CINXE.COM

Search results for: groundwater dewatering

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: groundwater dewatering</title> <meta name="description" content="Search results for: groundwater dewatering"> <meta name="keywords" content="groundwater dewatering"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="groundwater dewatering" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="groundwater dewatering"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 609</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: groundwater dewatering</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">549</span> Application of Multivariate Statistics and Hydro-Chemical Approach for Groundwater Quality Assessment: A Study on Birbhum District, West Bengal, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Ghosh">N. C. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Niladri%20Das"> Niladri Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Prolay%20Mondal"> Prolay Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranajit%20Ghosh"> Ranajit Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater quality deterioration due to human activities has become a prime factor of modern life. The major concern of the study is to access spatial variation of groundwater quality and to identify the sources of groundwater chemicals and its impact on human health of the concerned area. Multivariate statistical techniques, cluster, principal component analysis, and hydrochemical fancies are been applied to measure groundwater quality data on 14 parameters from 107 sites distributed randomly throughout the Birbhum district. Five factors have been extracted using Varimax rotation with Kaiser Normalization. The first factor explains 27.61% of the total variance where high positive loading have been concentrated in TH, Ca, Mg, Cl and F (Fluoride). In the studied region, due to the presence of basaltic Rajmahal trap fluoride contamination is highly concentrated and that has an adverse impact on human health such as fluorosis. The second factor explains 24.41% of the total variance which includes Na, HCO₃, EC, and SO₄. The last factor or the fifth factor explains 8.85% of the total variance, and it includes pH which maintains the acidic and alkaline character of the groundwater. Hierarchical cluster analysis (HCA) grouped the 107 sampling station into two clusters. One cluster having high pollution and another cluster having less pollution. Moreover hydromorphological facies viz. Wilcox diagram, Doneen’s chart, and USSL diagram reveal the quality of the groundwater like the suitability of the groundwater for irrigation or water used for drinking purpose like permeability index of the groundwater, quality assessment of groundwater for irrigation. Gibb’s diagram depicts that the major portion of the groundwater of this region is rock dominated origin, as the western part of the region characterized by the Jharkhand plateau fringe comprises basalt, gneiss, granite rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20facies" title=" hydrological facies"> hydrological facies</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochemistry" title=" hydrochemistry"> hydrochemistry</a> </p> <a href="https://publications.waset.org/abstracts/101003/application-of-multivariate-statistics-and-hydro-chemical-approach-for-groundwater-quality-assessment-a-study-on-birbhum-district-west-bengal-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">548</span> Urbanization on Green Cover and Groundwater Relationships in Delhi, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiranmay%20Sarma">Kiranmay Sarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent decades have witnessed rapid increase in urbanization, for which, rural-urban migration is stated to be the principal reason. Urban growth throughout the world has already outstripped the capacities of most of the cities to provide basic amenities to the citizens, including clean drinking water and consequently, they are struggling to get fresh and clean water to meet water demands. Delhi, the capital of India, is one of the rapid fast growing metropolitan cities of the country. As a result, there has been large influx of population during the last few decades and pressure exerted to the limited available water resources, mainly on groundwater. Considering this important aspect, the present research has been designed to study the effects of urbanization on the green cover and groundwater and their relationships of Delhi. For the purpose, four different land uses of the study area have been considered, viz., protected forest area, trees outside forest, maintained park and settlement area. Samples for groundwater and vegetation were collected seasonally in post-monsoon (October), winter (February) and summer (June) at each study site for two years during 2012 and 2014. The results were integrated into GIS platform. The spatial distribution of groundwater showed that the concentration of most of the ions is decreasing from northern to southern parts of Delhi, thus groundwater shows an improving trend from north to south. The depth was found to be improving from south to north Delhi, i.e., opposite to the water quality. The study concludes the groundwater properties in Delhi vary spatially with depending on the types of land cover. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cover" title=" green cover"> green cover</a>, <a href="https://publications.waset.org/abstracts/search?q=Delhi" title=" Delhi"> Delhi</a> </p> <a href="https://publications.waset.org/abstracts/63321/urbanization-on-green-cover-and-groundwater-relationships-in-delhi-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">547</span> Seismic Activity and Groundwater Behavior at Kalabsha Area, Aswan, Egypt </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Moustafa">S. M. Moustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ezzat"> A. Ezzat</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Taha"> Y. S. Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20H.%20Hassib"> G. H. Hassib</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hamada"> S. Hamada </a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the occurrence of 14, Nov, 1981 earthquake (M = 5.3), on Kalabska fault, south of Egypt, seismic stations distributed in and around the Kalabsha area, in order to monitoring, recording and studying the seismic activity in the area. In addition of that, from 1989 a number of piezometer wells drilled in the same area, distribed on at the both side of the active faults area and in different water bearing formations, in order to measuring the groundwater parameters (level, temperature, ph, and conductivity) to monitoring the relationship between those parameters and the seismic activity at Kalabsha area. The behavior of groundwater due to seismic activity over the world studied by several scientists i.e. H. Wakita (1979) on Izu-Oshima earthquake (M= 7.0) at Japan, M. E. Contadakis & G.asteriadis (1972), and Evans (1966), they found an anomalies on groundwater measurements prior, co, and post the occurrence of bigger earthquakes, referring to the probability of precursory evidence of impending earthquakes. In Kalabsha area south of Egypt, this study has been done using recorded seismic data, and the measurements of underground water parameters. same phenomena of anomalies founded on groundwater measurements pre, co. and post the occurrence of earthquakes with magnitude bigger than 3, and no systematic regularity exists for epicenter distance, duration of anomalies or time lag between anomalies appear and occurrence of events. Also the results found present strong relation between the groundwater in the upper unconfined aquifer Nubian Sandstone formation, and Kalabsha seismic activity, otherwise no relation between the seismic activities in the area with the deep groundwater in the lower confined aquifer Sandstone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismicity" title="seismicity">seismicity</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Aswan" title=" Aswan"> Aswan</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a> </p> <a href="https://publications.waset.org/abstracts/35761/seismic-activity-and-groundwater-behavior-at-kalabsha-area-aswan-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">546</span> Application of Groundwater Model for Optimization of Denitrification Strategies to Minimize Public Health Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20A.