CINXE.COM
ExplorEnz: EC 7.*
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd"> <html> <head> <title>ExplorEnz: EC 7.*</title> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /> <meta name="keywords" content="EC 7.*,ExplorEnz,IUBMB,Enzyme Nomenclature Database,Enzyme Classification" /> <meta name="description" content="Enzyme Nomenclature Database" /> <meta name="robots" content="index,nofollow"> <meta name="googlebot" content="index,nofollow" /> <link rel="stylesheet" type="text/css" href="enzyme2.css"> <link rel="shortcut icon" href="favicon.ico" /> <style type="text/css" media="screen"> <!-- #nav a#home { background-color:#f6f6f6; color:#000; } .style1 {color:#6b707a} --> </style> </head> <base href="//query.php?search=search_some&es=on&display=show_all&order=ec_num&st=0-6&ec=7.*"> <body> <a href="index.php"> <img src="images/banner_5.gif" alt="The Enzyme Database" width="920 px" height="" border="0" /></a> </div><table border="0" cellborder="0" cellspacing="0" cellpadding="0" width="100%" id="nav"> <tr> <td class="f" nowrap="nowrap" colspan="1" border="0"> <li><a href="./" alt="Home" title="Home"><small>Home</small></a></li> <li><a href="search.php" alt="Simple Search" title="Search the database"><small>Search</small></a></li> <li><a href="class.php" alt="Enzyme Classes" title="Hierarchical view of the Enzyme Classification system"><small>Enzymes by Class</small></a></li> <li><a href="newenz.php" alt="New/Modified Enzymes" title="New/modified enzyme entries"><small>New/Amended Enzymes</small></a></li> <li><a href="stats.php" alt="Enzyme Count" title="Enzyme count"><small>Statistics</small></a></li> <li><a href="forms.php" alt="Forms" title="Submit data on a new enzyme, or report an error"><small>Forms</small></a></li> <li><a href="news.php" alt="News" title="Reports on recent developments in enzyme classification or changes to nomenclature"><small>News</small></a></li> <li><a href="about.php" alt="Help Files, Archives" title="Quick-start Guide, FAQ, Supplements"><small>Information</small></a></li> <li><a href="downloads.php" alt="Downloads" title="Download the database"><small>Downloads</small></a></li> <li></li> </td> </tr> </table> <p> <p> <strong>Displaying entries 1-50 of 99.</strong><br><br><small><< Previous | <a href="query.php?ec=7.*&of=50&nr=50">Next >></a></small> <a href="query.php?ec=7.*&pr=on" target="new"><img src="images/print.png" alt="printer_icon" align="bottom" border="0"></a><small>Printable version</small> <table border="0" cellpadding="2" cellspacing="3" width="100%"> <tr valign="bottom"> <td width="20%" align="right"><a name="1"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.1</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">proton-translocating NAD(P)<small><sup>+</sup></small> transhydrogenase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">NADPH + NAD<small><sup>+</sup></small> + H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = NADP<small><sup>+</sup></small> + NADH + H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1"><em>pntA</em> (<em>gene name</em>); <em>pntB</em> (<em>gene name</em>); NNT (<em>gene name</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">NADPH:NAD<small><sup>+</sup></small> oxidoreductase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">The enzyme is a membrane bound proton-translocating pyridine nucleotide transhydrogenase that couples the reversible reduction of NADP by NADH to an inward proton translocation across the membrane. In the bacterium <em>Escherichia coli</em> the enzyme provides a major source of cytosolic NADPH. Detoxification of reactive oxygen species in mitochondria by glutathione peroxidases depends on NADPH produced by this enzyme.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.1" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.1" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.1.1.1%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.1" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.1" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.1.1.1%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Clarke, D.M. and Bragg, P.D. Cloning and expression of the transhydrogenase gene of <em>Escherichia <em>coli</em></em>. <em>J. Bacteriol.</em> <strong>162</strong> (1985) 367–373. [<a href="https://doi.org/10.1128/jb.162.1.367-373.1985" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/3884596" target="new">3884596</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Clarke, D.M. and Bragg, P.D. Purification and properties of reconstitutively active nicotinamide nucleotide transhydrogenase of <em>Escherichia coli</em>. <em>Eur. J. Biochem.</em> <strong>149</strong> (1985) 517–523. [<a href="https://doi.org/10.1111/j.1432-1033.1985.tb08955.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/3891338" target="new">3891338</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Glavas, N.A., Hou, C. and Bragg, P.D. Involvement of histidine-91 of the β subunit in proton translocation by the pyridine nucleotide transhydrogenase of <em>Escherichia <em>coli</em></em>. <em>Biochemistry</em> <strong>34</strong> (1995) 7694–7702. [<a href="https://doi.org/10.1021/bi00023a016" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7779816" target="new">7779816</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Sauer, U., Canonaco, F., Heri, S., Perrenoud, A. and Fischer, E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of <em>Escherichia coli</em>. <em>J. Biol. Chem.</em> <strong>279</strong> (2004) 6613–6619. [<a href="https://doi.org/10.1074/jbc.M311657200" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/14660605" target="new">14660605</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Bizouarn, T., Fjellstrom, O., Meuller, J., Axelsson, M., Bergkvist, A., Johansson, C., Goran Karlsson, B. and Rydstrom, J. Proton translocating nicotinamide nucleotide transhydrogenase from <em>E. coli</em>. Mechanism of action deduced from its structural and catalytic properties. <em>Biochim. Biophys. Acta</em> <strong>1457</strong> (2000) 211–228. [<a href="https://doi.org/10.1016/S0005-2728(00)00103-1" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/10773166" target="new">10773166</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>White, S.A., Peake, S.J., McSweeney, S., Leonard, G., Cotton, N.P. and Jackson, J.B. The high-resolution structure of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase from human heart mitochondria. <em>Structure</em> <strong>8</strong> (2000) 1–12. [<a href="https://doi.org/10.1016/s0969-2126(00)00075-7" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/10673423" target="new">10673423</a>] </td> </tr> </td></tr> <tr> <td>7. </td> <td>Johansson, T., Oswald, C., Pedersen, A., Tornroth, S., Okvist, M., Karlsson, B.G., Rydstrom, J. and Krengel, U. X-ray structure of domain I of the proton-pumping membrane protein transhydrogenase from <em>Escherichia coli</em>. <em>J. Mol. Biol.</em> <strong>352</strong> (2005) 299–312. [<a href="https://doi.org/10.1016/j.jmb.2005.07.022" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/16083909" target="new">16083909</a>] </td> </tr> </td></tr> <tr> <td>8. </td> <td>Meimaridou, E., Kowalczyk, J., Guasti, L., Hughes, C.R., Wagner, F., Frommolt, P., Nurnberg, P., Mann, N.P., Banerjee, R., Saka, H.N., Chapple, J.P., King, P.J., Clark, A.J. and Metherell, L.A. Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency. <em>Nat. Genet.</em> <strong>44</strong> (2012) 740–742. [<a href="https://doi.org/10.1038/ng.2299" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/22634753" target="new">22634753</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.1 created 2015 as EC 1.6.1.5, transferred 2018 to EC 7.1.1.1 (EC 1.6.1.2 created 1986, incorporated 2023)]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="2"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.2</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">NADH:ubiquinone reductase (H<small><sup>+</sup></small>-translocating)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">NADH + H<small><sup>+</sup></small> + an ubiquinone + <strong>4</strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = NAD<small><sup>+</sup></small> + an ubiquinol + <strong>4</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">ubiquinone reductase (<em>ambiguous</em>); type 1 dehydrogenase; complex 1 dehydrogenase; coenzyme Q reductase (<em>ambiguous</em>); complex I (electron transport chain); complex I (mitochondrial electron transport); complex I (NADH:Q1 oxidoreductase); dihydronicotinamide adenine dinucleotide-coenzyme Q reductase (<em>ambiguous</em>); DPNH-coenzyme Q reductase (<em>ambiguous</em>); DPNH-ubiquinone reductase (<em>ambiguous</em>); mitochondrial electron transport complex 1; mitochondrial electron transport complex I; NADH coenzyme Q<small><sub>1</sub></small> reductase; NADH-coenzyme Q oxidoreductase (<em>ambiguous</em>); NADH-coenzyme Q reductase (<em>ambiguous</em>); NADH-CoQ oxidoreductase (<em>ambiguous</em>); NADH-dehydrogenase (ubiquinone) (<em>ambiguous</em>); NADH-CoQ reductase (<em>ambiguous</em>); NADH-ubiquinone reductase (<em>ambiguous</em>); NADH-ubiquinone oxidoreductase (<em>ambiguous</em>); NADH-ubiquinone-1 reductase; reduced nicotinamide adenine dinucleotide-coenzyme Q reductase (<em>ambiguous</em>); NADH:ubiquinone oxidoreductase complex; NADH-Q6 oxidoreductase (<em>ambiguous</em>); electron transfer complex I; NADH<small><sub>2</sub></small> dehydrogenase (ubiquinone)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">NADH:ubiquinone oxidoreductase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">The enzyme is a very large complex that participates in electron transfer chains of mitochondria and aerobic bacteria, transferring two electrons from NADH to a ubiquinone in the membrane's ubiquinone pool while pumping additional protons across the membrane, generating proton motive force. Different reports disagree whether the enzyme pumps 3 or 4 protons. Reversed electron transport through this enzyme can reduce NAD<small><sup>+</sup></small> to NADH. </td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.2" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.2" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.1.1.2%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.2" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.2" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.1.1.2%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a>, CAS registry number: 9028-04-0</td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Hatefi, Y., Ragan, C.I. and Galante, Y.M. The enzymes and the enzyme complexes of the mitochondrial oxidative phosphorylation system. In: Martonosi, A. (Ed.), <em>The Enzymes of Biological Membranes</em>, 2nd edn, vol. 4, Plenum Press, New York, 1985, pp. 1–70. </td> </tr> </td></tr> <tr> <td>2. </td> <td>Herter, S.M., Kortluke, C.M. and Drews, G. Complex I of <em>Rhodobacter capsulatus</em> and its role in reverted electron transport. <em>Arch. Microbiol.</em> <strong>169</strong> (1998) 98–105. [<a href="https://doi.org/10.1007/s002030050548" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9446680" target="new">9446680</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Hunte, C., Zickermann, V. and Brandt, U. Functional modules and structural basis of conformational coupling in mitochondrial complex I. <em>Science</em> <strong>329</strong> (2010) 448–451. [<a href="https://doi.org/10.1126/science.1191046" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/20595580" target="new">20595580</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Efremov, R.G., Baradaran, R. and Sazanov, L.A. The architecture of respiratory complex I. <em>Nature</em> <strong>465</strong> (2010) 441–445. [<a href="https://doi.org/10.1038/nature09066" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/20505720" target="new">20505720</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Wikstrom, M. and Hummer, G. Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. <em>Proc. Natl. Acad. Sci. USA</em> <strong>109</strong> (2012) 4431–4436. [<a href="https://doi.org/10.1073/pnas.1120949109" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/22392981" target="new">22392981</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.2 created 1961 as EC 1.6.5.3, deleted 1965, reinstated 1983, modified 2011, modified 2013, transferred 2018 to EC 7.1.1.2, modified 2023]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="3"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.3</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ubiquinol oxidase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1"><strong>2</strong> quinol + O<small><sub>2</sub></small><small><sub>[side 2]</sub></small> + <strong>8</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small> = <strong>2</strong> quinone + <strong>2</strong> H<small><sub>2</sub></small>O<small><sub>[side 2]</sub></small> + <strong>8</strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> </td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">cyoABCD (<em>gene names</em>); cytochrome <em>bo</em><small><sub>3</sub></small> oxidase; cytochrome <em>bb</em><small><sub>3</sub></small> oxidase; cytochrome <em>bo</em> oxidase; Cyo oxidase; ubiquinol:O<small><sub>2</sub></small> oxidoreductase (H<small><sup>+</sup></small>-transporting); ubiquinol:oxygen oxidoreductase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">quinol:oxygen oxidoreductase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">Contains a dinuclear centre comprising heme and copper. This terminal oxidase enzyme generates proton motive force by two mechanisms: (1) transmembrane charge separation resulting from utilizing protons and electrons originating from opposite sides of the membrane to generate water, and (2) active pumping of protons across the membrane. The bioenergetic efficiency (the number of charges driven across the membrane per electron used to reduce oxygen to water) of enzymes that have been characterized so far is 2. <em>cf</em>. <a href="query.php?ec=7.1.1.7" target="new">EC 7.1.1.7</a>, ubiquinol oxidase ubiquinol oxidase (electrogenic, proton-motive force generating).</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.3" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.3" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.1.1.3%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.3" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.3" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.1.1.3%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Miyoshi-Akiyama, T., Hayashi, M. and Unemoto, T. Purification and properties of cytochrome <em>bo</em>-type ubiquinol oxidase from a marine bacterium <em>Vibrio alginolyticus</em>. <em>Biochim. Biophys Acta</em> <strong>1141</strong> (1993) 283–287. [<a href="https://doi.org/10.1016/0005-2728(93)90054-j" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8443214" target="new">8443214</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>de Gier, J.W., Lubben, M., Reijnders, W.N., Tipker, C.A., Slotboom, D.J., van Spanning, R.J., Stouthamer, A.H. and van der Oost, J. The terminal oxidases of <em>Paracoccus denitrificans</em>. <em>Mol. Microbiol.</em> <strong>13</strong> (1994) 183–196. [<a href="https://doi.org/10.1111/j.1365-2958.1994.tb00414.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7984100" target="new">7984100</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Howitt, C.A. and Vermaas, W.F. Quinol and cytochrome oxidases in the cyanobacterium <em>Synechocystis</em> sp. PCC 6803. <em>Biochemistry</em> <strong>37</strong> (1998) 17944–17951. [<a href="https://doi.org/10.1021/bi981486n" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9922162" target="new">9922162</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puustinen, A., Iwata, S. and Wikstrom, M. The structure of the ubiquinol oxidase from <em>Escherichia coli</em> and its ubiquinone binding site. <em>Nat. Struct. Biol.</em> <strong>7</strong> (2000) 910–917. [<a href="https://doi.org/10.1038/82824" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/11017202" target="new">11017202</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Morales, G., Ugidos, A. and Rojo, F. Inactivation of the <em>Pseudomonas putida</em> cytochrome <em>o</em> ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases. <em>Environ. Microbiol.</em> <strong>8</strong> (2006) 1764–1774. [<a href="https://doi.org/10.1111/j.1462-2920.2006.01061.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/16958757" target="new">16958757</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Stenberg, F., von Heijne, G. and Daley, D.O. Assembly of the cytochrome <em>bo</em><small><sub>3</sub></small> complex. <em>J. Mol. Biol.</em> <strong>371</strong> (2007) 765–773. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/17583738" target="new">17583738</a>] </td> </tr> </td></tr> <tr> <td>7. </td> <td>Yap, L.L., Lin, M.T., Ouyang, H., Samoilova, R.I., Dikanov, S.A. and Gennis, R.B. The quinone-binding sites of the cytochrome <em>bo</em><small><sub>3</sub></small> ubiquinol oxidase from <em>Escherichia coli</em>. <em>Biochim. Biophys. Acta</em> <strong>1797</strong> (2010) 1924–1932. [<a href="https://doi.org/10.1016/j.bbabio.2010.04.011" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/20416270" target="new">20416270</a>] </td> </tr> </td></tr> <tr> <td>8. </td> <td>Choi, S.K., Lin, M.T., Ouyang, H. and Gennis, R.B. Searching for the low affinity ubiquinone binding site in cytochrome <em>bo</em><small><sub>3</sub></small> from <em>Escherichia coli</em>. <em>Biochim Biophys Acta Bioenerg</em> <strong>1858</strong> (2017) 366–370. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/28235459" target="new">28235459</a>] </td> </tr> </td></tr> <tr> <td>9. </td> <td>Choi, S.K., Schurig-Briccio, L., Ding, Z., Hong, S., Sun, C. and Gennis, R.B. Location of the substrate binding site of the cytochrome <em>bo</em><small><sub>3</sub></small> ubiquinol oxidase from <em>Escherichia <em>coli</em></em>. <em>J. Am. Chem. Soc.</em> <strong>139</strong> (2017) 8346–8354. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/28538096" target="new">28538096</a>] </td> </tr> </td></tr> <tr> <td>10. </td> <td>Graf, S., Brzezinski, P. and von Ballmoos, C. The proton pumping bo oxidase from Vitreoscilla. <em>Sci. Rep.</em> <strong>9</strong>:4766 (2019). [<a href="https://doi.org/10.1038/s41598-019-40723-2" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/30886219" target="new">30886219</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.3 created 2011 as EC 1.10.3.10, modified 2014, transferred 2018 to EC 7.1.1.3, modified 2023]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="4"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.4</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">caldariellaquinol oxidase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1"><strong>2</strong> caldariellaquinol + O<small><sub>2</sub></small> + <strong><em>n</em></strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = <strong>2</strong> caldariellaquinone + <strong>2</strong> H<small><sub>2</sub></small>O + <strong><em>n</em></strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Glossary:</strong></td> <td width="80%" colspan="1">caldariellaquinol = 6-(3,7,11,15,19,23-hexamethyltetracosyl)-5-(methylsulfanyl)-1-benzothiophene-4,7-diol</td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">SoxABCD quinol oxidase; SoxABCD complex; quinol oxidase SoxABCD; SoxM supercomplex; <em>aa</em><small><sub>3</sub></small>-type quinol oxidase; <em>aa</em><small><sub>3</sub></small> quinol oxidase; cytochrome <em>aa</em><small><sub>3</sub></small>; terminal quinol oxidase; terminal quinol:oxygen oxidoreductase; caldariella quinol:dioxygen oxidoreductase; cytochrome <em>aa</em><small><sub>3</sub></small>-type oxidase; caldariellaquinol:O<small><sub>2</sub></small> oxidoreductase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">caldariellaquinol:oxygen oxidoreductase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A copper-containing cytochrome. The enzyme from thermophilic archaea is part of the terminal oxidase and catalyses the reduction of O<small><sub>2</sub></small> to water, accompanied by the extrusion of protons across the cytoplasmic membrane. </td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.4" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.4" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.4" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.4" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Gleissner, M., Kaiser, U., Antonopoulos, E. and Schafer, G. The archaeal SoxABCD complex is a proton pump in <em>Sulfolobus acidocaldarius</em>. <em>J. Biol. Chem.</em> <strong>272</strong> (1997) 8417–8426. [<a href="https://doi.org/10.1074/jbc.272.13.8417" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9079667" target="new">9079667</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Purschke, W.G., Schmidt, C.L., Petersen, A. and Schafer, G. The terminal quinol oxidase of the hyperthermophilic archaeon <em>Acidianus ambivalens</em> exhibits a novel subunit structure and gene organization. <em>J. Bacteriol.