CINXE.COM
Higgs boson - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Higgs boson - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"99ec4b92-f043-4322-bef1-aa2a84b85ccc","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Higgs_boson","wgTitle":"Higgs boson","wgCurRevisionId":1259305724,"wgRevisionId":1259305724,"wgArticleId":20556903,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","All articles with dead external links","Articles with dead external links from August 2018","Webarchive template archiveis links","CS1 maint: numeric names: authors list","CS1: long volume value","CS1 maint: unfit URL","Articles with short description","Short description is different from Wikidata","Wikipedia indefinitely move-protected pages","Wikipedia pending changes protected pages","Use British English from May 2020", "Use dmy dates from February 2024","All articles with unsourced statements","Articles with unsourced statements from August 2012","Articles containing potentially dated statements from July 2017","All articles containing potentially dated statements","Articles with unsourced statements from July 2012","Wikipedia articles in need of updating from July 2018","All Wikipedia articles in need of updating","Articles with unsourced statements from May 2024","Pages displaying short descriptions of redirect targets via Module:Annotated link","Pages displaying wikidata descriptions as a fallback via Module:Annotated link","Commons category link from Wikidata","2012 in science","Bosons","Electroweak theory","Elementary particles","Mass","Phase transitions","Standard Model","Quantum field theory","Subatomic particles with spin 0","Force carriers"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Higgs_boson","wgRelevantArticleId":20556903 ,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":["sysop"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgStableRevisionId":1259305724,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q402","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model", "platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.imagemap.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.imagemap","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready", "jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.flaggedRevs.basic%7Cext.imagemap.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/79/Candidate_Higgs_Events_in_ATLAS_and_CMS.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1562"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/79/Candidate_Higgs_Events_in_ATLAS_and_CMS.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1041"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/79/Candidate_Higgs_Events_in_ATLAS_and_CMS.png/640px-Candidate_Higgs_Events_in_ATLAS_and_CMS.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="833"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Higgs boson - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Higgs_boson"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Higgs_boson&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Higgs_boson"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Higgs_boson rootpage-Higgs_boson skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Higgs+boson" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Higgs+boson" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Higgs+boson" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Higgs+boson" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction</span> </div> </a> <button aria-controls="toc-Introduction-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Introduction subsection</span> </button> <ul id="toc-Introduction-sublist" class="vector-toc-list"> <li id="toc-Standard_Model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Standard_Model"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Standard Model</span> </div> </a> <ul id="toc-Standard_Model-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gauge_invariant_theories_and_symmetries" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gauge_invariant_theories_and_symmetries"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Gauge invariant theories and symmetries</span> </div> </a> <ul id="toc-Gauge_invariant_theories_and_symmetries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gauge_boson_(rest)_mass_problem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gauge_boson_(rest)_mass_problem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Gauge boson (rest) mass problem</span> </div> </a> <ul id="toc-Gauge_boson_(rest)_mass_problem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symmetry_breaking" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Symmetry_breaking"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Symmetry breaking</span> </div> </a> <ul id="toc-Symmetry_breaking-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Higgs_mechanism" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Higgs_mechanism"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Higgs mechanism</span> </div> </a> <ul id="toc-Higgs_mechanism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Higgs_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Higgs_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6</span> <span>Higgs field</span> </div> </a> <ul id="toc-Higgs_field-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_"central_problem"" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_"central_problem""> <div class="vector-toc-text"> <span class="vector-toc-numb">1.7</span> <span>The "central problem"</span> </div> </a> <ul id="toc-The_"central_problem"-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Search_and_discovery" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Search_and_discovery"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.8</span> <span>Search and discovery</span> </div> </a> <ul id="toc-Search_and_discovery-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Interpretation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.9</span> <span>Interpretation</span> </div> </a> <ul id="toc-Interpretation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Overview_of_Higgs_boson_and_field_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Overview_of_Higgs_boson_and_field_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.10</span> <span>Overview of Higgs boson and field properties</span> </div> </a> <ul id="toc-Overview_of_Higgs_boson_and_field_properties-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Significance" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Significance"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Significance</span> </div> </a> <button aria-controls="toc-Significance-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Significance subsection</span> </button> <ul id="toc-Significance-sublist" class="vector-toc-list"> <li id="toc-Particle_physics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Particle_physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Particle physics</span> </div> </a> <ul id="toc-Particle_physics-sublist" class="vector-toc-list"> <li id="toc-Validation_of_the_Standard_Model" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Validation_of_the_Standard_Model"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>Validation of the Standard Model</span> </div> </a> <ul id="toc-Validation_of_the_Standard_Model-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symmetry_breaking_of_the_electroweak_interaction" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Symmetry_breaking_of_the_electroweak_interaction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.2</span> <span>Symmetry breaking of the electroweak interaction</span> </div> </a> <ul id="toc-Symmetry_breaking_of_the_electroweak_interaction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Particle_mass_acquisition" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Particle_mass_acquisition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.3</span> <span>Particle mass acquisition</span> </div> </a> <ul id="toc-Particle_mass_acquisition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Scalar_fields_and_extension_of_the_Standard_Model" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Scalar_fields_and_extension_of_the_Standard_Model"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.4</span> <span>Scalar fields and extension of the Standard Model</span> </div> </a> <ul id="toc-Scalar_fields_and_extension_of_the_Standard_Model-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Cosmology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cosmology"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Cosmology</span> </div> </a> <ul id="toc-Cosmology-sublist" class="vector-toc-list"> <li id="toc-Inflaton" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Inflaton"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Inflaton</span> </div> </a> <ul id="toc-Inflaton-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nature_of_the_universe,_and_its_possible_fates" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Nature_of_the_universe,_and_its_possible_fates"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.2</span> <span>Nature of the universe, and its possible fates</span> </div> </a> <ul id="toc-Nature_of_the_universe,_and_its_possible_fates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vacuum_energy_and_the_cosmological_constant" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Vacuum_energy_and_the_cosmological_constant"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.3</span> <span>Vacuum energy and the cosmological constant</span> </div> </a> <ul id="toc-Vacuum_energy_and_the_cosmological_constant-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Theorisation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Theorisation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Theorisation</span> </div> </a> <ul id="toc-Theorisation-sublist" class="vector-toc-list"> <li id="toc-Summary_and_impact_of_the_PRL_papers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Summary_and_impact_of_the_PRL_papers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.1</span> <span>Summary and impact of the PRL papers</span> </div> </a> <ul id="toc-Summary_and_impact_of_the_PRL_papers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Experimental_search" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Experimental_search"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Experimental search</span> </div> </a> <ul id="toc-Experimental_search-sublist" class="vector-toc-list"> <li id="toc-Search_before_4_July_2012" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Search_before_4_July_2012"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>Search before 4 July 2012</span> </div> </a> <ul id="toc-Search_before_4_July_2012-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Discovery_of_candidate_boson_at_CERN" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Discovery_of_candidate_boson_at_CERN"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>Discovery of candidate boson at CERN</span> </div> </a> <ul id="toc-Discovery_of_candidate_boson_at_CERN-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-New_particle_tested_as_a_possible_Higgs_boson" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#New_particle_tested_as_a_possible_Higgs_boson"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.3</span> <span>New particle tested as a possible Higgs boson</span> </div> </a> <ul id="toc-New_particle_tested_as_a_possible_Higgs_boson-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Confirmation_of_existence_and_current_status" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Confirmation_of_existence_and_current_status"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.4</span> <span>Confirmation of existence and current status</span> </div> </a> <ul id="toc-Confirmation_of_existence_and_current_status-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Findings_since_2013" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Findings_since_2013"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.5</span> <span>Findings since 2013</span> </div> </a> <ul id="toc-Findings_since_2013-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Theoretical_issues" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Theoretical_issues"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Theoretical issues</span> </div> </a> <button aria-controls="toc-Theoretical_issues-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Theoretical issues subsection</span> </button> <ul id="toc-Theoretical_issues-sublist" class="vector-toc-list"> <li id="toc-Theoretical_need_for_the_Higgs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Theoretical_need_for_the_Higgs"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Theoretical need for the Higgs</span> </div> </a> <ul id="toc-Theoretical_need_for_the_Higgs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Simple_explanation_of_the_theory,_from_its_origins_in_superconductivity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Simple_explanation_of_the_theory,_from_its_origins_in_superconductivity"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Simple explanation of the theory, from its origins in superconductivity</span> </div> </a> <ul id="toc-Simple_explanation_of_the_theory,_from_its_origins_in_superconductivity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Alternative_models" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Alternative_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Alternative models</span> </div> </a> <ul id="toc-Alternative_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_theoretical_issues_and_hierarchy_problem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Further_theoretical_issues_and_hierarchy_problem"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Further theoretical issues and hierarchy problem</span> </div> </a> <ul id="toc-Further_theoretical_issues_and_hierarchy_problem-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Properties_of_the_Higgs_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Properties_of_the_Higgs_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Properties of the Higgs field</span> </div> </a> <ul id="toc-Properties_of_the_Higgs_field-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties_of_the_Higgs_boson" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Properties_of_the_Higgs_boson"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Properties of the Higgs boson</span> </div> </a> <ul id="toc-Properties_of_the_Higgs_boson-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Production" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Production"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Production</span> </div> </a> <ul id="toc-Production-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Decay" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Decay"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Decay</span> </div> </a> <ul id="toc-Decay-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Public_discussion" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Public_discussion"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Public discussion</span> </div> </a> <button aria-controls="toc-Public_discussion-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Public discussion subsection</span> </button> <ul id="toc-Public_discussion-sublist" class="vector-toc-list"> <li id="toc-Naming" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Naming"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Naming</span> </div> </a> <ul id="toc-Naming-sublist" class="vector-toc-list"> <li id="toc-Names_used_by_physicists" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Names_used_by_physicists"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1</span> <span>Names used by physicists</span> </div> </a> <ul id="toc-Names_used_by_physicists-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nickname" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Nickname"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.2</span> <span>Nickname</span> </div> </a> <ul id="toc-Nickname-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_proposals" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Other_proposals"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.3</span> <span>Other proposals</span> </div> </a> <ul id="toc-Other_proposals-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Educational_explanations_and_analogies" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Educational_explanations_and_analogies"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Educational explanations and analogies</span> </div> </a> <ul id="toc-Educational_explanations_and_analogies-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Recognition_and_awards" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Recognition_and_awards"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Recognition and awards</span> </div> </a> <ul id="toc-Recognition_and_awards-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Technical_aspects_and_mathematical_formulation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Technical_aspects_and_mathematical_formulation"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Technical aspects and mathematical formulation</span> </div> </a> <ul id="toc-Technical_aspects_and_mathematical_formulation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <button aria-controls="toc-See_also-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle See also subsection</span> </button> <ul id="toc-See_also-sublist" class="vector-toc-list"> <li id="toc-Standard_Model_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Standard_Model_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Standard Model</span> </div> </a> <ul id="toc-Standard_Model_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Other</span> </div> </a> <ul id="toc-Other-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Explanatory_notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Explanatory_notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Explanatory notes</span> </div> </a> <ul id="toc-Explanatory_notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <button aria-controls="toc-External_links-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle External links subsection</span> </button> <ul id="toc-External_links-sublist" class="vector-toc-list"> <li id="toc-Popular_science,_mass_media,_and_general_coverage" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Popular_science,_mass_media,_and_general_coverage"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.1</span> <span>Popular science, mass media, and general coverage</span> </div> </a> <ul id="toc-Popular_science,_mass_media,_and_general_coverage-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Significant_papers_and_other" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Significant_papers_and_other"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.2</span> <span>Significant papers and other</span> </div> </a> <ul id="toc-Significant_papers_and_other-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Introductions_to_the_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Introductions_to_the_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.3</span> <span>Introductions to the field</span> </div> </a> <ul id="toc-Introductions_to_the_field-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Higgs boson</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 91 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-91" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">91 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Higgsboson" title="Higgsboson – Afrikaans" lang="af" hreflang="af" data-title="Higgsboson" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Higgs-Boson" title="Higgs-Boson – Alemannic" lang="gsw" hreflang="gsw" data-title="Higgs-Boson" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A8%D9%88%D8%B2%D9%88%D9%86_%D9%87%D9%8A%D8%BA%D8%B2" title="بوزون هيغز – Arabic" lang="ar" hreflang="ar" data-title="بوزون هيغز" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Bos%C3%B3n_de_Higgs" title="Bosón de Higgs – Asturian" lang="ast" hreflang="ast" data-title="Bosón de Higgs" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Hiqqs_bozonu" title="Hiqqs bozonu – Azerbaijani" lang="az" hreflang="az" data-title="Hiqqs bozonu" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B9%E0%A6%BF%E0%A6%97%E0%A6%B8_%E0%A6%AC%E0%A7%8B%E0%A6%B8%E0%A6%A8" title="হিগস বোসন – Bangla" lang="bn" hreflang="bn" data-title="হিগস বোসন" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%91%D0%B0%D0%B7%D0%BE%D0%BD_%D0%A5%D1%96%D0%B3%D1%81%D0%B0" title="Базон Хігса – Belarusian" lang="be" hreflang="be" data-title="Базон Хігса" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%91%D0%B0%D0%B7%D0%BE%D0%BD_%D0%93%D1%96%D0%B3%D1%81%D0%B0" title="Базон Гігса – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Базон Гігса" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A5%D0%B8%D0%B3%D1%81_%D0%B1%D0%BE%D0%B7%D0%BE%D0%BD" title="Хигс бозон – Bulgarian" lang="bg" hreflang="bg" data-title="Хигс бозон" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Higgsov_bozon" title="Higgsov bozon – Bosnian" lang="bs" hreflang="bs" data-title="Higgsov bozon" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Bozon_Higgs" title="Bozon Higgs – Breton" lang="br" hreflang="br" data-title="Bozon Higgs" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Bos%C3%B3_de_Higgs" title="Bosó de Higgs – Catalan" lang="ca" hreflang="ca" data-title="Bosó de Higgs" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A5%D0%B8%D0%B3%D0%B3%D1%81_%D0%B1%D0%BE%D0%B7%D0%BE%D0%BD%C4%95" title="Хиггс бозонĕ – Chuvash" lang="cv" hreflang="cv" data-title="Хиггс бозонĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Higgs%C5%AFv_boson" title="Higgsův boson – Czech" lang="cs" hreflang="cs" data-title="Higgsův boson" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Higgs-partikel" title="Higgs-partikel – Danish" lang="da" hreflang="da" data-title="Higgs-partikel" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-se mw-list-item"><a href="https://se.wikipedia.org/wiki/Higgsa_boson" title="Higgsa boson – Northern Sami" lang="se" hreflang="se" data-title="Higgsa boson" data-language-autonym="Davvisámegiella" data-language-local-name="Northern Sami" class="interlanguage-link-target"><span>Davvisámegiella</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Higgs-Boson" title="Higgs-Boson – German" lang="de" hreflang="de" data-title="Higgs-Boson" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Higgsi_boson" title="Higgsi boson – Estonian" lang="et" hreflang="et" data-title="Higgsi boson" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%89%CE%BC%CE%B1%CF%84%CE%AF%CE%B4%CE%B9%CE%BF_%CE%A7%CE%B9%CE%B3%CE%BA%CF%82" title="Σωματίδιο Χιγκς – Greek" lang="el" hreflang="el" data-title="Σωματίδιο Χιγκς" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Bos%C3%B3n_de_Higgs" title="Bosón de Higgs – Spanish" lang="es" hreflang="es" data-title="Bosón de Higgs" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Bosono_de_Higgs" title="Bosono de Higgs – Esperanto" lang="eo" hreflang="eo" data-title="Bosono de Higgs" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Higgs_bosoi" title="Higgs bosoi – Basque" lang="eu" hreflang="eu" data-title="Higgs bosoi" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A8%D9%88%D8%B2%D9%88%D9%86_%D9%87%DB%8C%DA%AF%D8%B2" title="بوزون هیگز – Persian" lang="fa" hreflang="fa" data-title="بوزون هیگز" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Boson_de_Higgs" title="Boson de Higgs – French" lang="fr" hreflang="fr" data-title="Boson de Higgs" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/B%C3%B3s%C3%B3n_Higgs" title="Bósón Higgs – Irish" lang="ga" hreflang="ga" data-title="Bósón Higgs" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Bos%C3%B3n_de_Higgs" title="Bosón de Higgs – Galician" lang="gl" hreflang="gl" data-title="Bosón de Higgs" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%9E%89%EC%8A%A4_%EB%B3%B4%EC%86%90" title="힉스 보손 – Korean" lang="ko" hreflang="ko" data-title="힉스 보손" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%80%D5%AB%D5%A3%D5%BD%D5%AB_%D5%A2%D5%B8%D5%A6%D5%B8%D5%B6" title="Հիգսի բոզոն – Armenian" lang="hy" hreflang="hy" data-title="Հիգսի բոզոն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B9%E0%A4%BF%E0%A4%97%E0%A5%8D%E0%A4%B8_%E0%A4%AC%E0%A5%8B%E0%A4%B8%E0%A5%89%E0%A4%A8" title="हिग्स बोसॉन – Hindi" lang="hi" hreflang="hi" data-title="हिग्स बोसॉन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Higgsov_bozon" title="Higgsov bozon – Croatian" lang="hr" hreflang="hr" data-title="Higgsov bozon" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Higgs_bosono" title="Higgs bosono – Ido" lang="io" hreflang="io" data-title="Higgs bosono" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Boson_Higgs" title="Boson Higgs – Indonesian" lang="id" hreflang="id" data-title="Boson Higgs" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Higgs-b%C3%B3seind" title="Higgs-bóseind – Icelandic" lang="is" hreflang="is" data-title="Higgs-bóseind" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Bosone_di_Higgs" title="Bosone di Higgs – Italian" lang="it" hreflang="it" data-title="Bosone di Higgs" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%91%D7%95%D7%96%D7%95%D7%9F_%D7%94%D7%99%D7%92%D7%A1" title="בוזון היגס – Hebrew" lang="he" hreflang="he" data-title="בוזון היגס" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%A6%E0%B3%87%E0%B2%B5%E0%B2%95%E0%B2%A3" title="ದೇವಕಣ – Kannada" lang="kn" hreflang="kn" data-title="ದೇವಕಣ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%B0%E1%83%98%E1%83%92%E1%83%A1%E1%83%98%E1%83%A1_%E1%83%91%E1%83%9D%E1%83%96%E1%83%9D%E1%83%9C%E1%83%98" title="ჰიგსის ბოზონი – Georgian" lang="ka" hreflang="ka" data-title="ჰიგსის ბოზონი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Boso_Higgsianus" title="Boso Higgsianus – Latin" lang="la" hreflang="la" data-title="Boso Higgsianus" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Higsa_bozons" title="Higsa bozons – Latvian" lang="lv" hreflang="lv" data-title="Higsa bozons" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Higso_bozonas" title="Higso bozonas – Lithuanian" lang="lt" hreflang="lt" data-title="Higso bozonas" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Higgsdeilke" title="Higgsdeilke – Limburgish" lang="li" hreflang="li" data-title="Higgsdeilke" data-language-autonym="Limburgs" data-language-local-name="Limburgish" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/xigzo" title="xigzo – Lojban" lang="jbo" hreflang="jbo" data-title="xigzo" data-language-autonym="La .lojban." data-language-local-name="Lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Higgs-bozon" title="Higgs-bozon – Hungarian" lang="hu" hreflang="hu" data-title="Higgs-bozon" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A5%D0%B8%D0%B3%D1%81%D0%BE%D0%B2_%D0%B1%D0%BE%D0%B7%D0%BE%D0%BD" title="Хигсов бозон – Macedonian" lang="mk" hreflang="mk" data-title="Хигсов бозон" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B9%E0%B4%BF%E0%B4%97%E0%B5%8D%E0%B4%B8%E0%B5%8D_%E0%B4%AC%E0%B5%8B%E0%B4%B8%E0%B5%8B%E0%B5%BA" title="ഹിഗ്സ് ബോസോൺ – Malayalam" lang="ml" hreflang="ml" data-title="ഹിഗ്സ് ബോസോൺ" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B9%E0%A4%BF%E0%A4%97%E0%A5%8D%E0%A4%9C_%E0%A4%AC%E0%A5%8B%E0%A4%B8%E0%A5%89%E0%A4%A8" title="हिग्ज बोसॉन – Marathi" lang="mr" hreflang="mr" data-title="हिग्ज बोसॉन" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-mzn mw-list-item"><a href="https://mzn.wikipedia.org/wiki/%D8%A8%D9%88%D8%B2%D9%88%D9%86_%D9%87%DB%8C%DA%AF%D8%B2" title="بوزون هیگز – Mazanderani" lang="mzn" hreflang="mzn" data-title="بوزون هیگز" data-language-autonym="مازِرونی" data-language-local-name="Mazanderani" class="interlanguage-link-target"><span>مازِرونی</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Boson_Higgs" title="Boson Higgs – Malay" lang="ms" hreflang="ms" data-title="Boson Higgs" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A5%D0%B8%D0%B3%D0%B3%D1%81_%D0%B1%D0%BE%D0%B7%D0%BE%D0%BD" title="Хиггс бозон – Mongolian" lang="mn" hreflang="mn" data-title="Хиггс бозон" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Higgsboson" title="Higgsboson – Dutch" lang="nl" hreflang="nl" data-title="Higgsboson" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%B9%E0%A4%BF%E0%A4%97%E0%A5%8D%E0%A4%B8_%E0%A4%AC%E0%A5%8B%E0%A4%B8%E0%A5%8B%E0%A4%A8" title="हिग्स बोसोन – Nepali" lang="ne" hreflang="ne" data-title="हिग्स बोसोन" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%83%E3%82%B0%E3%82%B9%E7%B2%92%E5%AD%90" title="ヒッグス粒子 – Japanese" lang="ja" hreflang="ja" data-title="ヒッグス粒子" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Higgs-boson" title="Higgs-boson – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Higgs-boson" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Higgs-boson" title="Higgs-boson – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Higgs-boson" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Boson_de_Higgs" title="Boson de Higgs – Occitan" lang="oc" hreflang="oc" data-title="Boson de Higgs" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%B9%E0%AC%BF%E2%80%8C%E0%AC%97%E0%AD%8D%E2%80%8C%E0%AC%B8%E0%AD%8D%E2%80%8C_%E0%AC%AC%E0%AD%8B%E0%AC%B7%E0%AC%A8" title="ହିଗ୍ସ୍ ବୋଷନ – Odia" lang="or" hreflang="or" data-title="ହିଗ୍ସ୍ ବୋଷନ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Odia" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Higgs_bozoni" title="Higgs bozoni – Uzbek" lang="uz" hreflang="uz" data-title="Higgs bozoni" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B9%E0%A8%BF%E0%A8%97%E0%A8%9C%E0%A8%BC_%E0%A8%AC%E0%A9%8B%E0%A8%B8%E0%A9%8C%E0%A8%A8" title="ਹਿਗਜ਼ ਬੋਸੌਨ – Punjabi" lang="pa" hreflang="pa" data-title="ਹਿਗਜ਼ ਬੋਸੌਨ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DB%81%DA%AF%D8%B2_%D8%A8%D9%88%D8%B3%D9%86" title="ہگز بوسن – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ہگز بوسن" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D9%87%DB%8C%DA%AF%D8%B2%D8%A8%D9%88%D8%B3%D9%88%D9%86" title="هیگزبوسون – Pashto" lang="ps" hreflang="ps" data-title="هیگزبوسون" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Higgs-Boson" title="Higgs-Boson – Low German" lang="nds" hreflang="nds" data-title="Higgs-Boson" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Bozon_Higgsa" title="Bozon Higgsa – Polish" lang="pl" hreflang="pl" data-title="Bozon Higgsa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/B%C3%B3son_de_Higgs" title="Bóson de Higgs – Portuguese" lang="pt" hreflang="pt" data-title="Bóson de Higgs" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Bosonul_Higgs" title="Bosonul Higgs – Romanian" lang="ro" hreflang="ro" data-title="Bosonul Higgs" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%B7%D0%BE%D0%BD_%D0%A5%D0%B8%D0%B3%D0%B3%D1%81%D0%B0" title="Бозон Хиггса – Russian" lang="ru" hreflang="ru" data-title="Бозон Хиггса" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sa mw-list-item"><a href="https://sa.wikipedia.org/wiki/%E0%A4%A6%E0%A5%87%E0%A4%B5%E0%A4%95%E0%A4%A3%E0%A4%83" title="देवकणः – Sanskrit" lang="sa" hreflang="sa" data-title="देवकणः" data-language-autonym="संस्कृतम्" data-language-local-name="Sanskrit" class="interlanguage-link-target"><span>संस्कृतम्</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Bozoni_i_Higgsit" title="Bozoni i Higgsit – Albanian" lang="sq" hreflang="sq" data-title="Bozoni i Higgsit" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Bosoni_di_Higgs" title="Bosoni di Higgs – Sicilian" lang="scn" hreflang="scn" data-title="Bosoni di Higgs" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%84%E0%B7%92%E0%B6%9C%E0%B7%8A%E0%B7%83%E0%B7%8A_%E0%B6%B6%E0%B7%9C%E0%B7%83%E0%B7%9D%E0%B6%B1%E0%B6%BA" title="හිග්ස් බොසෝනය – Sinhala" lang="si" hreflang="si" data-title="හිග්ස් බොසෝනය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Higgs_boson" title="Higgs boson – Simple English" lang="en-simple" hreflang="en-simple" data-title="Higgs boson" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Higgsov_boz%C3%B3n" title="Higgsov bozón – Slovak" lang="sk" hreflang="sk" data-title="Higgsov bozón" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Higgsov_bozon" title="Higgsov bozon – Slovenian" lang="sl" hreflang="sl" data-title="Higgsov bozon" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A8%DB%86%D8%B2%DB%86%D9%86_%DA%BE%DB%8C%DA%AF%D8%B2" title="بۆزۆن ھیگز – Central Kurdish" lang="ckb" hreflang="ckb" data-title="بۆزۆن ھیگز" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A5%D0%B8%D0%B3%D1%81%D0%BE%D0%B2_%D0%B1%D0%BE%D0%B7%D0%BE%D0%BD" title="Хигсов бозон – Serbian" lang="sr" hreflang="sr" data-title="Хигсов бозон" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Higgsov_bozon" title="Higgsov bozon – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Higgsov bozon" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Higgsin_bosoni" title="Higgsin bosoni – Finnish" lang="fi" hreflang="fi" data-title="Higgsin bosoni" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Higgsboson" title="Higgsboson – Swedish" lang="sv" hreflang="sv" data-title="Higgsboson" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Higgs_boson" title="Higgs boson – Tagalog" lang="tl" hreflang="tl" data-title="Higgs boson" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B9%E0%AE%BF%E0%AE%95%E0%AF%8D%E0%AE%B8%E0%AF%8D_%E0%AE%AA%E0%AF%8B%E0%AE%9A%E0%AE%BE%E0%AE%A9%E0%AF%8D" title="ஹிக்ஸ் போசான் – Tamil" lang="ta" hreflang="ta" data-title="ஹிக்ஸ் போசான்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D2%BA%D0%B8%D0%B3%D0%B3%D1%81_%D0%B1%D0%BE%D0%B7%D0%BE%D0%BD%D1%8B" title="Һиггс бозоны – Tatar" lang="tt" hreflang="tt" data-title="Һиггс бозоны" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B9%E0%B0%BF%E0%B0%97%E0%B1%8D%E0%B0%97%E0%B1%8D%E0%B0%B8%E0%B1%8D_%E0%B0%AC%E0%B1%8B%E0%B0%B8%E0%B0%A8%E0%B1%8D" title="హిగ్గ్స్ బోసన్ – Telugu" lang="te" hreflang="te" data-title="హిగ్గ్స్ బోసన్" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AE%E0%B8%B4%E0%B8%81%E0%B8%AA%E0%B9%8C%E0%B9%82%E0%B8%9A%E0%B8%8B%E0%B8%AD%E0%B8%99" title="ฮิกส์โบซอน – Thai" lang="th" hreflang="th" data-title="ฮิกส์โบซอน" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Higgs_bozonu" title="Higgs bozonu – Turkish" lang="tr" hreflang="tr" data-title="Higgs bozonu" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%91%D0%BE%D0%B7%D0%BE%D0%BD_%D0%A5%D1%96%D0%B3%D0%B3%D1%81%D0%B0" title="Бозон Хіггса – Ukrainian" lang="uk" hreflang="uk" data-title="Бозон Хіггса" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DB%81%DA%AF%D8%B2_%D8%A8%D9%88%D8%B2%D9%88%D9%86" title="ہگز بوزون – Urdu" lang="ur" hreflang="ur" data-title="ہگز بوزون" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%E1%BA%A1t_Higgs" title="Hạt Higgs – Vietnamese" lang="vi" hreflang="vi" data-title="Hạt Higgs" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Higgs_boson" title="Higgs boson – Waray" lang="war" hreflang="war" data-title="Higgs boson" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%B8%8C%E6%A0%BC%E6%96%AF%E7%8E%BB%E8%89%B2%E5%AD%90" title="希格斯玻色子 – Wu" lang="wuu" hreflang="wuu" data-title="希格斯玻色子" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/B%C3%B3s%C3%B3n%C3%AC_Higgs" title="Bósónì Higgs – Yoruba" lang="yo" hreflang="yo" data-title="Bósónì Higgs" data-language-autonym="Yorùbá" data-language-local-name="Yoruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B8%8C%E6%A0%BC%E6%96%AF%E7%8E%BB%E8%89%B2%E5%AD%90" title="希格斯玻色子 – Cantonese" lang="yue" hreflang="yue" data-title="希格斯玻色子" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://zh.wikipedia.org/wiki/%E5%B8%8C%E6%A0%BC%E6%96%AF%E7%8E%BB%E8%89%B2%E5%AD%90" title="希格斯玻色子 – Chinese" lang="zh" hreflang="zh" data-title="希格斯玻色子" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q402#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Higgs_boson" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Higgs_boson" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Higgs_boson"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Higgs_boson&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Higgs_boson&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Higgs_boson"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Higgs_boson&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Higgs_boson&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Higgs_boson" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Higgs_boson" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Higgs_boson&oldid=1259305724" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Higgs_boson&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Higgs_boson&id=1259305724&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHiggs_boson"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHiggs_boson"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Higgs_boson&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Higgs_boson&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Higgs_boson" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Higgs_boson" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q402" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-indicator-fr-review-status" class="mw-indicator"><indicator name="fr-review-status" class="mw-fr-review-status-indicator" id="mw-fr-revision-toggle"><span class="cdx-fr-css-icon-review--status--stable"></span><b>Checked</b></indicator></div> <div id="mw-indicator-pp-autoreview" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Protection_policy#pending" title="All edits by unregistered and new users are subject to review prior to becoming visible to unregistered users"><img alt="Page protected with pending changes" src="//upload.wikimedia.org/wikipedia/en/thumb/b/b7/Pending-protection-shackle.svg/20px-Pending-protection-shackle.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/b/b7/Pending-protection-shackle.svg/30px-Pending-protection-shackle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/b/b7/Pending-protection-shackle.svg/40px-Pending-protection-shackle.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><div id="mw-fr-revision-messages"><div id="mw-fr-revision-details" class="mw-fr-revision-details-dialog" style="display:none;"><div tabindex="0"></div><div class="cdx-dialog cdx-dialog--horizontal-actions"><header class="cdx-dialog__header cdx-dialog__header--default"><div class="cdx-dialog__header__title-group"><h2 class="cdx-dialog__header__title">Page version status</h2><p class="cdx-dialog__header__subtitle">This is an accepted version of this page</p></div><button class="cdx-button cdx-button--action-default cdx-button--weight-quiet 							cdx-button--size-medium cdx-button--icon-only cdx-dialog__header__close-button" aria-label="Close" onclick="document.getElementById("mw-fr-revision-details").style.display = "none";" type="submit"><span class="cdx-icon cdx-icon--medium 							cdx-fr-css-icon--close"></span></button></header><div class="cdx-dialog__body">This is the <a href="/wiki/Wikipedia:Pending_changes" title="Wikipedia:Pending changes">latest accepted revision</a>, <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Special:Log&type=review&page=Higgs_boson">reviewed</a> on <i>24 November 2024</i>.</div></div><div tabindex="0"></div></div></div></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Elementary particle involved with rest mass</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"God Particle" redirects here. For other uses, see <a href="/wiki/The_God_Particle_(disambiguation)" class="mw-redirect mw-disambig" title="The God Particle (disambiguation)">The God Particle (disambiguation)</a>.</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox"><caption class="infobox-title">Higgs boson</caption><tbody><tr><td colspan="2" class="infobox-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Candidate_Higgs_Events_in_ATLAS_and_CMS.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Candidate_Higgs_Events_in_ATLAS_and_CMS.png/220px-Candidate_Higgs_Events_in_ATLAS_and_CMS.png" decoding="async" width="220" height="286" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Candidate_Higgs_Events_in_ATLAS_and_CMS.png/330px-Candidate_Higgs_Events_in_ATLAS_and_CMS.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/79/Candidate_Higgs_Events_in_ATLAS_and_CMS.png/440px-Candidate_Higgs_Events_in_ATLAS_and_CMS.png 2x" data-file-width="720" data-file-height="937" /></a></span><div class="infobox-caption">Candidate Higgs boson events from <a href="/wiki/Particle_collision" class="mw-redirect" title="Particle collision">collisions</a> between <a href="/wiki/Proton" title="Proton">protons</a> in the <a href="/wiki/LHC" class="mw-redirect" title="LHC">LHC</a>. The top event in the <a href="/wiki/Compact_Muon_Solenoid" title="Compact Muon Solenoid">CMS</a> experiment shows a decay into two <a href="/wiki/Photon" title="Photon">photons</a> (dashed yellow lines and green towers). The lower event in the <a href="/wiki/ATLAS_experiment" title="ATLAS experiment">ATLAS</a> experiment shows a decay into four <a href="/wiki/Muon" title="Muon">muons</a> (red tracks).<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup></div></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Particle#Composition" title="Particle">Composition</a></th><td class="infobox-data"><a href="/wiki/Elementary_particle" title="Elementary particle">Elementary particle</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Particle_statistics" title="Particle statistics">Statistics</a></th><td class="infobox-data"><a href="/wiki/Bosonic" class="mw-redirect" title="Bosonic">Bosonic</a></td></tr><tr><th scope="row" class="infobox-label">Symbol</th><td class="infobox-data"><span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>H<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span></td></tr><tr><th scope="row" class="infobox-label">Theorised</th><td class="infobox-data"><a href="/wiki/Robert_Brout" title="Robert Brout">R. Brout</a>, <a href="/wiki/Fran%C3%A7ois_Englert" title="François Englert">F. Englert</a>, <a href="/wiki/Peter_Higgs" title="Peter Higgs">P. Higgs</a>, <a href="/wiki/Gerald_Guralnik" title="Gerald Guralnik">G. S. Guralnik</a>, <a href="/wiki/C._R._Hagen" title="C. R. Hagen">C. R. Hagen</a>, and <a href="/wiki/T._W._B._Kibble" class="mw-redirect" title="T. W. B. Kibble">T. W. B. Kibble</a> (1964)</td></tr><tr><th scope="row" class="infobox-label">Discovered</th><td class="infobox-data"><a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">Large Hadron Collider</a> (2011–2013)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Invariant_mass" title="Invariant mass">Mass</a></th><td class="infobox-data"><span class="nowrap"><span data-sort-value="7002125110000000000♠"></span>125.11<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.11</span> <span class="nowrap"><a href="/wiki/Electronvolt#Mass" title="Electronvolt">GeV/<i>c</i><sup>2</sup></a></span><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Mean_lifetime" class="mw-redirect" title="Mean lifetime">Mean lifetime</a></th><td class="infobox-data"><span class="nowrap"><span data-sort-value="6978156000000000000♠"></span>1.56<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−22</sup> s</span><sup id="cite_ref-meanlife_4-0" class="reference"><a href="#cite_note-meanlife-4"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> (predicted)<div class="paragraphbreak" style="margin-top:0.5em"></div><span class="nowrap">1.2 ~ <span class="nowrap"><span data-sort-value="6978460000000000000♠"></span>4.6<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−22</sup> s</span></span> (tentatively measured at 3.2 sigma (1 in 1,000) significance)<sup id="cite_ref-lifetime1_5-0" class="reference"><a href="#cite_note-lifetime1-5"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-lifetime2-dalitz_6-0" class="reference"><a href="#cite_note-lifetime2-dalitz-6"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Particle_decay" title="Particle decay">Decays into</a></th><td class="infobox-data"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><div class="plainlist"><ul><li><a href="/wiki/Bottom_quark" title="Bottom quark">Bottom</a>–antibottom pair (observed)<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></li><li>Two <a href="/wiki/W_boson" class="mw-redirect" title="W boson">W bosons</a> (observed)</li><li>Two <a href="/wiki/Gluon" title="Gluon">gluons</a> (predicted)</li><li><a href="/wiki/Tau_lepton" class="mw-redirect" title="Tau lepton">Tau</a>–antitau pair (observed)</li><li>Two <a href="/wiki/Z_boson" class="mw-redirect" title="Z boson">Z bosons</a> (observed)</li><li>Two <a href="/wiki/Photon" title="Photon">photons</a> (observed)</li><li>Two <a href="/wiki/Lepton" title="Lepton">leptons</a> and a <a href="/wiki/Photon" title="Photon">photon</a> (Dalitz decay via <a href="/wiki/Virtual_photon" title="Virtual photon">virtual photon</a>) (tentatively observed at sigma 3.2 (1 in 1,000) significance)<sup id="cite_ref-lifetime2-dalitz_6-1" class="reference"><a href="#cite_note-lifetime2-dalitz-6"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></li><li><a href="/wiki/Muon" title="Muon">Muon</a>–antimuon pair (predicted)</li><li>Various other decays (predicted)</li></ul></div></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Electric_charge" title="Electric charge">Electric charge</a></th><td class="infobox-data">0 <i>e</i></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Color_charge" title="Color charge">Colour charge</a></th><td class="infobox-data">0</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Spin_(physics)" title="Spin (physics)">Spin</a></th><td class="infobox-data">0 <a href="/wiki/Reduced_Planck_constant" class="mw-redirect" title="Reduced Planck constant"><i>ħ</i></a><sup id="cite_ref-CERN_March_2013_9-0" class="reference"><a href="#cite_note-CERN_March_2013-9"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CMSspinparity2017_10-0" class="reference"><a href="#cite_note-CMSspinparity2017-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Weak_isospin" title="Weak isospin">Weak isospin</a></th><td class="infobox-data">−<style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Weak_hypercharge" title="Weak hypercharge">Weak hypercharge</a></th><td class="infobox-data">+1</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Parity_(physics)" title="Parity (physics)">Parity</a></th><td class="infobox-data">+1<sup id="cite_ref-CERN_March_2013_9-1" class="reference"><a href="#cite_note-CERN_March_2013-9"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CMSspinparity2017_10-1" class="reference"><a href="#cite_note-CMSspinparity2017-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></td></tr></tbody></table> <p>The <b>Higgs boson</b>, sometimes called the <b>Higgs particle</b>,<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> is an <a href="/wiki/Elementary_particle" title="Elementary particle">elementary particle</a> in the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a> of <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a> produced by the <a href="/wiki/Excited_state" title="Excited state">quantum excitation</a> of the <b>Higgs field</b>,<sup id="cite_ref-OnyisiFAQ_13-0" class="reference"><a href="#cite_note-OnyisiFAQ-13"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-strasslerFAQ2_14-0" class="reference"><a href="#cite_note-strasslerFAQ2-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> one of the <a href="/wiki/Field_(physics)" title="Field (physics)">fields</a> in <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a> theory.<sup id="cite_ref-strasslerFAQ2_14-1" class="reference"><a href="#cite_note-strasslerFAQ2-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> In the Standard Model, the Higgs particle is a massive <a href="/wiki/Scalar_boson" title="Scalar boson">scalar boson</a> with zero <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a>, even (positive) <a href="/wiki/Parity_(physics)" title="Parity (physics)">parity</a>, no <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>, and no <a href="/wiki/Color_charge" title="Color charge">colour charge</a> that <a href="/wiki/Coupling_(physics)" title="Coupling (physics)">couples</a> to (interacts with) mass.<sup id="cite_ref-when_higgs_15-0" class="reference"><a href="#cite_note-when_higgs-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> It is also very unstable, <a href="/wiki/Particle_decay" title="Particle decay">decaying</a> into other particles almost immediately upon generation. </p><p>The Higgs field is a <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a> with two neutral and two electrically charged components that form a complex <a href="/wiki/Doublet_(physics)" class="mw-redirect" title="Doublet (physics)">doublet</a> of the <a href="/wiki/Weak_isospin" title="Weak isospin">weak isospin</a> SU(2) symmetry. Its "<a href="/wiki/Spontaneous_symmetry_breaking#Sombrero_potential" title="Spontaneous symmetry breaking">Sombrero potential</a>" leads it to take a nonzero value <em>everywhere</em> (including otherwise empty space), which <a href="/wiki/Spontaneous_symmetry_breaking" title="Spontaneous symmetry breaking">breaks</a> the <a href="/wiki/Weak_isospin" title="Weak isospin">weak isospin</a> symmetry of the <a href="/wiki/Electroweak_interaction" title="Electroweak interaction">electroweak interaction</a> and, via the <a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a>, gives a rest mass to all massive elementary particles of the Standard Model, including the Higgs boson itself. The existence of the Higgs field became the last unverified part of the Standard Model of particle physics, and for several decades was considered "the central problem in particle physics".<sup id="cite_ref-Proceedings_1986_16-0" class="reference"><a href="#cite_note-Proceedings_1986-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Higgs_Hunters_Guide_17-0" class="reference"><a href="#cite_note-Higgs_Hunters_Guide-17"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>Both the field and the <a href="/wiki/Boson" title="Boson">boson</a> are named after physicist <a href="/wiki/Peter_Higgs" title="Peter Higgs">Peter Higgs</a>, who in 1964, <a href="/wiki/1964_PRL_symmetry_breaking_papers" title="1964 PRL symmetry breaking papers">along with five other scientists</a> in three teams, proposed the <a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a>, a way for <a href="/wiki/Mass_generation" title="Mass generation">some particles to acquire mass</a>. All fundamental particles known at the time<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>c<span class="cite-bracket">]</span></a></sup> should be massless at very high energies, but fully explaining how some particles gain mass at lower energies had been extremely difficult. If these ideas were correct, a particle known as a scalar boson should also exist (with certain properties). This particle was called the Higgs boson and could be used to test whether the Higgs field was the correct explanation. </p><p>After a <a href="/wiki/Search_for_the_Higgs_boson" title="Search for the Higgs boson">40-year search</a>, a subatomic particle with the expected properties was discovered in 2012 by the <a href="/wiki/ATLAS_experiment" title="ATLAS experiment">ATLAS</a> and <a href="/wiki/Compact_Muon_Solenoid" title="Compact Muon Solenoid">CMS</a> experiments at the <a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">Large Hadron Collider</a> (LHC) at <a href="/wiki/CERN" title="CERN">CERN</a> near <a href="/wiki/Geneva" title="Geneva">Geneva</a>, Switzerland. The new particle was subsequently confirmed to match the expected properties of a Higgs boson. Physicists from two of the three teams, Peter Higgs and <a href="/wiki/Fran%C3%A7ois_Englert" title="François Englert">François Englert</a>, were awarded the <a href="/wiki/Nobel_Prize_in_Physics" title="Nobel Prize in Physics">Nobel Prize in Physics</a> in 2013 for their theoretical predictions. Although Higgs's name has come to be associated with this theory, several researchers between about 1960 and 1972 independently developed different parts of it. </p><p>In the media, the Higgs boson has often been called the "<b>God particle</b>" after the 1993 book <i><a href="/wiki/The_God_Particle_(book)" title="The God Particle (book)">The God Particle</a></i> by Nobel Laureate <a href="/wiki/Leon_Lederman" class="mw-redirect" title="Leon Lederman">Leon Lederman</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> The name has been criticised by physicists,<sup id="cite_ref-ISample29052009_20-0" class="reference"><a href="#cite_note-ISample29052009-20"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-NatPost_21-0" class="reference"><a href="#cite_note-NatPost-21"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> including <a href="/wiki/Peter_Higgs" title="Peter Higgs">Peter Higgs</a>.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r886046785">.mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none}</style><div class="toclimit-3"><meta property="mw:PageProp/toc" /></div> <div class="mw-heading mw-heading2"><h2 id="Introduction">Introduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=1" title="Edit section: Introduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><th class="sidebar-title"><a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a> of <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a></th></tr><tr><td class="sidebar-image"><figure class="skin-invert-image noresize mw-ext-imagemap-desc-bottom-right" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/240px-Standard_Model_of_Elementary_Particles.svg.png" decoding="async" width="240" height="230" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/360px-Standard_Model_of_Elementary_Particles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/480px-Standard_Model_of_Elementary_Particles.svg.png 2x" data-file-width="1390" data-file-height="1330" usemap="#ImageMap_af1b7d82cba73703" resource="/wiki/File:Standard_Model_of_Elementary_Particles.svg" /></span><map name="ImageMap_af1b7d82cba73703"><area href="/wiki/Up_quark" shape="rect" coords="17,48,59,89" alt="Up quark" title="Up quark" /><area href="/wiki/Charm_quark" shape="rect" coords="60,48,102,89" alt="Charm quark" title="Charm quark" /><area href="/wiki/Top_quark" shape="rect" coords="104,48,145,89" alt="Top quark" title="Top quark" /><area href="/wiki/Gluon" shape="rect" coords="149,48,190,89" alt="Gluon" title="Gluon" /><area href="/wiki/Higgs_boson" shape="rect" coords="194,48,235,89" alt="Higgs boson" title="Higgs boson" /><area href="/wiki/Down_quark" shape="rect" coords="17,91,59,132" alt="Down quark" title="Down quark" /><area href="/wiki/Strange_quark" shape="rect" coords="60,91,102,132" alt="Strange quark" title="Strange quark" /><area href="/wiki/Bottom_quark" shape="rect" coords="104,91,145,132" alt="Bottom quark" title="Bottom quark" /><area href="/wiki/Photon" shape="rect" coords="149,91,190,132" alt="Photon" title="Photon" /><area href="/wiki/Electron" shape="rect" coords="17,137,59,178" alt="Electron" title="Electron" /><area href="/wiki/Muon" shape="rect" coords="60,137,102,178" alt="Muon" title="Muon" /><area href="/wiki/Tau_(particle)" shape="rect" coords="104,137,145,178" alt="Tau (particle)" title="Tau (particle)" /><area href="/wiki/W_and_Z_bosons#Z_bosons}Z_boson" shape="rect" coords="149,137,190,178" alt="W and Z bosons#Z bosons}Z boson" title="W and Z bosons#Z bosons}Z boson" /><area href="/wiki/Electron_neutrino" shape="rect" coords="17,180,59,221" alt="Electron neutrino" title="Electron neutrino" /><area href="/wiki/Muon_neutrino" shape="rect" coords="60,180,102,221" alt="Muon neutrino" title="Muon neutrino" /><area href="/wiki/Tau_neutrino" shape="rect" coords="104,180,145,221" alt="Tau neutrino" title="Tau neutrino" /><area href="/wiki/W_and_Z_bosons" shape="rect" coords="149,180,190,221" alt="W and Z bosons" title="W and Z bosons" /><area href="/wiki/Standard_Model" shape="rect" coords="16,8,224,19" alt="Standard Model" title="Standard Model" /><area href="/wiki/Fermion" shape="rect" coords="17,24,145,38" alt="Fermion" title="Fermion" /><area href="/wiki/Boson" shape="rect" coords="149,24,235,38" alt="Boson" title="Boson" /><area href="/wiki/Quark" shape="rect" coords="6,93,14,133" alt="Quark" title="Quark" /><area href="/wiki/Lepton" shape="rect" coords="6,176,12,219" alt="Lepton" title="Lepton" /><area href="/wiki/Scalar_boson" shape="rect" coords="227,92,233,172" alt="Scalar boson" title="Scalar boson" /><area href="/wiki/Gauge_boson" shape="rect" coords="196,143,202,219" alt="Gauge boson" title="Gauge boson" /><area href="/wiki/Vector_boson" shape="rect" coords="205,165,209,219" alt="Vector boson" title="Vector boson" /></map><figcaption></figcaption></figure><div class="sidebar-caption"><a href="/wiki/Elementary_particle" title="Elementary particle">Elementary particles</a> of the Standard Model</div></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Background</div><div class="sidebar-list-content mw-collapsible-content"><a href="/wiki/Particle_physics" title="Particle physics">Particle physics</a><br /><a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a><br /><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a> <br /> <a href="/wiki/Gauge_theory" title="Gauge theory">Gauge theory</a> <br /> <a href="/wiki/Spontaneous_symmetry_breaking" title="Spontaneous symmetry breaking">Spontaneous symmetry breaking</a><br /> <a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Constituents</div><div class="sidebar-list-content mw-collapsible-content"><a href="/wiki/Electroweak_interaction" title="Electroweak interaction">Electroweak interaction</a><br /> <a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">Quantum chromodynamics</a><br /> <a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">CKM matrix</a><br /><a href="/wiki/Mathematical_formulation_of_the_Standard_Model" title="Mathematical formulation of the Standard Model">Standard Model mathematics</a></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Limitations</div><div class="sidebar-list-content mw-collapsible-content"><a href="/wiki/Strong_CP_problem" title="Strong CP problem">Strong CP problem</a><br /><a href="/wiki/Hierarchy_problem" title="Hierarchy problem">Hierarchy problem</a><br /><a href="/wiki/Neutrino_oscillation" title="Neutrino oscillation">Neutrino oscillations</a><br /><a href="/wiki/Physics_beyond_the_Standard_Model" title="Physics beyond the Standard Model">Physics beyond the Standard Model</a></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed hlist"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Scientists</div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Ernest_Rutherford" title="Ernest Rutherford">Rutherford</a></li> <li><a href="/wiki/J._J._Thomson" title="J. J. Thomson">Thomson</a></li> <li><a href="/wiki/James_Chadwick" title="James Chadwick">Chadwick</a></li> <li><a href="/wiki/Satyendra_Nath_Bose" title="Satyendra Nath Bose">Bose</a></li> <li><a href="/wiki/E._C._George_Sudarshan" title="E. C. George Sudarshan">Sudarshan</a></li> <li><a href="/wiki/Raymond_Davis_Jr." title="Raymond Davis Jr.">Davis Jr</a></li> <li><a href="/wiki/Carl_David_Anderson" title="Carl David Anderson">Anderson</a></li> <li><a href="/wiki/Enrico_Fermi" title="Enrico Fermi">Fermi</a></li> <li><a href="/wiki/Paul_Dirac" title="Paul Dirac">Dirac</a></li> <li><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman</a></li> <li><a href="/wiki/Carlo_Rubbia" title="Carlo Rubbia">Rubbia</a></li> <li><a href="/wiki/Murray_Gell-Mann" title="Murray Gell-Mann">Gell-Mann</a></li> <li><a href="/wiki/Henry_Way_Kendall" title="Henry Way Kendall">Kendall</a></li> <li><a href="/wiki/Richard_E._Taylor" title="Richard E. Taylor">Taylor</a></li> <li><a href="/wiki/Jerome_Isaac_Friedman" title="Jerome Isaac Friedman">Friedman</a></li> <li><a href="/wiki/C._F._Powell" title="C. F. Powell">Powell</a></li> <li><a href="/wiki/Philip_Warren_Anderson" class="mw-redirect" title="Philip Warren Anderson">Anderson</a></li> <li><a href="/wiki/Sheldon_Glashow" title="Sheldon Glashow">Glashow</a></li> <li><a href="/wiki/John_Iliopoulos" title="John Iliopoulos">Iliopoulos</a></li> <li><a href="/wiki/Leon_M._Lederman" title="Leon M. Lederman">Lederman</a></li> <li><a href="/wiki/Luciano_Maiani" title="Luciano Maiani">Maiani</a></li> <li><a href="/wiki/Simon_van_der_Meer" title="Simon van der Meer">Meer</a></li> <li><a href="/wiki/Clyde_Cowan" title="Clyde Cowan">Cowan</a></li> <li><a href="/wiki/Yoichiro_Nambu" title="Yoichiro Nambu">Nambu</a></li> <li><a href="/wiki/Owen_Chamberlain" title="Owen Chamberlain">Chamberlain</a></li> <li><a href="/wiki/Nicola_Cabibbo" title="Nicola Cabibbo">Cabibbo</a></li> <li><a href="/wiki/Melvin_Schwartz" title="Melvin Schwartz">Schwartz</a></li> <li><a href="/wiki/Martin_Lewis_Perl" title="Martin Lewis Perl">Perl</a></li> <li><a href="/wiki/Ettore_Majorana" title="Ettore Majorana">Majorana</a></li> <li><a href="/wiki/Steven_Weinberg" title="Steven Weinberg">Weinberg</a></li> <li><a href="/wiki/Tsung-Dao_Lee" title="Tsung-Dao Lee">Lee</a></li> <li><a href="/wiki/John_Clive_Ward" title="John Clive Ward">Ward</a></li> <li><a href="/wiki/Abdus_Salam" title="Abdus Salam">Salam</a></li> <li><a href="/wiki/Makoto_Kobayashi_(physicist)" class="mw-redirect" title="Makoto Kobayashi (physicist)">Kobayashi</a></li> <li><a href="/wiki/Toshihide_Maskawa" title="Toshihide Maskawa">Maskawa</a></li> <li><a href="/wiki/Robert_Mills_(physicist)" title="Robert Mills (physicist)">Mills</a></li> <li><a href="/wiki/Yang_Chen-Ning" title="Yang Chen-Ning">Yang</a></li> <li><a href="/wiki/Hideki_Yukawa" title="Hideki Yukawa">Yukawa</a></li> <li><a href="/wiki/Gerard_%27t_Hooft" title="Gerard 't Hooft">'t Hooft</a></li> <li><a href="/wiki/Martinus_J._G._Veltman" title="Martinus J. G. Veltman">Veltman</a></li> <li><a href="/wiki/David_Gross" title="David Gross">Gross</a></li> <li><a href="/wiki/Abraham_Pais" title="Abraham Pais">Pais</a></li> <li><a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Pauli</a></li> <li><a href="/wiki/Hugh_David_Politzer" title="Hugh David Politzer">Politzer</a></li> <li><a href="/wiki/Frederick_Reines" title="Frederick Reines">Reines</a></li> <li><a href="/wiki/Julian_Schwinger" title="Julian Schwinger">Schwinger</a></li> <li><a href="/wiki/Frank_Wilczek" title="Frank Wilczek">Wilczek</a></li> <li><a href="/wiki/James_Cronin" title="James Cronin">Cronin</a></li> <li><a href="/wiki/Val_Logsdon_Fitch" title="Val Logsdon Fitch">Fitch</a></li> <li><a href="/wiki/John_Hasbrouck_Van_Vleck" title="John Hasbrouck Van Vleck">Vleck</a></li> <li><a href="/wiki/Peter_Higgs" title="Peter Higgs">Higgs</a></li> <li><a href="/wiki/Fran%C3%A7ois_Englert" title="François Englert">Englert</a></li> <li><a href="/wiki/Robert_Brout" title="Robert Brout">Brout</a></li> <li><a href="/wiki/C._R._Hagen" title="C. R. Hagen">Hagen</a></li> <li><a href="/wiki/Gerald_Guralnik" title="Gerald Guralnik">Guralnik</a></li> <li><a href="/wiki/Tom_Kibble" title="Tom Kibble">Kibble</a></li> <li><a href="/wiki/Santiago_Ant%C3%BAnez_de_Mayolo" title="Santiago Antúnez de Mayolo">de Mayolo</a></li> <li><a href="/wiki/C%C3%A9sar_Lattes" title="César Lattes">Lattes</a></li> <li><a href="/wiki/George_Zweig" title="George Zweig">Zweig</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Standard_model_of_particle_physics" title="Template:Standard model of particle physics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Standard_model_of_particle_physics" title="Template talk:Standard model of particle physics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Standard_model_of_particle_physics" title="Special:EditPage/Template:Standard model of particle physics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Standard_Model">Standard Model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=2" title="Edit section: Standard Model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Physicists explain the <a href="/wiki/Fundamental_particle" class="mw-redirect" title="Fundamental particle">fundamental particles</a> and <a href="/wiki/Fundamental_interaction" title="Fundamental interaction">forces</a> of our universe in terms of the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a> – a widely accepted framework based on <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a> that predicts almost all known particles and forces aside from <a href="/wiki/Gravity" title="Gravity">gravity</a> with great accuracy. (A separate theory, <a href="/wiki/General_relativity" title="General relativity">general relativity</a>, is used for gravity.) In the Standard Model, the particles and forces in nature (aside from gravity) arise from properties of <a href="/wiki/Quantum_field" class="mw-redirect" title="Quantum field">quantum fields</a> known as <a href="/wiki/Introduction_to_gauge_theory" title="Introduction to gauge theory">gauge invariance</a> and <a href="/wiki/Symmetry_(physics)" title="Symmetry (physics)">symmetries</a>. Forces in the Standard Model are <a href="/wiki/Force_carrier" title="Force carrier">transmitted by particles</a> known as <a href="/wiki/Gauge_boson" title="Gauge boson">gauge bosons</a>.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Gauge_invariant_theories_and_symmetries">Gauge invariant theories and symmetries</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=3" title="Edit section: Gauge invariant theories and symmetries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><i>"It is only slightly overstating the case to say that physics is the study of symmetry"</i> – <a href="/wiki/Philip_W._Anderson" title="Philip W. Anderson">Philip Anderson</a>, Nobel Prize Physics<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup></dd></dl> <p><a href="/wiki/Introduction_to_gauge_theory" title="Introduction to gauge theory">Gauge invariant theories</a> are theories which have a useful feature, i.e.: some kinds of changes to the value of certain items do not make any difference to the outcomes or the measurements we make. For example: changing <a href="/wiki/Voltage" title="Voltage">voltages</a> in an <a href="/wiki/Electromagnet" title="Electromagnet">electromagnet</a> by +100 volts does not cause any change to the <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a> it produces. Similarly, measuring the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a> in vacuum seems to give the identical result, whatever the location in time and space, and whatever the local <a href="/wiki/Gravitational_field" title="Gravitational field">gravitational field</a>. </p><p>In these kinds of theories, the gauge is an item whose value we can change. The fact that some changes leave the results we measure unchanged means it is a gauge invariant theory, and symmetries are the specific kinds of changes to the gauge which have the effect of leaving measurements unchanged. Symmetries of this kind are powerful tools for a deep understanding of the fundamental forces and particles of our physical world. Gauge invariance is therefore an important property within particle physics theory. They are closely connected to <a href="/wiki/Conservation_law" title="Conservation law">conservation laws</a> and are described mathematically using <a href="/wiki/Group_theory" title="Group theory">group theory</a>. Quantum field theory and the Standard Model are both gauge invariant theories – meaning they focus on properties of our universe, demonstrating this property of gauge invariance and the symmetries which are involved. </p> <div class="mw-heading mw-heading3"><h3 id="Gauge_boson_(rest)_mass_problem"><span id="Gauge_boson_.28rest.29_mass_problem"></span>Gauge boson (rest) mass problem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=4" title="Edit section: Gauge boson (rest) mass problem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Quantum field theories based on gauge invariance had been used with great success in understanding the <a href="/wiki/Electromagnetic_field" title="Electromagnetic field">electromagnetic</a> and <a href="/wiki/Strong_force" class="mw-redirect" title="Strong force">strong forces</a>, but by around 1960, all attempts to create a <i>gauge invariant</i> theory for the <a href="/wiki/Weak_force" class="mw-redirect" title="Weak force">weak force</a> (and its combination with the electromagnetic force, known together as the <a href="/wiki/Electroweak_interaction" title="Electroweak interaction">electroweak interaction</a>) had consistently failed. As a result of these failures, gauge theories began to fall into disrepute. The problem was <a href="/wiki/Symmetry_(physics)" title="Symmetry (physics)">symmetry requirements</a> for these two forces incorrectly predicted the weak force's gauge bosons (<a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W and Z</a>) would have "zero mass" (in the specialized terminology of particle physics, "mass" refers specifically to a particle's <i>rest mass</i>). But experiments showed the W and Z gauge bosons had non-zero (rest) mass.