%20Modi">Mukesh A. Modi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-nitrate concentration in groundwater of unconfined aquifers has been a serious issue for public health risk at a global scale. Various anthropogenic activities in agricultural land and urban land of alluvial soil have been observed to be responsible for the increment of nitrate in groundwater. The present study was designed to identify suitable denitrification strategies to minimize the effects of high nitrate in groundwater near the Mahi River of Vadodara block, Gujarat. There were 11 wells of Jal Jeevan Mission, Ministry of Jal Shakti, along with 3 observation wells of Gujarat Water Resources Development Corporation have been used for the duration of 21 years. MODFLOW and MT3DMS codes have been used to simulate solute transport phenomena along with attempted effectively for optimization. Current research is one step ahead by optimizing various denitrification strategies with the simulation of the model. The in-situ and ex-situ denitrification strategies viz. NAS (No Action Scenario), CAS (Crop Alternation Scenario), PS (Phytoremediation Scenario), and CAS + PS (Crop Alternation Scenario + Phytoremediation Scenario) have been selected for the optimization. The groundwater model simulates the most suitable denitrification strategy considering the hydrogeological characteristics at the targeted well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20nitrate" title=" high nitrate"> high nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=MODFLOW" title=" MODFLOW"> MODFLOW</a>, <a href="https://publications.waset.org/abstracts/search?q=MT3DMS" title=" MT3DMS"> MT3DMS</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrification%20strategy" title=" denitrification strategy"> denitrification strategy</a> </p> <a href="https://publications.waset.org/abstracts/188995/application-of-groundwater-model-for-optimization-of-denitrification-strategies-to-minimize-public-health-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">545</span> Groundwater Pollution Models for Hebron/Palestine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Jebreen">Hassan Jebreen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These models of a conservative pollutant in groundwater do not include representation of processes in soils and in the unsaturated zone, or biogeochemical processes in groundwater, These demonstration models can be used as the basis for more detailed simulations of the impacts of pollution sources at a local scale, but such studies should address processes related to specific pollutant species, and should consider local hydrogeology in more detail, particularly in relation to possible impacts on shallow systems which are likely to respond more quickly to changes in pollutant inputs. The results have demonstrated the interaction between groundwater flow fields and pollution sources in abstraction areas, and help to emphasise that wadi development is one of the key elements of water resources planning. The quality of groundwater in the Hebron area indicates a gradual increase in chloride and nitrate with time. Since the aquifers in Hebron districts are highly vulnerable due to their karstic nature, continued disposal of untreated domestic and industrial wastewater into the wadi will lead to unacceptably poor water quality in drinking water, which may ultimately require expensive treatment if significant health problems are to be avoided. Improvements are required in wastewater treatment at the municipal and domestic levels, the latter requiring increased public awareness of the issues, as well as improved understanding of the hydrogeological behaviour of the aquifers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=models" title=" models"> models</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutants" title=" pollutants"> pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=wadis" title=" wadis"> wadis</a>, <a href="https://publications.waset.org/abstracts/search?q=hebron" title=" hebron"> hebron</a> </p> <a href="https://publications.waset.org/abstracts/18476/groundwater-pollution-models-for-hebronpalestine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">544</span> Groundwater Arsenic Contamination in Brahmaputra River Basin: A Water Quality Assessment in Jorhat (Assam), India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kruti%20Jaruriya">Kruti Jaruriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distribution of arsenic (As) and its compound and related toxicology are serious concerns. This is particularly so since millions worldwide are suffering from toxicity due to drinking of As-contaminated groundwater. The Bengal delta plain, formed by the Ganga– Padma–Meghna–Brahmaputra river basin, covering several districts of West Bengal, India and Bangladesh is considered as the worst As affected alluvial basin. However, some equally affected, if not more, areas are emerging in upper Brahmaputra plains. The present study was carried out to examine As contamination trends in the worst affected part of Assam, India. Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized. The groundwater is characterized by high dissolved Fe, Mn, and HCO-3 and low concentrations of NO-3 and SO2-4 indicating anoxic conditions prevailing in the groundwater. Fifty groundwater samples collected from shallow and deep tubewells of Titabor, Jorhat district (Assam) were examined. Along with total As, examination of concentration levels of other key parameters, viz., pH, EC, Fe, Mn , Mg2+, Ca2+, Na+, K+, PO43- , HCO-3 , NO3- ,Cl - and SO42- was also carried out. In respect to the permissible guideline of World Health Organization (WHO: As 0.01 ppm, Fe 1.0 ppm, and Mn 0.3 ppm for potable water), the range of As concentration in the groundwater varied from 0.014 to 0.604 mg/L with mean concentration 0.184 mg/L. The present study showed that out of the 50 groundwater samples,100%, 54%, and 42% were found contaminated with higher metal contents (for total As, Fe, and Mn, respectively). The results of hydrogeochemical study revealed that the reductive dissolution of MnOOH and FeOOH represents an important mechanism of arsenic release in the study area along with major cations playing an important role in leaching of As into the groundwater. Arsenic released by oxidation of pyrite, as water levels are drawn down and air enters the aquifer, contributes negligibly to the problem of As pollution. Identification of the mechanism of As release to groundwater helps to provide a framework to guide the placement of new water wells so that they will have acceptable concentrations of As. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=assam" title=" assam"> assam</a>, <a href="https://publications.waset.org/abstracts/search?q=brahmaputra%20floodplain" title=" brahmaputra floodplain"> brahmaputra floodplain</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeochemistry" title=" hydrogeochemistry"> hydrogeochemistry</a> </p> <a href="https://publications.waset.org/abstracts/43100/groundwater-arsenic-contamination-in-brahmaputra-river-basin-a-water-quality-assessment-in-jorhat-assam-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">543</span> Investigating the Effect of Groundwater Level on Nailing Arrangement in Excavation Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Khamooshian">G. Khamooshian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbasimoshaei"> A. Abbasimoshaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different methods are used to stabilize the sticks, among which the method of knitting is commonly used. In recent years, the use of nailing for the stability of excavation has been considered much, which is providing sufficient stability and controlling the structural defects of the guardian, also reduces the cost of the operation. In addition, this method is more prominent in deep excavations than other methods. The purpose of this paper is to investigate the effect of groundwater level and soil type on the length and designing of nails. In this paper, analysis and modeling for vertical arena with constant depth and different levels of groundwater have been done. Also, by changing the soil resistance parameters and design of the nails, an optimum arrangement was made and the effect of changes in groundwater level and soil's type on the design of the nails, the maximum axial force mobilized in the nails and the confidence coefficient for the stability of the groove was examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excavation" title="excavation">excavation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20effects" title=" soil effects"> soil effects</a>, <a href="https://publications.waset.org/abstracts/search?q=nailing" title=" nailing"> nailing</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20analyzing" title=" hole analyzing"> hole analyzing</a> </p> <a href="https://publications.waset.org/abstracts/100323/investigating-the-effect-of-groundwater-level-on-nailing-arrangement-in-excavation-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">542</span> Statistical and Analytical Comparison of GIS Overlay Modelings: An Appraisal on Groundwater Prospecting in Precambrian Metamorphics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Acharya">Tapas Acharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Monalisa%20Mitra"> Monalisa Mitra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Overlay modeling is the most widely used conventional analysis for spatial decision support system. Overlay modeling requires a set of themes with different weightage computed in varied manners, which gives a resultant input for further integrated analysis. In spite of the popularity and most widely used technique; it gives inconsistent and erroneous results for similar inputs while processed in various GIS overlay techniques. This study is an attempt to compare and analyse the differences in the outputs of different overlay methods using GIS platform with same set of themes of the Precambrian metamorphic to obtain groundwater prospecting in Precambrian metamorphic rocks. The objective of the study is to emphasize the most suitable overlay method for groundwater prospecting in older Precambrian metamorphics. Seven input