</em> <strong>179</strong> (1997) 1344–1353. [<a href="https://doi.org/10.1128/JB.179.4.1344-1353.1997" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9023221" target="new">9023221</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Gilderson, G., Aagaard, A., Gomes, C.M., Adelroth, P., Teixeira, M. and Brzezinski, P. Kinetics of electron and proton transfer during O<small><sub>2</sub></small> reduction in cytochrome <em>aa</em><small><sub>3</sub></small> from <em>A. ambivalens</em>: an enzyme lacking Glu(I-286). <em>Biochim. Biophys. Acta</em> <strong>1503</strong> (2001) 261–270. [<a href="https://doi.org/10.1016/S0005-2728(00)00195-X" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/11115638" target="new">11115638</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Komorowski, L., Verheyen, W. and Schafer, G. The archaeal respiratory supercomplex SoxM from <em>S. acidocaldarius</em> combines features of quinole and cytochrome <em>c</em> oxidases. <em>Biol. Chem.</em> <strong>383</strong> (2002) 1791–1799. [<a href="https://doi.org/10.1515/BC.2002.200" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/12530544" target="new">12530544</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Muller, F.H., Bandeiras, T.M., Urich, T., Teixeira, M., Gomes, C.M. and Kletzin, A. Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. <em>Mol. Microbiol.</em> <strong>53</strong> (2004) 1147–1160. [<a href="https://doi.org/10.1111/j.1365-2958.2004.04193.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/15306018" target="new">15306018</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Bandeiras, T.M., Pereira, M.M., Teixeira, M., Moenne-Loccoz, P. and Blackburn, N.J. Structure and coordination of CuB in the <em>Acidianus ambivalens</em> <em>aa</em><small><sub>3</sub></small> quinol oxidase heme-copper center. <em>J. Biol. Inorg. Chem.</em> <strong>10</strong> (2005) 625–635. [<a href="https://doi.org/10.1007/s00775-005-0012-6" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/16163550" target="new">16163550</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.4 created 2013 as EC 1.10.3.13, transferred 2018 to EC 7.1.1.4]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="5"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.5</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">menaquinol oxidase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1"><strong>2</strong> menaquinol + O<small><sub>2</sub></small> + <strong><em>n</em></strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = <strong>2</strong> menaquinone + <strong>2</strong> H<small><sub>2</sub></small>O + <strong><em>n</em></strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">cytochrome <em>aa</em><small><sub>3</sub></small>-600 oxidase; cytochrome <em>bd</em> oxidase; menaquinol:O<small><sub>2</sub></small> oxidoreductase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">menaquinol:oxygen oxidoreductase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">Cytochrome <em>aa</em><small><sub>3</sub></small>-600, one of the principal respiratory oxidases from <em>Bacillus subtilis</em>, is a member of the heme-copper superfamily of oxygen reductases, and is a close homologue of the cytochrome <em>bo</em><small><sub>3</sub></small> ubiquinol oxidase from <em>Escherichia coli</em>, but uses menaquinol instead of ubiquinol as a substrate.The enzyme also pumps protons across the membrane bilayer, generating a proton motive force.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.5" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.5" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.5" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.5" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Lauraeus, M. and Wikstrom, M. The terminal quinol oxidases of <em>Bacillus subtilis</em> have different energy conservation properties. <em>J. Biol. Chem.</em> <strong>268</strong> (1993) 11470–11473. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8388393" target="new">8388393</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Lemma, E., Simon, J., Schagger, H. and Kroger, A. Properties of the menaquinol oxidase (Qox) and of qox deletion mutants of <em>Bacillus subtilis</em>. <em>Arch. Microbiol.</em> <strong>163</strong> (1995) 432–438. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7575098" target="new">7575098</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Yi, S.M., Narasimhulu, K.V., Samoilova, R.I., Gennis, R.B. and Dikanov, S.A. Characterization of the semiquinone radical stabilized by the cytochrome <em>aa</em><small><sub>3</sub></small>-600 menaquinol oxidase of <em>Bacillus subtilis</em>. <em>J. Biol. Chem.</em> <strong>285</strong> (2010) 18241–18251. [<a href="https://doi.org/10.1074/jbc.M110.116186" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/20351111" target="new">20351111</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.5 created 2011 as EC 1.10.3.12, transferred 2018 to EC 7.1.1.5]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="6"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.6</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">plastoquinol—plastocyanin reductase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">plastoquinol + <strong>2</strong> oxidized plastocyanin + <strong>2</strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = plastoquinone + <strong>2</strong> reduced plastocyanin + <strong>4</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">plastoquinol/plastocyanin oxidoreductase; cytochrome <em>f</em>/<em>b</em><small><sub>6</sub></small> complex; cytochrome <em>b</em><small><sub>6</sub></small><em>f</em> complex</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">plastoquinol:oxidized-plastocyanin oxidoreductase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">Contains two <em>b</em>-type cytochromes, two <em>c</em>-type cytochromes (<em>c</em><small><sub><em>n</em></sub></small> and <em>f</em>), and a [2Fe-2S] Rieske cluster. The enzyme plays a key role in photosynthesis, transferring electrons from photosystem II (<a href="query.php?ec=1.10.3.9" target="new">EC 1.10.3.9</a>) to photosystem I (<a href="query.php?ec=1.97.1.12" target="new">EC 1.97.1.12</a>). Cytochrome <em>c</em>-552 can act as acceptor instead of plastocyanin, but more slowly. In chloroplasts, protons are translocated through the thylakoid membrane from the stroma to the lumen. The mechanism occurs through the Q cycle as in <a href="query.php?ec=7.1.1.8" target="new">EC 7.1.1.8</a>, quinol—cytochrome-<em>c</em> reductase (complex III) and involves electron bifurcation.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.6" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.6" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.1.1.6%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.6" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.6" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.1.1.6%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a>, CAS registry number: 79079-13-3</td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Hurt, E. and Hauska, G. A cytochrome <em>f</em>/<em>b</em><small><sub>6</sub></small> complex of five polypeptides with plastoquinol-plastocyanin-oxidoreductase activity from spinach chloroplasts. <em>Eur. J. Biochem.</em> <strong>117</strong> (1981) 591–595. [<a href="https://doi.org/10.1111/j.1432-1033.1981.tb06379.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/6269845" target="new">6269845</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Cramer, W.A. and Zhang, H. Consequences of the structure of the cytochrome <em>b</em><small><sub>6</sub></small><em>f</em> complex for its charge transfer pathways. <em>Biochim. Biophys. Acta</em> <strong>1757</strong> (2006) 339–345. [<a href="https://doi.org/10.1016/j.bbabio.2006.04.020" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/16787635" target="new">16787635</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.6 created 1984 as EC 1.10.99.1, transferred 2011 to EC 1.10.9.1, transferred 2018 to EC 7.1.1.6]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="7"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.7</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">quinol oxidase (electrogenic, proton-motive force generating)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1"><strong>2</strong> quinol + O<small><sub>2</sub></small><small><sub>[side 2]</sub></small> + <strong>4</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small> = <strong>2</strong> quinone + <strong>2</strong> H<small><sub>2</sub></small>O<small><sub>[side 2]</sub></small> + <strong>4</strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> (overall reaction)<br>(1a) <strong>2</strong> quinol = <strong>2</strong> quinone + <strong>4</strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> + <strong>4</strong> e<small><sup>-</sup></small> <br>(1b) O<small><sub>2</sub></small><small><sub>[side 2]</sub></small> + <strong>4</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small> + <strong>4</strong> e<small><sup>-</sup></small> = <strong>2</strong> H<small><sub>2</sub></small>O<small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1"><em>cydAB</em> (<em>gene names</em>); <em>appBC</em> (<em>gene names</em>); cytochrome <em>bd</em> oxidase; cytochrome <em>bd</em>-I oxidase; cytochrome <em>bd</em>-II oxidase; ubiquinol:O<small><sub>2</sub></small> oxidoreductase (electrogenic, non H<small><sup>+</sup></small>-transporting); ubiquinol oxidase (electrogenic, proton-motive force generating); ubiquinol oxidase (electrogenic, non H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">quinol:oxygen oxidoreductase (electrogenic, non H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">This terminal oxidase enzyme is unable to pump protons but generates a proton motive force by transmembrane charge separation resulting from utilizing protons and electrons originating from opposite sides of the membrane to generate water. The bioenergetic efficiency (the number of charges driven across the membrane per electron used to reduce oxygen to water) is 1. The <em>bd</em>-I oxidase from the bacterium <em>Escherichia coli</em> is the predominant respiratory oxygen reductase that functions under microaerophilic conditions in that organism. <em>cf</em>. <a href="query.php?ec=7.1.1.3" target="new">EC 7.1.1.3</a>, ubiquinol oxidase (H<small><sup>+</sup></small>-transporting).</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.7" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.7" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.1.1.7%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.7" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.7" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.1.1.7%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Miller, M.J., Hermodson, M. and Gennis, R.B. The active form of the cytochrome <em>d</em> terminal oxidase complex of <em>Escherichia coli</em> is a heterodimer containing one copy of each of the two subunits. <em>J. Biol. Chem.</em> <strong>263</strong> (1988) 5235–5240. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/3281937" target="new">3281937</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Puustinen, A., Finel, M., Haltia, T., Gennis, R.B. and Wikstrom, M. Properties of the two terminal oxidases of <em>Escherichia coli</em>. <em>Biochemistry</em> <strong>30</strong> (1991) 3936–3942. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1850294" target="new">1850294</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Belevich, I., Borisov, V.B., Zhang, J., Yang, K., Konstantinov, A.A., Gennis, R.B. and Verkhovsky, M.I. Time-resolved electrometric and optical studies on cytochrome <em>bd</em> suggest a mechanism of electron-proton coupling in the di-heme active site. <em>Proc. Natl. Acad. Sci. USA</em> <strong>102</strong> (2005) 3657–3662. [<a href="https://doi.org/10.1073/pnas.0405683102" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/15728392" target="new">15728392</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Lenn, T., Leake, M.C. and Mullineaux, C.W. Clustering and dynamics of cytochrome <em>bd</em>-I complexes in the <em>Escherichia coli</em> plasma membrane <em>in vivo</em>. <em>Mol. Microbiol.</em> <strong>70</strong> (2008) 1397–1407. [<a href="https://doi.org/10.1111/j.1365-2958.2008.06486.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/19019148" target="new">19019148</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Shepherd, M., Sanguinetti, G., Cook, G.M. and Poole, R.K. Compensations for diminished terminal oxidase activity in <em>Escherichia coli</em>: cytochrome <em>bd</em>-II-mediated respiration and glutamate metabolism. <em>J. Biol. Chem.</em> <strong>285</strong> (2010) 18464–18472. [<a href="https://doi.org/10.1074/jbc.M110.118448" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/20392690" target="new">20392690</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Borisov, V.B., Murali, R., Verkhovskaya, M.L., Bloch, D.A., Han, H., Gennis, R.B. and Verkhovsky, M.I. Aerobic respiratory chain of <em>Escherichia coli</em> is not allowed to work in fully uncoupled mode. <em>Proc. Natl. Acad. Sci. USA</em> <strong>108</strong> (2011) 17320–17324. [<a href="https://doi.org/10.1073/pnas.1108217108" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/21987791" target="new">21987791</a>] </td> </tr> </td></tr> <tr> <td>7. </td> <td>Borisov, V.B., Gennis, R.B., Hemp, J. and Verkhovsky, M.I. The cytochrome <em>bd</em> respiratory oxygen reductases. <em>Biochim. Biophys. Acta</em> <strong>1807</strong> (2011) 1398–1413. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/21756872" target="new">21756872</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.7 created 2014 as EC 1.10.3.14, modified 2017, transferred 2018 to EC 7.1.1.7, modified 2020]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="8"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.8</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">quinol—cytochrome-<em>c</em> reductase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">quinol + <strong>2</strong> ferricytochrome <em>c</em> = quinone + <strong>2</strong> ferrocytochrome <em>c</em> + <strong>2</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">ubiquinol—cytochrome-<em>c</em> reductase; coenzyme Q-cytochrome <em>c</em> reductase; dihydrocoenzyme Q-cytochrome <em>c</em> reductase; reduced ubiquinone-cytochrome <em>c</em> reductase; complex III (mitochondrial electron transport); ubiquinone-cytochrome <em>c</em> reductase; ubiquinol-cytochrome <em>c</em> oxidoreductase; reduced coenzyme Q-cytochrome <em>c</em> reductase; ubiquinone-cytochrome <em>c</em> oxidoreductase; reduced ubiquinone-cytochrome <em>c</em> oxidoreductase; mitochondrial electron transport complex III; ubiquinol-cytochrome <em>c</em>-2 oxidoreductase; ubiquinone-cytochrome <em>b</em>-c1 oxidoreductase; ubiquinol-cytochrome <em>c</em><small><sub>2</sub></small> reductase; ubiquinol-cytochrome <em>c</em><small><sub>1</sub></small> oxidoreductase; CoQH<small><sub>2</sub></small>-cytochrome <em>c</em> oxidoreductase; ubihydroquinol:cytochrome <em>c</em> oxidoreductase; coenzyme QH<small><sub>2</sub></small>-cytochrome <em>c</em> reductase; QH<small><sub>2</sub></small>:cytochrome <em>c</em> oxidoreductase; ubiquinol:ferricytochrome-<em>c</em> oxidoreductase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">quinol:ferricytochrome-<em>c</em> oxidoreductase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">The enzyme, often referred to as the cytochrome <em>bc</em><small><sub>1</sub></small> complex or complex III, is the third complex in the electron transport chain. It is present in the mitochondria of all aerobic eukaryotes and in the inner membranes of most bacteria. The mammalian enzyme contains cytochromes <em>b</em>-562, b-566 and c1, and a 2-iron ferredoxin. Depending on the organism and physiological conditions, the enzyme extrudes either two or four protons from the cytoplasmic to the non-cytoplasmic compartment [<em>cf</em>. <a href="query.php?ec=7.1.1.2" target="new">EC 7.1.1.2</a>, NADH:ubiquinone reductase (H<small><sup>+</sup></small>-translocating)].</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="http://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.8" target="new">BRENDA</a>, <a href="http://enzyme.expasy.org/EC/7.1.1.8" target="new">EXPASY</a>, GENE, <a href="http://www.genome.ad.jp/dbget-bin/www_bget?ec:7.1.1.8" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.8" target="new">MetaCyc</a>, <a href="http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/enzymes/GetPage.pl?ec_number=7.1.1.8" target="new">PDB</a>, CAS registry number: 9027-03-6</td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Marres, C.A.M. and Slater, E.C. Polypeptide composition of purified QH<small><sub>2</sub></small>:cytochrome <em>c</em> oxidoreductase from beef-heart mitochondria. <em>Biochim. Biophys. Acta</em> <strong>462</strong> (1977) 531–548. [<a href="https://doi.org/10.1016/0005-2728(77)90099-8" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/597492" target="new">597492</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Rieske, J.S. Composition, structure, and function of complex III of the respiratory chain. <em>Biochim. Biophys. Acta</em> <strong>456</strong> (1976) 195–247. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/788795" target="new">788795</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Wikström, M., Krab, K. and Saraste, M. Proton-translocating cytochrome complexes. <em>Annu. Rev. Biochem.</em> <strong>50</strong> (1981) 623–655. [<a href="https://doi.org/10.1146/annurev.bi.50.070181.003203" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/6267990" target="new">6267990</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Sone, N., Tsuchiya, N., Inoue, M. and Noguchi, S. <em>Bacillus stearothermophilus</em> <em>qcr</em> operon encoding rieske FeS protein, cytochrome <em>b</em><small><sub>6</sub></small>, and a novel-type cytochrome <em>c</em><small><sub>1</sub></small> of quinol-cytochrome <em>c</em> reductase. <em>J. Biol. Chem.</em> <strong>271</strong> (1996) 12457–12462. [<a href="https://doi.org/10.1074/jbc.271.21.12457" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8647852" target="new">8647852</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Yu, J. and Le Brun, N.E. Studies of the cytochrome subunits of menaquinone:cytochrome <em>c</em> reductase (<em>bc</em> complex) of <em>Bacillus subtilis</em>. Evidence for the covalent attachment of heme to the cytochrome <em>b</em> subunit. <em>J. Biol. Chem.</em> <strong>273</strong> (1998) 8860–8866. [<a href="https://doi.org/10.1074/jbc.273.15.8860" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9535866" target="new">9535866</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Elbehti, A., Nitschke, W., Tron, P., Michel, C. and Lemesle-Meunier, D. Redox components of cytochrome <em>bc</em>-type enzymes in acidophilic prokaryotes. I. Characterization of the cytochrome <em>bc</em><small><sub>1</sub></small>-type complex of the acidophilic ferrous ion-oxidizing bacterium <em>Thiobacillus ferrooxidans</em>. <em>J. Biol. Chem.</em> <strong>274</strong> (1999) 16760–16765. [<a href="https://doi.org/10.1074/jbc.274.24.16760" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/10358017" target="new">10358017</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.8 created 1978 as EC 1.10.2.2, modified 2013, transferred 2018 to EC 7.1.1.8]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="9"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.9</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">cytochrome-<em>c</em> oxidase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1"><strong>4</strong> ferrocytochrome <em>c</em> + O<small><sub>2</sub></small> + <strong>8</strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = <strong>4</strong> ferricytochrome <em>c</em> + <strong>2</strong> H<small><sub>2</sub></small>O + <strong>4</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"></td> <td width="80%">For diagram, <a target="new" href="reaction/single/711i.html">click here</a></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">cytochrome <em>aa</em><small><sub>3</sub></small>; cytochrome <em>caa</em><small><sub>3</sub></small>; cytochrome <em>bb</em><small><sub>3</sub></small>; cytochrome <em>cbb</em><small><sub>3</sub></small>; cytochrome <em>ba</em><small><sub>3</sub></small>; cytochrome <em>a</em><small><sub>3</sub></small>; Warburg's respiratory enzyme; indophenol oxidase; indophenolase; complex IV (mitochondrial electron transport); ferrocytochrome <em>c</em> oxidase; cytochrome oxidase (<em>ambiguous</em>); NADH cytochrome <em>c</em> oxidase (<em>incorrect</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ferrocytochrome-<em>c</em>:oxygen oxidoreductase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">An oligomeric membrane heme-Cu:O<small><sub>2</sub></small> reductase-type enzyme that terminates the respiratory chains of aerobic and facultative aerobic organisms. The reduction of O<small><sub>2</sub></small> to water is accompanied by the extrusion of four protons. The cytochrome-<em>a</em><em>a</em><small><sub>3</sub></small> enzymes of mitochondria and many bacterial species are the most abundant group, but other variations, such as the bacterial cytochrome-<em>cb</em><em>b</em><small><sub>3</sub></small> enzymes, also exist. All of the variants have a conserved catalytic core subunit (subunit I) that contains a low-spin heme (of <em>a</em>- or <em>b</em>-type), a binuclear metal centre composed of a high-spin heme iron (of <em>a</em>-, <em>o</em>-, or <em>b</em>-type heme, referred to as <em>a</em><small><sub>3</sub></small>, <em>o</em><small><sub>3</sub></small> or <em>b</em><small><sub>3</sub></small> heme), and a Cu atom (CuB). Besides subunit I, the enzyme usually has at least two other core subunits: subunit II is the primary electron acceptor; subunit III usually does not contain any cofactors, but in the case of cb<em>b</em><small><sub>3</sub></small>-type enzymes it is a diheme <em>c</em>-type cytochrome. While most bacterial enzymes consist of only 3–4 subunits, the mitochondrial enzyme is much more complex and contains 14 subunits.