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p><p>Further, many promising solutions seemed to require the existence of extra particles known as <a href="/wiki/Goldstone_boson" title="Goldstone boson">Goldstone bosons</a>. But evidence suggested these did not exist either. This meant either gauge invariance was an incorrect approach, or something unknown was giving the weak force's W and Z bosons their mass, and doing it in a way that did not create Goldstone bosons. By the late 1950s and early 1960s, physicists were at a loss as to how to resolve these issues, or how to create a comprehensive theory for particle physics. </p> <div class="mw-heading mw-heading3"><h3 id="Symmetry_breaking">Symmetry breaking</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=5" title="Edit section: Symmetry breaking"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the late 1950s, <a href="/wiki/Yoichiro_Nambu" title="Yoichiro Nambu">Yoichiro Nambu</a> recognised that <a href="/wiki/Spontaneous_symmetry_breaking" title="Spontaneous symmetry breaking">spontaneous symmetry breaking</a>, a process where a symmetric system becomes asymmetric, could occur under certain conditions.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>d<span class="cite-bracket">]</span></a></sup> Symmetry breaking is when some variable that previously <i>didn't</i> affect the measured results (<i>it was originally a "symmetry"</i>) now <i>does</i> affect the measured results (<i>it's now "broken" and no longer a symmetry</i>). In 1962 physicist <a href="/wiki/Philip_Warren_Anderson" class="mw-redirect" title="Philip Warren Anderson">Philip Anderson</a>, an expert in <a href="/wiki/Condensed_matter_physics" title="Condensed matter physics">condensed matter physics</a>, observed that symmetry breaking played a role in <a href="/wiki/Superconductivity" title="Superconductivity">superconductivity</a>, and suggested it could also be part of the answer to the problem of gauge invariance in particle physics. </p><p>Specifically, Anderson suggested that the <a href="/wiki/Goldstone_boson" title="Goldstone boson">Goldstone bosons</a> that would result from symmetry breaking might instead, in some circumstances, be "absorbed"<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>e<span class="cite-bracket">]</span></a></sup> by the massless <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W and Z bosons</a>. If so, perhaps the Goldstone bosons would not exist, and the W and Z bosons could <a href="/wiki/Mass_generation" title="Mass generation">gain mass</a>, solving both problems at once. Similar behaviour was already theorised in superconductivity.<sup id="cite_ref-woit_29-0" class="reference"><a href="#cite_note-woit-29"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> In 1964, this was shown to be theoretically possible by physicists <a href="/wiki/Abraham_Klein_(physicist)" title="Abraham Klein (physicist)">Abraham Klein</a> and <a href="/wiki/Benjamin_W._Lee" title="Benjamin W. Lee">Benjamin Lee</a>, at least for some limited (<a href="/wiki/Special_relativity" title="Special relativity">non-relativistic</a>) cases.<sup id="cite_ref-Klein-Lee-1964_30-0" class="reference"><a href="#cite_note-Klein-Lee-1964-30"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Higgs_mechanism">Higgs mechanism</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=6" title="Edit section: Higgs mechanism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a> and <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a></div> <p>Following the 1963<sup id="cite_ref-Anderson-1963_31-0" class="reference"><a href="#cite_note-Anderson-1963-31"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> and early 1964<sup id="cite_ref-Klein-Lee-1964_30-1" class="reference"><a href="#cite_note-Klein-Lee-1964-30"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> papers, three groups of researchers independently developed these theories more completely, in what became known as the <a href="/wiki/1964_PRL_symmetry_breaking_papers" title="1964 PRL symmetry breaking papers">1964 PRL symmetry breaking papers</a>. All three groups reached similar conclusions and for all cases, not just some limited cases. They showed that the conditions for electroweak symmetry would be "broken" if an unusual type of <a href="/wiki/Field_(physics)" title="Field (physics)">field</a> existed throughout the universe, and indeed, there would be no Goldstone bosons and some existing bosons would <a href="/wiki/Mass_generation" title="Mass generation">acquire mass</a>. </p><p>The field required for this to happen (which was purely hypothetical at the time) became known as the <i>Higgs field</i> (after <a href="/wiki/Peter_Higgs" title="Peter Higgs">Peter Higgs</a>, one of the researchers) and the mechanism by which it led to symmetry breaking became known as the <i><a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a></i>. A key feature of the necessary field is that it would take <i>less</i> energy for the field to have a non-zero value than a zero value, unlike all other known fields, therefore, the Higgs field has a non-zero value (or <i><a href="/wiki/Vacuum_expectation_value" title="Vacuum expectation value">vacuum expectation</a></i>) <i>everywhere</i>. This non-zero value could in theory break electroweak symmetry. It was the first proposal capable of showing how the weak force gauge bosons could have mass despite their governing symmetry, within a gauge invariant theory. </p><p>Although these ideas did not gain much initial support or attention, by 1972 they had been developed into a comprehensive theory and proved capable of giving <a href="/wiki/Renormalization" title="Renormalization">"sensible" results</a> that accurately described particles known at the time, and which, with exceptional accuracy, <a href="/wiki/Standard_Model#Tests_and_predictions" title="Standard Model">predicted several other particles discovered during the following years</a>.<sup id="cite_ref-predictions_32-0" class="reference"><a href="#cite_note-predictions-32"><span class="cite-bracket">[</span>f<span class="cite-bracket">]</span></a></sup> During the 1970s these theories rapidly became the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a> of particle physics. </p> <div class="mw-heading mw-heading3"><h3 id="Higgs_field">Higgs field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=7" title="Edit section: Higgs field"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To allow symmetry breaking, the Standard Model includes a <a href="/wiki/Field_(physics)" title="Field (physics)">field</a> of the kind needed to "break" electroweak symmetry and give particles their correct mass. This field, which became known as the "Higgs Field", was hypothesized to exist throughout space, and to break some symmetry laws of the <a href="/wiki/Electroweak_interaction" title="Electroweak interaction">electroweak interaction</a>, triggering the Higgs mechanism. It, therefore, would cause the W and Z gauge bosons of the weak force to be massive at all temperatures below an extremely high value.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>g<span class="cite-bracket">]</span></a></sup> When the weak force bosons acquire mass, this affects the distance they can freely travel, which becomes very small, also matching experimental findings.<sup id="cite_ref-massvsrange_35-0" class="reference"><a href="#cite_note-massvsrange-35"><span class="cite-bracket">[</span>h<span class="cite-bracket">]</span></a></sup> Furthermore, it was later realised that the same field would also explain, in a different way, why other fundamental constituents of matter (including <a href="/wiki/Electron" title="Electron">electrons</a> and <a href="/wiki/Quark" title="Quark">quarks</a>) have mass. </p><p>Unlike all other known fields, such as the <a href="/wiki/Electromagnetic_field" title="Electromagnetic field">electromagnetic field</a>, the Higgs field is a <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a>, and has a non-zero average value in <a href="/wiki/Vacuum_state" class="mw-redirect" title="Vacuum state">vacuum</a>. </p> <div class="mw-heading mw-heading3"><h3 id="The_"central_problem""><span id="The_.22central_problem.22"></span>The "central problem"</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=8" title="Edit section: The "central problem""><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There was not yet any direct evidence that the Higgs field existed, but even without direct proof, the accuracy of its predictions led scientists to believe the theory might be true. By the 1980s, the question of whether the Higgs field existed, and therefore whether the entire Standard Model was correct, had come to be regarded as one of the most important <a href="/wiki/Unanswered_questions_in_physics" class="mw-redirect" title="Unanswered questions in physics">unanswered questions in particle physics</a>. The existence of the Higgs field became the last unverified part of the Standard Model of particle physics, and for several decades was considered "the central problem in particle physics".<sup id="cite_ref-Proceedings_1986_16-1" class="reference"><a href="#cite_note-Proceedings_1986-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Higgs_Hunters_Guide_17-1" class="reference"><a href="#cite_note-Higgs_Hunters_Guide-17"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>For many decades, scientists had no way to determine whether the Higgs field existed because the technology needed for its detection did not exist at that time. If the Higgs field did exist, then it would be unlike any other known fundamental field, but it also was possible that these key ideas, or even the entire Standard Model, were somehow incorrect.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>i<span class="cite-bracket">]</span></a></sup> </p><p>The hypothesised Higgs theory made several key predictions.<sup id="cite_ref-predictions_32-1" class="reference"><a href="#cite_note-predictions-32"><span class="cite-bracket">[</span>f<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-L&T_37-0" class="reference"><a href="#cite_note-L&T-37"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 22">: 22 </span></sup> One crucial prediction was that a matching <a href="/wiki/Subatomic_particle" title="Subatomic particle">particle</a>, called the "Higgs boson", should also exist. Proving the existence of the Higgs boson would prove whether the Higgs field existed, and therefore finally prove whether the Standard Model's explanation was correct. Therefore, there was an extensive <a href="/wiki/Search_for_the_Higgs_boson" title="Search for the Higgs boson">search for the Higgs boson</a>, as a way to prove the Higgs field itself existed.<sup id="cite_ref-OnyisiFAQ_13-1" class="reference"><a href="#cite_note-OnyisiFAQ-13"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-strasslerFAQ2_14-2" class="reference"><a href="#cite_note-strasslerFAQ2-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Search_and_discovery">Search and discovery</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=9" title="Edit section: Search and discovery"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although the Higgs field would exist everywhere, proving its existence was far from easy. In principle, it can be proved to exist by detecting its <a href="/wiki/Excited_state" title="Excited state">excitations</a>, which manifest as Higgs particles (the <i>Higgs boson</i>), but these are extremely difficult to produce and detect due to the energy required to produce them and their very rare production even if the energy is sufficient. It was, therefore, several decades before the first evidence of the Higgs boson could be found. <a href="/wiki/Particle_collider" class="mw-redirect" title="Particle collider">Particle colliders</a>, detectors, and computers capable of looking for Higgs bosons took more than 30 years <span class="nowrap">(<abbr title="circa">c.</abbr><span style="white-space:nowrap;"> 1980–2010</span>)</span> to develop. The importance of this <a href="/wiki/Unanswered_questions_in_physics" class="mw-redirect" title="Unanswered questions in physics">fundamental question</a> led to a <a href="/wiki/Search_for_the_Higgs_boson" title="Search for the Higgs boson">40-year search</a>, and the construction of one of the world's most <a href="/wiki/List_of_megaprojects#Science_projects" title="List of megaprojects">expensive and complex experimental facilities</a> to date, <a href="/wiki/CERN" title="CERN">CERN</a>'s <a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">Large Hadron Collider</a>,<sup id="cite_ref-Strassler_article_38-0" class="reference"><a href="#cite_note-Strassler_article-38"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> in an attempt to create Higgs bosons and other particles for observation and study. </p><p>On 4 July 2012, the discovery of a new particle with a mass between <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 and 127 <a href="/wiki/Electronvolt#Mass" title="Electronvolt">GeV/<i>c</i><sup>2</sup></a></span> was announced; physicists suspected that it was the Higgs boson.<sup id="cite_ref-Biever-2012-07-Dieter_39-0" class="reference"><a href="#cite_note-Biever-2012-07-Dieter-39"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>j<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ScienceNews_41-0" class="reference"><a href="#cite_note-ScienceNews-41"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CERN_Nov_2012_42-0" class="reference"><a href="#cite_note-CERN_Nov_2012-42"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even <a href="/wiki/Parity_(physics)" title="Parity (physics)">parity</a> and zero <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a>,<sup id="cite_ref-CERN_March_2013_9-2" class="reference"><a href="#cite_note-CERN_March_2013-9"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CMSspinparity2017_10-2" class="reference"><a href="#cite_note-CMSspinparity2017-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> two fundamental attributes of a Higgs boson. This also means it is the first elementary <a href="/wiki/Scalar_boson" title="Scalar boson">scalar particle</a> discovered in nature.<sup id="cite_ref-WSJ_14_March_2013_43-0" class="reference"><a href="#cite_note-WSJ_14_March_2013-43"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p><p>By March 2013, the existence of the Higgs boson was confirmed, and therefore, the concept of some type of Higgs field throughout space is strongly supported.<sup id="cite_ref-Biever-2012-07-Dieter_39-2" class="reference"><a href="#cite_note-Biever-2012-07-Dieter-39"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CERN_Nov_2012_42-1" class="reference"><a href="#cite_note-CERN_Nov_2012-42"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CERN_March_2013_9-3" class="reference"><a href="#cite_note-CERN_March_2013-9"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> The presence of the field, now confirmed by experimental investigation, explains <a href="/wiki/Mass_generation" title="Mass generation">why some fundamental particles have (a rest) mass</a>, despite the <a href="/wiki/Symmetry_(physics)" title="Symmetry (physics)">symmetries</a> controlling their interactions, implying that they should be "massless". It also resolves several other long-standing puzzles, such as the reason for the extremely short distance travelled by the <a href="/wiki/Weak_interaction" title="Weak interaction">weak force</a> bosons, and, therefore, the weak force's extremely short range. As of 2018, in-depth research shows the particle continuing to behave in line with predictions for the Standard Model Higgs boson. More studies are needed to verify with higher precision that the discovered particle has all of the properties predicted or whether, as described by some theories, multiple Higgs bosons exist.<sup id="cite_ref-Huffington_14_March_2013_44-0" class="reference"><a href="#cite_note-Huffington_14_March_2013-44"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p>The nature and properties of this field are now being investigated further, using more data collected at the LHC.<sup id="cite_ref-CERN_EPS2017_45-0" class="reference"><a href="#cite_note-CERN_EPS2017-45"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Interpretation">Interpretation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=10" title="Edit section: Interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="#Educational_explanations_and_analogies">Various analogies</a> have been used to describe the Higgs field and boson, including analogies with well-known symmetry-breaking effects such as the <a href="/wiki/Rainbow" title="Rainbow">rainbow</a> and <a href="/wiki/Dispersive_prism" title="Dispersive prism">prism</a>, <a href="/wiki/Electric_field" title="Electric field">electric fields</a>, and ripples on the surface of water. </p><p>Other analogies based on the resistance of macro objects moving through media (such as people moving through crowds, or some objects moving through <a href="/wiki/Syrup" title="Syrup">syrup</a> or <a href="/wiki/Molasses" title="Molasses">molasses</a>) are commonly used but misleading, since the Higgs field does not actually resist particles, and the effect of mass is not caused by resistance. </p> <div class="mw-heading mw-heading3"><h3 id="Overview_of_Higgs_boson_and_field_properties">Overview of Higgs boson and field properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=11" title="Edit section: Overview of Higgs boson and field properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mecanismo_de_Higgs_PH.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Mecanismo_de_Higgs_PH.png/220px-Mecanismo_de_Higgs_PH.png" decoding="async" width="220" height="216" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Mecanismo_de_Higgs_PH.png/330px-Mecanismo_de_Higgs_PH.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/Mecanismo_de_Higgs_PH.png/440px-Mecanismo_de_Higgs_PH.png 2x" data-file-width="464" data-file-height="455" /></a><figcaption>The "<a href="/wiki/Spontaneous_symmetry_breaking#Sombrero_potential" title="Spontaneous symmetry breaking">Sombrero potential</a>" of the Higgs field is responsible for some particles gaining mass.</figcaption></figure> <p>In the Standard Model, the Higgs <b>boson</b> is a massive <a href="/wiki/Scalar_boson" title="Scalar boson">scalar boson</a> whose mass must be found experimentally. Its mass has been determined to be <span class="nowrap"><span data-sort-value="7002125350000000000♠"></span>125.35<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.15 GeV/<i>c</i><sup>2</sup></span> by CMS (2022)<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> and <span class="nowrap"><span data-sort-value="7002125110000000000♠"></span>125.11<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.11 GeV/<i>c</i><sup>2</sup></span> by ATLAS (2023). It is the only particle that remains massive even at very high energies. It has zero <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a>, even (positive) <a href="/wiki/Parity_(physics)" title="Parity (physics)">parity</a>, no <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>, and no <a href="/wiki/Color_charge" title="Color charge">colour charge</a>, and it <a href="/wiki/Coupling_(physics)" title="Coupling (physics)">couples</a> to (interacts with) mass.<sup id="cite_ref-when_higgs_15-1" class="reference"><a href="#cite_note-when_higgs-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> It is also very unstable, <a href="/wiki/Particle_decay" title="Particle decay">decaying</a> into other particles almost immediately via several possible pathways. </p><p>The Higgs <b>field</b> is a <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a>, with two neutral and two electrically charged components that form a complex <a href="/wiki/Doublet_(physics)" class="mw-redirect" title="Doublet (physics)">doublet</a> of the <a href="/wiki/Weak_isospin" title="Weak isospin">weak isospin</a> SU(2) symmetry. Unlike any other known quantum field, it has a <a href="/wiki/Spontaneous_symmetry_breaking#Sombrero_potential" title="Spontaneous symmetry breaking">Sombrero potential</a>. This shape means that below extremely high energies of about <span class="nowrap"><span data-sort-value="6992255547149676500♠"></span>159.5<span style="margin-left:0.3em;margin-right:0.15em;">±</span>1.5 <a href="/wiki/Electronvolt" title="Electronvolt">GeV</a></span><sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> such as <a href="/wiki/Chronology_of_the_Universe" class="mw-redirect" title="Chronology of the Universe">those seen</a> during the first <span class="nowrap"><a href="/wiki/Picosecond" title="Picosecond">picosecond</a> (10<sup>−12</sup> s)</span> of the <a href="/wiki/Big_Bang" title="Big Bang">Big Bang</a>, the Higgs field in its <a href="/wiki/Vacuum_state" class="mw-redirect" title="Vacuum state">ground state</a> takes <i>less</i> energy to have a nonzero <a href="/wiki/Vacuum_expectation_value" title="Vacuum expectation value">vacuum expectation</a> (value) than a zero value. Therefore in today's universe the Higgs field has a nonzero value <i>everywhere</i> (including otherwise empty space). This nonzero value in turn breaks the weak isospin SU(2) symmetry of the <a href="/wiki/Electroweak_interaction" title="Electroweak interaction">electroweak interaction</a> everywhere. (Technically the non-zero expectation value converts the <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Lagrangian</a>'s Yukawa coupling terms into mass terms.) When this happens, three components of the Higgs field are "absorbed" by the SU(2) and U(1) <a href="/wiki/Gauge_boson" title="Gauge boson">gauge bosons</a> (the "<a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a>") to become the longitudinal components of the now-massive <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W and Z bosons</a> of the <a href="/wiki/Weak_force" class="mw-redirect" title="Weak force">weak force</a>. The remaining electrically neutral component either manifests as a Higgs boson, or may couple separately to other particles known as <a href="/wiki/Fermion" title="Fermion">fermions</a> (via <a href="/wiki/Yukawa_coupling" class="mw-redirect" title="Yukawa coupling">Yukawa couplings</a>), causing these to <a href="/wiki/Mass_generation" title="Mass generation">acquire mass</a> as well.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Significance">Significance</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=12" title="Edit section: Significance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Evidence of the Higgs field and its properties has been extremely significant for many reasons. The importance of the Higgs boson largely is that it is able to be examined using existing knowledge and experimental technology, as a way to confirm and study the entire Higgs field theory.<sup id="cite_ref-OnyisiFAQ_13-2" class="reference"><a href="#cite_note-OnyisiFAQ-13"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-strasslerFAQ2_14-3" class="reference"><a href="#cite_note-strasslerFAQ2-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> Conversely, proof that the Higgs field and boson did <i>not</i> exist would have also been significant. </p> <div class="mw-heading mw-heading3"><h3 id="Particle_physics">Particle physics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=13" title="Edit section: Particle physics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Validation_of_the_Standard_Model">Validation of the Standard Model</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=14" title="Edit section: Validation of the Standard Model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Higgs boson validates the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a> through the mechanism of <a href="/wiki/Mass_generation" title="Mass generation">mass generation</a>. As more precise measurements of its properties are made, more advanced extensions may be suggested or excluded. As experimental means to measure the field's behaviours and interactions are developed, this fundamental field may be better understood. If the Higgs field had not been discovered, the Standard Model would have needed to be modified or superseded. </p><p>Related to this, a belief generally exists among physicists that there is likely to be "new" <a href="/wiki/Physics_beyond_the_Standard_Model" title="Physics beyond the Standard Model">physics beyond the Standard Model</a>, and the Standard Model will at some point be extended or superseded. The Higgs discovery, as well as the many measured collisions occurring at the LHC, provide physicists a sensitive tool to search their data for any evidence that the Standard Model seems to fail, and could provide considerable evidence guiding researchers into future theoretical developments. </p> <div class="mw-heading mw-heading4"><h4 id="Symmetry_breaking_of_the_electroweak_interaction">Symmetry breaking of the electroweak interaction</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=15" title="Edit section: Symmetry breaking of the electroweak interaction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Below an extremely high temperature, <a href="/wiki/Electroweak_symmetry_breaking" class="mw-redirect" title="Electroweak symmetry breaking">electroweak symmetry breaking</a> causes the <a href="/wiki/Electroweak_interaction" title="Electroweak interaction">electroweak interaction</a> to manifest in part as the short-ranged <a href="/wiki/Weak_force" class="mw-redirect" title="Weak force">weak force</a>, which is carried by massive <a href="/wiki/Gauge_boson" title="Gauge boson">gauge bosons</a>. In the <a href="/wiki/Chronology_of_the_universe" title="Chronology of the universe">history of the universe</a>, electroweak symmetry breaking is believed to have happened at about <span class="nowrap">1 <a href="/wiki/Picosecond" title="Picosecond">picosecond</a> (10<sup>−12</sup> s)</span> after the <a href="/wiki/Big_Bang" title="Big Bang">Big Bang</a>, when the universe was at a temperature <span class="nowrap"><span data-sort-value="7002159500000000000♠"></span>159.5<span style="margin-left:0.3em;margin-right:0.15em;">±</span>1.5 <a href="/wiki/Electronvolt#Temperature" title="Electronvolt">GeV/<i>k</i><sub>B</sub></a></span>.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> This symmetry breaking is required for <a href="/wiki/Atom" title="Atom">atoms</a> and other structures to form, as well as for nuclear reactions in stars, such as the <a href="/wiki/Sun" title="Sun">Sun</a>. The Higgs field is responsible for this symmetry breaking. </p> <div class="mw-heading mw-heading4"><h4 id="Particle_mass_acquisition">Particle mass acquisition</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=16" title="Edit section: Particle mass acquisition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Higgs field is pivotal in <a href="/wiki/Mass_generation" title="Mass generation">generating the masses</a> of <a href="/wiki/Quark" title="Quark">quarks</a> and charged <a href="/wiki/Leptons" class="mw-redirect" title="Leptons">leptons</a> (through Yukawa coupling) and the <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W and Z gauge bosons</a> (through the Higgs mechanism). </p><p>The Higgs field does not "create" mass <a href="/wiki/Creatio_ex_nihilo" title="Creatio ex nihilo">out of nothing</a> (which would violate the <a href="/wiki/Law_of_conservation_of_energy" class="mw-redirect" title="Law of conservation of energy">law of conservation of energy</a>), nor is the Higgs field responsible for the mass of all particles. For example, approximately 99% of the mass of <a href="/wiki/Baryon" title="Baryon">baryons</a> (<a href="/wiki/Composite_particle" class="mw-redirect" title="Composite particle">composite particles</a> such as the <a href="/wiki/Proton" title="Proton">proton</a> and <a href="/wiki/Neutron" title="Neutron">neutron</a>), is due instead to <a href="/wiki/Quantum_chromodynamics_binding_energy" title="Quantum chromodynamics binding energy">quantum chromodynamic binding energy</a>, which is the sum of the <a href="/wiki/Kinetic_energy" title="Kinetic energy">kinetic energies</a> of quarks and the <a href="/wiki/Gluon_energy" class="mw-redirect" title="Gluon energy">energies</a> of the massless <a href="/wiki/Gluon" title="Gluon">gluons</a> mediating the <a href="/wiki/Strong_interaction" title="Strong interaction">strong interaction</a> inside the baryons.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> In Higgs-based theories, the property of "mass" is a manifestation of <a href="/wiki/Potential_energy" title="Potential energy">potential energy</a> transferred to fundamental particles when they interact ("couple") with the Higgs field, which had contained that mass <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">in the form of energy</a>.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Scalar_fields_and_extension_of_the_Standard_Model">Scalar fields and extension of the Standard Model</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=17" title="Edit section: Scalar fields and extension of the Standard Model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Higgs field is the only scalar (spin-0) field to be detected; all the other fundamental fields in the Standard Model are spin-<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 1 </span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> <a href="/wiki/Fermions" class="mw-redirect" title="Fermions">fermions</a> or spin-1 bosons.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>k<span class="cite-bracket">]</span></a></sup> According to <a href="/wiki/Rolf-Dieter_Heuer" title="Rolf-Dieter Heuer">Rolf-Dieter Heuer</a>, director general of CERN when the Higgs boson was discovered, this existence proof of a scalar field is almost as important as the Higgs's role in determining the mass of other particles. It suggests that other hypothetical scalar fields suggested by other theories, from the <a href="/wiki/Inflaton" title="Inflaton">inflaton</a> to <a href="/wiki/Quintessence_(physics)" title="Quintessence (physics)">quintessence</a>, could perhaps exist as well.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Cosmology">Cosmology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=18" title="Edit section: Cosmology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Inflaton">Inflaton</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=19" title="Edit section: Inflaton"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There has been considerable scientific research on possible links between the Higgs field and the <a href="/wiki/Inflaton" title="Inflaton">inflaton</a> – a hypothetical field suggested as the explanation for the <a href="/wiki/Metric_expansion_of_space" class="mw-redirect" title="Metric expansion of space">expansion of space</a> during <a href="/wiki/Chronology_of_the_universe" title="Chronology of the universe">the first fraction of a second</a> of the <a href="/wiki/Universe" title="Universe">universe</a> (known as the "<a href="/wiki/Inflationary_epoch" title="Inflationary epoch">inflationary epoch</a>"). Some theories suggest that a fundamental scalar field might be responsible for this phenomenon; the Higgs field is such a field, and its existence has led to papers analysing whether it could also be the <i>inflaton</i> responsible for this <a href="/wiki/Exponential_growth" title="Exponential growth">exponential</a> expansion of the universe during the <a href="/wiki/Big_Bang" title="Big Bang">Big Bang</a>. Such theories are highly tentative and face significant problems related to <a href="/wiki/Unitarity_(physics)" title="Unitarity (physics)">unitarity</a>, but may be viable if combined with additional features such as large non-minimal coupling, a <a href="/wiki/Brans%E2%80%93Dicke_theory" title="Brans–Dicke theory">Brans–Dicke</a> scalar, or other "new" physics, and they have received treatments suggesting that Higgs inflation models are still of interest theoretically. </p> <div class="mw-heading mw-heading4"><h4 id="Nature_of_the_universe,_and_its_possible_fates"><span id="Nature_of_the_universe.2C_and_its_possible_fates"></span>Nature of the universe, and its possible fates</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=20" title="Edit section: Nature of the universe, and its possible fates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Higgs-Mass-MetaStability.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Higgs-Mass-MetaStability.svg/350px-Higgs-Mass-MetaStability.svg.png" decoding="async" width="350" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Higgs-Mass-MetaStability.svg/525px-Higgs-Mass-MetaStability.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/70/Higgs-Mass-MetaStability.svg/700px-Higgs-Mass-MetaStability.svg.png 2x" data-file-width="700" data-file-height="500" /></a><figcaption>Diagram showing the Higgs boson and <a href="/wiki/Top_quark" title="Top quark">top quark</a> masses, which could indicate whether our universe is stable, or a <a href="/wiki/Metastability" title="Metastability">long-lived 'bubble'</a>. As of 2012, the 2<span class="texhtml mvar" style="font-style:italic;">σ</span> ellipse based on <a href="/wiki/Tevatron" title="Tevatron">Tevatron</a> and LHC data still allows for both possibilities.<sup id="cite_ref-Alekhin_2012_55-0" class="reference"><a href="#cite_note-Alekhin_2012-55"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>In the Standard Model, there exists the possibility that the underlying state of our universe – known as the "vacuum" – is <a href="/wiki/Metastability" title="Metastability">long-lived, but not completely stable</a>. In this scenario, the universe as we know it could effectively be destroyed by collapsing into a <a href="/wiki/False_vacuum_decay" class="mw-redirect" title="False vacuum decay">more stable vacuum state</a>.<sup id="cite_ref-turnerwilczek_56-0" class="reference"><a href="#cite_note-turnerwilczek-56"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-colemandeluccia_57-0" class="reference"><a href="#cite_note-colemandeluccia-57"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> This was sometimes misreported as the Higgs boson "ending" the universe.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>l<span class="cite-bracket">]</span></a></sup> If the masses of the Higgs boson and <a href="/wiki/Top_quark" title="Top quark">top quark</a> are known more precisely, and the Standard Model provides an accurate description of particle physics up to extreme energies of the <a href="/wiki/Planck_units#Planck_scale" title="Planck units">Planck scale</a>, then it is possible to calculate whether the vacuum is stable or merely long-lived.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> A Higgs mass of <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125–127 GeV/<i>c</i><sup>2</sup></span> seems to be extremely close to the boundary for stability, but a definitive answer requires much more precise measurements of the <a href="/wiki/Pole_mass" title="Pole mass">pole mass</a> of the top quark.<sup id="cite_ref-Alekhin_2012_55-1" class="reference"><a href="#cite_note-Alekhin_2012-55"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> New physics can change this picture.<sup id="cite_ref-Salvio_2015_67-0" class="reference"><a href="#cite_note-Salvio_2015-67"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p><p>If measurements of the Higgs boson suggest that our universe lies within a <a href="/wiki/False_vacuum_decay" class="mw-redirect" title="False vacuum decay">false vacuum</a> of this kind, then it would imply – more than likely in many billions of years<sup id="cite_ref-Boyle_68-0" class="reference"><a href="#cite_note-Boyle-68"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>m<span class="cite-bracket">]</span></a></sup> – that the universe's forces, particles, and structures could cease to exist as we know them (and be replaced by different ones), if a true vacuum happened to <a href="/wiki/Nucleation" title="Nucleation">nucleate</a>.<sup id="cite_ref-Boyle_68-2" class="reference"><a href="#cite_note-Boyle-68"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>n<span class="cite-bracket">]</span></a></sup> It also suggests that the Higgs <a href="/wiki/Coupling_(physics)" title="Coupling (physics)">self-coupling</a> <span class="texhtml mvar" style="font-style:italic;">λ</span> and its <span class="texhtml mvar" style="font-style:italic;">β</span><sub><span class="texhtml mvar" style="font-style:italic;">λ</span></sub> function could be very close to zero at the Planck scale, with "intriguing" implications, including theories of gravity and Higgs-based inflation.<sup id="cite_ref-Alekhin_2012_55-2" class="reference"><a href="#cite_note-Alekhin_2012-55"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 218">: 218 </span></sup><sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> A future electron–positron collider would be able to provide the precise measurements of the top quark needed for such calculations.<sup id="cite_ref-Alekhin_2012_55-3" class="reference"><a href="#cite_note-Alekhin_2012-55"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Vacuum_energy_and_the_cosmological_constant">Vacuum energy and the cosmological constant</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=21" title="Edit section: Vacuum energy and the cosmological constant"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Zero-point_energy" title="Zero-point energy">Zero-point energy</a> and <a href="/wiki/Vacuum_state" class="mw-redirect" title="Vacuum state">Vacuum state</a></div><p>More speculatively, the Higgs field has also been proposed as the <a href="/wiki/Vacuum_energy" title="Vacuum energy">energy of the vacuum</a>, which at the extreme energies of the first moments of the <a href="/wiki/Big_Bang" title="Big Bang">Big Bang</a> caused the universe to be a kind of featureless symmetry of undifferentiated, extremely high energy. In this kind of speculation, the single unified field of a <a href="/wiki/Grand_Unified_Theory" title="Grand Unified Theory">Grand Unified Theory</a> is identified as (or modelled upon) the Higgs field, and it is through successive symmetry breakings of the Higgs field, or some similar field, at <a href="/wiki/Phase_transition" title="Phase transition">phase transitions</a> that the presently known forces and fields of the universe arise.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p><p>The relationship (if any) between the Higgs field and the presently observed <a href="/wiki/Vacuum_energy" title="Vacuum energy">vacuum energy density</a> of the universe has also come under scientific study. As observed, the present vacuum energy density is extremely close to zero, but the energy densities predicted from the Higgs field, supersymmetry, and other current theories are typically many orders of magnitude larger. It is unclear how these should be reconciled. This <a href="/wiki/Cosmological_constant" title="Cosmological constant">cosmological constant</a> problem remains a major <a href="/wiki/Unanswered_questions_in_physics" class="mw-redirect" title="Unanswered questions in physics">unanswered problem</a> in physics. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=22" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Theorisation">Theorisation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=23" title="Edit section: Theorisation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/1964_PRL_symmetry_breaking_papers" title="1964 PRL symmetry breaking papers">1964 PRL symmetry breaking papers</a>, <a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a>, and <a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History of quantum field theory</a></div> <table class="wikitable" style="float:right; margin:0 0 1em 1em; font-size:85%; width:354px;"> <tbody><tr> <td><span class="nowrap"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:AIP-Sakurai-best.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/AIP-Sakurai-best.JPG/226px-AIP-Sakurai-best.JPG" decoding="async" width="226" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/AIP-Sakurai-best.JPG/338px-AIP-Sakurai-best.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2b/AIP-Sakurai-best.JPG/451px-AIP-Sakurai-best.JPG 2x" data-file-width="4256" data-file-height="2832" /></a></span>  <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Higgs,_Peter_(1929)_cropped.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/21/Higgs%2C_Peter_%281929%29_cropped.jpg/150px-Higgs%2C_Peter_%281929%29_cropped.jpg" decoding="async" width="150" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/21/Higgs%2C_Peter_%281929%29_cropped.jpg/225px-Higgs%2C_Peter_%281929%29_cropped.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/2/21/Higgs%2C_Peter_%281929%29_cropped.jpg 2x" data-file-width="234" data-file-height="274" /></a><figcaption></figcaption></figure></span><br /> <p>The six authors of the <a href="/wiki/1964_PRL_symmetry_breaking_papers" title="1964 PRL symmetry breaking papers">1964 PRL papers</a>, who received the 2010 <a href="/wiki/Sakurai_Prize" title="Sakurai Prize">J. J. Sakurai Prize</a> for their work; from left to right: <a href="/wiki/T._W._B._Kibble" class="mw-redirect" title="T. W. B. Kibble">Kibble</a>, <a href="/wiki/Gerald_Guralnik" title="Gerald Guralnik">Guralnik</a>, <a href="/wiki/C._R._Hagen" title="C. R. Hagen">Hagen</a>, <a href="/wiki/Fran%C3%A7ois_Englert" title="François Englert">Englert</a>, <a href="/wiki/Robert_Brout" title="Robert Brout">Brout</a>; <i>right image:</i> <a href="/wiki/Peter_Higgs" title="Peter Higgs">Higgs</a>. </p> </td></tr></tbody></table> <p>Particle physicists study <a href="/wiki/Matter" title="Matter">matter</a> made from <a href="/wiki/Fundamental_particle" class="mw-redirect" title="Fundamental particle">fundamental particles</a> whose interactions are mediated by exchange particles – <a href="/wiki/Gauge_boson" title="Gauge boson">gauge bosons</a> – acting as <a href="/wiki/Force_carrier" title="Force carrier">force carriers</a>. At the beginning of the 1960s a number of these particles had been discovered or proposed, along with theories suggesting how they relate to each other, some of which had already been reformulated as <a href="/wiki/Quantum_field_theory" title="Quantum field theory">field theories</a> in which the objects of study are not particles and forces, but <a href="/wiki/Quantum_field" class="mw-redirect" title="Quantum field">quantum fields</a> and their <a href="/wiki/Symmetry_(physics)" title="Symmetry (physics)">symmetries</a>.<sup id="cite_ref-Carroll2012_75-0" class="reference"><a href="#cite_note-Carroll2012-75"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 150">: 150 </span></sup> However, attempts to produce quantum field models for two of the four known <a href="/wiki/Fundamental_interaction" title="Fundamental interaction">fundamental forces</a> – the <a href="/wiki/Electromagnetic_force" class="mw-redirect" title="Electromagnetic force">electromagnetic force</a> and the <a href="/wiki/Weak_nuclear_force" class="mw-redirect" title="Weak nuclear force">weak nuclear force</a> – and then to <a href="/wiki/Unified_field_theory" title="Unified field theory">unify these interactions</a>, were still unsuccessful. </p><p>One known problem was that <a href="/wiki/Gauge_invariance" class="mw-redirect" title="Gauge invariance">gauge invariant</a> approaches, including <a href="/wiki/Non-abelian_gauge_theory" class="mw-redirect" title="Non-abelian gauge theory">non-abelian</a> models such as <a href="/wiki/Yang%E2%80%93Mills_theory" title="Yang–Mills theory">Yang–Mills theory</a> (1954), which held great promise for unified theories, also seemed to predict known massive particles as massless.<sup id="cite_ref-woit_29-1" class="reference"><a href="#cite_note-woit-29"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Goldstone%27s_theorem" class="mw-redirect" title="Goldstone's theorem">Goldstone's theorem</a>, relating to <a href="/wiki/Continuous_symmetry" title="Continuous symmetry">continuous symmetries</a> within some theories, also appeared to rule out many obvious solutions,<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> since it appeared to show that zero-mass particles known as <a href="/wiki/Goldstone_boson" title="Goldstone boson">Goldstone bosons</a> would also have to exist that simply were "not seen".<sup id="cite_ref-Guralnik_2011_77-0" class="reference"><a href="#cite_note-Guralnik_2011-77"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> According to <a href="/wiki/Gerald_Guralnik" title="Gerald Guralnik">Guralnik</a>, physicists had "no understanding" how these problems could be overcome.<sup id="cite_ref-Guralnik_2011_77-1" class="reference"><a href="#cite_note-Guralnik_2011-77"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Nobel_Prize_24_2013.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Nobel_Prize_24_2013.jpg/150px-Nobel_Prize_24_2013.jpg" decoding="async" width="150" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Nobel_Prize_24_2013.jpg/225px-Nobel_Prize_24_2013.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Nobel_Prize_24_2013.jpg/300px-Nobel_Prize_24_2013.jpg 2x" data-file-width="3393" data-file-height="3393" /></a><figcaption>Nobel Prize Laureate <a href="/wiki/Peter_Higgs" title="Peter Higgs">Peter Higgs</a> in Stockholm, December 2013</figcaption></figure><p> Particle physicist and mathematician Peter Woit summarised the state of research at the time:<style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style></p><blockquote class="templatequote"><p>Yang and Mills work on <a href="/wiki/Non-abelian_gauge_theory" class="mw-redirect" title="Non-abelian gauge theory">non-abelian gauge theory</a> had one huge problem: in <a href="/wiki/Perturbation_theory" title="Perturbation theory">perturbation theory</a> it has massless particles which don't correspond to anything we see. One way of getting rid of this problem is now fairly well understood, the phenomenon of <a href="/wiki/Color_confinement" title="Color confinement">confinement</a> realized in <a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">QCD</a>, where the strong interactions get rid of the massless "gluon" states at long distances. By the very early sixties, people had begun to understand another source of massless particles: spontaneous symmetry breaking of a continuous symmetry. What <a href="/wiki/Philip_Warren_Anderson" class="mw-redirect" title="Philip Warren Anderson">Philip Anderson</a> realized and worked out in the summer of 1962 was that, when you have <i>both</i> gauge symmetry <i>and</i> spontaneous symmetry breaking, the massless Nambu–Goldstone mode [which gives rise to Goldstone bosons] can combine with the massless gauge field modes [which give rise to massless gauge bosons] to produce a physical massive vector field [gauge bosons with mass]. This is what happens in <a href="/wiki/Superconductivity" title="Superconductivity">superconductivity</a>, a subject about which Anderson was (and is) one of the leading experts.<sup id="cite_ref-woit_29-2" class="reference"><a href="#cite_note-woit-29"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> <i>[text condensed]</i></p></blockquote> <p>The Higgs mechanism is a process by which <a href="/wiki/Vector_boson" title="Vector boson">vector bosons</a> can acquire <a href="/wiki/Rest_mass" class="mw-redirect" title="Rest mass">rest mass</a> <i>without</i> <a href="/wiki/Explicit_symmetry_breaking" title="Explicit symmetry breaking">explicitly breaking gauge invariance</a>, as a byproduct of <a href="/wiki/Spontaneous_symmetry_breaking" title="Spontaneous symmetry breaking">spontaneous symmetry breaking</a>.<sup id="cite_ref-scholarpedia_78-0" class="reference"><a href="#cite_note-scholarpedia-78"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-scholarpedia_a_79-0" class="reference"><a href="#cite_note-scholarpedia_a-79"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> Initially, the mathematical theory behind spontaneous symmetry breaking was conceived and published within particle physics by <a href="/wiki/Yoichiro_Nambu" title="Yoichiro Nambu">Yoichiro Nambu</a> in 1960<sup id="cite_ref-nambu_nobel_80-0" class="reference"><a href="#cite_note-nambu_nobel-80"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> (and <a href="/wiki/Stueckelberg_action" title="Stueckelberg action">somewhat anticipated</a> by <a href="/wiki/Ernst_Stueckelberg" title="Ernst Stueckelberg">Ernst Stueckelberg</a> in 1938<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup>), and the concept that such a mechanism could offer a possible solution for the "mass problem" was originally suggested in 1962 by Philip Anderson, who had previously written papers on broken symmetry and its outcomes in superconductivity.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> Anderson concluded in his 1963 paper on the Yang–Mills theory, that "considering the superconducting analog ... [t]hese two types of bosons seem capable of canceling each other out ... leaving finite mass bosons"),<sup id="cite_ref-MyLifeAsABoson_83-0" class="reference"><a href="#cite_note-MyLifeAsABoson-83"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Anderson-1963_31-1" class="reference"><a href="#cite_note-Anderson-1963-31"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> and in March 1964, <a href="/wiki/Abraham_Klein_(physicist)" title="Abraham Klein (physicist)">Abraham Klein</a> and <a href="/wiki/Benjamin_W._Lee" title="Benjamin W. Lee">Benjamin Lee</a> showed that Goldstone's theorem could be avoided this way in at least some non-relativistic cases, and speculated it might be possible in truly relativistic cases.<sup id="cite_ref-Klein-Lee-1964_30-2" class="reference"><a href="#cite_note-Klein-Lee-1964-30"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>These approaches were quickly developed into a full <a href="/wiki/Special_relativity" title="Special relativity">relativistic</a> model, independently and almost simultaneously, by three groups of physicists: by <a href="/wiki/Fran%C3%A7ois_Englert" title="François Englert">François Englert</a> and <a href="/wiki/Robert_Brout" title="Robert Brout">Robert Brout</a> in August 1964;<sup id="cite_ref-eb64_84-0" class="reference"><a href="#cite_note-eb64-84"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> by <a href="/wiki/Peter_Higgs" title="Peter Higgs">Peter Higgs</a> in October 1964;<sup id="cite_ref-higgs64_85-0" class="reference"><a href="#cite_note-higgs64-85"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> and by <a href="/wiki/Gerald_Guralnik" title="Gerald Guralnik">Gerald Guralnik</a>, <a href="/wiki/C._R._Hagen" title="C. R. Hagen">Carl Hagen</a>, and <a href="/wiki/T._W._B._Kibble" class="mw-redirect" title="T. W. B. Kibble">Tom Kibble</a> (GHK) in November 1964.<sup id="cite_ref-ghk64_86-0" class="reference"><a href="#cite_note-ghk64-86"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> Higgs also wrote a short, but important,<sup id="cite_ref-scholarpedia_78-1" class="reference"><a href="#cite_note-scholarpedia-78"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> response published in September 1964 to an objection by <a href="/wiki/Walter_Gilbert" title="Walter Gilbert">Gilbert</a>,<sup id="cite_ref-higgs64note_87-0" class="reference"><a href="#cite_note-higgs64note-87"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> which showed that if calculating within the radiation gauge, Goldstone's theorem and Gilbert's objection would become inapplicable.<sup id="cite_ref-GoldstoneNote_88-0" class="reference"><a href="#cite_note-GoldstoneNote-88"><span class="cite-bracket">[</span>o<span class="cite-bracket">]</span></a></sup> Higgs later described Gilbert's objection as prompting his own paper.<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> Properties of the model were further considered by Guralnik in 1965,<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> by Higgs in 1966,<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> by Kibble in 1967,<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> and further by GHK in 1967.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> The original three 1964 papers demonstrated that when a <a href="/wiki/Gauge_theory" title="Gauge theory">gauge theory</a> is combined with an additional charged scalar field that spontaneously breaks the symmetry, the gauge bosons may consistently acquire a finite mass.<sup id="cite_ref-scholarpedia_78-2" class="reference"><a href="#cite_note-scholarpedia-78"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-scholarpedia_a_79-1" class="reference"><a href="#cite_note-scholarpedia_a-79"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-prl_94-0" class="reference"><a href="#cite_note-prl-94"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> In 1967, <a href="/wiki/Steven_Weinberg" title="Steven Weinberg">Steven Weinberg</a><sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Abdus_Salam" title="Abdus Salam">Abdus Salam</a><sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> independently showed how a Higgs mechanism could be used to break the electroweak symmetry of <a href="/wiki/Sheldon_Glashow" title="Sheldon Glashow">Sheldon Glashow</a>'s <a href="/wiki/Electroweak_theory" class="mw-redirect" title="Electroweak theory">unified model for the weak and electromagnetic interactions</a>,<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> (itself an extension of work by <a href="/wiki/Julian_Schwinger" title="Julian Schwinger">Schwinger</a>), forming what became the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a> of particle physics. Weinberg was the first to observe that this would also provide mass terms for the fermions.<sup id="cite_ref-Ellis2012_98-0" class="reference"><a href="#cite_note-Ellis2012-98"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>p<span class="cite-bracket">]</span></a></sup> </p><p>At first, these seminal papers on spontaneous breaking of gauge symmetries were largely ignored, because it was widely believed that the (non-Abelian gauge) theories in question were a dead-end, and in particular that they could not be <a href="/wiki/Renormalizable" class="mw-redirect" title="Renormalizable">renormalised</a>. In 1971–72, <a href="/wiki/Martinus_Veltman" class="mw-redirect" title="Martinus Veltman">Martinus Veltman</a> and <a href="/wiki/Gerard_%27t_Hooft" title="Gerard 't Hooft">Gerard 't Hooft</a> proved renormalisation of Yang–Mills was possible in two papers covering massless, and then massive, fields.<sup id="cite_ref-Ellis2012_98-1" class="reference"><a href="#cite_note-Ellis2012-98"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> Their contribution, and the work of others on the <a href="/wiki/Renormalization_group" title="Renormalization group">renormalisation group</a> – including "substantial" theoretical work by Russian physicists <a href="/wiki/Ludvig_Faddeev" title="Ludvig Faddeev">Ludvig Faddeev</a>, <a href="/wiki/Andrei_Slavnov" title="Andrei Slavnov">Andrei Slavnov</a>, <a href="/wiki/Efim_Fradkin" title="Efim Fradkin">Efim Fradkin</a>, and <a href="/wiki/Igor_Tyutin" title="Igor Tyutin">Igor Tyutin</a><sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup> – was eventually "enormously profound and influential",<sup id="cite_ref-Politzer_2004_101-0" class="reference"><a href="#cite_note-Politzer_2004-101"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> but even with all key elements of the eventual theory published there was still almost no wider interest. For example, <a href="/wiki/Sidney_Coleman" title="Sidney Coleman">Coleman</a> found in a study that "essentially no-one paid any attention" to Weinberg's paper prior to 1971<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> and discussed by <a href="/wiki/David_Politzer" class="mw-redirect" title="David Politzer">David Politzer</a> in his 2004 Nobel speech.<sup id="cite_ref-Politzer_2004_101-1" class="reference"><a href="#cite_note-Politzer_2004-101"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> – now the most cited in particle physics<sup id="cite_ref-PRL_50years_103-0" class="reference"><a href="#cite_note-PRL_50years-103"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> – and even in 1970 according to Politzer, Glashow's teaching of the weak interaction contained no mention of Weinberg's, Salam's, or Glashow's own work.<sup id="cite_ref-Politzer_2004_101-2" class="reference"><a href="#cite_note-Politzer_2004-101"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> In practice, Politzer states, almost everyone learned of the theory due to physicist <a href="/wiki/Benjamin_W._Lee" title="Benjamin W. Lee">Benjamin Lee</a>, who combined the work of Veltman and 't Hooft with insights by others, and popularised the completed theory.<sup id="cite_ref-Politzer_2004_101-3" class="reference"><a href="#cite_note-Politzer_2004-101"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> In this way, from 1971, interest and acceptance "exploded"<sup id="cite_ref-Politzer_2004_101-4" class="reference"><a href="#cite_note-Politzer_2004-101"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> and the ideas were quickly absorbed in the mainstream.<sup id="cite_ref-Ellis2012_98-2" class="reference"><a href="#cite_note-Ellis2012-98"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Politzer_2004_101-5" class="reference"><a href="#cite_note-Politzer_2004-101"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> </p><p>The resulting electroweak theory and Standard Model have <a href="/wiki/Standard_Model#Tests_and_predictions" title="Standard Model">accurately predicted</a> (among other things) <a href="/wiki/Weak_neutral_current" class="mw-redirect" title="Weak neutral current">weak neutral currents</a>, <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">three bosons</a>, the <a href="/wiki/Top_quark" title="Top quark">top</a> and <a href="/wiki/Charm_quark" title="Charm quark">charm quarks</a>, and with great precision, the mass and other properties of some of these.<sup id="cite_ref-predictions_32-2" class="reference"><a href="#cite_note-predictions-32"><span class="cite-bracket">[</span>f<span class="cite-bracket">]</span></a></sup> Many of those involved eventually won Nobel Prizes or other renowned awards. A 1974 paper and comprehensive review in <i><a href="/wiki/Reviews_of_Modern_Physics" title="Reviews of Modern Physics">Reviews of Modern Physics</a></i> commented that "while no one doubted the [mathematical] correctness of these arguments, no one quite believed that nature was diabolically clever enough to take advantage of them",<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> adding that the theory had so far produced accurate answers that accorded with experiment, but it was unknown whether the theory was fundamentally correct.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> By 1986 and again in the 1990s it became possible to write that understanding and proving the Higgs sector of the Standard Model was "the central problem today in particle physics".<sup id="cite_ref-Proceedings_1986_16-2" class="reference"><a href="#cite_note-Proceedings_1986-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Higgs_Hunters_Guide_17-2" class="reference"><a href="#cite_note-Higgs_Hunters_Guide-17"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Summary_and_impact_of_the_PRL_papers">Summary and impact of the PRL papers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=24" title="Edit section: Summary and impact of the PRL papers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/40px-Wikinews-logo.svg.png" decoding="async" width="40" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/60px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/80px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></span></span></div> <div class="side-box-text plainlist">Wikinews has news related to: <div><ul><li><a href="https://en.wikinews.org/wiki/2010_Sakurai_Prize_awarded_for_1964_Higgs_Boson_theory_work" class="extiw" title="wikinews:2010 Sakurai Prize awarded for 1964 Higgs Boson theory work"> 2010 Sakurai Prize awarded for 1964 Higgs Boson theory work</a></li><li><a href="https://en.wikinews.org/wiki/Prospective_Nobel_Prize_for_Higgs_boson_work_disputed" class="extiw" title="wikinews:Prospective Nobel Prize for Higgs boson work disputed"> Prospective Nobel Prize for Higgs boson work disputed</a></li></ul></div></div></div> </div> <p>The three papers written in 1964 were each recognised as milestone papers during <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i><span class="nowrap" style="padding-left:0.1em;">'s</span> 50th anniversary celebration.<sup id="cite_ref-prl_94-1" class="reference"><a href="#cite_note-prl-94"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> Their six authors were also awarded the 2010 <a href="/wiki/Sakurai_Prize" title="Sakurai Prize">J. J. Sakurai Prize for Theoretical Particle Physics</a> for this work.<sup id="cite_ref-sakuraiprize_106-0" class="reference"><a href="#cite_note-sakuraiprize-106"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup> (A controversy also arose the same year, because in the event of a Nobel Prize only up to three scientists could be recognised, with six being credited for the papers.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup>) Two of the three PRL papers (by Higgs and by GHK) contained equations for the hypothetical <a href="/wiki/Quantum_field_theory" title="Quantum field theory">field</a> that eventually would become known as the Higgs field and its hypothetical <a href="/wiki/Quantum" title="Quantum">quantum</a>, the Higgs boson.<sup id="cite_ref-higgs64_85-1" class="reference"><a href="#cite_note-higgs64-85"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ghk64_86-1" class="reference"><a href="#cite_note-ghk64-86"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> Higgs' subsequent 1966 paper showed the decay mechanism of the boson; only a massive boson can decay and the decays can prove the mechanism.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2012)">citation needed</span></a></i>]</sup> </p><p>In the paper by Higgs the boson is massive, and in a closing sentence Higgs writes that "an essential feature" of the theory "is the prediction of incomplete multiplets of <a href="/wiki/Scalar_boson" title="Scalar boson">scalar</a> and <a href="/wiki/Vector_boson" title="Vector boson">vector bosons</a>".<sup id="cite_ref-higgs64_85-2" class="reference"><a href="#cite_note-higgs64-85"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> (<a href="/wiki/Frank_Close" title="Frank Close">Frank Close</a> comments that 1960s gauge theorists were focused on the problem of massless <i>vector</i> bosons, and the implied existence of a massive <i>scalar</i> boson was not seen as important; only Higgs directly addressed it.<sup id="cite_ref-frank_close_infinity_puzzle_108-0" class="reference"><a href="#cite_note-frank_close_infinity_puzzle-108"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 154, 166, 175">: 154, 166, 175 </span></sup>) In the paper by GHK the boson is massless and decoupled from the massive states.<sup id="cite_ref-ghk64_86-2" class="reference"><a href="#cite_note-ghk64-86"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> In reviews dated 2009 and 2011, Guralnik states that in the GHK model the boson is massless only in a lowest-order approximation, but it is not subject to any constraint and acquires mass at higher orders, and adds that the GHK paper was the only one to show that there are no massless <a href="/wiki/Goldstone_boson" title="Goldstone boson">Goldstone bosons</a> in the model and to give a complete analysis of the general Higgs mechanism.<sup id="cite_ref-Guralnik_2011_77-2" class="reference"><a href="#cite_note-Guralnik_2011-77"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Guralnik_2009_109-0" class="reference"><a href="#cite_note-Guralnik_2009-109"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> All three reached similar conclusions, despite their very different approaches: Higgs' paper essentially used classical techniques, Englert and Brout's involved calculating vacuum polarisation in perturbation theory around an assumed symmetry-breaking vacuum state, and GHK used operator formalism and conservation laws to explore in depth the ways in which Goldstone's theorem may be worked around.<sup id="cite_ref-scholarpedia_78-3" class="reference"><a href="#cite_note-scholarpedia-78"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> Some versions of the theory predicted more than one kind of Higgs fields and bosons, and alternative <a href="/wiki/Higgsless_model" class="mw-redirect" title="Higgsless model">"Higgsless" models</a> were considered until the discovery of the Higgs boson. </p> <div class="mw-heading mw-heading3"><h3 id="Experimental_search">Experimental search</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=25" title="Edit section: Experimental search"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Search_for_the_Higgs_boson" title="Search for the Higgs boson">Search for the Higgs boson</a></div> <p>To <a href="#Production">produce Higgs bosons</a>, two beams of particles are accelerated to very high energies and allowed to collide within a <a href="/wiki/Particle_detector" title="Particle detector">particle detector</a>. Occasionally, although rarely, a Higgs boson will be created fleetingly as part of the collision byproducts. Because the Higgs boson <a href="#Decay">decays</a> very quickly, particle detectors cannot detect it directly. Instead the detectors register all the decay products (the <i>decay signature</i>) and from the data the decay process is reconstructed. If the observed decay products match a possible decay process (known as a <i>decay channel</i>) of a Higgs boson, this indicates that a Higgs boson may have been created. In practice, many processes may produce similar decay signatures. Fortunately, the Standard Model precisely predicts the likelihood of each of these, and each known process, occurring. So, if the detector detects more decay signatures consistently matching a Higgs boson than would otherwise be expected if Higgs bosons did not exist, then this would be strong evidence that the Higgs boson exists. </p><p>Because Higgs boson production in a particle collision is likely to be very rare (1 in 10 billion at the LHC),<sup id="cite_ref-production_rate_112-0" class="reference"><a href="#cite_note-production_rate-112"><span class="cite-bracket">[</span>q<span class="cite-bracket">]</span></a></sup> and many other possible collision events can have similar decay signatures, the data of hundreds of trillions of collisions needs to be analysed and must "show the same picture" before a conclusion about the existence of the Higgs boson can be reached. To conclude that a new particle has been found, <a href="/wiki/Particle_physicist" class="mw-redirect" title="Particle physicist">particle physicists</a> require that the <a href="/wiki/Statistical_analysis" class="mw-redirect" title="Statistical analysis">statistical analysis</a> of two independent particle detectors each indicate that there is less than a one-in-a-million chance that the observed decay signatures are due to just background random Standard Model events – i.e., that the observed number of events is more than five <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviations</a> (sigma) different from that expected if there was no new particle. More collision data allows better confirmation of the physical properties of any new particle observed, and allows physicists to decide whether it is indeed a Higgs boson as described by the Standard Model or some other hypothetical new particle. </p><p>To find the Higgs boson, a powerful <a href="/wiki/Particle_accelerator" title="Particle accelerator">particle accelerator</a> was needed, because Higgs bosons might not be seen in lower-energy experiments. The collider needed to have a high <a href="/wiki/Luminosity_(scattering_theory)" title="Luminosity (scattering theory)">luminosity</a> in order to ensure enough collisions were seen for conclusions to be drawn. Finally, advanced computing facilities were needed to process the vast amount of data (25 <a href="/wiki/Petabyte" class="mw-redirect" title="Petabyte">petabytes</a> per year as of 2012) produced by the collisions.<sup id="cite_ref-msnbc-discovery_113-0" class="reference"><a href="#cite_note-msnbc-discovery-113"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> For the announcement of 4 July 2012, a new collider known as the <a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">Large Hadron Collider</a> was constructed at <a href="/wiki/CERN" title="CERN">CERN</a> with a planned eventual collision energy of 14 <a href="/wiki/TeV" class="mw-redirect" title="TeV">TeV</a> – over seven times any previous collider – and over 300 trillion (<span class="nowrap"><span data-sort-value="7014300000000000000♠"></span>3<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>14</sup></span>) LHC proton–proton collisions were analysed by the <a href="/wiki/LHC_Computing_Grid" class="mw-redirect" title="LHC Computing Grid">LHC Computing Grid</a>, the world's largest <a href="/wiki/Computing_grid" class="mw-redirect" title="Computing grid">computing grid</a> (as of 2012), comprising over 170 computing facilities in a <a href="/wiki/Distributed_computing" title="Distributed computing">worldwide network</a> across 36 countries.<sup id="cite_ref-msnbc-discovery_113-1" class="reference"><a href="#cite_note-msnbc-discovery-113"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Search_before_4_July_2012">Search before 4 July 2012</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=26" title="Edit section: Search before 4 July 2012"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The first extensive search for the Higgs boson was conducted at the <a href="/wiki/Large_Electron%E2%80%93Positron_Collider" title="Large Electron–Positron Collider">Large Electron–Positron Collider</a> (LEP) at CERN in the 1990s. At the end of its service in 2000, LEP had found no conclusive evidence for the Higgs.<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>r<span class="cite-bracket">]</span></a></sup> This implied that if the Higgs boson were to exist it would have to be heavier than <span class="nowrap"><span data-sort-value="7002114400000000000♠"></span>114.4 GeV/<i>c</i><sup>2</sup></span>.