" height="25px" focusable="false" aria-hidden="true" viewBox="0 0 25 25" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <title>Close banner</title> <defs></defs> <g stroke="none" stroke-width="1" fill="none" fill-rule="evenodd"> <rect opacity="0" x="0" y="0" width="25" height="25"></rect> <path d="M6.29679575,16.2772478 C5.90020818,16.6738354 5.90240728,17.3100587 6.29617427,17.7038257 C6.69268654,18.100338 7.32864195,18.0973145 7.72275218,17.7032043 L12,13.4259564 L16.2772478,17.7032043 C16.6738354,18.0997918 17.3100587,18.0975927 17.7038257,17.7038257 C18.100338,17.3073135 18.0973145,16.671358 17.7032043,16.2772478 L13.4259564,12 L17.7032043,7.72275218 C18.0997918,7.32616461 18.0975927,6.68994127 17.7038257,6.29617427 C17.3073135,5.89966201 16.671358,5.90268552 16.2772478,6.29679575 L12,10.5740436 L7.72275218,6.29679575 C7.32616461,5.90020818 6.68994127,5.90240728 6.29617427,6.29617427 C5.89966201,6.69268654 5.90268552,7.32864195 6.29679575,7.72275218 L10.5740436,12 L6.29679575,16.2772478 Z" fill="#ffffff"></path> </g> </svg> <span class="visually-hidden">Close</span> </button> </div> <div class="c-site-messages__content text14"> <span class="c-site-messages--nature-briefing__strapline strong">Get the most important science stories of the day, free in your inbox.</span> <a class="nature-briefing__link text14 sans-serif" data-track="click" data-track-category="nature briefing" data-track-label="Small-screen banner CTA to site" data-test-element="briefing-banner-link" target="_blank" rel="noreferrer noopener" href="https://www.nature.com/briefing/signup/?brieferEntryPoint=MainBriefingBanner">Sign up for Nature Briefing </a> </div> </div> </div> <noscript> <img hidden src="https://verify.nature.com/verify/nature.png" width="0" height="0" style="display: none" alt=""> </noscript> <script src="//content.readcube.com/ping?doi=10.1038/s41588-024-01911-7&format=js&last_modified=2024-09-18" async></script> </body> </html>