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.9" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.9" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.1.1.9%5BEC%5D" target="new">Gene</a>, <a href="https://randr.nist.gov/enzyme/Default.aspx" target="new">GTD</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.9" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.9" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.1.1.9%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a>, CAS registry number: 9001-16-5</td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Keilin, D. and Hartree, E.F. Cytochrome oxidase. <em>Proc. R. Soc. Lond. B Biol. Sci.</em> <strong>125</strong> (1938) 171–186. </td> </tr> </td></tr> <tr> <td>2. </td> <td>Keilin, D. and Hartree, E.F. Cytochrome and cytochrome oxidase. <em>Proc. R. Soc. Lond. B Biol. Sci.</em> <strong>127</strong> (1939) 167–191. </td> </tr> </td></tr> <tr> <td>3. </td> <td>Wainio, W.W., Eichel, B. and Gould, A. Ion and pH optimum for the oxidation of ferrocytochrome <em>c</em> by cytochrome <em>c</em> oxidase in air. <em>J. Biol. Chem.</em> <strong>235</strong> (1960) 1521–1525. </td> </tr> </td></tr> <tr> <td>4. </td> <td>Yonetani, T. Studies on cytochrome oxidase. II. Steady state properties. <em>J. Biol. Chem.</em> <strong>235</strong> (1960) 3138–3243. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/13787372" target="new">13787372</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Yonetani, T. Studies on cytochrome oxidase. III. Improved purification and some properties. <em>J. Biol. Chem.</em> <strong>236</strong> (1961) 1680–1688. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/13787373" target="new">13787373</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Henning, W., Vo, L., Albanese, J. and Hill, B.C. High-yield purification of cytochrome <em>aa</em><small><sub>3</sub></small> and cytochrome caa3 oxidases from <em>Bacillus subtilis</em> plasma membranes. <em>Biochem. J.</em> <strong>309</strong> (1995) 279–283. [<a href="https://doi.org/10.1042/bj3090279" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7619069" target="new">7619069</a>] </td> </tr> </td></tr> <tr> <td>7. </td> <td>Keightley, J.A., Zimmermann, B.H., Mather, M.W., Springer, P., Pastuszyn, A., Lawrence, D.M. and Fee, J.A. Molecular genetic and protein chemical characterization of the cytochrome <em>ba</em><small><sub>3</sub></small> from <em>Thermus thermophilus</em> HB8. <em>J. Biol. Chem.</em> <strong>270</strong> (1995) 20345–20358. [<a href="https://doi.org/10.1074/jbc.270.35.20345" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7657607" target="new">7657607</a>] </td> </tr> </td></tr> <tr> <td>8. </td> <td>Ducluzeau, A.L., Ouchane, S. and Nitschke, W. The cbb3 oxidases are an ancient innovation of the domain bacteria. <em>Mol. Biol. Evol.</em> <strong>25</strong> (2008) 1158–1166. [<a href="https://doi.org/10.1093/molbev/msn062" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/18353797" target="new">18353797</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.9 created 1961 as EC 1.9.3.1, modified 2000, transferred 2019 to EC 7.1.1.9, modified 2021]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="10"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.10</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ferredoxin—quinone oxidoreductase (H<small><sup>+</sup></small>-translocating)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1"><strong>2</strong> reduced ferredoxin [iron-sulfur] cluster + plastoquinone + <strong>6</strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = <strong>2</strong> oxidized ferredoxin [iron-sulfur] cluster + plastoquinol + <strong>7</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">NDH-1L complex; NDH-1L′ complex; NDH1<small><sub>1</sub></small> complex; NDH1<small><sub>2</sub></small> complex</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ferredoxin:quinone oxidoreductase (H<small><sup>+</sup></small>-translocating)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">The enzyme, present in plants and cyanobacteria, couples electron transport from ferredoxin to plastoquinone and proton pumping from the cytoplasm to the thylakoid lumen. It participates in cyclic electron flow, retuning electrons generated by photosystem I to the plastoquinone pool, thus bypassing the generation of reducing power. It may also participate in respiration using electrons originating from NADPH via the action of <a href="query.php?ec=1.18.1.2" target="new">EC 1.18.1.2</a>, ferredoxin—NADP<small><sup>+</sup></small> reductase (FNR) operating in the direction of ferredoxin reduction. It is a large complex, with some of its subunits resembling those from the bacterial/mitochondrial <a href="query.php?ec=7.1.1.2" target="new">EC 7.1.1.2</a>, NADH:ubiquinone reductase (H<small><sup>+</sup></small>-translocating). However, it lacks the NADH-oxidizing module and instead has a module that interacts with ferredoxin. Several forms of the enzyme exist, differing in their exact combination of subunits used. Some of the forms participate in carbon dioxide hydration rather than electron transfer.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.10" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.10" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.10" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.10" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Arteni, A.A., Zhang, P., Battchikova, N., Ogawa, T., Aro, E.M. and Boekema, E.J. Structural characterization of NDH-1 complexes of <em>Thermosynechococcus elongatus</em> by single particle electron microscopy. <em>Biochim. Biophys. Acta</em> <strong>1757</strong> (2006) 1469–1475. [<a href="https://doi.org/10.1016/j.bbabio.2006.05.042" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/16844076" target="new">16844076</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Battchikova, N., Wei, L., Du, L., Bersanini, L., Aro, E.M. and Ma, W. Identification of novel Ssl0352 protein (NdhS), essential for efficient operation of cyclic electron transport around photosystem I, in NADPH:plastoquinone oxidoreductase (NDH-1) complexes of <em>Synechocystis</em> sp. PCC 6803. <em>J. Biol. Chem.</em> <strong>286</strong> (2011) 36992–37001. [<a href="https://doi.org/10.1074/jbc.M111.263780" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/21880717" target="new">21880717</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Yamamoto, H. and Shikanai, T. In planta mutagenesis of Src homology 3 domain-like fold of NdhS, a ferredoxin-binding subunit of the chloroplast NADH dehydrogenase-like complex in <em>Arabidopsis</em>: a conserved Arg-193 plays a critical role in ferredoxin binding. <em>J. Biol. Chem.</em> <strong>288</strong> (2013) 36328–36337. [<a href="https://doi.org/10.1074/jbc.M113.511584" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/24225949" target="new">24225949</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Ma, W. and Ogawa, T. Oxygenic photosynthesis-specific subunits of cyanobacterial NADPH dehydrogenases. <em>IUBMB Life</em> <strong>67</strong> (2015) 3–8. [<a href="https://doi.org/10.1002/iub.1341" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/25564967" target="new">25564967</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Peltier, G., Aro, E.M. and Shikanai, T. NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. <em>Annu. Rev. Plant Biol.</em> <strong>67</strong> (2016) 55–80. [<a href="https://doi.org/10.1146/annurev-arplant-043014-114752" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/26735062" target="new">26735062</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Laughlin, T.G., Bayne, A.N., Trempe, J.F., Savage, D.F. and Davies, K.M. Structure of the complex I-like molecule NDH of oxygenic photosynthesis. <em>Nature</em> <strong>566</strong> (2019) 411–414. [<a href="https://doi.org/10.1038/s41586-019-0921-0" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/30742075" target="new">30742075</a>] </td> </tr> </td></tr> <tr> <td>7. </td> <td>Schuller, J.M., Birrell, J.A., Tanaka, H., Konuma, T., Wulfhorst, H., Cox, N., Schuller, S.K., Thiemann, J., Lubitz, W., Setif, P., Ikegami, T., Engel, B.D., Kurisu, G. and Nowaczyk, M.M. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. <em>Science</em> <strong>363</strong> (2019) 257–260. [<a href="https://doi.org/10.1126/science.aau3613" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/30573545" target="new">30573545</a>] </td> </tr> </td></tr> <tr> <td>8. </td> <td>Zhang, C., Shuai, J., Ran, Z., Zhao, J., Wu, Z., Liao, R., Wu, J., Ma, W. and Lei, M. Structural insights into NDH-1 mediated cyclic electron transfer. <em>Nat. Commun.</em> <strong>11</strong>:888 (2020). [<a href="https://doi.org/10.1038/s41467-020-14732-z" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/32060291" target="new">32060291</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.10 created 2021]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="11"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.11</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ferredoxin—NAD<small><sup>+</sup></small> oxidoreductase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1"><strong>2</strong> reduced ferredoxin [iron-sulfur] cluster + NAD<small><sup>+</sup></small> + H<small><sup>+</sup></small> + <strong>2</strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = <strong>2</strong> oxidized ferredoxin [iron-sulfur] cluster + NADH + <strong>2</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Rnf complex (<em>ambiguous</em>); H<small><sup>+</sup></small>-translocating ferredoxin:NAD<small><sup>+</sup></small> oxidoreductase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ferredoxin:NAD<small><sup>+</sup></small> oxidoreductase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">This iron-sulfur and flavin-containing electron transport complex, isolated from some anaerobic bacteria, couples the energy from reduction of NAD<small><sup>+</sup></small> by ferredoxin to pumping protons out of the cell, generating a proton motive force across the cytoplasmic membrane. Most similar complexes pump sodium ions rather than protons [<em>cf</em>. <a href="query.php?ec=7.2.1.2" target="new">EC 7.2.1.2</a>, ferredoxin—NAD<small><sup>+</sup></small> oxidoreductase (Na<small><sup>+</sup></small>-transporting)].</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.11" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.11" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.11" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.11" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Tremblay, P.L., Zhang, T., Dar, S.A., Leang, C. and Lovley, D.R. The Rnf complex of <em>Clostridium ljungdahlii</em> is a proton-translocating ferredoxin:NAD<small><sup>+</sup></small> oxidoreductase essential for autotrophic growth. <em>mBio</em> <strong>4</strong> (2012) e00406. [<a href="https://doi.org/10.1128/mBio.00406-12" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/23269825" target="new">23269825</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Wang, L., Bradstock, P., Li, C., McInerney, M.J. and Krumholz, L.R. The role of Rnf in ion gradient formation in <em>Desulfovibrio alaskensis</em>. <em>PeerJ</em> <strong>4</strong>:e1919 (2016). [<a href="https://doi.org/10.7717/peerj.1919" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/27114876" target="new">27114876</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.11 created 2021]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="12"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.1.12</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">succinate dehydrogenase (electrogenic, proton-motive force generating)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">succinate + menaquinone + <strong>2</strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = fumarate + menaquinol + <strong>2</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">succinate:quinone oxidoreductase (electrogenic, proton-motive force generating)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">The enzyme is very similar to <a href="query.php?ec=1.3.5.1" target="new">EC 1.3.5.1</a>, succinate dehydrogenase, but differs by containing two heme molecules (located in the membrane anchor component) in addition to FAD and three iron-sulfur clusters. Unlike <a href="query.php?ec=1.3.5.1" target="new">EC 1.3.5.1</a>, this enzyme catalyses an electrogenic reaction, enabled by electron-bifurcation via the heme molecules. In the direction of succinate oxidation by menaquinone, which is endergonic, the reaction is driven by the transmembrane electrochemical proton potential. In the direction of fumarate reduction, the electrogenic electron transfer reaction is compensated by transmembrane proton transfer pathway known as the E-pathway, which results in overall electroneutrality.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.1.12" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.1.12" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.1.12" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.1.12" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Lancaster, C.R. <em>Wolinella succinogenes</em> quinol:fumarate reductase-2.2-A resolution crystal structure and the E-pathway hypothesis of coupled transmembrane proton and electron transfer. <em>Biochim. Biophys. Acta</em> <strong>1565</strong> (2002) 215–231. [<a href="https://doi.org/10.1016/s0005-2736(02)00571-0" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/12409197" target="new">12409197</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Madej, M.G., Nasiri, H.R., Hilgendorff, N.S., Schwalbe, H., Unden, G. and Lancaster, C.R. Experimental evidence for proton motive force-dependent catalysis by the diheme-containing succinate:menaquinone oxidoreductase from the Gram-positive bacterium <em>Bacillus licheniformis</em>. <em>Biochemistry</em> <strong>45</strong> (2006) 15049–15055. [<a href="https://doi.org/10.1021/bi0618161" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/17154542" target="new">17154542</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Lancaster, C.R., Herzog, E., Juhnke, H.D., Madej, M.G., Muller, F.G., Paul, R. and Schleidt, P.G. Electroneutral and electrogenic catalysis by dihaem-containing succinate:quinone oxidoreductases. <em>Biochem Soc Trans.</em> <strong>36</strong> (2008) 996–1000. [<a href="https://doi.org/10.1042/BST0360996" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/18793177" target="new">18793177</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Lancaster, C.R. The di-heme family of respiratory complex II enzymes. <em>Biochim. Biophys. Acta</em> <strong>1827</strong> (2013) 679–687. [<a href="https://doi.org/10.1016/j.bbabio.2013.02.012" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/23466335" target="new">23466335</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Guan, H.H., Hsieh, Y.C., Lin, P.J., Huang, Y.C., Yoshimura, M., Chen, L.Y., Chen, S.K., Chuankhayan, P., Lin, C.C., Chen, N.C., Nakagawa, A., Chan, S.I. and Chen, C.J. Structural insights into the electron/proton transfer pathways in the quinol:fumarate reductase from <em>Desulfovibrio gigas</em>. <em>Sci. Rep.</em> <strong>8</strong>:14935 (2018). [<a href="https://doi.org/10.1038/s41598-018-33193-5" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/30297797" target="new">30297797</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.1.12 created 2022]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="13"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.2.1</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">P-type H<small><sup>+</sup></small>-exporting transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">proton-translocating ATPase; yeast plasma membrane H<small><sup>+</sup></small>-ATPase; yeast plasma membrane ATPase; ATP phosphohydrolase (<em>ambiguous</em>); proton-exporting ATPase; proton transport ATPase; proton-translocating P-type ATPase; H<small><sup>+</sup></small>-transporting ATPase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, H<small><sup>+</sup></small>-exporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This enzyme occurs in protozoa, fungi and plants, and generates an electrochemical potential gradient of protons across the plasma membrane.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.2.1" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.2.1" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.1.2.1%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.2.1" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.2.1" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.1.2.1%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Goffeau, A. and Slayman, C. The proton-translocating ATPase of the fungal plasma membrane. <em>Biochim. Biophys. Acta</em> <strong>639</strong> (1981) 197–223. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/6461354" target="new">6461354</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Serrano, R., Kielland-Brandt, M.C. and Fink, G.R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na<small><sup>+</sup></small>+K<small><sup>+</sup></small>)-, K<small><sup>+</sup></small>-and Ca<small><sup>2+</sup></small>-ATPases. <em>Nature</em> <strong>319</strong> (1986) 689–693. [<a href="https://doi.org/10.1038/319689a0" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/3005867" target="new">3005867</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Serrano, R. and Portillo, F. Catalytic and regulatory sites of yeast plasma membrane H<small><sup>+</sup></small>-ATPase studied by directed mutagenesis. <em>Biochim. Biophys. Acta</em> <strong>1018</strong> (1990) 195–199. [<a href="https://doi.org/10.1016/0005-2728(90)90247-2" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/2144186" target="new">2144186</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Perlin, D.S., San Francisco, M.J., Slayman, C.W. and Rosen, B.P. H<small><sup>+</sup></small>/ATP stoichiometry of proton pumps from <em>Neurospora crassa</em> and <em>Escherichia coli</em>. <em>Arch. Biochem. Biophys.</em> <strong>248</strong> (1986) 53–61. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/2425739" target="new">2425739</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.2.1 created 1984 as EC 3.6.1.35, transferred 2000 to EC 3.6.3.6, transferred 2018 to EC 7.1.2.1]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="14"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.2.2</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">H<small><sup>+</sup></small>-transporting two-sector ATPase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + <strong>4</strong> H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + <strong>4</strong> H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Glossary:</strong></td> <td width="80%" colspan="1">In Fo, the "o" refers to oligomycin. F<small><sub>0</sub></small> is incorrect</td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">ATP synthase; F<small><sub>1</sub></small>-ATPase; F<small><sub>o</sub></small>F<small><sub>1</sub></small>-ATPase; H<small><sup>+</sup></small>-transporting ATPase; mitochondrial ATPase; coupling factors (F<small><sub>o</sub></small> F<small><sub>1</sub></small> and CF1); chloroplast ATPase; bacterial Ca<small><sup>2+</sup></small>/Mg<small><sup>2+</sup></small> ATPase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (two-sector, H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A multisubunit non-phosphorylated ATPase that is involved in the transport of ions. Large enzymes of mitochondria, chloroplasts and bacteria with a membrane sector (Fo, Vo, Ao) and a cytoplasmic-compartment sector (F1, V1, A1). The F-type enzymes of the inner mitochondrial and thylakoid membranes act as ATP synthases. All of the enzymes included here operate in a rotational mode, where the extramembrane sector (containing 3 α- and 3 β-subunits) is connected via the δ-subunit to the membrane sector by several smaller subunits. Within this complex, the γ- and ε-subunits, as well as the 9–12 c subunits rotate by consecutive 120° angles and perform parts of ATP synthesis. This movement is driven by the H<small><sup>+</sup></small> electrochemical potential gradient. The V-type (in vacuoles and clathrin-coated vesicles) and A-type (archaeal) enzymes have a similar structure but, under physiological conditions, they pump H<small><sup>+</sup></small> rather than synthesize ATP.