<sup id="cite_ref-Yao_2006_117-0" class="reference"><a href="#cite_note-Yao_2006-117"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup> </p><p>The search continued at <a href="/wiki/Fermilab" title="Fermilab">Fermilab</a> in the United States, where the <a href="/wiki/Tevatron" title="Tevatron">Tevatron</a> – the collider that discovered the <a href="/wiki/Top_quark" title="Top quark">top quark</a> in 1995 – had been upgraded for this purpose. There was no guarantee that the Tevatron would be able to find the Higgs, but it was the only supercollider that was operational since the <a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">Large Hadron Collider</a> (LHC) was still under construction and the planned <a href="/wiki/Superconducting_Super_Collider" title="Superconducting Super Collider">Superconducting Super Collider</a> had been cancelled in 1993 and never completed. The Tevatron was only able to exclude further ranges for the Higgs mass, and was shut down on 30 September 2011 because it no longer could keep up with the LHC. The final analysis of the data excluded the possibility of a Higgs boson with a mass between <span class="nowrap"><span data-sort-value="7002147000000000000♠"></span>147 GeV/<i>c</i><sup>2</sup></span> and <span class="nowrap"><span data-sort-value="7002180000000000000♠"></span>180 GeV/<i>c</i><sup>2</sup></span>. In addition, there was a small (but not significant) excess of events possibly indicating a Higgs boson with a mass between <span class="nowrap"><span data-sort-value="7002115000000000000♠"></span>115 GeV/<i>c</i><sup>2</sup></span> and <span class="nowrap"><span data-sort-value="7002140000000000000♠"></span>140 GeV/<i>c</i><sup>2</sup></span>.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">Large Hadron Collider</a> at <a href="/wiki/CERN" title="CERN">CERN</a> in Switzerland, was designed specifically to be able to either confirm or exclude the existence of the Higgs boson. Built in a 27 km tunnel under the ground near <a href="/wiki/Geneva" title="Geneva">Geneva</a> originally inhabited by LEP, it was designed to collide two beams of protons, initially at energies of <span class="nowrap"><span data-sort-value="6993560761770450000♠"></span>3.5 TeV</span> per beam (7 TeV total), or almost 3.6 times that of the Tevatron, and upgradeable to <span class="nowrap">2 × 7 TeV</span> (14 TeV total) in future. Theory suggested if the Higgs boson existed, collisions at these energy levels should be able to reveal it. As one of the <a href="/wiki/List_of_megaprojects#Science_projects" title="List of megaprojects">most complicated scientific instruments</a> ever built, its operational readiness was delayed for 14 months by a <a href="/wiki/Magnet_quench" class="mw-redirect" title="Magnet quench">magnet quench event</a> nine days after its inaugural tests, caused by a faulty electrical connection that damaged over 50 superconducting magnets and contaminated the vacuum system.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CERNsummer_121-0" class="reference"><a href="#cite_note-CERNsummer-121"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> </p><p>Data collection at the LHC finally commenced in March 2010.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> By December 2011 the two main particle detectors at the LHC, <a href="/wiki/ATLAS_experiment" title="ATLAS experiment">ATLAS</a> and <a href="/wiki/Compact_Muon_Solenoid" title="Compact Muon Solenoid">CMS</a>, had narrowed down the mass range where the Higgs could exist to around <span class="nowrap"><span data-sort-value="7002116000000000000♠"></span>116–130 GeV/<i>c</i><sup>2</sup></span> (ATLAS) and <span class="nowrap"><span data-sort-value="7002115000000000000♠"></span>115–127 GeV/<i>c</i><sup>2</sup></span> (CMS).<sup id="cite_ref-ATLAS-13Dec2011_123-0" class="reference"><a href="#cite_note-ATLAS-13Dec2011-123"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CMS_December_2011_124-0" class="reference"><a href="#cite_note-CMS_December_2011-124"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> There had also already been a number of promising event excesses that had "evaporated" and proven to be nothing but random fluctuations. However, from around May 2011,<sup id="cite_ref-NYT-20130305_125-0" class="reference"><a href="#cite_note-NYT-20130305-125"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> both experiments had seen among their results, the slow emergence of a small yet consistent excess of gamma and 4-lepton decay signatures and several other particle decays, all hinting at a new particle at a mass around <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span>.<sup id="cite_ref-NYT-20130305_125-1" class="reference"><a href="#cite_note-NYT-20130305-125"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> By around November 2011, the anomalous data at <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span> was becoming "too large to ignore" (although still far from conclusive), and the team leaders at both ATLAS and CMS each privately suspected they might have found the Higgs.<sup id="cite_ref-NYT-20130305_125-2" class="reference"><a href="#cite_note-NYT-20130305-125"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> On 28 November 2011, at an internal meeting of the two team leaders and the director general of CERN, the latest analyses were discussed outside their teams for the first time, suggesting both ATLAS and CMS might be converging on a possible shared result at <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span>, and initial preparations commenced in case of a successful finding.<sup id="cite_ref-NYT-20130305_125-3" class="reference"><a href="#cite_note-NYT-20130305-125"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> While this information was not known publicly at the time, the narrowing of the possible Higgs range to around <span class="nowrap"><span data-sort-value="7002115000000000000♠"></span>115–130 GeV/2</span> and the repeated observation of small but consistent event excesses across multiple channels at both ATLAS and CMS in the <span class="nowrap"><span data-sort-value="7002124000000000000♠"></span>124–126 GeV/<i>c</i><sup>2</sup></span> region (described as "tantalising hints" of around 2–3 sigma) were public knowledge with "a lot of interest".<sup id="cite_ref-CERN_13_dec_2011_126-0" class="reference"><a href="#cite_note-CERN_13_dec_2011-126"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup> It was therefore widely anticipated around the end of 2011, that the LHC would provide sufficient data to either exclude or confirm the finding of a Higgs boson by the end of 2012, when their 2012 collision data (with slightly higher 8 TeV collision energy) had been examined.<sup id="cite_ref-CERN_13_dec_2011_126-1" class="reference"><a href="#cite_note-CERN_13_dec_2011-126"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Discovery_of_candidate_boson_at_CERN">Discovery of candidate boson at CERN</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=27" title="Edit section: Discovery of candidate boson at CERN"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable floatright" style="font-size:90%; width:220px;"> <tbody><tr> <td><span class="nowrap"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:2-photon_Higgs_decay.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/2-photon_Higgs_decay.svg/220px-2-photon_Higgs_decay.svg.png" decoding="async" width="220" height="105" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/2-photon_Higgs_decay.svg/330px-2-photon_Higgs_decay.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/2-photon_Higgs_decay.svg/440px-2-photon_Higgs_decay.svg.png 2x" data-file-width="1008" data-file-height="480" /></a></span>  <span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:4-lepton_Higgs_decay.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/4-lepton_Higgs_decay.svg/220px-4-lepton_Higgs_decay.svg.png" decoding="async" width="220" height="105" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/4-lepton_Higgs_decay.svg/330px-4-lepton_Higgs_decay.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b2/4-lepton_Higgs_decay.svg/440px-4-lepton_Higgs_decay.svg.png 2x" data-file-width="1008" data-file-height="480" /></a></span></span> </td></tr> <tr> <td><a href="/wiki/Feynman_diagram" title="Feynman diagram">Feynman diagrams</a> showing the cleanest channels associated with the low-mass (~<span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span>) Higgs boson candidate observed by <a href="/wiki/ATLAS_experiment" title="ATLAS experiment">ATLAS</a> and <a href="/wiki/Compact_Muon_Solenoid" title="Compact Muon Solenoid">CMS</a> at the <a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">LHC</a>. The dominant production mechanism at this mass involves two <a href="/wiki/Gluons" class="mw-redirect" title="Gluons">gluons</a> from each proton fusing to a <a href="/wiki/Top_quark" title="Top quark">Top-quark Loop</a>, which couples strongly to the Higgs field to produce a Higgs boson.<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist"><ul style="margin-left:1em;text-indent:-1em;"><li><i>Left:</i> Diphoton channel: Boson subsequently decays into two gamma ray photons by virtual interaction with a <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W boson</a> loop or <a href="/wiki/Top_quark" title="Top quark">top quark</a> loop.</li><li><i>Right:</i> The four-lepton "golden channel": Boson emits two <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">Z bosons</a>, which each decay into two <a href="/wiki/Leptons" class="mw-redirect" title="Leptons">leptons</a> (electrons, muons).</li></ul></div> Experimental analysis of these channels reached a significance of more than five <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviations</a> (sigma) in both experiments.<sup id="cite_ref-cmsdez14_128-0" class="reference"><a href="#cite_note-cmsdez14-128"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-atlas4lepton14_129-0" class="reference"><a href="#cite_note-atlas4lepton14-129"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-atlasdiphoton14_130-0" class="reference"><a href="#cite_note-atlasdiphoton14-130"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup> </td></tr></tbody></table> <p>On 22 June 2012 <a href="/wiki/CERN" title="CERN">CERN</a> announced an upcoming seminar covering tentative findings for 2012,<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-132" class="reference"><a href="#cite_note-132"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> and shortly afterwards (from around 1 July 2012 according to an analysis of the spreading rumour in social media<sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup>) rumours began to spread in the media that this would include a major announcement, but it was unclear whether this would be a stronger signal or a formal discovery.<sup id="cite_ref-timeslive1_134-0" class="reference"><a href="#cite_note-timeslive1-134"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup> Speculation escalated to a "fevered" pitch when reports emerged that <a href="/wiki/Peter_Higgs" title="Peter Higgs">Peter Higgs</a>, who proposed the particle, was to be attending the seminar,<sup id="cite_ref-136" class="reference"><a href="#cite_note-136"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup> and that "five leading physicists" had been invited – generally believed to signify the five living 1964 authors – with Higgs, Englert, Guralnik, Hagen attending and Kibble confirming his invitation (Brout having died in 2011).<sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup> </p><p>On 4 July 2012 both of the CERN experiments announced they had independently made the same discovery:<sup id="cite_ref-discovery_139-0" class="reference"><a href="#cite_note-discovery-139"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup> CMS of a previously unknown boson with mass <span class="nowrap"><span data-sort-value="7002125300000000000♠"></span>125.3<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.6 GeV/<i>c</i><sup>2</sup></span><sup id="cite_ref-cms0731_140-0" class="reference"><a href="#cite_note-cms0731-140"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-cms1207_141-0" class="reference"><a href="#cite_note-cms1207-141"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup> and ATLAS of a boson with mass <span class="nowrap"><span data-sort-value="7002126000000000000♠"></span>126.0<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.6 GeV/<i>c</i><sup>2</sup></span>.<sup id="cite_ref-atlas1207_142-0" class="reference"><a href="#cite_note-atlas1207-142"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-atlas0731_143-0" class="reference"><a href="#cite_note-atlas0731-143"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup> Using the combined analysis of two interaction types (known as 'channels'), both experiments independently reached a local significance of 5 sigma – implying that the probability of getting at least as strong a result by chance alone is less than one in three million. When additional channels were taken into account, the CMS significance was reduced to 4.9 sigma.<sup id="cite_ref-cms1207_141-1" class="reference"><a href="#cite_note-cms1207-141"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup> </p><p>The two teams had been working 'blinded' from each other from around late 2011 or early 2012,<sup id="cite_ref-NYT-20130305_125-4" class="reference"><a href="#cite_note-NYT-20130305-125"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> meaning they did not discuss their results with each other, providing additional certainty that any common finding was genuine validation of a particle.<sup id="cite_ref-msnbc-discovery_113-2" class="reference"><a href="#cite_note-msnbc-discovery-113"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> This level of evidence, confirmed independently by two separate teams and experiments, meets the formal level of proof required to announce a confirmed discovery. </p><p>On 31 July 2012, the ATLAS collaboration presented additional data analysis on the "observation of a new particle", including data from a third channel, which improved the significance to 5.9 sigma (1 in 588 million chance of obtaining at least as strong evidence by random background effects alone) and mass <span class="nowrap">126.0 ± 0.4 (stat) ± 0.4 (sys) GeV/<i>c</i><sup>2</sup></span>,<sup id="cite_ref-atlas0731_143-1" class="reference"><a href="#cite_note-atlas0731-143"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup> and CMS improved the significance to 5-sigma and mass <span class="nowrap">125.3 ± 0.4 (stat) ± 0.5 (sys) GeV/<i>c</i><sup>2</sup></span>.<sup id="cite_ref-cms0731_140-1" class="reference"><a href="#cite_note-cms0731-140"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="New_particle_tested_as_a_possible_Higgs_boson">New particle tested as a possible Higgs boson</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=28" title="Edit section: New particle tested as a possible Higgs boson"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Following the 2012 discovery, it was still unconfirmed whether the <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span> particle was a Higgs boson. On one hand, observations remained consistent with the observed particle being the Standard Model Higgs boson, and the particle decayed into at least some of the predicted channels. Moreover, the production rates and branching ratios for the observed channels broadly matched the predictions by the Standard Model within the experimental uncertainties. However, the experimental uncertainties currently still left room for alternative explanations, meaning an announcement of the discovery of a Higgs boson would have been premature.<sup id="cite_ref-PDGreview2012_144-0" class="reference"><a href="#cite_note-PDGreview2012-144"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> To allow more opportunity for data collection, the LHC's proposed 2012 shutdown and 2013–14 upgrade were postponed by seven weeks into 2013.<sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">[</span>127<span class="cite-bracket">]</span></a></sup> </p><p>In November 2012, in a conference in Kyoto researchers said evidence gathered since July was falling into line with the basic Standard Model more than its alternatives, with a range of results for several interactions matching that theory's predictions.<sup id="cite_ref-BBC_Nov_2012_146-0" class="reference"><a href="#cite_note-BBC_Nov_2012-146"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup> Physicist <a href="/wiki/Matt_Strassler" title="Matt Strassler">Matt Strassler</a> highlighted "considerable" evidence that the new particle is not a <a href="/wiki/Pseudoscalar" title="Pseudoscalar">pseudoscalar</a> negative <a href="/wiki/Parity_(physics)" title="Parity (physics)">parity</a> particle (consistent with this required finding for a Higgs boson), "evaporation" or lack of increased significance for previous hints of non-Standard Model findings, expected Standard Model interactions with <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W and Z bosons</a>, absence of "significant new implications" for or against <a href="/wiki/Supersymmetry" title="Supersymmetry">supersymmetry</a>, and in general no significant deviations to date from the results expected of a Standard Model Higgs boson.<sup id="cite_ref-strassler_nov_2012_148-0" class="reference"><a href="#cite_note-strassler_nov_2012-148"><span class="cite-bracket">[</span>s<span class="cite-bracket">]</span></a></sup> However some kinds of extensions to the Standard Model would also show very similar results;<sup id="cite_ref-Guardian_Nov_2012_149-0" class="reference"><a href="#cite_note-Guardian_Nov_2012-149"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup> so commentators noted that based on other particles that are still being understood long after their discovery, it may take years to be sure, and decades to fully understand the particle that has been found.<sup id="cite_ref-BBC_Nov_2012_146-1" class="reference"><a href="#cite_note-BBC_Nov_2012-146"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-strassler_nov_2012_148-1" class="reference"><a href="#cite_note-strassler_nov_2012-148"><span class="cite-bracket">[</span>s<span class="cite-bracket">]</span></a></sup> </p><p>These findings meant that as of January 2013, scientists were very sure they had found an unknown particle of mass ~ <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span>, and had not been misled by experimental error or a chance result. They were also sure, from initial observations, that the new particle was some kind of boson. The behaviours and properties of the particle, so far as examined since July 2012, also seemed quite close to the behaviours expected of a Higgs boson. Even so, it could still have been a Higgs boson or some other unknown boson, since future tests could show behaviours that do not match a Higgs boson, so as of December 2012 CERN still only stated that the new particle was "consistent with" the Higgs boson,<sup id="cite_ref-Biever-2012-07-Dieter_39-3" class="reference"><a href="#cite_note-Biever-2012-07-Dieter-39"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CERN_Nov_2012_42-2" class="reference"><a href="#cite_note-CERN_Nov_2012-42"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> and scientists did not yet positively say it was the Higgs boson.<sup id="cite_ref-cern1207_150-0" class="reference"><a href="#cite_note-cern1207-150"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup> Despite this, in late 2012, widespread media reports announced (incorrectly) that a Higgs boson had been confirmed during the year.<sup id="cite_ref-156" class="reference"><a href="#cite_note-156"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup> </p><p>In January 2013, CERN director-general <a href="/wiki/Rolf-Dieter_Heuer" title="Rolf-Dieter Heuer">Rolf-Dieter Heuer</a> stated that based on data analysis to date, an answer could be possible 'towards' mid-2013,<sup id="cite_ref-status_Jan_2013_157-0" class="reference"><a href="#cite_note-status_Jan_2013-157"><span class="cite-bracket">[</span>138<span class="cite-bracket">]</span></a></sup> and the deputy chair of physics at <a href="/wiki/Brookhaven_National_Laboratory" title="Brookhaven National Laboratory">Brookhaven National Laboratory</a> stated in February 2013 that a "definitive" answer might require "another few years" after the <a href="/wiki/Large_Hadron_Collider#Run_2:_second_operational_run_(2015–2018)" title="Large Hadron Collider">collider's 2015 restart</a>.<sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup> In early March 2013, CERN Research Director Sergio Bertolucci stated that confirming spin-0 was the major remaining requirement to determine whether the particle is at least some kind of Higgs boson.<sup id="cite_ref-159" class="reference"><a href="#cite_note-159"><span class="cite-bracket">[</span>140<span class="cite-bracket">]</span></a></sup> </p><p><span class="anchor" id="Current_status"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Confirmation_of_existence_and_current_status">Confirmation of existence and current status</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=29" title="Edit section: Confirmation of existence and current status"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On 14 March 2013 CERN confirmed the following: </p> <blockquote><p>CMS and ATLAS have compared a number of options for the spin-parity of this particle, and these all prefer no spin and even parity [two fundamental criteria of a Higgs boson consistent with the Standard Model]. This, coupled with the measured interactions of the new particle with other particles, strongly indicates that it is a Higgs boson.<sup id="cite_ref-CERN_March_2013_9-4" class="reference"><a href="#cite_note-CERN_March_2013-9"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></p></blockquote> <p>This also makes the particle the first elementary <a href="/wiki/Scalar_boson" title="Scalar boson">scalar particle</a> to be discovered in nature.<sup id="cite_ref-WSJ_14_March_2013_43-1" class="reference"><a href="#cite_note-WSJ_14_March_2013-43"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p><p>The following are examples of tests used to confirm that the discovered particle is the Higgs boson:<sup id="cite_ref-strassler_nov_2012_148-2" class="reference"><a href="#cite_note-strassler_nov_2012-148"><span class="cite-bracket">[</span>s<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-when_higgs_15-2" class="reference"><a href="#cite_note-when_higgs-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable" style="font-size:90%"> <tbody><tr> <th>Requirement </th> <th style="width:48%;">How tested / explanation </th> <th>Current status (As of July 2017<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Higgs_boson&action=edit">[update]</a></sup>) </th></tr> <tr> <td>Zero <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a></td> <td>Examining decay patterns. Spin-1 had been ruled out at the time of initial discovery by the observed decay to two <span class="nowrap">photons (<span class="texhtml mvar" style="font-style:italic;">γ γ</span>),</span> leaving spin-0 and spin-2 as remaining candidates. </td> <td>Spin-0 confirmed.<sup id="cite_ref-CMSspinparity2017_10-3" class="reference"><a href="#cite_note-CMSspinparity2017-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CERN_March_2013_9-5" class="reference"><a href="#cite_note-CERN_March_2013-9"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CMS_spin_parity_160-0" class="reference"><a href="#cite_note-CMS_spin_parity-160"><span class="cite-bracket">[</span>141<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ATLAS_spin_parity_161-0" class="reference"><a href="#cite_note-ATLAS_spin_parity-161"><span class="cite-bracket">[</span>142<span class="cite-bracket">]</span></a></sup> The spin-2 hypothesis is excluded with a confidence level exceeding 99.9%.<sup id="cite_ref-ATLAS_spin_parity_161-1" class="reference"><a href="#cite_note-ATLAS_spin_parity-161"><span class="cite-bracket">[</span>142<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>Even (Positive) <a href="/wiki/Parity_(physics)" title="Parity (physics)">parity</a> </td> <td>Studying the angles at which decay products fly apart. Negative parity was also disfavoured if spin-0 was confirmed.<sup id="cite_ref-162" class="reference"><a href="#cite_note-162"><span class="cite-bracket">[</span>143<span class="cite-bracket">]</span></a></sup> </td> <td>Even parity tentatively confirmed.<sup id="cite_ref-CERN_March_2013_9-6" class="reference"><a href="#cite_note-CERN_March_2013-9"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CMS_spin_parity_160-1" class="reference"><a href="#cite_note-CMS_spin_parity-160"><span class="cite-bracket">[</span>141<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ATLAS_spin_parity_161-2" class="reference"><a href="#cite_note-ATLAS_spin_parity-161"><span class="cite-bracket">[</span>142<span class="cite-bracket">]</span></a></sup> The spin-0 negative parity hypothesis is excluded with a confidence level exceeding 99.9%.<sup id="cite_ref-CMS_spin_parity_160-2" class="reference"><a href="#cite_note-CMS_spin_parity-160"><span class="cite-bracket">[</span>141<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CMSspinparity2017_10-4" class="reference"><a href="#cite_note-CMSspinparity2017-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Particle_decay" title="Particle decay">Decay channels</a> (outcomes of particle decaying) are as predicted </td> <td>The Standard Model predicts the decay patterns of a <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span> Higgs boson. Are these all being seen, and at the right rates? <p>Particularly significant, we should observe decays into pairs of <span class="nowrap"><a href="/wiki/Photon" title="Photon">photons</a> (γ γ),</span> <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W and Z bosons</a> (W<sup>−</sup> W<sup>+</sup> and Z Z), <a href="/wiki/Bottom_quark" title="Bottom quark">bottom quarks</a> (b <span style="text-decoration:overline;">b</span>), and <a href="/wiki/Tau_lepton" class="mw-redirect" title="Tau lepton">tau leptons</a> (τ<sup>−</sup>τ<sup>+</sup>), among the possible outcomes. </p> </td> <td>b <span style="text-decoration:overline;">b</span>, γ γ, τ<sup>−</sup> τ<sup>+</sup>, W<sup>−</sup> W<sup>+</sup> and Z Z observed. All observed signal strengths are consistent with the Standard Model prediction.<sup id="cite_ref-163" class="reference"><a href="#cite_note-163"><span class="cite-bracket">[</span>144<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-CERN_EPS2017_45-1" class="reference"><a href="#cite_note-CERN_EPS2017-45"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Coupling_(physics)" title="Coupling (physics)">Couples to mass</a> (i.e., strength of interaction with Standard Model particles proportional to their mass) </td> <td>Particle physicist Adam Falkowski states that the essential qualities of a Higgs boson are that it is a spin-0 (scalar) particle which <i>also</i> couples to mass (W and Z bosons); proving spin-0 alone is insufficient.<sup id="cite_ref-when_higgs_15-3" class="reference"><a href="#cite_note-when_higgs-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </td> <td>Couplings to mass strongly evidenced ("At 95% confidence level <span class="texhtml mvar" style="font-style:italic;">c</span><sub>V</sub> is within 15% of the standard model value <span class="texhtml mvar" style="font-style:italic;">c</span><sub>V</sub> = 1").<sup id="cite_ref-when_higgs_15-4" class="reference"><a href="#cite_note-when_higgs-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>Higher energy results remain consistent </td> <td>After the <a href="/wiki/Large_Hadron_Collider#Full_operation" title="Large Hadron Collider">LHC's 2015 restart</a> at the higher energy of 13 TeV, searches for multiple Higgs particles (as predicted in some theories) and tests targeting other versions of particle theory continued. These higher energy results must continue to give results consistent with Higgs theories. </td> <td>Analysis of collisions up to July 2017 do not show deviations from the Standard Model, with experimental precisions better than results at lower energies.<sup id="cite_ref-CERN_EPS2017_45-2" class="reference"><a href="#cite_note-CERN_EPS2017-45"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading4"><h4 id="Findings_since_2013">Findings since 2013</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=30" title="Edit section: Findings since 2013"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:HiggsCouplings.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/HiggsCouplings.png/290px-HiggsCouplings.png" decoding="async" width="290" height="298" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/HiggsCouplings.png/435px-HiggsCouplings.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/62/HiggsCouplings.png/580px-HiggsCouplings.png 2x" data-file-width="1024" data-file-height="1052" /></a><figcaption>Coupling strength to Higgs boson in (top) and ratio to the standard model prediction (bottom) derived from cross section and branching ratio data. In the <i>κ</i> framework<sup id="cite_ref-164" class="reference"><a href="#cite_note-164"><span class="cite-bracket">[</span>145<span class="cite-bracket">]</span></a></sup> the couplings are<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {{\kappa }_{V}}}{m}_{V}/{\rm {vev}}\quad (={\sqrt {{\kappa }_{V}{g}_{V}/2{\rm {vev}}}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>κ<!-- κ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </msqrt> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">v</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">v</mi> </mrow> </mrow> <mspace width="1em" /> <mo stretchy="false">(</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>κ<!-- κ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">v</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">v</mi> </mrow> </mrow> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {{\kappa }_{V}}}{m}_{V}/{\rm {vev}}\quad (={\sqrt {{\kappa }_{V}{g}_{V}/2{\rm {vev}}}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/418104ec5e6399f4fc82dd17940f04c14580f0d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:33.118ex; height:4.843ex;" alt="{\displaystyle {\sqrt {{\kappa }_{V}}}{m}_{V}/{\rm {vev}}\quad (={\sqrt {{\kappa }_{V}{g}_{V}/2{\rm {vev}}}})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\kappa }_{F}{m}_{V}/{\rm {vev}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>κ<!-- κ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">v</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">v</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\kappa }_{F}{m}_{V}/{\rm {vev}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29acded8821ff6f03ed131992adcfe2b3c08cb24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.988ex; height:2.843ex;" alt="{\displaystyle {\kappa }_{F}{m}_{V}/{\rm {vev}}}"></span> for the vector bosons V (=Z,W) and for the fermions F ( = <i>t</i>, <i>b</i>, <i>τ</i> (<i>μ</i> not confirmed as 2022 but there is evidence)) respectively, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {m}_{V/F}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>F</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {m}_{V/F}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/014463bbcd406b4144417557e7917bee97698bac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:5.589ex; height:2.509ex;" alt="{\displaystyle {m}_{V/F}}"></span> the masses and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle vev}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mi>e</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle vev}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4565aa1034d0e4e2742257bceaba64a995bb3d7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.339ex; height:1.676ex;" alt="{\displaystyle vev}"></span> the <a href="/wiki/Vacuum_expectation_value" title="Vacuum expectation value">vacuum expectation value</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {g}_{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {g}_{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/610dee2b3228025ae38e9dd0d02ba25bcf515838" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.605ex; height:2.176ex;" alt="{\displaystyle {g}_{V}}"></span> the absolute coupling strength).<sup id="cite_ref-165" class="reference"><a href="#cite_note-165"><span class="cite-bracket">[</span>146<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>In July 2017, CERN confirmed that all measurements still agree with the predictions of the Standard Model, and called the discovered particle simply "the Higgs boson".<sup id="cite_ref-CERN_EPS2017_45-3" class="reference"><a href="#cite_note-CERN_EPS2017-45"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> As of 2019, the <a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">Large Hadron Collider</a> has continued to produce findings that confirm the 2013 understanding of the Higgs field and particle.<sup id="cite_ref-166" class="reference"><a href="#cite_note-166"><span class="cite-bracket">[</span>147<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-167" class="reference"><a href="#cite_note-167"><span class="cite-bracket">[</span>148<span class="cite-bracket">]</span></a></sup> </p><p>The LHC's experimental work since restarting in 2015 has included probing the Higgs field and boson to a greater level of detail, and confirming whether less common predictions were correct. In particular, exploration since 2015 has provided strong evidence of the predicted direct decay into <a href="/wiki/Fermion" title="Fermion">fermions</a> such as pairs of <a href="/wiki/Bottom_quark" title="Bottom quark">bottom quarks</a> (3.6 σ) – described as an "important milestone" in understanding its short lifetime and other rare decays – and also to confirm decay into pairs of <a href="/wiki/Tau_lepton" class="mw-redirect" title="Tau lepton">tau leptons</a> (5.9 σ). This was described by CERN as being "of paramount importance to establishing the coupling of the Higgs boson to leptons and represents an important step towards measuring its couplings to third generation fermions, the very heavy copies of the electrons and quarks, whose role in nature is a profound mystery".<sup id="cite_ref-CERN_EPS2017_45-4" class="reference"><a href="#cite_note-CERN_EPS2017-45"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> Published results as of 19 March 2018 at 13 TeV for ATLAS and CMS had their measurements of the Higgs mass at <span class="nowrap"><span data-sort-value="7002124980000000000♠"></span>124.98<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.28 GeV/<i>c</i><sup>2</sup></span> and <span class="nowrap"><span data-sort-value="7002125260000000000♠"></span>125.26<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.21 GeV/<i>c</i><sup>2</sup></span> respectively. </p><p>In July 2018, the ATLAS and CMS experiments reported observing the Higgs boson decay into a pair of bottom quarks, which makes up approximately 60% of all of its decays.<sup id="cite_ref-168" class="reference"><a href="#cite_note-168"><span class="cite-bracket">[</span>149<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ATLAS-20180828_169-0" class="reference"><a href="#cite_note-ATLAS-20180828-169"><span class="cite-bracket">[</span>150<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-170" class="reference"><a href="#cite_note-170"><span class="cite-bracket">[</span>151<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Theoretical_issues">Theoretical issues</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=31" title="Edit section: Theoretical issues"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a></div> <div class="mw-heading mw-heading3"><h3 id="Theoretical_need_for_the_Higgs">Theoretical need for the Higgs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=32" title="Edit section: Theoretical need for the Higgs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spontaneous_symmetry_breaking_(explanatory_diagram).png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Spontaneous_symmetry_breaking_%28explanatory_diagram%29.png/280px-Spontaneous_symmetry_breaking_%28explanatory_diagram%29.png" decoding="async" width="280" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Spontaneous_symmetry_breaking_%28explanatory_diagram%29.png/420px-Spontaneous_symmetry_breaking_%28explanatory_diagram%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Spontaneous_symmetry_breaking_%28explanatory_diagram%29.png/560px-Spontaneous_symmetry_breaking_%28explanatory_diagram%29.png 2x" data-file-width="672" data-file-height="215" /></a><figcaption>"<a href="/wiki/Spontaneous_symmetry_breaking" title="Spontaneous symmetry breaking">Symmetry breaking</a> illustrated": – At high energy levels <i>(left)</i> the ball settles in the centre, and the result is symmetrical. At lower energy levels <i>(right)</i>, the overall "rules" remain symmetrical, but the "Mexican hat" potential comes into effect: <a href="/wiki/Local_property" title="Local property">"local" symmetry</a> inevitably becomes broken since eventually the ball must at random roll one way or another.</figcaption></figure> <p><a href="/wiki/Gauge_invariance" class="mw-redirect" title="Gauge invariance">Gauge invariance</a> is an important property of modern particle theories such as the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a>, partly due to its success in other areas of fundamental physics such as <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a> and the <a href="/wiki/Strong_interaction" title="Strong interaction">strong interaction</a> (<a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">quantum chromodynamics</a>). However, before <a href="/wiki/Sheldon_Glashow" title="Sheldon Glashow">Sheldon Glashow</a> extended the <a href="/wiki/Electroweak_unification" class="mw-redirect" title="Electroweak unification">electroweak unification</a> models in 1961, there were great difficulties in developing gauge theories for the <a href="/wiki/Weak_nuclear_force" class="mw-redirect" title="Weak nuclear force">weak nuclear force</a> or a possible unified <a href="/wiki/Electroweak_interaction" title="Electroweak interaction">electroweak interaction</a>. <a href="/wiki/Fermion" title="Fermion">Fermions</a> with a mass term would violate gauge symmetry and therefore cannot be gauge invariant. (This can be seen by examining the <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Dirac Lagrangian</a> for a fermion in terms of left and right handed components; we find none of the spin-half particles could ever flip <a href="/wiki/Helicity_(particle_physics)" title="Helicity (particle physics)">helicity</a> as required for mass, so they must be massless.<sup id="cite_ref-171" class="reference"><a href="#cite_note-171"><span class="cite-bracket">[</span>t<span class="cite-bracket">]</span></a></sup>) <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W and Z bosons</a> are observed to have mass, but a boson mass term contains terms which clearly depend on the choice of gauge, and therefore these masses too cannot be gauge invariant. Therefore, it seems that <i>none</i> of the standard model fermions <i>or</i> bosons could "begin" with mass as an inbuilt property except by abandoning gauge invariance. If gauge invariance were to be retained, then these particles had to be acquiring their mass by some other mechanism or interaction. </p><p>Additionally, solutions based on spontaneous symmetry breaking appeared to fail, seemingly an inevitable result of <a href="/wiki/Goldstone%27s_theorem" class="mw-redirect" title="Goldstone's theorem">Goldstone's theorem</a>. Because there is no potential energy cost to moving around the complex plane's "circular valley" responsible for spontaneous symmetry breaking, the resulting quantum excitation is pure kinetic energy, and therefore a massless boson ("Goldstone boson"), which in turn implies a new long range force. But no new long range forces or massless particles were detected either. So whatever was giving these particles their mass had to not "break" gauge invariance as the basis for other parts of the theories where it worked well, <i>and</i> had to not require or predict unexpected massless particles or long-range forces which did not actually seem to exist in nature. </p><p>A solution to all of these overlapping problems came from the discovery of a previously unnoticed borderline case hidden in the mathematics of Goldstone's theorem,<sup id="cite_ref-GoldstoneNote_88-1" class="reference"><a href="#cite_note-GoldstoneNote-88"><span class="cite-bracket">[</span>o<span class="cite-bracket">]</span></a></sup> that under certain conditions it <i>might</i> theoretically be possible for a symmetry to be broken <i>without</i> disrupting gauge invariance and <i>without</i> any new massless particles or forces, and having "sensible" (<a href="/wiki/Renormalization" title="Renormalization">renormalisable</a>) results mathematically. This became known as the <a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a>. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Elementary_particle_interactions.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Elementary_particle_interactions.svg/280px-Elementary_particle_interactions.svg.png" decoding="async" width="280" height="201" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Elementary_particle_interactions.svg/420px-Elementary_particle_interactions.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Elementary_particle_interactions.svg/560px-Elementary_particle_interactions.svg.png 2x" data-file-width="775" data-file-height="555" /></a><figcaption>Summary of interactions between certain <a href="/wiki/Elementary_particle" title="Elementary particle">particles</a> described by the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a></figcaption></figure> <p>The Standard Model hypothesises a <a href="/wiki/Quantum_field_theory" title="Quantum field theory">field</a> which is responsible for this effect, called the Higgs field (symbol: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span>), which has the unusual property of a non-zero amplitude in its <a href="/wiki/Ground_state" title="Ground state">ground state</a>; i.e., a non-zero <a href="/wiki/Vacuum_expectation_value" title="Vacuum expectation value">vacuum expectation value</a>. It can have this effect because of its unusual "Mexican hat" shaped potential whose lowest "point" is not at its "centre". In simple terms, unlike all other known fields, the Higgs field requires <i>less</i> energy to have a non-zero value than a zero value, so it ends up having a non-zero value <i>everywhere</i>. Below a certain extremely high energy level the existence of this non-zero vacuum expectation <a href="/wiki/Symmetry_breaking" title="Symmetry breaking">spontaneously breaks</a> electroweak <a href="/wiki/Introduction_to_gauge_theory" title="Introduction to gauge theory">gauge symmetry</a> which in turn gives rise to the Higgs mechanism and triggers the acquisition of mass by those particles interacting with the field. This effect occurs because <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a> components of the Higgs field are "absorbed" by the massive bosons as <a href="/wiki/Degrees_of_freedom_(physics_and_chemistry)" title="Degrees of freedom (physics and chemistry)">degrees of freedom</a>, and couple to the fermions via <a href="/wiki/Yukawa_coupling" class="mw-redirect" title="Yukawa coupling">Yukawa coupling</a>, thereby producing the expected mass terms. When symmetry breaks under these conditions, the <a href="/wiki/Goldstone_boson" title="Goldstone boson">Goldstone bosons</a> that arise <i>interact</i> with the Higgs field (and with other particles capable of interacting with the Higgs field) instead of becoming new massless particles. The intractable problems of both underlying theories "neutralise" each other, and the residual outcome is that elementary particles acquire a consistent mass based on how strongly they interact with the Higgs field. It is the simplest known process capable of giving mass to the <a href="/wiki/Gauge_boson" title="Gauge boson">gauge bosons</a> while remaining compatible with <a href="/wiki/Gauge_theories" class="mw-redirect" title="Gauge theories">gauge theories</a>.<sup id="cite_ref-172" class="reference"><a href="#cite_note-172"><span class="cite-bracket">[</span>152<span class="cite-bracket">]</span></a></sup> Its <a href="/wiki/Quantum" title="Quantum">quantum</a> would be a <a href="/wiki/Scalar_boson" title="Scalar boson">scalar boson</a>, known as the Higgs boson.<sup id="cite_ref-173" class="reference"><a href="#cite_note-173"><span class="cite-bracket">[</span>153<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Simple_explanation_of_the_theory,_from_its_origins_in_superconductivity"><span id="Simple_explanation_of_the_theory.2C_from_its_origins_in_superconductivity"></span>Simple explanation of the theory, from its origins in superconductivity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=33" title="Edit section: Simple explanation of the theory, from its origins in superconductivity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The proposed Higgs mechanism arose as a result of theories proposed to explain observations in <a href="/wiki/Superconductivity" title="Superconductivity">superconductivity</a>. A superconductor does not allow penetration by external magnetic fields (the <a href="/wiki/Meissner_effect" title="Meissner effect">Meissner effect</a>). This strange observation implies that somehow, the electromagnetic field becomes short ranged during this phenomenon. Successful theories arose to explain this during the 1950s, first for fermions (<a href="/wiki/Ginzburg%E2%80%93Landau_theory" title="Ginzburg–Landau theory">Ginzburg–Landau theory</a>, 1950), and then for bosons (<a href="/wiki/BCS_theory" title="BCS theory">BCS theory</a>, 1957). </p><p>In these theories, superconductivity is interpreted as arising from a <a href="/wiki/Bose%E2%80%93Einstein_condensate" title="Bose–Einstein condensate">charged condensate</a> field. Initially, the condensate value does not have any preferred direction, implying it is scalar, but its <a href="/wiki/Phase_(waves)" title="Phase (waves)">phase</a> is capable of defining a gauge, in gauge based field theories. To do this, the field must be charged. A charged scalar field must also be complex (or described another way, it contains at least two components, and a symmetry capable of rotating each into the other(s)). In naïve gauge theory, a gauge transformation of a condensate usually rotates the phase. But in these circumstances, it instead fixes a preferred choice of phase. However, it turns out that fixing the choice of gauge so that the condensate has the same phase everywhere also causes the electromagnetic field to gain an extra term. This extra term causes the electromagnetic field to become short range. </p><p>Once attention was drawn to this theory within particle physics, the parallels were clear. A change of the usually long range electromagnetic field to become short ranged, within a gauge invariant theory, was exactly the needed effect sought for the weak force bosons (because a long range force has massless gauge bosons, and a short ranged force implies massive gauge bosons, suggesting that a result of this interaction is that the field's gauge bosons acquired mass, or a similar and equivalent effect). The features of a field required to do this were also quite well defined – it would have to be a charged scalar field, with at least two components, and complex in order to support a symmetry able to rotate these into each other.<sup id="cite_ref-174" class="reference"><a href="#cite_note-174"><span class="cite-bracket">[</span>u<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Alternative_models">Alternative models</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=34" title="Edit section: Alternative models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Alternatives_to_the_Standard_Model_Higgs" class="mw-redirect" title="Alternatives to the Standard Model Higgs">Alternatives to the Standard Model Higgs</a></div> <p>The Minimal Standard Model as described above is the simplest known model for the Higgs mechanism with just one Higgs field. However, an extended Higgs sector with additional Higgs particle doublets or triplets is also possible, and many extensions of the Standard Model have this feature. The non-minimal Higgs sector favoured by theory are the <a href="/wiki/Two-Higgs-Doublet_Model" class="mw-redirect" title="Two-Higgs-Doublet Model">two-Higgs-doublet models</a> (2HDM), which predict the existence of a <a href="/wiki/Quintet" title="Quintet">quintet</a> of scalar particles: two <a href="/wiki/CP_violation" title="CP violation">CP-even</a> neutral Higgs bosons h<sup>0</sup> and H<sup>0</sup>, a CP-odd neutral Higgs boson A<sup>0</sup>, and two charged Higgs particles H<sup>±</sup>. <a href="/wiki/Supersymmetry" title="Supersymmetry">Supersymmetry</a> ("SUSY") also predicts relations between the Higgs-boson masses and the masses of the gauge bosons, and could accommodate a <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span> neutral Higgs boson. </p><p>The key method to distinguish between these different models involves study of the particles' interactions ("coupling") and exact decay processes ("branching ratios"), which can be measured and tested experimentally in particle collisions. In the Type-I 2HDM model one Higgs doublet couples to up and down quarks, while the second doublet does not couple to quarks. This model has two interesting limits, in which the lightest Higgs couples to just fermions ("gauge-<a href="/wiki/Phobia" title="Phobia">phobic</a>") or just gauge bosons ("fermiophobic"), but not both. In the Type-II 2HDM model, one Higgs doublet only couples to up-type quarks, the other only couples to down-type quarks.<sup id="cite_ref-175" class="reference"><a href="#cite_note-175"><span class="cite-bracket">[</span>154<span class="cite-bracket">]</span></a></sup> The heavily researched <a href="/wiki/Minimal_Supersymmetric_Standard_Model" title="Minimal Supersymmetric Standard Model">Minimal Supersymmetric Standard Model</a> (MSSM) includes a Type-II 2HDM Higgs sector, so it could be disproven by evidence of a Type-I 2HDM Higgs.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2012)">citation needed</span></a></i>]</sup> </p><p>In other models the Higgs scalar is a composite particle. For example, in <a href="/wiki/Technicolor_(physics)" title="Technicolor (physics)">technicolour</a> the role of the Higgs field is played by strongly bound pairs of fermions called <a href="/wiki/Techniquark" class="mw-redirect" title="Techniquark">techniquarks</a>. Other models feature pairs of <a href="/wiki/Top_quark" title="Top quark">top quarks</a> (see <a href="/wiki/Top_quark_condensate" title="Top quark condensate">top quark condensate</a>). In yet other models, there is <a href="/wiki/Higgsless_model" class="mw-redirect" title="Higgsless model">no Higgs field at all</a> and the electroweak symmetry is broken using extra dimensions.<sup id="cite_ref-176" class="reference"><a href="#cite_note-176"><span class="cite-bracket">[</span>155<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-177" class="reference"><a href="#cite_note-177"><span class="cite-bracket">[</span>156<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Further_theoretical_issues_and_hierarchy_problem">Further theoretical issues and hierarchy problem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=35" title="Edit section: Further theoretical issues and hierarchy problem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Hierarchy_problem" title="Hierarchy problem">Hierarchy problem</a> and <a href="/wiki/Hierarchy_problem#The_Higgs_mass" title="Hierarchy problem">Hierarchy problem § The Higgs mass</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:One-loop-diagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/57/One-loop-diagram.svg/220px-One-loop-diagram.svg.png" decoding="async" width="220" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/57/One-loop-diagram.svg/330px-One-loop-diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/57/One-loop-diagram.svg/440px-One-loop-diagram.svg.png 2x" data-file-width="228" data-file-height="105" /></a><figcaption>A one-loop <a href="/wiki/Feynman_diagram" title="Feynman diagram">Feynman diagram</a> of the first-order correction to the Higgs mass. In the Standard Model the effects of these corrections are potentially enormous, giving rise to the so-called <a href="/wiki/Hierarchy_problem" title="Hierarchy problem">hierarchy problem</a>.</figcaption></figure> <p>The Standard Model leaves the mass of the Higgs boson as a <a href="/wiki/Parameter" title="Parameter">parameter</a> to be measured, rather than a value to be calculated. This is seen as theoretically unsatisfactory, particularly as quantum corrections (related to interactions with <a href="/wiki/Virtual_particle" title="Virtual particle">virtual particles</a>) should apparently cause the Higgs particle to have a mass immensely higher than that observed, but at the same time the Standard Model requires a mass <a href="/wiki/Order_of_magnitude" title="Order of magnitude">of the order of</a> <span class="nowrap"><span data-sort-value="7002100000000000000♠"></span>100 to 1000 GeV/<i>c</i><sup>2</sup></span> to ensure <a href="/wiki/Unitarity" class="mw-redirect" title="Unitarity">unitarity</a> (in this case, to unitarise longitudinal vector boson scattering).<sup id="cite_ref-Hierarchy_problem_Quantum_Diaries_178-0" class="reference"><a href="#cite_note-Hierarchy_problem_Quantum_Diaries-178"><span class="cite-bracket">[</span>157<span class="cite-bracket">]</span></a></sup> Reconciling these points appears to require explaining why there is an almost-perfect cancellation resulting in the visible mass of ~ <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span>, and it is not clear how to do this. Because the weak force is about 10<sup>32</sup> times stronger than gravity, and (linked to this) the Higgs boson's mass is so much less than the <a href="/wiki/Planck_mass" class="mw-redirect" title="Planck mass">Planck mass</a> or the <a href="/wiki/Grand_unification_energy" title="Grand unification energy">grand unification energy</a>, it appears that either there is some underlying connection or reason for these observations which is unknown and not described by the Standard Model, or some unexplained and extremely precise <a href="/wiki/Fine-tuning_(physics)" title="Fine-tuning (physics)">fine-tuning</a> of parameters – however at present neither of these explanations is proven. This is known as a <a href="/wiki/Hierarchy_problem" title="Hierarchy problem">hierarchy problem</a>.<sup id="cite_ref-179" class="reference"><a href="#cite_note-179"><span class="cite-bracket">[</span>158<span class="cite-bracket">]</span></a></sup> More broadly, the hierarchy problem amounts to the worry that <a href="/wiki/Physics_beyond_the_standard_model" class="mw-redirect" title="Physics beyond the standard model">a future theory of fundamental particles and interactions</a> should not have excessive fine-tunings or unduly delicate cancellations, and should allow masses of particles such as the Higgs boson to be calculable. The problem is in some ways unique to spin-0 particles (such as the Higgs boson), which can give rise to issues related to quantum corrections that do not affect particles with spin.<sup id="cite_ref-Hierarchy_problem_Quantum_Diaries_178-1" class="reference"><a href="#cite_note-Hierarchy_problem_Quantum_Diaries-178"><span class="cite-bracket">[</span>157<span class="cite-bracket">]</span></a></sup> A <a href="/wiki/Hierarchy_problem#Theoretical_solutions" title="Hierarchy problem">number of solutions have been proposed</a>, including <a href="/wiki/Supersymmetry" title="Supersymmetry">supersymmetry</a>, conformal solutions and solutions via extra dimensions such as <a href="/wiki/Braneworld" class="mw-redirect" title="Braneworld">braneworld</a> models. </p><p>There are also issues of <a href="/wiki/Quantum_triviality" title="Quantum triviality">quantum triviality</a>, which suggests that it may not be possible to create a consistent quantum field theory involving elementary scalar particles.<sup id="cite_ref-TrivPurs_180-0" class="reference"><a href="#cite_note-TrivPurs-180"><span class="cite-bracket">[</span>159<span class="cite-bracket">]</span></a></sup> Triviality constraints can be used to restrict or predict parameters such as the Higgs boson mass. This can also lead to a predictable Higgs mass in <a href="/wiki/Physics_applications_of_asymptotically_safe_gravity#Mass_of_the_Higgs_boson" title="Physics applications of asymptotically safe gravity">asymptotic safety</a> scenarios. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=36" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Properties_of_the_Higgs_field">Properties of the Higgs field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=37" title="Edit section: Properties of the Higgs field"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the Standard Model, the Higgs field is a scalar <a href="/wiki/Tachyonic_field" title="Tachyonic field">tachyonic</a> field – <i>scalar</i> meaning it does not transform under <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformations</a>, and <i>tachyonic</i> meaning the field (but <b>not</b> the particle) has <a href="/wiki/Imaginary_mass" class="mw-redirect" title="Imaginary mass">imaginary mass</a>, and in certain configurations must undergo <a href="/wiki/Symmetry_breaking" title="Symmetry breaking">symmetry breaking</a>. It consists of four components: Two neutral ones and two charged component <a href="/wiki/Field_(physics)" title="Field (physics)">fields</a>. Both of the charged components and one of the neutral fields are <a href="/wiki/Goldstone_boson" title="Goldstone boson">Goldstone bosons</a>, which act as the longitudinal third-polarisation components of the massive <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W<sup>+</sup>, W<sup>−</sup>, and Z bosons</a>. The quantum of the remaining neutral component corresponds to (and is theoretically realised as) the massive Higgs boson.<sup id="cite_ref-Gunion1_181-0" class="reference"><a href="#cite_note-Gunion1-181"><span class="cite-bracket">[</span>160<span class="cite-bracket">]</span></a></sup> This component can interact with <a href="/wiki/Fermions" class="mw-redirect" title="Fermions">fermions</a> via <a href="/wiki/Yukawa_coupling" class="mw-redirect" title="Yukawa coupling">Yukawa coupling</a> to give them mass as well. </p><p>Mathematically, the Higgs field has imaginary mass and is therefore a <i>tachyonic</i> field.<sup id="cite_ref-183" class="reference"><a href="#cite_note-183"><span class="cite-bracket">[</span>v<span class="cite-bracket">]</span></a></sup> While <a href="/wiki/Tachyon" title="Tachyon">tachyons</a> (<a href="/wiki/Particle" title="Particle">particles</a> that move <a href="/wiki/Faster-than-light" title="Faster-than-light">faster than light</a>) are a purely hypothetical concept, <i>fields</i> with imaginary mass have come to play an important role in modern physics.<sup id="cite_ref-Sen_184-0" class="reference"><a href="#cite_note-Sen-184"><span class="cite-bracket">[</span>162<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kutasov_185-0" class="reference"><a href="#cite_note-Kutasov-185"><span class="cite-bracket">[</span>163<span class="cite-bracket">]</span></a></sup> Under no circumstances do any excitations ever propagate faster than light in such theories – the presence or absence of a tachyonic mass has no effect whatsoever on the maximum velocity of signals (there is no violation of <a href="/wiki/Causality" title="Causality">causality</a>).<sup id="cite_ref-susskind_186-0" class="reference"><a href="#cite_note-susskind-186"><span class="cite-bracket">[</span>164<span class="cite-bracket">]</span></a></sup> Instead of faster-than-light particles, the imaginary mass creates an instability: Any configuration in which one or more field excitations are tachyonic must spontaneously decay, and the resulting configuration contains no physical tachyons. This process is known as <a href="/wiki/Tachyon_condensation" title="Tachyon condensation">tachyon condensation</a>, and is now believed to be the explanation for how the Higgs mechanism itself arises in nature, and therefore the reason behind electroweak symmetry breaking. </p><p>Although the notion of imaginary mass might seem troubling, it is only the field, and not the mass itself, that is quantised. Therefore, the <a href="/wiki/Field_operator" class="mw-redirect" title="Field operator">field operators</a> at <a href="/wiki/Minkowski_space" title="Minkowski space">spacelike</a> separated points still <a href="/wiki/Canonical_commutation_relation" title="Canonical commutation relation">commute (or anticommute)</a>, and information and particles still do not propagate faster than light.<sup id="cite_ref-feinberg67_187-0" class="reference"><a href="#cite_note-feinberg67-187"><span class="cite-bracket">[</span>165<span class="cite-bracket">]</span></a></sup> Tachyon condensation drives a physical system that has reached a local limit – and might naively be expected to produce physical tachyons – to an alternate stable state where no physical tachyons exist. Once a tachyonic field such as the Higgs field reaches the minimum of the potential, its quanta are not tachyons any more but rather are ordinary particles such as the Higgs boson.<sup id="cite_ref-188" class="reference"><a href="#cite_note-188"><span class="cite-bracket">[</span>166<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Properties_of_the_Higgs_boson">Properties of the Higgs boson</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=38" title="Edit section: Properties of the Higgs boson"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Update plainlinks metadata ambox ambox-content ambox-Update" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Ambox_current_red_Asia_Australia.svg/42px-Ambox_current_red_Asia_Australia.svg.png" decoding="async" width="42" height="34" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Ambox_current_red_Asia_Australia.svg/63px-Ambox_current_red_Asia_Australia.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Ambox_current_red_Asia_Australia.svg/84px-Ambox_current_red_Asia_Australia.svg.png 2x" data-file-width="360" data-file-height="290" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section needs to be <b>updated</b>. The reason given is: With the Higgs boson now empirically confirmed, the paragraphs on the mass should be rephrased to make it clear that they are about what could be predicted before that observation.<span class="hide-when-compact"> Please help update this article to reflect recent events or newly available information.</span> <span class="date-container"><i>(<span class="date">July 2018</span>)</i></span></div></td></tr></tbody></table> <p>Since the Higgs field is <a href="/wiki/Scalar_field" title="Scalar field">scalar</a>, the Higgs boson has no <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a>. The Higgs boson is also its own <a href="/wiki/Antiparticle" title="Antiparticle">antiparticle</a>, is <a href="/wiki/CP-symmetry" class="mw-redirect" title="CP-symmetry">CP-even</a>, and has zero <a href="/wiki/Electric_charge" title="Electric charge">electric</a> and <a href="/wiki/Color_charge" title="Color charge">colour charge</a>.<sup id="cite_ref-npr-interview_189-0" class="reference"><a href="#cite_note-npr-interview-189"><span class="cite-bracket">[</span>167<span class="cite-bracket">]</span></a></sup> </p><p>The Standard Model does not predict the mass of the Higgs boson.<sup id="cite_ref-atlas-higgs-diagrams_190-0" class="reference"><a href="#cite_note-atlas-higgs-diagrams-190"><span class="cite-bracket">[</span>168<span class="cite-bracket">]</span></a></sup> If that mass is between <span class="nowrap"><span data-sort-value="7002115000000000000♠"></span>115 and 180 GeV/<i>c</i><sup>2</sup></span> (consistent with empirical observations of <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span>), then the Standard Model can be valid at energy scales all the way up to the <a href="/wiki/Planck_scale" class="mw-redirect" title="Planck scale">Planck scale</a> (<span class="nowrap"><span data-sort-value="7019100000000000000♠"></span>10<sup>19</sup> GeV/<i>c</i><sup>2</sup></span>).<sup id="cite_ref-191" class="reference"><a href="#cite_note-191"><span class="cite-bracket">[</span>169<span class="cite-bracket">]</span></a></sup> It should be the only particle in the Standard Model that remains massive even at high energies. Many theorists expect new <a href="/wiki/Physics_beyond_the_Standard_Model" title="Physics beyond the Standard Model">physics beyond the Standard Model</a> to emerge at the TeV-scale, based on unsatisfactory properties of the Standard Model.<sup id="cite_ref-192" class="reference"><a href="#cite_note-192"><span class="cite-bracket">[</span>170<span class="cite-bracket">]</span></a></sup> The highest possible mass scale allowed for the Higgs boson (or some other electroweak symmetry breaking mechanism) is 1.4 TeV; beyond this point, the Standard Model becomes inconsistent without such a mechanism, because <a href="/wiki/Unitarity_(physics)" title="Unitarity (physics)">unitarity</a> is violated in certain scattering processes.<sup id="cite_ref-193" class="reference"><a href="#cite_note-193"><span class="cite-bracket">[</span>171<span class="cite-bracket">]</span></a></sup> </p><p>It is also possible, although experimentally difficult, to estimate the mass of the Higgs boson indirectly: In the Standard Model, the Higgs boson has a number of indirect effects; most notably, Higgs loops result in tiny corrections to masses of the W and Z bosons. Precision measurements of electroweak parameters, such as the <a href="/wiki/Fermi%27s_interaction" title="Fermi's interaction">Fermi constant</a> and masses of the W and Z bosons, can be used to calculate constraints on the mass of the Higgs. As of July 2011, the precision electroweak measurements tell us that the mass of the Higgs boson is likely to be less than about <span class="nowrap"><span data-sort-value="7002161000000000000♠"></span>161 GeV/<i>c</i><sup>2</sup></span> at 95% <a href="/wiki/Confidence_level" class="mw-redirect" title="Confidence level">confidence level</a>.<sup id="cite_ref-195" class="reference"><a href="#cite_note-195"><span class="cite-bracket">[</span>w<span class="cite-bracket">]</span></a></sup> These indirect constraints rely on the assumption that the Standard Model is correct. It may still be possible to discover a Higgs boson above these masses, if it is accompanied by other particles beyond those accommodated by the Standard Model.<sup id="cite_ref-196" class="reference"><a href="#cite_note-196"><span class="cite-bracket">[</span>173<span class="cite-bracket">]</span></a></sup> </p><p>The LHC cannot directly measure the Higgs boson's lifetime, due to its extreme brevity. It is predicted as <span class="nowrap"><span data-sort-value="6978156000000000000♠"></span>1.56<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−22</sup> s</span> based on the predicted <a href="/wiki/Decay_width" class="mw-redirect" title="Decay width">decay width</a> of <span class="nowrap"><span data-sort-value="6987652085830209000♠"></span>4.07<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−3</sup> GeV</span>.<sup id="cite_ref-LHCcrosssections_3-1" class="reference"><a href="#cite_note-LHCcrosssections-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> However it can be measured indirectly, based upon comparing masses measured from quantum phenomena occurring in the <a href="/wiki/On_shell_and_off_shell" title="On shell and off shell">on shell</a> production pathways and in the, much rarer, <a href="/wiki/On_shell_and_off_shell" title="On shell and off shell">off shell</a> production pathways, derived from Dalitz decay via a virtual photon <span class="nowrap">(H → γ*γ → ℓℓγ)</span>. Using this technique, the lifetime of the Higgs boson was tentatively measured in 2021 as <span class="nowrap">1.2 – <span class="nowrap"><span data-sort-value="6978460000000000000♠"></span>4.6<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−22</sup> s</span></span>, at sigma 3.2 (1 in 1000) significance.<sup id="cite_ref-lifetime1_5-1" class="reference"><a href="#cite_note-lifetime1-5"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-lifetime2-dalitz_6-2" class="reference"><a href="#cite_note-lifetime2-dalitz-6"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Production">Production</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=39" title="Edit section: Production"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable floatright" style="text-align:center;"> <caption><a href="/wiki/Feynman_diagram" title="Feynman diagram">Feynman diagrams</a> for Higgs production </caption> <tbody><tr> <td><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Higgs-gluon-fusion.svg" class="mw-file-description" title="Gluon fusion"><img alt="Gluon fusion" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Higgs-gluon-fusion.svg/150px-Higgs-gluon-fusion.svg.png" decoding="async" width="150" height="113" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Higgs-gluon-fusion.svg/225px-Higgs-gluon-fusion.