thematic layers like slope, Digital Elevation Model (DEM), soil thickness, lineament intersection density, average groundwater table fluctuation, stream density and lithology have been used in the spatial overlay models of fuzzy overlay, weighted overlay and weighted sum overlay methods to yield the suitable groundwater prospective zones. Spatial concurrence analysis with high yielding wells of the study area and the statistical comparative studies among the outputs of various overlay models using RStudio reveal that the Weighted Overlay model is the most efficient GIS overlay model to delineate the groundwater prospecting zones in the Precambrian metamorphic rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20overlay" title="fuzzy overlay">fuzzy overlay</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20overlay%20model" title=" GIS overlay model"> GIS overlay model</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20prospecting" title=" groundwater prospecting"> groundwater prospecting</a>, <a href="https://publications.waset.org/abstracts/search?q=Precambrian%20metamorphics" title=" Precambrian metamorphics"> Precambrian metamorphics</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20overlay" title=" weighted overlay"> weighted overlay</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20sum%20overlay" title=" weighted sum overlay "> weighted sum overlay </a> </p> <a href="https://publications.waset.org/abstracts/119978/statistical-and-analytical-comparison-of-gis-overlay-modelings-an-appraisal-on-groundwater-prospecting-in-precambrian-metamorphics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">541</span> Fly ash Contamination in Groundwater and its Implications on Local Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fly ash, a byproduct of coal combustion, has become a prevalent environmental concern due to its potential impact on both groundwater quality and local climate change. This study aims to provide an in-depth analysis of the various mechanisms through which fly ash contaminates groundwater, as well as the possible consequences of this contamination on local climate change. The presence of fly ash in groundwater not only poses a risk to human health but also has the potential to influence local climate change through complex interactions. Although fly ash has various applications in construction and other industries, improper disposal and lack of containment measures have led to its infiltration into groundwater systems. Through a comprehensive review of existing literature and case studies, the interactions between fly ash and groundwater systems, assess the effects on hydrology, and discuss the implications for the broader climate. This section reviews the pathways through which fly ash enters groundwater, including leaching from disposal sites, infiltration through soil, and migration from surface water bodies. The physical and chemical characteristics of fly ash that contribute to its mobility and persistence in groundwater. The introduction of fly ash into groundwater can alter its chemical composition, leading to an increase in the concentration of heavy metals, metalloids, and other potentially toxic elements. The mechanisms of contaminant transport and highlight the potential risks to human health and ecosystems. Fly ash contamination in groundwater may influence the hydrological cycle through changes in groundwater recharge, discharge, and flow dynamics. This section examines the implications of altered hydrology on local water availability, aquatic habitats, and overall ecosystem health. The presence of fly ash in groundwater may have direct and indirect effects on local climate change. The role of fly ash as a potent greenhouse gas absorber and its contribution to radiative forcing. Additionally, investigation of the possible feedback mechanisms between groundwater contamination and climate change, such as altered vegetation patterns and changes in local temperature and precipitation patterns. In this section, potential mitigation and remediation techniques to minimize fly ash contamination in groundwater are analyzed. These may include improved waste management practices, engineered barriers, groundwater remediation technologies, and sustainable fly ash utilization. This paper highlights the critical link between fly ash contamination in groundwater and its potential contribution to local climate change. It emphasizes the importance of addressing this issue promptly through a combination of preventive measures, effective management strategies, and continuous monitoring. By understanding the interconnections between fly ash contamination, groundwater quality, and local climate, towards creating a more resilient and sustainable environment for future generations. The findings of this research can assist policymakers and environmental managers in formulating sustainable strategies to mitigate fly ash contamination and minimize its contribution to climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20environment" title=" sustainable environment"> sustainable environment</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash%20contamination" title=" fly ash contamination"> fly ash contamination</a> </p> <a href="https://publications.waset.org/abstracts/170601/fly-ash-contamination-in-groundwater-and-its-implications-on-local-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">540</span> Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buruk%20Kitachew%20Wossenyeleh">Buruk Kitachew Wossenyeleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ter%20Kamerenbos" title="Ter Kamerenbos">Ter Kamerenbos</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20modelling" title=" groundwater modelling"> groundwater modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=WetSpass" title=" WetSpass"> WetSpass</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20operation" title=" well operation"> well operation</a> </p> <a href="https://publications.waset.org/abstracts/118081/characterization-and-modelling-of-groundwater-flow-towards-a-public-drinking-water-well-field-a-case-study-of-ter-kamerenbos-well-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">539</span> Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Shaheen">Asma Shaheen</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Iqbal"> Javed Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=geostatistical" title=" geostatistical"> geostatistical</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20effluent" title=" industrial effluent"> industrial effluent</a> </p> <a href="https://publications.waset.org/abstracts/76014/geostatistical-simulation-of-carcinogenic-industrial-effluent-on-the-irrigated-soil-and-groundwater-district-sheikhupura-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">538</span> Groundwater Potential in the Central Part of Al Jabal Al Akhdar Area, Ne Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maged%20El%20Osta">Maged El Osta</a>, <a href="https://publications.waset.org/abstracts/search?q=Milad%20Masoud"> Milad Masoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al Jabal Al Akhdar in the north-eastern part of Libya represents a region with promising ecological underpinning for grazing and other agricultural developments. The groundwater potential of both Upper Cretaceous and Eocene aquifers was studied based the available literature and a complete database for about 112 water wells drilled in the period 2003-2009. In this research, the hydrogeological methods will be integrated with the Geographic Information System (GIS) that played a main role in highlighting the spatial characteristics of the groundwater system. The results indicate that the depth to water for the Upper Cretaceous aquifer ranges from 150 to 458 m, and the piezometric surface decreases from over 500 m (m.s.l) in the northern parts to -20 m (m.s.l) in southeastern part. Salinity ranges between 303 and 1329 mg/l indicating that groundwater belongs to the slightly fresh water class. In the Eocene aquifer, the depth to groundwater ranges from 120 to 290.5 m and the potentiometric level decreases gradually southwards from 220 to -51 m (m.s.l) and characterized by steep slope in the southeastern part of the study area, where the aquifer characterized by relatively high productivity (specific capacity ranges between 10.08 and 332.3 m2/day). The groundwater salinity within this aquifer ranges between 198 and 2800 mg/l (fresh to brackish water class). The annual average rainfall (from 280 to 500 mm) plays a significant role in the recharge of the two aquifers. The priority of groundwater quality and potentiality increases towards the central and northern portions of the concerned area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eocene%20and%20Upper%20Cretaceous%20aquifers" title="Eocene and Upper Cretaceous aquifers">Eocene and Upper Cretaceous aquifers</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiality" title=" potentiality"> potentiality</a>, <a href="https://publications.waset.org/abstracts/search?q=Geographic%20Information%20System%20%28GIS%29" title=" Geographic Information System (GIS)"> Geographic Information System (GIS)</a> </p> <a href="https://publications.waset.org/abstracts/51369/groundwater-potential-in-the-central-part-of-al-jabal-al-akhdar-area-ne-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">537</span> Evaluation