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.2.2" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.2.2" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.1.2.2%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.2.2" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.2.2" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.1.2.2%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Perlin, D.S., San Francisco, M.J., Slayman, C.W. and Rosen, B.P. H<small><sup>+</sup></small>/ATP stoichiometry of proton pumps from <em>Neurospora crassa</em> and <em>Escherichia coli</em>. <em>Arch. Biochem. Biophys.</em> <strong>248</strong> (1986) 53–61. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/2425739" target="new">2425739</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Boyer, P.D. The binding change mechanism for ATP synthase - some probabilities and possibilities. <em>Biochim. Biophys. Acta</em> <strong>1140</strong> (1993) 215–250. [<a href="https://doi.org/10.1016/0005-2728(93)90063-L" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8417777" target="new">8417777</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Abrahams, J.P., Leslie, A.G.W., Lutter, R. and Walker, J.F. Structure at 2.8 Å resolution of F<small><sub>1</sub></small>-ATPase from bovine heart mitochondria. <em>Nature</em> <strong>375</strong> (1994) 621–628. [<a href="https://doi.org/10.1038/370621a0" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8065448" target="new">8065448</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Blair, A., Ngo, L., Park, J., Paulsen, I.T. and Saier, M.H., Jr. Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F<small><sub>o</sub></small>F<small><sub>1</sub></small>-ATPases of bacteria, chloroplasts and mitochondria. <em>Microbiology</em> <strong>142</strong> (1996) 17–32. [<a href="https://doi.org/10.1099/13500872-142-1-17" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8581162" target="new">8581162</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Noji, H., Yasuda, R., Yoshida, M. and Kinosita, K., Jr. Direct observation of the rotation of F<small><sub>1</sub></small>-ATPase. <em>Nature</em> <strong>386</strong> (1997) 299–302. [<a href="https://doi.org/10.1038/386299a0" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9069291" target="new">9069291</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Turina, P., Samoray, D. and Graber, P. H<small><sup>+</sup></small>/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF<small><sub>0</sub></small>F<small><sub>1</sub></small>-liposomes. <em>EMBO J.</em> <strong>22</strong> (2003) 418–426. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/12554643" target="new">12554643</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.2.2 created 1984 as EC 3.6.1.34, transferred 2000 to EC 3.6.3.14, transferred 2018 to EC 7.1.2.2]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="15"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.1.3.1</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">H<small><sup>+</sup></small>-exporting diphosphatase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">diphosphate + H<small><sub>2</sub></small>O + H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = <strong>2</strong> phosphate + H<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">H<small><sup>+</sup></small>-PPase; proton-pumping pyrophosphatase; vacuolar H<small><sup>+</sup></small>-pyrophosphatase; hydrogen-translocating pyrophosphatase; proton-pumping dihosphatase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">diphosphate phosphohydrolase (H<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">This enzyme, found in plants and fungi, couples the energy from diphosphate hydrolysis to active proton translocation across the tonoplast into the vacuole. The enzyme acts cooperatively with cytosolic soluble diphosphatases to regulate the cytosolic diphosphate level.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.1.3.1" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.1.3.1" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.1.3.1%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.1.3.1" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.1.3.1" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.1.3.1%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Rea, P.A. and Poole, R.J. Chromatographic resolution of H<small><sup>+</sup></small>-translocating pyrophosphatase from H<small><sup>+</sup></small>-translocating ATPase of higher plant tonoplast. <em>Plant Physiol.</em> <strong>81</strong> (1986) 126–129. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/16664761" target="new">16664761</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Sarafian, V. and Poole, R.J. Purification of an H<small><sup>+</sup></small>-translocating inorganic pyrophosphatase from vacuole membranes of red beet. <em>Plant Physiol.</em> <strong>91</strong> (1989) 34–38. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/16667022" target="new">16667022</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Hedrich, R., Kurkdjian, A., Guern, J. and Flugge, U.I. Comparative studies on the electrical properties of the H<small><sup>+</sup></small> translocating ATPase and pyrophosphatase of the vacuolar-lysosomal compartment. <em>EMBO J.</em> <strong>8</strong> (1989) 2835–2841. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/2479537" target="new">2479537</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Segami, S., Tomoyama, T., Sakamoto, S., Gunji, S., Fukuda, M., Kinoshita, S., Mitsuda, N., Ferjani, A. and Maeshima, M. Vacuolar H<small><sup>+</sup></small>-pyrophosphatase and cytosolic soluble pyrophosphatases cooperatively regulate pyrophosphate levels in <em>Arabidopsis thaliana</em>. <em>Plant Cell</em> <strong>30</strong> (2018) 1040–1061. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/29691313" target="new">29691313</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.1.3.1 created 2018]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"> <strong> <span style="color : red">EC</span> </strong> </td> <td width="80%" colspan="1"> <a name="16"></a> <strong> <span style="color : red">7.1.3.2</span> </strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Transferred entry:</strong> </td><td>Na<small><sup>+</sup></small>-exporting diphosphatase. Now <a href="query.php?ec=7.2.3.1" target="new">EC 7.2.3.1</a>, Na<small><sup>+</sup></small>-exporting diphosphatase </td> </tr> <tr><td colspan="2"><center><small>[EC 7.1.3.2 created 2021, deleted 2022]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="17"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.1.1</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">NADH:ubiquinone reductase (Na<small><sup>+</sup></small>-transporting)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">NADH + H<small><sup>+</sup></small> + ubiquinone + <strong><em>n</em></strong> Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = NAD<small><sup>+</sup></small> + ubiquinol + <strong><em>n</em></strong> Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Na<small><sup>+</sup></small>-translocating NADH-quinone reductase; Na<small><sup>+</sup></small>-NQR</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">NADH:ubiquinone oxidoreductase (Na<small><sup>+</sup></small>-translocating)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">An iron-sulfur flavoprotein, containing two covalently bound molecules of FMN, one noncovalently bound FAD, one riboflavin, and one [2Fe-2S] cluster.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.1.1" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.1.1" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.1.1%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.1.1" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.1.1" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.1.1%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Beattie, P., Tan, K., Bourne, R.M., Leach, D., Rich, P.R. and Ward, F.B. Cloning and sequencing of four structural genes for the Na<small><sup>+</sup></small>-translocating NADH-ubiquinone oxidoreductase of <em>Vibrio alginolyticus</em>. <em>FEBS Lett.</em> <strong>356</strong> (1994) 333–338. [<a href="https://doi.org/10.1016/0014-5793(94)01275-X" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7805867" target="new">7805867</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Nakayama, Y., Hayashi, M. and Unemoto, T. Identification of six subunits constituting Na<small><sup>+</sup></small>-translocating NADH-quinone reductase from the marine <em>Vibrio alginolyticus</em>. <em>FEBS Lett.</em> <strong>422</strong> (1998) 240–242. [<a href="https://doi.org/10.1016/S0014-5793(98)00016-7" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9490015" target="new">9490015</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Bogachev, A.V., Bertsova, Y.V., Barquera, B. and Verkhovsky, M.I. Sodium-dependent steps in the redox reactions of the Na<small><sup>+</sup></small>-motive NADH:quinone oxidoreductase from <em>Vibrio harveyi</em>. <em>Biochemistry</em> <strong>40</strong> (2001) 7318–7323. [<a href="https://doi.org/10.1021/bi002545b" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/11401580" target="new">11401580</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Barquera, B., Hellwig, P., Zhou, W., Morgan, J.E., Hase, C.C., Gosink, K.K., Nilges, M., Bruesehoff, P.J., Roth, A., Lancaster, C.R. and Gennis, R.B. Purification and characterization of the recombinant Na<small><sup>+</sup></small>-translocating NADH:quinone oxidoreductase from <em>Vibrio cholerae</em>. <em>Biochemistry</em> <strong>41</strong> (2002) 3781–3789. [<a href="https://doi.org/10.1021/bi011873o" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/11888296" target="new">11888296</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Barquera, B., Nilges, M.J., Morgan, J.E., Ramirez-Silva, L., Zhou, W. and Gennis, R.B. Mutagenesis study of the 2Fe-2S center and the FAD binding site of the Na<small><sup>+</sup></small>-translocating NADH:ubiquinone oxidoreductase from <em>Vibrio cholerae</em>. <em>Biochemistry</em> <strong>43</strong> (2004) 12322–12330. [<a href="https://doi.org/10.1021/bi048689y" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/15379571" target="new">15379571</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.1.1 created 2011 as EC 1.6.5.8, transferred 2018 to EC 7.2.1.1]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="18"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.1.2</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ferredoxin—NAD<small><sup>+</sup></small> oxidoreductase (Na<small><sup>+</sup></small>-transporting)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1"><strong>2</strong> reduced ferredoxin [iron-sulfur] cluster + NAD<small><sup>+</sup></small> + H<small><sup>+</sup></small> + Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = <strong>2</strong> oxidized ferredoxin [iron-sulfur] cluster + NADH + Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Rnf complex (<em>ambiguous</em>); Na<small><sup>+</sup></small>-translocating ferredoxin:NAD<small><sup>+</sup></small> oxidoreductase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ferredoxin:NAD<small><sup>+</sup></small> oxidoreductase (Na<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">This iron-sulfur and flavin-containing electron transport complex, isolated from the bacterium <em>Acetobacterium woodii</em>, couples the energy from reduction of NAD<small><sup>+</sup></small> by ferredoxin to pumping sodium ions out of the cell, generating a gradient across the cytoplasmic membrane. </td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.1.2" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.1.2" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.1.2" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.1.2" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Biegel, E., Schmidt, S. and Muller, V. Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen <em>Acetobacterium woodii</em>. <em>Environ. Microbiol.</em> <strong>11</strong> (2009) 1438–1443. [<a href="https://doi.org/10.1111/j.1462-2920.2009.01871.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/19222539" target="new">19222539</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Biegel, E. and Muller, V. Bacterial Na<small><sup>+</sup></small>-translocating ferredoxin:NAD<small><sup>+</sup></small> oxidoreductase. <em>Proc. Natl. Acad. Sci. USA</em> <strong>107</strong> (2010) 18138–18142. [<a href="https://doi.org/10.1073/pnas.1010318107" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/20921383" target="new">20921383</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Hess, V., Schuchmann, K. and Muller, V. The ferredoxin:NAD<small><sup>+</sup></small> oxidoreductase (Rnf) from the acetogen <em>Acetobacterium woodii</em> requires Na<small><sup>+</sup></small> and is reversibly coupled to the membrane potential. <em>J. Biol. Chem.</em> <strong>288</strong> (2013) 31496–31502. [<a href="https://doi.org/10.1074/jbc.M113.510255" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/24045950" target="new">24045950</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.1.2 created 2015 as EC 1.18.1.8, transferred 2018 to EC 7.2.1.2]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="19"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.1.3</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ascorbate ferrireductase (transmembrane)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ascorbate<small><sub>[side 1]</sub></small> + Fe(III)<small><sub>[side 2]</sub></small> = monodehydroascorbate<small><sub>[side 1]</sub></small> + Fe(II)<small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">cytochrome <em>b</em><small><sub>561</sub></small> (<em>ambiguous</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">Fe(III):ascorbate oxidorectuctase (electron-translocating)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A diheme cytochrome that transfers electrons across a single membrane, such as the outer membrane of the enterocyte, or the tonoplast membrane of the plant cell vacuole. Acts on hexacyanoferrate(III) and other ferric chelates.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.1.3" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.1.3" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.1.3%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.1.3" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.1.3" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.1.3%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Flatmark, T. and Terland, O. Cytochrome <em>b</em><small><sub>561</sub></small> of the bovine adrenal chromaffin granules. A high potential <em>b</em>-type cytochrome. <em>Biochim. Biophys. Acta</em> <strong>253</strong> (1971) 487–491. [<a href="https://doi.org/10.1016/0005-2728(71)90052-1" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/4332308" target="new">4332308</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomford, A., Peters, T.J., Raja, K.B., Shirali, S., Hediger, M.A., Farzaneh, F. and Simpson, R.J. An iron-regulated ferric reductase associated with the absorption of dietary iron. <em>Science</em> <strong>291</strong> (2001) 1755–1759. [<a href="https://doi.org/10.1126/science.1057206" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/11230685" target="new">11230685</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Su, D. and Asard, H. Three mammalian cytochromes <em>b</em><small><sub>561</sub></small> are ascorbate-dependent ferrireductases. <em>FEBS J.</em> <strong>273</strong> (2006) 3722–3734. [<a href="https://doi.org/10.1111/j.1742-4658.2006.05381.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/16911521" target="new">16911521</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Berczi, A., Su, D. and Asard, H. An <em>Arabidopsis</em> cytochrome <em>b</em><small><sub>561</sub></small> with <em>trans</em>-membrane ferrireductase capability. <em>FEBS Lett.</em> <strong>581</strong> (2007) 1505–1508. [<a href="https://doi.org/10.1016/j.febslet.2007.03.006" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/17376442" target="new">17376442</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Wyman, S., Simpson, R.J., McKie, A.T. and Sharp, P.A. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase <em>in vitro</em>. <em>FEBS Lett.</em> <strong>582</strong> (2008) 1901–1906. [<a href="https://doi.org/10.1016/j.febslet.2008.05.010" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/18498772" target="new">18498772</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Glanfield, A., McManus, D.P., Smyth, D.J., Lovas, E.M., Loukas, A., Gobert, G.N. and Jones, M.K. A cytochrome <em>b</em><small><sub>561</sub></small> with ferric reductase activity from the parasitic blood fluke, <em>Schistosoma japonicum</em>. <em>PLoS Negl. Trop. Dis.</em> <strong>4</strong>:e884 (2010). [<a href="https://doi.org/10.1371/journal.pntd.0000884" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/21103361" target="new">21103361</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.1.3 created 2011 as EC 1.16.5.1, transferred 2018 to EC 7.2.1.3]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="20"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.1.4</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">tetrahydromethanopterin <em>S</em>-methyltransferase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">5-methyl-5,6,7,8-tetrahydromethanopterin + CoM + <strong>2</strong> Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = 5,6,7,8-tetrahydromethanopterin + 2-(methylsulfanyl)ethane-1-sulfonate + <strong>2</strong> Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"></td> <td width="80%">For diagram of methane biosynthesis, <a target="new" href="reaction/misc/methane.html">click here</a></td> </tr> <tr> <td width="20%" align="right"><strong>Glossary:</strong></td> <td width="80%" colspan="1">CoM = <a target="new" href="glossary/CoM.html">coenzyme M</a> = 2-sulfanylethane-1-sulfonate<br /> <a target="new" href="glossary/methanop.html">tetrahydromethanopterin</a> = 1-(4-{(1<em>R</em>)-1-[(6<em>S</em>,7<em>S</em>)-2-amino-7-methyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl]ethylamino}phenyl)-1-deoxy-5-<em>O</em>-{5-<em>O</em>-[(1<em>S</em>)-1,3-dicarboxypropylphosphonato]-α-<small>D</small>-ribofuranosyl}-<small>D</small>-ribitol </td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">tetrahydromethanopterin methyltransferase; <em>mtrA</em>-H (<em>gene names</em>); <em>cmtA</em> (<em>gene name</em>); <em>N</em><small><sup>5</sup></small>-methyltetrahydromethanopterin—coenzyme M methyltransferase; 5-methyl-5,6,7,8-tetrahydromethanopterin:2-mercaptoethanesulfonate 2-methyltransferase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">5-methyl-5,6,7,8-tetrahydromethanopterin:CoM 2-methyltransferase (Na<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">Involved in the formation of methane from CO<small><sub>2</sub></small> in methanogenic archaea. The reaction involves the export of one or two sodium ions. The enzyme from the archaeon <em>Methanobacterium thermoautotrophicum</em> is a membrane-associated multienzyme complex composed of eight different subunits, and contains a 5′-hydroxybenzimidazolyl-cobamide cofactor, to which the methyl group is attached during the transfer. A soluble enzyme that is induced by the presence of CO has been reported as well [6].</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.1.4" target="new">BRENDA</a>, <a href="http://eawag-bbd.ethz.ch/servlets/pageservlet?ptype=e&ECcode=7.2.1.4" target="new">EAWAG-BBD</a>, <a href="https://enzyme.expasy.org/EC/7.2.1.4" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.1.4" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.1.4" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.1.4%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a>, CAS registry number: 103406-60-6</td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Sauer, F.D. Tetrahydromethanopterin methyltransferase, a component of the methane synthesizing complex of <em>Methanobacterium thermoautotrophicum</em>. <em>Biochem. Biophys. Res. Commun.</em> <strong>136</strong> (1986) 542–547. [<a href="https://doi.org/10.1016/0006-291X(86)90474-2" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/3085670" target="new">3085670</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Gartner, P., Ecker, A., Fischer, R., Linder, D., Fuchs, G. and Thauer, R.K. Purification and properties of <em>N</em><small><sup>5</sup></small>-methyltetrahydromethanopterin:coenzyme M methyltransferase from <em>Methanobacterium thermoautotrophicum</em>. <em>Eur. J. Biochem.</em> <strong>213</strong> (1993) 537–545. [<a href="https://doi.org/10.1111/j.1432-1033.1993.tb17792.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8477726" target="new">8477726</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Weiss, D.S., Gartner, P. and Thauer, R.K. The energetics and sodium-ion dependence of <em>N</em><small><sup>5</sup></small>-methyltetrahydromethanopterin:coenzyme M methyltransferase studied with cob(I)alamin as methyl acceptor and methylcob(III)alamin as methyl donor. <em>Eur. J. Biochem.</em> <strong>226</strong> (1994) 799–809. [<a href="https://doi.org/10.1111/j.1432-1033.1994.00799.