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Higgs-gluon-fusion.svg/300px-Higgs-gluon-fusion.svg.png 2x" data-file-width="240" data-file-height="180" /></a></span><br /><i>Gluon fusion</i> </td> <td><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Higgs-Higgsstrahlung.svg" class="mw-file-description" title="Higgs Strahlung"><img alt="Higgs Strahlung" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Higgs-Higgsstrahlung.svg/150px-Higgs-Higgsstrahlung.svg.png" decoding="async" width="150" height="113" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Higgs-Higgsstrahlung.svg/225px-Higgs-Higgsstrahlung.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/50/Higgs-Higgsstrahlung.svg/300px-Higgs-Higgsstrahlung.svg.png 2x" data-file-width="240" data-file-height="180" /></a></span><br /><i>Higgs Strahlung</i> </td></tr> <tr> <td><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Higgs-WZ-fusion.svg" class="mw-file-description" title="Vector boson fusion"><img alt="Vector boson fusion" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Higgs-WZ-fusion.svg/150px-Higgs-WZ-fusion.svg.png" decoding="async" width="150" height="113" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Higgs-WZ-fusion.svg/225px-Higgs-WZ-fusion.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Higgs-WZ-fusion.svg/300px-Higgs-WZ-fusion.svg.png 2x" data-file-width="240" data-file-height="180" /></a></span><br /><i>Vector boson fusion</i> </td> <td><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Higgs-tt-fusion.svg" class="mw-file-description" title="Top fusion"><img alt="Top fusion" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Higgs-tt-fusion.svg/150px-Higgs-tt-fusion.svg.png" decoding="async" width="150" height="113" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Higgs-tt-fusion.svg/225px-Higgs-tt-fusion.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/94/Higgs-tt-fusion.svg/300px-Higgs-tt-fusion.svg.png 2x" data-file-width="240" data-file-height="180" /></a></span><br /><i>Top fusion</i> </td></tr></tbody></table> <p>If Higgs particle theories are valid, then a Higgs particle can be produced much like other particles that are studied, in a <a href="/wiki/Particle_collider" class="mw-redirect" title="Particle collider">particle collider</a>. This involves accelerating a large number of particles to extremely high energies and extremely close to the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a>, then allowing them to smash together. <a href="/wiki/Proton" title="Proton">Protons</a> and lead <a href="/wiki/Ion" title="Ion">ions</a> (the bare <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nuclei</a> of lead <a href="/wiki/Atom" title="Atom">atoms</a>) are used at the LHC. In the extreme energies of these collisions, the desired esoteric particles will occasionally be produced and this can be detected and studied; any absence or difference from theoretical expectations can also be used to improve the theory. The relevant particle theory (in this case the Standard Model) will determine the necessary kinds of collisions and detectors. The Standard Model predicts that Higgs bosons could be formed in a number of ways,<sup id="cite_ref-HprodLHC_110-1" class="reference"><a href="#cite_note-HprodLHC-110"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-HprodTeva_197-0" class="reference"><a href="#cite_note-HprodTeva-197"><span class="cite-bracket">[</span>174<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-HprodLEP_198-0" class="reference"><a href="#cite_note-HprodLEP-198"><span class="cite-bracket">[</span>175<span class="cite-bracket">]</span></a></sup> although the probability of producing a Higgs boson in any collision is always expected to be very small – for example, only one Higgs boson per 10 billion collisions in the Large Hadron Collider.<sup id="cite_ref-production_rate_112-1" class="reference"><a href="#cite_note-production_rate-112"><span class="cite-bracket">[</span>q<span class="cite-bracket">]</span></a></sup> The most common expected processes for Higgs boson production are: </p> <dl><dt>Gluon fusion</dt> <dd>If the collided particles are <a href="/wiki/Hadron" title="Hadron">hadrons</a> such as the <a href="/wiki/Proton" title="Proton">proton</a> or <a href="/wiki/Antiproton" title="Antiproton">antiproton</a> – as is the case in the LHC and Tevatron – then it is most likely that two of the <a href="/wiki/Gluon" title="Gluon">gluons</a> binding the hadron together collide. The easiest way to produce a Higgs particle is if the two gluons combine to form a loop of <a href="/wiki/Virtual_particle" title="Virtual particle">virtual</a> quarks. Since the coupling of particles to the Higgs boson is proportional to their mass, this process is more likely for heavy particles. In practice it is enough to consider the contributions of virtual <a href="/wiki/Top_quark" title="Top quark">top</a> and <a href="/wiki/Bottom_quark" title="Bottom quark">bottom</a> quarks (the heaviest quarks). This process is the dominant contribution at the LHC and Tevatron being about ten times more likely than any of the other processes.<sup id="cite_ref-HprodLHC_110-2" class="reference"><a href="#cite_note-HprodLHC-110"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-HprodTeva_197-1" class="reference"><a href="#cite_note-HprodTeva-197"><span class="cite-bracket">[</span>174<span class="cite-bracket">]</span></a></sup></dd> <dt>Higgs Strahlung</dt> <dd>If an elementary <a href="/wiki/Fermion" title="Fermion">fermion</a> collides with an anti-fermion – e.g., a quark with an anti-quark or an <a href="/wiki/Electron" title="Electron">electron</a> with a <a href="/wiki/Positron" title="Positron">positron</a> – the two can merge to form a virtual W or Z boson which, if it carries sufficient energy, can then emit a Higgs boson. This process was the dominant production mode at the LEP, where an electron and a positron collided to form a virtual Z boson, and it was the second largest contribution for Higgs production at the Tevatron. At the LHC this process is only the third largest, because the LHC collides protons with protons, making a quark-antiquark collision less likely than at the Tevatron. Higgs Strahlung is also known as <i>associated production</i>.<sup id="cite_ref-HprodLHC_110-3" class="reference"><a href="#cite_note-HprodLHC-110"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-HprodTeva_197-2" class="reference"><a href="#cite_note-HprodTeva-197"><span class="cite-bracket">[</span>174<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-HprodLEP_198-1" class="reference"><a href="#cite_note-HprodLEP-198"><span class="cite-bracket">[</span>175<span class="cite-bracket">]</span></a></sup></dd> <dt>Weak boson fusion</dt> <dd>Another possibility when two (anti-)fermions collide is that the two exchange a virtual W or Z boson, which emits a Higgs boson. The colliding fermions do not need to be the same type. So, for example, an <a href="/wiki/Up_quark" title="Up quark">up quark</a> may exchange a Z boson with an anti-down quark. This process is the second most important for the production of Higgs particle at the LHC and LEP.<sup id="cite_ref-HprodLHC_110-4" class="reference"><a href="#cite_note-HprodLHC-110"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-HprodLEP_198-2" class="reference"><a href="#cite_note-HprodLEP-198"><span class="cite-bracket">[</span>175<span class="cite-bracket">]</span></a></sup></dd> <dt>Top fusion</dt> <dd>The final process that is commonly considered is by far the least likely (by two orders of magnitude). This process involves two colliding gluons, which each decay into a heavy quark–antiquark pair. A quark and antiquark from each pair can then combine to form a Higgs particle.<sup id="cite_ref-HprodLHC_110-5" class="reference"><a href="#cite_note-HprodLHC-110"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-HprodTeva_197-3" class="reference"><a href="#cite_note-HprodTeva-197"><span class="cite-bracket">[</span>174<span class="cite-bracket">]</span></a></sup></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Decay">Decay</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=40" title="Edit section: Decay"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Higgsdecaywidth.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Higgsdecaywidth.svg/290px-Higgsdecaywidth.svg.png" decoding="async" width="290" height="194" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Higgsdecaywidth.svg/435px-Higgsdecaywidth.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/36/Higgsdecaywidth.svg/580px-Higgsdecaywidth.svg.png 2x" data-file-width="304" data-file-height="203" /></a><figcaption>The Standard Model prediction for the <a href="/wiki/Decay_width" class="mw-redirect" title="Decay width">decay width</a> of the Higgs particle depends on the value of its mass.</figcaption></figure> <p>Quantum mechanics predicts that if it is possible for a particle to decay into a set of lighter particles, then it will eventually do so.<sup id="cite_ref-199" class="reference"><a href="#cite_note-199"><span class="cite-bracket">[</span>176<span class="cite-bracket">]</span></a></sup> This is also true for the Higgs boson. The likelihood with which this happens depends on a variety of factors including: the difference in mass, the strength of the interactions, etc. Most of these factors are fixed by the Standard Model, except for the mass of the Higgs boson itself. For a Higgs boson with a mass of <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span> the SM predicts a mean life time of about <span class="nowrap"><span data-sort-value="6978160000000000000♠"></span>1.6<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−22</sup> s</span>.<sup id="cite_ref-meanlife_4-1" class="reference"><a href="#cite_note-meanlife-4"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:HiggsBR.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/HiggsBR.svg/290px-HiggsBR.svg.png" decoding="async" width="290" height="169" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/HiggsBR.svg/435px-HiggsBR.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/07/HiggsBR.svg/580px-HiggsBR.svg.png 2x" data-file-width="298" data-file-height="174" /></a><figcaption>The Standard Model prediction for the <a href="/wiki/Branching_ratio" class="mw-redirect" title="Branching ratio">branching ratios</a> of the different decay modes of the Higgs particle depends on the value of its mass.</figcaption></figure> <p>Since it interacts with all the massive elementary particles of the SM, the Higgs boson has many different processes through which it can decay. Each of these possible processes has its own probability, expressed as the <i>branching ratio</i>; the fraction of the total number decays that follows that process. The SM predicts these branching ratios as a function of the Higgs mass (see plot). </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:HiggsDecays.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/HiggsDecays.png/290px-HiggsDecays.png" decoding="async" width="290" height="203" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/HiggsDecays.png/435px-HiggsDecays.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/97/HiggsDecays.png/580px-HiggsDecays.png 2x" data-file-width="849" data-file-height="594" /></a><figcaption>Higgs boson decays into heavy vector boson pairs (a), fermion–antifermion pairs (b) and photon pairs or Zγ (c,d)<sup id="cite_ref-200" class="reference"><a href="#cite_note-200"><span class="cite-bracket">[</span>177<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>One way that the Higgs can decay is by splitting into a fermion–antifermion pair. As general rule, the Higgs is more likely to decay into heavy fermions than light fermions, because the mass of a fermion is proportional to the strength of its interaction with the Higgs.<sup id="cite_ref-PDGreview2012_144-1" class="reference"><a href="#cite_note-PDGreview2012-144"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> By this logic the most common decay should be into a <a href="/wiki/Top_quark" title="Top quark">top</a>–antitop quark pair. However, such a decay would only be possible if the Higgs were heavier than ~<span class="nowrap"><span data-sort-value="7002346000000000000♠"></span>346 GeV/<i>c</i><sup>2</sup></span>, twice the mass of the top quark. For a Higgs mass of <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span> the SM predicts that the most common decay is into a <a href="/wiki/Bottom_quark" title="Bottom quark">bottom</a>–antibottom quark pair, which happens 57.7% of the time.<sup id="cite_ref-LHCcrosssections_3-2" class="reference"><a href="#cite_note-LHCcrosssections-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> The second most common fermion decay at that mass is a <a href="/wiki/Tau_particle" class="mw-redirect" title="Tau particle">tau</a>–antitau pair, which happens only about 6.3% of the time.<sup id="cite_ref-LHCcrosssections_3-3" class="reference"><a href="#cite_note-LHCcrosssections-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Another possibility is for the Higgs to split into a pair of massive gauge bosons. The most likely possibility is for the Higgs to decay into a pair of W bosons (the light blue line in the plot), which happens about 21.5% of the time for a Higgs boson with a mass of <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span>.<sup id="cite_ref-LHCcrosssections_3-4" class="reference"><a href="#cite_note-LHCcrosssections-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> The W bosons can subsequently decay either into a quark and an antiquark or into a charged lepton and a neutrino. The decays of W bosons into quarks are difficult to distinguish from the background, and the decays into leptons cannot be fully reconstructed (because neutrinos are impossible to detect in particle collision experiments). A cleaner signal is given by decay into a pair of Z-bosons (which happens about 2.6% of the time for a Higgs with a mass of <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span>),<sup id="cite_ref-LHCcrosssections_3-5" class="reference"><a href="#cite_note-LHCcrosssections-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> if each of the bosons subsequently decays into a pair of easy-to-detect charged leptons (<a href="/wiki/Electron" title="Electron">electrons</a> or <a href="/wiki/Muon" title="Muon">muons</a>). </p><p>Decay into massless gauge bosons (i.e., <a href="/wiki/Gluon" title="Gluon">gluons</a> or <a href="/wiki/Photon" title="Photon">photons</a>) is also possible, but requires intermediate loop of virtual heavy quarks (top or bottom) or massive gauge bosons.<sup id="cite_ref-PDGreview2012_144-2" class="reference"><a href="#cite_note-PDGreview2012-144"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> The most common such process is the decay into a pair of gluons through a loop of virtual heavy quarks. This process, which is the reverse of the gluon fusion process mentioned above, happens approximately 8.6% of the time for a Higgs boson with a mass of <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span>.<sup id="cite_ref-LHCcrosssections_3-6" class="reference"><a href="#cite_note-LHCcrosssections-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Much rarer is the decay into a pair of photons mediated by a loop of W bosons or heavy quarks, which happens only twice for every thousand decays.<sup id="cite_ref-LHCcrosssections_3-7" class="reference"><a href="#cite_note-LHCcrosssections-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> However, this process is very relevant for experimental searches for the Higgs boson, because the energy and momentum of the photons can be measured very precisely, giving an accurate reconstruction of the mass of the decaying particle.<sup id="cite_ref-PDGreview2012_144-3" class="reference"><a href="#cite_note-PDGreview2012-144"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> </p><p>In 2021 the extremely rare Dalitz decay was tentatively observed,<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2024)">citation needed</span></a></i>]</sup> into two <a href="/wiki/Lepton" title="Lepton">leptons</a> (electrons or muons) and a photon (ℓℓγ), via <a href="/wiki/Virtual_photon" title="Virtual photon">virtual photon</a> decay. This can happen in three ways; Higgs to virtual photon to ℓℓγ in which the virtual photon (γ*) has very small but nonzero mass, Higgs to Z boson to ℓℓγ, or Higgs to two leptons, one of which emits a final-state photon leading to ℓℓγ. ATLAS searched for evidence of the first of these <span class="nowrap">(H → γ*γ → ℓℓγ)</span> at low di-lepton mass <span class="nowrap">(≤ <span class="nowrap"><span data-sort-value="7001300000000000000♠"></span>30 GeV/<i>c</i><sup>2</sup></span>)</span>, where this process should dominate. The observation is at sigma 3.2 (1 in 1000) significance.<sup id="cite_ref-lifetime1_5-2" class="reference"><a href="#cite_note-lifetime1-5"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-lifetime2-dalitz_6-3" class="reference"><a href="#cite_note-lifetime2-dalitz-6"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> This decay path is important because it facilitates measuring the <a href="/wiki/On_shell_and_off_shell" title="On shell and off shell">on- and off-shell</a> mass of the Higgs boson (allowing indirect measurement of decay time), and the decay into two charged particles allows exploration of <a href="/wiki/Charge_conjugation" class="mw-redirect" title="Charge conjugation">charge conjugation</a> and <a href="/wiki/CP_violation" title="CP violation">charge parity (CP) violation</a>.<sup id="cite_ref-lifetime2-dalitz_6-4" class="reference"><a href="#cite_note-lifetime2-dalitz-6"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Public_discussion">Public discussion</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=41" title="Edit section: Public discussion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Naming">Naming</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=42" title="Edit section: Naming"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Names_used_by_physicists">Names used by physicists</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=43" title="Edit section: Names used by physicists"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The name most strongly associated with the particle and field is the Higgs boson<sup id="cite_ref-frank_close_infinity_puzzle_108-1" class="reference"><a href="#cite_note-frank_close_infinity_puzzle-108"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 168">: 168 </span></sup> and Higgs field. For some time the particle was known by a combination of its PRL author names (including at times Anderson), for example the Brout–Englert–Higgs particle, the Anderson–Higgs particle, or the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism,<sup id="cite_ref-other-names-used-note_202-0" class="reference"><a href="#cite_note-other-names-used-note-202"><span class="cite-bracket">[</span>x<span class="cite-bracket">]</span></a></sup> and these are still used at times.<sup id="cite_ref-scholarpedia_78-4" class="reference"><a href="#cite_note-scholarpedia-78"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Nature-Higgs_name_203-0" class="reference"><a href="#cite_note-Nature-Higgs_name-203"><span class="cite-bracket">[</span>179<span class="cite-bracket">]</span></a></sup> Fuelled in part by the issue of recognition and a potential shared Nobel Prize,<sup id="cite_ref-Nature-Higgs_name_203-1" class="reference"><a href="#cite_note-Nature-Higgs_name-203"><span class="cite-bracket">[</span>179<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Nova_204-0" class="reference"><a href="#cite_note-Nova-204"><span class="cite-bracket">[</span>180<span class="cite-bracket">]</span></a></sup> the most appropriate name was still occasionally a topic of debate until 2013.<sup id="cite_ref-Nature-Higgs_name_203-2" class="reference"><a href="#cite_note-Nature-Higgs_name-203"><span class="cite-bracket">[</span>179<span class="cite-bracket">]</span></a></sup> Higgs himself preferred to call the particle either by an acronym of all those involved, or "the scalar boson", or "the so-called Higgs particle".<sup id="cite_ref-Nova_204-1" class="reference"><a href="#cite_note-Nova-204"><span class="cite-bracket">[</span>180<span class="cite-bracket">]</span></a></sup> </p><p>A considerable amount has been written on how Higgs' name came to be exclusively used. Two main explanations are offered. The first is that Higgs undertook a step which was either unique, clearer or more explicit in his paper in formally predicting and examining the particle. Of the PRL papers' authors, only the paper by Higgs <i>explicitly</i> offered as a prediction that a massive particle would exist and calculated some of its properties;<sup id="cite_ref-CERNHiggsFAQ_205-0" class="reference"><a href="#cite_note-CERNHiggsFAQ-205"><span class="cite-bracket">[</span>181<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-frank_close_infinity_puzzle_108-4" class="reference"><a href="#cite_note-frank_close_infinity_puzzle-108"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 167">: 167 </span></sup> he was therefore "the first to postulate the existence of a massive particle" according to <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>.<sup id="cite_ref-Nature-Higgs_name_203-3" class="reference"><a href="#cite_note-Nature-Higgs_name-203"><span class="cite-bracket">[</span>179<span class="cite-bracket">]</span></a></sup> Physicist and author <a href="/wiki/Frank_Close" title="Frank Close">Frank Close</a> and physicist-blogger <a href="/wiki/Peter_Woit" title="Peter Woit">Peter Woit</a> both comment that the paper by GHK was also completed after Higgs and Brout–Englert were submitted to <a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a>,<sup id="cite_ref-woit2013_206-0" class="reference"><a href="#cite_note-woit2013-206"><span class="cite-bracket">[</span>182<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-frank_close_infinity_puzzle_108-5" class="reference"><a href="#cite_note-frank_close_infinity_puzzle-108"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 167">: 167 </span></sup> and that Higgs alone had drawn attention to a predicted massive <i>scalar</i> boson, while all others had focused on the massive <i>vector</i> bosons.<sup id="cite_ref-woit2013_206-1" class="reference"><a href="#cite_note-woit2013-206"><span class="cite-bracket">[</span>182<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-frank_close_infinity_puzzle_108-6" class="reference"><a href="#cite_note-frank_close_infinity_puzzle-108"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 154,166,175">: 154,166,175 </span></sup> In this way, Higgs' contribution also provided experimentalists with a crucial "concrete target" needed to test the theory.<sup id="cite_ref-207" class="reference"><a href="#cite_note-207"><span class="cite-bracket">[</span>183<span class="cite-bracket">]</span></a></sup> </p><p>However, in Higgs' view, Brout and Englert did not explicitly mention the boson since its existence is plainly obvious in their work,<sup id="cite_ref-MyLifeAsABoson_83-1" class="reference"><a href="#cite_note-MyLifeAsABoson-83"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 6">: 6 </span></sup> while according to Guralnik the GHK paper was a complete analysis of the entire symmetry breaking mechanism whose <a href="/wiki/Mathematical_rigour" class="mw-redirect" title="Mathematical rigour">mathematical rigour</a> is absent from the other two papers, and a massive particle may exist in some solutions.<sup id="cite_ref-Guralnik_2009_109-1" class="reference"><a href="#cite_note-Guralnik_2009-109"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 9">: 9 </span></sup> Higgs' paper also provided an "especially sharp" statement of the challenge and its solution according to <a href="/wiki/History_of_science" title="History of science">science historian</a> David Kaiser.<sup id="cite_ref-Nova_204-2" class="reference"><a href="#cite_note-Nova-204"><span class="cite-bracket">[</span>180<span class="cite-bracket">]</span></a></sup> </p><p>The alternative explanation is that the name was popularised in the 1970s due to its use as a convenient shorthand or because of a mistake in citing. Many accounts <span style="font-size:120%">(</span>including Higgs' own<sup id="cite_ref-MyLifeAsABoson_83-2" class="reference"><a href="#cite_note-MyLifeAsABoson-83"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 7">: 7 </span></sup><span style="font-size:120%">)</span> credit the "Higgs" name to physicist <a href="/wiki/Benjamin_W._Lee" title="Benjamin W. Lee">Benjamin Lee</a>.<sup id="cite_ref-208" class="reference"><a href="#cite_note-208"><span class="cite-bracket">[</span>y<span class="cite-bracket">]</span></a></sup> Lee was a significant populariser of the theory in its early days, and habitually attached the name "Higgs" as a "convenient shorthand" for its components from 1972,<sup id="cite_ref-ISample29052009_20-1" class="reference"><a href="#cite_note-ISample29052009-20"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Nature-Higgs_name_203-4" class="reference"><a href="#cite_note-Nature-Higgs_name-203"><span class="cite-bracket">[</span>179<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Peskin_209-0" class="reference"><a href="#cite_note-Peskin-209"><span class="cite-bracket">[</span>184<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-210" class="reference"><a href="#cite_note-210"><span class="cite-bracket">[</span>185<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-211" class="reference"><a href="#cite_note-211"><span class="cite-bracket">[</span>186<span class="cite-bracket">]</span></a></sup> and in at least one instance from as early as 1966.<sup id="cite_ref-Lee_Weinberg_2012_name_212-0" class="reference"><a href="#cite_note-Lee_Weinberg_2012_name-212"><span class="cite-bracket">[</span>187<span class="cite-bracket">]</span></a></sup> Although Lee clarified in his footnotes that "'Higgs' is an abbreviation for Higgs, Kibble, Guralnik, Hagen, Brout, Englert",<sup id="cite_ref-Peskin_209-1" class="reference"><a href="#cite_note-Peskin-209"><span class="cite-bracket">[</span>184<span class="cite-bracket">]</span></a></sup> his use of the term (and perhaps also Steven Weinberg's mistaken cite of Higgs' paper as the first in his seminal 1967 paper<sup id="cite_ref-frank_close_infinity_puzzle_108-7" class="reference"><a href="#cite_note-frank_close_infinity_puzzle-108"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-New_York_Review_2012_213-0" class="reference"><a href="#cite_note-New_York_Review_2012-213"><span class="cite-bracket">[</span>188<span class="cite-bracket">]</span></a></sup> <sup id="cite_ref-Lee_Weinberg_2012_name_212-1" class="reference"><a href="#cite_note-Lee_Weinberg_2012_name-212"><span class="cite-bracket">[</span>187<span class="cite-bracket">]</span></a></sup>) meant that by around 1975–1976 others had also begun to use the name "Higgs" exclusively as a shorthand.<sup id="cite_ref-early-use-of-name-Higgs-boson_214-0" class="reference"><a href="#cite_note-early-use-of-name-Higgs-boson-214"><span class="cite-bracket">[</span>z<span class="cite-bracket">]</span></a></sup> In 2012, physicist <a href="/wiki/Frank_Wilczek" title="Frank Wilczek">Frank Wilczek</a>, who was credited for naming the elementary particle, the <a href="/wiki/Axion" title="Axion">axion</a> (over an alternative proposal "Higglet", by Weinberg), endorsed the "Higgs boson" name, stating "History is complicated, and wherever you draw the line, there will be somebody just below it."<sup id="cite_ref-Nova_204-3" class="reference"><a href="#cite_note-Nova-204"><span class="cite-bracket">[</span>180<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Nickname">Nickname</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=44" title="Edit section: Nickname"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Higgs boson is often referred to as the "God particle" in popular media outside the scientific community.<sup id="cite_ref-215" class="reference"><a href="#cite_note-215"><span class="cite-bracket">[</span>189<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-216" class="reference"><a href="#cite_note-216"><span class="cite-bracket">[</span>190<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-217" class="reference"><a href="#cite_note-217"><span class="cite-bracket">[</span>191<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-218" class="reference"><a href="#cite_note-218"><span class="cite-bracket">[</span>192<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-219" class="reference"><a href="#cite_note-219"><span class="cite-bracket">[</span>193<span class="cite-bracket">]</span></a></sup> The nickname comes from the title of the 1993 book on the Higgs boson and particle physics, <i><a href="/wiki/The_God_Particle:_If_the_Universe_Is_the_Answer,_What_Is_the_Question%3F" class="mw-redirect" title="The God Particle: If the Universe Is the Answer, What Is the Question?">The God Particle: If the Universe Is the Answer, What Is the Question?</a></i> by <a href="/wiki/Nobel_Prize_for_Physics" class="mw-redirect" title="Nobel Prize for Physics">Physics Nobel Prize winner</a> and <a href="/wiki/Fermilab" title="Fermilab">Fermilab</a> director <a href="/wiki/Leon_Lederman" class="mw-redirect" title="Leon Lederman">Leon Lederman</a>.<sup id="cite_ref-L&T_37-1" class="reference"><a href="#cite_note-L&T-37"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> Lederman wrote it in the context of failing US government support for the <a href="/wiki/Superconducting_Super_Collider" title="Superconducting Super Collider">Superconducting Super Collider</a>,<sup id="cite_ref-SSC_LA_Times_220-0" class="reference"><a href="#cite_note-SSC_LA_Times-220"><span class="cite-bracket">[</span>194<span class="cite-bracket">]</span></a></sup> a partially constructed titanic<sup id="cite_ref-221" class="reference"><a href="#cite_note-221"><span class="cite-bracket">[</span>195<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-222" class="reference"><a href="#cite_note-222"><span class="cite-bracket">[</span>196<span class="cite-bracket">]</span></a></sup> competitor to the <a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">Large Hadron Collider</a> with planned collision energies of <span class="nowrap">2 × 20 TeV</span> that was championed by Lederman since its 1983 inception<sup id="cite_ref-SSC_LA_Times_220-1" class="reference"><a href="#cite_note-SSC_LA_Times-220"><span class="cite-bracket">[</span>194<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-223" class="reference"><a href="#cite_note-223"><span class="cite-bracket">[</span>aa<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Illinois_Issues_1987_224-0" class="reference"><a href="#cite_note-Illinois_Issues_1987-224"><span class="cite-bracket">[</span>197<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Caltech_225-0" class="reference"><a href="#cite_note-Caltech-225"><span class="cite-bracket">[</span>198<span class="cite-bracket">]</span></a></sup> and shut down in 1993. The book sought in part to promote awareness of the significance and need for such a project in the face of its possible loss of funding.<sup id="cite_ref-Calder_2005_226-0" class="reference"><a href="#cite_note-Calder_2005-226"><span class="cite-bracket">[</span>199<span class="cite-bracket">]</span></a></sup> Lederman, a leading researcher in the field, writes that he wanted to title his book <i>The Goddamn Particle: If the Universe is the Answer, What is the Question?</i> Lederman's editor decided that the title was too controversial and convinced him to change the title to <i>The God Particle: If the Universe is the Answer, What is the Question?</i><sup id="cite_ref-goddamnparticleoffensive_227-0" class="reference"><a href="#cite_note-goddamnparticleoffensive-227"><span class="cite-bracket">[</span>200<span class="cite-bracket">]</span></a></sup> </p><p>While media use of this term may have contributed to wider awareness and interest,<sup id="cite_ref-228" class="reference"><a href="#cite_note-228"><span class="cite-bracket">[</span>201<span class="cite-bracket">]</span></a></sup> many scientists feel the name is inappropriate<sup id="cite_ref-ISample29052009_20-2" class="reference"><a href="#cite_note-ISample29052009-20"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-NatPost_21-1" class="reference"><a href="#cite_note-NatPost-21"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ISample03032009_229-0" class="reference"><a href="#cite_note-ISample03032009-229"><span class="cite-bracket">[</span>202<span class="cite-bracket">]</span></a></sup> since it is sensational <a href="/wiki/Hyperbole" title="Hyperbole">hyperbole</a> and misleads readers;<sup id="cite_ref-nickname-telegraph_230-0" class="reference"><a href="#cite_note-nickname-telegraph-230"><span class="cite-bracket">[</span>203<span class="cite-bracket">]</span></a></sup> the particle also has nothing to do with any God, leaves open numerous <a href="/wiki/Unanswered_questions_in_physics" class="mw-redirect" title="Unanswered questions in physics">questions in fundamental physics</a>, and does not explain the ultimate <a href="/wiki/Origin_of_the_universe" class="mw-redirect" title="Origin of the universe">origin of the universe</a>. <a href="/wiki/Peter_Higgs" title="Peter Higgs">Higgs</a>, an <a href="/wiki/Atheist" class="mw-redirect" title="Atheist">atheist</a>, was reported to be displeased and stated in a 2008 interview that he found it "embarrassing" because it was "the kind of misuse<span class="nowrap"> </span>[...] which I think might offend some people".<sup id="cite_ref-nickname-telegraph_230-1" class="reference"><a href="#cite_note-nickname-telegraph-230"><span class="cite-bracket">[</span>203<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-nickname-reuters_231-0" class="reference"><a href="#cite_note-nickname-reuters-231"><span class="cite-bracket">[</span>204<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-NS_232-0" class="reference"><a href="#cite_note-NS-232"><span class="cite-bracket">[</span>205<span class="cite-bracket">]</span></a></sup> The nickname has been satirised in mainstream media as well.<sup id="cite_ref-233" class="reference"><a href="#cite_note-233"><span class="cite-bracket">[</span>206<span class="cite-bracket">]</span></a></sup> Science writer Ian Sample stated in his 2010 book on the search that the nickname is "universally hate[d]" by physicists and perhaps the "worst derided" in the <a href="/wiki/History_of_physics" title="History of physics">history of physics</a>, but that (according to Lederman) the publisher rejected all titles mentioning "Higgs" as unimaginative and too unknown.<sup id="cite_ref-234" class="reference"><a href="#cite_note-234"><span class="cite-bracket">[</span>207<span class="cite-bracket">]</span></a></sup> </p><p>Lederman begins with a review of the long human search for knowledge, and explains that his tongue-in-cheek title draws an analogy between the impact of the Higgs field on the fundamental symmetries at the <a href="/wiki/Big_Bang" title="Big Bang">Big Bang</a>, and the apparent chaos of structures, particles, forces and interactions that resulted and shaped our present universe, with the biblical story of <a href="/wiki/Tower_of_Babel" title="Tower of Babel">Babel</a> in which the primordial single language of early <a href="/wiki/Book_of_Genesis" title="Book of Genesis">Genesis</a> was <a href="/wiki/Confusion_of_tongues" class="mw-redirect" title="Confusion of tongues">fragmented into many disparate languages</a> and cultures.<sup id="cite_ref-235" class="reference"><a href="#cite_note-235"><span class="cite-bracket">[</span>208<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>Today<span class="nowrap"> </span>[...] we have the standard model, which reduces all of reality to a dozen or so particles and four forces<span class="nowrap"> </span>[...] It's a hard-won simplicity [and] remarkably accurate. But it is also incomplete and, in fact, internally inconsistent<span class="nowrap"> </span>[...] This boson is so central to the state of physics today, so crucial to our final understanding of the structure of matter, yet so elusive, that I have given it a nickname: the God Particle. Why God Particle? Two reasons. One, the publisher wouldn't let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing. And two, there is a connection, of sorts, to <a href="/wiki/Book_of_Genesis" title="Book of Genesis">another book</a>, a <em>much</em> older one ...</p><div class="templatequotecite">— <cite>Lederman & Teresi<sup id="cite_ref-L&T_37-2" class="reference"><a href="#cite_note-L&T-37"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 22">: 22 </span></sup></cite></div></blockquote> <p>Lederman asks whether the Higgs boson was added just to perplex and confound those seeking knowledge of the universe, and whether physicists will be confounded by it as recounted in that story, or ultimately surmount the challenge and understand "how beautiful is the universe [God has] made".<sup id="cite_ref-236" class="reference"><a href="#cite_note-236"><span class="cite-bracket">[</span>209<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Other_proposals">Other proposals</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=45" title="Edit section: Other proposals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A renaming competition by British newspaper <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i> in 2009 resulted in their science correspondent choosing the name "the <a href="/wiki/Champagne_bottle" class="mw-redirect" title="Champagne bottle">champagne bottle</a> boson" as the best submission: "The bottom of a champagne bottle is in the shape of the <a href="/wiki/Higgs_potential" class="mw-redirect" title="Higgs potential">Higgs potential</a> and is often used as an illustration in physics lectures. So it's not an embarrassingly grandiose name, it is memorable, and [it] has some physics connection too."<sup id="cite_ref-237" class="reference"><a href="#cite_note-237"><span class="cite-bracket">[</span>210<span class="cite-bracket">]</span></a></sup> The name <i>Higgson</i> was suggested as well, in an opinion piece in the <a href="/wiki/Institute_of_Physics" title="Institute of Physics">Institute of Physics</a>' online publication <i>physicsworld.com</i>.<sup id="cite_ref-238" class="reference"><a href="#cite_note-238"><span class="cite-bracket">[</span>211<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Educational_explanations_and_analogies">Educational explanations and analogies</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=46" title="Edit section: Educational explanations and analogies"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Light_dispersion_of_a_mercury-vapor_lamp_with_a_flint_glass_prism_IPNr%C2%B00125.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Light_dispersion_of_a_mercury-vapor_lamp_with_a_flint_glass_prism_IPNr%C2%B00125.jpg/220px-Light_dispersion_of_a_mercury-vapor_lamp_with_a_flint_glass_prism_IPNr%C2%B00125.jpg" decoding="async" width="220" height="268" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Light_dispersion_of_a_mercury-vapor_lamp_with_a_flint_glass_prism_IPNr%C2%B00125.jpg/330px-Light_dispersion_of_a_mercury-vapor_lamp_with_a_flint_glass_prism_IPNr%C2%B00125.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Light_dispersion_of_a_mercury-vapor_lamp_with_a_flint_glass_prism_IPNr%C2%B00125.jpg/440px-Light_dispersion_of_a_mercury-vapor_lamp_with_a_flint_glass_prism_IPNr%C2%B00125.jpg 2x" data-file-width="2309" data-file-height="2818" /></a><figcaption>Photograph of light passing through a <a href="/wiki/Dispersive_prism" title="Dispersive prism">dispersive prism</a>: the rainbow effect arises because <a href="/wiki/Photon" title="Photon">photons</a> are not all affected to the same degree by the dispersive material of the prism.</figcaption></figure> <p>There has been considerable public discussion of analogies and explanations for the Higgs particle and how the field creates mass,<sup id="cite_ref-239" class="reference"><a href="#cite_note-239"><span class="cite-bracket">[</span>212<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-240" class="reference"><a href="#cite_note-240"><span class="cite-bracket">[</span>213<span class="cite-bracket">]</span></a></sup> including coverage of explanatory attempts in their own right and a competition in 1993 for the best popular explanation by then-UK Minister for Science <a href="/wiki/William_Waldegrave,_Baron_Waldegrave_of_North_Hill" title="William Waldegrave, Baron Waldegrave of North Hill">Sir William Waldegrave</a> <sup id="cite_ref-241" class="reference"><a href="#cite_note-241"><span class="cite-bracket">[</span>214<span class="cite-bracket">]</span></a></sup> and articles in newspapers worldwide. </p><p>An educational collaboration involving an LHC physicist and a <a rel="nofollow" class="external text" href="http://teachers.web.cern.ch/teachers/">High School Teachers at CERN</a> educator suggests that <a href="/wiki/Dispersion_(optics)" title="Dispersion (optics)">dispersion of light</a> – responsible for the <a href="/wiki/Rainbow" title="Rainbow">rainbow</a> and <a href="/wiki/Dispersive_prism" title="Dispersive prism">dispersive prism</a> – is a useful analogy for the Higgs field's symmetry breaking and mass-causing effect.<sup id="cite_ref-242" class="reference"><a href="#cite_note-242"><span class="cite-bracket">[</span>215<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable" style="font-size:90%"> <tbody><tr> <td><b>Symmetry breaking<br />in optics</b></td> <td>In vacuum, light of all colours (or <a href="/wiki/Photon" title="Photon">photons</a> of all <a href="/wiki/Wavelength" title="Wavelength">wavelengths</a>) travels at <a href="/wiki/Speed_of_light" title="Speed of light">the same velocity</a>, a symmetrical situation. In some substances such as glass, water or air, this symmetry is broken <i>(See: <a href="/wiki/Photon#In_matter" title="Photon">Photons in matter</a>)</i>. The result is that light of different wavelengths have <a href="/wiki/Speed_of_light#In_a_medium" title="Speed of light">different velocities</a>. </td></tr> <tr> <td><b><span class="nowrap">Symmetry breaking<br />in particle physics</span></b></td> <td>In "naive" gauge theories, gauge bosons and other fundamental particles are all massless – also a symmetrical situation. In the presence of the Higgs field this symmetry is broken. The result is that particles of different types will have different masses. </td></tr></tbody></table> <p>Matt Strassler uses electric fields as an analogy:<sup id="cite_ref-243" class="reference"><a href="#cite_note-243"><span class="cite-bracket">[</span>216<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>Some particles interact with the Higgs field while others don't. Those particles that feel the Higgs field act as if they have mass. Something similar happens in an <a href="/wiki/Electric_field" title="Electric field">electric field</a> – charged objects are pulled around and neutral objects can sail through unaffected. So you can think of the Higgs search as an attempt to make waves in the Higgs field [<i>create Higgs bosons</i>] to prove it's really there.</p></blockquote> <p>A similar explanation was offered by <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>:<sup id="cite_ref-244" class="reference"><a href="#cite_note-244"><span class="cite-bracket">[</span>217<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>The Higgs boson is essentially a ripple in a field said to have emerged at the birth of the universe and to span the cosmos to this day ... The particle is crucial however: It is the <a href="/wiki/Smoking_gun" title="Smoking gun">smoking gun</a>, the evidence required to show the theory is right.</p></blockquote> <p>The Higgs field's effect on particles was famously described by physicist David Miller as akin to a room full of political party workers spread evenly throughout a room: The crowd gravitates to and slows down famous people but does not slow down others.<sup id="cite_ref-247" class="reference"><a href="#cite_note-247"><span class="cite-bracket">[</span>ab<span class="cite-bracket">]</span></a></sup> He also drew attention to well-known effects in <a href="/wiki/Solid_state_physics" class="mw-redirect" title="Solid state physics">solid state physics</a> where an electron's effective mass can be much greater than usual in the presence of a crystal lattice.<sup id="cite_ref-Miller_analogy_245-1" class="reference"><a href="#cite_note-Miller_analogy-245"><span class="cite-bracket">[</span>218<span class="cite-bracket">]</span></a></sup> </p><p>Analogies based on <a href="/wiki/Drag_(physics)" title="Drag (physics)">drag</a> effects, including analogies of "<a href="/wiki/Syrup" title="Syrup">syrup</a>" or "<a href="/wiki/Molasses" title="Molasses">molasses</a>" are also well known, but can be somewhat misleading since they may be understood (incorrectly) as saying that the Higgs field simply resists some particles' motion but not others' – a simple resistive effect could also conflict with <a href="/wiki/Newton%27s_third_law" class="mw-redirect" title="Newton's third law">Newton's third law</a>.<sup id="cite_ref-248" class="reference"><a href="#cite_note-248"><span class="cite-bracket">[</span>220<span class="cite-bracket">]</span></a></sup> </p><p>The Higgs boson is commonly misunderstood as responsible for mass, rather than the Higgs field, and as relating to most mass in the universe.<sup id="cite_ref-249" class="reference"><a href="#cite_note-249"><span class="cite-bracket">[</span>221<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-250" class="reference"><a href="#cite_note-250"><span class="cite-bracket">[</span>222<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-251" class="reference"><a href="#cite_note-251"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Recognition_and_awards">Recognition and awards</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=47" title="Edit section: Recognition and awards"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There was considerable discussion prior to late 2013 of how to allocate the credit if the Higgs boson is proven, made more pointed as a <a href="/wiki/Nobel_Prize_in_Physics" title="Nobel Prize in Physics">Nobel prize</a> had been expected, and the very wide basis of people entitled to consideration. These include a range of theoreticians who made the Higgs mechanism theory possible, the theoreticians of the 1964 PRL papers (including Higgs himself), the theoreticians who derived from these a working electroweak theory and the Standard Model itself, and also the experimentalists at CERN and other institutions who made possible the proof of the Higgs field and boson in reality. The Nobel prize has a limit of three persons to share an award, and some possible winners are already prize holders for other work, or are deceased (the prize is only awarded to persons in their lifetime). Existing prizes for works relating to the Higgs field, boson, or mechanism include: </p> <ul><li>Nobel Prize in Physics (1979) – <a href="/wiki/Sheldon_Glashow" title="Sheldon Glashow">Glashow</a>, <a href="/wiki/Abdus_Salam" title="Abdus Salam">Salam</a>, and <a href="/wiki/Steven_Weinberg" title="Steven Weinberg">Weinberg</a>, <i>for contributions to the theory of the unified weak and electromagnetic interaction between elementary particles</i><sup id="cite_ref-252" class="reference"><a href="#cite_note-252"><span class="cite-bracket">[</span>224<span class="cite-bracket">]</span></a></sup></li> <li>Nobel Prize in Physics (1999) – <a href="/wiki/Gerard_%27t_Hooft" title="Gerard 't Hooft">'t Hooft</a> and <a href="/wiki/Tini_Veltman" class="mw-redirect" title="Tini Veltman">Veltman</a>, <i>for elucidating the quantum structure of electroweak interactions in physics</i><sup id="cite_ref-253" class="reference"><a href="#cite_note-253"><span class="cite-bracket">[</span>225<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Sakurai_Prize" title="Sakurai Prize">J. J. Sakurai Prize for Theoretical Particle Physics</a> (2010) – Hagen, Englert, Guralnik, Higgs, Brout, and Kibble, <i>for elucidation of the properties of spontaneous symmetry breaking in four-dimensional relativistic gauge theory and of the mechanism for the consistent generation of vector boson masses</i><sup id="cite_ref-sakuraiprize_106-1" class="reference"><a href="#cite_note-sakuraiprize-106"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup> (for the 1964 papers described <a href="#History">above</a>)</li> <li><a href="/wiki/Wolf_Prize" title="Wolf Prize">Wolf Prize</a> (2004) – Englert, Brout, and Higgs</li> <li><a href="/wiki/Breakthrough_Prize_in_Fundamental_Physics" title="Breakthrough Prize in Fundamental Physics">Special Breakthrough Prize in Fundamental Physics</a> (2013) – <a href="/wiki/Fabiola_Gianotti" title="Fabiola Gianotti">Fabiola Gianotti</a> and <a href="/wiki/Peter_Jenni" title="Peter Jenni">Peter Jenni</a>, spokespersons of the ATLAS Collaboration and Michel Della Negra, Tejinder Singh Virdee, Guido Tonelli, and Joseph Incandela spokespersons, past and present, of the CMS collaboration, "For [their] leadership role in the scientific endeavour that led to the discovery of the new Higgs-like particle by the ATLAS and CMS collaborations at CERN's Large Hadron Collider".<sup id="cite_ref-254" class="reference"><a href="#cite_note-254"><span class="cite-bracket">[</span>226<span class="cite-bracket">]</span></a></sup></li> <li>Nobel Prize in Physics (2013) – <a href="/wiki/Peter_Higgs" title="Peter Higgs">Peter Higgs</a> and <a href="/wiki/Fran%C3%A7ois_Englert" title="François Englert">François Englert</a>, <i>for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider</i><sup id="cite_ref-255" class="reference"><a href="#cite_note-255"><span class="cite-bracket">[</span>227<span class="cite-bracket">]</span></a></sup></li></ul> <p>Englert's co-researcher <a href="/wiki/Robert_Brout" title="Robert Brout">Robert Brout</a> had died in 2011 and the Nobel Prize is <a href="/wiki/Nobel_Prize#Posthumous_nominations" title="Nobel Prize">not ordinarily given posthumously</a>.<sup id="cite_ref-256" class="reference"><a href="#cite_note-256"><span class="cite-bracket">[</span>228<span class="cite-bracket">]</span></a></sup> </p><p>Additionally <a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a>' 50-year review (2008) recognised the <a href="/wiki/1964_PRL_symmetry_breaking_papers" title="1964 PRL symmetry breaking papers">1964 PRL symmetry breaking papers</a> and Weinberg's 1967 paper <i>A model of Leptons</i> (the most cited paper in particle physics, as of 2012) "milestone Letters".<sup id="cite_ref-PRL_50years_103-1" class="reference"><a href="#cite_note-PRL_50years-103"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> </p><p>Following reported observation of the Higgs-like particle in July 2012, several <a href="/wiki/Indian_media" class="mw-redirect" title="Indian media">Indian media</a> outlets reported on the supposed neglect of credit to Indian physicist <a href="/wiki/Satyendra_Nath_Bose" title="Satyendra Nath Bose">Satyendra Nath Bose</a> after whose work in the 1920s the class of particles "<a href="/wiki/Bosons" class="mw-redirect" title="Bosons">bosons</a>" is named<sup id="cite_ref-AP-20120710_257-0" class="reference"><a href="#cite_note-AP-20120710-257"><span class="cite-bracket">[</span>229<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-NYT-20120919_258-0" class="reference"><a href="#cite_note-NYT-20120919-258"><span class="cite-bracket">[</span>230<span class="cite-bracket">]</span></a></sup> (although physicists have described Bose's connection to the discovery as tenuous).<sup id="cite_ref-outlook-in-bose_259-0" class="reference"><a href="#cite_note-outlook-in-bose-259"><span class="cite-bracket">[</span>231<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Technical_aspects_and_mathematical_formulation">Technical aspects and mathematical formulation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=48" title="Edit section: Technical aspects and mathematical formulation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Mathematical_formulation_of_the_Standard_Model" title="Mathematical formulation of the Standard Model">Mathematical formulation of the Standard Model</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mecanismo_de_Higgs_PH.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Mecanismo_de_Higgs_PH.png/220px-Mecanismo_de_Higgs_PH.png" decoding="async" width="220" height="216" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Mecanismo_de_Higgs_PH.png/330px-Mecanismo_de_Higgs_PH.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/Mecanismo_de_Higgs_PH.png/440px-Mecanismo_de_Higgs_PH.png 2x" data-file-width="464" data-file-height="455" /></a><figcaption>The potential for the Higgs field, plotted as function of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi ^{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi ^{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/391d8cde37179d147230a1f7c6db6722c5b580e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.44ex; height:3.009ex;" alt="{\displaystyle \phi ^{0}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7d97a40304922ecd49ab5bc8e0f3416f482092" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.44ex; height:3.009ex;" alt="{\displaystyle \phi ^{3}}"></span>. It has a <i>Mexican-hat</i> or <i>champagne-bottle profile</i> at the ground.</figcaption></figure> <p>In the Standard Model, the Higgs field is a four-component scalar field that forms a complex <a href="/wiki/Doublet_(physics)" class="mw-redirect" title="Doublet (physics)">doublet</a> of the <a href="/wiki/Weak_isospin" title="Weak isospin">weak isospin</a> SU(2) symmetry: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi ={\frac {1}{\sqrt {2}}}\left({\begin{array}{c}\phi ^{1}+i\phi ^{2}\\\phi ^{0}+i\phi ^{3}\end{array}}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi ={\frac {1}{\sqrt {2}}}\left({\begin{array}{c}\phi ^{1}+i\phi ^{2}\\\phi ^{0}+i\phi ^{3}\end{array}}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e2d20d6ff1d676bd6cc88adc7a2d1bd05134f30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:21.887ex; height:6.509ex;" alt="{\displaystyle \phi ={\frac {1}{\sqrt {2}}}\left({\begin{array}{c}\phi ^{1}+i\phi ^{2}\\\phi ^{0}+i\phi ^{3}\end{array}}\right)\,}"></span></dd></dl> <p>while the field has charge +<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> under the <a href="/wiki/Weak_hypercharge" title="Weak hypercharge">weak hypercharge</a> U(1) symmetry.<sup id="cite_ref-PeskinSchroederHiggs_260-0" class="reference"><a href="#cite_note-PeskinSchroederHiggs-260"><span class="cite-bracket">[</span>232<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"> <p>Note: This article uses the scaling convention where the electric charge, <span class="texhtml mvar" style="font-style:italic;">Q</span>, the <a href="/wiki/Weak_isospin" title="Weak isospin">weak isospin</a>, <span class="texhtml mvar" style="font-style:italic;">T</span><sub>3</sub>, and the weak hypercharge, <span class="texhtml mvar" style="font-style:italic;">Y</span><sub>W</sub>, are related by <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">Q</span> = <span class="texhtml mvar" style="font-style:italic;">T</span><sub>3</sub> + <span class="texhtml mvar" style="font-style:italic;">Y</span><sub>W</sub>.</span> A <a href="/wiki/Gell-Mann%E2%80%93Nishijima_formula" title="Gell-Mann–Nishijima formula">different convention</a> used in most <a href="/wiki/Weak_hypercharge" title="Weak hypercharge">other Wikipedia articles</a> is <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">Q</span> = <span class="texhtml mvar" style="font-style:italic;">T</span><sub>3</sub> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span><span class="texhtml mvar" style="font-style:italic;">Y</span><sub>W</sub></span>.<sup id="cite_ref-261" class="reference"><a href="#cite_note-261"><span class="cite-bracket">[</span>233<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-262" class="reference"><a href="#cite_note-262"><span class="cite-bracket">[</span>234<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-263" class="reference"><a href="#cite_note-263"><span class="cite-bracket">[</span>235<span class="cite-bracket">]</span></a></sup> </p> </blockquote> <p>The Higgs part of the Lagrangian is<sup id="cite_ref-PeskinSchroederHiggs_260-1" class="reference"><a href="#cite_note-PeskinSchroederHiggs-260"><span class="cite-bracket">[</span>232<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{\text{H}}=\left|\left(\partial _{\mu }-igW_{\mu \,a}{\tfrac {1}{2}}\sigma ^{a}-i{\tfrac {1}{2}}g'B_{\mu }\right)\phi \right|^{2}+\mu _{\text{H}}^{2}\phi ^{\dagger }\phi -\lambda \left(\phi ^{\dagger }\phi \right)^{2}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>H</mtext> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>|</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>i</mi> <mi>g</mi> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mspace width="thinmathspace" /> <mi>a</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msubsup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>H</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> <mi>ϕ<!-- ϕ --></mi> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{\text{H}}=\left|\left(\partial _{\mu }-igW_{\mu \,a}{\tfrac {1}{2}}\sigma ^{a}-i{\tfrac {1}{2}}g'B_{\mu }\right)\phi \right|^{2}+\mu _{\text{H}}^{2}\phi ^{\dagger }\phi -\lambda \left(\phi ^{\dagger }\phi \right)^{2}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49ab1241e537561c817f3a0178fcc963e4ce6e60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:60.27ex; height:4.009ex;" alt="{\displaystyle {\mathcal {L}}_{\text{H}}=\left|\left(\partial _{\mu }-igW_{\mu \,a}{\tfrac {1}{2}}\sigma ^{a}-i{\tfrac {1}{2}}g'B_{\mu }\right)\phi \right|^{2}+\mu _{\text{H}}^{2}\phi ^{\dagger }\phi -\lambda \left(\phi ^{\dagger }\phi \right)^{2}\ ,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W_{\mu \,a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mspace width="thinmathspace" /> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W_{\mu \,a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dfafbb375519fededb32df0eafc6cd4916ac7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.674ex; height:2.843ex;" alt="{\displaystyle W_{\mu \,a}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fe5f2581724819fecf73ea084522e1278fcde4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.987ex; height:2.843ex;" alt="{\displaystyle B_{\mu }}"></span> are the <a href="/wiki/Gauge_boson" title="Gauge boson">gauge bosons</a> of the SU(2) and U(1) symmetries, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7a53c0df5d85b36e3fd327c74db998f679f4f55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.803ex; height:2.843ex;" alt="{\displaystyle g'}"></span> their respective <a href="/wiki/Coupling_constant" title="Coupling constant">coupling constants</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ae1164a4afd76bf0460f3fd6f35fbcb3eb816f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.432ex; height:2.343ex;" alt="{\displaystyle \sigma ^{a}}"></span> are the <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a> (a complete set of generators of the SU(2) symmetry), and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda >0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda >0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eea25afc0351140f919cf791c49c1964b8b081de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.616ex; height:2.176ex;" alt="{\displaystyle \lambda >0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{\text{H}}^{2}>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>H</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{\text{H}}^{2}>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3db5097b316021db3b4d98cc3d286ac89439825e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.127ex; height:3.176ex;" alt="{\displaystyle \mu _{\text{H}}^{2}>0}"></span>, so that the <a href="/wiki/Ground_state" title="Ground state">ground state</a> breaks the SU(2) symmetry (see figure). </p><p>The ground state of the Higgs field (the bottom of the potential) is degenerate with different ground states related to each other by a SU(2) gauge transformation. It is always possible to <a href="/wiki/Unitarity_gauge" title="Unitarity gauge">pick a gauge</a> such that in the ground state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi ^{1}=\phi ^{2}=\phi ^{3}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi ^{1}=\phi ^{2}=\phi ^{3}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/750e7139708f383c6c240dff393bf23f0ad745af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.777ex; height:3.009ex;" alt="{\displaystyle \phi ^{1}=\phi ^{2}=\phi ^{3}=0}"></span>. The expectation value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi ^{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi ^{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/391d8cde37179d147230a1f7c6db6722c5b580e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.44ex; height:3.009ex;" alt="{\displaystyle \phi ^{0}}"></span> in the ground state (the <a href="/wiki/Vacuum_expectation_value" title="Vacuum expectation value">vacuum expectation value</a> or VEV) is then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle \phi ^{0}\right\rangle ={\tfrac {1}{\sqrt {2\,}}}v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⟨</mo> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>⟩</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mspace width="thinmathspace" /> </msqrt> </mfrac> </mstyle> </mrow> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle \phi ^{0}\right\rangle ={\tfrac {1}{\sqrt {2\,}}}v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7badcd4eb85faa8798bdbfce9b0b33a90addbac8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.275ex; height:4.176ex;" alt="{\displaystyle \left\langle \phi ^{0}\right\rangle ={\tfrac {1}{\sqrt {2\,}}}v}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v={\tfrac {1}{\sqrt {\lambda \,}}}\left|\mu _{\text{H}}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msqrt> <mi>λ<!-- λ --></mi> <mspace width="thinmathspace" /> </msqrt> </mfrac> </mstyle> </mrow> <mrow> <mo>|</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>H</mtext> </mrow> </msub> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v={\tfrac {1}{\sqrt {\lambda \,}}}\left|\mu _{\text{H}}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d03e39baee4fab32a1b00611dbf55f6fbe4bb413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.324ex; height:4.176ex;" alt="{\displaystyle v={\tfrac {1}{\sqrt {\lambda \,}}}\left|\mu _{\text{H}}\right|}"></span>. The measured value of this parameter is ~<span class="nowrap"><span data-sort-value="7002246000000000000♠"></span>246 GeV/<i>c</i><sup>2</sup></span>.<sup id="cite_ref-PDGreview2012_144-4" class="reference"><a href="#cite_note-PDGreview2012-144"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> It has units of mass, and is the only free parameter of the Standard Model that is not a dimensionless number. Quadratic terms in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W_{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W_{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20f699fbd7b1f86bc205d794752d9b134241129c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.417ex; height:2.843ex;" alt="{\displaystyle W_{\mu }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fe5f2581724819fecf73ea084522e1278fcde4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.987ex; height:2.843ex;" alt="{\displaystyle B_{\mu }}"></span> arise, which give masses to the W and Z bosons:<sup id="cite_ref-PeskinSchroederHiggs_260-2" class="reference"><a href="#cite_note-PeskinSchroederHiggs-260"><span class="cite-bracket">[</span>232<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}m_{\text{W}}&={\tfrac {1}{2}}v\left|\,g\,\right|\ ,\\m_{\text{Z}}&={\tfrac {1}{2}}v{\sqrt {g^{2}+{g'}^{2}\ }}\ ,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>W</mtext> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>v</mi> <mrow> <mo>|</mo> <mrow> <mspace width="thinmathspace" /> <mi>g</mi> <mspace width="thinmathspace" /> </mrow> <mo>|</mo> </mrow> <mtext> </mtext> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Z</mtext> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>g</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> </msqrt> </mrow> <mtext> </mtext> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}m_{\text{W}}&={\tfrac {1}{2}}v\left|\,g\,\right|\ ,\\m_{\text{Z}}&={\tfrac {1}{2}}v{\sqrt {g^{2}+{g'}^{2}\ }}\ ,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c50544fa95bb1d130592e6b398fa0a03efe821a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:22.599ex; height:8.509ex;" alt="{\displaystyle {\begin{aligned}m_{\text{W}}&={\tfrac {1}{2}}v\left|\,g\,\right|\ ,\\m_{\text{Z}}&={\tfrac {1}{2}}v{\sqrt {g^{2}+{g'}^{2}\ }}\ ,\end{aligned}}}"></span></dd></dl> <p>with their ratio determining the <a href="/wiki/Weinberg_angle" title="Weinberg angle">Weinberg angle</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \cos \theta _{\text{W}}={\frac {m_{\text{W}}}{\ m_{\text{Z}}\ }}={\frac {\left|\,g\,\right|}{\ {\sqrt {g^{2}+{g'}^{2}\ }}\ }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <msub> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>W</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>W</mtext> </mrow> </msub> <mrow> <mtext> </mtext> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Z</mtext> </mrow> </msub> <mtext> </mtext> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mspace width="thinmathspace" /> <mi>g</mi> <mspace width="thinmathspace" /> </mrow> <mo>|</mo> </mrow> <mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>g</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> </msqrt> </mrow> <mtext> </mtext> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \cos \theta _{\text{W}}={\frac {m_{\text{W}}}{\ m_{\text{Z}}\ }}={\frac {\left|\,g\,\right|}{\ {\sqrt {g^{2}+{g'}^{2}\ }}\ }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fc214b3c57d4a2296ce4ae2d0d5843965f91ecb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:26.403ex; height:6.176ex;" alt="{\textstyle \cos \theta _{\text{W}}={\frac {m_{\text{W}}}{\ m_{\text{Z}}\ }}={\frac {\left|\,g\,\right|}{\ {\sqrt {g^{2}+{g'}^{2}\ }}\ }}}"></span>, and leave a massless U(1) <a href="/wiki/Photon" title="Photon">photon</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>. The mass of the Higgs boson itself is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\text{H}}={\sqrt {2\mu _{\text{H}}^{2}\ }}\equiv {\sqrt {2\lambda v^{2}\ }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>H</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <msubsup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>H</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mtext> </mtext> </msqrt> </mrow> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>λ<!-- λ --></mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\text{H}}={\sqrt {2\mu _{\text{H}}^{2}\ }}\equiv {\sqrt {2\lambda v^{2}\ }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3703f352855b2dfe54d7ada7ca76fce83a6ba364" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.886ex; height:4.843ex;" alt="{\displaystyle m_{\text{H}}={\sqrt {2\mu _{\text{H}}^{2}\ }}\equiv {\sqrt {2\lambda v^{2}\ }}.}"></span></dd></dl> <p>The quarks and the leptons interact with the Higgs field through <a href="/wiki/Yukawa_interaction" title="Yukawa interaction">Yukawa interaction</a> terms: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\mathcal {L}}_{\text{Y}}=&-\lambda _{u}^{i\,j}{\frac {\ \phi ^{0}-i\phi ^{3}\ }{\sqrt {2\ }}}{\overline {u}}_{\text{L}}^{i}u_{\text{R}}^{j}+\lambda _{u}^{i\,j}{\frac {\ \phi ^{1}-i\phi ^{2}\ }{\sqrt {2\ }}}{\overline {d}}_{\text{L}}^{i}u_{\text{R}}^{j}\\&-\lambda _{d}^{i\,j}{\frac {\ \phi ^{0}+i\phi ^{3}\ }{\sqrt {2\ }}}{\overline {d}}_{\text{L}}^{i}d_{\text{R}}^{j}-\lambda _{d}^{i\,j}{\frac {\ \phi ^{1}+i\phi ^{2}\ }{\sqrt {2\ }}}{\overline {u}}_{\text{L}}^{i}d_{\text{R}}^{j}\\&-\lambda _{e}^{i\,j}{\frac {\ \phi ^{0}+i\phi ^{3}\ }{\sqrt {2\ }}}{\overline {e}}_{\text{L}}^{i}e_{\text{R}}^{j}-\lambda _{e}^{i\,j}{\frac {\ \phi ^{1}+i\phi ^{2}\ }{\sqrt {2\ }}}{\overline {\nu }}_{\text{L}}^{i}e_{\text{R}}^{j}+{\textrm {h.c.}}\ ,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Y</mtext> </mrow> </msub> <mo>=</mo> </mtd> <mtd> <mi></mi> <mo>−<!-- − --></mo> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mi>j</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext> </mtext> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>i</mi> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mtext> </mtext> </mrow> <msqrt> <mn>2</mn> <mtext> </mtext> </msqrt> </mfrac> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>L</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>R</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mi>j</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext> </mtext> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>i</mi> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> </mrow> <msqrt> <mn>2</mn> <mtext> </mtext> </msqrt> </mfrac> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>d</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>L</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>R</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>−<!