of Groundwater and Seawater Intrusion at Tajoura Area, NW, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdalraheem%20Huwaysh">Abdalraheem Huwaysh</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Al%20Samarrai"> Khalil Al Samarrai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmin%20ElAhmar"> Yasmin ElAhmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water quality is an important factor that determines its usage for domestic, agricultural and industrial uses. This study was carried out through the Tajoura Area, Jifarah Plain, Northwest Libya. Chemical and physical parameters were measured and analyzed for groundwater samples collected in 2021 from twenty-six wells distributed throughout the investigation area. Overexploitation of groundwater caused considerable deterioration in the water quality, especially at Tajoura Town (20 Km east of Tripoli). The aquifer shows an increase in salinization, which has reached an alarming level in many places during the past 25 years as a result of the seawater intrusion. The chemical composition of the water samples was compared with the drinking water standards of WHO and Libyan Standards. Groundwater from this area was not suitable to be a source for direct drinking based on Total Dissolved Solids. The dominant cation is sodium, while the dominant anion is chloride. Based on the Piper trilinear diagram, most of the groundwater samples (90%) were identified as sodium chloride type. The best groundwater quality exists at the southern part of the study area. Serious degradation in the water quality, expressed in salinity increase, occurs as we go towards the coastline. The abundance of NaCl waters is strong evidence to attribute the successive deterioration of the water quality to the seawater intrusion. Considering the values of Cl- concentration and the ratio of Cl-/HCO3-, about 70% of the groundwater samples were strongly affected by the saline water. Car wash stations in the study area as well as the unlined disposal pond used for the collection of untreated wastewater, contribute significantly to the deterioration of water quality. The water quality in this area needs to be monitored regularly and it is crucial to treat the water before consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tajoura" title="Tajoura">Tajoura</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater%20intrusion" title=" seawater intrusion"> seawater intrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/164265/evaluation-of-groundwater-and-seawater-intrusion-at-tajoura-area-nw-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">536</span> Groundwater Recharge Pattern in East and West Coast of India: Evidence of Dissimilar Moisture Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Kumar%20Behera">Ajit Kumar Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=Saranya%20P."> Saranya P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Kumar"> Sudhir Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnakumar%20A"> Krishnakumar A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stable isotope (δ¹⁸ O and δ²H) composition of groundwater of the coastal areas of Periyar and Mahanadi basins falling along East and West coast of India during North-East (NE) monsoon season have been studied. The east and west coast regions are surrounded by the Bay of Bengal and the Arabian Sea respectively, which are considered to be the primary sources for precipitation over India. The major difference between the Bay of Bengal and the Arabian Sea is that a number of large rivers feed the Bay of Bengal, whereas the Arabian Sea is fed by very few small rivers, resulting in enriched stable isotopic composition of the Arabian Sea than the Bay of Bengal. Previous studies have reported depleted ratios of stable isotopes during Northeast monsoon along East and West coasts due to the influence of the Bay of Bengal moisture source. The isotopic composition of groundwater of the Mahanadi delta in the east coast region varies from -6.87 ‰ to -3.40 ‰ for δ¹⁸ O and -45.42 ‰ to -22.43‰ for δ²H. However, the groundwater of the Periyar basin in the west coast has enriched stable isotope value varying from -4.3‰ to -2.5 ‰ for δ¹⁸ O and for δ²H from -23.7 to -6.4 ‰ which is a characteristic of South-West monsoon season. This suggests the groundwater system of the Mahanadi delta and the Periyar basins are influenced by dissimilar moisture sources. The δ¹⁸ O and δ² H relationship (δ²H= 6.513 δ¹⁸ O - 1.39) and d-excess value (< 10) in the east coast region indicates the influence of NE monsoon implying the quick groundwater recharge after precipitation with significant amount of evaporation. In contrast, the δ¹⁸ O and δ²H regression line (δ²H= 8.408 δ¹⁸ O + 11.71) with high d-excess value (>10) in the west coast region implies delayed recharge due to SW monsoon. The observed isotopic enrichment in west coast suggests that NE winter monsoon rainfall does not replenish groundwater quick enough to produce isotopic depletion during the season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arabian%20sea" title="Arabian sea">Arabian sea</a>, <a href="https://publications.waset.org/abstracts/search?q=bay%20of%20Bengal" title=" bay of Bengal"> bay of Bengal</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=monsoon" title=" monsoon"> monsoon</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotope" title=" stable isotope"> stable isotope</a> </p> <a href="https://publications.waset.org/abstracts/77283/groundwater-recharge-pattern-in-east-and-west-coast-of-india-evidence-of-dissimilar-moisture-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">535</span> Impact of Agriculture on the Groundwater Quality: Case of the Alluvial Plain of Nil River (North-Eastern Algerian)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benessam">S. Benessam</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Debieche"> T. H. Debieche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Drouiche"> A. Drouiche</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zahi"> F. Zahi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahdid"> S. Mahdid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intensive use of the chemical fertilizers and the pesticides in agriculture often produces a contamination of the groundwater by organic pollutants. The irrigation and/or rainwater transport the pollutants towards groundwater or water surface. Among these pollutants, one finds the nitrogen, often observed in the agricultural zones in the nitrate form. In order to understand the form and chemical mobility of nitrogen in groundwater, this study was conducted. A two-monthly monitoring of the parameters physicochemical and chemistry of water of the alluvial plain of Nil river (North-eastern Algerian) were carried out during the period from November 2013 to January 2015 as well as an in-situ investigation of the various chemical products used by the farmers. The results show a raise concentration of nitrates in the wells (depth < 20 m) of the plain, which the concentrations arrive at 50 mg/L (standard of potable water). On the other hand in drillings (depth > 20 m), one observes two behaviors. The first in the upstream part, where the aquifer is unconfined and the medium is oxidizing, one observes the weak nitrate concentrations, indicating its absorption by the ground during the infiltration of water towards the groundwater. The second in the central and downstream parts, where the groundwater is locally confined and the reducing medium, one observes an absence of nitrates and the appearance of nitrites and ammonium, indicating the reduction of nitrates. The projection of the analyses on diagrams Eh-pH of nitrogen has enabled to us to determine the intervals of variation of the nitrogen forms. This study also highlighted the effect of the rains, the pumping and the nature of the geological formations in the form and the mobility of nitrogen in the plain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=speciation" title=" speciation"> speciation</a> </p> <a href="https://publications.waset.org/abstracts/48286/impact-of-agriculture-on-the-groundwater-quality-case-of-the-alluvial-plain-of-nil-river-north-eastern-algerian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">534</span> Analysis of the Aquifer Vulnerability of a Miopliocene Arid Area Using Drastic and SI Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Majour">H. Majour</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Djabri"> L. Djabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many methods in the groundwater vulnerability have been developed in the world (methods like PRAST, DRIST, APRON/ARAA, PRASTCHIM, GOD). In this study, our choice dealt with two recent complementary methods using category mapping of index with weighting criteria (Point County Systems Model MSCP) namely the standard DRASTIC method and SI (Susceptibility Index). At present, these two methods are the most used for the mapping of the intrinsic vulnerability of groundwater. Two classes of groundwater vulnerability in the Biskra sandy aquifer were identified by the DRASTIC method (average and high) and the SI method (very high and high). Integrated analysis has revealed that the high class is predominant for the DRASTIC method whereas for that of SI the preponderance is for the very high class. Furthermore, we notice that the method