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7813469" target="new">7813469</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Harms, U., Weiss, D.S., Gartner, P., Linder, D. and Thauer, R.K. The energy conserving <em>N</em><small><sup>5</sup></small>-methyltetrahydromethanopterin:coenzyme M methyltransferase complex from <em>Methanobacterium thermoautotrophicum</em> is composed of eight different subunits. <em>Eur. J. Biochem.</em> <strong>228</strong> (1995) 640–648. [<a href="https://doi.org/10.1111/j.1432-1033.1995.0640m.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7737157" target="new">7737157</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Gottschalk, G. and Thauer, R.K. The Na<small><sup>+</sup></small>-translocating methyltransferase complex from methanogenic archaea. <em>Biochim. Biophys. Acta</em> <strong>1505</strong> (2001) 28–36. [<a href="https://doi.org/10.1016/S0005-2728(00)00274-7" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/11248186" target="new">11248186</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Vepachedu, V.R. and Ferry, J.G. Role of the fused corrinoid/methyl transfer protein CmtA during CO-dependent growth of <em>Methanosarcina acetivorans</em>. <em>J. Bacteriol.</em> <strong>194</strong> (2012) 4161–4168. [<a href="https://doi.org/10.1128/JB.00593-12" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/22636775" target="new">22636775</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.1.4 created 1989 as EC 2.1.1.86, modified 2000, modified 2017, transferred 2024 to EC 7.2.1.4]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="21"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.1</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">Na<small><sup>+</sup></small>-transporting two-sector ATPase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + <strong><em>n</em></strong> Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + <strong><em>n</em></strong> Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">sodium-transporting two-sector ATPase; Na<small><sup>+</sup></small>-translocating ATPase; Na<small><sup>+</sup></small>-translocating F<small><sub>o</sub></small>F<small><sub>1</sub></small>-ATPase; sodium ion specific ATP synthase </td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (two-sector, Na<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A multisubunit ATPase transporter found in some halophilic or alkalophilic bacteria that functions in maintaining sodium homeostasis. The enzyme is similar to <a href="query.php?ec=7.1.2.2" target="new">EC 7.1.2.2</a> (H<small><sup>+</sup></small>-transporting two-sector ATPase) but pumps Na<small><sup>+</sup></small> rather than H<small><sup>+</sup></small>. By analogy to <a href="query.php?ec=7.1.2.2" target="new">EC 7.1.2.2</a>, it is likely that the enzyme pumps 4 sodium ions for every ATP molecule that is hydrolysed. <em>cf</em>. <a href="query.php?ec=7.2.2.3" target="new">EC 7.2.2.3</a>, P-type Na<small><sup>+</sup></small> transporter and <a href="query.php?ec=7.2.2.4" target="new">EC 7.2.2.4</a>, ABC-type Na<small><sup>+</sup></small> transporter.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.1" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.1" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.1%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.1" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.1" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.1%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Solioz, M. and Davies, K. Operon of vacuolar-type Na<small><sup>+</sup></small>-ATPase of <em>Enterococcus hirae</em>. <em>J. Biol. Chem.</em> <strong>269</strong> (1994) 9453–9459. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8144530" target="new">8144530</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Takase, K., Kakinuma, S., Yamato, I., Konishi, K., Igarashi, K. and Kanikuma, Y. Sequencing and characterization of the ntp gene cluster for vacuolar-type Na<small><sup>+</sup></small>-translocating ATPase of <em>Enterococcus hirae</em>. <em>J. Biol. Chem.</em> <strong>269</strong> (1994) 11037–11044. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8157629" target="new">8157629</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Rahlfs, S. and Müller, V. Sequence of subunit <em>c</em> of the Na<small><sup>+</sup></small>-translocating F<small><sub>1</sub></small>F<small><sub>o</sub></small>-ATPase of <em>Acetobacterium woodii</em>: proposal for determinants of Na<small><sup>+</sup></small> specificity as revealed by sequence comparisons. <em>FEBS Lett.</em> <strong>404</strong> (1997) 269–271. [<a href="https://doi.org/10.1016/S0014-5793(97)00088-4" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9119076" target="new">9119076</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.1 created 2000 as EC 3.6.3.15, transferred 2018 to EC 7.2.2.1, modified 2018]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="22"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.2</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type Cd<small><sup>2+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Cd<small><sup>2+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Cd<small><sup>2+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">cadmium-transporting ATPase (<em>ambiguous</em>); ABC-type cadmium-transporter</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (ABC-type, heavy-metal-exporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. Does not undergo phosphorylation during the transport process. A yeast enzyme that exports some heavy metals, especially Cd<small><sup>2+</sup></small>, from the cytosol into the vacuole.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.2" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.2" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.2%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.2" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.2" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.2%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Li, Z.S., Szczypka, M., Lu, Y.P., Thiele, D.J. and Rea, P.A. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione <em>S</em>-conjugate pump. <em>J. Biol. Chem.</em> <strong>271</strong> (1996) 6509–6517. [<a href="https://doi.org/10.1074/jbc.271.11.6509" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8626454" target="new">8626454</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. <em>Adv. Microb. Physiol.</em> <strong>40</strong> (1998) 81–136. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9889977" target="new">9889977</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.2 created 2000 as EC 3.6.3.46, transferred 2018 to EC 7.2.2.2]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="23"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.3</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">P-type Na<small><sup>+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Na<small><sup>+</sup></small>-exporting ATPase (<em>ambiguous</em>); ENA1 (<em>gene name</em>); ENA2 (<em>gene name</em>); ENA5 (<em>gene name</em>); sodium transport ATPase (<em>ambiguous</em>); sodium-translocating P-type ATPase </td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, Na<small><sup>+</sup></small>-exporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This enzyme from yeast is involved in the efflux of Na<small><sup>+</sup></small>, with one ion being exported per ATP hydrolysed. Some forms can also export Li<small><sup>+</sup></small> ions. <em>cf</em>. <a href="query.php?ec=7.2.2.1" target="new">EC 7.2.2.1</a>, Na<small><sup>+</sup></small>-transporting two-sector ATPase and <a href="query.php?ec=7.2.2.4" target="new">EC 7.2.2.4</a>, ABC-type Na<small><sup>+</sup></small> transporter.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.3" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.3" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.3%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.3" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.3" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Wieland, J., Nitsche, A.M., Strayle, J., Steiner, H. and Rudolph, H.K. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na<small><sup>+</sup></small> pump in the yeast plasma membrane. <em>EMBO J.</em> <strong>14</strong> (1995) 3870–3882. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7664728" target="new">7664728</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Catty, P., de Kerchove d'Exaerde, A. and Goffeau, A. The complete inventory of the yeast <em>Saccharomyces cerevisiae</em> P-type transport ATPases. <em>FEBS Lett.</em> <strong>409</strong> (1997) 325–332. [<a href="https://doi.org/10.1016/S0014-5793(97)00446-8" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9224683" target="new">9224683</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Benito, B., Quintero, F.J. and Rodriguez-Navarro, A. Overexpression of the sodium ATPase of <em>Saccharomyces cerevisiae</em>: conditions for phosphorylation from ATP and P<small><sub>i</sub></small>. <em>Biochim. Biophys. Acta</em> <strong>1328</strong> (1997) 214–226. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9315618" target="new">9315618</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. <em>Adv. Microb. Physiol.</em> <strong>40</strong> (1998) 81–136. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9889977" target="new">9889977</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.3 created 2000 as EC 3.6.3.7, modified 2001, transferred 20018 to EC 7.2.2.3]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="24"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.4</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type Na<small><sup>+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1"><em>natAB</em> (<em>gene names</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (ABC-type, Na<small><sup>+</sup></small>-exporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">ABC-type (ATP-binding cassette-type) transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. This bacterial enzyme, characterized from <em>Bacillus subtilis</em>, exports Na<small><sup>+</sup></small> ions out of the cell. <em>cf</em>. <a href="query.php?ec=7.2.2.1" target="new">EC 7.2.2.1</a>, Na<small><sup>+</sup></small>-transporting two-sector ATPase and <a href="query.php?ec=7.2.2.3" target="new">EC 7.2.2.3</a>, P-type Na<small><sup>+</sup></small> transporter.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.4" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.4" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.4" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.4" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Cheng, J., Guffanti, A.A. and Krulwich, T.A. A two-gene ABC-type transport system that extrudes Na<small><sup>+</sup></small> in <em>Bacillus subtilis</em> is induced by ethanol or protonophore. <em>Mol. Microbiol.</em> <strong>23</strong> (1997) 1107–1120. [<a href="https://doi.org/10.1046/j.1365-2958.1997.2951656.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9106203" target="new">9106203</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Ogura, M., Tsukahara, K., Hayashi, K. and Tanaka, T. The <em>Bacillus subtilis</em> NatK-NatR two-component system regulates expression of the <em>natAB</em> operon encoding an ABC transporter for sodium ion extrusion. <em>Microbiology</em> <strong>153</strong> (2007) 667–675. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/17322186" target="new">17322186</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.4 created 2018]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="25"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.5</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type Mn<small><sup>2+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Mn<small><sup>2+</sup></small>-[manganese-binding protein]<small><sub>[side 1]</sub></small> = ADP + phosphate + Mn<small><sup>2+</sup></small><small><sub>[side 2]</sub></small> + [manganese-binding protein]<small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">ABC-type manganese permease complex; manganese-transporting ATPase (<em>ambiguous</em>); ABC-type manganese transporter</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (ABC-type, Mn<small><sup>2+</sup></small>-importing)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the import of Mn<small><sup>2+</sup></small>, Zn<small><sup>2+</sup></small> and iron chelates.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.5" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.5" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.5" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.5" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. <em>Res. Microbiol.</em> <strong>146</strong> (1995) 271–278. [<a href="https://doi.org/10.1016/0923-2508(96)81050-3" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7569321" target="new">7569321</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. <em>Adv. Microb. Physiol.</em> <strong>40</strong> (1998) 81–136. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9889977" target="new">9889977</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Novak, R., Braun, J.S., Charpentier, E. and Tuomanen, E. Penicillin tolerance genes of <em>Streptococcus pneumoniae</em>: the ABC-type manganese permease complex Psa. <em>Mol. Microbiol.</em> <strong>29</strong> (1998) 1285–1296. [<a href="https://doi.org/10.1046/j.1365-2958.1998.01016.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9767595" target="new">9767595</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Kolenbrander, P.E., Andersen, R.N., Baker, R.A. and Jenkinson, H.F. The adhesion-assoiated aca operon in <em>Streptococcus gordonii</em> encodes an inducible high-affinity ABC transporter for Mn<small><sup>2+</sup></small> uptake. <em>J. Bacteriol.</em> <strong>180</strong> (1998) 290–295. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9440518" target="new">9440518</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.5 created 2000 as EC 3.6.3.35, transferred 2018 to EC 7.2.2.5]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="26"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.6</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">P-type K<small><sup>+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + K<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + K<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">K<small><sup>+</sup></small>-translocating Kdp-ATPase; multi-subunit K<small><sup>+</sup></small>-transport ATPase; K<small><sup>+</sup></small>-transporting ATPase; potassium-importing ATPase; K<small><sup>+</sup></small>-importing ATPase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, K<small><sup>+</sup></small>-importing)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. A bacterial enzyme that is involved in K<small><sup>+</sup></small> import. The probable stoichiometry is one ion per ATP hydrolysed.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.6" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.6" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.6%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.6" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.6" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.6%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Siebers, A. and Altendorf, K. Characterization of the phosphorylated intermediate of the K<small><sup>+</sup></small>-translocating Kdp-ATPase from <em>Escherichia coli</em>. <em>J. Biol. Chem.</em> <strong>264</strong> (1989) 5831–5838. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/2522440" target="new">2522440</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Gassel, M., Siebers, A., Epstein, W. and Altendorf, K. Assembly of the Kdp complex, the multi-subunit K<small><sup>+</sup></small>-transport ATPase of <em>Escherichia coli</em>. <em>Biochim. Biophys. Acta</em> <strong>1415</strong> (1998) 77–84. [<a href="https://doi.org/10.1016/S0005-2736(98)00179-5" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9858692" target="new">9858692</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Huang, C.S., Pedersen, B.P. and Stokes, D.L. Crystal structure of the potassium-importing KdpFABC membrane complex. <em>Nature</em> <strong>546</strong> (2017) 681–685. [<a href="https://doi.org/10.1038/nature22970" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/28636601" target="new">28636601</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.6 created 2000 as EC 3.6.3.12, transferred 2018 to EC 7.2.2.6]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="27"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.7</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type Fe<small><sup>3+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Fe<small><sup>3+</sup></small>-[iron-binding protein]<small><sub>[side 1]</sub></small> = ADP + phosphate + Fe<small><sup>3+</sup></small><small><sub>[side 2]</sub></small> + [iron-binding protein]<small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Fe<small><sup>3+</sup></small>-transporting ATPase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (ABC-type, Fe<small><sup>3+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains. A bacterial enzyme that interacts with a periplasmic iron-binding protein to imports Fe<small><sup>3+</sup></small> ions into the cytoplasm.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.7" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.7" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.7%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.7" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.7" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.7%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Angerer, A., Klupp, B. and Braun, V. Iron transport systems of <em>Serratia marcescens</em>. <em>J. Bacteriol.</em> <strong>174</strong> (1992) 1378–1387. [<a href="https://doi.org/10.1128/JB.174.4.1378-1387.1992" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1531225" target="new">1531225</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. <em>Res. Microbiol.</em> <strong>146</strong> (1995) 271–278. [<a href="https://doi.org/10.1016/0923-2508(96)81050-3" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7569321" target="new">7569321</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. <em>Adv. Microb. Physiol.</em> <strong>40</strong> (1998) 81–136. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9889977" target="new">9889977</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Khun, H.H., Kirby, S.D. and Lee, B.C. A <em>Neisseria meningitidis</em> fbp ABC mutant is incapable of using nonheme iron for growth. <em>Infect. Immun.</em> <strong>66</strong> (1998) 2330–2336. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9573125" target="new">9573125</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.7 created 2000 as EC 3.6.3.30, transferred 2018 to EC 7.2.2.7]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="28"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.8</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">P-type Cu<small><sup>+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Cu<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Cu<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Cu<small><sup>+</sup></small>-exporting ATPase (<em>ambiguous</em>); <em>copA</em> (<em>gene name</em>); ATP7A (<em>gene name</em>); ATP7B (<em>gene name</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, Cu<small><sup>+</sup></small>-exporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This enzyme transports Cu<small><sup>+</sup></small> or Ag<small><sup>+</sup></small>, and cannot transport the divalent ions, contrary to <a href="query.php?ec=7.2.2.9" target="new">EC 7.2.2.9</a>, P-type Cu<small><sup>2+</sup></small> transporter, which mainly transports the divalent copper ion.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.8" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.8" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.8%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.8" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.8" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.8%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Fan, B. and Rosen, B.P. Biochemical characterization of CopA, the <em>Escherichia coli</em> Cu(I)-translocating P-type ATPase. <em>J. Biol. Chem.</em> <strong>277</strong> (2002) 46987–46992. [<a href="https://doi.org/10.1074/jbc.M208490200" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/12351646" target="new">12351646</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Banci, L., Bertini, I., Ciofi-Baffoni, S., D'Onofrio, M., Gonnelli, L., Marhuenda-Egea, F.C. and Ruiz-Duenas, F.J. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from <em>Bacillus subtilis</em> in the apo and Cu(I) loaded states. <em>J. Mol. Biol.