-- − --></mo> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mi>j</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext> </mtext> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mtext> </mtext> </mrow> <msqrt> <mn>2</mn> <mtext> </mtext> </msqrt> </mfrac> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>d</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>L</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>R</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mi>j</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext> </mtext> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> </mrow> <msqrt> <mn>2</mn> <mtext> </mtext> </msqrt> </mfrac> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>L</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>R</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>−<!-- − --></mo> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mi>j</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext> </mtext> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mtext> </mtext> </mrow> <msqrt> <mn>2</mn> <mtext> </mtext> </msqrt> </mfrac> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>L</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>R</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mi>j</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext> </mtext> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> </mrow> <msqrt> <mn>2</mn> <mtext> </mtext> </msqrt> </mfrac> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ν<!-- ν --></mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>L</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>R</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>h.c.</mtext> </mrow> </mrow> <mtext> </mtext> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\mathcal {L}}_{\text{Y}}=&-\lambda _{u}^{i\,j}{\frac {\ \phi ^{0}-i\phi ^{3}\ }{\sqrt {2\ }}}{\overline {u}}_{\text{L}}^{i}u_{\text{R}}^{j}+\lambda _{u}^{i\,j}{\frac {\ \phi ^{1}-i\phi ^{2}\ }{\sqrt {2\ }}}{\overline {d}}_{\text{L}}^{i}u_{\text{R}}^{j}\\&-\lambda _{d}^{i\,j}{\frac {\ \phi ^{0}+i\phi ^{3}\ }{\sqrt {2\ }}}{\overline {d}}_{\text{L}}^{i}d_{\text{R}}^{j}-\lambda _{d}^{i\,j}{\frac {\ \phi ^{1}+i\phi ^{2}\ }{\sqrt {2\ }}}{\overline {u}}_{\text{L}}^{i}d_{\text{R}}^{j}\\&-\lambda _{e}^{i\,j}{\frac {\ \phi ^{0}+i\phi ^{3}\ }{\sqrt {2\ }}}{\overline {e}}_{\text{L}}^{i}e_{\text{R}}^{j}-\lambda _{e}^{i\,j}{\frac {\ \phi ^{1}+i\phi ^{2}\ }{\sqrt {2\ }}}{\overline {\nu }}_{\text{L}}^{i}e_{\text{R}}^{j}+{\textrm {h.c.}}\ ,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26415fda9c5cc3a5ca7dc13746d0be8e30d2b946" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.505ex; width:57.288ex; height:20.176ex;" alt="{\displaystyle {\begin{aligned}{\mathcal {L}}_{\text{Y}}=&-\lambda _{u}^{i\,j}{\frac {\ \phi ^{0}-i\phi ^{3}\ }{\sqrt {2\ }}}{\overline {u}}_{\text{L}}^{i}u_{\text{R}}^{j}+\lambda _{u}^{i\,j}{\frac {\ \phi ^{1}-i\phi ^{2}\ }{\sqrt {2\ }}}{\overline {d}}_{\text{L}}^{i}u_{\text{R}}^{j}\\&-\lambda _{d}^{i\,j}{\frac {\ \phi ^{0}+i\phi ^{3}\ }{\sqrt {2\ }}}{\overline {d}}_{\text{L}}^{i}d_{\text{R}}^{j}-\lambda _{d}^{i\,j}{\frac {\ \phi ^{1}+i\phi ^{2}\ }{\sqrt {2\ }}}{\overline {u}}_{\text{L}}^{i}d_{\text{R}}^{j}\\&-\lambda _{e}^{i\,j}{\frac {\ \phi ^{0}+i\phi ^{3}\ }{\sqrt {2\ }}}{\overline {e}}_{\text{L}}^{i}e_{\text{R}}^{j}-\lambda _{e}^{i\,j}{\frac {\ \phi ^{1}+i\phi ^{2}\ }{\sqrt {2\ }}}{\overline {\nu }}_{\text{L}}^{i}e_{\text{R}}^{j}+{\textrm {h.c.}}\ ,\end{aligned}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (d,u,e,\nu )_{\text{L,R}}^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>d</mi> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mi>ν<!-- ν --></mi> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>L,R</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (d,u,e,\nu )_{\text{L,R}}^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/becb30eae0205f9d2e827da979c43c00fc7e48a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:12.699ex; height:3.509ex;" alt="{\displaystyle (d,u,e,\nu )_{\text{L,R}}^{i}}"></span> are left-handed and right-handed quarks and leptons of the <span class="texhtml mvar" style="font-style:italic;">i</span>th <a href="/wiki/Generation_(physics)" class="mw-redirect" title="Generation (physics)">generation</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{\text{u,d,e}}^{i\,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>u,d,e</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mi>j</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{\text{u,d,e}}^{i\,j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e3b060de00ae666ce630f37c156d83c0d471593" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:5.06ex; height:3.843ex;" alt="{\displaystyle \lambda _{\text{u,d,e}}^{i\,j}}"></span> are matrices of Yukawa couplings where <a href="/wiki/%2B_h.c." title="+ h.c.">h.c.</a> denotes the hermitian conjugate of all the preceding terms. In the symmetry breaking ground state, only the terms containing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi ^{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi ^{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/391d8cde37179d147230a1f7c6db6722c5b580e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.44ex; height:3.009ex;" alt="{\displaystyle \phi ^{0}}"></span> remain, giving rise to mass terms for the fermions. Rotating the quark and lepton fields to the basis where the matrices of Yukawa couplings are diagonal, one gets </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{\text{m}}=-m_{\text{u}}^{i}{\overline {u}}_{\text{L}}^{i}u_{\text{R}}^{i}-m_{\text{d}}^{i}{\overline {d}}_{\text{L}}^{i}d_{\text{R}}^{i}-m_{\text{e}}^{i}{\overline {e}}_{\text{L}}^{i}e_{\text{R}}^{i}+{\textrm {h.c.}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>m</mtext> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>u</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>L</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>R</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>d</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>L</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>R</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>e</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>L</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>R</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>h.c.</mtext> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{\text{m}}=-m_{\text{u}}^{i}{\overline {u}}_{\text{L}}^{i}u_{\text{R}}^{i}-m_{\text{d}}^{i}{\overline {d}}_{\text{L}}^{i}d_{\text{R}}^{i}-m_{\text{e}}^{i}{\overline {e}}_{\text{L}}^{i}e_{\text{R}}^{i}+{\textrm {h.c.}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5556ca535b2b53557b26344ce2313b9e7ac82baa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.979ex; height:4.176ex;" alt="{\displaystyle {\mathcal {L}}_{\text{m}}=-m_{\text{u}}^{i}{\overline {u}}_{\text{L}}^{i}u_{\text{R}}^{i}-m_{\text{d}}^{i}{\overline {d}}_{\text{L}}^{i}d_{\text{R}}^{i}-m_{\text{e}}^{i}{\overline {e}}_{\text{L}}^{i}e_{\text{R}}^{i}+{\textrm {h.c.}},}"></span></dd></dl> <p>where the masses of the fermions are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\text{u,d,e}}^{i}={\tfrac {1}{\sqrt {2\ }}}\lambda _{\text{u,d,e}}^{i}v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>u,d,e</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mtext> </mtext> </msqrt> </mfrac> </mstyle> </mrow> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>u,d,e</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\text{u,d,e}}^{i}={\tfrac {1}{\sqrt {2\ }}}\lambda _{\text{u,d,e}}^{i}v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21f960bd90b233c590f78027a8570a58234be6a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.639ex; height:4.176ex;" alt="{\displaystyle m_{\text{u,d,e}}^{i}={\tfrac {1}{\sqrt {2\ }}}\lambda _{\text{u,d,e}}^{i}v}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{\text{u,d,e}}^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>u,d,e</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{\text{u,d,e}}^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d10d98a75b36d217008925d73b2b8f9240ca788f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:5.06ex; height:3.509ex;" alt="{\displaystyle \lambda _{\text{u,d,e}}^{i}}"></span> denote the eigenvalues of the Yukawa matrices.<sup id="cite_ref-PeskinSchroederHiggs_260-3" class="reference"><a href="#cite_note-PeskinSchroederHiggs-260"><span class="cite-bracket">[</span>232<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=49" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Standard_Model_2">Standard Model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=50" title="Edit section: Standard Model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a> – Mechanism that explains the generation of mass for gauge bosons</li> <li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History of quantum field theory</a></li> <li><a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction to quantum mechanics</a> – Non-mathematical introduction</li> <li><a href="/wiki/Noncommutative_standard_model" title="Noncommutative standard model">Noncommutative standard model</a></li> <li><a href="/wiki/Noncommutative_geometry" title="Noncommutative geometry">Noncommutative geometry</a> – Branch of mathematics</li> <li><a href="/wiki/Mathematical_formulation_of_the_Standard_Model" title="Mathematical formulation of the Standard Model">Mathematical formulation of the Standard Model</a> – Mathematics of a particle physics model <ul><li><a href="/wiki/Mathematical_formulation_of_the_Standard_Model#Quantum_Field_Theory" title="Mathematical formulation of the Standard Model">Standard Model fields overview</a></li> <li><a href="/wiki/Mathematical_formulation_of_the_Standard_Model#Mass_terms_and_the_Higgs_mechanism" title="Mathematical formulation of the Standard Model">mass terms and the Higgs mechanism</a></li></ul></li> <li><a href="/wiki/Quantum_gauge_theory" class="mw-redirect" title="Quantum gauge theory">Quantum gauge theory</a> – Physical theory with fields invariant under the action of local "gauge" Lie groups<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W and Z bosons</a> – Bosons that mediate the weak interaction</li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Other">Other</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=51" title="Edit section: Other"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1184024115"><div class="div-col"> <ul><li><a href="/wiki/Bose%E2%80%93Einstein_statistics" title="Bose–Einstein statistics">Bose–Einstein statistics</a> – Description of the behavior of bosons</li> <li><a href="/wiki/Composite_Higgs_models" title="Composite Higgs models">Composite Higgs models</a>, an extension of the SM where the Higgs boson is made of smaller constituents</li> <li><a href="/wiki/Dalitz_plot" title="Dalitz plot">Dalitz plot</a> – particle physics plot<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li> <li><i><a href="/wiki/Particle_Fever" title="Particle Fever">Particle Fever</a></i>, a 2013 American documentary film following various LHC experiments and concluding with the identification of the Higgs boson</li> <li><a href="/wiki/Quantum_triviality" title="Quantum triviality">Quantum triviality</a> – Possible outcome of renormalization in physics</li> <li><a href="/wiki/Scalar_boson" title="Scalar boson">Scalar boson</a> – Boson with spin equal to zero</li> <li><a href="/wiki/Stueckelberg_action" title="Stueckelberg action">Stueckelberg action</a> – Special case of the abelian Higgs mechanism</li> <li><a href="/wiki/Tachyonic_field" title="Tachyonic field">Tachyonic field</a> – Field with an imaginary mass</li> <li><a href="/wiki/ZZ_diboson" title="ZZ diboson">ZZ diboson</a> – subatomic particles<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Explanatory_notes">Explanatory notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=52" title="Edit section: Explanatory notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Note that such events also occur due to other processes. Detection involves a <a href="/wiki/Statistically_significant" class="mw-redirect" title="Statistically significant">statistically significant</a> excess of such events at specific energies.</span> </li> <li id="cite_note-meanlife-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-meanlife_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-meanlife_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> In the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a>, the total <a href="/wiki/Decay_width" class="mw-redirect" title="Decay width">decay width</a> of a Higgs boson with a mass of <span class="nowrap"><span data-sort-value="7002125000000000000♠"></span>125 GeV/<i>c</i><sup>2</sup></span> is predicted to be <span class="nowrap"><span data-sort-value="6987652085830209000♠"></span>4.07<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−3</sup> GeV</span>.<sup id="cite_ref-LHCcrosssections_3-0" class="reference"><a href="#cite_note-LHCcrosssections-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> The mean lifetime is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =\hbar /\Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>τ<!-- τ --></mi> <mo>=</mo> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau =\hbar /\Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f8235ab598dafe4c39304074ad6e70b89d74f69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.222ex; height:2.843ex;" alt="{\displaystyle \tau =\hbar /\Gamma }"></span>. </span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">In Higgs-based theories, the Higgs boson itself should be an exception, being massive even at high energies.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"> In physics, it is possible for a <a href="/wiki/Scientific_law" title="Scientific law">law</a> to hold true only if certain assumptions hold true, or when certain conditions are met. For example, <a href="/wiki/Newton%27s_laws_of_motion" title="Newton's laws of motion">Newton's laws of motion</a> only apply at speeds where <a href="/wiki/Special_relativity" title="Special relativity">relativistic effects</a> are negligible; and laws related to conductivity, gases, and classical physics (as opposed to quantum mechanics) may apply only within certain ranges of size, temperature, pressure, or other conditions.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"> In theoretical particle physics, one says that particle <span class="smallcaps"><span style="font-variant: small-caps; text-transform: lowercase;">A</span></span> "absorbs" particle <span class="smallcaps"><span style="font-variant: small-caps; text-transform: lowercase;">B</span></span> when they always act simultaneously, and their combined effect cannot be separated using observables: Although the mathematical description of the process may have two parts, <span class="smallcaps"><span style="font-variant: small-caps; text-transform: lowercase;">A</span></span> and <span class="smallcaps"><span style="font-variant: small-caps; text-transform: lowercase;">B</span></span>, the observed preconditions and their outcomes are indistinguishable from the interaction of what appears to effectively be a single particle (which usually is given another, slightly different name; for example one of the combinations of the theoretical <span class="texhtml">W<sub>3</sub></span> and <span class="texhtml">B<sup>0</sup></span> <a href="/wiki/Electroweak" class="mw-redirect" title="Electroweak">electroweak</a> bosons is called the <a href="/wiki/Z_boson" class="mw-redirect" title="Z boson">Z boson</a>).</span> </li> <li id="cite_note-predictions-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-predictions_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-predictions_32-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-predictions_32-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> The success of the Higgs-based electroweak theory and Standard Model is illustrated by their <a href="/wiki/Standard_Model#Tests_and_predictions" title="Standard Model">predictions</a> of the mass of two particles later detected: the W boson (predicted mass: <span class="nowrap"><span data-sort-value="7001803900000000000♠"></span>80.390<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.018 GeV/<i>c</i><sup>2</sup></span>, experimental measurement: <span class="nowrap"><span data-sort-value="7001803870000000000♠"></span>80.387<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.019 GeV/<i>c</i><sup>2</sup></span>), and the Z boson (predicted mass: <span class="nowrap"><span data-sort-value="7001911874000000000♠"></span>91.1874<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.0021 GeV/<i>c</i><sup>2</sup></span>, experimental measurement: <span class="nowrap"><span data-sort-value="7001911876000000000♠"></span>91.1876<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.0021 GeV/<i>c</i><sup>2</sup></span>). Other accurate predictions included the <a href="/wiki/Weak_neutral_current" class="mw-redirect" title="Weak neutral current">weak neutral current</a>, the <a href="/wiki/Gluon" title="Gluon">gluon</a>, and the <a href="/wiki/Top_quark" title="Top quark">top</a> and <a href="/wiki/Charm_quark" title="Charm quark">charm quarks</a>, all later proven to exist as the theory said.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Electroweak symmetry is broken by the Higgs field in its lowest energy state, called its <i><a href="/wiki/Ground_state" title="Ground state">ground state</a></i>. At high energy levels this does not happen, and the gauge bosons of the weak force would be expected to become massless above those energy levels.</span> </li> <li id="cite_note-massvsrange-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-massvsrange_35-0">^</a></b></span> <span class="reference-text"> The range of a force is inversely proportional to the mass of the particles transmitting it.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> <dl><dd></dd></dl> In the Standard Model, forces are carried by <a href="/wiki/Virtual_particles" class="mw-redirect" title="Virtual particles">virtual particles</a>. The movement and interactions of these particles with each other are limited by the energy–time <a href="/wiki/Uncertainty_principle" title="Uncertainty principle">uncertainty principle</a>. As a result, the more massive a single virtual particle is, the greater its energy, and therefore the shorter the distance it can travel. A particle's mass therefore, determines the maximum distance at which it can interact with other particles and on any force it mediates. By the same token, the reverse is also true: Massless and near-massless particles can carry long distance forces. <dl><dd></dd></dl> Since experiments have shown that the weak force acts over only a very short range, this implies that massive gauge bosons must exist, and indeed, their masses have since been confirmed by measurement. <dl><dd></dd></dl> <i>(See also: <a href="/wiki/Compton_wavelength" title="Compton wavelength">Compton wavelength</a> and <a href="/wiki/Static_forces_and_virtual-particle_exchange" title="Static forces and virtual-particle exchange">static forces and virtual-particle exchange</a>)</i> </span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">By the 1960s, many had already started to see gauge theories as failing to explain particle physics, because theorists had been unable to solve the mass problem or even explain how gauge theory could provide a solution. So the idea that the Standard Model – which relied on a Higgs field, not yet proved to exist – could be fundamentally incorrect, was not unreasonable. <dl><dd></dd></dl> Against this, once the model was developed around 1972, no better theory existed, and its predictions and solutions were so accurate, that it became the preferred theory anyway. It then became crucial to science, to know whether it was <i>correct</i>.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><i>Discovery press conference</i>, July 2012: <dl><dd></dd></dl> 'As a layman, I would say, I think we have it', said Rolf-Dieter Heuer, director general of CERN at Wednesday's seminar announcing the results of the search for the Higgs boson. But when pressed by journalists afterwards on what exactly 'it' was, things got more complicated. <dl><dd></dd></dl> 'We have discovered a boson; now we have to find out what boson it is'<br />[Q]: 'If we don't know the new particle is a Higgs, what do we know about it?'<br />[A]: We know it is some kind of boson, says Vivek Sharma of CMS [...]<br />[Q]: 'are the CERN scientists just being too cautious? What would be enough evidence to call it a Higgs boson?'<br />[A]: As there could be many different kinds of Higgs bosons, there's no straight answer.<sup id="cite_ref-Biever-2012-07-Dieter_39-1" class="reference"><a href="#cite_note-Biever-2012-07-Dieter-39"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> <dl><dd>[<i>emphasis in original</i>]</dd></dl> </span></li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"> The statement excludes spin-0 <a href="/wiki/Mesons" class="mw-redirect" title="Mesons">mesons</a>, such as the <a href="/wiki/Pion" title="Pion">pion</a>, since they are known to be composites of pairs of spin-<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 1 </span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> fermions.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text">For example: The <a href="/wiki/Huffington_Post" class="mw-redirect" title="Huffington Post">Huffington Post</a> / <a href="/wiki/Reuters" title="Reuters">Reuters</a>,<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> and others.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text">The bubble's effects would be expected to propagate across the universe at the speed of light from wherever it occurred. However space is vast – with even <a href="/wiki/Andromeda_Galaxy" title="Andromeda Galaxy">the nearest galaxy</a> being over 2 million <a href="/wiki/Light_years" class="mw-redirect" title="Light years">light years</a> from us, and others being many billions of light years distant, so the effect of such an event would be unlikely to arise here for billions of years after first occurring.<sup id="cite_ref-Boyle_68-1" class="reference"><a href="#cite_note-Boyle-68"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text">If the Standard Model is valid, then the particles and forces we observe in our universe exist as they do, because of underlying quantum fields. Quantum fields can have states of differing stability, including 'stable', 'unstable' and '<a href="/wiki/Metastability" title="Metastability">metastable</a>' states (the latter remain stable unless sufficiently <a href="/wiki/Perturbation_theory_(quantum_mechanics)" title="Perturbation theory (quantum mechanics)">perturbed</a>). If a more stable vacuum state were able to arise, then existing particles and forces would no longer arise as they presently do. Different particles or forces would arise from (and be shaped by) whatever new quantum states arose. The world we know depends upon these particles and forces, so if this happened, everything around us, from <a href="/wiki/Subatomic_particle" title="Subatomic particle">subatomic particles</a> to <a href="/wiki/Galaxy" title="Galaxy">galaxies</a>, and all <a href="/wiki/Fundamental_interaction" title="Fundamental interaction">fundamental forces</a>, would be reconstituted into new fundamental particles and forces and structures. The universe would potentially lose all of its present structures and become inhabited by new ones (depending upon the exact states involved) based upon the same quantum fields.</span> </li> <li id="cite_note-GoldstoneNote-88"><span class="mw-cite-backlink">^ <a href="#cite_ref-GoldstoneNote_88-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GoldstoneNote_88-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <a href="/wiki/Goldstone%27s_theorem" class="mw-redirect" title="Goldstone's theorem">Goldstone's theorem</a> only applies to gauges having <a href="/wiki/Lorentz_covariance" title="Lorentz covariance">manifest Lorentz covariance</a>, a condition that took time to become questioned. But the process of <a href="/wiki/Quantization_(physics)" title="Quantization (physics)">quantisation</a> requires a <a href="/wiki/Gauge_fixing" title="Gauge fixing">gauge to be fixed</a> and at this point it becomes possible to choose a gauge such as the 'radiation' gauge which is not invariant over time, so that these problems can be avoided. According to <a href="#CITEREFBernstein1974">Bernstein (1974)</a>, p. 8: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>the "radiation gauge" condition <span class="nowrap">∇⋅A(<span class="texhtml mvar" style="font-style:italic;">x</span>) = 0</span> is clearly not covariant, which means that if we wish to maintain transversality of the photon in all <a href="/w/index.php?title=Lorentz_frame&action=edit&redlink=1" class="new" title="Lorentz frame (page does not exist)">Lorentz frames</a>, the <a href="/w/index.php?title=Photon_field&action=edit&redlink=1" class="new" title="Photon field (page does not exist)">photon field</a> A<sub>μ</sub>(<span class="texhtml mvar" style="font-style:italic;">x</span>) cannot transform like a <a href="/wiki/Four-vector" title="Four-vector">four-vector</a>. This is no catastrophe, since the photon <i>field</i> is not an <a href="/wiki/Observable" title="Observable">observable</a>, and one can readily show that the S-matrix elements, which <i>are</i> observable have covariant structures. ... in gauge theories one might arrange things so that one had a symmetry breakdown because of the noninvariance of the vacuum; but, because the Goldstone <i>et al.</i> proof breaks down, the zero mass Goldstone mesons need not appear. [<i>emphasis in original</i>]</p></blockquote> <a href="#CITEREFBernstein1974">Bernstein (1974)</a> contains an accessible and comprehensive background and review of this area, see <a href="#External_links">external links</a>.</span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text">A field with the "Mexican hat" potential <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(\phi )=\mu ^{2}\phi ^{2}+\lambda \phi ^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>λ<!-- λ --></mi> <msup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(\phi )=\mu ^{2}\phi ^{2}+\lambda \phi ^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97bd01bc8eb7a0d4a1ba0bb4d4980cfaf662b48a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.611ex; height:3.176ex;" alt="{\displaystyle V(\phi )=\mu ^{2}\phi ^{2}+\lambda \phi ^{4}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ^{2}<0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo><</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ^{2}<0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe3538edb26ff55f48a22d7452443c18278b431f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.717ex; height:3.176ex;" alt="{\displaystyle \mu ^{2}<0}"></span> has a minimum not at zero but at some non-zero value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi _{0}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi _{0}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/169df85c52196559f1aa5c5d386619ea95421a1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.667ex; height:2.509ex;" alt="{\displaystyle \phi _{0}~.}"></span> By expressing the action in terms of the field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\phi }}=\phi -\phi _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>ϕ<!-- ϕ --></mi> <mo>−<!-- − --></mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\phi }}=\phi -\phi _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6d6812dded97a2d30f2f3ae8fb50f73801f2e60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.231ex; height:3.009ex;" alt="{\displaystyle {\tilde {\phi }}=\phi -\phi _{0}}"></span> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/085cd18f16ab03e701c109e6c68d16addab32c3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.44ex; height:2.509ex;" alt="{\displaystyle \phi _{0}}"></span> is a constant independent of position), we find the Yukawa term has a component <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\phi _{0}{\bar {\psi }}\psi ~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>ψ<!-- ψ --></mi> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\phi _{0}{\bar {\psi }}\psi ~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49ba94317c123595f0da6b24ea0474002388c78e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.892ex; height:2.843ex;" alt="{\displaystyle g\phi _{0}{\bar {\psi }}\psi ~.}"></span> Since both <span class="texhtml mvar" style="font-style:italic;">g</span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/085cd18f16ab03e701c109e6c68d16addab32c3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.44ex; height:2.509ex;" alt="{\displaystyle \phi _{0}}"></span> are constants, this looks exactly like the mass term for a fermion of mass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\phi _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\phi _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/293b31352470f379ce3245903649a43f83499a4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.556ex; height:2.509ex;" alt="{\displaystyle g\phi _{0}}"></span>. The field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\phi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\phi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9d195019ecfbb56473440008ed4b41a7ee46fe0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.467ex; height:3.009ex;" alt="{\displaystyle {\tilde {\phi }}}"></span> is then the <a href="/wiki/Higgs_field" class="mw-redirect" title="Higgs field">Higgs field</a>.</span> </li> <li id="cite_note-production_rate-112"><span class="mw-cite-backlink">^ <a href="#cite_ref-production_rate_112-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-production_rate_112-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> The example is based on the production rate at the LHC operating at 7 TeV. The total cross-section for producing a Higgs boson at the LHC is about 10 <a href="/wiki/Picobarn" class="mw-redirect" title="Picobarn">picobarn</a>,<sup id="cite_ref-HprodLHC_110-0" class="reference"><a href="#cite_note-HprodLHC-110"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> while the total cross-section for a proton–proton collision is 110 <a href="/wiki/Millibarn" class="mw-redirect" title="Millibarn">millibarn</a>.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"> Just before LEP's shut down, some events that hinted at a Higgs were observed, but it was not judged significant enough to extend its run and delay construction of the LHC.</span> </li> <li id="cite_note-strassler_nov_2012-148"><span class="mw-cite-backlink">^ <a href="#cite_ref-strassler_nov_2012_148-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-strassler_nov_2012_148-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-strassler_nov_2012_148-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">ATLAS and CMS only just co-discovered this particle in July ... We will not know after today whether it is a Higgs at all, whether it is a Standard Model Higgs or not, or whether any particular speculative idea ... is now excluded ... Knowledge about nature does not come easy. We discovered the top quark in 1995, and we are still learning about its properties today ... we will still be learning important things about the Higgs during the coming few decades. We've no choice but to be patient. — M. Strassler (2012)<sup id="cite_ref-147" class="reference"><a href="#cite_note-147"><span class="cite-bracket">[</span>129<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-171">^</a></b></span> <span class="reference-text"> In the Standard Model, the mass term arising from the Dirac Lagrangian for any fermion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -m{\bar {\psi }}\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -m{\bar {\psi }}\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/072b70f2c59b501059640d0d33f53469cd5534df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.957ex; height:2.843ex;" alt="{\displaystyle -m{\bar {\psi }}\psi }"></span>. This is <i>not</i> invariant under the electroweak symmetry, as can be seen by writing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> in terms of left and right handed components: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -m{\bar {\psi }}\psi \,=\,-m\left({\bar {\psi }}_{L}\psi _{R}+{\bar {\psi }}_{R}\psi _{L}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>ψ<!-- ψ --></mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -m{\bar {\psi }}\psi \,=\,-m\left({\bar {\psi }}_{L}\psi _{R}+{\bar {\psi }}_{R}\psi _{L}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56922227a900ad1d3938dda6a6ff9cc3143ca842" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.916ex; height:3.176ex;" alt="{\displaystyle -m{\bar {\psi }}\psi \,=\,-m\left({\bar {\psi }}_{L}\psi _{R}+{\bar {\psi }}_{R}\psi _{L}\right)}"></span></dd></dl> i.e., contributions from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\psi }}_{L}\psi _{L}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\psi }}_{L}\psi _{L}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e713863d5859fdde2aa58203f20b51130832cff3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.812ex; height:3.009ex;" alt="{\displaystyle {\bar {\psi }}_{L}\psi _{L}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\psi }}_{R}\psi _{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\psi }}_{R}\psi _{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7e68451d67632e7f251d14e35346a0850c72c05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.068ex; height:3.009ex;" alt="{\displaystyle {\bar {\psi }}_{R}\psi _{R}}"></span> terms do not appear. We see that the mass-generating interaction is achieved by constant flipping of particle <a href="/wiki/Chirality" title="Chirality">chirality</a>. Since the spin-half particles have no right/left helicity pair with the same <a href="/wiki/SU(2)" class="mw-redirect" title="SU(2)">SU(2)</a> and <a href="/wiki/SU(3)" class="mw-redirect" title="SU(3)">SU(3)</a> representation and the same weak hypercharge, then assuming these gauge charges are conserved in the vacuum, none of the spin-half particles could ever swap helicity. Therefore, in the absence of some other cause, all fermions must be massless.</span> </li> <li id="cite_note-174"><span class="mw-cite-backlink"><b><a href="#cite_ref-174">^</a></b></span> <span class="reference-text"> <a href="/wiki/Goldstone%27s_theorem" class="mw-redirect" title="Goldstone's theorem">Goldstone's theorem</a> also plays a role in such theories. The connection is technically, when a condensate breaks a symmetry, then the state reached by acting with a symmetry generator on the condensate has the same energy as before. This means that some kinds of oscillation will not involve change of energy. Oscillations with unchanged energy imply that excitations (particles) associated with the oscillation are massless. Therefore the outcome is that new massless particles should exist, known as <a href="/wiki/Goldstone_boson" title="Goldstone boson">Goldstone bosons</a>. Because zero mass gauge bosons always mediate long range interactions, a new long range force should exist as well.</span> </li> <li id="cite_note-183"><span class="mw-cite-backlink"><b><a href="#cite_ref-183">^</a></b></span> <span class="reference-text"> People initially thought of tachyons as particles travelling faster than the speed of light ... But we now know that a <i>tachyon</i> indicates an instability in a theory that contains it. Regrettably for science fiction fans, tachyons are not real physical particles that appear in nature.<sup id="cite_ref-Randall_182-0" class="reference"><a href="#cite_note-Randall-182"><span class="cite-bracket">[</span>161<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-195"><span class="mw-cite-backlink"><b><a href="#cite_ref-195">^</a></b></span> <span class="reference-text"> This upper limit would increase to <span class="nowrap"><span data-sort-value="7002185000000000000♠"></span>185 GeV/<i>c</i><sup>2</sup></span> if the lower bound of <span class="nowrap"><span data-sort-value="7002114400000000000♠"></span>114.4 GeV/<i>c</i><sup>2</sup></span> from the LEP-2 direct search is allowed for.<sup id="cite_ref-EWWG_194-0" class="reference"><a href="#cite_note-EWWG-194"><span class="cite-bracket">[</span>172<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-other-names-used-note-202"><span class="mw-cite-backlink"><b><a href="#cite_ref-other-names-used-note_202-0">^</a></b></span> <span class="reference-text"> Other names have included: <ul><li>The "Anderson–Higgs" mechanism,<sup id="cite_ref-201" class="reference"><a href="#cite_note-201"><span class="cite-bracket">[</span>178<span class="cite-bracket">]</span></a></sup></li> <li>"Higgs–Kibble" mechanism (by Abdus Salam)<sup id="cite_ref-frank_close_infinity_puzzle_108-2" class="reference"><a href="#cite_note-frank_close_infinity_puzzle-108"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> and</li> <li>"A-B-E-G-H-H-K-'tH" mechanism [for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble and 't Hooft] (by Peter Higgs).<sup id="cite_ref-frank_close_infinity_puzzle_108-3" class="reference"><a href="#cite_note-frank_close_infinity_puzzle-108"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup></li></ul> </span></li> <li id="cite_note-208"><span class="mw-cite-backlink"><b><a href="#cite_ref-208">^</a></b></span> <span class="reference-text"> <a href="/wiki/Benjamin_W._Lee" title="Benjamin W. Lee">Benjamin W. Lee</a> also uses the <a href="/wiki/Korean_language" title="Korean language">Korean language</a> name <i><a href="/wiki/Benjamin_W._Lee" title="Benjamin W. Lee">Lee Whi-soh</a></i>.</span> </li> <li id="cite_note-early-use-of-name-Higgs-boson-214"><span class="mw-cite-backlink"><b><a href="#cite_ref-early-use-of-name-Higgs-boson_214-0">^</a></b></span> <span class="reference-text"> Examples of early papers using the term <i>"Higgs boson"</i> include <ul><li>Ellis, Gaillard, & Nanopoulos (1976) "A phenomenological profile of the Higgs boson".</li> <li>Bjorken (1977) "Weak interaction theory and neutral currents".</li> <li>Wienberg (received, 1975) "Mass of the Higgs boson".</li></ul> </span></li> <li id="cite_note-223"><span class="mw-cite-backlink"><b><a href="#cite_ref-223">^</a></b></span> <span class="reference-text">Global financial partnerships could be the only way to salvage such a project. Some feel that Congress delivered a fatal blow. "We have to keep the momentum and optimism and start thinking about international collaboration," said Leon M. Lederman, the Nobel Prize-winning physicist who was the architect of the super collider plan.<sup id="cite_ref-SSC_LA_Times_220-2" class="reference"><a href="#cite_note-SSC_LA_Times-220"><span class="cite-bracket">[</span>194<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-247"><span class="mw-cite-backlink"><b><a href="#cite_ref-247">^</a></b></span> <span class="reference-text">In Miller's analogy, the Higgs field is compared to political party workers spread evenly throughout a room. There will be some people (in Miller's example an anonymous person) who pass through the crowd with ease, paralleling the interaction between the field and particles that do not interact with it, such as massless photons. There will be other people (in Miller's example the British prime minister) who would find their progress being continually slowed by the swarm of admirers crowding around, paralleling the interaction for particles that do interact with the field and by doing so, acquire a finite mass.<sup id="cite_ref-Miller_analogy_245-0" class="reference"><a href="#cite_note-Miller_analogy-245"><span class="cite-bracket">[</span>218<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-246" class="reference"><a href="#cite_note-246"><span class="cite-bracket">[</span>219<span class="cite-bracket">]</span></a></sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=53" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 25em;"> <ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://home.cern/news/news/physics/atlas-sets-record-precision-higgs-bosons-mass">"ATLAS sets record precision on Higgs boson's mass"</a>. 21 July 2023. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230722110945/https://home.cern/news/news/physics/atlas-sets-record-precision-higgs-bosons-mass">Archived</a> from the original on 22 July 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">22 July</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=ATLAS+sets+record+precision+on+Higgs+boson%27s+mass&rft.date=2023-07-21&rft_id=https%3A%2F%2Fhome.cern%2Fnews%2Fnews%2Fphysics%2Fatlas-sets-record-precision-higgs-bosons-mass&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-LHCcrosssections-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-LHCcrosssections_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LHCcrosssections_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-LHCcrosssections_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-LHCcrosssections_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-LHCcrosssections_3-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-LHCcrosssections_3-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-LHCcrosssections_3-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-LHCcrosssections_3-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDittmaierMariottiPassarinoTanaka2012" class="citation report cs1">Dittmaier; Mariotti; Passarino; Tanaka; Alekhin; Alwall; Bagnaschi; Banfi; et al. (LHC Higgs Cross Section Working Group) (2012). Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (Report). CERN Report 2 (Tables A.1–A.20). Vol. 1201. p. 3084. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1201.3084">1201.3084</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012arXiv1201.3084L">2012arXiv1201.3084L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5170%2FCERN-2012-002">10.5170/CERN-2012-002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119287417">119287417</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=report&rft.btitle=Handbook+of+LHC+Higgs+Cross+Sections%3A+2.+Differential+Distributions&rft.series=CERN+Report+2+%28Tables+A.1%E2%80%93A.20%29&rft.pages=3084&rft.date=2012&rft_id=info%3Aarxiv%2F1201.3084&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119287417%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.5170%2FCERN-2012-002&rft_id=info%3Abibcode%2F2012arXiv1201.3084L&rft.au=Dittmaier&rft.au=Mariotti&rft.au=Passarino&rft.au=Tanaka&rft.au=Alekhin&rft.au=Alwall&rft.au=Bagnaschi&rft.au=Banfi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-lifetime1-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-lifetime1_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-lifetime1_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-lifetime1_5-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://cms.cern/news/life-higgs-boson">"Life of the Higgs boson"</a> (Press release). CMS Collaboration. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211202001531/https://cms.cern/news/life-higgs-boson">Archived</a> from the original on 2 December 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Life+of+the+Higgs+boson&rft.pub=CMS+Collaboration&rft_id=https%3A%2F%2Fcms.cern%2Fnews%2Flife-higgs-boson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-lifetime2-dalitz-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-lifetime2-dalitz_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-lifetime2-dalitz_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-lifetime2-dalitz_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-lifetime2-dalitz_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-lifetime2-dalitz_6-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://home.cern/news/news/physics/atlas-finds-evidence-rare-higgs-boson-decay">"ATLAS finds evidence of a rare Higgs boson decay"</a> (Press release). CERN. 8 February 2021. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220119031015/https://home.cern/news/news/physics/atlas-finds-evidence-rare-higgs-boson-decay">Archived</a> from the original on 19 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=ATLAS+finds+evidence+of+a+rare+Higgs+boson+decay&rft.pub=CERN&rft.date=2021-02-08&rft_id=https%3A%2F%2Fhome.cern%2Fnews%2Fnews%2Fphysics%2Fatlas-finds-evidence-rare-higgs-boson-decay&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFATLAS_collaboration2018" class="citation journal cs1"><a href="/wiki/ATLAS_collaboration" class="mw-redirect" title="ATLAS collaboration">ATLAS collaboration</a> (2018). "Observation of H→b<span style="text-decoration:overline;">b</span> decays and VH production with the ATLAS detector". <i>Physics Letters B</i>. <b>786</b>: 59–86. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1808.08238">1808.08238</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2018.09.013">10.1016/j.physletb.2018.09.013</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53658301">53658301</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=Observation+of+H%E2%86%92b%3Cspan+style%3D%22text-decoration%3Aoverline%3B%22%3Eb%3C%2Fspan%3E+decays+and+VH+production+with+the+ATLAS+detector&rft.volume=786&rft.pages=59-86&rft.date=2018&rft_id=info%3Aarxiv%2F1808.08238&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53658301%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2018.09.013&rft.au=ATLAS+collaboration&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCMS_collaboration2018" class="citation journal cs1">CMS collaboration (2018). "Observation of Higgs boson decay to bottom quarks". <i>Physical Review Letters</i>. <b>121</b> (12): 121801. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1808.08242">1808.08242</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018PhRvL.121l1801S">2018PhRvL.121l1801S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.121.121801">10.1103/PhysRevLett.121.121801</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30296133">30296133</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118901756">118901756</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Observation+of+Higgs+boson+decay+to+bottom+quarks&rft.volume=121&rft.issue=12&rft.pages=121801&rft.date=2018&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118901756%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2018PhRvL.121l1801S&rft_id=info%3Aarxiv%2F1808.08242&rft_id=info%3Apmid%2F30296133&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.121.121801&rft.au=CMS+collaboration&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-CERN_March_2013-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-CERN_March_2013_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CERN_March_2013_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-CERN_March_2013_9-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-CERN_March_2013_9-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-CERN_March_2013_9-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-CERN_March_2013_9-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-CERN_March_2013_9-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'Luanaigh2013" class="citation pressrelease cs1">O'Luanaigh, C. (14 March 2013). <a rel="nofollow" class="external text" href="http://home.web.cern.ch/about/updates/2013/03/new-results-indicate-new-particle-higgs-boson">"New results indicate that new particle is a Higgs boson"</a> (Press release). <a href="/wiki/CERN" title="CERN">CERN</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151020000722/http://home.web.cern.ch/about/updates/2013/03/new-results-indicate-new-particle-higgs-boson">Archived</a> from the original on 20 October 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">9 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=New+results+indicate+that+new+particle+is+a+Higgs+boson&rft.pub=CERN&rft.date=2013-03-14&rft.aulast=O%27Luanaigh&rft.aufirst=C.&rft_id=http%3A%2F%2Fhome.web.cern.ch%2Fabout%2Fupdates%2F2013%2F03%2Fnew-results-indicate-new-particle-higgs-boson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-CMSspinparity2017-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-CMSspinparity2017_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CMSspinparity2017_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-CMSspinparity2017_10-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-CMSspinparity2017_10-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-CMSspinparity2017_10-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCMS_Collaboration2017" class="citation journal cs1">CMS Collaboration (2017). "Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state". <i>Physics Letters B</i>. <b>775</b> (2017): 1–24. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1707.00541">1707.00541</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017PhLB..775....1S">2017PhLB..775....1S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2017.10.021">10.1016/j.physletb.2017.10.021</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3221363">3221363</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=Constraints+on+anomalous+Higgs+boson+couplings+using+production+and+decay+information+in+the+four-lepton+final+state&rft.volume=775&rft.issue=2017&rft.pages=1-24&rft.date=2017&rft_id=info%3Aarxiv%2F1707.00541&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3221363%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2017.10.021&rft_id=info%3Abibcode%2F2017PhLB..775....1S&rft.au=CMS+Collaboration&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoulette2012" class="citation web cs1">Goulette, Marc (15 August 2012). <a rel="nofollow" class="external text" href="https://atlas.cern/updates/blog/what-should-we-know-about-higgs-particle">"What should we know about the Higgs particle?"</a> (blog). Atlas Experiment / <a href="/wiki/CERN" title="CERN">CERN</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220113145217/https://atlas.cern/updates/blog/what-should-we-know-about-higgs-particle">Archived</a> from the original on 13 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=What+should+we+know+about+the+Higgs+particle%3F&rft.pub=Atlas+Experiment+%2F+CERN&rft.date=2012-08-15&rft.aulast=Goulette&rft.aufirst=Marc&rft_id=https%3A%2F%2Fatlas.cern%2Fupdates%2Fblog%2Fwhat-should-we-know-about-higgs-particle&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://www.iop.org/education/school-and-college-students/Qubit/higgs-particle-new-discoveries">"Getting to know the Higgs particle: New discoveries!"</a> (Press release). Institute of Physics. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220113155023/https://www.iop.org/education/school-and-college-students/Qubit/higgs-particle-new-discoveries">Archived</a> from the original on 13 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Getting+to+know+the+Higgs+particle%3A+New+discoveries%21&rft.pub=Institute+of+Physics&rft_id=https%3A%2F%2Fwww.iop.org%2Feducation%2Fschool-and-college-students%2FQubit%2Fhiggs-particle-new-discoveries&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-OnyisiFAQ-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-OnyisiFAQ_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-OnyisiFAQ_13-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-OnyisiFAQ_13-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOnyisi2012" class="citation web cs1">Onyisi, P. (23 October 2012). <a rel="nofollow" class="external text" href="https://wikis.utexas.edu/display/utatlas/Higgs+boson+FAQ">"Higgs boson FAQ"</a>. <a href="/wiki/University_of_Texas" class="mw-redirect" title="University of Texas">University of Texas</a> ATLAS group. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131012130340/https://wikis.utexas.edu/display/utatlas/Higgs+boson+FAQ">Archived</a> from the original on 12 October 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">8 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Higgs+boson+FAQ&rft.pub=University+of+Texas+ATLAS+group&rft.date=2012-10-23&rft.aulast=Onyisi&rft.aufirst=P.&rft_id=https%3A%2F%2Fwikis.utexas.edu%2Fdisplay%2Futatlas%2FHiggs%2Bboson%2BFAQ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-strasslerFAQ2-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-strasslerFAQ2_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-strasslerFAQ2_14-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-strasslerFAQ2_14-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-strasslerFAQ2_14-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrassler2012" class="citation web cs1">Strassler, M. (12 October 2012). <a rel="nofollow" class="external text" href="http://profmattstrassler.com/articles-and-posts/the-higgs-particle/the-higgs-faq-2-0/">"The Higgs FAQ 2.0"</a>. <i>ProfMattStrassler.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131012042637/http://profmattstrassler.com/articles-and-posts/the-higgs-particle/the-higgs-faq-2-0/">Archived</a> from the original on 12 October 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">8 January</span> 2013</span>. <q>[Q] Why do particle physicists care so much about the Higgs particle?<div class="paragraphbreak" style="margin-top:0.5em"></div>[A] Well, actually, they don't. What they really care about is the Higgs <em>field</em>, because it is <em>so</em> important. [emphasis in original]</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ProfMattStrassler.com&rft.atitle=The+Higgs+FAQ+2.0&rft.date=2012-10-12&rft.aulast=Strassler&rft.aufirst=M.&rft_id=http%3A%2F%2Fprofmattstrassler.com%2Farticles-and-posts%2Fthe-higgs-particle%2Fthe-higgs-faq-2-0%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-when_higgs-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-when_higgs_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-when_higgs_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-when_higgs_15-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-when_higgs_15-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-when_higgs_15-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFalkowski,_Adam_(writing_as_'Jester')2013" class="citation web cs1">Falkowski, Adam (writing as 'Jester') (27 February 2013). <a rel="nofollow" class="external text" href="http://resonaances.blogspot.co.uk/2013/02/when-shall-we-call-it-higgs.html">"When shall we call it Higgs?"</a> (blog). Résonaances particle physics. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170629162456/http://resonaances.blogspot.co.uk/2013/02/when-shall-we-call-it-higgs.html">Archived</a> from the original on 29 June 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">7 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=When+shall+we+call+it+Higgs%3F&rft.pub=R%C3%A9sonaances+particle+physics&rft.date=2013-02-27&rft.au=Falkowski%2C+Adam+%28writing+as+%27Jester%27%29&rft_id=http%3A%2F%2Fresonaances.blogspot.co.uk%2F2013%2F02%2Fwhen-shall-we-call-it-higgs.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Proceedings_1986-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Proceedings_1986_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Proceedings_1986_16-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Proceedings_1986_16-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJosé_Luis_LucioArnulfo_Zepeda1987" class="citation book cs1">José Luis Lucio; Arnulfo Zepeda (1987). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jJ-yAAAAIAAJ&q=higgs+%22central+problem+today+in+particle+physics%22"><i>Proceedings of the II Mexican School of Particles and Fields, Cuernavaca-Morelos, 1986</i></a>. World Scientific. p. 29. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-9971-5-0434-2" title="Special:BookSources/978-9971-5-0434-2"><bdi>978-9971-5-0434-2</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125094509/https://books.google.com/books?id=jJ-yAAAAIAAJ&q=higgs+%22central+problem+today+in+particle+physics%22">Archived</a> from the original on 25 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">5 September</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Proceedings+of+the+II+Mexican+School+of+Particles+and+Fields%2C+Cuernavaca-Morelos%2C+1986&rft.pages=29&rft.pub=World+Scientific&rft.date=1987&rft.isbn=978-9971-5-0434-2&rft.au=Jos%C3%A9+Luis+Lucio&rft.au=Arnulfo+Zepeda&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjJ-yAAAAIAAJ%26q%3Dhiggs%2B%2522central%2Bproblem%2Btoday%2Bin%2Bparticle%2Bphysics%2522&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Higgs_Hunters_Guide-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-Higgs_Hunters_Guide_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Higgs_Hunters_Guide_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Higgs_Hunters_Guide_17-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGunionDawsonKaneHaber1990" class="citation book cs1">Gunion; Dawson; Kane; Haber (1990). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=e8fvAAAAMAAJ&q=central+problem"><i>The Higgs Hunter's Guide</i></a> (1st ed.). Basic Books. p. 11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-2015-0935-9" title="Special:BookSources/978-0-2015-0935-9"><bdi>978-0-2015-0935-9</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125094441/https://books.google.com/books?id=e8fvAAAAMAAJ&q=central+problem">Archived</a> from the original on 25 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">5 September</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Higgs+Hunter%27s+Guide&rft.pages=11&rft.edition=1st&rft.pub=Basic+Books&rft.date=1990&rft.isbn=978-0-2015-0935-9&rft.au=Gunion&rft.au=Dawson&rft.au=Kane&rft.au=Haber&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3De8fvAAAAMAAJ%26q%3Dcentral%2Bproblem&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> Cited by Peter Higgs in his talk "My Life as a Boson", 2001, ref#25.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLederman1993" class="citation book cs1"><a href="/wiki/Leon_M._Lederman" title="Leon M. Lederman">Lederman, Leon M.</a> (1993). <i>The God Particle</i>. Bantam Doubleday Dell. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-385-31211-3" title="Special:BookSources/0-385-31211-3"><bdi>0-385-31211-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+God+Particle&rft.pub=Bantam+Doubleday+Dell&rft.date=1993&rft.isbn=0-385-31211-3&rft.aulast=Lederman&rft.aufirst=Leon+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-ISample29052009-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-ISample29052009_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ISample29052009_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ISample29052009_20-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSample2009" class="citation news cs1">Sample, Ian (29 May 2009). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/blog/2009/may/29/why-call-it-the-god-particle-higgs-boson-cern-lhc">"Anything but the God particle"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180725112437/https://www.theguardian.com/science/blog/2009/may/29/why-call-it-the-god-particle-higgs-boson-cern-lhc">Archived</a> from the original on 25 July 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">24 June</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=Anything+but+the+God+particle&rft.date=2009-05-29&rft.aulast=Sample&rft.aufirst=Ian&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2Fblog%2F2009%2Fmay%2F29%2Fwhy-call-it-the-god-particle-higgs-boson-cern-lhc&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-NatPost-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-NatPost_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-NatPost_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEvans2011" class="citation news cs1">Evans, Robert (14 December 2011). <a rel="nofollow" class="external text" href="http://news.nationalpost.com/2011/12/14/the-higgs-boson-why-scientists-hate-that-you-call-it-the-god-particle/">"The Higgs boson: Why scientists hate that you call it the 'God particle'<span class="cs1-kern-right"></span>"</a>. <i><a href="/wiki/National_Post" title="National Post">National Post</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150223003531/http://news.nationalpost.com/2011/12/14/the-higgs-boson-why-scientists-hate-that-you-call-it-the-god-particle/">Archived</a> from the original on 23 February 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">3 November</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=National+Post&rft.atitle=The+Higgs+boson%3A+Why+scientists+hate+that+you+call+it+the+%27God+particle%27&rft.date=2011-12-14&rft.aulast=Evans&rft.aufirst=Robert&rft_id=http%3A%2F%2Fnews.nationalpost.com%2F2011%2F12%2F14%2Fthe-higgs-boson-why-scientists-hate-that-you-call-it-the-god-particle%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEvans2008" class="citation web cs1">Evans, Robert (7 April 2008). Lynn, Jonathan; Fussell, Chloe (eds.). <a rel="nofollow" class="external text" href="https://www.reuters.com/article/idUSL07652872/">"Key scientist sure "God particle" will be found soon"</a>. <i><a href="/wiki/Reuters" title="Reuters">Reuters</a></i>. <a href="/wiki/Geneva" title="Geneva">Geneva</a><span class="reference-accessdate">. Retrieved <span class="nowrap">4 June</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Reuters&rft.atitle=Key+scientist+sure+%22God+particle%22+will+be+found+soon&rft.date=2008-04-07&rft.aulast=Evans&rft.aufirst=Robert&rft_id=https%3A%2F%2Fwww.reuters.com%2Farticle%2FidUSL07652872%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><a href="#CITEREFGriffiths2008">Griffiths 2008</a>, pp. 49–52</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><a href="#CITEREFTiplerLlewellyn2003">Tipler & Llewellyn 2003</a>, pp. 603–604</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">From P.W. Anderson (1972) "More is different", Science.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><a href="#CITEREFGriffiths2008">Griffiths 2008</a>, pp. 372–373</span> </li> <li id="cite_note-woit-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-woit_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-woit_29-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-woit_29-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoit2010" class="citation web cs1">Woit, Peter (13 November 2010). <a rel="nofollow" class="external text" href="http://www.math.columbia.edu/~woit/wordpress/?p=3282">"The Anderson–Higgs Mechanism"</a>. Dr. Peter Woit (Senior Lecturer in Mathematics <a href="/wiki/Columbia_University" title="Columbia University">Columbia University</a> and Ph.D. particle physics). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121123213726/http://www.math.columbia.edu/~woit/wordpress/?p=3282">Archived</a> from the original on 23 November 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">12 November</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Anderson%E2%80%93Higgs+Mechanism&rft.pub=Dr.+Peter+Woit+%28Senior+Lecturer+in+Mathematics+Columbia+University+and+Ph.D.+particle+physics%29&rft.date=2010-11-13&rft.aulast=Woit&rft.aufirst=Peter&rft_id=http%3A%2F%2Fwww.math.columbia.edu%2F~woit%2Fwordpress%2F%3Fp%3D3282&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Klein-Lee-1964-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-Klein-Lee-1964_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Klein-Lee-1964_30-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Klein-Lee-1964_30-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleinLee1964" class="citation journal cs1"><a href="/wiki/Abraham_Klein_(physicist)" title="Abraham Klein (physicist)">Klein, Abraham</a>; <a href="/wiki/Benjamin_W._Lee" title="Benjamin W. Lee">Lee, Benjamin W.</a> (March 1964). "Does Spontaneous Breakdown of Symmetry Imply Zero-Mass Particles?". <i>Physical Review Letters</i>. <b>12</b> (10): 266–268. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhRvL..12..266K">1964PhRvL..12..266K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.12.266">10.1103/PhysRevLett.12.266</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Does+Spontaneous+Breakdown+of+Symmetry+Imply+Zero-Mass+Particles%3F&rft.volume=12&rft.issue=10&rft.pages=266-268&rft.date=1964-03&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.12.266&rft_id=info%3Abibcode%2F1964PhRvL..12..266K&rft.aulast=Klein&rft.aufirst=Abraham&rft.au=Lee%2C+Benjamin+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Anderson-1963-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-Anderson-1963_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Anderson-1963_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnderson1963" class="citation journal cs1">Anderson, P. (April 1963). "Plasmons, gauge invariance and mass". <i>Physical Review</i>. <b>130</b> (1): 439–442. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1963PhRv..130..439A">1963PhRv..130..439A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.130.439">10.1103/PhysRev.130.439</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Plasmons%2C+gauge+invariance+and+mass&rft.volume=130&rft.issue=1&rft.pages=439-442&rft.date=1963-04&rft_id=info%3Adoi%2F10.1103%2FPhysRev.130.439&rft_id=info%3Abibcode%2F1963PhRv..130..439A&rft.aulast=Anderson&rft.aufirst=P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShu1982" class="citation book cs1">Shu, F. H. (1982). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=v_6PbAfapSAC&pg=PA107"><i>The Physical Universe: An introduction to astronomy</i></a>. University Science Books. pp. 107–108. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-935702-05-7" title="Special:BookSources/978-0-935702-05-7"><bdi>978-0-935702-05-7</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160629141232/https://books.google.com/books?id=v_6PbAfapSAC&pg=PA107">Archived</a> from the original on 29 June 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Physical+Universe%3A+An+introduction+to+astronomy&rft.pages=107-108&rft.pub=University+Science+Books&rft.date=1982&rft.isbn=978-0-935702-05-7&rft.aulast=Shu&rft.aufirst=F.+H.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dv_6PbAfapSAC%26pg%3DPA107&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-L&T-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-L&T_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-L&T_37-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-L&T_37-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLedermanTeresi1993" class="citation book cs1">Lederman, Leon M.; Teresi, Dick (1993). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/godparticleifthe00lede"><i>The God Particle: If the universe is the answer, what is the question</i></a></span>. Houghton Mifflin Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-395-55849-2" title="Special:BookSources/978-0-395-55849-2"><bdi>978-0-395-55849-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+God+Particle%3A+If+the+universe+is+the+answer%2C+what+is+the+question&rft.pub=Houghton+Mifflin+Company&rft.date=1993&rft.isbn=978-0-395-55849-2&rft.aulast=Lederman&rft.aufirst=Leon+M.&rft.au=Teresi%2C+Dick&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgodparticleifthe00lede&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Strassler_article-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-Strassler_article_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrassler2011" class="citation web cs1">Strassler, M. (8 October 2011). <a rel="nofollow" class="external text" href="http://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-known-apparently-elementary-particles/the-known-particles-if-the-higgs-field-were-zero/">"The known particles – if the Higgs field were zero"</a>. <i>ProfMattStrassler.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210317211303/https://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-known-apparently-elementary-particles/the-known-particles-if-the-higgs-field-were-zero/">Archived</a> from the original on 17 March 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">13 November</span> 2012</span>. <q>The Higgs field: So important it merited an entire experimental facility, the Large Hadron Collider, dedicated to understanding it.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ProfMattStrassler.com&rft.atitle=The+known+particles+%E2%80%93+if+the+Higgs+field+were+zero&rft.date=2011-10-08&rft.aulast=Strassler&rft.aufirst=M.&rft_id=http%3A%2F%2Fprofmattstrassler.com%2Farticles-and-posts%2Fparticle-physics-basics%2Fthe-known-apparently-elementary-particles%2Fthe-known-particles-if-the-higgs-field-were-zero%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Biever-2012-07-Dieter-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-Biever-2012-07-Dieter_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Biever-2012-07-Dieter_39-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Biever-2012-07-Dieter_39-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Biever-2012-07-Dieter_39-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBiever2012" class="citation news cs1">Biever, C. (6 July 2012). <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/dn22029-its-a-boson-but-we-need-to-know-if-its-the-higgs.html">"It's a boson! But we need to know if it's the Higgs"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">9 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=It%27s+a+boson%21+But+we+need+to+know+if+it%27s+the+Higgs&rft.date=2012-07-06&rft.aulast=Biever&rft.aufirst=C.&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fdn22029-its-a-boson-but-we-need-to-know-if-its-the-higgs.