SI estimates better the vulnerability for the pollution in nitrates, with a rate of 85 % between the concentrations in nitrates of groundwater and the various established classes of vulnerability, against 75 % for the DRASTIC method. By including the land use parameter, the SI method produced more realistic results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DRASTIC" title="DRASTIC">DRASTIC</a>, <a href="https://publications.waset.org/abstracts/search?q=SI" title=" SI"> SI</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Biskra%20sandy%20aquifer" title=" Biskra sandy aquifer"> Biskra sandy aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/24830/analysis-of-the-aquifer-vulnerability-of-a-miopliocene-arid-area-using-drastic-and-si-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">533</span> Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gokul%20Prasad">Gokul Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Pennan%20Chinnasamy"> Pennan Chinnasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title="groundwater quality">groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotopes" title=" stable isotopes"> stable isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20management" title=" groundwater management"> groundwater management</a>, <a href="https://publications.waset.org/abstracts/search?q=hard-rock%20aquifer" title=" hard-rock aquifer"> hard-rock aquifer</a> </p> <a href="https://publications.waset.org/abstracts/182541/hydrological-challenges-and-solutions-in-the-nashik-region-a-multi-tracer-and-geochemistry-approach-to-groundwater-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">532</span> Geochemical Characteristics and Chemical Toxicity: Appraisal of Groundwater Uranium With Other Geogenic Contaminants in Various Districts of Punjab, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanu%20Sharma">Tanu Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Singh%20Bajwa"> Bikramjit Singh Bajwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Inderpreet%20Kaur"> Inderpreet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring of groundwater in Tarn-Taran, Bathinda, Faridkot and Mansa districts of Punjab state, India is essential where this freshwater resource is being over-exploited causing quality deterioration, groundwater depletion and posing serious threats to residents. The present integrated study was done to appraise quality and suitability of groundwater for drinking/irrigation purposes, hydro-geochemical characteristics, source identification and associated health risks. In the present study, groundwater of various districts of Punjab state was found to be heavily contaminated with As followed by U, thus posing high cancerous risks to local residents via ingestion, along with minor contamination of Fe, Mn, Pb and F−. Most health concerns in the study region were due to the elevated concentrations of arsenic in groundwater with average values of 130 µg L-1, 176 µg L-1, 272 µg L-1 and 651 µg L-1 in Tarn-Taran, Bathinda, Faridkot and Mansa districts, respectively, which is quite high as compared to the safe limit as recommended by BIS i.e. 10 µg L-1. In Tarn-Taran, Bathinda, Faridkot and Mansa districts, average uranium contents were found to be 37 µg L-1, 88 µg L-1, 61 µg L-1 and 104 µg L-1, with 51 %, 74 %, 61 % and 71 % samples, respectively, being above the WHO limit of 30 µg L-1 in groundwater. Further, the quality indices showed that groundwater of study region is suited for irrigation but not appropriate for drinking purposes. Hydro-geochemical studies revealed that most of the collected groundwater samples belonged to Ca2+ - Mg2+ - HCO3- type showing dominance of MgCO3 type which indicates the presence of temporary hardness in groundwater. Rock-water reactions and reverse ion exchange were the predominant factors for controlling hydro-geochemistry in the study region. Dissolution of silicate minerals caused the dominance of Na+ ions in the aquifers of study region. Multivariate statistics revealed that along with geogenic sources, contribution of anthropogenic activities such as injudicious application of agrochemicals and domestic waste discharge was also very significant. The results obtained abolished the myth that uranium is only root cause for large number of cancer patients in study region as arsenic and mercury were also present in groundwater at levels that were of health concern to groundwater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uranium" title="uranium">uranium</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elements" title=" trace elements"> trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20data%20analysis" title=" multivariate data analysis"> multivariate data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/151492/geochemical-characteristics-and-chemical-toxicity-appraisal-of-groundwater-uranium-with-other-geogenic-contaminants-in-various-districts-of-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">531</span> Effect of Slope Angle on Gougerd Landslide Stability in Northwest of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Khodavirdizadeh">Akbar Khodavirdizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gougerd village landslide with area about 150 hectares is located in southwest of Khoy city in northwest of the Iran. This Landslide was commenced more than 21 years and caused some damages in houses like some fissures on walls and some cracks on ground and foundations. The main mechanism of landslide is rotational with the high different of top and foot is about 230 m. The thickness of slide mass based on geoelectrical investigation is about 16m obtained. The upper layer of slope is silty sand and the lower layer of clayey gravel. In this paper, the stability of landslide are analyzed based in static analysis under different groundwater surface conditions and at slope angle changes with limit eqlibrium method and the simplified Bishop method. The results of the 72 stability analysis showed that the slope stability of Gougerd landslide increased with increasing of the groundwater surface depth of slope crown. And especially when decreased of slope angle, the safety facter more than in previous state is increased. The required of safety factor for stability in groundwater surface depth from slope crown equal 14 m and with decreased of slope angle to 3 degree at decrease of groundwater surface depth from slope crown equal 6.5 m obtained. The safety factor in critical conditions under groundwater surface depth from slope crown equal 3.5 m and at decreased of slope angle to 3 degree equal 0.5 m obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m respectively equal to 0.97, 1.19 and 1.33 obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m with decreased of slope angle to 3 degree, respectively equal to 1.27, 1.54 and 1.72 obtained. According to the results of this study, for 1 m of groundwater level decrease, the safety factor increased by 5%, and for 1 degree of reduction of the slope angle, safety factor increased by 15%. And the effect of slope angle on Gougerd landslide stability was felt more than groundwater effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gougerd%20landslide" title="Gougerd landslide">Gougerd landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20angle" title=" slope angle"> slope angle</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Khoy" title=" Khoy"> Khoy</a> </p> <a href="https://publications.waset.org/abstracts/137553/effect-of-slope-angle-on-gougerd-landslide-stability-in-northwest-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">530</span> Groundwater Recharge Estimation of Fetam Catchment in Upper Blue Nile Basin North-Western Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekonen%20G.">Mekonen G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sileshi%20M."> Sileshi M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Melkamu%20M."> Melkamu M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recharge estimation is important for the assessment and management of groundwater resources effectively. This study applied the soil moisture balance and Baseflow separation methods to estimate groundwater recharge in the Fetam Catchment. It is one of the major catchments understudied from the different catchments in the upper Blue Nile River basin. Surface water has been subjected to high seasonal variation; due to this, groundwater is a primary option for drinking water supply to the community. This research has been conducted to estimate groundwater recharge by using fifteen years of River flow data for the Baseflow separation and ten years of daily meteorological data for the daily soil moisture balance recharge estimating method. The recharge rate by the two methods is 170.5 and 244.9mm/year daily soil moisture and baseflow separation method, respectively, and the average recharge is 207.7mm/year. The average value of annual recharge in the catchment is almost equal to the average recharge in the country, which is 200mm/year. So, each method has its own limitations, and taking the average value is preferable rather than taking a single value. Baseflow provides overestimated result compared to the average of the two, and soil moisture balance is the list estimator. The recharge estimation in the area also should be done by other recharge