</em> <strong>317</strong> (2002) 415–429. [<a href="https://doi.org/10.1006/jmbi.2002.5430" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/11922674" target="new">11922674</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Mandal, A.K. and Arguello, J.M. Functional roles of metal binding domains of the <em>Archaeoglobus fulgidus</em> Cu<small><sup>+</sup></small>-ATPase CopA. <em>Biochemistry</em> <strong>42</strong> (2003) 11040–11047. [<a href="https://doi.org/10.1021/bi034806y" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/12974640" target="new">12974640</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Gonzalez-Guerrero, M. and Arguello, J.M. Mechanism of Cu<small><sup>+</sup></small>-transporting ATPases: soluble Cu<small><sup>+</sup></small> chaperones directly transfer Cu<small><sup>+</sup></small> to transmembrane transport sites. <em>Proc. Natl. Acad. Sci. USA</em> <strong>105</strong> (2008) 5992–5997. [<a href="https://doi.org/10.1073/pnas.0711446105" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/18417453" target="new">18417453</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Lewis, D., Pilankatta, R., Inesi, G., Bartolommei, G., Moncelli, M.R. and Tadini-Buoninsegni, F. Distinctive features of catalytic and transport mechanisms in mammalian sarco-endoplasmic reticulum Ca<small><sup>2+</sup></small> ATPase (SERCA) and Cu<small><sup>+</sup></small> (ATP7A/B) ATPases. <em>J. Biol. Chem.</em> <strong>287</strong> (2012) 32717–32727. [<a href="https://doi.org/10.1074/jbc.M112.373472" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/22854969" target="new">22854969</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Tadini-Buoninsegni, F., Bartolommei, G., Moncelli, M.R., Pilankatta, R., Lewis, D. and Inesi, G. ATP dependent charge movement in ATP7B Cu<small><sup>+</sup></small>-ATPase is demonstrated by pre-steady state electrical measurements. <em>FEBS Lett.</em> <strong>584</strong> (2010) 4619–4622. [<a href="https://doi.org/10.1016/j.febslet.2010.10.029" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/20965182" target="new">20965182</a>] </td> </tr> </td></tr> <tr> <td>7. </td> <td>Mattle, D., Sitsel, O., Autzen, H.E., Meloni, G., Gourdon, P. and Nissen, P. On allosteric modulation of P-type Cu<small><sup>+</sup></small>-ATPases. <em>J. Mol. Biol.</em> <strong>425</strong> (2013) 2299–2308. [<a href="https://doi.org/10.1016/j.jmb.2013.03.008" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/23500486" target="new">23500486</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.8 created 2013 as EC 3.6.3.54, transferred 2018 to EC 7.2.2.8]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="29"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.9</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">P-type Cu<small><sup>2+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Cu<small><sup>2+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Cu<small><sup>2+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Cu<small><sup>2+</sup></small>-exporting ATPase; <em>copB</em> (<em>gene name</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, Cu<small><sup>2+</sup></small>-exporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. The enzyme from the termophilic archaeon <em>Archaeoglobus fulgidus</em> is involved in copper extrusion from the cell [1,2].</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.9" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.9" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.9%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.9" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.9" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.9%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Mana-Capelli, S., Mandal, A.K. and Arguello, J.M. <em>Archaeoglobus fulgidus</em> CopB is a thermophilic Cu<small><sup>2+</sup></small>-ATPase: functional role of its histidine-rich-<em>N</em>-terminal metal binding domain. <em>J. Biol. Chem.</em> <strong>278</strong> (2003) 40534–40541. [<a href="https://doi.org/10.1074/jbc.M306907200" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/12876283" target="new">12876283</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Jayakanthan, S., Roberts, S.A., Weichsel, A., Arguello, J.M. and McEvoy, M.M. Conformations of the apo-, substrate-bound and phosphate-bound ATP-binding domain of the Cu(II) ATPase CopB illustrate coupling of domain movement to the catalytic cycle. <em>Biosci Rep</em> <strong>32</strong> (2012) 443–453. [<a href="https://doi.org/10.1042/BSR20120048" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/22663904" target="new">22663904</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.9 created 2000 as EC 3.6.3.4, modified 2013, transferred 2018 to EC 7.2.2.9]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="30"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.10</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">P-type Ca<small><sup>2+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Ca<small><sup>2+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Ca<small><sup>2+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">sarcoplasmic reticulum ATPase; sarco(endo)plasmic reticulum Ca<small><sup>2+</sup></small>-ATPase; calcium pump; Ca<small><sup>2+</sup></small>-pumping ATPase; plasma membrane Ca-ATPase; Ca<small><sup>2+</sup></small>-transporting ATPaseP-</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, Ca<small><sup>2+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This enzyme family comprises three types of Ca<small><sup>2+</sup></small>-transporting enzymes that are found in the plasma membrane, the sarcoplasmic reticulum, in yeast, and in some bacteria. The enzymes from plasma membrane and from yeast have been shown to transport one ion per ATP hydrolysed whereas those from the sarcoplasmic reticulum transport two ions per ATP hydrolysed. In muscle cells Ca<small><sup>2+</sup></small> is transported from the cytosol (side 1) into the sarcoplasmic reticulum (side 2).</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.10" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.10" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.10%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.10" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.10" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.10%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Schatzmann, H.J. and Vicenzi, F.F. Calcium movements across the membrane of human red cells. <em>J. Physiol.</em> <strong>201</strong> (1969) 369–395. [<a href="https://doi.org/10.1113/jphysiol.1969.sp008761" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/4238381" target="new">4238381</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Inesi, G., Watanabe, T., Coan, C. and Murphy, A. The mechanism of sarcoplasmic reticulum ATPase. <em>Ann. N.Y. Acad. Sci.</em> <strong>402</strong> (1982) 515–532. [<a href="https://doi.org/10.1111/j.1749-6632.1982.tb25772.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/6301340" target="new">6301340</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Carafoli, E. The Ca<small><sup>2+</sup></small> pump of the plasma membrane. <em>J. Biol. Chem.</em> <strong>267</strong> (1992) 2115–2118. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1310307" target="new">1310307</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>MacLennan, D.H., Rice, W.J. and Green, N.M. The mechanism of Ca<small><sup>2+</sup></small> transport by sarco(endo)plasmic reticulum Ca<small><sup>2+</sup></small>-ATPases. <em>J. Biol. Chem.</em> <strong>272</strong> (1997) 28815–28818. [<a href="https://doi.org/10.1074/jbc.272.46.28815" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9360942" target="new">9360942</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Toyoshima, C., Nakasako, M., Nomura, H. and Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. <em>Nature</em> <strong>405</strong> (2000) 647–655. [<a href="https://doi.org/10.1038/35015017" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/10864315" target="new">10864315</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Andersen, J.L., Gourdon, P., Moller, J.V., Morth, J.P. and Nissen, P. Crystallization and preliminary structural analysis of the <em>Listeria monocytogenes</em> Ca(2+)-ATPase LMCA<small><sub>1</sub></small>. <em>Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.</em> <strong>67</strong> (2011) 718–722. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/21636921" target="new">21636921</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.10 created 1984 as as EC 3.6.1.38, transferred 2000 to EC 3.6.3.8, modified 2001, modified 2011, transferred 2018 to EC 7.2.2.10]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="31"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.11</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type Ni<small><sup>2+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Ni<small><sup>2+</sup></small>-[nickel-binding protein]<small><sub>[side 1]</sub></small> = ADP + phosphate + Ni<small><sup>2+</sup></small><small><sub>[side 2]</sub></small> + [nickel-binding protein]<small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">nickel ABC transporter; nickel-transporting ATPase; ABC-type nickel-transporter</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (ABC-type, Ni<small><sup>2+</sup></small>-importing)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the high affinity uptake of Ni<small><sup>2+</sup></small>; the identity of the nickel species transported has not been conclusively established. Does not undergo phosphorylation during the transport process.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.11" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.11" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.11%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.11" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.11" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. <em>Res. Microbiol.</em> <strong>146</strong> (1995) 271–278. [<a href="https://doi.org/10.1016/0923-2508(96)81050-3" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7569321" target="new">7569321</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Hendricks, J.K. and Mobley, H.L. <em>Helicobacter pylori</em> ABC transporter: effect of allelic exchange mutagenesis on urease activity. <em>J. Bacteriol.</em> <strong>179</strong> (1997) 5892–5902. [<a href="https://doi.org/10.1128/JB.179.18.5892-5902.1997" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9294450" target="new">9294450</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. <em>Adv. Microb. Physiol.</em> <strong>40</strong> (1998) 81–136. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9889977" target="new">9889977</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Griffiths, J.K. and Sansom, C.E. <em>The Transporter Factsbook</em>, Academic Press, San Diego, 1998. </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.11 created 2000 as EC 3.6.3.24, transferred 2018 to EC 7.2.2.11]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="32"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.12</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">P-type Zn<small><sup>2+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Zn<small><sup>2+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Zn<small><sup>2+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Zn(II)-translocating P-type ATPase; Zn<small><sup>2+</sup></small>-exporting ATPase; P1B-type ATPase; HMA4 (<em>gene name</em>); <em>zntA</em> (<em>gene name</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, Zn<small><sup>2+</sup></small>-exporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. The enzyme, present in prokaryotes and photosynthetic eukaryotes, exports Zn<small><sup>2+</sup></small> and the related cations Cd<small><sup>2+</sup></small> and Pb<small><sup>2+</sup></small>.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.12" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.12" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.12%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.12" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.12" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.12%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Beard, S.J., Hashim, R., Membrillo-Hernández, J., Hughes, M.N. and Poole, R.K. Zinc(II) tolerance in <em>Escherichia coli</em> K-12: evidence that the <em>zntA</em> gene (<em>o732</em>) encodes a cation transport ATPase. <em>Mol. Microbiol.</em> <strong>25</strong> (1997) 883–891. [<a href="https://doi.org/10.1111/j.1365-2958.1997.mmi518.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9364914" target="new">9364914</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Rensing, C., Mitra, B. and Rosen, B.P. The <em>zntA</em> gene of <em>Escherichia coli</em> encodes a Zn(II)-translocating P-type ATPase. <em>Proc. Natl. Acad. Sci. USA</em> <strong>94</strong> (1997) 14326–14331. [<a href="https://doi.org/10.1073/pnas.94.26.14326" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9405611" target="new">9405611</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Rensing, C., Sun, Y., Mitra, B. and Rosen, B.P. Pb(II)-translocating P-type ATPases. <em>J. Biol. Chem.</em> <strong>273</strong> (1998) 32614–32617. [<a href="https://doi.org/10.1074/jbc.273.49.32614" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9830000" target="new">9830000</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Mills, R.F., Francini, A., Ferreira da Rocha, P.S., Baccarini, P.J., Aylett, M., Krijger, G.C. and Williams, L.E. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. <em>FEBS Lett.</em> <strong>579</strong> (2005) 783–791. [<a href="https://doi.org/10.1016/j.febslet.2004.12.040" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/15670847" target="new">15670847</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Eren, E. and Argüello, J.M. <em>Arabidopsis</em> HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn<small><sup>2+</sup></small> homeostasis. <em>Plant Physiol.</em> <strong>136</strong> (2004) 3712–3723. [<a href="https://doi.org/10.1104/pp.104.046292" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/15475410" target="new">15475410</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.12 created 2000 as EC 3.6.3.5, modified 2001, modified 2006, transferred 2018 to EC 7.2.2.12]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="33"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.13</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">Na<small><sup>+</sup></small>/K<small><sup>+</sup></small>-exchanging ATPase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> + K<small><sup>+</sup></small><small><sub>[side 2]</sub></small> = ADP + phosphate + Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small> + K<small><sup>+</sup></small><small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">(Na<small><sup>+</sup></small> + K<small><sup>+</sup></small>)-activated ATPase; Na,K-activated ATPase; Na,K-pump; Na<small><sup>+</sup></small>,K<small><sup>+</sup></small>-ATPase; sodium/potassium-transporting ATPase; Na<small><sup>+</sup></small>/K<small><sup>+</sup></small>-exchanging ATPase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, Na<small><sup>+</sup></small>/K<small><sup>+</sup></small>-exchanging)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This is a plasma membrane enzyme, ubiquitous in animal cells, that catalyses the efflux of three Na<small><sup>+</sup></small> and influx of two K<small><sup>+</sup></small> per ATP hydrolysed. It is involved in generating the plasma membrane electrical potential.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.13" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.13" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.13%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.13" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.13" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.13%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Skou, J.C. The influence of some cations on an adenosinetriphosphatase from peripheral nerve. <em>Biochim. Biophys. Acta</em> <strong>23</strong> (1957) 394–401. [<a href="https://doi.org/10.1016/0006-3002(57)90343-8" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/13412736" target="new">13412736</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Post, R.L., Sen, A.K. and Rosenthal, A.S. A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membrane. <em>J. Biol. Chem.</em> <strong>240</strong> (1965) 1437–1445. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/14284759" target="new">14284759</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Skou, J.C. The energy-coupled exchange of Na<small><sup>+</sup></small> for K<small><sup>+</sup></small> across the cell membrane. The Na<small><sup>+</sup></small>,K<small><sup>+</sup></small> pump. <em>FEBS Lett.</em> <strong>268</strong> (1990) 314–324. [<a href="https://doi.org/10.1016/0014-5793(90)81278-V" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/2166689" target="new">2166689</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Castillo, J.P., Rui, H., Basilio, D., Das, A., Roux, B., Latorre, R., Bezanilla, F. and Holmgren, M. Mechanism of potassium ion uptake by the Na<small><sup>+</sup></small>/K<small><sup>+</sup></small>-ATPase. <em>Nat. Commun.</em> <strong>6</strong>:7622 (2015). [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/26205423" target="new">26205423</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.13 created 1984 EC 3.6.1.37, transferred 2000 to EC 3.6.3.9, modified 2001, transferred 2018 to EC 7.2.2.13]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="34"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.14</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">P-type Mg<small><sup>2+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Mg<small><sup>2+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Mg<small><sup>2+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Mg<small><sup>2+</sup></small>-transporting P-type ATPase; Mg<small><sup>2+</sup></small>-transporting ATPase; Mg<small><sup>2+</sup></small>-importing ATPase; magnesium-translocating P-type ATPase; <em>mgtA</em> (<em>gene name</em>); <em>mgtB</em> (<em>gene name</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, Mg<small><sup>2+</sup></small>-importing)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. A bacterial enzyme that imports Mg<small><sup>2+</sup></small> with, rather than against, the Mg<small><sup>2+</sup></small> electrochemical gradient. The enzyme is also involved in Ni<small><sup>2+</sup></small> import.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.14" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.14" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.14%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.14" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.14" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.14%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Snavely, M.D., Miller, C.G. and Maguire, M.E. The <em>mgtB</em> Mg<small><sup>2+</sup></small> transport locus of <em>Salmonella typhimurium</em> encodes a P-type ATPase. <em>J. Biol. Chem.</em> <strong>266</strong> (1991) 815–823. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1824701" target="new">1824701</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Maguire, M.E. MgtA and MgtB: prokaryotic P-type ATPases that mediate Mg<small><sup>2+</sup></small> influx. <em>J. Bioenerg. Biomembr.</em> <strong>24</strong> (1992) 319–328. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1328179" target="new">1328179</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Tao, T., Snavely, M.D., Farr, S.G. and Maguire, M.E. Magnesium transport in <em>Salmonella typhimurium</em>: mtgA encodes a P-type ATPase and is regulated by Mg<small><sup>2+</sup></small> in a manner similar to that of the mgtB P-type ATPase. <em>J. Bacteriol.</em> <strong>177</strong> (1995) 2654–2662. [<a href="https://doi.org/10.1128/JB.177.10.2654-2662.1995" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7751273" target="new">7751273</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.14 created 2000 as EC 3.6.3.2, modified 2001, transferred 2018 to EC 7.2.2.14]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="35"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.15</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">P-type Ag<small><sup>+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Ag<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Ag<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Ag<small><sup>+</sup></small>-exporting ATPase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, Ag<small><sup>+</sup></small>-exporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that exports Ag<small><sup>+</sup></small> ions from some bacteria, archaea as well as from some animal tissues. The proteins also transport Cu<small><sup>+</sup></small> ions (<em>cf</em>. <a href="query.php?ec=7.2.2.8" target="new">EC 7.2.2.8</a>, P-type Cu<small><sup>+</sup></small> transporter).</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.15" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.15" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.15" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.15" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Gupta, A., Matsui, K., Lo, J.F. and Silver, S. Molecular basis for resistance to silver cations in <em>Salmonella</em>. <em>Nature Med.