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-ScienceNews-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-ScienceNews_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSiegfried2012" class="citation news cs1">Siegfried, T. (20 July 2012). <a rel="nofollow" class="external text" href="http://www.sciencenews.org/view/generic/id/342408/title/Blog_Higgs_hysteria">"Higgs hysteria"</a>. <i><a href="/wiki/Science_News" title="Science News">Science News</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121031090612/http://www.sciencenews.org/view/generic/id/342408/title/Blog_Higgs_hysteria">Archived</a> from the original on 31 October 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">9 December</span> 2012</span>. <q>In terms usually reserved for athletic achievements, news reports described the finding as a monumental milestone in the history of science.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+News&rft.atitle=Higgs+hysteria&rft.date=2012-07-20&rft.aulast=Siegfried&rft.aufirst=T.&rft_id=http%3A%2F%2Fwww.sciencenews.org%2Fview%2Fgeneric%2Fid%2F342408%2Ftitle%2FBlog_Higgs_hysteria&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-CERN_Nov_2012-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-CERN_Nov_2012_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CERN_Nov_2012_42-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-CERN_Nov_2012_42-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDel_Rosso2012" class="citation pressrelease cs1">Del Rosso, A. (19 November 2012). <a rel="nofollow" class="external text" href="https://cds.cern.ch/record/1494477?ln=en">"Higgs: The beginning of the exploration"</a> (Press release). <a href="/wiki/CERN" title="CERN">CERN</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190419214711/https://cds.cern.ch/record/1494477?ln=en">Archived</a> from the original on 19 April 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">9 January</span> 2013</span>. <q>Even in the most specialized circles, the new particle discovered in July is not yet being called the "Higgs boson". Physicists still hesitate to call it that before they have determined that its properties fit with those the Higgs theory predicts the Higgs boson has.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Higgs%3A+The+beginning+of+the+exploration&rft.pub=CERN&rft.date=2012-11-19&rft.aulast=Del+Rosso&rft.aufirst=A.&rft_id=https%3A%2F%2Fcds.cern.ch%2Frecord%2F1494477%3Fln%3Den&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-WSJ_14_March_2013-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-WSJ_14_March_2013_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-WSJ_14_March_2013_43-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNaik2013" class="citation news cs1">Naik, G. (14 March 2013). <a rel="nofollow" class="external text" href="https://www.wsj.com/articles/SB10001424127887324077704578359850108689618">"New data boosts case for Higgs boson find"</a>. <i><a href="/wiki/The_Wall_Street_Journal" title="The Wall Street Journal">The Wall Street Journal</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180104114526/https://www.wsj.com/articles/SB10001424127887324077704578359850108689618">Archived</a> from the original on 4 January 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">15 March</span> 2013</span>. <q><span class="cs1-kern-left"></span>'We've never seen an elementary particle with spin zero', said Tony Weidberg, a particle physicist at the University of Oxford who is also involved in the CERN experiments.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Wall+Street+Journal&rft.atitle=New+data+boosts+case+for+Higgs+boson+find&rft.date=2013-03-14&rft.aulast=Naik&rft.aufirst=G.&rft_id=https%3A%2F%2Fwww.wsj.com%2Farticles%2FSB10001424127887324077704578359850108689618&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Huffington_14_March_2013-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-Huffington_14_March_2013_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeilprin2013" class="citation news cs1">Heilprin, J. (14 March 2013). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130317191649/http://www.huffingtonpost.com/2013/03/14/higgs-boson-discovery-confirmed-cern-large-hadron-collider_n_2874975.html?icid=maing-grid7%7Cmain5%7Cdl1%7Csec1_lnk2&pLid=283596">"Higgs boson discovery confirmed after physicists review Large Hadron Collider data at CERN"</a>. <i><a href="/wiki/The_Huffington_Post" class="mw-redirect" title="The Huffington Post">The Huffington Post</a></i>. Archived from <a rel="nofollow" class="external text" href="https://huffingtonpost.com/2013/03/14/higgs-boson-discovery-confirmed-cern-large-hadron-collider_n_2874975.html?icid=maing-grid7%7Cmain5%7Cdl1%7Csec1_lnk2%26pLid%3D283596">the original</a> on 17 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Huffington+Post&rft.atitle=Higgs+boson+discovery+confirmed+after+physicists+review+Large+Hadron+Collider+data+at+CERN&rft.date=2013-03-14&rft.aulast=Heilprin&rft.aufirst=J.&rft_id=https%3A%2F%2Fhuffingtonpost.com%2F2013%2F03%2F14%2Fhiggs-boson-discovery-confirmed-cern-large-hadron-collider_n_2874975.html%3Ficid%3Dmaing-grid7%257Cmain5%257Cdl1%257Csec1_lnk2%2526pLid%253D283596&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-CERN_EPS2017-45"><span class="mw-cite-backlink">^ <a href="#cite_ref-CERN_EPS2017_45-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CERN_EPS2017_45-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-CERN_EPS2017_45-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-CERN_EPS2017_45-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-CERN_EPS2017_45-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://home.cern/news/news/cern/lhc-experiments-delve-deeper-precision">"LHC experiments delve deeper into precision"</a>. <i>Media and Press relations</i> (Press release). <a href="/wiki/CERN" title="CERN">CERN</a>. 11 July 2017. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181122052040/https://home.cern/news/news/cern/lhc-experiments-delve-deeper-precision">Archived</a> from the original on 22 November 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">23 July</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=LHC+experiments+delve+deeper+into+precision&rft.pub=CERN&rft.date=2017-07-11&rft_id=https%3A%2F%2Fhome.cern%2Fnews%2Fnews%2Fcern%2Flhc-experiments-delve-deeper-precision&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://cms.cern/news/cms-precisely-measures-mass-higgs-boson">"CMS precisely measures the mass of the Higgs boson"</a>. CMS Collaboration/CERN. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211223042025/https://cms.cern/news/cms-precisely-measures-mass-higgs-boson">Archived</a> from the original on 23 December 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=CMS+precisely+measures+the+mass+of+the+Higgs+boson&rft.pub=CMS+Collaboration%2FCERN&rft_id=https%3A%2F%2Fcms.cern%2Fnews%2Fcms-precisely-measures-mass-higgs-boson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD'OnofrioRummukainen2016" class="citation journal cs1">D'Onofrio, Michela; Rummukainen, Kari (15 January 2016). "Standard model cross-over on the lattice". <i><a href="/wiki/Physical_Review_D" class="mw-redirect" title="Physical Review D">Physical Review D</a></i>. <b>93</b> (2): 025003. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1508.07161">1508.07161</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvD..93b5003D">2016PhRvD..93b5003D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.93.025003">10.1103/PhysRevD.93.025003</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119261776">119261776</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Standard+model+cross-over+on+the+lattice&rft.volume=93&rft.issue=2&rft.pages=025003&rft.date=2016-01-15&rft_id=info%3Aarxiv%2F1508.07161&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119261776%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.93.025003&rft_id=info%3Abibcode%2F2016PhRvD..93b5003D&rft.aulast=D%27Onofrio&rft.aufirst=Michela&rft.au=Rummukainen%2C+Kari&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=JqNg819PiZY">Demystifying the Higgs Boson with Leonard Susskind</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190401162251/https://www.youtube.com/watch?v=JqNg819PiZY">Archived</a> 1 April 2019 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, <a href="/wiki/Leonard_Susskind" title="Leonard Susskind">Leonard Susskind</a> presents an explanation of what the Higgs mechanism is, and what it means to "give mass to particles." He also explains what's at stake for the future of physics and cosmology. 30 July 2012.</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD'OnofrioRummukainen2016" class="citation journal cs1">D'Onofrio, Michela; Rummukainen, Kari (2016). "Standard model cross-over on the lattice". <i>Phys. Rev</i>. <b>D93</b> (2): 025003. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1508.07161">1508.07161</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvD..93b5003D">2016PhRvD..93b5003D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.93.025003">10.1103/PhysRevD.93.025003</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119261776">119261776</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Phys.+Rev.&rft.atitle=Standard+model+cross-over+on+the+lattice&rft.volume=D93&rft.issue=2&rft.pages=025003&rft.date=2016&rft_id=info%3Aarxiv%2F1508.07161&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119261776%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.93.025003&rft_id=info%3Abibcode%2F2016PhRvD..93b5003D&rft.aulast=D%27Onofrio&rft.aufirst=Michela&rft.au=Rummukainen%2C+Kari&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRao2012" class="citation web cs1">Rao, Achintya (2 July 2012). <a rel="nofollow" class="external text" href="http://cms.web.cern.ch/news/why-would-i-care-about-higgs-boson">"Why would I care about the Higgs boson?"</a>. <i>CMS Public Website</i>. CERN. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120709001636/http://cms.web.cern.ch/news/why-would-i-care-about-higgs-boson">Archived</a> from the original on 9 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">18 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=CMS+Public+Website&rft.atitle=Why+would+I+care+about+the+Higgs+boson%3F&rft.date=2012-07-02&rft.aulast=Rao&rft.aufirst=Achintya&rft_id=http%3A%2F%2Fcms.web.cern.ch%2Fnews%2Fwhy-would-i-care-about-higgs-boson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJammer2000" class="citation book cs1">Jammer, Max (2000). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/conceptsmasscont00jamm_737"><i>Concepts of Mass in Contemporary Physics and Philosophy</i></a></span>. Princeton, New Jersey: Princeton University Press. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/conceptsmasscont00jamm_737/page/n173">162</a>–163. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-01017-5" title="Special:BookSources/978-0-691-01017-5"><bdi>978-0-691-01017-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Concepts+of+Mass+in+Contemporary+Physics+and+Philosophy&rft.place=Princeton%2C+New+Jersey&rft.pages=162-163&rft.pub=Princeton+University+Press&rft.date=2000&rft.isbn=978-0-691-01017-5&rft.aulast=Jammer&rft.aufirst=Max&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fconceptsmasscont00jamm_737&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span>, who provides many references in support of this statement.</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDvorsky2013" class="citation news cs1">Dvorsky, George (12 August 2013). <a rel="nofollow" class="external text" href="https://io9.gizmodo.com/is-there-a-link-between-the-higgs-boson-and-dark-energy-1109308709">"Is there a link between the Higgs boson and dark energy?"</a>. <i>io9.gizmodo.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180301164529/https://io9.gizmodo.com/is-there-a-link-between-the-higgs-boson-and-dark-energy-1109308709">Archived</a> from the original on 1 March 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">1 March</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=io9.gizmodo.com&rft.atitle=Is+there+a+link+between+the+Higgs+boson+and+dark+energy%3F&rft.date=2013-08-12&rft.aulast=Dvorsky&rft.aufirst=George&rft_id=https%3A%2F%2Fio9.gizmodo.com%2Fis-there-a-link-between-the-higgs-boson-and-dark-energy-1109308709&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.npr.org/sections/13.7/2014/04/02/297853038/what-universe-is-this-anyway">"What universe is this, anyway?"</a>. <i><a href="/wiki/National_Public_Radio" class="mw-redirect" title="National Public Radio">National Public Radio</a> (NPR.org)</i>. 2 April 2014. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180301224950/https://www.npr.org/sections/13.7/2014/04/02/297853038/what-universe-is-this-anyway">Archived</a> from the original on 1 March 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">1 March</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=National+Public+Radio+%28NPR.org%29&rft.atitle=What+universe+is+this%2C+anyway%3F&rft.date=2014-04-02&rft_id=https%3A%2F%2Fwww.npr.org%2Fsections%2F13.7%2F2014%2F04%2F02%2F297853038%2Fwhat-universe-is-this-anyway&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Alekhin_2012-55"><span class="mw-cite-backlink">^ <a href="#cite_ref-Alekhin_2012_55-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Alekhin_2012_55-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Alekhin_2012_55-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Alekhin_2012_55-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlekhinDjouadiMoch2012" class="citation journal cs1">Alekhin, S.; Djouadi, A.; Moch, S. (13 August 2012). "The top quark and Higgs boson masses and the stability of the electroweak vacuum". <i>Physics Letters B</i>. <b>716</b> (1): 214–219. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1207.0980">1207.0980</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhLB..716..214A">2012PhLB..716..214A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2012.08.024">10.1016/j.physletb.2012.08.024</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:28216028">28216028</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=The+top+quark+and+Higgs+boson+masses+and+the+stability+of+the+electroweak+vacuum&rft.volume=716&rft.issue=1&rft.pages=214-219&rft.date=2012-08-13&rft_id=info%3Aarxiv%2F1207.0980&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A28216028%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2012.08.024&rft_id=info%3Abibcode%2F2012PhLB..716..214A&rft.aulast=Alekhin&rft.aufirst=S.&rft.au=Djouadi%2C+A.&rft.au=Moch%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-turnerwilczek-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-turnerwilczek_56-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTurnerWilczek1982" class="citation journal cs1">Turner, M. S.; Wilczek, F. (1982). "Is our vacuum metastable?". <i>Nature</i>. <b>298</b> (5875): 633–634. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982Natur.298..633T">1982Natur.298..633T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F298633a0">10.1038/298633a0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4274444">4274444</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Is+our+vacuum+metastable%3F&rft.volume=298&rft.issue=5875&rft.pages=633-634&rft.date=1982&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4274444%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2F298633a0&rft_id=info%3Abibcode%2F1982Natur.298..633T&rft.aulast=Turner&rft.aufirst=M.+S.&rft.au=Wilczek%2C+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-colemandeluccia-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-colemandeluccia_57-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColeman,_S.de_Luccia,_F.1980" class="citation journal cs1">Coleman, S.; de Luccia, F. (1980). "Gravitational effects on and of vacuum decay". <i>Physical Review</i>. <b>D21</b> (12): 3305–3315. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1980PhRvD..21.3305C">1980PhRvD..21.3305C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.21.3305">10.1103/PhysRevD.21.3305</a>. <a href="/wiki/OSTI_(identifier)" class="mw-redirect" title="OSTI (identifier)">OSTI</a> <a rel="nofollow" class="external text" href="https://www.osti.gov/biblio/1445512">1445512</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1340683">1340683</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Gravitational+effects+on+and+of+vacuum+decay&rft.volume=D21&rft.issue=12&rft.pages=3305-3315&rft.date=1980&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.21.3305&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1340683%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.osti.gov%2Fbiblio%2F1445512%23id-name%3DOSTI&rft_id=info%3Abibcode%2F1980PhRvD..21.3305C&rft.au=Coleman%2C+S.&rft.au=de+Luccia%2C+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStone,_M.1976" class="citation journal cs1">Stone, M. (1976). "Lifetime and decay of excited vacuum states". <i>Phys. Rev. D</i>. <b>14</b> (12): 3568–3573. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976PhRvD..14.3568S">1976PhRvD..14.3568S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.14.3568">10.1103/PhysRevD.14.3568</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Phys.+Rev.+D&rft.atitle=Lifetime+and+decay+of+excited+vacuum+states&rft.volume=14&rft.issue=12&rft.pages=3568-3573&rft.date=1976&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.14.3568&rft_id=info%3Abibcode%2F1976PhRvD..14.3568S&rft.au=Stone%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrampton1976" class="citation journal cs1">Frampton, P. H. (1976). "Vacuum Instability and Higgs Scalar Mass". <i>Physical Review Letters</i>. <b>37</b> (21): 1378–1380. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976PhRvL..37.1378F">1976PhRvL..37.1378F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.37.1378">10.1103/PhysRevLett.37.1378</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Vacuum+Instability+and+Higgs+Scalar+Mass&rft.volume=37&rft.issue=21&rft.pages=1378-1380&rft.date=1976&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.37.1378&rft_id=info%3Abibcode%2F1976PhRvL..37.1378F&rft.aulast=Frampton&rft.aufirst=P.+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrampton1977" class="citation journal cs1">Frampton, P. H. (1977). "Consequences of Vacuum Instability in Quantum Field Theory". <i>Phys. Rev. D</i>. <b>15</b> (10): 2922–2928. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1977PhRvD..15.2922F">1977PhRvD..15.2922F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.15.2922">10.1103/PhysRevD.15.2922</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Phys.+Rev.+D&rft.atitle=Consequences+of+Vacuum+Instability+in+Quantum+Field+Theory&rft.volume=15&rft.issue=10&rft.pages=2922-2928&rft.date=1977&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.15.2922&rft_id=info%3Abibcode%2F1977PhRvD..15.2922F&rft.aulast=Frampton&rft.aufirst=P.+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlotz,_Irene2013" class="citation news cs1">Klotz, Irene (18 February 2013). Adams, David; Eastham, Todd (eds.). <a rel="nofollow" class="external text" href="https://huffingtonpost.com/2013/02/19/universe-lifespan-finite-unstable-higgs-boson_n_2713053.html">"Universe has finite lifespan, Higgs boson calculations suggest"</a>. <i>Huffington Post</i>. Reuters. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130220141633/http://www.huffingtonpost.com/2013/02/19/universe-lifespan-finite-unstable-higgs-boson_n_2713053.html">Archived</a> from the original on 20 February 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2013</span>. <q>Earth will likely be long gone before any Higgs boson particles set off an apocalyptic assault on the universe</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Huffington+Post&rft.atitle=Universe+has+finite+lifespan%2C+Higgs+boson+calculations+suggest&rft.date=2013-02-18&rft.au=Klotz%2C+Irene&rft_id=https%3A%2F%2Fhuffingtonpost.com%2F2013%2F02%2F19%2Funiverse-lifespan-finite-unstable-higgs-boson_n_2713053.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoffman2013" class="citation web cs1">Hoffman, Mark (19 February 2013). <a rel="nofollow" class="external text" href="http://www.scienceworldreport.com/articles/5038/20130219/higgs-boson-instability-will-destroy-universe-eventually.htm">"Higgs boson will destroy the universe, eventually"</a>. <i>Science World Report</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190611181953/https://www.scienceworldreport.com/articles/5038/20130219/higgs-boson-instability-will-destroy-universe-eventually.htm">Archived</a> from the original on 11 June 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Science+World+Report&rft.atitle=Higgs+boson+will+destroy+the+universe%2C+eventually&rft.date=2013-02-19&rft.aulast=Hoffman&rft.aufirst=Mark&rft_id=http%3A%2F%2Fwww.scienceworldreport.com%2Farticles%2F5038%2F20130219%2Fhiggs-boson-instability-will-destroy-universe-eventually.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEllisEspinosaGiudiceHoecker2009" class="citation journal cs1">Ellis, J.; Espinosa, J. R.; Giudice, G. F.; Hoecker, A.; Riotto, A. (2009). "The Probable Fate of the Standard Model". <i>Physics Letters B</i>. <b>679</b> (4): 369–375. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0906.0954">0906.0954</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhLB..679..369E">2009PhLB..679..369E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2009.07.054">10.1016/j.physletb.2009.07.054</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17422678">17422678</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=The+Probable+Fate+of+the+Standard+Model&rft.volume=679&rft.issue=4&rft.pages=369-375&rft.date=2009&rft_id=info%3Aarxiv%2F0906.0954&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17422678%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2009.07.054&rft_id=info%3Abibcode%2F2009PhLB..679..369E&rft.aulast=Ellis&rft.aufirst=J.&rft.au=Espinosa%2C+J.+R.&rft.au=Giudice%2C+G.+F.&rft.au=Hoecker%2C+A.&rft.au=Riotto%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMasina2013" class="citation journal cs1">Masina, Isabella (12 February 2013). "Higgs boson and top quark masses as tests of electroweak vacuum stability". <i>Phys. Rev. D</i>. <b>87</b> (5): 53001. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1209.0393">1209.0393</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhRvD..87e3001M">2013PhRvD..87e3001M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.87.053001">10.1103/PhysRevD.87.053001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118451972">118451972</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Phys.+Rev.+D&rft.atitle=Higgs+boson+and+top+quark+masses+as+tests+of+electroweak+vacuum+stability&rft.volume=87&rft.issue=5&rft.pages=53001&rft.date=2013-02-12&rft_id=info%3Aarxiv%2F1209.0393&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118451972%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.87.053001&rft_id=info%3Abibcode%2F2013PhRvD..87e3001M&rft.aulast=Masina&rft.aufirst=Isabella&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFButtazzoDegrassiGiardinoGiudice2013" class="citation journal cs1">Buttazzo, Dario; Degrassi, Giuseppe; Giardino, Pier Paolo; Giudice, Gian F.; Sala, Filippo; Salvio, Alberto; Strumia, Alessandro (2013). <a rel="nofollow" class="external text" href="http://inspirehep.net/record/1242456">"Investigating the near-criticality of the Higgs boson"</a>. <i>JHEP</i>. <b>2013</b> (12): 089. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1307.3536">1307.3536</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013JHEP...12..089B">2013JHEP...12..089B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP12%282013%29089">10.1007/JHEP12(2013)089</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54021743">54021743</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140828091031/http://inspirehep.net/record/1242456/">Archived</a> from the original on 28 August 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">25 June</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=JHEP&rft.atitle=Investigating+the+near-criticality+of+the+Higgs+boson&rft.volume=2013&rft.issue=12&rft.pages=089&rft.date=2013&rft_id=info%3Aarxiv%2F1307.3536&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54021743%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FJHEP12%282013%29089&rft_id=info%3Abibcode%2F2013JHEP...12..089B&rft.aulast=Buttazzo&rft.aufirst=Dario&rft.au=Degrassi%2C+Giuseppe&rft.au=Giardino%2C+Pier+Paolo&rft.au=Giudice%2C+Gian+F.&rft.au=Sala%2C+Filippo&rft.au=Salvio%2C+Alberto&rft.au=Strumia%2C+Alessandro&rft_id=http%3A%2F%2Finspirehep.net%2Frecord%2F1242456&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Salvio_2015-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-Salvio_2015_67-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSalvio2015" class="citation journal cs1">Salvio, Alberto (9 April 2015). "A simple, motivated completion of the Standard Model below the Planck scale: Axions and right-handed neutrinos". <i>Physics Letters B</i>. <b>743</b>: 428–434. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1501.03781">1501.03781</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PhLB..743..428S">2015PhLB..743..428S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2015.03.015">10.1016/j.physletb.2015.03.015</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119279576">119279576</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=A+simple%2C+motivated+completion+of+the+Standard+Model+below+the+Planck+scale%3A+Axions+and+right-handed+neutrinos&rft.volume=743&rft.pages=428-434&rft.date=2015-04-09&rft_id=info%3Aarxiv%2F1501.03781&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119279576%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2015.03.015&rft_id=info%3Abibcode%2F2015PhLB..743..428S&rft.aulast=Salvio&rft.aufirst=Alberto&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Boyle-68"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyle_68-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyle_68-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Boyle_68-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyle2013" class="citation news cs1">Boyle, Alan (19 February 2013). <a rel="nofollow" class="external text" href="http://cosmiclog.nbcnews.com/_news/2013/02/18/17006552-will-our-universe-end-in-a-big-slurp-higgs-like-particle-suggests-it-might?lite">"Will our universe end in a 'big slurp'? Higgs-like particle suggests it might"</a>. <i>NBC News' Cosmic blog</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130221030545/http://cosmiclog.nbcnews.com/_news/2013/02/18/17006552-will-our-universe-end-in-a-big-slurp-higgs-like-particle-suggests-it-might?lite">Archived</a> from the original on 21 February 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2013</span>. <q>[T]he bad news is that its mass suggests the universe will end in a fast-spreading bubble of doom. The good news? It'll probably be tens of billions of years.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=NBC+News%27+Cosmic+blog&rft.atitle=Will+our+universe+end+in+a+%27big+slurp%27%3F+Higgs-like+particle+suggests+it+might&rft.date=2013-02-19&rft.aulast=Boyle&rft.aufirst=Alan&rft_id=http%3A%2F%2Fcosmiclog.nbcnews.com%2F_news%2F2013%2F02%2F18%2F17006552-will-our-universe-end-in-a-big-slurp-higgs-like-particle-suggests-it-might%3Flite&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> The article quotes <a href="/wiki/Fermilab" title="Fermilab">Fermilab</a>'s Joseph Lykken: "[T]he parameters for our universe, including the Higgs [and top quark's masses] suggest that we're just at the edge of stability, in a "metastable" state. Physicists have been contemplating such a possibility for more than 30 years. Back in 1982, physicists Michael Turner and Frank Wilczek wrote in <i>Nature</i> that "without warning, a bubble of true vacuum could nucleate somewhere in the universe and move outwards ..."</span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeralta2013" class="citation web cs1">Peralta, Eyder (19 February 2013). <a rel="nofollow" class="external text" href="https://www.npr.org/blogs/thetwo-way/2013/02/19/172422921/if-higgs-boson-calculations-are-right-a-catastrophic-bubble-could-end-universe">"If Higgs boson calculations are right, a catastrophic 'bubble' could end universe"</a>. <i>The Two-Way</i>. NPR News. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130221005726/http://www.npr.org/blogs/thetwo-way/2013/02/19/172422921/if-higgs-boson-calculations-are-right-a-catastrophic-bubble-could-end-universe">Archived</a> from the original on 21 February 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Two-Way&rft.atitle=If+Higgs+boson+calculations+are+right%2C+a+catastrophic+%27bubble%27+could+end+universe&rft.date=2013-02-19&rft.aulast=Peralta&rft.aufirst=Eyder&rft_id=https%3A%2F%2Fwww.npr.org%2Fblogs%2Fthetwo-way%2F2013%2F02%2F19%2F172422921%2Fif-higgs-boson-calculations-are-right-a-catastrophic-bubble-could-end-universe&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> Article cites <a href="/wiki/Fermilab" title="Fermilab">Fermilab</a>'s Joseph Lykken: "The bubble forms through an unlikely quantum fluctuation, at a random time and place," Lykken tells us. "So in principle it could happen tomorrow, but then most likely in a very distant galaxy, so we are still safe for billions of years before it gets to us."</span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBezrukovShaposhnikov2008" class="citation journal cs1">Bezrukov, F.; Shaposhnikov, M. (24 January 2008). "The Standard Model Higgs boson as the inflaton". <i>Physics Letters B</i>. <b>659</b> (3): 703–706. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0710.3755">0710.3755</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008PhLB..659..703B">2008PhLB..659..703B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2007.11.072">10.1016/j.physletb.2007.11.072</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14818281">14818281</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=The+Standard+Model+Higgs+boson+as+the+inflaton&rft.volume=659&rft.issue=3&rft.pages=703-706&rft.date=2008-01-24&rft_id=info%3Aarxiv%2F0710.3755&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14818281%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2007.11.072&rft_id=info%3Abibcode%2F2008PhLB..659..703B&rft.aulast=Bezrukov&rft.aufirst=F.&rft.au=Shaposhnikov%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSalvio2013" class="citation journal cs1">Salvio, Alberto (9 August 2013). <a rel="nofollow" class="external text" href="http://inspirehep.net/record/1247471">"Higgs Inflation at NNLO after the Boson Discovery"</a>. <i>Physics Letters B</i>. <b>727</b> (1–3): 234–239. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1308.2244">1308.2244</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhLB..727..234S">2013PhLB..727..234S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2013.10.042">10.1016/j.physletb.2013.10.042</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:56544999">56544999</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160126044115/http://inspirehep.net/record/1247471">Archived</a> from the original on 26 January 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">25 June</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=Higgs+Inflation+at+NNLO+after+the+Boson+Discovery&rft.volume=727&rft.issue=1%E2%80%933&rft.pages=234-239&rft.date=2013-08-09&rft_id=info%3Aarxiv%2F1308.2244&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A56544999%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2013.10.042&rft_id=info%3Abibcode%2F2013PhLB..727..234S&rft.aulast=Salvio&rft.aufirst=Alberto&rft_id=http%3A%2F%2Finspirehep.net%2Frecord%2F1247471&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCole2000" class="citation news cs1">Cole, K. C. (14 December 2000). <a rel="nofollow" class="external text" href="https://www.latimes.com/archives/la-xpm-2000-dec-14-me-65457-story.html">"One Thing Is Perfectly Clear: Nothingness Is Perfect"</a>. <i><a href="/wiki/Los_Angeles_Times" title="Los Angeles Times">Los Angeles Times</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125094442/https://www.latimes.com/archives">Archived</a> from the original on 25 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">17 January</span> 2013</span>. <q>[T]he Higgs' influence (or the influence of something like it) could reach much further. For example, something like the Higgs—if not exactly the Higgs itself—may be behind many other unexplained "broken symmetries" in the universe as well ... In fact, something very much like the Higgs may have been behind the collapse of the symmetry that led to the Big Bang, which created the universe. When the forces first began to separate from their primordial sameness—taking on the distinct characters they have today—they released energy in the same way as water releases energy when it turns to ice. Except in this case, the freezing packed enough energy to blow up the universe. ... However it happened, the moral is clear: Only when the perfection shatters can everything else be born.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Los+Angeles+Times&rft.atitle=One+Thing+Is+Perfectly+Clear%3A+Nothingness+Is+Perfect&rft.date=2000-12-14&rft.aulast=Cole&rft.aufirst=K.+C.&rft_id=https%3A%2F%2Fwww.latimes.com%2Farchives%2Fla-xpm-2000-dec-14-me-65457-story.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Carroll2012-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-Carroll2012_75-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarroll2012" class="citation book cs1">Carroll, Sean (2012). <i><a href="/wiki/The_Particle_at_the_End_of_the_Universe:_How_the_Hunt_for_the_Higgs_Boson_Leads_Us_to_the_Edge_of_a_New_World" class="mw-redirect" title="The Particle at the End of the Universe: How the Hunt for the Higgs Boson Leads Us to the Edge of a New World">The Particle at the End of the Universe: How the Hunt for the Higgs Boson Leads Us to the Edge of a New World</a></i>. Penguin Group US. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-101-60970-5" title="Special:BookSources/978-1-101-60970-5"><bdi>978-1-101-60970-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Particle+at+the+End+of+the+Universe%3A+How+the+Hunt+for+the+Higgs+Boson+Leads+Us+to+the+Edge+of+a+New+World&rft.pub=Penguin+Group+US&rft.date=2012&rft.isbn=978-1-101-60970-5&rft.aulast=Carroll&rft.aufirst=Sean&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldstoneSalamWeinberg1962" class="citation journal cs1">Goldstone, J.; Salam, Abdus; Weinberg, Steven (1962). "Broken Symmetries". <i>Physical Review</i>. <b>127</b> (3): 965–970. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1962PhRv..127..965G">1962PhRv..127..965G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.127.965">10.1103/PhysRev.127.965</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Broken+Symmetries&rft.volume=127&rft.issue=3&rft.pages=965-970&rft.date=1962&rft_id=info%3Adoi%2F10.1103%2FPhysRev.127.965&rft_id=info%3Abibcode%2F1962PhRv..127..965G&rft.aulast=Goldstone&rft.aufirst=J.&rft.au=Salam%2C+Abdus&rft.au=Weinberg%2C+Steven&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Guralnik_2011-77"><span class="mw-cite-backlink">^ <a href="#cite_ref-Guralnik_2011_77-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Guralnik_2011_77-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Guralnik_2011_77-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuralnik2011" class="citation arxiv cs1">Guralnik, G. S. (2011). "The Beginnings of Spontaneous Symmetry Breaking in Particle Physics". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1110.2253">1110.2253</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/physics.hist-ph">physics.hist-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=The+Beginnings+of+Spontaneous+Symmetry+Breaking+in+Particle+Physics&rft.date=2011&rft_id=info%3Aarxiv%2F1110.2253&rft.aulast=Guralnik&rft.aufirst=G.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-scholarpedia-78"><span class="mw-cite-backlink">^ <a href="#cite_ref-scholarpedia_78-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-scholarpedia_78-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-scholarpedia_78-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-scholarpedia_78-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-scholarpedia_78-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKibble2009" class="citation journal cs1">Kibble, T.W.B. (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.6441">"Englert–Brout–Higgs–Guralnik–Hagen–Kibble Mechanism"</a>. <i><a href="/wiki/Scholarpedia" title="Scholarpedia">Scholarpedia</a></i>. <b>4</b> (1): 6441. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009SchpJ...4.6441K">2009SchpJ...4.6441K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.6441">10.4249/scholarpedia.6441</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scholarpedia&rft.atitle=Englert%E2%80%93Brout%E2%80%93Higgs%E2%80%93Guralnik%E2%80%93Hagen%E2%80%93Kibble+Mechanism&rft.volume=4&rft.issue=1&rft.pages=6441&rft.date=2009&rft_id=info%3Adoi%2F10.4249%2Fscholarpedia.6441&rft_id=info%3Abibcode%2F2009SchpJ...4.6441K&rft.aulast=Kibble&rft.aufirst=T.W.B.&rft_id=https%3A%2F%2Fdoi.org%2F10.4249%252Fscholarpedia.6441&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-scholarpedia_a-79"><span class="mw-cite-backlink">^ <a href="#cite_ref-scholarpedia_a_79-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-scholarpedia_a_79-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKibble2009" class="citation journal cs1">Kibble, T.W.B. (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.8741">"History of Englert–Brout–Higgs–Guralnik–Hagen–Kibble Mechanism (history)"</a>. <i><a href="/wiki/Scholarpedia" title="Scholarpedia">Scholarpedia</a></i>. <b>4</b> (1): 8741. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009SchpJ...4.8741K">2009SchpJ...4.8741K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.8741">10.4249/scholarpedia.8741</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scholarpedia&rft.atitle=History+of+Englert%E2%80%93Brout%E2%80%93Higgs%E2%80%93Guralnik%E2%80%93Hagen%E2%80%93Kibble+Mechanism+%28history%29&rft.volume=4&rft.issue=1&rft.pages=8741&rft.date=2009&rft_id=info%3Adoi%2F10.4249%2Fscholarpedia.8741&rft_id=info%3Abibcode%2F2009SchpJ...4.8741K&rft.aulast=Kibble&rft.aufirst=T.W.B.&rft_id=https%3A%2F%2Fdoi.org%2F10.4249%252Fscholarpedia.8741&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-nambu_nobel-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-nambu_nobel_80-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090113093401/https://www.nobelprize.org/nobel_prizes/physics/laureates/2008">"The Nobel Prize in Physics 2008"</a>. <i>Nobelprize.org</i>. Archived from <a rel="nofollow" class="external text" href="https://www.nobelprize.org/nobel_prizes/physics/laureates/2008">the original</a> on 13 January 2009.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Nobelprize.org&rft.atitle=The+Nobel+Prize+in+Physics+2008&rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F2008&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRueggRuiz-Altaba2004" class="citation journal cs1">Ruegg, Henri; Ruiz-Altaba, Martí (2004). "The Stueckelberg Field". <i>International Journal of Modern Physics A</i>. <b>19</b> (20): 3265–3347. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0304245">hep-th/0304245</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004IJMPA..19.3265R">2004IJMPA..19.3265R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0217751X04019755">10.1142/S0217751X04019755</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7017354">7017354</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics+A&rft.atitle=The+Stueckelberg+Field&rft.volume=19&rft.issue=20&rft.pages=3265-3347&rft.date=2004&rft_id=info%3Aarxiv%2Fhep-th%2F0304245&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7017354%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS0217751X04019755&rft_id=info%3Abibcode%2F2004IJMPA..19.3265R&rft.aulast=Ruegg&rft.aufirst=Henri&rft.au=Ruiz-Altaba%2C+Mart%C3%AD&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><span class="plainlinks"><a rel="nofollow" class="external text" href="http://publish.aps.org/search?q=&clauses%5b%5d%5boperator%5d=AND&clauses%5b%5d%5bfield%5d=author&clauses%5b%5d%5bvalue%5d=anderson&clauses%5b%5d%5boperator%5d=AND&clauses%5b%5d%5bfield%5d=abstitle&clauses%5b%5d%5bvalue%5d=&clauses%5b%5d%5boperator%5d=AND&clauses%5b%5d%5bfield%5d=all&clauses%5b%5d%5bvalue%5d=symmetry&per_page=25">List of Anderson 1958–1959 papers referencing 'symmetry'</a></span>, at APS Journals.<sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged August 2018">dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup></span> </li> <li id="cite_note-MyLifeAsABoson-83"><span class="mw-cite-backlink">^ <a href="#cite_ref-MyLifeAsABoson_83-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MyLifeAsABoson_83-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-MyLifeAsABoson_83-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggs2010" class="citation web cs1">Higgs, Peter (24 November 2010). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131104043410/http://www.kcl.ac.uk/nms/depts/physics/news/events/MyLifeasaBoson.pdf">"My Life as a Boson"</a> <span class="cs1-format">(PDF)</span>. London: King's College. pp. 4–5. Archived from <a rel="nofollow" class="external text" href="http://www.kcl.ac.uk/nms/depts/physics/news/events/MyLifeasaBoson.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 November 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">17 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=My+Life+as+a+Boson&rft.place=London&rft.pages=4-5&rft.pub=King%27s+College&rft.date=2010-11-24&rft.aulast=Higgs&rft.aufirst=Peter&rft_id=http%3A%2F%2Fwww.kcl.ac.uk%2Fnms%2Fdepts%2Fphysics%2Fnews%2Fevents%2FMyLifeasaBoson.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> – Talk given by Peter Higgs at King's College, London, England, expanding on a paper originally presented in 2001. The original 2001 paper may be found in: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggs2001" class="citation book cs1">Higgs, Peter (25 May 2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ONhnbpq00xIC&pg=PA86">"My Life as a Boson: The Story of 'The Higgs'<span class="cs1-kern-right"></span>"</a>. In Michael J. Duff & James T. Liu (eds.). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ONhnbpq00xIC&pg=PR11"><i>2001 A Spacetime Odyssey: Proceedings of the Inaugural Conference of the Michigan Center for Theoretical Physics</i></a>. Ann Arbor, Michigan: World Scientific. pp. 86–88. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-9-8123-8231-3" title="Special:BookSources/978-9-8123-8231-3"><bdi>978-9-8123-8231-3</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125094455/https://books.google.com/books?id=ONhnbpq00xIC&pg=PR11">Archived</a> from the original on 25 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">17 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=My+Life+as+a+Boson%3A+The+Story+of+%27The+Higgs%27&rft.btitle=2001+A+Spacetime+Odyssey%3A+Proceedings+of+the+Inaugural+Conference+of+the+Michigan+Center+for+Theoretical+Physics&rft.place=Ann+Arbor%2C+Michigan&rft.pages=86-88&rft.pub=World+Scientific&rft.date=2001-05-25&rft.isbn=978-9-8123-8231-3&rft.aulast=Higgs&rft.aufirst=Peter&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DONhnbpq00xIC%26pg%3DPA86&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-eb64-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-eb64_84-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEnglertBrout1964" class="citation journal cs1"><a href="/wiki/Fran%C3%A7ois_Englert" title="François Englert">Englert, François</a>; <a href="/wiki/Robert_Brout" title="Robert Brout">Brout, Robert</a> (1964). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.13.321">"Broken Symmetry and the Mass of Gauge Vector Mesons"</a>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>13</b> (9): 321–323. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhRvL..13..321E">1964PhRvL..13..321E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.13.321">10.1103/PhysRevLett.13.321</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Broken+Symmetry+and+the+Mass+of+Gauge+Vector+Mesons&rft.volume=13&rft.issue=9&rft.pages=321-323&rft.date=1964&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.13.321&rft_id=info%3Abibcode%2F1964PhRvL..13..321E&rft.aulast=Englert&rft.aufirst=Fran%C3%A7ois&rft.au=Brout%2C+Robert&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevLett.13.321&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-higgs64-85"><span class="mw-cite-backlink">^ <a href="#cite_ref-higgs64_85-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-higgs64_85-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-higgs64_85-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggs1964" class="citation journal cs1">Higgs, Peter (1964). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.13.508">"Broken Symmetries and the Masses of Gauge Bosons"</a>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>13</b> (16): 508–509. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhRvL..13..508H">1964PhRvL..13..508H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.13.508">10.1103/PhysRevLett.13.508</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Broken+Symmetries+and+the+Masses+of+Gauge+Bosons&rft.volume=13&rft.issue=16&rft.pages=508-509&rft.date=1964&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.13.508&rft_id=info%3Abibcode%2F1964PhRvL..13..508H&rft.aulast=Higgs&rft.aufirst=Peter&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevLett.13.508&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-ghk64-86"><span class="mw-cite-backlink">^ <a href="#cite_ref-ghk64_86-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ghk64_86-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ghk64_86-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuralnikHagenKibble1964" class="citation journal cs1"><a href="/wiki/Gerald_Guralnik" title="Gerald Guralnik">Guralnik, Gerald</a>; <a href="/wiki/C._R._Hagen" title="C. R. Hagen">Hagen, C. R.</a>; <a href="/wiki/T._W._B._Kibble" class="mw-redirect" title="T. W. B. Kibble">Kibble, T. W. B.</a> (1964). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.13.585">"Global Conservation Laws and Massless Particles"</a>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>13</b> (20): 585–587. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhRvL..13..585G">1964PhRvL..13..585G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.13.585">10.1103/PhysRevLett.13.585</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Global+Conservation+Laws+and+Massless+Particles&rft.volume=13&rft.issue=20&rft.pages=585-587&rft.date=1964&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.13.585&rft_id=info%3Abibcode%2F1964PhRvL..13..585G&rft.aulast=Guralnik&rft.aufirst=Gerald&rft.au=Hagen%2C+C.+R.&rft.au=Kibble%2C+T.+W.+B.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevLett.13.585&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-higgs64note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-higgs64note_87-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggs1964" class="citation journal cs1">Higgs, Peter (1964). "Broken symmetries, massless particles, and gauge fields". <i><a href="/wiki/Physics_Letters" title="Physics Letters">Physics Letters</a></i>. <b>12</b> (2): 132–133. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhL....12..132H">1964PhL....12..132H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0031-9163%2864%2991136-9">10.1016/0031-9163(64)91136-9</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters&rft.atitle=Broken+symmetries%2C+massless+particles%2C+and+gauge+fields&rft.volume=12&rft.issue=2&rft.pages=132-133&rft.date=1964&rft_id=info%3Adoi%2F10.1016%2F0031-9163%2864%2991136-9&rft_id=info%3Abibcode%2F1964PhL....12..132H&rft.aulast=Higgs&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggs2010" class="citation report cs1">Higgs, Peter (24 November 2010). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131104043410/http://www.kcl.ac.uk/nms/depts/physics/news/events/MyLifeasaBoson.pdf">My Life as a Boson</a> <span class="cs1-format">(PDF)</span> (Report). Talk given by Peter Higgs at King's College, London, 24 November 2010. <a href="/wiki/King%27s_College,_London" class="mw-redirect" title="King's College, London">King's College, London</a>. Archived from <a rel="nofollow" class="external text" href="http://www.kcl.ac.uk/nms/depts/physics/news/events/MyLifeasaBoson.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 November 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">17 January</span> 2013</span>. <q>Gilbert ... wrote a response to [Klein and Lee's paper] saying 'No, you cannot do that in a relativistic theory. You cannot have a preferred unit time-like vector like that.' This is where I came in, because the next month was when I responded to Gilbert's paper by saying 'Yes, you can have such a thing' but only in a gauge theory with a gauge field coupled to the current.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=report&rft.btitle=My+Life+as+a+Boson&rft.series=Talk+given+by+Peter+Higgs+at+King%27s+College%2C+London%2C+24+November+2010&rft.pub=King%27s+College%2C+London&rft.date=2010-11-24&rft.aulast=Higgs&rft.aufirst=Peter&rft_id=http%3A%2F%2Fwww.kcl.ac.uk%2Fnms%2Fdepts%2Fphysics%2Fnews%2Fevents%2FMyLifeasaBoson.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuralnik2011" class="citation journal cs1">Guralnik, G. S. (2011). "Gauge invariance and the Goldstone theorem –  1965 Feldafing talk". <i><a href="/wiki/Modern_Physics_Letters_A" title="Modern Physics Letters A">Modern Physics Letters A</a></i>. <b>26</b> (19): 1381–1392. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1107.4592">1107.4592</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011MPLA...26.1381G">2011MPLA...26.1381G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0217732311036188">10.1142/S0217732311036188</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118500709">118500709</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Modern+Physics+Letters+A&rft.atitle=Gauge+invariance+and+the+Goldstone+theorem+%26ndash%3B%26%2332%3B+1965+Feldafing+talk&rft.volume=26&rft.issue=19&rft.pages=1381-1392&rft.date=2011&rft_id=info%3Aarxiv%2F1107.4592&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118500709%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS0217732311036188&rft_id=info%3Abibcode%2F2011MPLA...26.1381G&rft.aulast=Guralnik&rft.aufirst=G.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggs1966" class="citation journal cs1">Higgs, Peter (1966). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.145.1156">"Spontaneous symmetry breakdown without massless bosons"</a>. <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>145</b> (4): 1156–1163. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1966PhRv..145.1156H">1966PhRv..145.1156H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.145.1156">10.1103/PhysRev.145.1156</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Spontaneous+symmetry+breakdown+without+massless+bosons&rft.volume=145&rft.issue=4&rft.pages=1156-1163&rft.date=1966&rft_id=info%3Adoi%2F10.1103%2FPhysRev.145.1156&rft_id=info%3Abibcode%2F1966PhRv..145.1156H&rft.aulast=Higgs&rft.aufirst=Peter&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRev.145.1156&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKibble1967" class="citation journal cs1">Kibble, Tom (1967). "Symmetry Breaking in Non-Abelian Gauge Theories". <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>155</b> (5): 1554–1561. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1967PhRv..155.1554K">1967PhRv..155.1554K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.155.1554">10.1103/PhysRev.155.1554</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Symmetry+Breaking+in+Non-Abelian+Gauge+Theories&rft.volume=155&rft.issue=5&rft.pages=1554-1561&rft.date=1967&rft_id=info%3Adoi%2F10.1103%2FPhysRev.155.1554&rft_id=info%3Abibcode%2F1967PhRv..155.1554K&rft.aulast=Kibble&rft.aufirst=Tom&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuralnikHagenKibble1967" class="citation journal cs1">Guralnik, G. S.; Hagen, C. R.; Kibble, T. W. B. (1967). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150924072804/http://www.physics.princeton.edu/~mcdonald/examples/EP/guralnik_ap_2_567_67.pdf">"Broken symmetries and the Goldstone theorem"</a> <span class="cs1-format">(PDF)</span>. <i>Advances in Physics</i>. <b>2</b>: 567. Archived from <a rel="nofollow" class="external text" href="http://www.physics.princeton.edu/~mcdonald/examples/EP/guralnik_ap_2_567_67.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 24 September 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">16 September</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advances+in+Physics&rft.atitle=Broken+symmetries+and+the+Goldstone+theorem&rft.volume=2&rft.pages=567&rft.date=1967&rft.aulast=Guralnik&rft.aufirst=G.+S.&rft.au=Hagen%2C+C.+R.&rft.au=Kibble%2C+T.+W.+B.&rft_id=http%3A%2F%2Fwww.physics.princeton.edu%2F~mcdonald%2Fexamples%2FEP%2Fguralnik_ap_2_567_67.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-prl-94"><span class="mw-cite-backlink">^ <a href="#cite_ref-prl_94-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-prl_94-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="http://prl.aps.org/50years/milestones#1964">"Letters from the Past – A PRL Retrospective"</a>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. 12 February 2014. <a rel="nofollow" class="external text" href="https://archive.today/20100110134128/http://prl.aps.org/50years/milestones#1964">Archived</a> from the original on 10 January 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">7 May</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Letters+from+the+Past+%E2%80%93+A+PRL+Retrospective&rft.date=2014-02-12&rft_id=http%3A%2F%2Fprl.aps.org%2F50years%2Fmilestones%231964&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeinberg,_S.1967" class="citation journal cs1">Weinberg, S. (1967). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.19.1264">"A model of leptons"</a>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>19</b> (21): 1264–1266. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1967PhRvL..19.1264W">1967PhRvL..19.1264W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.19.1264">10.1103/PhysRevLett.19.1264</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=A+model+of+leptons&rft.volume=19&rft.issue=21&rft.pages=1264-1266&rft.date=1967&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.19.1264&rft_id=info%3Abibcode%2F1967PhRvL..19.1264W&rft.au=Weinberg%2C+S.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevLett.19.1264&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSalam,_A.1968" class="citation conference cs1">Salam, A. (1968). Svartholm, N. (ed.). <i>Elementary Particle Physics: Relativistic Groups and Analyticity</i>. Eighth Nobel Symposium. Stockholm, SV: Almquvist and Wiksell. p. 367.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=Elementary+Particle+Physics%3A+Relativistic+Groups+and+Analyticity&rft.place=Stockholm%2C+SV&rft.pages=367&rft.pub=Almquvist+and+Wiksell&rft.date=1968&rft.au=Salam%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGlashow1961" class="citation journal cs1">Glashow, S. L. (1961). "Partial-symmetries of weak interactions". <i><a href="/wiki/Nuclear_Physics_(journal)" title="Nuclear Physics (journal)">Nuclear Physics</a></i>. <b>22</b> (4): 579–588. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1961NucPh..22..579G">1961NucPh..22..579G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0029-5582%2861%2990469-2">10.1016/0029-5582(61)90469-2</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuclear+Physics&rft.atitle=Partial-symmetries+of+weak+interactions&rft.volume=22&rft.issue=4&rft.pages=579-588&rft.date=1961&rft_id=info%3Adoi%2F10.1016%2F0029-5582%2861%2990469-2&rft_id=info%3Abibcode%2F1961NucPh..22..579G&rft.aulast=Glashow&rft.aufirst=S.+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Ellis2012-98"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ellis2012_98-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ellis2012_98-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ellis2012_98-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEllisGaillardNanopoulos2012" class="citation arxiv cs1">Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V. (2012). "A historical profile of the Higgs boson". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1201.6045">1201.6045</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/hep-ph">hep-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=A+historical+profile+of+the+Higgs+boson&rft.date=2012&rft_id=info%3Aarxiv%2F1201.6045&rft.aulast=Ellis&rft.aufirst=John&rft.au=Gaillard%2C+Mary+K.&rft.au=Nanopoulos%2C+Dimitri+V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVeltman1999" class="citation web cs1">Veltman, Martin (8 December 1999). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180725112127/https://www.nobelprize.org/nobel_prizes/physics/laureates/1999/veltman-lecture.pdf">"From Weak Interactions to Gravitation"</a> <span class="cs1-format">(PDF)</span>. <i>The Nobel Prize</i>. p. 391. Archived from <a rel="nofollow" class="external text" href="https://www.nobelprize.org/nobel_prizes/physics/laureates/1999/veltman-lecture.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 25 July 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">9 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Nobel+Prize&rft.atitle=From+Weak+Interactions+to+Gravitation&rft.pages=391&rft.date=1999-12-08&rft.aulast=Veltman&rft.aufirst=Martin&rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F1999%2Fveltman-lecture.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Politzer_2004-101"><span class="mw-cite-backlink">^ <a href="#cite_ref-Politzer_2004_101-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Politzer_2004_101-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Politzer_2004_101-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Politzer_2004_101-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Politzer_2004_101-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Politzer_2004_101-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPolitzer2004" class="citation web cs1">Politzer, David (8 December 2004). <a rel="nofollow" class="external text" href="https://www.nobelprize.org/nobel_prizes/physics/laureates/2004/politzer-lecture.html">"The Dilemma of Attribution"</a>. <i>The Nobel Prize</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130321082107/http://www.nobelprize.org/nobel_prizes/physics/laureates/2004/politzer-lecture.html">Archived</a> from the original on 21 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">22 January</span> 2013</span>. <q>Sidney Coleman published in Science magazine in 1979 a citation search he did documenting that essentially no one paid any attention to Weinberg's Nobel Prize winning paper until the work of 't Hooft (as explicated by Ben Lee). In 1971 interest in Weinberg's paper exploded. I had a parallel personal experience: I took a one-year course on weak interactions from Shelly Glashow in 1970, and he never even mentioned the Weinberg–Salam model or his own contributions.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Nobel+Prize&rft.atitle=The+Dilemma+of+Attribution&rft.date=2004-12-08&rft.aulast=Politzer&rft.aufirst=David&rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F2004%2Fpolitzer-lecture.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColeman1979" class="citation journal cs1"><a href="/wiki/Sidney_Coleman" title="Sidney Coleman">Coleman, Sidney</a> (14 December 1979). "The 1979 Nobel Prize in Physics". <i><a href="/wiki/Science_(magazine)" class="mw-redirect" title="Science (magazine)">Science</a></i>. <b>206</b> (4424): 1290–1292. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1979Sci...206.1290C">1979Sci...206.1290C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.206.4424.1290">10.1126/science.206.4424.1290</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17799637">17799637</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=The+1979+Nobel+Prize+in+Physics&rft.volume=206&rft.issue=4424&rft.pages=1290-1292&rft.date=1979-12-14&rft_id=info%3Apmid%2F17799637&rft_id=info%3Adoi%2F10.1126%2Fscience.206.4424.1290&rft_id=info%3Abibcode%2F1979Sci...206.1290C&rft.aulast=Coleman&rft.aufirst=Sidney&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-PRL_50years-103"><span class="mw-cite-backlink">^ <a href="#cite_ref-PRL_50years_103-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-PRL_50years_103-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external autonumber" href="http://prl.aps.org/50years/milestones#1967">[1]</a><a rel="nofollow" class="external text" href="https://archive.today/20100110134128/http://prl.aps.org/50years/milestones#1967">Archived</a> 10 January 2010 at <a href="/wiki/Archive.today" title="Archive.today">archive.today</a><span>. Letters from the Past</span> – <span>A PRL Retrospective</span> (50 year celebration, 2008).</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><a href="#CITEREFBernstein1974">Bernstein 1974</a>, p. 9</span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><a href="#CITEREFBernstein1974">Bernstein 1974</a>, pp. 9, 36 (footnote), 43–44, 47</span> </li> <li id="cite_note-sakuraiprize-106"><span class="mw-cite-backlink">^ <a href="#cite_ref-sakuraiprize_106-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-sakuraiprize_106-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">American Physical Society – <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.aps.org/units/dpf/awards/sakurai.cfm">"J. J. Sakurai Prize for Theoretical Particle Physics"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100212025108/http://www.aps.org/units/dpf/awards/sakurai.cfm">Archived</a> from the original on 12 February 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">2 October</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=J.+J.+Sakurai+Prize+for+Theoretical+Particle+Physics&rft_id=http%3A%2F%2Fwww.aps.org%2Funits%2Fdpf%2Fawards%2Fsakurai.cfm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMerali2010" class="citation journal cs1">Merali, Zeeya (4 August 2010). <a rel="nofollow" class="external text" href="http://www.nature.com/news/2010/100804/full/news.2010.390.html">"Physicists get political over Higgs"</a>. <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnews.2010.390">10.1038/news.2010.390</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125094451/https://www.nature.com/articles/news.2010.390">Archived</a> from the original on 25 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">28 December</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Physicists+get+political+over+Higgs&rft.date=2010-08-04&rft_id=info%3Adoi%2F10.1038%2Fnews.2010.390&rft.aulast=Merali&rft.aufirst=Zeeya&rft_id=http%3A%2F%2Fwww.nature.com%2Fnews%2F2010%2F100804%2Ffull%2Fnews.2010.390.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-frank_close_infinity_puzzle-108"><span class="mw-cite-backlink">^ <a href="#cite_ref-frank_close_infinity_puzzle_108-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-frank_close_infinity_puzzle_108-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-frank_close_infinity_puzzle_108-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-frank_close_infinity_puzzle_108-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-frank_close_infinity_puzzle_108-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-frank_close_infinity_puzzle_108-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-frank_close_infinity_puzzle_108-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-frank_close_infinity_puzzle_108-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-frank_close_infinity_puzzle_108-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClose2011" class="citation book cs1">Close, Frank (2011). <i>The Infinity Puzzle: Quantum Field Theory and the Hunt for an Orderly Universe</i>. Oxford: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-959350-7" title="Special:BookSources/978-0-19-959350-7"><bdi>978-0-19-959350-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Infinity+Puzzle%3A+Quantum+Field+Theory+and+the+Hunt+for+an+Orderly+Universe&rft.place=Oxford&rft.pub=Oxford+University+Press&rft.date=2011&rft.isbn=978-0-19-959350-7&rft.aulast=Close&rft.aufirst=Frank&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Guralnik_2009-109"><span class="mw-cite-backlink">^ <a href="#cite_ref-Guralnik_2009_109-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Guralnik_2009_109-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuralnik2009" class="citation journal cs1">Guralnik, G. S. (2009). "The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles". <i><a href="/wiki/International_Journal_of_Modern_Physics_A" class="mw-redirect" title="International Journal of Modern Physics A">International Journal of Modern Physics A</a></i>. <b>24</b> (14): 2601–2627. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0907.3466">0907.3466</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009IJMPA..24.2601G">2009IJMPA..24.2601G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0217751X09045431">10.1142/S0217751X09045431</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16298371">16298371</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics+A&rft.atitle=The+History+of+the+Guralnik%2C+Hagen+and+Kibble+development+of+the+Theory+of+Spontaneous+Symmetry+Breaking+and+Gauge+Particles&rft.volume=24&rft.issue=14&rft.pages=2601-2627&rft.date=2009&rft_id=info%3Aarxiv%2F0907.3466&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16298371%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS0217751X09045431&rft_id=info%3Abibcode%2F2009IJMPA..24.2601G&rft.aulast=Guralnik&rft.aufirst=G.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-HprodLHC-110"><span class="mw-cite-backlink">^ <a href="#cite_ref-HprodLHC_110-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HprodLHC_110-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-HprodLHC_110-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-HprodLHC_110-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-HprodLHC_110-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-HprodLHC_110-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaglioDjouadi2011" class="citation journal cs1">Baglio, Julien; Djouadi, Abdelhak (2011). "Higgs production at the lHC". <i>Journal of High Energy Physics</i>. <b>1103</b> (3): 055. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1012.0530">1012.0530</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011JHEP...03..055B">2011JHEP...03..055B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP03%282011%29055">10.1007/JHEP03(2011)055</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119295294">119295294</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Higgs+production+at+the+lHC&rft.volume=1103&rft.issue=3&rft.pages=055&rft.date=2011&rft_id=info%3Aarxiv%2F1012.0530&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119295294%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FJHEP03%282011%29055&rft_id=info%3Abibcode%2F2011JHEP...03..055B&rft.aulast=Baglio&rft.aufirst=Julien&rft.au=Djouadi%2C+Abdelhak&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/collisions.htm">"Collisions"</a>. LHC machine outreach. <a href="/wiki/CERN" title="CERN">CERN</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200326021534/https://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/collisions.htm">Archived</a> from the original on 26 March 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">26 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Collisions&rft.series=LHC+machine+outreach&rft.pub=CERN&rft_id=http%3A%2F%2Flhc-machine-outreach.web.cern.ch%2Flhc-machine-outreach%2Fcollisions.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-msnbc-discovery-113"><span class="mw-cite-backlink">^ <a href="#cite_ref-msnbc-discovery_113-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-msnbc-discovery_113-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-msnbc-discovery_113-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nbcnews.com/id/wbna47783507">"Hunt for Higgs boson hits key decision point"</a>. NBC News. 6 December 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200518171258/http://www.nbcnews.com/id/47783507">Archived</a> from the original on 18 May 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">19 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Hunt+for+Higgs+boson+hits+key+decision+point&rft.pub=NBC+News&rft.date=2012-12-06&rft_id=https%3A%2F%2Fwww.nbcnews.com%2Fid%2Fwbna47783507&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://wlcg.web.cern.ch/">"Welcome to the Worldwide LHC Computing Grid"</a>. <i>WLCG –  Worldwide LHC Computing Grid</i>. CERN. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180725112849/http://wlcg.web.cern.ch/">Archived</a> from the original on 25 July 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">14 November</span> 2012</span>. <q>[A] global collaboration of more than 170 computing centres in 36 countries ... to store, distribute and analyse the ~25 Petabytes (25 million Gigabytes) of data annually generated by the Large Hadron Collider</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=WLCG+%26ndash%3B%26%2332%3B+Worldwide+LHC+Computing+Grid&rft.atitle=Welcome+to+the+Worldwide+LHC+Computing+Grid&rft_id=http%3A%2F%2Fwlcg.web.cern.ch%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://home.cern/about/computing/worldwide-lhc-computing-grid">"The Worldwide LHC Computing Grid"</a>. <i>The Worldwide LHC Computing Grid</i>. CERN. November 2017. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171107014344/https://home.cern/about/computing/worldwide-lhc-computing-grid">Archived</a> from the original on 7 November 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">5 November</span> 2017</span>. <q>It now links thousands of computers and storage systems in over 170 centres across 41 countries. ... The WLCG is the world's largest computing grid</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Worldwide+LHC+Computing+Grid&rft.atitle=The+Worldwide+LHC+Computing+Grid&rft.date=2017-11&rft_id=https%3A%2F%2Fhome.cern%2Fabout%2Fcomputing%2Fworldwide-lhc-computing-grid&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Yao_2006-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-Yao_2006_117-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYao,_W.-M.2006" class="citation journal cs1">Yao, W.-M.; et al. (2006). <a rel="nofollow" class="external text" href="http://pdg.lbl.gov/2006/reviews/higgs_s055.pdf">"Review of Particle Physics"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Journal_of_Physics_G" title="Journal of Physics G">Journal of Physics G</a></i>. <b>33</b> (1): 1–1232. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0601168">astro-ph/0601168</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006JPhG...33....1Y">2006JPhG...33....1Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0954-3899%2F33%2F1%2F001">10.1088/0954-3899/33/1/001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117958297">117958297</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170127020424/http://pdg.lbl.gov/2006/reviews/higgs_s055.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 27 January 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">25 October</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+G&rft.atitle=Review+of+Particle+Physics&rft.volume=33&rft.issue=1&rft.pages=1-1232&rft.date=2006&rft_id=info%3Aarxiv%2Fastro-ph%2F0601168&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117958297%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0954-3899%2F33%2F1%2F001&rft_id=info%3Abibcode%2F2006JPhG...33....1Y&rft.au=Yao%2C+W.-M.&rft_id=http%3A%2F%2Fpdg.lbl.gov%2F2006%2Freviews%2Fhiggs_s055.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThe_CDF_CollaborationThe_D0_CollaborationThe_Tevatron_New_Physics,_Higgs_Working_Group2012" class="citation arxiv cs1">The CDF Collaboration; The D0 Collaboration; The Tevatron New Physics, Higgs Working Group (2012). "Updated combination of CDF and D0 searches for Standard Model Higgs boson production with up to <span class="nowrap"><span data-sort-value="7001100000000000000♠"></span>10.0 fb<sup>−1</sup></span> of data". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1207.0449">1207.0449</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/hep-ex">hep-ex</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Updated+combination+of+CDF+and+D0+searches+for+Standard+Model+Higgs+boson+production+with+up+to+%3Cspan+class%3D%22nowrap%22%3E%3Cspan+data-sort-value%3D%227001100000000000000%E2%99%A0%22%3E%3C%2Fspan%3E10.0+fb%3Csup%3E%E2%88%921%3C%2Fsup%3E%3C%2Fspan%3E+of+data&rft.date=2012&rft_id=info%3Aarxiv%2F1207.0449&rft.au=The+CDF+Collaboration&rft.au=The+D0+Collaboration&rft.au=The+Tevatron+New+Physics%2C+Higgs+Working+Group&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_arXiv" title="Template:Cite arXiv">cite arXiv</a>}}</code>: CS1 maint: numeric names: authors list (<a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">link</a>)</span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://edms.cern.ch/file/973073/1/Report_on_080919_incident_at_LHC__2_.pdf">"Interim Summary Report on the Analysis of the 19 September 2008 Incident at the LHC"</a> <span class="cs1-format">(PDF)</span>. CERN. 15 October 2008. EDMS 973073. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130820095728/https://edms.cern.ch/file/973073/1/Report_on_080919_incident_at_LHC__2_.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 20 August 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">28 September</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Interim+Summary+Report+on+the+Analysis+of+the+19+September+2008+Incident+at+the+LHC&rft.pub=CERN&rft.date=2008-10-15&rft_id=https%3A%2F%2Fedms.cern.ch%2Ffile%2F973073%2F1%2FReport_on_080919_incident_at_LHC__2_.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://press.cern/press-releases/2008/10/cern-releases-analysis-lhc-incident">"CERN releases analysis of LHC incident"</a>. <i>Media and Press relations</i> (Press release). CERN. 16 October 2008. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161112211334/http://press.cern/press-releases/2008/10/cern-releases-analysis-lhc-incident">Archived</a> from the original on 12 November 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">12 November</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=CERN+releases+analysis+of+LHC+incident&rft.pub=CERN&rft.date=2008-10-16&rft_id=http%3A%2F%2Fpress.cern%2Fpress-releases%2F2008%2F10%2Fcern-releases-analysis-lhc-incident&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-CERNsummer-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-CERNsummer_121-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://press.cern/press-releases/2008/12/lhc-restart-2009">"LHC to restart in 2009"</a>. <i>Media and Press relations</i> (Press release). CERN. 5 December 2008. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161112211157/http://press.cern/press-releases/2008/12/lhc-restart-2009">Archived</a> from the original on 12 November 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">12 November</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=LHC+to+restart+in+2009&rft.pub=CERN&rft.date=2008-12-05&rft_id=http%3A%2F%2Fpress.cern%2Fpress-releases%2F2008%2F12%2Flhc-restart-2009&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="http://cdsweb.cern.ch/journal/CERNBulletin/2010/18/News%20Articles/1262593">"LHC progress report"</a>. <i>CERN Bulletin</i> (18). 3 May 2010. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180526031452/http://cdsweb.cern.ch/journal/CERNBulletin/2010/18/News+Articles/1262593">Archived</a> from the original on 26 May 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">7 December</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=CERN+Bulletin&rft.atitle=LHC+progress+report&rft.issue=18&rft.date=2010-05-03&rft_id=http%3A%2F%2Fcdsweb.cern.ch%2Fjournal%2FCERNBulletin%2F2010%2F18%2FNews%2520Articles%2F1262593&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-ATLAS-13Dec2011-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-ATLAS-13Dec2011_123-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://atlas.cern/updates/press-statement/atlas-experiment-presents-latest-higgs-search-status">"ATLAS experiment presents latest Higgs search status"</a>. <i>ATLAS homepage</i>. CERN. 13 December 2011. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161123021514/http://atlas.cern/updates/press-statement/atlas-experiment-presents-latest-higgs-search-status">Archived</a> from the original on 23 November 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">13 December</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ATLAS+homepage&rft.atitle=ATLAS+experiment+presents+latest+Higgs+search+status&rft.date=2011-12-13&rft_id=https%3A%2F%2Fatlas.cern%2Fupdates%2Fpress-statement%2Fatlas-experiment-presents-latest-higgs-search-status&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-CMS_December_2011-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-CMS_December_2011_124-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor2011" class="citation web cs1">Taylor, Lucas (13 December 2011). <a rel="nofollow" class="external text" href="http://cms.web.cern.ch/news/cms-search-standard-model-higgs-boson-lhc-data-2010-and-2011">"CMS search for the Standard Model Higgs Boson in LHC data from 2010 and 2011"</a>. <i>CMS public website</i>. CERN. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120107165124/http://cms.web.cern.ch/news/cms-search-standard-model-higgs-boson-lhc-data-2010-and-2011">Archived</a> from the original on 7 January 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">13 December</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=CMS+public+website&rft.atitle=CMS+search+for+the+Standard+Model+Higgs+Boson+in+LHC+data+from+2010+and+2011&rft.date=2011-12-13&rft.aulast=Taylor&rft.aufirst=Lucas&rft_id=http%3A%2F%2Fcms.web.cern.ch%2Fnews%2Fcms-search-standard-model-higgs-boson-lhc-data-2010-and-2011&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-NYT-20130305-125"><span class="mw-cite-backlink">^ <a href="#cite_ref-NYT-20130305_125-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-NYT-20130305_125-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-NYT-20130305_125-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-NYT-20130305_125-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-NYT-20130305_125-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOverbye2013" class="citation news cs1">Overbye, Dennis (5 March 2013). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2013/03/05/science/chasing-the-higgs-boson-how-2-teams-of-rivals-at-CERN-searched-for-physics-most-elusive-particle.html">"Chasing The Higgs Boson"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130305022631/http://www.nytimes.com/2013/03/05/science/chasing-the-higgs-boson-how-2-teams-of-rivals-at-CERN-searched-for-physics-most-elusive-particle.html">Archived</a> from the original on 5 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">5 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=Chasing+The+Higgs+Boson&rft.date=2013-03-05&rft.aulast=Overbye&rft.aufirst=Dennis&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2013%2F03%2F05%2Fscience%2Fchasing-the-higgs-boson-how-2-teams-of-rivals-at-CERN-searched-for-physics-most-elusive-particle.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-CERN_13_dec_2011-126"><span class="mw-cite-backlink">^ <a href="#cite_ref-CERN_13_dec_2011_126-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CERN_13_dec_2011_126-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://press.web.cern.ch/press-releases/2011/12/atlas-and-cms-experiments-present-higgs-search-status">"ATLAS and CMS experiments present Higgs search status"</a> (Press release). CERN Press Office. 13 December 2011. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121213143159/http://press.web.cern.ch/press-releases/2011/12/atlas-and-cms-experiments-present-higgs-search-status">Archived</a> from the original on 13 December 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">14 September</span> 2012</span>. <q>the statistical significance is not large enough to say anything conclusive. As of today what we see is consistent either with a background fluctuation or with the presence of the boson. Refined analyses and additional data delivered in 2012 by this magnificent machine will definitely give an answer</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=ATLAS+and+CMS+experiments+present+Higgs+search+status&rft.pub=CERN+Press+Office&rft.date=2011-12-13&rft_id=http%3A%2F%2Fpress.web.cern.ch%2Fpress-releases%2F2011%2F12%2Fatlas-and-cms-experiments-present-higgs-search-status&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20121110182115/http://lcg-archive.web.cern.ch/lcg-archive/public/">"Welcome"</a>. <i>WLCG –  Worldwide LHC Computing Grid</i>. CERN. Archived from <a rel="nofollow" class="external text" href="http://lcg-archive.web.cern.ch/lcg-archive/public/">the original</a> on 10 November 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">29 October</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=WLCG+%26ndash%3B%26%2332%3B+Worldwide+LHC+Computing+Grid&rft.atitle=Welcome&rft_id=http%3A%2F%2Flcg-archive.web.cern.ch%2Flcg-archive%2Fpublic%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-cmsdez14-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-cmsdez14_128-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCMS_collaboration2015" class="citation journal cs1"><a href="/wiki/Compact_Muon_Solenoid" title="Compact Muon Solenoid">CMS collaboration</a> (2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433454">"Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV"</a>. <i>The European Physical Journal C</i>. <b>75</b> (5): 212. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1412.8662">1412.8662</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015EPJC...75..212K">2015EPJC...75..212K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1140%2Fepjc%2Fs10052-015-3351-7">10.1140/epjc/s10052-015-3351-7</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433454">4433454</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25999783">25999783</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+European+Physical+Journal+C&rft.atitle=Precise+determination+of+the+mass+of+the+Higgs+boson+and+tests+of+compatibility+of+its+couplings+with+the+standard+model+predictions+using+proton+collisions+at+7+and+8+TeV&rft.volume=75&rft.issue=5&rft.pages=212&rft.date=2015&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4433454%23id-name%3DPMC&rft_id=info%3Abibcode%2F2015EPJC...75..212K&rft_id=info%3Aarxiv%2F1412.8662&rft_id=info%3Apmid%2F25999783&rft_id=info%3Adoi%2F10.1140%2Fepjc%2Fs10052-015-3351-7&rft.au=CMS+collaboration&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4433454&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-atlas4lepton14-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-atlas4lepton14_129-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFATLAS_collaboration2015" class="citation journal cs1"><a href="/wiki/ATLAS_experiment" title="ATLAS experiment">ATLAS collaboration</a> (2015). "Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector". <i>Physical Review D</i>. <b>91</b> (1): 012006. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1408.5191">1408.5191</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PhRvD..91a2006A">2015PhRvD..91a2006A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.91.012006">10.1103/PhysRevD.91.012006</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8672143">8672143</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Measurements+of+Higgs+boson+production+and+couplings+in+the+four-lepton+channel+in+pp+collisions+at+center-of-mass+energies+of+7+and+8+TeV+with+the+ATLAS+detector&rft.volume=91&rft.issue=1&rft.pages=012006&rft.date=2015&rft_id=info%3Aarxiv%2F1408.5191&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8672143%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.91.012006&rft_id=info%3Abibcode%2F2015PhRvD..91a2006A&rft.au=ATLAS+collaboration&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-atlasdiphoton14-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-atlasdiphoton14_130-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFATLAS_collaboration2014" class="citation journal cs1"><a href="/wiki/ATLAS_experiment" title="ATLAS experiment">ATLAS collaboration</a> (2014). "Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector". <i>Physical Review D</i>. <b>90</b> (11): 112015. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1408.7084">1408.7084</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014PhRvD..90k2015A">2014PhRvD..90k2015A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.90.112015">10.1103/PhysRevD.90.112015</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8202688">8202688</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Measurement+of+Higgs+boson+production+in+the+diphoton+decay+channel+in+pp+collisions+at+center-of-mass+energies+of+7+and+8+TeV+with+the+ATLAS+detector&rft.volume=90&rft.issue=11&rft.pages=112015&rft.date=2014&rft_id=info%3Aarxiv%2F1408.7084&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8202688%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.90.112015&rft_id=info%3Abibcode%2F2014PhRvD..90k2015A&rft.au=ATLAS+collaboration&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://indico.cern.ch/conferenceDisplay.py?confId=196564">"Press Conference: Update on the search for the Higgs boson at CERN on 4 July 2012"</a>. Indico.cern.ch. 22 June 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120721025910/https://indico.cern.ch/conferenceDisplay.py?confId=196564">Archived</a> from the original on 21 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">4 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Press+Conference%3A+Update+on+the+search+for+the+Higgs+boson+at+CERN+on+4+July+2012&rft.pub=Indico.cern.ch&rft.date=2012-06-22&rft_id=http%3A%2F%2Findico.cern.ch%2FconferenceDisplay.py%3FconfId%3D196564&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-132">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://press.cern/press-releases/2012/06/cern-give-update-higgs-search-curtain-raiser-ichep-conference">"CERN to give update on Higgs search as curtain raiser to ICHEP conference"</a>. <i>Media and Press relations</i> (Press release). CERN. 22 June 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161112210624/http://press.cern/press-releases/2012/06/cern-give-update-higgs-search-curtain-raiser-ichep-conference">Archived</a> from the original on 12 November 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">12 November</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=CERN+to+give+update+on+Higgs+search+as+curtain+raiser+to+ICHEP+conference&rft.pub=CERN&rft.date=2012-06-22&rft_id=http%3A%2F%2Fpress.cern%2Fpress-releases%2F2012%2F06%2Fcern-give-update-higgs-search-curtain-raiser-ichep-conference&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://phys.org/news/2013-01-scientists-analyse-global-twitter-gossip.html">"Scientists analyse global Twitter gossip around Higgs boson discovery"</a>. <i>Phys.org</i>. 23 January 2013. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131029224033/http://phys.org/news/2013-01-scientists-analyse-global-twitter-gossip.html">Archived</a> from the original on 29 October 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">6 February</span> 2013</span>. <q>For the first time scientists have been able to analyse the dynamics of social media on a global scale before, during and after the announcement of a major scientific discovery.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Phys.org&rft.atitle=Scientists+analyse+global+Twitter+gossip+around+Higgs+boson+discovery&rft.date=2013-01-23&rft_id=http%3A%2F%2Fphys.org%2Fnews%2F2013-01-scientists-analyse-global-twitter-gossip.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span><br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDe_DomenicoLimaMougelMusolesi2013" class="citation journal cs1">De Domenico, M.; Lima, A.; Mougel, P.; Musolesi, M. (2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798885">"The Anatomy of a Scientific Gossip"</a>. <i>Scientific Reports</i>. <b>3</b> (2013): 2980. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1301.2952">1301.2952</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NatSR...3.2980D">2013NatSR...3.2980D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep02980">10.1038/srep02980</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798885">3798885</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24135961">24135961</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+Reports&rft.atitle=The+Anatomy+of+a+Scientific+Gossip&rft.volume=3&rft.issue=2013&rft.pages=2980&rft.date=2013&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3798885%23id-name%3DPMC&rft_id=info%3Abibcode%2F2013NatSR...3.2980D&rft_id=info%3Aarxiv%2F1301.2952&rft_id=info%3Apmid%2F24135961&rft_id=info%3Adoi%2F10.1038%2Fsrep02980&rft.aulast=De+Domenico&rft.aufirst=M.&rft.au=Lima%2C+A.&rft.au=Mougel%2C+P.&rft.au=Musolesi%2C+M.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3798885&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-timeslive1-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-timeslive1_134-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.timeslive.co.za/scitech/2012/06/28/higgs-boson-particle-results-could-be-a-quantum-leap">"Higgs boson particle results could be a quantum leap"</a>. Times LIVE. 28 June 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120704142852/http://www.timeslive.co.za/scitech/2012/06/28/higgs-boson-particle-results-could-be-a-quantum-leap">Archived</a> from the original on 4 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">4 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Higgs+boson+particle+results+could+be+a+quantum+leap&rft.pub=Times+LIVE&rft.date=2012-06-28&rft_id=http%3A%2F%2Fwww.timeslive.co.za%2Fscitech%2F2012%2F06%2F28%2Fhiggs-boson-particle-results-could-be-a-quantum-leap&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.abc.net.au/news/2012-07-04/cern-prepares-to-deliver-higgs-particle-findings/4108622">CERN prepares to deliver Higgs particle findings</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210317211647/https://www.abc.net.au/news/2012-07-04/cern-prepares-to-deliver-higgs-particle-findings/4108622">Archived</a> 17 March 2021 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, Australian Broadcasting Corporation. Retrieved 4 July 2012.</span> </li> <li id="cite_note-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-136">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.huffingtonpost.co.uk/2012/07/03/god-particle-finally-discovered-peter-higgs_n_1645865.html">"God Particle Finally Discovered? Higgs Boson News At Cern Will Even Feature Scientist It's Named After"</a>. Huffingtonpost.co.uk. 3 July 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130311143715/http://www.huffingtonpost.co.uk/2012/07/03/god-particle-finally-discovered-peter-higgs_n_1645865.html">Archived</a> from the original on 11 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">19 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=God+Particle+Finally+Discovered%3F+Higgs+Boson+News+At+Cern+Will+Even+Feature+Scientist+It%27s+Named+After&rft.pub=Huffingtonpost.co.uk&rft.date=2012-07-03&rft_id=http%3A%2F%2Fwww.huffingtonpost.co.uk%2F2012%2F07%2F03%2Fgod-particle-finally-discovered-peter-higgs_n_1645865.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOur_Bureau2012" class="citation news cs1">Our Bureau (4 July 2012). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120707031156/http://www.telegraphindia.com/1120704/jsp/frontpage/story_15689014.jsp">"Higgs on way, theories thicken –  Wait for news on God particle"</a>. <i>The Telegraph –  India</i>. Archived from <a rel="nofollow" class="external text" href="http://www.telegraphindia.com/1120704/jsp/frontpage/story_15689014.jsp">the original</a> on 7 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">19 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Telegraph+%26ndash%3B%26%2332%3B+India&rft.atitle=Higgs+on+way%2C+theories+thicken+%26ndash%3B%26%2332%3B+Wait+for+news+on+God+particle&rft.date=2012-07-04&rft.au=Our+Bureau&rft_id=http%3A%2F%2Fwww.telegraphindia.com%2F1120704%2Fjsp%2Ffrontpage%2Fstory_15689014.jsp&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThornhill2013" class="citation news cs1">Thornhill, Ted (3 July 2013). <a rel="nofollow" class="external text" href="http://www.huffingtonpost.co.uk/2012/07/03/god-particle-finally-discovered-peter-higgs_n_1645865.html">"God Particle Finally Discovered? Higgs Boson News At Cern Will Even Feature Scientist It's Named After"</a>. <i>Huffington Post</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130911082325/http://www.huffingtonpost.co.uk/2012/07/03/god-particle-finally-discovered-peter-higgs_n_1645865.html">Archived</a> from the original on 11 September 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">23 July</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Huffington+Post&rft.atitle=God+Particle+Finally+Discovered%3F+Higgs+Boson+News+At+Cern+Will+Even+Feature+Scientist+It%27s+Named+After&rft.date=2013-07-03&rft.aulast=Thornhill&rft.aufirst=Ted&rft_id=http%3A%2F%2Fwww.huffingtonpost.co.uk%2F2012%2F07%2F03%2Fgod-particle-finally-discovered-peter-higgs_n_1645865.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-discovery-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-discovery_139-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCho2012" class="citation journal cs1">Cho, Adrian (13 July 2012). "Higgs Boson Makes Its Debut After Decades-Long Search". <i>Science</i>. <b>337</b> (6091): 141–143. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012Sci...337..141C">2012Sci...337..141C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.337.6091.141">10.1126/science.337.6091.141</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22798574">22798574</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Higgs+Boson+Makes+Its+Debut+After+Decades-Long+Search&rft.volume=337&rft.issue=6091&rft.pages=141-143&rft.date=2012-07-13&rft_id=info%3Apmid%2F22798574&rft_id=info%3Adoi%2F10.1126%2Fscience.337.6091.141&rft_id=info%3Abibcode%2F2012Sci...337..141C&rft.aulast=Cho&rft.aufirst=Adrian&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-cms0731-140"><span class="mw-cite-backlink">^ <a href="#cite_ref-cms0731_140-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cms0731_140-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCMS_collaboration2012" class="citation journal cs1"><a href="/wiki/Compact_Muon_Solenoid" title="Compact Muon Solenoid">CMS collaboration</a> (2012). "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC". <i><a href="/wiki/Physics_Letters_B" class="mw-redirect" title="Physics Letters B">Physics Letters B</a></i>. <b>716</b> (1): 30–61. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1207.7235">1207.7235</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhLB..716...30C">2012PhLB..716...30C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2012.08.021">10.1016/j.physletb.2012.08.021</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=Observation+of+a+new+boson+at+a+mass+of+125+GeV+with+the+CMS+experiment+at+the+LHC&rft.volume=716&rft.issue=1&rft.pages=30-61&rft.date=2012&rft_id=info%3Aarxiv%2F1207.7235&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2012.08.021&rft_id=info%3Abibcode%2F2012PhLB..716...30C&rft.au=CMS+collaboration&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-cms1207-141"><span class="mw-cite-backlink">^ <a href="#cite_ref-cms1207_141-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cms1207_141-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor2012" class="citation web cs1">Taylor, Lucas (4 July 2012). <a rel="nofollow" class="external text" href="http://cms.web.cern.ch/news/observation-new-particle-mass-125-gev">"Observation of a New Particle with a Mass of 125 GeV"</a>. <i>CMS Public Website</i>. CERN. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120705040217/http://cms.web.cern.ch/news/observation-new-particle-mass-125-gev">Archived</a> from the original on 5 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">4 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=CMS+Public+Website&rft.atitle=Observation+of+a+New+Particle+with+a+Mass+of+125+GeV&rft.date=2012-07-04&rft.aulast=Taylor&rft.aufirst=Lucas&rft_id=http%3A%2F%2Fcms.web.cern.ch%2Fnews%2Fobservation-new-particle-mass-125-gev&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-atlas1207-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-atlas1207_142-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://atlas.cern/updates/press-statement/latest-results-atlas-higgs-search">"Latest Results from ATLAS Higgs Search"</a>. <i>ATLAS News</i>. CERN. 4 July 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161123021048/http://atlas.cern/updates/press-statement/latest-results-atlas-higgs-search">Archived</a> from the original on 23 November 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">4 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ATLAS+News&rft.atitle=Latest+Results+from+ATLAS+Higgs+Search&rft.date=2012-07-04&rft_id=https%3A%2F%2Fatlas.cern%2Fupdates%2Fpress-statement%2Flatest-results-atlas-higgs-search&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-atlas0731-143"><span class="mw-cite-backlink">^ <a href="#cite_ref-atlas0731_143-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-atlas0731_143-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFATLAS_collaboration2012" class="citation journal cs1"><a href="/wiki/ATLAS_experiment" title="ATLAS experiment">ATLAS collaboration</a> (2012). "Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC". <i><a href="/wiki/Physics_Letters_B" class="mw-redirect" title="Physics Letters B">Physics Letters B</a></i>. <b>716</b> (1): 1–29. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1207.7214">1207.7214</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhLB..716....1A">2012PhLB..716....1A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2012.08.020">10.1016/j.physletb.2012.08.020</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119169617">119169617</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=Observation+of+a+New+Particle+in+the+Search+for+the+Standard+Model+Higgs+Boson+with+the+ATLAS+Detector+at+the+LHC&rft.volume=716&rft.issue=1&rft.pages=1-29&rft.date=2012&rft_id=info%3Aarxiv%2F1207.7214&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119169617%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2012.08.020&rft_id=info%3Abibcode%2F2012PhLB..716....1A&rft.au=ATLAS+collaboration&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-PDGreview2012-144"><span class="mw-cite-backlink">^ <a href="#cite_ref-PDGreview2012_144-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-PDGreview2012_144-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-PDGreview2012_144-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-PDGreview2012_144-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-PDGreview2012_144-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://pdg.lbl.gov/2012/reviews/rpp2012-rev-higgs-boson.pdf">"Higgs bosons: theory and searches"</a> <span class="cs1-format">(PDF)</span>. <i>PDGLive</i>. Particle Data Group. 12 July 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210308081640/https://pdg.lbl.gov/2012/reviews/rpp2012-rev-higgs-boson.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 8 March 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">15 August</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=PDGLive&rft.atitle=Higgs+bosons%3A+theory+and+searches&rft.date=2012-07-12&rft_id=http%3A%2F%2Fpdg.lbl.gov%2F2012%2Freviews%2Frpp2012-rev-higgs-boson.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGillies2012" class="citation journal cs1">Gillies, James (23 July 2012). <a rel="nofollow" class="external text" href="http://cdsweb.cern.ch/journal/CERNBulletin/2012/30/News%20Articles/1462536?ln=en">"LHC 2012 proton run extended by seven weeks"</a>. <i>CERN Bulletin</i> (30). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180526031450/http://cdsweb.cern.ch/journal/CERNBulletin/2012/30/News+Articles/1462536?ln=en">Archived</a> from the original on 26 May 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">29 August</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=CERN+Bulletin&rft.atitle=LHC+2012+proton+run+extended+by+seven+weeks&rft.issue=30&rft.date=2012-07-23&rft.aulast=Gillies&rft.aufirst=James&rft_id=http%3A%2F%2Fcdsweb.cern.ch%2Fjournal%2FCERNBulletin%2F2012%2F30%2FNews%2520Articles%2F1462536%3Fln%3Den&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-BBC_Nov_2012-146"><span class="mw-cite-backlink">^ <a href="#cite_ref-BBC_Nov_2012_146-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BBC_Nov_2012_146-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140501135844/http://www.3news.co.nz/Higgs-boson-behaving-as-expected/tabid/1160/articleID/276802/Default.aspx">"Higgs boson behaving as expected"</a>. <i>3 News NZ</i>. 15 November 2012. Archived from <a rel="nofollow" class="external text" href="http://www.3news.co.nz/Higgs-boson-behaving-as-expected/tabid/1160/articleID/276802/Default.aspx">the original</a> on 1 May 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">15 November</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=3+News+NZ&rft.atitle=Higgs+boson+behaving+as+expected&rft.date=2012-11-15&rft_id=http%3A%2F%2Fwww.3news.co.nz%2FHiggs-boson-behaving-as-expected%2Ftabid%2F1160%2FarticleID%2F276802%2FDefault.aspx&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-147">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrassler2012" class="citation web cs1">Strassler, Matt (14 November 2012). <a rel="nofollow" class="external text" href="http://profmattstrassler.com/2012/11/14/higgs-results-at-kyoto/">"Higgs Results at Kyoto"</a>. <i>Of Particular Significance: Conversations about science with theoretical physicist Matt Strassler</i> (personal website). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210308075720/https://profmattstrassler.com/2012/11/14/higgs-results-at-kyoto/">Archived</a> from the original on 8 March 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">10 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Of+Particular+Significance%3A+Conversations+about+science+with+theoretical+physicist+Matt+Strassler&rft.atitle=Higgs+Results+at+Kyoto&rft.date=2012-11-14&rft.aulast=Strassler&rft.aufirst=Matt&rft_id=http%3A%2F%2Fprofmattstrassler.com%2F2012%2F11%2F14%2Fhiggs-results-at-kyoto%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Guardian_Nov_2012-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-Guardian_Nov_2012_149-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSample2012" class="citation news cs1">Sample, Ian (14 November 2012). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/2012/nov/14/higgs-standard-model-boson">"Higgs particle looks like a bog Standard Model boson, say scientists"</a>. <i>The Guardian</i>. London, UK. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160126044115/http://www.theguardian.com/science/2012/nov/14/higgs-standard-model-boson">Archived</a> from the original on 26 January 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">15 November</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=Higgs+particle+looks+like+a+bog+Standard+Model+boson%2C+say+scientists&rft.date=2012-11-14&rft.aulast=Sample&rft.aufirst=Ian&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2F2012%2Fnov%2F14%2Fhiggs-standard-model-boson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-cern1207-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-cern1207_150-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://press.cern/press-releases/2012/07/cern-experiments-observe-particle-consistent-long-sought-higgs-boson">"CERN experiments observe particle consistent with long-sought Higgs boson"</a>. <i>Media and Press relations</i> (Press release). CERN. 4 July 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171121031500/http://press.cern/press-releases/2012/07/cern-experiments-observe-particle-consistent-long-sought-higgs-boson">Archived</a> from the original on 21 November 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">12 November</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=CERN+experiments+observe+particle+consistent+with+long-sought+Higgs+boson&rft.pub=CERN&rft.date=2012-07-04&rft_id=http%3A%2F%2Fpress.cern%2Fpress-releases%2F2012%2F07%2Fcern-experiments-observe-particle-consistent-long-sought-higgs-boson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-151">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://poy.time.com/2012/12/19/the-higgs-boson-particle-of-the-year/">"Person of the year 2012"</a>. <i>Time</i>. 19 December 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130212232314/http://poy.time.com/2012/12/19/the-higgs-boson-particle-of-the-year/">Archived</a> from the original on 12 February 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">13 February</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Time&rft.atitle=Person+of+the+year+2012&rft.date=2012-12-19&rft_id=https%3A%2F%2Fpoy.time.com%2F2012%2F12%2F19%2Fthe-higgs-boson-particle-of-the-year%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.forbes.com/sites/alexknapp/2012/09/12/higgs-boson-discovery-has-been-confirmed/">"Higgs boson discovery has been confirmed"</a>. <i>Forbes</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131025001027/http://www.forbes.com/sites/alexknapp/2012/09/12/higgs-boson-discovery-has-been-confirmed/">Archived</a> from the original on 25 October 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">9 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Forbes&rft.atitle=Higgs+boson+discovery+has+been+confirmed&rft_id=https%3A%2F%2Fwww.forbes.com%2Fsites%2Falexknapp%2F2012%2F09%2F12%2Fhiggs-boson-discovery-has-been-confirmed%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-153">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.slate.com/blogs/trending/2012/09/11/higgs_boson_confirmed_cern_discovery_passes_test.html">"Higgs boson confirmed; CERN discovery passes test"</a>. <i>Slate.com</i>. 11 September 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130709123336/http://www.slate.com/blogs/trending/2012/09/11/higgs_boson_confirmed_cern_discovery_passes_test.html">Archived</a> from the original on 9 July 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">9 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Slate.com&rft.atitle=Higgs+boson+confirmed%3B+CERN+discovery+passes+test&rft.date=2012-09-11&rft_id=http%3A%2F%2Fwww.slate.com%2Fblogs%2Ftrending%2F2012%2F09%2F11%2Fhiggs_boson_confirmed_cern_discovery_passes_test.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-154">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.npr.org/2013/01/01/168208273/the-year-of-the-higgs-and-other-tiny-advances-in-science">"The year of the Higgs, and other tiny advances in science"</a>. <i>NPR.org</i>. <a href="/wiki/National_Public_Radio" class="mw-redirect" title="National Public Radio">National Public Radio</a>. 1 January 2013. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140305192631/http://www.npr.org/2013/01/01/168208273/the-year-of-the-higgs-and-other-tiny-advances-in-science">Archived</a> from the original on 5 March 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">9 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=NPR.org&rft.atitle=The+year+of+the+Higgs%2C+and+other+tiny+advances+in+science&rft.date=2013-01-01&rft_id=https%3A%2F%2Fwww.npr.org%2F2013%2F01%2F01%2F168208273%2Fthe-year-of-the-higgs-and-other-tiny-advances-in-science&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-155">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.smh.com.au/world/science/confirmed-the-higgs-boson-does-exist-20120704-21hac.html">"Confirmed: The Higgs boson does exist"</a>. <i><a href="/wiki/The_Sydney_Morning_Herald" title="The Sydney Morning Herald">The Sydney Morning Herald</a></i>. 4 July 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125094442/https://www.smh.com.au/world/confirmed-the-higgs-boson-does-exist-20120704-21hac.html">Archived</a> from the original on 25 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Sydney+Morning+Herald&rft.atitle=Confirmed%3A+The+Higgs+boson+does+exist&rft.date=2012-07-04&rft_id=https%3A%2F%2Fwww.smh.com.au%2Fworld%2Fscience%2Fconfirmed-the-higgs-boson-does-exist-20120704-21hac.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-156">^</a></b></span> <span class="reference-text">The discovery of the Higgs boson was announced in articles in <i><a href="/wiki/Time_(magazine)" title="Time (magazine)">Time</a></i>,<sup id="cite_ref-151" class="reference"><a href="#cite_note-151"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Forbes" title="Forbes">Forbes</a>,<sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup> <i><a href="/wiki/Slate_(magazine)" title="Slate (magazine)">Slate</a></i>,<sup id="cite_ref-153" class="reference"><a href="#cite_note-153"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup> <i><a href="/wiki/NPR" title="NPR">NPR</a></i>,<sup id="cite_ref-154" class="reference"><a href="#cite_note-154"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup> and others.<sup id="cite_ref-155" class="reference"><a href="#cite_note-155"><span class="cite-bracket">[</span>136<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-status_Jan_2013-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-status_Jan_2013_157-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeilprin2013" class="citation web cs1">Heilprin, John (27 January 2013). <a rel="nofollow" class="external text" href="https://www.nbcnews.com/id/wbna50601148">"CERN chief: Higgs boson quest could wrap up by midyear"</a>. <i>NBCNews.com</i>. AP. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130221014209/http://www.nbcnews.com/id/50601148/ns/technology_and_science-science/#.USVTVx287-Y">Archived</a> from the original on 21 February 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">20 February</span> 2013</span>. <q>Rolf Heuer, director of [CERN], said he is confident that "towards the middle of the year, we will be there."<span class="cs1-kern-right"></span></q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=NBCNews.com&rft.atitle=CERN+chief%3A+Higgs+boson+quest+could+wrap+up+by+midyear&rft.date=2013-01-27&rft.aulast=Heilprin&rft.aufirst=John&rft_id=https%3A%2F%2Fwww.nbcnews.com%2Fid%2Fwbna50601148&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> – Interview by AP, at the World Economic Forum, 26 January 2013.</span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyle2013" class="citation web cs1">Boyle, Alan (16 February 2013). <a rel="nofollow" class="external text" href="http://cosmiclog.nbcnews.com/_news/2013/02/18/17006552-will-our-universe-end-in-a-big-slurp-higgs-like-particle-suggests-it-might?lite">"Will our universe end in a 'big slurp'? Higgs-like particle suggests it might"</a>. <i>NBCNews.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130221030545/http://cosmiclog.nbcnews.com/_news/2013/02/18/17006552-will-our-universe-end-in-a-big-slurp-higgs-like-particle-suggests-it-might?lite">Archived</a> from the original on 21 February 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">20 February</span> 2013</span>. <q><span class="cs1-kern-left"></span>'It's going to take another few years' after the collider is restarted to confirm definitively that the newfound particle is the Higgs boson.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=NBCNews.com&rft.atitle=Will+our+universe+end+in+a+%27big+slurp%27%3F+Higgs-like+particle+suggests+it+might&rft.date=2013-02-16&rft.aulast=Boyle&rft.aufirst=Alan&rft_id=http%3A%2F%2Fcosmiclog.nbcnews.com%2F_news%2F2013%2F02%2F18%2F17006552-will-our-universe-end-in-a-big-slurp-higgs-like-particle-suggests-it-might%3Flite&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-159">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGillies2013" class="citation web cs1">Gillies, James (6 March 2013). <a rel="nofollow" class="external text" href="http://home.web.cern.ch/about/updates/2013/03/question-spin-new-boson">"A question of spin for the new boson"</a>. <a href="/wiki/CERN" title="CERN">CERN</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130308172228/http://home.web.cern.ch/about/updates/2013/03/question-spin-new-boson">Archived</a> from the original on 8 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">7 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=A+question+of+spin+for+the+new+boson&rft.pub=CERN&rft.date=2013-03-06&rft.aulast=Gillies&rft.aufirst=James&rft_id=http%3A%2F%2Fhome.web.cern.ch%2Fabout%2Fupdates%2F2013%2F03%2Fquestion-spin-new-boson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-CMS_spin_parity-160"><span class="mw-cite-backlink">^ <a href="#cite_ref-CMS_spin_parity_160-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CMS_spin_parity_160-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-CMS_spin_parity_160-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChatrchyanKhachatryanSirunyanTumasyan2013" class="citation journal cs1">Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E.; et al. (<a href="/wiki/Compact_Muon_Solenoid" title="Compact Muon Solenoid">CMS</a> Collaboration) (February 2013). "Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs". <i>Physical Review Letters</i>. <b>110</b> (8): 081803. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1212.6639">1212.6639</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhRvL.110h1803C">2013PhRvL.110h1803C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.110.081803">10.1103/PhysRevLett.110.081803</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23473131">23473131</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2621524">2621524</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Study+of+the+mass+and+spin-parity+of+the+Higgs+boson+candidate+via+its+decays+to+Z+boson+pairs&rft.volume=110&rft.issue=8&rft.pages=081803&rft.date=2013-02&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2621524%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2013PhRvL.110h1803C&rft_id=info%3Aarxiv%2F1212.6639&rft_id=info%3Apmid%2F23473131&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.110.081803&rft.aulast=Chatrchyan&rft.aufirst=S.&rft.au=Khachatryan%2C+V.&rft.au=Sirunyan%2C+A.M.&rft.au=Tumasyan%2C+A.&rft.au=Adam%2C+W.&rft.au=Aguilo%2C+E.&rft.au=Bergauer%2C+T.&rft.au=Dragicevic%2C+M.&rft.au=Er%C3%B6%2C+J.&rft.au=Fabjan%2C+C.&rft.au=Friedl%2C+M.&rft.au=Fr%C3%BChwirth%2C+R.&rft.au=Ghete%2C+V.M.&rft.au=H%C3%B6rmann%2C+N.&rft.au=Hrubec%2C+J.&rft.au=Jeitler%2C+M.&rft.au=Kiesenhofer%2C+W.&rft.au=Kn%C3%BCnz%2C+V.&rft.au=Krammer%2C+M.&rft.au=Kr%C3%A4tschmer%2C+I.&rft.au=Liko%2C+D.&rft.au=Mikulec%2C+I.&rft.au=Pernicka%2C+M.&rft.au=Rabady%2C+D.&rft.au=Rahbaran%2C+B.&rft.au=Rohringer%2C+C.&rft.au=Rohringer%2C+H.&rft.au=Sch%C3%B6fbeck%2C+R.&rft.au=Strauss%2C+J.&rft.au=Taurok%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-ATLAS_spin_parity-161"><span class="mw-cite-backlink">^ <a href="#cite_ref-ATLAS_spin_parity_161-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ATLAS_spin_parity_161-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ATLAS_spin_parity_161-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAadAbajyanAbbottAbdallah2013" class="citation journal cs1">Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; et al. (<a href="/wiki/ATLAS_experiment" title="ATLAS experiment">ATLAS</a> Collaboration) (7 October 2013). "Evidence for the spin-0 nature of the Higgs boson using ATLAS data". <i>Phys. Lett. B</i>. <b>726</b> (1–3): 120–144. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1307.1432">1307.1432</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhLB..726..120A">2013PhLB..726..120A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2013.08.026">10.1016/j.physletb.2013.08.026</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11562016">11562016</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Phys.+Lett.+B&rft.atitle=Evidence+for+the+spin-0+nature+of+the+Higgs+boson+using+ATLAS+data&rft.volume=726&rft.issue=1%E2%80%933&rft.pages=120-144&rft.date=2013-10-07&rft_id=info%3Aarxiv%2F1307.1432&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11562016%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2013.08.026&rft_id=info%3Abibcode%2F2013PhLB..726..120A&rft.aulast=Aad&rft.aufirst=G.&rft.au=Abajyan%2C+T.&rft.au=Abbott%2C+B.&rft.au=Abdallah%2C+J.&rft.au=Abdel+Khalek%2C+S.&rft.au=Abdinov%2C+O.&rft.au=Aben%2C+R.&rft.au=Abi%2C+B.&rft.au=Abolins%2C+M.&rft.au=Abouzeid%2C+O.S.&rft.au=Abramowicz%2C+H.&rft.au=Abreu%2C+H.&rft.au=Abulaiti%2C+Y.&rft.au=Acharya%2C+B.S.&rft.au=Adamczyk%2C+L.&rft.au=Adams%2C+D.L.&rft.au=Addy%2C+T.N.&rft.au=Adelman%2C+J.&rft.au=Adomeit%2C+S.&rft.au=Adye%2C+T.&rft.au=Aefsky%2C+S.&rft.au=Aguilar-Saavedra%2C+J.A.&rft.au=Agustoni%2C+M.&rft.au=Ahlen%2C+S.P.&rft.au=Ahmad%2C+A.&rft.au=Ahsan%2C+M.&rft.au=Aielli%2C+G.&rft.au=%C3%85kesson%2C+T.P.A.&rft.au=Akimoto%2C+G.&rft.au=Akimov%2C+A.V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-162">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChatrchyanKhachatryan2013" class="citation journal cs1">Chatrchyan, S.; Khachatryan, V.; et al. (CMS collaboration) (2013). "Higgs-like particle in a mirror". <i>Physical Review Letters</i>. <b>110</b> (8): 081803. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1212.6639">1212.6639</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhRvL.110h1803C">2013PhRvL.110h1803C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.110.081803">10.1103/PhysRevLett.110.081803</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23473131">23473131</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2621524">2621524</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Higgs-like+particle+in+a+mirror&rft.volume=110&rft.issue=8&rft.pages=081803&rft.date=2013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2621524%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2013PhRvL.110h1803C&rft_id=info%3Aarxiv%2F1212.6639&rft_id=info%3Apmid%2F23473131&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.110.081803&rft.aulast=Chatrchyan&rft.aufirst=S.&rft.au=Khachatryan%2C+V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-163">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAadAbbottAbdallahAbdinov2016" class="citation journal cs1">Aad, G.; et al. (ATLAS & CMS Collaborations) (2016). "Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at <span class="texhtml mvar" style="font-style:italic;">√s</span> = 7 and 8 TeV". <i>Journal of High Energy Physics</i>. <b>2016</b> (8): 45. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1606.02266">1606.02266</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JHEP...08..045A">2016JHEP...08..045A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP08%282016%29045">10.1007/JHEP08(2016)045</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118523967">118523967</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Measurements+of+the+Higgs+boson+production+and+decay+rates+and+constraints+on+its+couplings+from+a+combined+ATLAS+and+CMS+analysis+of+the+LHC+pp+collision+data+at+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3E%E2%88%9As%3C%2Fspan%3E+%3D+7+and+8+TeV&rft.volume=2016&rft.issue=8&rft.pages=45&rft.date=2016&rft_id=info%3Aarxiv%2F1606.02266&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118523967%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FJHEP08%282016%29045&rft_id=info%3Abibcode%2F2016JHEP...08..045A&rft.aulast=Aad&rft.aufirst=G.&rft.au=Abbott%2C+B.&rft.au=Abdallah%2C+J.&rft.au=Abdinov%2C+O.&rft.au=Abeloos%2C+B.&rft.au=Aben%2C+R.&rft.au=Abouzeid%2C+O.+S.&rft.au=Abraham%2C+N.+L.&rft.au=Abramowicz%2C+H.&rft.au=Abreu%2C+H.&rft.au=Abreu%2C+R.&rft.au=Abulaiti%2C+Y.&rft.au=Acharya%2C+B.+S.&rft.au=Adamczyk%2C+L.&rft.au=Adams%2C+D.+L.&rft.au=Adelman%2C+J.&rft.au=Adomeit%2C+S.&rft.au=Adye%2C+T.&rft.au=Affolder%2C+A.+A.&rft.au=Agatonovic-Jovin%2C+T.&rft.au=Agricola%2C+J.&rft.au=Aguilar-Saavedra%2C+J.+A.&rft.au=Ahlen%2C+S.+P.&rft.au=Ahmadov%2C+F.&rft.au=Aielli%2C+G.&rft.au=Akerstedt%2C+H.&rft.au=%C3%85kesson%2C+T.+P.+A.&rft.au=Akimov%2C+A.+V.&rft.au=Alberghi%2C+G.+L.&rft.au=Albert%2C+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-164">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeinemeyerMariottiPassarinoTanaka2013" class="citation book cs1">Heinemeyer, S.; Mariotti, C.; Passarino, G.; Tanaka, R.; Andersen, J. R.; Artoisenet, P.; Bagnaschi, E. A.; Banfi, A.; Becher, T. (2013). <a rel="nofollow" class="external text" href="https://cds.cern.ch/record/1559921"><i>Handbook of LHC Higgs Cross Sections: 3. Higgs Properties: Report of the LHC Higgs Cross Section Working Group</i></a>. CERN Yellow Reports: Monographs. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5170%2Fcern-2013-004">10.5170/cern-2013-004</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-92-9083-389-5" title="Special:BookSources/978-92-9083-389-5"><bdi>978-92-9083-389-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbook+of+LHC+Higgs+Cross+Sections%3A+3.+Higgs+Properties%3A+Report+of+the+LHC+Higgs+Cross+Section+Working+Group&rft.series=CERN+Yellow+Reports%3A+Monographs&rft.date=2013&rft_id=info%3Adoi%2F10.5170%2Fcern-2013-004&rft.isbn=978-92-9083-389-5&rft.aulast=Heinemeyer&rft.aufirst=S.&rft.au=Mariotti%2C+C.&rft.au=Passarino%2C+G.&rft.au=Tanaka%2C+R.&rft.au=Andersen%2C+J.+R.&rft.au=Artoisenet%2C+P.&rft.au=Bagnaschi%2C+E.+A.&rft.au=Banfi%2C+A.&rft.au=Becher%2C+T.&rft_id=https%3A%2F%2Fcds.cern.ch%2Frecord%2F1559921&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-165">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThe_ATLAS_Collaboration2022" class="citation journal cs1">The ATLAS Collaboration (4 July 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259483">"A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery"</a>. <i>Nature</i>. <b>607</b> (7917): 52–59. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2207.00092">2207.00092</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022Natur.607...52A">2022Natur.607...52A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-022-04893-w">10.1038/s41586-022-04893-w</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259483">9259483</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35788192">35788192</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+detailed+map+of+Higgs+boson+interactions+by+the+ATLAS+experiment+ten+years+after+the+discovery&rft.volume=607&rft.issue=7917&rft.pages=52-59&rft.date=2022-07-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9259483%23id-name%3DPMC&rft_id=info%3Abibcode%2F2022Natur.607...52A&rft_id=info%3Aarxiv%2F2207.00092&rft.issn=1476-4687&rft_id=info%3Adoi%2F10.1038%2Fs41586-022-04893-w&rft_id=info%3Apmid%2F35788192&rft.au=The+ATLAS+Collaboration&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9259483&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-166"><span class="mw-cite-backlink"><b><a href="#cite_ref-166">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://home.cern/news/news/physics/highlights-2019-moriond-conference-electroweak-physics">"Highlights from the 2019 Moriond conference (electroweak physics)"</a>. 29 March 2019. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190421224637/https://home.cern/news/news/physics/highlights-2019-moriond-conference-electroweak-physics">Archived</a> from the original on 21 April 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">24 April</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Highlights+from+the+2019+Moriond+conference+%28electroweak+physics%29&rft.date=2019-03-29&rft_id=https%3A%2F%2Fhome.cern%2Fnews%2Fnews%2Fphysics%2Fhighlights-2019-moriond-conference-electroweak-physics&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-167">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://atlas.cern/updates/physics-briefing/adding-more-pieces-higgs-boson-puzzle">"All together now: adding more pieces to the Higgs boson puzzle"</a>. ATLAS collaboration. 18 March 2019. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190416210515/https://atlas.cern/updates/physics-briefing/adding-more-pieces-higgs-boson-puzzle">Archived</a> from the original on 16 April 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">24 April</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=All+together+now%3A+adding+more+pieces+to+the+Higgs+boson+puzzle&rft.pub=ATLAS+collaboration&rft.date=2019-03-18&rft_id=https%3A%2F%2Fatlas.cern%2Fupdates%2Fphysics-briefing%2Fadding-more-pieces-higgs-boson-puzzle&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-168">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://home.cern/news/press-release/physics/long-sought-decay-higgs-boson-observed">"Long-sought decay of Higgs boson observed"</a>. <i>Media and Press relations</i> (Press release). CERN. 28 August 2018. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181122092122/https://home.cern/news/press-release/physics/long-sought-decay-higgs-boson-observed">Archived</a> from the original on 22 November 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">30 August</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Long-sought+decay+of+Higgs+boson+observed&rft.pub=CERN&rft.date=2018-08-28&rft_id=https%3A%2F%2Fhome.cern%2Fnews%2Fpress-release%2Fphysics%2Flong-sought-decay-higgs-boson-observed&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-ATLAS-20180828-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-ATLAS-20180828_169-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtlas_Collaboration2018" class="citation pressrelease cs1">Atlas Collaboration (28 August 2018). <a rel="nofollow" class="external text" href="https://atlas.cern/updates/press-statement/observation-higgs-boson-decay-pair-bottom-quarks">"ATLAS observes elusive Higgs boson decay to a pair of bottom quarks"</a>. <i>Atlas</i> (Press release). CERN. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180828094617/http://atlas.cern/updates/press-statement/observation-higgs-boson-decay-pair-bottom-quarks">Archived</a> from the original on 28 August 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">28 August</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=ATLAS+observes+elusive+Higgs+boson+decay+to+a+pair+of+bottom+quarks&rft.pub=CERN&rft.date=2018-08-28&rft.au=Atlas+Collaboration&rft_id=https%3A%2F%2Fatlas.cern%2Fupdates%2Fpress-statement%2Fobservation-higgs-boson-decay-pair-bottom-quarks&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-170"><span class="mw-cite-backlink"><b><a href="#cite_ref-170">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCMS_Collaboration2018" class="citation web cs1">CMS Collaboration (August 2018). <a rel="nofollow" class="external text" href="http://cms.cern/higgs-observed-decaying-b-quarks">"Observation of Higgs boson decay to bottom quarks"</a>. <i>CMS</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180830005005/http://cms.cern/higgs-observed-decaying-b-quarks">Archived</a> from the original on 30 August 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">30 August</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=CMS&rft.atitle=Observation+of+Higgs+boson+decay+to+bottom+quarks&rft.date=2018-08&rft.au=CMS+Collaboration&rft_id=http%3A%2F%2Fcms.cern%2Fhiggs-observed-decaying-b-quarks&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span><br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCMS_Collaboration2018" class="citation journal cs1">CMS Collaboration (24 August 2018). <a rel="nofollow" class="external text" href="https://cds.cern.ch/record/2636067">"Observation of Higgs boson decay to bottom quarks"</a>. <i>Physical Review Letters</i>. <b>121</b> (12). CERN: 121801. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1808.08242">1808.08242</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018PhRvL.121l1801S">2018PhRvL.121l1801S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.121.121801">10.1103/PhysRevLett.121.121801</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30296133">30296133</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125094452/https://cds.cern.ch/record/2636067">Archived</a> from the original on 25 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">30 August</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Observation+of+Higgs+boson+decay+to+bottom+quarks&rft.volume=121&rft.issue=12&rft.pages=121801&rft.date=2018-08-24&rft_id=info%3Aarxiv%2F1808.08242&rft_id=info%3Apmid%2F30296133&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.121.121801&rft_id=info%3Abibcode%2F2018PhRvL.121l1801S&rft.au=CMS+Collaboration&rft_id=https%3A%2F%2Fcds.cern.ch%2Frecord%2F2636067&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span><br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCMS_Collaboration2018" class="citation journal cs1">CMS Collaboration (24 August 2018). "Observation of Higgs boson decay to bottom quarks". <i>Physical Review Letters</i>. <b>121</b> (12): 121801. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1808.08242">1808.08242</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018PhRvL.121l1801S">2018PhRvL.121l1801S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.121.121801">10.1103/PhysRevLett.121.121801</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30296133">30296133</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118901756">118901756</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Observation+of+Higgs+boson+decay+to+bottom+quarks&rft.volume=121&rft.issue=12&rft.pages=121801&rft.date=2018-08-24&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118901756%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2018PhRvL.121l1801S&rft_id=info%3Aarxiv%2F1808.08242&rft_id=info%3Apmid%2F30296133&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.121.121801&rft.au=CMS+Collaboration&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-172"><span class="mw-cite-backlink"><b><a href="#cite_ref-172">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeskinSchroeder1995">Peskin & Schroeder 1995</a>, pp. 717–719, 787–791</span> </li> <li id="cite_note-173"><span class="mw-cite-backlink"><b><a href="#cite_ref-173">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeskinSchroeder1995">Peskin & Schroeder 1995</a>, pp. 715–716</span> </li> <li id="cite_note-175"><span class="mw-cite-backlink"><b><a href="#cite_ref-175">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrancoFerreiraLavouraRebelo2012" class="citation journal cs1">Branco, G. C.; Ferreira, P. M.; Lavoura, L.; Rebelo, M. N.; Sher, Marc; Silva, João P. (July 2012). "Theory and phenomenology of two-Higgs-doublet models". <i>Physics Reports</i>. <b>516</b> (1): 1–102. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1106.0034">1106.0034</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhR...516....1B">2012PhR...516....1B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physrep.2012.02.002">10.1016/j.physrep.2012.02.002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119214990">119214990</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Reports&rft.atitle=Theory+and+phenomenology+of+two-Higgs-doublet+models&rft.volume=516&rft.issue=1&rft.pages=1-102&rft.date=2012-07&rft_id=info%3Aarxiv%2F1106.0034&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119214990%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physrep.2012.02.002&rft_id=info%3Abibcode%2F2012PhR...516....1B&rft.aulast=Branco&rft.aufirst=G.+C.&rft.au=Ferreira%2C+P.+M.&rft.au=Lavoura%2C+L.&rft.au=Rebelo%2C+M.+N.&rft.au=Sher%2C+Marc&rft.au=Silva%2C+Jo%C3%A3o+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-176"><span class="mw-cite-backlink"><b><a href="#cite_ref-176">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCsakiGrojeanPiloTerning2004" class="citation journal cs1">Csaki, C.; Grojean, C.; Pilo, L.; Terning, J. (2004). "Towards a realistic model of Higgsless electroweak symmetry breaking". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>92</b> (10): 101802. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ph/0308038">hep-ph/0308038</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004PhRvL..92j1802C">2004PhRvL..92j1802C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.92.101802">10.1103/PhysRevLett.92.101802</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15089195">15089195</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6521798">6521798</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Towards+a+realistic+model+of+Higgsless+electroweak+symmetry+breaking&rft.volume=92&rft.issue=10&rft.pages=101802&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6521798%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2004PhRvL..92j1802C&rft_id=info%3Aarxiv%2Fhep-ph%2F0308038&rft_id=info%3Apmid%2F15089195&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.92.101802&rft.aulast=Csaki&rft.aufirst=C.&rft.au=Grojean%2C+C.&rft.au=Pilo%2C+L.&rft.au=Terning%2C+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-177"><span class="mw-cite-backlink"><b><a href="#cite_ref-177">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCsakiGrojeanPiloTerning2004" class="citation journal cs1">Csaki, C.; Grojean, C.; Pilo, L.; Terning, J.; Terning, John (2004). "Gauge theories on an interval: Unitarity without a Higgs". <i><a href="/wiki/Physical_Review_D" class="mw-redirect" title="Physical Review D">Physical Review D</a></i>. <b>69</b> (5): 055006. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ph/0305237">hep-ph/0305237</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004PhRvD..69e5006C">2004PhRvD..69e5006C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.69.055006">10.1103/PhysRevD.69.055006</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119094852">119094852</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Gauge+theories+on+an+interval%3A+Unitarity+without+a+Higgs&rft.volume=69&rft.issue=5&rft.pages=055006&rft.date=2004&rft_id=info%3Aarxiv%2Fhep-ph%2F0305237&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119094852%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.69.055006&rft_id=info%3Abibcode%2F2004PhRvD..69e5006C&rft.aulast=Csaki&rft.aufirst=C.&rft.au=Grojean%2C+C.&rft.au=Pilo%2C+L.&rft.au=Terning%2C+J.&rft.au=Terning%2C+John&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Hierarchy_problem_Quantum_Diaries-178"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hierarchy_problem_Quantum_Diaries_178-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hierarchy_problem_Quantum_Diaries_178-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.quantumdiaries.org/2012/07/01/the-hierarchy-problem-why-the-higgs-has-a-snowballs-chance-in-hell/">"The Hierarchy Problem: why the Higgs has a snowball's chance in hell"</a>. Quantum Diaries. 1 July 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130329014941/http://www.quantumdiaries.org/2012/07/01/the-hierarchy-problem-why-the-higgs-has-a-snowballs-chance-in-hell/">Archived</a> from the original on 29 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">19 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Hierarchy+Problem%3A+why+the+Higgs+has+a+snowball%27s+chance+in+hell&rft.pub=Quantum+Diaries&rft.date=2012-07-01&rft_id=http%3A%2F%2Fwww.quantumdiaries.org%2F2012%2F07%2F01%2Fthe-hierarchy-problem-why-the-higgs-has-a-snowballs-chance-in-hell%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-179"><span class="mw-cite-backlink"><b><a href="#cite_ref-179">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-hierarchy-problem/">"The Hierarchy Problem | Of Particular Significance"</a>. Profmattstrassler.com. 16 August 2011. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130307151957/http://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-hierarchy-problem/">Archived</a> from the original on 7 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">9 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Hierarchy+Problem+%26%23124%3B+Of+Particular+Significance&rft.pub=Profmattstrassler.com&rft.date=2011-08-16&rft_id=http%3A%2F%2Fprofmattstrassler.com%2Farticles-and-posts%2Fparticle-physics-basics%2Fthe-hierarchy-problem%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-TrivPurs-180"><span class="mw-cite-backlink"><b><a href="#cite_ref-TrivPurs_180-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCallaway1988" class="citation journal cs1"><a href="/wiki/David_J_E_Callaway" class="mw-redirect" title="David J E Callaway">Callaway, David J. E.</a> (1988). "Triviality Pursuit: Can Elementary Scalar Particles Exist?". <i><a href="/wiki/Physics_Reports" title="Physics Reports">Physics Reports</a></i>. <b>167</b> (5): 241–320. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1988PhR...167..241C">1988PhR...167..241C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0370-1573%2888%2990008-7">10.1016/0370-1573(88)90008-7</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Reports&rft.atitle=Triviality+Pursuit%3A+Can+Elementary+Scalar+Particles+Exist%3F&rft.volume=167&rft.issue=5&rft.pages=241-320&rft.date=1988&rft_id=info%3Adoi%2F10.1016%2F0370-1573%2888%2990008-7&rft_id=info%3Abibcode%2F1988PhR...167..241C&rft.aulast=Callaway&rft.aufirst=David+J.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Gunion1-181"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gunion1_181-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGunion2000" class="citation book cs1">Gunion, John (2000). <i>The Higgs Hunter's Guide</i> (illustrated, reprint ed.). Westview Press. pp. 1–3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7382-0305-8" title="Special:BookSources/978-0-7382-0305-8"><bdi>978-0-7382-0305-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Higgs+Hunter%27s+Guide&rft.pages=1-3&rft.edition=illustrated%2C+reprint&rft.pub=Westview+Press&rft.date=2000&rft.isbn=978-0-7382-0305-8&rft.aulast=Gunion&rft.aufirst=John&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Randall-182"><span class="mw-cite-backlink"><b><a href="#cite_ref-Randall_182-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRandall2006" class="citation book cs1">Randall, Lisa (19 September 2006). <i>Warped Passages: Unraveling the mysteries of the universe's hidden dimensions</i>. Ecco. p. 286. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-06-053109-6" title="Special:BookSources/978-0-06-053109-6"><bdi>978-0-06-053109-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Warped+Passages%3A+Unraveling+the+mysteries+of+the+universe%27s+hidden+dimensions&rft.pages=286&rft.pub=Ecco&rft.date=2006-09-19&rft.isbn=978-0-06-053109-6&rft.aulast=Randall&rft.aufirst=Lisa&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Sen-184"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sen_184-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSen2002" class="citation journal cs1">Sen, Ashoke (May 2002). "Rolling tachyon". <i>J. High Energy Phys</i>. <b>2002</b> (204): 48. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0203211">hep-th/0203211</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002JHEP...04..048S">2002JHEP...04..048S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1126-6708%2F2002%2F04%2F048">10.1088/1126-6708/2002/04/048</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12023565">12023565</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+High+Energy+Phys.