estimation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=recharge" title=" recharge"> recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=baseflow%20separation" title=" baseflow separation"> baseflow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20balance" title=" soil moisture balance"> soil moisture balance</a>, <a href="https://publications.waset.org/abstracts/search?q=Fetam%20catchment" title=" Fetam catchment"> Fetam catchment</a> </p> <a href="https://publications.waset.org/abstracts/162990/groundwater-recharge-estimation-of-fetam-catchment-in-upper-blue-nile-basin-north-western-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">529</span> Achievement of Sustainable Groundwater Exploitation through the Introduction of Water-Efficient Usage Techniques in Fish Farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lusine%20Tadevosyan">Lusine Tadevosyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Natella%20Mirzoyan"> Natella Mirzoyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20%20Yeritsyan"> Anna Yeritsyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Narek%20Avetisyan"> Narek Avetisyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to high quality, the artesian groundwater is the main source of water supply for the fisheries in Ararat Valley, Armenia. From 1.6 billion m3 abstracted groundwater in 2016, half was used by fish farms. Yet, the inefficient water use, typical for low-intensity aquaculture systems in Ararat Valley, has become a key environmental issue in Armenia. In addition to excessive pure groundwater exploitation, which along with other sectors of groundwater use in this area resulted in the reduction of artesian zone by approximately 67% during last 20 years, the negative environmental impact of these productions is magnified by the discharge of large volumes of wastewater into receiving water bodies. In turn, unsustainable use of artesian groundwater in Ararat Valley along with increasingly strict policy measures on water use had a devastating impact on small and/or medium scale aquaculture: over the last two years approximately 100 fish farms have permanently seized their operations. The current project aims at the introduction of efficient and environmentally friendly fish farming practices (e.g., Recirculating Aquaculture Systems) in Ararat Valley fisheries in order to support current levels of fish production and simultaneously reduce the negative environmental pressure of aquaculture facilities in Armenia. Economic and environmental analysis of current small and medium scale operational systems and subsequently developed environmentally–friendly and economically sustainable system configurations will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaculture" title="aquaculture">aquaculture</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculation" title=" recirculation"> recirculation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/68950/achievement-of-sustainable-groundwater-exploitation-through-the-introduction-of-water-efficient-usage-techniques-in-fish-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">528</span> Analysis of Sustainability of Groundwater Resources in Rote Island, Indonesia under HADCM3 Global Model Climate Scenarios: Groundwater Flow Simulation and Proposed Adaptive Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dua%20K.%20S.%20Y.%20Klaas">Dua K. S. Y. Klaas</a>, <a href="https://publications.waset.org/abstracts/search?q=Monzur%20A.%20Imteaz"> Monzur A. Imteaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ika%20Sudiayem"> Ika Sudiayem</a>, <a href="https://publications.waset.org/abstracts/search?q=Elkan%20M.%20E.%20Klaas"> Elkan M. E. Klaas</a>, <a href="https://publications.waset.org/abstracts/search?q=Eldav%20C.%20M.%20Klaas"> Eldav C. M. Klaas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing tailored management strategies to ensure the sustainability of groundwater resource under climate and demographic changes is critical for tropical karst island, where relatively small watershed and highly porous soil nature make this natural resource highly susceptible and thus very sensitive to those changes. In this study, long-term impacts of climate variability on groundwater recharge and discharge at the Oemau spring, Rote Island, Indonesia were investigated. Following calibration and validation of groundwater model using MODFLOW code, groundwater flow was simulated for period of 2020-2090 under HadCM3 global model climate (GCM) scenarios, using input data of weather variables downscaled by Statistical Downscaling Model (SDSM). The reported analysis suggests that the sustainability of groundwater resources will be adversely affected by climate change during dry years. The area is projected to variably experience 2.53-22.80% decrease of spring discharge. A subsequent comprehensive set of management strategies as palliative and adaptive efforts was proposed to be implemented by relevant stakeholders to assist the community dealing with water deficit during the dry years. Three main adaptive strategies, namely socio-cultural, technical, and ecological measures, were proposed by incorporating physical and socio-economic characteristics of the area. This study presents a blueprint for assessing groundwater sustainability under climate change scenarios and developing tailored management strategies to cope with adverse impacts of climate change, which may become fundamental necessities across other tropical karst islands in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20strategies" title=" management strategies"> management strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20karst%20island" title=" tropical karst island"> tropical karst island</a>, <a href="https://publications.waset.org/abstracts/search?q=Rote%20Island" title=" Rote Island"> Rote Island</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a> </p> <a href="https://publications.waset.org/abstracts/98216/analysis-of-sustainability-of-groundwater-resources-in-rote-island-indonesia-under-hadcm3-global-model-climate-scenarios-groundwater-flow-simulation-and-proposed-adaptive-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">527</span> Optimizing Solids Control and Cuttings Dewatering for Water-Powered Percussive Drilling in Mineral Exploration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Addinell">S. J. Addinell</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Grabsch"> A. F. Grabsch</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Fawell"> P. D. Fawell</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Evans"> B. Evans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising down-hole water-powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barren cover. This system has shown superior rates of penetration in water-rich, hard rock formations at depths exceeding 500 metres. With fluid flow rates of up to 120 litres per minute at 200 bar operating pressure to energise the bottom hole tooling, excessive quantities of high quality drilling fluid (water) would be required for a prolonged drilling campaign. As a result, drilling fluid recovery and recycling has been identified as a necessary option to minimise costs and logistical effort. While the majority of the cuttings report as coarse particles, a significant fines fraction will typically also be present. To maximise tool life longevity, the percussive bottom hole assembly requires high quality fluid with minimal solids loading and any recycled fluid needs to have a solids cut point below 40 microns and a concentration less than 400 ppm before it can be used to reenergise the system. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process shows a strong power law relationship for particle size distributions. This data is critical in optimising solids control strategies and cuttings dewatering techniques. Optimisation of deployable solids control equipment is discussed and how the required centrate clarity was achieved in the presence of pyrite-rich metasediment cuttings. Key results were the successful pre-aggregation of fines through the selection and use of high molecular weight anionic polyacrylamide flocculants and the techniques developed for optimal dosing prior to scroll decanter centrifugation, thus keeping sub 40 micron solids loading within prescribed limits. Experiments on maximising fines capture in the presence of thixotropic drilling fluid additives (e.g. Xanthan gum and other biopolymers) are also discussed. As no core is produced during the drilling process, it is intended that the particle laden returned drilling fluid is used for top-of-hole geochemical and mineralogical assessment. A discussion is therefore presented on the biasing and latency of cuttings representivity by dewatering techniques, as well as the resulting detrimental effects on depth fidelity and accuracy. Data pertaining to the sample biasing with respect to geochemical signatures due to particle size distributions is presented and shows that, depending on the solids control and dewatering techniques used, it can have unwanted influence on top-of-hole analysis. Strategies are proposed to overcome these effects, improving sample quality. Successful solids control and cuttings dewatering for water-powered percussive drilling is presented, contributing towards the successful advancement of coiled tubing based greenfields mineral exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cuttings" title="cuttings">cuttings</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering" title=" dewatering"> dewatering</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=percussive%20drilling" title=" percussive drilling"> percussive drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20control" title=" solids control"> solids control</a> </p> <a href="https://publications.waset.org/abstracts/59463/optimizing-solids-control-and-cuttings-dewatering-for-water-powered-percussive-drilling-in-mineral-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">526</span> Assessment of Groundwater Quality around a Cement Factory in Ewekoro, Ogun State, Southwest Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20David">A. O. David</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Akaho"> A. A. Akaho</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Abah"> M. A. Abah</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Ogunjimi"> J. O. Ogunjimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the growing concerns about the quality of groundwater found around cement factories, which have caused several health issues for residents located within two (2) kilometer radius. The qualities of groundwater were determined by an investigative study that involved the determination of some heavy metals and physicochemical properties in drinking water samples. Eight (8) samples of groundwater were collected from the eight sampling sites. The samples were analysed for the following parameters; iron, copper, manganese, zinc, lead, color, dissolved solids, electrical conductivity, pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), temperature, turbidity and total hardness using standard methods. The test results showed the variation of the investigated parameters in the samples as follows: temperature 26-31oC, pH 5.9-7.2, electrical conductivity (EC) 0.37 – 0.78 µS/cm, total hardness 181.8 – 333.0 mg/l, turbidity 0.00-0.05 FTU, colour 5-10 TCU, dissolved oxygen 4.31-5.01 mg/l, BOD 0.2-1.0 mg/l, COD 2.0 -4.0 mg/l, Cu 0.04 – 0.09 mg/l, Fe 0.006-0.122 mg/l, Zn 0.016-0.306 mg/l, Mn 0.01-0.05 mg/l and Pb < 0.001 mg/l. The World Health Organization's standard for drinking water quality guidelines was exceeded in several of the analyzed parameters' amounts in the drinking water samples from the study area. The dissolved oxygen was found to exceed 5.0 mg/l, which is the WHO permissible limit; also, Limestone was found to exceed the WHO maximum limit of 170 mg/l. All the above results confirmed the high pollution of the groundwater sources, and hence, they are not suitable for consumption without any prior treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a> </p> <a href="https://publications.waset.org/abstracts/170946/assessment-of-groundwater-quality-around-a-cement-factory-in-ewekoro-ogun-state-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">525</span> Assessment the Capacity of Retention of a Natural Material for the Protection of Ground Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakim%20Aguedal">Hakim Aguedal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Iddou"> Abdelkader Iddou</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdalla%20Aziz"> Abdalla Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhadi%20Bentouami"> Abdelhadi Bentouami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Bensalah"> Ferhat Bensalah</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Bensadek"> Salah Bensadek </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants that can cause a serious pollution. To prevent the migration of this pollution through this structure, many studies propose the installation of layers, which play a role of a barrier that inhibiting the contamination of groundwater by limiting or slowing the flow of rainwater carrying pollution through the layers of soil. However, it is practically impossible to build a barrier layer that let through only water, but it is possible to design a structure with low permeability, which reduces the infiltration of dangerous pollutant. In an environmental context of groundwater protection, the main objective of this study was to investigate the environmental and appropriate suitability method to preserve groundwater, by establishment of a permeable reactive barrier (PRB) intermediate in soil. Followed the influence of several parameters allow us to find the most effective materials and the most appropriate way to incorporate this barrier in the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ground%20water" title="Ground water">Ground water</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a>, <a href="https://publications.waset.org/abstracts/search?q=permeable%20reactive%20Barrier" title=" permeable reactive Barrier"> permeable reactive Barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution." title=" soil pollution."> soil pollution.</a> </p> <a href="https://publications.waset.org/abstracts/22346/assessment-the-capacity-of-retention-of-a-natural-material-for-the-protection-of-ground-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">524</span> Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakshi%20Dhumale">Sakshi Dhumale</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhushree%20C."> Madhushree C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Amba%20Shetty"> Amba Shetty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=station%20density" title="station density">station density</a>, <a href="https://publications.waset.org/abstracts/search?q=geostatistical%20prediction" title=" geostatistical prediction"> geostatistical prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20levels" title=" groundwater levels"> groundwater levels</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20networks" title=" monitoring networks"> monitoring networks</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation%20accuracy" title=" interpolation accuracy"> interpolation accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variability" title=" spatial variability"> spatial variability</a> </p> <a href="https://publications.waset.org/abstracts/185325/assessing-the-influence-of-station-density-on-geostatistical-prediction-of-groundwater-levels-in-a-semi-arid-watershed-of-karnataka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">523</span> Application of Distributed Value Property Zones Approach on the Hydraulic Conductivity for Real Site Located in Al-Najaf Region, Iraq to Investigate the Groundwater Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayder%20H.%20Kareem">Hayder H. Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayad%20K.%20Hussein"> Ayad K. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Aseel%20A.%20Alkatib"> Aseel A. Alkatib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater accumulated at geological formations constitutes a worldwide vital water resource component which can be used to supply agriculture, industry, and domestic uses. The subsurface environment is affected by human activities; consequently, planning and sustainable management of aquifers require serious attention, especially as the world is exposed to the problem of global warming. Establishing accurate and efficient groundwater models will provide confident results for the behavior of the aquifer's system. The new approach, 'Distributed Value Property Zones,' available in Visual MODFLOW, is used to reconstruct the subsurface zones of the Al-Najaf region aquifer, and then its effect is compared with those manual and automated (PEST) approaches. Results show that the model has become more accurate with the use of the new approach, as the calibration and results analyses revealed. The assessment of the Al-Najaf region groundwater aquifer has revealed a degree of insufficiency of the required pumping demand, which reflects dry areas in both of the aquifer's layers. In addition, with pumping, the Euphrates River loses water of 7458 m³/day to the aquifer, while without pumping, it gains 28837 m³/day from the rainfall's recharge. The distributed value property zones approach achieves a precise groundwater model to assess the state of the Al-Najaf region aquifer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Najaf%20region" title="Al-Najaf region">Al-Najaf region</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20value%20property%20zones%20approach" title=" distributed value property zones approach"> distributed value property zones approach</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductivity" title=" hydraulic conductivity"> hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20modelling%20using%20visual%20MODFLOW" title=" groundwater modelling using visual MODFLOW"> groundwater modelling using visual MODFLOW</a> </p> <a href="https://publications.waset.org/abstracts/131525/application-of-distributed-value-property-zones-approach-on-the-hydraulic-conductivity-for-real-site-located-in-al-najaf-region-iraq-to-investigate-the-groundwater-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">522</span> Performance of Pilot Test of Geotextile Tube Filled with Lightly Cemented Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Chew">S. H. Chew</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20X.%20Eng"> Z. X. Eng</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Chuah"> K. E. Chuah</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Y.