</em> <strong>5</strong> (1999) 183–188. [<a href="https://doi.org/10.1038/5545" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9930866" target="new">9930866</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Bury, N.R., Grosell, M., Grover, A.K. and Wood, C.M. ATP-dependent silver transport across the basolateral membrane of rainbow trout gills. <em>Toxicol. Appl. Pharmacol.</em> <strong>159</strong> (1999) 1–8. [<a href="https://doi.org/10.1006/taap.1999.8706" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/10448119" target="new">10448119</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.15 created 2000 as EC 3.6.3.53, transferred 2018 to EC 7.2.2.15]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="36"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.16</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type ferric hydroxamate transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Fe<small><sup>3+</sup></small>-hydroxamate complex-[hydroxamate-binding protein]<small><sub>[side 1]</sub></small> = ADP + phosphate + Fe<small><sup>3+</sup></small>-hydroxamate complex<small><sub>[side 2]</sub></small> + [hydroxamate-binding protein]<small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">iron(III) hydroxamate transporting ATPase; iron(III) hydroxamate ABC transporter; <em>fhuCDB</em> (<em>gene names</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase [ABC-type, iron(III) hydroxamate-importing]</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the import of Fe<small><sup>3+</sup></small>-complexed hydroxamate siderophores such as coprogen, ferrichrome and the ferric hydroxamate antibiotic, albomycin.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.16" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.16" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.16%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.16" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.16" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.16%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Koster, W. Iron(III) hydroxamate transport across the cytoplasmic membrane of <em>Escherichia coli</em>. <em>Biol. Met.</em> <strong>4</strong> (1991) 23–32. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1830209" target="new">1830209</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Speziali, C.D., Dale, S.E., Henderson, J.A., Vines, E.D. and Heinrichs, D.E. Requirement of <em>Staphylococcus aureus</em> ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. <em>J. Bacteriol.</em> <strong>188</strong> (2006) 2048–2055. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/16513734" target="new">16513734</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.16 created 2000 as EC 3.6.3.34, part transferred 2018 to EC 7.2.2.16]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="37"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.17</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type ferric enterobactin transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Fe<small><sup>3+</sup></small>-enterobactin complex-[enterobactin-binding protein]<small><sub>[side 1]</sub></small> = ADP + phosphate + Fe<small><sup>3+</sup></small>-enterobactin complex<small><sub>[side 2]</sub></small> + [enterobactin-binding protein]<small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">ferric enterobactin transporting ATPase; ferric enterobactin ABC transporter; fepBCDG (<em>gene names</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (ABC-type, iron(III) enterobactin-importing)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the high affinity uptake of Fe<small><sup>3+</sup></small>-enterobactin complexes.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.17" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.17" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.17%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.17" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.17" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Chenault, S.S. and Earhart, C.F. Organization of genes encoding membrane proteins of the <em>Escherichia coli</em> ferrienterobactin permease. <em>Mol. Microbiol.</em> <strong>5</strong> (1991) 1405–1413. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1787794" target="new">1787794</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Shea, C.M. and McIntosh, M.A. Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic binding-protein-dependent systems in <em>Escherichia coli</em>. <em>Mol. Microbiol.</em> <strong>5</strong> (1991) 1415–1428. [<a href="https://doi.org/10.1111/j.1365-2958.1991.tb00788.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1838574" target="new">1838574</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.17 created 2000 as EC 3.6.3.34, part transferred 2018 to EC 7.2.2.17]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="38"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.18</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type ferric citrate transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Fe<small><sup>3+</sup></small>-dicitrate-[dicitrate-binding protein]<small><sub>[side 1]</sub></small> = ADP + phosphate + Fe<small><sup>3+</sup></small>-dicitrate<small><sub>[side 2]</sub></small> + [dicitrate-binding protein]<small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">ferric citrate transporting ATPase; ferric citrate ABC transporter; fecBCDE (<em>gene names</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (ABC-type, iron(III) dicitrate-importing)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme from <em>Escherichia coli</em> interacts with a periplasmic substrate binding protein and mediates the high affinity uptake of Fe<small><sup>3+</sup></small>-citrate in the form of a mononuclear (containing one iron(III) ion and two citrate molecules) or dinuclear (containing 2 iron(III) ions) complexes.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.18" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.18" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.18%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.18" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.18" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Staudenmaier, H., Van Hove, B., Yaraghi, Z. and Braun, V. Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in <em>Escherichia coli</em>. <em>J. Bacteriol.</em> <strong>171</strong> (1989) 2626–2633. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/2651410" target="new">2651410</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Banerjee, S., Paul, S., Nguyen, L.T., Chu, B.C. and Vogel, H.J. FecB, a periplasmic ferric-citrate transporter from <em>E. coli</em>, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids. <em>Metallomics</em> <strong>8</strong> (2016) 125–133. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/26600288" target="new">26600288</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.18 created 2000 as EC 3.6.3.34, part transferred 2018 to EC 7.2.2.18]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="39"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.19</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">H<small><sup>+</sup></small>/K<small><sup>+</sup></small>-exchanging ATPase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + H<small><sup>+</sup></small><small><sub>[side 1]</sub></small> + K<small><sup>+</sup></small><small><sub>[side 2]</sub></small> = ADP + phosphate + H<small><sup>+</sup></small><small><sub>[side 2]</sub></small> + K<small><sup>+</sup></small><small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">H<small><sup>+</sup></small>-K<small><sup>+</sup></small>-ATPase; H,K-ATPase; (K<small><sup>+</sup></small> + H<small><sup>+</sup></small>)-ATPase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type,H<small><sup>+</sup></small>/K<small><sup>+</sup></small>-exchanging)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. A gastric mucosal enzyme that catalyses the efflux of one H<small><sup>+</sup></small> and the influx of one K<small><sup>+</sup></small> per ATP hydrolysed.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.19" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.19" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.19%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.19" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.19" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.19%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Sachs, G., Collier, R.H., Shoemaker, R.L. and Hirschowitz, B.I. The energy source for gastric H<small><sup>+</sup></small> secretion. <em>Biochim. Biophys. Acta</em> <strong>162</strong> (1968) 210–219. [<a href="https://doi.org/10.1016/0005-2728(68)90103-5" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/5682852" target="new">5682852</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Hersey, S.J., Perez, A. Matheravidathu, S. and Sachs, G. Gastric H<small><sup>+</sup></small>-K<small><sup>+</sup></small>-ATPase in situ: evidence for compartmentalization. <em>Am. J. Physiol.</em> <strong>257</strong> (1989) G539–G547. [<a href="https://doi.org/10.1152/ajpgi.1989.257.4.G539" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/2552824" target="new">2552824</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Rabon, E.C. and Reuben, M.A. The mechanism and structure of the gastric H,K-ATPase. <em>Annu. Rev. Physiol.</em> <strong>52</strong> (1990) 321–344. [<a href="https://doi.org/10.1146/annurev.ph.52.030190.001541" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/2158765" target="new">2158765</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.19 created 1984 as EC 3.6.1.36, transferred 2000 to EC 3.6.3.10, transferred 2018 to EC 7.2.2.19]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="40"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.20</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type Zn<small><sup>2+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Zn<small><sup>2+</sup></small>-[zinc-binding protein]<small><sub>[side 1]</sub></small> = ADP + phosphate + Zn<small><sup>2+</sup></small><small><sub>[side 2]</sub></small> + [zinc-binding protein]<small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Zn<small><sup>2+</sup></small>-transporting ATPase; Zn<small><sup>2+</sup></small> ABC transporter; <em>znuABC</em> (<em>gene names</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (ABC-type, Zn<small><sup>2+</sup></small>-importing)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">ABC-type (ATP-binding cassette-type) transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the high-affinity import of Zn<small><sup>2+</sup></small>.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.20" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.20" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.20%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.20" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.20" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Patzer, S.I. and Hantke, K. The ZnuABC high-affinity zinc uptake system and its regulator Zur in <em>Escherichia coli</em>. <em>Mol. Microbiol.</em> <strong>28</strong> (1998) 1199–1210. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9680209" target="new">9680209</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Hantke, K. Bacterial zinc uptake and regulators. <em>Curr. Opin. Microbiol.</em> <strong>8</strong> (2005) 196–202. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/15802252" target="new">15802252</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.20 created 2019]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="41"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.21</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">Cd<small><sup>2+</sup></small>-exporting ATPase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1"> ATP + H<small><sub>2</sub></small>O + Cd<small><sup>2+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Cd<small><sup>2+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">cadmium-translocating P-type ATPase; cadmium-exporting ATPase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (Cd<small><sup>2+</sup></small>-exporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. This enzyme occurs in protozoa, fungi and plants.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.21" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.21" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.2.21%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.21" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.21" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.21%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Silver, S. and Ji, G. Newer systems for bacterial resistance to toxic heavy metals. <em>Environ. Health Perspect. 102, Suppl.</em> <strong>3</strong> (1994) 107–113. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7843081" target="new">7843081</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Tsai, K.J. and Linet, A.L. F<small><sub>o</sub></small>rmation of a phosphorylated enzyme intermediate by the cadA Cd<small><sup>2+</sup></small>-ATPase. <em>Arch. Biochem. Biophys.</em> <strong>305</strong> (1993) 267–270. [<a href="https://doi.org/10.1006/abbi.1993.1421" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8373163" target="new">8373163</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.21 created 2000 as EC 3.6.3.3, transferred 2019 to EC 7.2.2.21]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="42"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.2.22</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">P-type Mn<small><sup>2+</sup></small> transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + Mn<small><sup>2+</sup></small><small><sub>[side 1]</sub></small> = ADP + phosphate + Mn<small><sup>2+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Mn(II)-translocating P-type ATPase; Mn<small><sup>2+</sup></small>-exporting ATPase; P1B-type ATPase (<em>ambiguous</em>); <em>ctpC</em> (<em>gene name</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (P-type, Mn<small><sup>2+</sup></small>-exporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">A P-type ATPase that undergoes covalent phosphorylation during the transport cycle. The enzyme, detected in mycobacteria, is a high affinity slow turnover ATPase exporting Mn<small><sup>2+</sup></small>.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.2.22" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.2.22" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.2.22" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.2.22" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.2.22%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Padilla-Benavides, T., Long, J.E., Raimunda, D., Sassetti, C.M. and Arguello, J.M. A novel P(1B)-type Mn<small><sup>2+</sup></small>-transporting ATPase is required for secreted protein metallation in mycobacteria. <em>J. Biol. Chem.</em> <strong>288</strong> (2013) 11334–11347. [<a href="https://doi.org/10.1074/jbc.M112.448175" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/23482562" target="new">23482562</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.2.22 created 2021]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="43"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.3.1</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">Na<small><sup>+</sup></small>-exporting diphosphatase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">diphosphate + H<small><sub>2</sub></small>O + Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = <strong>2</strong> phosphate + Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">Na<small><sup>+</sup></small>-translocating membrane pyrophosphatase; sodium-translocating pyrophosphatase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">diphosphate phosphohydrolase (Na<small><sup>+</sup></small>-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">Requires Na<small><sup>+</sup></small> and K<small><sup>+</sup></small>. This enzyme, found in some bacteria and archaea, couples the energy from diphosphate hydrolysis to active sodium translocation across the membrane. The enzyme is electrogenic, as the Na<small><sup>+</sup></small> transport results in generation of a positive potential in the inner side of the membrane.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.3.1" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.3.1" target="new">EXPASY</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.3.1" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.3.1" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Belogurov, G.A., Malinen, A.M., Turkina, M.V., Jalonen, U., Rytkonen, K., Baykov, A.A. and Lahti, R. Membrane-bound pyrophosphatase of <em>Thermotoga maritima</em> requires sodium for activity. <em>Biochemistry</em> <strong>44</strong> (2005) 2088–2096. [<a href="https://doi.org/10.1021/bi048429g" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/15697234" target="new">15697234</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Malinen, A.M., Belogurov, G.A., Baykov, A.A. and Lahti, R. Na<small><sup>+</sup></small>-pyrophosphatase: a novel primary sodium pump. <em>Biochemistry</em> <strong>46</strong> (2007) 8872–8878. [<a href="https://doi.org/10.1021/bi700564b" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/17605473" target="new">17605473</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Luoto, H.H., Belogurov, G.A., Baykov, A.A., Lahti, R. and Malinen, A.M. Na<small><sup>+</sup></small>-translocating membrane pyrophosphatases are widespread in the microbial world and evolutionarily precede H<small><sup>+</sup></small>-translocating pyrophosphatases. <em>J. Biol. Chem.</em> <strong>286</strong> (2011) 21633–21642. [<a href="https://doi.org/10.1074/jbc.M111.244483" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/21527638" target="new">21527638</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.3.1 created 2021 as EC 7.1.3.2, transferred 2022 to EC 7.2.3.1]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="44"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.4.1</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">carboxybiotin decarboxylase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">a carboxybiotinyl-[protein] + <strong><em>n</em></strong> Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> + H<small><sup>+</sup></small><small><sub>[side 2]</sub></small> = CO<small><sub>2</sub></small> + a biotinyl-[protein] + <strong><em>n</em></strong> Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small> <strong>(<em>n</em></strong> = 1–2)</td> </tr> <tr> <td width="20%" align="right"></td> <td width="80%">For diagram of malonate decarboxylase, <a target="new" href="reaction/misc/maldecarb.html">click here</a></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">MadB; carboxybiotin protein decarboxylase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">carboxybiotinyl-[protein] carboxy-lyase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">The integral membrane protein MadB from the anaerobic bacterium <em>Malonomonas rubra</em> is a component of the multienzyme complex <a href="query.php?ec=7.2.4.4" target="new">EC 7.2.4.4</a>, biotin-dependent malonate decarboxylase. The free energy of the decarboxylation reaction is used to pump Na<small><sup>+</sup></small> out of the cell. The enzyme is a member of the Na<small><sup>+</sup></small>-translocating decarboxylase family, other members of which include <a href="query.php?ec=7.2.4.2" target="new">EC 7.2.4.2</a> [oxaloacetate decarboxylase (Na<small><sup>+</sup></small> extruding)] and <a href="query.php?ec=7.2.4.3" target="new">EC 7.2.4.3</a> [(<em>S</em>)-methylmalonyl-CoA decarboxylase (sodium-transporting)] [2]. </td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="http://www.brenda-enzymes.org/enzyme.php?ecno=7.2.4.1" target="new">BRENDA</a>, <a href="http://enzyme.expasy.org/EC/7.2.4.1" target="new">EXPASY</a>, GENE, <a href="http://www.genome.ad.jp/dbget-bin/www_bget?ec:7.2.4.1" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.4.1" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Berg, M., Hilbi, H. and Dimroth, P. Sequence of a gene cluster from <em>Malonomonas rubra</em> encoding components of the malonate decarboxylase Na<small><sup>+</sup></small> pump and evidence for their function. <em>Eur. J. Biochem.</em> <strong>245</strong> (1997) 103–115. [<a href="https://doi.org/10.1111/j.1432-1033.1997.00103.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9128730" target="new">9128730</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. <em>Mol. Microbiol.</em> <strong>25</strong> (1997) 3–10. [<a href="https://doi.org/10.1046/j.1365-2958.1997.4611824.