%20Lim"> T. Y. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20A.%20Yim"> H. M. A. Yim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, geotextile tube has been widely used in the hydraulic engineering and dewatering industry. To construct a stable containment bund with geotextile tubes, the sand slurry is always the preference infilling material. However, the shortage of sand supply posts a problem in Singapore to adopt this construction method in the actual construction of long containment bund. Hence, utilizing the soft dredged clay or the excavated soft clay as the infilling material of geotextile tubes has a great economic benefit. There are any technical issues with using this soft clayey material as infilling material, especially on the excessive settlement and stability concerns. To minimize the shape deformation and settlement of geotextile tube associated with the use of this soft clay infilling material, a modified innovative infilling material is proposed – lightly cemented soft clay. The preliminary laboratory studies have shown that the dewatering mechanism via geotextile material of the tube skin, and the introduction of cementitious chemical action of the lightly cemented soft clay will accelerate the consolidation and improve the shear strength of infill material. This study aims to extend the study by conducting a pilot test of the geotextile tube filled with lightly cemented clay. This study consists of testing on a series of miniature geo-tubes and two full-size geotextile tube. In the miniature geo-tube tests, a number of small scaled-down size of geotextile tubes were filled with cemented clay (at water content of 150%) with cement content of 0% to 8% (by weight). The shear strength development of the lightly cemented clay under dewatering mechanism was evaluated using a modified in-situ Cone Penetration Test (CPT) at 0 days, 3 days, 7 days and 28 days after the infilling. The undisturbed soil samples of lightly cemented infilled clay were also extracted at 3-days and 7-days for triaxial tests and evaluation of final water content. The results suggested that the geotextile tubes filled with un-cemented soft clay experienced very significant shape change over the days (as control test). However, geotextile mini-tubes filled with lightly cemented clay experienced only marginal shape changed, even that the strength development of this lightly cemented clay inside the tube may not show significant strength gain at the early stage. The shape stability is believed to be due to the confinement effect of the geotextile tube with clay at non-slurry state. Subsequently, a full-scale instrumented geotextile tube filled with lightly cemented clay was performed. The extensive results of strain gauges and pressure transducers installed on this full-size geotextile tube demonstrated a substantial mobilization of tensile forces on the geotextile skin corresponding to the filling activity and the subsequent dewatering stage. Shape change and the in-fill material strength development was also monitored. In summary, the construction of containment bund with geotextile tube filled with lightly cemented clay is found to be technically feasible and stable with the use of the sufficiently strong (i.e. adequate tensile strength) geotextile tube, the adequate control on the dosage of cement content, and suitable water content of infilling soft clay material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20clay" title="cemented clay">cemented clay</a>, <a href="https://publications.waset.org/abstracts/search?q=containment%20bund" title=" containment bund"> containment bund</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering" title=" dewatering"> dewatering</a>, <a href="https://publications.waset.org/abstracts/search?q=geotextile%20tube" title=" geotextile tube"> geotextile tube</a> </p> <a href="https://publications.waset.org/abstracts/67068/performance-of-pilot-test-of-geotextile-tube-filled-with-lightly-cemented-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">521</span> Groundwater Utilization and Sustainability: A Case Study of Pydibheemavaram Industrial Area, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Venkata%20Rao">G. Venkata Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Srinivasa%20Rao"> R. Srinivasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Neelima%20Sri%20Priya"> B. Neelima Sri Priya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Now a days the ground water extraction increases by year to year because increased population and industrialization. The ground water is the only source of irrigation, domestic and Industrial purposes at Pydibhimavaram industrial area, which is located in the coastal belt of Srikakulam district, India of Latitudes 18.145N 83.627E and Longitudes 18.099N 83.674E. The present study has been attempted to calculate amount of water getting recharged into this aquifer, status of rainfall pattern for the past two decades and the runoff is calculated by using Khosla’s formula with available rainfall and temperature in the study area. A decision support model has been developed on the basis of Monthly Extractions of the water from the ground through bore wells and the Net Recharge of the aquifer. It is concluded that the amount of extractions is exceeding the amount of recharge from May to October in a given year which will in turn damage the water balance in the subsurface layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquifer" title="aquifer">aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20support%20model" title=" decision support model"> decision support model</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20extraction" title=" groundwater extraction"> groundwater extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=run%20off%20estimation%20and%20rainfall" title=" run off estimation and rainfall"> run off estimation and rainfall</a> </p> <a href="https://publications.waset.org/abstracts/42655/groundwater-utilization-and-sustainability-a-case-study-of-pydibheemavaram-industrial-area-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> Impacts of Climate Elements on the Annual Periodic Behavior of the Shallow Groundwater Level: Case Study from Central-Eastern Europe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamas%20Garamhegyi">Tamas Garamhegyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jozsef%20Kovacs"> Jozsef Kovacs</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Pongracz"> Rita Pongracz</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Tanos"> Peter Tanos</a>, <a href="https://publications.waset.org/abstracts/search?q=Balazs%20Trasy"> Balazs Trasy</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Magyar"> Norbert Magyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Istvan%20G.%20Hatvani"> Istvan G. Hatvani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Like most environmental processes, shallow groundwater fluctuation under natural circumstances also behaves periodically. With the statistical tools at hand, it can easily be determined if a period exists in the data or not. Thus, the question may be raised: Does the estimated average period time characterize the whole time period, or not? This is especially important in the case of such complex phenomena as shallow groundwater fluctuation, driven by numerous factors. Because of the continuous changes in the oscillating components of shallow groundwater time series, the most appropriate method should be used to investigate its periodicity, this is wavelet spectrum analysis. The aims of the research were to investigate the periodic behavior of the shallow groundwater time series of an agriculturally important and drought sensitive region in Central-Eastern Europe and its relationship to the European pressure action centers. During the research ~216 shallow groundwater observation wells located in the eastern part of the Great Hungarian Plain with a temporal coverage of 50 years were scanned for periodicity. By taking the full-time interval as 100%, the presence of any period could be determined in percentages. With the complex hydrogeological/meteorological model developed in this study, non-periodic time intervals were found in the shallow groundwater levels. On the local scale, this phenomenon linked to drought conditions, and on a regional scale linked to the maxima of the regional air pressures in the Gulf of Genoa. The study documented an important link between shallow groundwater levels and climate variables/indices facilitating the necessary adaptation strategies on national and/or regional scales, which have to take into account the predictions of drought-related climatic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20periodicity" title=" groundwater periodicity"> groundwater periodicity</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20spectrum%20and%20coherence%20analyses" title=" wavelet spectrum and coherence analyses"> wavelet spectrum and coherence analyses</a> </p> <a href="https://publications.waset.org/abstracts/59875/impacts-of-climate-elements-on-the-annual-periodic-behavior-of-the-shallow-groundwater-level-case-study-from-central-eastern-europe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=2" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20dewatering&amp;page=4" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10