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/11902724" target="new">11902724</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.4.1 created 2008 as EC 4.3.99.2, transferred 2018 to EC 7.2.4.1]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="45"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.4.2</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">oxaloacetate decarboxylase (Na<small><sup>+</sup></small> extruding)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">oxaloacetate + <strong>2</strong> Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = pyruvate + CO<small><sub>2</sub></small> + <strong>2</strong> Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">oxaloacetate β-decarboxylase (<em>ambiguous</em>); oxalacetic acid decarboxylase (<em>ambiguous</em>); oxalate β-decarboxylase (<em>ambiguous</em>); oxaloacetate carboxy-lyase (<em>ambiguous</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">oxaloacetate carboxy-lyase (pyruvate-forming; Na<small><sup>+</sup></small>-extruding)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">The enzyme from the bacterium <em>Klebsiella aerogenes</em> is a biotinyl protein and also decarboxylates glutaconyl-CoA and methylmalonyl-CoA. The process is accompanied by the extrusion of two sodium ions from cells. Some animal enzymes require Mn<small><sup>2+</sup></small>. Differs from <a href="query.php?ec=4.1.1.112" target="new">EC 4.1.1.112</a> (oxaloacetate decarboxylase) for which there is no evidence for involvement in Na<small><sup>+</sup></small> transport. </td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.4.2" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.4.2" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.4.2%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.4.2" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.4.2" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.4.2%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a>, CAS registry number: 9024-98-0</td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Dimroth, P. Characterization of a membrane-bound biotin-containing enzyme: oxaloacetate decarboxylase from <em>Klebsiella aerogenes</em>. <em>Eur. J. Biochem.</em> <strong>115</strong> (1981) 353–358. [<a href="https://doi.org/10.1111/j.1432-1033.1981.tb05245.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7016536" target="new">7016536</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Dimroth, P. The role of biotin and sodium in the decarboxylation of oxaloacetate by the membrane-bound oxaloacetate decarboxylase from <em>Klebsiella aerogenes</em>. <em>Eur. J. Biochem.</em> <strong>121</strong> (1982) 435–441. [<a href="https://doi.org/10.1111/j.1432-1033.1982.tb05806.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7037395" target="new">7037395</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.4.2 created 1961 as EC 4.1.1.3, modified 1986, modified 2000, transferred 2018 to EC 7.2.4.2]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="46"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.4.3</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">(<em>S</em>)-methylmalonyl-CoA decarboxylase (sodium-transporting)</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">(<em>S</em>)-methylmalonyl-CoA + Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> + H<small><sup>+</sup></small><small><sub>[side 2]</sub></small> = propanoyl-CoA + CO<small><sub>2</sub></small> + Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">methylmalonyl-coenzyme A decarboxylase (<em>ambiguous</em>); (<em>S</em>)-2-methyl-3-oxopropanoyl-CoA carboxy-lyase (<em>incorrect</em>); (<em>S</em>)-methylmalonyl-CoA carboxy-lyase (<em>ambiguous</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">(<em>S</em>)-methylmalonyl-CoA carboxy-lyase (propanoyl-CoA-forming, sodium-transporting)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">This bacterial enzyme couples the decarboxylation of (<em>S</em>)-methylmalonyl-CoA to propanoyl-CoA to the vectorial transport of Na<small><sup>+</sup></small> across the cytoplasmic membrane, thereby creating a sodium ion motive force that is used for ATP synthesis. It is a membrane-associated biotin protein and is strictly dependent on sodium ions for activity.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.4.3" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.4.3" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.4.3%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.4.3" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.4.3" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.4.3%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a>, CAS registry number: 37289-44-4</td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Galivan, J.H. and Allen, S.H.G. Methylmalonyl coenzyme A decarboxylase. Its role in succinate decarboxylation by <em>Micrococcus lactilyticus</em>. <em>J. Biol. Chem.</em> <strong>243</strong> (1968) 1253–1261. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/5646172" target="new">5646172</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Hilpert, W. and Dimroth, P. Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na<small><sup>+</sup></small> gradient. <em>Nature</em> <strong>296</strong> (1982) 584–585. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7070502" target="new">7070502</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Hoffmann, A., Hilpert, W. and Dimroth, P. The carboxyltransferase activity of the sodium-ion-translocating methylmalonyl-CoA decarboxylase of <em>Veillonella alcalescens</em>. <em>Eur. J. Biochem.</em> <strong>179</strong> (1989) 645–650. [<a href="https://doi.org/10.1111/j.1432-1033.1989.tb14596.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/2920730" target="new">2920730</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Huder, J.B. and Dimroth, P. Expression of the sodium ion pump methylmalonyl-coenzyme A-decarboxylase from <em>Veillonella parvula</em> and of mutated enzyme specimens in <em>Escherichia coli</em>. <em>J. Bacteriol.</em> <strong>177</strong> (1995) 3623–3630. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7601825" target="new">7601825</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Bott, M., Pfister, K., Burda, P., Kalbermatter, O., Woehlke, G. and Dimroth, P. Methylmalonyl-CoA decarboxylase from <em>Propionigenium modestum</em><small><sup>-</sup></small>-cloning and sequencing of the structural genes and purification of the enzyme complex. <em>Eur. J. Biochem.</em> <strong>250</strong> (1997) 590–599. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9428714" target="new">9428714</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.4.3 created 1972 as EC 4.1.1.41, modified 1983, modified 1986, transferred 2018 to EC 7.2.4.3]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="47"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.4.4</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">biotin-dependent malonate decarboxylase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">malonate + H<small><sup>+</sup></small> + Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = acetate + CO<small><sub>2</sub></small> + Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"></td> <td width="80%">For diagram of the reactions involved in the multienzyme complex malonate decarboxylase, <a target="new" href="reaction/misc/maldecarb.html">click here</a></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">malonate decarboxylase (with biotin); malonate decarboxylase (<em>ambiguous</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">malonate carboxy-lyase (biotin-dependent)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">Two types of malonate decarboxylase are currently known, both of which form multienzyme complexes. The enzyme described here is a membrane-bound biotin-dependent, Na<small><sup>+</sup></small>-translocating enzyme [6]. The other type is a biotin-independent cytosolic protein (<em>cf</em>. <a href="query.php?ec=4.1.1.88" target="new">EC 4.1.1.88</a>, biotin-independent malonate decarboxylase). As free malonate is chemically rather inert, it has to be activated prior to decarboxylation. Both enzymes achieve this by exchanging malonate with an acetyl group bound to an acyl-carrier protiein (ACP), to form malonyl-ACP and acetate, with subsequent decarboxylation regenerating the acetyl-bound form of the enzyme. The ACP subunit of both enzymes differs from that found in fatty-acid biosynthesis by having phosphopantethine attached to a serine side-chain as 2-(5-triphosphoribosyl)-3-dephospho-CoA rather than as phosphopantetheine 4′-phosphate. In the anaerobic bacterium <em>Malonomonas rubra</em>, the components of the multienzyme complex/enzymes involved in carrying out the reactions of this enzyme are as follows: MadA (<a href="query.php?ec=2.3.1.187" target="new">EC 2.3.1.187</a>, acetyl-<em>S</em>-ACP:malonate ACP transferase), MadB (<a href="query.php?ec=7.2.4.1" target="new">EC 7.2.4.1</a>, carboxybiotin decarboxylase), MadC/MadD (<a href="query.php?ec=2.1.3.10" target="new">EC 2.1.3.10</a>, malonyl-<em>S</em>-ACP:biotin-protein carboxyltransferase) and MadH (<a href="query.php?ec=6.2.1.35" target="new">EC 6.2.1.35</a>, acetate—[acyl-carrier protein] ligase). Two other components that are involved are MadE, the acyl-carrier protein and MadF, the biotin protein. The carboxy group is lost with retention of configuration [5]. </td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.4.4" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.2.4.4" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.4.4%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.4.4" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.4.4" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Hilbi, H., Dehning, I., Schink, B. and Dimroth, P. Malonate decarboxylase of <em>Malonomonas rubra</em>, a novel type of biotin-containing acetyl enzyme. <em>Eur. J. Biochem.</em> <strong>207</strong> (1992) 117–123. [<a href="https://doi.org/10.1111/j.1432-1033.1992.tb17028.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1628643" target="new">1628643</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Hilbi, H. and Dimroth, P. Purification and characterization of a cytoplasmic enzyme component of the Na<small><sup>+</sup></small>-activated malonate decarboxylase system of <em>Malonomonas rubra</em>: acetyl-<em>S</em>-acyl carrier protein: malonate acyl carrier protein-SH transferase. <em>Arch. Microbiol.</em> <strong>162</strong> (1994) 48–56. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/18251085" target="new">18251085</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Berg, M., Hilbi, H. and Dimroth, P. The acyl carrier protein of malonate decarboxylase of <em>Malonomonas rubra</em> contains 2′-(5"-phosphoribosyl)-3′-dephosphocoenzyme A as a prosthetic group. <em>Biochemistry</em> <strong>35</strong> (1996) 4689–4696. [<a href="https://doi.org/10.1021/bi952873p" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8664258" target="new">8664258</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Berg, M., Hilbi, H. and Dimroth, P. Sequence of a gene cluster from <em>Malonomonas rubra</em> encoding components of the malonate decarboxylase Na<small><sup>+</sup></small> pump and evidence for their function. <em>Eur. J. Biochem.</em> <strong>245</strong> (1997) 103–115. [<a href="https://doi.org/10.1111/j.1432-1033.1997.00103.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9128730" target="new">9128730</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Micklefield, J., Harris, K.J., Gröger, S., Mocek, U., Hilbi, H., Dimroth, P. and Floss, H.G. Stereochemical course of malonate decarboxylase in <em>Malonomonas rubra</em> has biotin decarboxylation with retention. <em>J. Am. Chem. Soc.</em> <strong>117</strong> (1995) 1153–1154. [<a href="https://doi.org/10.1021/ja00108a042" target="new">DOI</a>] </td> </tr> </td></tr> <tr> <td>6. </td> <td>Kim, Y.S. Malonate metabolism: biochemistry, molecular biology, physiology, and industrial application. <em>J. Biochem. Mol. Biol.</em> <strong>35</strong> (2002) 443–451. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/12359084" target="new">12359084</a>] </td> </tr> </td></tr> <tr> <td>7. </td> <td>Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. <em>Mol. Microbiol.</em> <strong>25</strong> (1997) 3–10. [<a href="https://doi.org/10.1046/j.1365-2958.1997.4611824.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/11902724" target="new">11902724</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.4.4 created 2008 as EC 4.1.1.89, transferred 2018 to EC 7.2.4.4]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="48"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.2.4.5</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">glutaconyl-CoA decarboxylase</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">(2<em>E</em>)-4-carboxybut-2-enoyl-CoA + Na<small><sup>+</sup></small><small><sub>[side 1]</sub></small> = (2<em>E</em>)-but-2-enoyl-CoA + CO<small><sub>2</sub></small> + Na<small><sup>+</sup></small><small><sub>[side 2]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Glossary:</strong></td> <td width="80%" colspan="1">(<em>E</em>)-glutaconyl-CoA = (2<em>E</em>)-4-carboxybut-2-enoyl-CoA</td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">glutaconyl coenzyme A decarboxylase; pent-2-enoyl-CoA carboxy-lyase; 4-carboxybut-2-enoyl-CoA carboxy-lyase</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">(2<em>E</em>)-4-carboxybut-2-enoyl-CoA carboxy-lyase [(2<em>E</em>)-but-2-enoyl-CoA-forming]</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">The enzyme from the bacterium <em>Acidaminococcus fermentans</em> is a biotinyl-protein, requires Na<small><sup>+</sup></small>, and acts as a sodium pump. Prior to the Na<small><sup>+</sup></small>-dependent decarboxylation, the carboxylate is transferred to biotin in a Na<small><sup>+</sup></small>-independent manner. The conserved lysine, to which biotin forms an amide bond, is located 34 amino acids before the C-terminus, flanked on both sides by two methionine residues, which are conserved in every biotin-dependent enzyme.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.2.4.5" target="new">BRENDA</a>, <a href="http://eawag-bbd.ethz.ch/servlets/pageservlet?ptype=e&ECcode=7.2.4.5" target="new">EAWAG-BBD</a>, <a href="https://enzyme.expasy.org/EC/7.2.4.5" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.2.4.5%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.2.4.5" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.2.4.5" target="new">MetaCyc</a>, <a href="https://www.rcsb.org/search?request=%7B%22query%22%3A%7B%22type%22%3A%22terminal%22%2C%22service%22%3A%22text%22%2C%22parameters%22%3A%7B%22attribute%22%3A%22rcsb_polymer_entity.rcsb_ec_lineage.id%22%2C%22operator%22%3A%22in%22%2C%22value%22%3A%5B%227.2.4.5%22%5D%7D%7D%2C%22return_type%22%3A%22polymer_entity%22%7D" target="new">PDB</a>, CAS registry number: 84399-93-9</td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Buckel, W.S. and Semmler, R. Purification, characterisation and reconstitution of glutaconyl-CoA decarboxylase, a biotin-dependent sodium pump from anaerobic bacteria. <em>Eur. J. Biochem.</em> <strong>136</strong> (1983) 427–434. [<a href="https://doi.org/10.1111/j.1432-1033.1983.tb07760.x" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/6628393" target="new">6628393</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Buckel, W. Sodium ion-translocating decarboxylases. <em>Biochim. Biophys. Acta</em> <strong>1505</strong> (2001) 15–27. [<a href="https://doi.org/10.1016/S0005-2728(00)00273-5" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/11248185" target="new">11248185</a>] </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.2.4.5 created 1986 as EC 4.1.1.70, modified 2003, transferred 2019 to EC 7.2.4.5]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="49"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.3.2.1</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type phosphate transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + phosphate-[phosphate-binding protein]<small><sub>[side 1]</sub></small> = ADP + phosphate + phosphate<small><sub>[side 2]</sub></small> + [phosphate-binding protein]<small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">phosphate ABC transporter; phosphate-transporting ATPase (<em>ambiguous</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (ABC-type, phosphate-importing)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the high affinity uptake of phosphate anions. Unlike P-type ATPases, it does not undergo phosphorylation during the transport process.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.3.2.1" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.3.2.1" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.3.2.1%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.3.2.1" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.3.2.1" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Webb, D.C., Rosenberg, H. and Cox, G.B. Mutational analysis of the <em>Escherichia coli</em> phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices. <em>J. Biol. Chem.</em> <strong>267</strong> (1992) 24661–24668. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1447208" target="new">1447208</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. <em>Res. Microbiol.</em> <strong>146</strong> (1995) 271–278. [<a href="https://doi.org/10.1016/0923-2508(96)81050-3" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7569321" target="new">7569321</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Braibant, M., LeFevre, P., de Wit, L., Ooms, J., Peirs, P., Huygen, K., Wattiez, R. and Content, J. Identification of a second <em>Mycobacterium tuberculosis</em> gene cluster encoding proteins of an ABC phosphate transporter. <em>FEBS Lett.</em> <strong>394</strong> (1996) 206–212. [<a href="https://doi.org/10.1016/0014-5793(96)00953-2" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/8843165" target="new">8843165</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. <em>Adv. Microb. Physiol.</em> <strong>40</strong> (1998) 81–136. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9889977" target="new">9889977</a>] </td> </tr> </td></tr> <tr> <td>5. </td> <td>Griffiths, J.K. and Sansom, C.E. <em>The Transporter Factsbook</em>, Academic Press, San Diego, 1998. </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.3.2.1 created 2000 as EC 3.6.3.27, transferred 2018 to EC 7.3.2.1]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> <tr valign="bottom"> <td width="20%" align="right"><a name="50"></a><strong><span style="color : red">EC</span></strong></td> <td width="80%" colspan="1"><strong><span style="color : red">7.3.2.2</span></strong> </td> </tr> <tr> <td width="20%" align="right"><strong>Accepted name:</strong></td> <td width="80%" colspan="1">ABC-type phosphonate transporter</td> </tr> <tr> <td width="20%" align="right"><strong>Reaction:</strong></td> <td width="80%" colspan="1">ATP + H<small><sub>2</sub></small>O + phosphonate-[phosphonate-binding protein]<small><sub>[side 1]</sub></small> = ADP + phosphate + phosphonate<small><sub>[side 2]</sub></small> + [phosphonate-binding protein]<small><sub>[side 1]</sub></small></td> </tr> <tr> <td width="20%" align="right"><strong>Other name(s):</strong></td> <td width="80%" colspan="1">phosphonate-transporting ATPase (<em>ambiguous</em>)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Systematic name: </strong></td> <td width="80%" colspan="1">ATP phosphohydrolase (ABC-type, phosphonate-importing)</td> </tr> <tr valign="top"> <td width="20%" align="right"><strong>Comments:</strong></td> <td width="80%" colspan="1">An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein and mediates the import of phosphonate and organophosphate anions.</td> </tr> <tr> <td width="20%" align="right"><strong>Links to other databases:</strong></td> <td width="80%" colspan="1"><a href="https://www.brenda-enzymes.org/enzyme.php?ecno=7.3.2.2" target="new">BRENDA</a>, <a href="https://enzyme.expasy.org/EC/7.3.2.2" target="new">EXPASY</a>, <a href="https://www.ncbi.nlm.nih.gov/gene/?term=7.3.2.2%5BEC%5D" target="new">Gene</a>, <a href="https://www.kegg.jp/dbget-bin/www_bget?ec:7.3.2.2" target="new">KEGG</a>, <a href="http://biocyc.org/META/NEW-IMAGE?type=EC-NUMBER&object=EC-7.3.2.2" target="new">MetaCyc</a></td> </tr> <tr> <td width="20%" align="right" valign="top"><strong>References:</strong></td> <td align="left" valign="top" colspan="1"> <table border="0" cellpadding="0"><tr> <td>1. </td> <td>Wanner, B.L. and Metcalf, W.W. Molecular genetic studies of a 10.9-kb operon in <em>Escherichia coli</em> for phosphonate uptake and biodegradation. <em>FEMS Microbiol. Lett.</em> <strong>79</strong> (1992) 133–139. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/1335942" target="new">1335942</a>] </td> </tr> </td></tr> <tr> <td>2. </td> <td>Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. <em>Res. Microbiol.</em> <strong>146</strong> (1995) 271–278. [<a href="https://doi.org/10.1016/0923-2508(96)81050-3" target="new">DOI</a>] [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/7569321" target="new">7569321</a>] </td> </tr> </td></tr> <tr> <td>3. </td> <td>Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. <em>Adv. Microb. Physiol.</em> <strong>40</strong> (1998) 81–136. [PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/9889977" target="new">9889977</a>] </td> </tr> </td></tr> <tr> <td>4. </td> <td>Griffiths, J.K. and Sansom, C.E. <em>The Transporter Factsbook</em>, Academic Press, San Diego, 1998. </td> </tr> </td></tr> </table></td></tr> </td></tr> <tr><td colspan="2"><center><small>[EC 7.3.2.2 created 2000 as EC 3.6.3.28, transferred 2018 to EC 7.3.2.2]</small></center></td> </tr> <tr> <td> </td> <td></td> </tr> <tr> <td> </td> <td></td> </tr> </table> <br><br><center><font size="1">Data © 2001–2024 IUBMB</font> <br> <font size="1">Web site © 2005–2024 Andrew McDonald</font> <br> </center> </body> </html>