&rft.atitle=Rolling+tachyon&rft.volume=2002&rft.issue=204&rft.pages=48&rft.date=2002-05&rft_id=info%3Aarxiv%2Fhep-th%2F0203211&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12023565%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F2002%2F04%2F048&rft_id=info%3Abibcode%2F2002JHEP...04..048S&rft.aulast=Sen&rft.aufirst=Ashoke&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Kutasov-185"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kutasov_185-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKutasov,_DavidMarino,_MarcosMoore,_Gregory_W.2000" class="citation journal cs1">Kutasov, David; Marino, Marcos & Moore, Gregory W. (2000). "Some exact results on tachyon condensation in string field theory". <i>JHEP</i>. <b>2000</b> (10): 045. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0009148">hep-th/0009148</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000JHEP...10..045K">2000JHEP...10..045K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1126-6708%2F2000%2F10%2F045">10.1088/1126-6708/2000/10/045</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15664546">15664546</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=JHEP&rft.atitle=Some+exact+results+on+tachyon+condensation+in+string+field+theory&rft.volume=2000&rft.issue=10&rft.pages=045&rft.date=2000&rft_id=info%3Aarxiv%2Fhep-th%2F0009148&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15664546%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F2000%2F10%2F045&rft_id=info%3Abibcode%2F2000JHEP...10..045K&rft.au=Kutasov%2C+David&rft.au=Marino%2C+Marcos&rft.au=Moore%2C+Gregory+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-susskind-186"><span class="mw-cite-backlink"><b><a href="#cite_ref-susskind_186-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAharonovKomarSusskind1969" class="citation journal cs1">Aharonov, Y.; Komar, A.; Susskind, L. (1969). "Superluminal Behavior, Causality, and Instability". <i>Phys. Rev</i>. <b>182</b> (5): 1400–1403. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1969PhRv..182.1400A">1969PhRv..182.1400A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.182.1400">10.1103/PhysRev.182.1400</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Phys.+Rev.&rft.atitle=Superluminal+Behavior%2C+Causality%2C+and+Instability&rft.volume=182&rft.issue=5&rft.pages=1400-1403&rft.date=1969&rft_id=info%3Adoi%2F10.1103%2FPhysRev.182.1400&rft_id=info%3Abibcode%2F1969PhRv..182.1400A&rft.aulast=Aharonov&rft.aufirst=Y.&rft.au=Komar%2C+A.&rft.au=Susskind%2C+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-feinberg67-187"><span class="mw-cite-backlink"><b><a href="#cite_ref-feinberg67_187-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeinberg1967" class="citation journal cs1"><a href="/wiki/Gerald_Feinberg" title="Gerald Feinberg">Feinberg, Gerald</a> (1967). "Possibility of faster-than-light particles". <i>Physical Review</i>. <b>159</b> (5): 1089–1105. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1967PhRv..159.1089F">1967PhRv..159.1089F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.159.1089">10.1103/PhysRev.159.1089</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Possibility+of+faster-than-light+particles&rft.volume=159&rft.issue=5&rft.pages=1089-1105&rft.date=1967&rft_id=info%3Adoi%2F10.1103%2FPhysRev.159.1089&rft_id=info%3Abibcode%2F1967PhRv..159.1089F&rft.aulast=Feinberg&rft.aufirst=Gerald&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-188"><span class="mw-cite-backlink"><b><a href="#cite_ref-188">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeskinSchroeder1995">Peskin & Schroeder 1995</a></span> </li> <li id="cite_note-npr-interview-189"><span class="mw-cite-backlink"><b><a href="#cite_ref-npr-interview_189-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlatow2012" class="citation news cs1">Flatow, Ira (6 July 2012). <a rel="nofollow" class="external text" href="https://www.npr.org/2012/07/06/156380366/at-long-last-the-higgs-particle-maybe">"At long last, the Higgs particle ... maybe"</a>. <i><a href="/wiki/NPR" title="NPR">NPR</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120710010554/http://www.npr.org/2012/07/06/156380366/at-long-last-the-higgs-particle-maybe">Archived</a> from the original on 10 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">10 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=NPR&rft.atitle=At+long+last%2C+the+Higgs+particle+...+maybe&rft.date=2012-07-06&rft.aulast=Flatow&rft.aufirst=Ira&rft_id=https%3A%2F%2Fwww.npr.org%2F2012%2F07%2F06%2F156380366%2Fat-long-last-the-higgs-particle-maybe&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-atlas-higgs-diagrams-190"><span class="mw-cite-backlink"><b><a href="#cite_ref-atlas-higgs-diagrams_190-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://atlasexperiment.org/news/2011/simplified-plots.html">"Explanatory figures for the Higgs boson exclusion plots"</a>. <i>ATLAS News</i> (Press release). CERN. 2011. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170916094727/http://atlasexperiment.org/news/2011/simplified-plots.html">Archived</a> from the original on 16 September 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">6 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Explanatory+figures+for+the+Higgs+boson+exclusion+plots&rft.pub=CERN&rft.date=2011&rft_id=http%3A%2F%2Fatlasexperiment.org%2Fnews%2F2011%2Fsimplified-plots.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-191"><span class="mw-cite-backlink"><b><a href="#cite_ref-191">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarenaGrojeanKadoSharma2013" class="citation report cs1">Carena, M.; Grojean, C.; Kado, M.; Sharma, V. (2013). <a rel="nofollow" class="external text" href="http://pdg.lbl.gov/2013/reviews/rpp2013-rev-higgs-boson.pdf">Status of Higgs boson physics</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/Lawrence_Berkeley_Laboratory" class="mw-redirect" title="Lawrence Berkeley Laboratory">Lawrence Berkeley Laboratory</a> (Report). Berkeley, CA: <a href="/wiki/University_of_California" title="University of California">University of California</a>. p. 192. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171210003618/http://pdg.lbl.gov/2013/reviews/rpp2013-rev-higgs-boson.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 10 December 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">5 November</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=report&rft.btitle=Status+of+Higgs+boson+physics&rft.place=Berkeley%2C+CA&rft.pages=192&rft.pub=University+of+California&rft.date=2013&rft.aulast=Carena&rft.aufirst=M.&rft.au=Grojean%2C+C.&rft.au=Kado%2C+M.&rft.au=Sharma%2C+V.&rft_id=http%3A%2F%2Fpdg.lbl.gov%2F2013%2Freviews%2Frpp2013-rev-higgs-boson.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-192"><span class="mw-cite-backlink"><b><a href="#cite_ref-192">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLykken2009" class="citation conference cs1">Lykken, Joseph D. (27 June 2009). "Beyond the Standard Model". <i>Proceedings of the 2009 European School of High-Energy Physics</i>. Bautzen, Germany. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1005.1676">1005.1676</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010arXiv1005.1676L">2010arXiv1005.1676L</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=Beyond+the+Standard+Model&rft.btitle=Proceedings+of+the+2009+European+School+of+High-Energy+Physics&rft.place=Bautzen%2C+Germany&rft.date=2009-06-27&rft_id=info%3Aarxiv%2F1005.1676&rft_id=info%3Abibcode%2F2010arXiv1005.1676L&rft.aulast=Lykken&rft.aufirst=Joseph+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-193"><span class="mw-cite-backlink"><b><a href="#cite_ref-193">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlehn2012" class="citation book cs1">Plehn, Tilman (2012). <i>Lectures on LHC Physics</i>. Lecture Notes in Physics. Vol. 844. Springer. §1.2.2. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0910.4182">0910.4182</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012LNP...844.....P">2012LNP...844.....P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-24040-9">10.1007/978-3-642-24040-9</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-24039-3" title="Special:BookSources/978-3-642-24039-3"><bdi>978-3-642-24039-3</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118019449">118019449</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+on+LHC+Physics&rft.series=Lecture+Notes+in+Physics&rft.pages=%C2%A71.2.2&rft.pub=Springer&rft.date=2012&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118019449%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2012LNP...844.....P&rft_id=info%3Aarxiv%2F0910.4182&rft_id=info%3Adoi%2F10.1007%2F978-3-642-24040-9&rft.isbn=978-3-642-24039-3&rft.aulast=Plehn&rft.aufirst=Tilman&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-EWWG-194"><span class="mw-cite-backlink"><b><a href="#cite_ref-EWWG_194-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://lepewwg.web.cern.ch/LEPEWWG/">"LEP Electroweak Working Group"</a>. <a href="/wiki/CERN" title="CERN">CERN</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080403130809/http://lepewwg.web.cern.ch/LEPEWWG/">Archived</a> from the original on 3 April 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">4 April</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=LEP+Electroweak+Working+Group&rft.pub=CERN&rft_id=http%3A%2F%2Flepewwg.web.cern.ch%2FLEPEWWG%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-196"><span class="mw-cite-backlink"><b><a href="#cite_ref-196">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeskinWells2001" class="citation journal cs1">Peskin, Michael E.; Wells, James D. (2001). "How can a heavy Higgs boson be consistent with the precision electroweak measurements?". <i>Physical Review D</i>. <b>64</b> (9): 093003. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ph/0101342">hep-ph/0101342</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001PhRvD..64i3003P">2001PhRvD..64i3003P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.64.093003">10.1103/PhysRevD.64.093003</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5932066">5932066</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=How+can+a+heavy+Higgs+boson+be+consistent+with+the+precision+electroweak+measurements%3F&rft.volume=64&rft.issue=9&rft.pages=093003&rft.date=2001&rft_id=info%3Aarxiv%2Fhep-ph%2F0101342&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5932066%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.64.093003&rft_id=info%3Abibcode%2F2001PhRvD..64i3003P&rft.aulast=Peskin&rft.aufirst=Michael+E.&rft.au=Wells%2C+James+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-HprodTeva-197"><span class="mw-cite-backlink">^ <a href="#cite_ref-HprodTeva_197-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HprodTeva_197-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-HprodTeva_197-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-HprodTeva_197-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaglioDjouadi2010" class="citation journal cs1">Baglio, Julien; Djouadi, Abdelhak (2010). "Predictions for Higgs production at the Tevatron and the associated uncertainties". <i>Journal of High Energy Physics</i>. <b>1010</b> (10): 063. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1003.4266">1003.4266</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010JHEP...10..064B">2010JHEP...10..064B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP10%282010%29064">10.1007/JHEP10(2010)064</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119199894">119199894</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Predictions+for+Higgs+production+at+the+Tevatron+and+the+associated+uncertainties&rft.volume=1010&rft.issue=10&rft.pages=063&rft.date=2010&rft_id=info%3Aarxiv%2F1003.4266&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119199894%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FJHEP10%282010%29064&rft_id=info%3Abibcode%2F2010JHEP...10..064B&rft.aulast=Baglio&rft.aufirst=Julien&rft.au=Djouadi%2C+Abdelhak&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-HprodLEP-198"><span class="mw-cite-backlink">^ <a href="#cite_ref-HprodLEP_198-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HprodLEP_198-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-HprodLEP_198-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeixeira-Dias_(LEP_Higgs_working_group)2008" class="citation journal cs1">Teixeira-Dias (LEP Higgs working group), P. (2008). "Higgs boson searches at LEP". <i>Journal of Physics: Conference Series</i>. <b>110</b> (4): 042030. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0804.4146">0804.4146</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008JPhCS.110d2030T">2008JPhCS.110d2030T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1742-6596%2F110%2F4%2F042030">10.1088/1742-6596/110/4/042030</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16443715">16443715</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics%3A+Conference+Series&rft.atitle=Higgs+boson+searches+at+LEP&rft.volume=110&rft.issue=4&rft.pages=042030&rft.date=2008&rft_id=info%3Aarxiv%2F0804.4146&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16443715%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1742-6596%2F110%2F4%2F042030&rft_id=info%3Abibcode%2F2008JPhCS.110d2030T&rft.aulast=Teixeira-Dias+%28LEP+Higgs+working+group%29&rft.aufirst=P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-199"><span class="mw-cite-backlink"><b><a href="#cite_ref-199">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAsquith2012" class="citation news cs1">Asquith, Lily (22 June 2012). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/life-and-physics/2012/jun/22/higgs-boson-particlephysics">"Why does the Higgs decay?"</a>. <i>Life and Physics</i>. London: The Guardian. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131101014705/http://www.theguardian.com/science/life-and-physics/2012/jun/22/higgs-boson-particlephysics">Archived</a> from the original on 1 November 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">14 August</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Life+and+Physics&rft.atitle=Why+does+the+Higgs+decay%3F&rft.date=2012-06-22&rft.aulast=Asquith&rft.aufirst=Lily&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2Flife-and-physics%2F2012%2Fjun%2F22%2Fhiggs-boson-particlephysics&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-200"><span class="mw-cite-backlink"><b><a href="#cite_ref-200">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThe_CMS_Collaboration2022" class="citation journal cs1">The CMS Collaboration (4 July 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259501">"A portrait of the Higgs boson by the CMS experiment ten years after the discovery"</a>. <i>Nature</i>. <b>607</b> (7917): 60–68. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2207.00043">2207.00043</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022Natur.607...60C">2022Natur.607...60C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-022-04892-x">10.1038/s41586-022-04892-x</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259501">9259501</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35788190">35788190</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+portrait+of+the+Higgs+boson+by+the+CMS+experiment+ten+years+after+the+discovery&rft.volume=607&rft.issue=7917&rft.pages=60-68&rft.date=2022-07-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9259501%23id-name%3DPMC&rft_id=info%3Abibcode%2F2022Natur.607...60C&rft_id=info%3Aarxiv%2F2207.00043&rft.issn=1476-4687&rft_id=info%3Adoi%2F10.1038%2Fs41586-022-04892-x&rft_id=info%3Apmid%2F35788190&rft.au=The+CMS+Collaboration&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9259501&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-201"><span class="mw-cite-backlink"><b><a href="#cite_ref-201">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuCheng2002" class="citation journal cs1">Liu, G.Z.; Cheng, G. (2002). "Extension of the Anderson-Higgs mechanism". <i>Physical Review B</i>. <b>65</b> (13): 132513. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/0106070">cond-mat/0106070</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002PhRvB..65m2513L">2002PhRvB..65m2513L</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.242.3601">10.1.1.242.3601</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.65.132513">10.1103/PhysRevB.65.132513</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118551025">118551025</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Extension+of+the+Anderson-Higgs+mechanism&rft.volume=65&rft.issue=13&rft.pages=132513&rft.date=2002&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118551025%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2002PhRvB..65m2513L&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.242.3601%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.65.132513&rft_id=info%3Aarxiv%2Fcond-mat%2F0106070&rft.aulast=Liu&rft.aufirst=G.Z.&rft.au=Cheng%2C+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Nature-Higgs_name-203"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nature-Higgs_name_203-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nature-Higgs_name_203-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Nature-Higgs_name_203-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Nature-Higgs_name_203-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Nature-Higgs_name_203-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1 cs1-prop-long-vol"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F483374a">"Mass appeal: As physicists close in on the Higgs boson, they should resist calls to change its name"</a>. <i>Nature</i> (editorial). 483, 374 (7390): 374. 21 March 2012. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012Natur.483..374.">2012Natur.483..374.</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F483374a">10.1038/483374a</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22437571">22437571</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Mass+appeal%3A+As+physicists+close+in+on+the+Higgs+boson%2C+they+should+resist+calls+to+change+its+name&rft.volume=483%2C+374&rft.issue=7390&rft.pages=374&rft.date=2012-03-21&rft_id=info%3Apmid%2F22437571&rft_id=info%3Adoi%2F10.1038%2F483374a&rft_id=info%3Abibcode%2F2012Natur.483..374.&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F483374a&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Nova-204"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nova_204-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nova_204-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Nova_204-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Nova_204-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBecker2012" class="citation web cs1">Becker, Kate (29 March 2012). <a rel="nofollow" class="external text" href="https://www.pbs.org/wgbh/nova/physics/blog/2012/03/a-higgs-by-any-other-name">"A Higgs by any other name"</a>. Physics (blog). NOVA. PBS. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121217014812/http://www.pbs.org/wgbh/nova/physics/blog/2012/03/a-higgs-by-any-other-name/">Archived</a> from the original on 17 December 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=A+Higgs+by+any+other+name&rft.series=NOVA&rft.pub=PBS&rft.date=2012-03-29&rft.aulast=Becker&rft.aufirst=Kate&rft_id=https%3A%2F%2Fwww.pbs.org%2Fwgbh%2Fnova%2Fphysics%2Fblog%2F2012%2F03%2Fa-higgs-by-any-other-name&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-CERNHiggsFAQ-205"><span class="mw-cite-backlink"><b><a href="#cite_ref-CERNHiggsFAQ_205-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://cdsweb.cern.ch/journal/CERNBulletin/2012/28/News%20Articles/1459456?ln=en">"Frequently asked questions: The Higgs!"</a>. <i>CERN Bulletin</i>. No. 28. 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120705200336/http://cdsweb.cern.ch/journal/CERNBulletin/2012/28/News%20Articles/1459456?ln=en">Archived</a> from the original on 5 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">18 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=CERN+Bulletin&rft.atitle=Frequently+asked+questions%3A+The+Higgs%21&rft.issue=28&rft.date=2012&rft_id=http%3A%2F%2Fcdsweb.cern.ch%2Fjournal%2FCERNBulletin%2F2012%2F28%2FNews%2520Articles%2F1459456%3Fln%3Den&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-woit2013-206"><span class="mw-cite-backlink">^ <a href="#cite_ref-woit2013_206-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-woit2013_206-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoit2013" class="citation web cs1">Woit, Peter (13 April 2013). <a rel="nofollow" class="external text" href="http://www.math.columbia.edu/~woit/wordpress/?p=5753">"<i>"Not even wrong"</i>: Anderson on Anderson-Higgs"</a>. Mathematics. <i>Woit's physics blog</i> (blog). New York, NY: <a href="/wiki/Columbia_University" title="Columbia University">Columbia University</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131019153644/http://www.math.columbia.edu/~woit/wordpress/?p=5753">Archived</a> from the original on 19 October 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">6 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Woit%27s+physics+blog&rft.atitle=%22Not+even+wrong%22%3A+Anderson+on+Anderson-Higgs&rft.date=2013-04-13&rft.aulast=Woit&rft.aufirst=Peter&rft_id=http%3A%2F%2Fwww.math.columbia.edu%2F~woit%2Fwordpress%2F%3Fp%3D5753&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-207"><span class="mw-cite-backlink"><b><a href="#cite_ref-207">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSample2012" class="citation news cs1">Sample, Ian (4 July 2012). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/2012/jul/04/higgs-boson-nobel-prize-headache">"Higgs boson's many great minds cause a Nobel prize headache"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>. London, UK. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131017105735/http://www.theguardian.com/science/2012/jul/04/higgs-boson-nobel-prize-headache">Archived</a> from the original on 17 October 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">23 July</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=Higgs+boson%27s+many+great+minds+cause+a+Nobel+prize+headache&rft.date=2012-07-04&rft.aulast=Sample&rft.aufirst=Ian&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2F2012%2Fjul%2F04%2Fhiggs-boson-nobel-prize-headache&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Peskin-209"><span class="mw-cite-backlink">^ <a href="#cite_ref-Peskin_209-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Peskin_209-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeskin2012" class="citation web cs1">Peskin, M. (July 2012). <a rel="nofollow" class="external text" href="http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Peskin.pdf">"40 years of the Higgs boson"</a> <span class="cs1-format">(PDF)</span>. 2012 <a href="/wiki/Stanford_Linear_Accelerator" class="mw-redirect" title="Stanford Linear Accelerator">SLAC</a> Summer Institute Conferences. <i>Presentation at SSI 2012</i>. <a href="/wiki/Stanford_University" title="Stanford University">Stanford University</a>. pp. 3–5. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140501135850/http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Peskin.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 1 May 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2013</span>. <q>quoting Lee's ICHEP 1972 presentation at Fermilab: "... which is known as the Higgs mechanism ..." and "Lee's locution" – his footnoted explanation of this shorthand.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Presentation+at+SSI+2012&rft.atitle=40+years+of+the+Higgs+boson&rft.pages=3-5&rft.date=2012-07&rft.aulast=Peskin&rft.aufirst=M.&rft_id=http%3A%2F%2Fwww-conf.slac.stanford.edu%2Fssi%2F2012%2FPresentations%2FPeskin.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-210"><span class="mw-cite-backlink"><b><a href="#cite_ref-210">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUniversity_of_Rochester_Physics_&_Astronomy_press_office2007" class="citation pressrelease cs1">University of Rochester Physics & Astronomy press office (8 October 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080416064136/http://www.pas.rochester.edu/urpas/news/Hagen_030708">"Nobelist Steven Weinberg praises professor Carl Hagen and collaborators for Higgs Boson theory"</a>. Department of Physics and Astronomy (Press release). Rochester, New York: <a href="/wiki/University_of_Rochester" title="University of Rochester">University of Rochester</a>. Archived from <a rel="nofollow" class="external text" href="http://www.pas.rochester.edu/urpas/news/Hagen_030708">the original</a> on 16 April 2008.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Nobelist+Steven+Weinberg+praises+professor+Carl+Hagen+and+collaborators+for+Higgs+Boson+theory&rft.place=Rochester%2C+New+York&rft.pub=University+of+Rochester&rft.date=2007-10-08&rft.au=University+of+Rochester+Physics+%26+Astronomy+press+office&rft_id=http%3A%2F%2Fwww.pas.rochester.edu%2Furpas%2Fnews%2FHagen_030708&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> University of Rochester Hagen Sakurai Prize announcement.</span> </li> <li id="cite_note-211"><span class="mw-cite-backlink"><b><a href="#cite_ref-211">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHagen2010" class="citation audio-visual cs1">Hagen, C.R. (2010). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=QrCPrwRBi7E&feature=PlayList&p=BDA16F52CA3C9B1D&playnext_from=PL&index=9"><i>Sakurai Prize talk</i></a> (video) – via YouTube.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Sakurai+Prize+talk&rft.date=2010&rft.aulast=Hagen&rft.aufirst=C.R.&rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQrCPrwRBi7E%26feature%3DPlayList%26p%3DBDA16F52CA3C9B1D%26playnext_from%3DPL%26index%3D9&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Lee_Weinberg_2012_name-212"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lee_Weinberg_2012_name_212-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lee_Weinberg_2012_name_212-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCho2012" class="citation journal cs1">Cho, A. (14 September 2012). <a rel="nofollow" class="external text" href="http://webarchive.nationalarchives.gov.uk/20130704110735/http://211.144.68.84:9998/91keshi/Public/File/41/337-6100/pdf/1287.full.pdf">"Why the 'Higgs'?"</a> <span class="cs1-format">(PDF)</span>. Particle physics. <i>Science</i>. <b>337</b> (6100): 1287. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.337.6100.1287">10.1126/science.337.6100.1287</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22984044">22984044</a>. Archived from <a rel="nofollow" class="external text" href="http://211.144.68.84:9998/91keshi/Public/File/41/337-6100/pdf/1287.full.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 July 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">12 February</span> 2013</span>. <q>Lee ... apparently used the term 'Higgs boson' as early as 1966 ... but what may have made the term stick is a seminal paper Steven Weinberg ... published in 1967 ... Weinberg acknowledged the mix-up in an essay in the <i>New York Review of Books</i> in May 2012.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Why+the+%27Higgs%27%3F&rft.volume=337&rft.issue=6100&rft.pages=1287&rft.date=2012-09-14&rft_id=info%3Adoi%2F10.1126%2Fscience.337.6100.1287&rft_id=info%3Apmid%2F22984044&rft.aulast=Cho&rft.aufirst=A.&rft_id=http%3A%2F%2F211.144.68.84%3A9998%2F91keshi%2FPublic%2FFile%2F41%2F337-6100%2Fpdf%2F1287.full.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> (See also original article in <ul><li><i><a href="/wiki/New_York_Review_of_Books" class="mw-redirect" title="New York Review of Books">New York Review of Books</a></i> (2012)<sup id="cite_ref-New_York_Review_2012_213-1" class="reference"><a href="#cite_note-New_York_Review_2012-213"><span class="cite-bracket">[</span>188<span class="cite-bracket">]</span></a></sup></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClose2011" class="citation book cs1">Close, Frank (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EDySwmXOEhMC&q=unintended+consequence+for+history">"[<b>see book extract</b>]"</a>. <i>The Infinity Puzzle</i>. Oxford University Press. p. 372 – via Google Books.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=%5Bsee+book+extract%5D&rft.btitle=The+Infinity+Puzzle&rft.pages=372&rft.pub=Oxford+University+Press&rft.date=2011&rft.aulast=Close&rft.aufirst=Frank&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DEDySwmXOEhMC%26q%3Dunintended%2Bconsequence%2Bfor%2Bhistory&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span>)<sup id="cite_ref-frank_close_infinity_puzzle_108-8" class="reference"><a href="#cite_note-frank_close_infinity_puzzle-108"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup></li></ul> which identified the error).</span> </li> <li id="cite_note-New_York_Review_2012-213"><span class="mw-cite-backlink">^ <a href="#cite_ref-New_York_Review_2012_213-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-New_York_Review_2012_213-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeinberg2012" class="citation news cs1">Weinberg, Steven (10 May 2012). <a rel="nofollow" class="external text" href="http://www.nybooks.com/articles/archives/2012/may/10/crisis-big-science/?pagination=false">"The crisis of big science"</a>. <i><a href="/wiki/The_New_York_Review_of_Books" title="The New York Review of Books">The New York Review of Books</a></i>. footnote 1. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130121143729/http://www.nybooks.com/articles/archives/2012/may/10/crisis-big-science/?pagination=false">Archived</a> from the original on 21 January 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">12 February</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Review+of+Books&rft.atitle=The+crisis+of+big+science&rft.pages=footnote-1&rft.date=2012-05-10&rft.aulast=Weinberg&rft.aufirst=Steven&rft_id=http%3A%2F%2Fwww.nybooks.com%2Farticles%2Farchives%2F2012%2Fmay%2F10%2Fcrisis-big-science%2F%3Fpagination%3Dfalse&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-215"><span class="mw-cite-backlink"><b><a href="#cite_ref-215">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLedermanTeresi2006" class="citation book cs1">Lederman, Leon; Teresi, Dick (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jMOOQDHxWyIC"><i>The God Particle: If the universe is the answer, what is the question?</i></a>. Houghton Mifflin Harcourt. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-547-52462-7" title="Special:BookSources/978-0-547-52462-7"><bdi>978-0-547-52462-7</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160513093132/https://books.google.com/books?id=jMOOQDHxWyIC">Archived</a> from the original on 13 May 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+God+Particle%3A+If+the+universe+is+the+answer%2C+what+is+the+question%3F&rft.pub=Houghton+Mifflin+Harcourt&rft.date=2006&rft.isbn=978-0-547-52462-7&rft.aulast=Lederman&rft.aufirst=Leon&rft.au=Teresi%2C+Dick&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjMOOQDHxWyIC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-216"><span class="mw-cite-backlink"><b><a href="#cite_ref-216">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDickerson2014" class="citation news cs1">Dickerson, Kelly (8 September 2014). <a rel="nofollow" class="external text" href="http://www.livescience.com/47737-stephen-hawking-higgs-boson-universe-doomsday.html">"Stephen Hawking says 'god particle' could wipe out the universe"</a>. livescience.com. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150128090232/http://www.livescience.com/47737-stephen-hawking-higgs-boson-universe-doomsday.html">Archived</a> from the original on 28 January 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">23 February</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stephen+Hawking+says+%27god+particle%27+could+wipe+out+the+universe&rft.date=2014-09-08&rft.aulast=Dickerson&rft.aufirst=Kelly&rft_id=http%3A%2F%2Fwww.livescience.com%2F47737-stephen-hawking-higgs-boson-universe-doomsday.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-217"><span class="mw-cite-backlink"><b><a href="#cite_ref-217">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaggott2012" class="citation book cs1"><a href="/wiki/Jim_Baggott" title="Jim Baggott">Baggott, Jim</a> (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yVQMqgZrPt4C"><i>Higgs: The invention and discovery of the 'God particle'<span></span></i></a>. Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-165003-1" title="Special:BookSources/978-0-19-165003-1"><bdi>978-0-19-165003-1</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160520032714/https://books.google.com/books?id=yVQMqgZrPt4C">Archived</a> from the original on 20 May 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Higgs%3A+The+invention+and+discovery+of+the+%27God+particle%27&rft.pub=Oxford+University+Press&rft.date=2012&rft.isbn=978-0-19-165003-1&rft.aulast=Baggott&rft.aufirst=Jim&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyVQMqgZrPt4C&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-218"><span class="mw-cite-backlink"><b><a href="#cite_ref-218">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=6Rv3-37b8wUC"><i>The Higgs Boson: Searching for the God Particle</i></a>. Scientific American / Macmillan. 2012. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4668-2413-3" title="Special:BookSources/978-1-4668-2413-3"><bdi>978-1-4668-2413-3</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160609220919/https://books.google.com/books?id=6Rv3-37b8wUC">Archived</a> from the original on 9 June 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Higgs+Boson%3A+Searching+for+the+God+Particle&rft.pub=Scientific+American+%2F+Macmillan&rft.date=2012&rft.isbn=978-1-4668-2413-3&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6Rv3-37b8wUC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-219"><span class="mw-cite-backlink"><b><a href="#cite_ref-219">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJaeckel,_Ted2007" class="citation book cs1">Jaeckel, Ted (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=C4xPoGjvgBgC"><i>The God Particle: The discovery and modeling of the ultimate prime particle</i></a>. Universal-Publishers. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-58112-959-5" title="Special:BookSources/978-1-58112-959-5"><bdi>978-1-58112-959-5</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160429200844/https://books.google.com/books?id=C4xPoGjvgBgC">Archived</a> from the original on 29 April 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+God+Particle%3A+The+discovery+and+modeling+of+the+ultimate+prime+particle&rft.pub=Universal-Publishers&rft.date=2007&rft.isbn=978-1-58112-959-5&rft.au=Jaeckel%2C+Ted&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DC4xPoGjvgBgC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-SSC_LA_Times-220"><span class="mw-cite-backlink">^ <a href="#cite_ref-SSC_LA_Times_220-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SSC_LA_Times_220-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-SSC_LA_Times_220-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAschenbach1993" class="citation news cs1">Aschenbach, Joy (5 December 1993). <a rel="nofollow" class="external text" href="https://www.latimes.com/archives/la-xpm-1993-12-05-mn-64100-story.html">"No resurrection in sight for moribund super collider"</a>. Science. <i><a href="/wiki/Los_Angeles_Times" title="Los Angeles Times">Los Angeles Times</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131106045723/http://articles.latimes.com/1993-12-05/news/mn-64100_1_superconducting-super-collider">Archived</a> from the original on 6 November 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">16 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Los+Angeles+Times&rft.atitle=No+resurrection+in+sight+for+moribund+super+collider&rft.date=1993-12-05&rft.aulast=Aschenbach&rft.aufirst=Joy&rft_id=https%3A%2F%2Fwww.latimes.com%2Farchives%2Fla-xpm-1993-12-05-mn-64100-story.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-221"><span class="mw-cite-backlink"><b><a href="#cite_ref-221">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.chicagotribune.com/1986/10/31/a-supercompetition-for-illinois/">"A supercompetition for Illinois"</a>. <i><a href="/wiki/Chicago_Tribune" title="Chicago Tribune">Chicago Tribune</a></i>. 31 October 1986. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130515065951/http://articles.chicagotribune.com/1986-10-31/news/8603220012_1_illinois-electron-volts-high-energy">Archived</a> from the original on 15 May 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">16 January</span> 2013</span>. <q>The SSC, proposed by the U.S. Department of Energy in 1983, is a mind-bending project ... this gigantic laboratory ... this titanic project</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chicago+Tribune&rft.atitle=A+supercompetition+for+Illinois&rft.date=1986-10-31&rft_id=https%3A%2F%2Fwww.chicagotribune.com%2F1986%2F10%2F31%2Fa-supercompetition-for-illinois%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-222"><span class="mw-cite-backlink"><b><a href="#cite_ref-222">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDiaz2012" class="citation news cs1">Diaz, Jesus (15 December 2012). <a rel="nofollow" class="external text" href="https://gizmodo.com/5968784/this-is-worlds-largest-super-collider-that-never-was">"This is [the] world's largest super collider that never was"</a>. <i>Gizmodo</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130118195319/http://gizmodo.com/5968784/this-is-worlds-largest-super-collider-that-never-was">Archived</a> from the original on 18 January 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">16 January</span> 2013</span>. <q>... this titanic complex ...</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Gizmodo&rft.atitle=This+is+%5Bthe%5D+world%27s+largest+super+collider+that+never+was&rft.date=2012-12-15&rft.aulast=Diaz&rft.aufirst=Jesus&rft_id=https%3A%2F%2Fgizmodo.com%2F5968784%2Fthis-is-worlds-largest-super-collider-that-never-was&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Illinois_Issues_1987-224"><span class="mw-cite-backlink"><b><a href="#cite_ref-Illinois_Issues_1987_224-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbbott1987" class="citation news cs1">Abbott, Charles (June 1987). <a rel="nofollow" class="external text" href="http://www.lib.niu.edu/1987/ii8706tc.html">"Super competition for superconducting super collider"</a>. <i>Illinois Issues Journal</i>. p. 18. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131101223228/http://www.lib.niu.edu/1987/ii8706tc.html">Archived</a> from the original on 1 November 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">16 January</span> 2013</span>. <q>Lederman, who considers himself an unofficial propagandist for the super collider, said the SSC could reverse the physics brain drain in which bright young physicists have left America to work in Europe and elsewhere.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Illinois+Issues+Journal&rft.atitle=Super+competition+for+superconducting+super+collider&rft.pages=18&rft.date=1987-06&rft.aulast=Abbott&rft.aufirst=Charles&rft_id=http%3A%2F%2Fwww.lib.niu.edu%2F1987%2Fii8706tc.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Caltech-225"><span class="mw-cite-backlink"><b><a href="#cite_ref-Caltech_225-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKevles1995" class="citation journal cs1">Kevles, Dan (Winter 1995). <a rel="nofollow" class="external text" href="http://calteches.library.caltech.edu/568/1/ES58.2.1995.pdf">"Good-bye to the SSC: On the life and death of the superconducting super collider"</a> <span class="cs1-format">(PDF)</span>. <i>Engineering & Science</i>. <b>58</b> (2). <a href="/wiki/California_Institute_of_Technology" title="California Institute of Technology">California Institute of Technology</a>: 16–25. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130511120537/http://calteches.library.caltech.edu/568/1/ES58.2.1995.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 11 May 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">16 January</span> 2013</span>. <q>Lederman, one of the principal spokesmen for the SSC, was an accomplished high-energy experimentalist who had made Nobel Prize-winning contributions to the development of the Standard Model during the 1960s (although the prize itself did not come until 1988). He was a fixture at congressional hearings on the collider, an unbridled advocate of its merits.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Engineering+%26+Science&rft.atitle=Good-bye+to+the+SSC%3A+On+the+life+and+death+of+the+superconducting+super+collider&rft.ssn=winter&rft.volume=58&rft.issue=2&rft.pages=16-25&rft.date=1995&rft.aulast=Kevles&rft.aufirst=Dan&rft_id=http%3A%2F%2Fcalteches.library.caltech.edu%2F568%2F1%2FES58.2.1995.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Calder_2005-226"><span class="mw-cite-backlink"><b><a href="#cite_ref-Calder_2005_226-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCalder2005" class="citation book cs1">Calder, Nigel (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=E4NfZ9FDcc8C&pg=PA370"><i>Magic Universe: A grand tour of modern science</i></a>. OUP Oxford. pp. 369–370. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-162235-9" title="Special:BookSources/978-0-19-162235-9"><bdi>978-0-19-162235-9</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125094450/https://books.google.com/books?id=E4NfZ9FDcc8C&pg=PA370">Archived</a> from the original on 25 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">5 September</span> 2020</span>. <q>The possibility that the next big machine would create the Higgs became a carrot to dangle in front of funding agencies and politicians. A prominent American physicist, Leon lederman [sic], advertised the Higgs as The God Particle in the title of a book published in 1993<span class="nowrap"> </span>[...] Lederman was involved in a campaign to persuade the US government to continue funding the Superconducting Super Collider<span class="nowrap"> </span>[...] the ink was not dry on Lederman's book before the US Congress decided to write off the billions of dollars already spent</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Magic+Universe%3A+A+grand+tour+of+modern+science&rft.pages=369-370&rft.pub=OUP+Oxford&rft.date=2005&rft.isbn=978-0-19-162235-9&rft.aulast=Calder&rft.aufirst=Nigel&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DE4NfZ9FDcc8C%26pg%3DPA370&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-goddamnparticleoffensive-227"><span class="mw-cite-backlink"><b><a href="#cite_ref-goddamnparticleoffensive_227-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLederman1993" class="citation book cs1">Lederman, Leon (1993). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/godparticle00leon"><i>The God Particle: If the universe is the answer, what is the question?</i></a></span>. Dell Publishing. chapter 2, page 2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-385-31211-0" title="Special:BookSources/978-0-385-31211-0"><bdi>978-0-385-31211-0</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">30 July</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+God+Particle%3A+If+the+universe+is+the+answer%2C+what+is+the+question%3F&rft.pages=chapter+2%2C+page+2&rft.pub=Dell+Publishing&rft.date=1993&rft.isbn=978-0-385-31211-0&rft.aulast=Lederman&rft.aufirst=Leon&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgodparticle00leon&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-228"><span class="mw-cite-backlink"><b><a href="#cite_ref-228">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcGrath2011" class="citation news cs1">McGrath, Alister (15 December 2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111215120632/https://www.telegraph.co.uk/science/8956938/Higgs-boson-the-particle-of-faith.html">"Higgs boson: The particle of faith"</a>. <i><a href="/wiki/The_Daily_Telegraph" title="The Daily Telegraph">The Daily Telegraph</a></i>. Archived from <a rel="nofollow" class="external text" href="https://www.telegraph.co.uk/science/8956938/Higgs-boson-the-particle-of-faith.html">the original</a> on 15 December 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">15 December</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Daily+Telegraph&rft.atitle=Higgs+boson%3A+The+particle+of+faith&rft.date=2011-12-15&rft.aulast=McGrath&rft.aufirst=Alister&rft_id=https%3A%2F%2Fwww.telegraph.co.uk%2Fscience%2F8956938%2FHiggs-boson-the-particle-of-faith.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-ISample03032009-229"><span class="mw-cite-backlink"><b><a href="#cite_ref-ISample03032009_229-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSample2009" class="citation news cs1">Sample, Ian (3 March 2009). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/blog/2009/mar/02/god-particle-peter-higgs-portrait-lhc">"Father of the god particle: Portrait of Peter Higgs unveiled"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>. London, UK. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140912002536/http://www.theguardian.com/science/blog/2009/mar/02/god-particle-peter-higgs-portrait-lhc">Archived</a> from the original on 12 September 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">24 June</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=Father+of+the+god+particle%3A+Portrait+of+Peter+Higgs+unveiled&rft.date=2009-03-03&rft.aulast=Sample&rft.aufirst=Ian&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2Fblog%2F2009%2Fmar%2F02%2Fgod-particle-peter-higgs-portrait-lhc&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-nickname-telegraph-230"><span class="mw-cite-backlink">^ <a href="#cite_ref-nickname-telegraph_230-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-nickname-telegraph_230-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChivers2011" class="citation news cs1">Chivers, Tom (13 December 2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120109062930/http://blogs.telegraph.co.uk/news/tomchiversscience/100123765/how-the-god-particle-got-its-name/">"How the 'God particle' got its name"</a>. <i><a href="/wiki/The_Daily_Telegraph" title="The Daily Telegraph">The Telegraph</a></i>. London, UK. Archived from <a rel="nofollow" class="external text" href="http://blogs.telegraph.co.uk/news/tomchiversscience/100123765/how-the-god-particle-got-its-name/">the original</a> on 9 January 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">3 December</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Telegraph&rft.atitle=How+the+%27God+particle%27+got+its+name&rft.date=2011-12-13&rft.aulast=Chivers&rft.aufirst=Tom&rft_id=http%3A%2F%2Fblogs.telegraph.co.uk%2Fnews%2Ftomchiversscience%2F100123765%2Fhow-the-god-particle-got-its-name%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-nickname-reuters-231"><span class="mw-cite-backlink"><b><a href="#cite_ref-nickname-reuters_231-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.reuters.com/article/scienceNews/idUSL0765287220080407?sp=true">"Key scientist sure "God particle" will be found soon"</a>. <i><a href="/wiki/Reuters_News_Service" class="mw-redirect" title="Reuters News Service">Reuters News Service</a></i>. 7 April 2008. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210223193233/https://www.reuters.com/article/scienceNews/idUSL0765287220080407?sp=true">Archived</a> from the original on 23 February 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">2 July</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reuters+News+Service&rft.atitle=Key+scientist+sure+%22God+particle%22+will+be+found+soon&rft.date=2008-04-07&rft_id=https%3A%2F%2Fwww.reuters.com%2Farticle%2FscienceNews%2FidUSL0765287220080407%3Fsp%3Dtrue&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-NS-232"><span class="mw-cite-backlink"><b><a href="#cite_ref-NS_232-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation magazine cs1"><a rel="nofollow" class="external text" href="https://www.newscientist.com/channel/opinion/mg19926732.100-interview-the-man-behind-the-god-particle.html">"The man behind the 'God particle'<span class="cs1-kern-right"></span>"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i> (interview). 13 September 2008. pp. 44–45. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080913214154/http://www.newscientist.com/channel/opinion/mg19926732.100-interview-the-man-behind-the-god-particle.html">Archived</a> from the original on 13 September 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">29 August</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=The+man+behind+the+%27God+particle%27&rft.pages=44-45&rft.date=2008-09-13&rft_id=https%3A%2F%2Fwww.newscientist.com%2Fchannel%2Fopinion%2Fmg19926732.100-interview-the-man-behind-the-god-particle.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span>; original interview: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.theguardian.com/science/2008/jun/30/higgs.boson.cern">"Father of the 'God particle'<span class="cs1-kern-right"></span>"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>. 30 June 2008. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161201180117/https://www.theguardian.com/science/2008/jun/30/higgs.boson.cern">Archived</a> from the original on 1 December 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">14 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=Father+of+the+%27God+particle%27&rft.date=2008-06-30&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2F2008%2Fjun%2F30%2Fhiggs.boson.cern&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-233"><span class="mw-cite-backlink"><b><a href="#cite_ref-233">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorowitz2012" class="citation magazine cs1">Borowitz, Andy (13 July 2012). <a rel="nofollow" class="external text" href="https://newyorker.com/humor/borowitz-report/5-questions-for-the-higgs-boson">"5 questions for the Higgs boson"</a>. <i><a href="/wiki/The_New_Yorker" title="The New Yorker">The New Yorker</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201112000412/https://www.newyorker.com/humor/borowitz-report/5-questions-for-the-higgs-boson">Archived</a> from the original on 12 November 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">12 December</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+Yorker&rft.atitle=5+questions+for+the+Higgs+boson&rft.date=2012-07-13&rft.aulast=Borowitz&rft.aufirst=Andy&rft_id=https%3A%2F%2Fnewyorker.com%2Fhumor%2Fborowitz-report%2F5-questions-for-the-higgs-boson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-234"><span class="mw-cite-backlink"><b><a href="#cite_ref-234">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSample2010" class="citation book cs1">Sample, Ian (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=GuhAP7YCcuoC&pg=PA148"><i>Massive: The hunt for the God particle</i></a>. Virgin Books. pp. 148–149, 278–279. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-905264-95-7" title="Special:BookSources/978-1-905264-95-7"><bdi>978-1-905264-95-7</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125094530/https://books.google.com/books?id=GuhAP7YCcuoC&pg=PA148">Archived</a> from the original on 25 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">5 September</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Massive%3A+The+hunt+for+the+God+particle&rft.pages=148-149%2C+278-279&rft.pub=Virgin+Books&rft.date=2010&rft.isbn=978-1-905264-95-7&rft.aulast=Sample&rft.aufirst=Ian&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DGuhAP7YCcuoC%26pg%3DPA148&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-235"><span class="mw-cite-backlink"><b><a href="#cite_ref-235">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCole2000" class="citation news cs1">Cole, K. (14 December 2000). <a rel="nofollow" class="external text" href="https://www.latimes.com/archives/la-xpm-2000-dec-14-me-65457-story.html">"One thing is perfectly clear: Nothingness is perfect"</a>. Science File. <i><a href="/wiki/Los_Angeles_Times" title="Los Angeles Times">Los Angeles Times</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151005152515/http://articles.latimes.com/2000/dec/14/local/me-65457">Archived</a> from the original on 5 October 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">17 January</span> 2013</span>. <q>Consider the early universe–a state of pure, perfect nothingness; a formless fog of undifferentiated stuff<span class="nowrap"> </span>[...] 'perfect symmetry'<span class="nowrap"> </span>[...] What shattered this primordial perfection? One likely culprit is the so-called Higgs field<span class="nowrap"> </span>[...] Physicist Leon Lederman compares the way the Higgs operates to the biblical story of Babel [whose citizens] all spoke the same language<span class="nowrap"> </span>[...] Like God, says Lederman, the Higgs differentiated the perfect sameness, confusing everyone (physicists included)<span class="nowrap"> </span>[...] [Nobel Prizewinner Richard] <a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman</a> wondered why the universe we live in was so obviously askew<span class="nowrap"> </span>[...] Perhaps, he speculated, total perfection would have been unacceptable to God. And so, just as God shattered the perfection of Babel, 'God made the laws only nearly symmetrical'<span class="cs1-kern-right"></span></q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Los+Angeles+Times&rft.atitle=One+thing+is+perfectly+clear%3A+Nothingness+is+perfect&rft.date=2000-12-14&rft.aulast=Cole&rft.aufirst=K.&rft_id=https%3A%2F%2Fwww.latimes.com%2Farchives%2Fla-xpm-2000-dec-14-me-65457-story.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-236"><span class="mw-cite-backlink"><b><a href="#cite_ref-236">^</a></b></span> <span class="reference-text">Lederman, p. 22 <i>et seq</i>.: "Something we cannot yet detect and which, one might say, has been put there to test and confuse us<span class="nowrap"> </span>[...] The issue is whether physicists will be confounded by this puzzle or whether, in contrast to the unhappy Babylonians, we will continue to build the tower and, as Einstein put it, "know the mind of God". "And the Lord said, Behold the people are un-confounding my confounding. And the Lord sighed and said, Go to, let us go down, and there give them the God Particle so that they may see how beautiful is the universe I have made."</span> </li> <li id="cite_note-237"><span class="mw-cite-backlink"><b><a href="#cite_ref-237">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSample2009" class="citation news cs1">Sample, Ian (12 June 2009). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/blog/2009/jun/05/cern-lhc-god-particle-higgs-boson">"Higgs competition: Crack open the bubbly, the God particle is dead"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>. London, UK. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150112040433/http://www.theguardian.com/science/blog/2009/jun/05/cern-lhc-god-particle-higgs-boson">Archived</a> from the original on 12 January 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">4 May</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=Higgs+competition%3A+Crack+open+the+bubbly%2C+the+God+particle+is+dead&rft.date=2009-06-12&rft.aulast=Sample&rft.aufirst=Ian&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2Fblog%2F2009%2Fjun%2F05%2Fcern-lhc-god-particle-higgs-boson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-238"><span class="mw-cite-backlink"><b><a href="#cite_ref-238">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGordon2012" class="citation news cs1">Gordon, Fraser (5 July 2012). <a rel="nofollow" class="external text" href="http://physicsworld.com/cws/article/indepth/2012/jul/04/introducing-the-higgson">"Introducing the higgson"</a>. <i>physicsworld.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120708234444/http://physicsworld.com/cws/article/indepth/2012/jul/04/introducing-the-higgson">Archived</a> from the original on 8 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">25 August</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=physicsworld.com&rft.atitle=Introducing+the+higgson&rft.date=2012-07-05&rft.aulast=Gordon&rft.aufirst=Fraser&rft_id=http%3A%2F%2Fphysicsworld.com%2Fcws%2Farticle%2Findepth%2F2012%2Fjul%2F04%2Fintroducing-the-higgson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-239"><span class="mw-cite-backlink"><b><a href="#cite_ref-239">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolchover2012" class="citation news cs1">Wolchover, Natalie (3 July 2012). <a rel="nofollow" class="external text" href="https://huffingtonpost.com/2012/07/03/higgs-boson-explained-god-particle_n_1645732.html">"Higgs boson explained: How the 'God particle' gives things mass"</a>. <i><a href="/wiki/Huffington_Post" class="mw-redirect" title="Huffington Post">Huffington Post</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130420011323/http://www.huffingtonpost.com/2012/07/03/higgs-boson-explained-god-particle_n_1645732.html">Archived</a> from the original on 20 April 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Huffington+Post&rft.atitle=Higgs+boson+explained%3A+How+the+%27God+particle%27+gives+things+mass&rft.date=2012-07-03&rft.aulast=Wolchover&rft.aufirst=Natalie&rft_id=https%3A%2F%2Fhuffingtonpost.com%2F2012%2F07%2F03%2Fhiggs-boson-explained-god-particle_n_1645732.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-240"><span class="mw-cite-backlink"><b><a href="#cite_ref-240">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliver2012" class="citation news cs1">Oliver, Laura (4 July 2012). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/2012/jul/04/higgs-boson-readers-explain">"Higgs boson: How would you explain it to a seven-year-old?"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>. London, UK. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141022212624/http://www.theguardian.com/science/2012/jul/04/higgs-boson-readers-explain">Archived</a> from the original on 22 October 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=Higgs+boson%3A+How+would+you+explain+it+to+a+seven-year-old%3F&rft.date=2012-07-04&rft.aulast=Oliver&rft.aufirst=Laura&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2F2012%2Fjul%2F04%2Fhiggs-boson-readers-explain&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-241"><span class="mw-cite-backlink"><b><a href="#cite_ref-241">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZimmer2012" class="citation news cs1">Zimmer, Ben (15 July 2012). <a rel="nofollow" class="external text" href="https://www.bostonglobe.com/ideas/2012/07/14/metaphors-and-higgs-boson/UjdsEySmG63XIAcNN7LNSO/story.html">"Higgs boson metaphors as clear as molasses"</a>. <i><a href="/wiki/The_Boston_Globe" title="The Boston Globe">The Boston Globe</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130204021345/http://www.bostonglobe.com/ideas/2012/07/14/metaphors-and-higgs-boson/UjdsEySmG63XIAcNN7LNSO/story.html">Archived</a> from the original on 4 February 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Boston+Globe&rft.atitle=Higgs+boson+metaphors+as+clear+as+molasses&rft.date=2012-07-15&rft.aulast=Zimmer&rft.aufirst=Ben&rft_id=https%3A%2F%2Fwww.bostonglobe.com%2Fideas%2F2012%2F07%2F14%2Fmetaphors-and-higgs-boson%2FUjdsEySmG63XIAcNN7LNSO%2Fstory.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-242"><span class="mw-cite-backlink"><b><a href="#cite_ref-242">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.lhc-closer.es/php/index.php?i=1&s=6&p=5&e=0">"The Higgs particle: an analogy for Physics classroom (section)"</a>. www.lhc-closer.es (a collaboration website of LHCb physicist Xabier Vidal and High School Teachers and CERN educator Ramon Manzano). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120705043620/http://www.lhc-closer.es/php/index.php?i=1&s=6&p=5&e=0">Archived</a> from the original on 5 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">9 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Higgs+particle%3A+an+analogy+for+Physics+classroom+%28section%29&rft.pub=www.lhc-closer.es+%28a+collaboration+website+of+LHCb+physicist+Xabier+Vidal+and+High+School+Teachers+and+CERN+educator+Ramon+Manzano%29&rft_id=http%3A%2F%2Fwww.lhc-closer.es%2Fphp%2Findex.php%3Fi%3D1%26s%3D6%26p%3D5%26e%3D0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-243"><span class="mw-cite-backlink"><b><a href="#cite_ref-243">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlam2012" class="citation news cs1"><a href="/wiki/Faye_Flam" title="Faye Flam">Flam, Faye</a> (12 July 2012). <a rel="nofollow" class="external text" href="http://www.philly.com/philly/blogs/evolution/Finally---A-Higgs-Boson-Story-Anyone-Can-Understand.html">"Finally – a Higgs boson story anyone can understand"</a>. <i><a href="/wiki/The_Philadelphia_Inquirer" title="The Philadelphia Inquirer">The Philadelphia Inquirer</a> (philly.com)</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130323033258/http://www.philly.com/philly/blogs/evolution/Finally---A-Higgs-Boson-Story-Anyone-Can-Understand.html">Archived</a> from the original on 23 March 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Philadelphia+Inquirer+%28philly.com%29&rft.atitle=Finally+%E2%80%93+a+Higgs+boson+story+anyone+can+understand&rft.date=2012-07-12&rft.aulast=Flam&rft.aufirst=Faye&rft_id=http%3A%2F%2Fwww.philly.com%2Fphilly%2Fblogs%2Fevolution%2FFinally---A-Higgs-Boson-Story-Anyone-Can-Understand.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-244"><span class="mw-cite-backlink"><b><a href="#cite_ref-244">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSample2011" class="citation news cs1">Sample, Ian (28 April 2011). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/2011/apr/28/higgs-boson-rumour-cern-lhc">"How will we know when the Higgs particle has been detected?"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>. London, UK. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160126044115/http://www.theguardian.com/science/2011/apr/28/higgs-boson-rumour-cern-lhc">Archived</a> from the original on 26 January 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=How+will+we+know+when+the+Higgs+particle+has+been+detected%3F&rft.date=2011-04-28&rft.aulast=Sample&rft.aufirst=Ian&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2F2011%2Fapr%2F28%2Fhiggs-boson-rumour-cern-lhc&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-Miller_analogy-245"><span class="mw-cite-backlink">^ <a href="#cite_ref-Miller_analogy_245-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Miller_analogy_245-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller1993" class="citation web cs1">Miller, David (1993). <a rel="nofollow" class="external text" href="http://www.hep.ucl.ac.uk/~djm/higgsa.html">"A quasi-political explanation of the Higgs boson; for Mr. Waldegrave, UK Science Minister"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100315103707/http://www.hep.ucl.ac.uk/~djm/higgsa.html">Archived</a> from the original on 15 March 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">10 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=A+quasi-political+explanation+of+the+Higgs+boson%3B+for+Mr.+Waldegrave%2C+UK+Science+Minister&rft.date=1993&rft.aulast=Miller&rft.aufirst=David&rft_id=http%3A%2F%2Fwww.hep.ucl.ac.uk%2F~djm%2Fhiggsa.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-246"><span class="mw-cite-backlink"><b><a href="#cite_ref-246">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJepsen2012" class="citation news cs1">Jepsen, Kathryn (1 March 2012). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120814205924/http://www.symmetrymagazine.org/cms/?pid=1000921">"Ten things you may not know about the Higgs boson"</a>. <i><a href="/w/index.php?title=Symmetry_Magazine&action=edit&redlink=1" class="new" title="Symmetry Magazine (page does not exist)">Symmetry Magazine</a></i>. Archived from <a rel="nofollow" class="external text" href="http://www.symmetrymagazine.org/cms/?pid=1000921">the original</a> on 14 August 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">10 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Symmetry+Magazine&rft.atitle=Ten+things+you+may+not+know+about+the+Higgs+boson&rft.date=2012-03-01&rft.aulast=Jepsen&rft.aufirst=Kathryn&rft_id=http%3A%2F%2Fwww.symmetrymagazine.org%2Fcms%2F%3Fpid%3D1000921&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-248"><span class="mw-cite-backlink"><b><a href="#cite_ref-248">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldberg2010" class="citation web cs1">Goldberg, David (17 November 2010). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130121045610/http://io9.com/5690248/whats-the-matter-with-the-higgs-boson">"What's the matter with the Higgs boson?"</a>. <i>io9.com</i>. Archived from the original on 21 January 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">21 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=io9.com&rft.atitle=What%27s+the+matter+with+the+Higgs+boson%3F&rft.date=2010-11-17&rft.aulast=Goldberg&rft.aufirst=David&rft_id=http%3A%2F%2Fio9.com%2F5690248%2Fwhats-the-matter-with-the-higgs-boson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: unfit URL (<a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">link</a>)</span></span> </li> <li id="cite_note-249"><span class="mw-cite-backlink"><b><a href="#cite_ref-249">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrooks2012" class="citation news cs1">Brooks, Michael (31 October 2012). <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/mg21628892-200-exploding-the-myths-about-the-higgs/">"Exploding the myths about the Higgs"</a>. <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160413000339/https://www.newscientist.com/article/mg21628892-200-exploding-the-myths-about-the-higgs/">Archived</a> from the original on 13 April 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">6 July</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Exploding+the+myths+about+the+Higgs&rft.date=2012-10-31&rft.aulast=Brooks&rft.aufirst=Michael&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fmg21628892-200-exploding-the-myths-about-the-higgs%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-250"><span class="mw-cite-backlink"><b><a href="#cite_ref-250">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOverbye2011" class="citation news cs1">Overbye, Dennis (11 December 2011). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2011/12/12/science/physicists-anxiously-await-news-of-the-god-particle.html">"Physicists Anxiously Await New Data on 'God Particle'<span class="cs1-kern-right"></span>"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">6 July</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=Physicists+Anxiously+Await+New+Data+on+%27God+Particle%27&rft.date=2011-12-11&rft.aulast=Overbye&rft.aufirst=Dennis&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2011%2F12%2F12%2Fscience%2Fphysicists-anxiously-await-news-of-the-god-particle.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-251"><span class="mw-cite-backlink"><b><a href="#cite_ref-251">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYeager2012" class="citation web cs1">Yeager, Ashley (13 November 2012). <a rel="nofollow" class="external text" href="https://today.duke.edu/2012/11/higgsmisconceptions">"Top 5 Common Misconceptions About the Higgs Particle"</a>. <i><a href="/wiki/Duke_University" title="Duke University">Duke University</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">6 July</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Duke+University&rft.atitle=Top+5+Common+Misconceptions+About+the+Higgs+Particle&rft.date=2012-11-13&rft.aulast=Yeager&rft.aufirst=Ashley&rft_id=https%3A%2F%2Ftoday.duke.edu%2F2012%2F11%2Fhiggsmisconceptions&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-252"><span class="mw-cite-backlink"><b><a href="#cite_ref-252">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/nobel_prizes/physics/laureates/1979">"The Nobel Prize in Physics 1979"</a>. <i>official Nobel Prize website</i> (Press release). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170617094107/http://www.nobelprize.org/nobel_prizes/physics/laureates/1979/">Archived</a> from the original on 17 June 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">13 June</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Nobel+Prize+in+Physics+1979&rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F1979&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-253"><span class="mw-cite-backlink"><b><a href="#cite_ref-253">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/nobel_prizes/physics/laureates/1999">"The Nobel Prize in Physics 1999"</a>. <i>official Nobel Prize website</i> (Press release). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170616225008/http://www.nobelprize.org/nobel_prizes/physics/laureates/1999/">Archived</a> from the original on 16 June 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">13 June</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Nobel+Prize+in+Physics+1999&rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F1999&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-254"><span class="mw-cite-backlink"><b><a href="#cite_ref-254">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170115055046/https://breakthroughprize.org/Laureates/1/P4/Y2013">"Special Breakthrough Prize Laureates"</a>. <i>breakthroughprize.org</i>. 2013. Archived from <a rel="nofollow" class="external text" href="https://breakthroughprize.org/Laureates/1/P4/Y2013">the original</a> on 15 January 2017.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=breakthroughprize.org&rft.atitle=Special+Breakthrough+Prize+Laureates&rft.date=2013&rft_id=https%3A%2F%2Fbreakthroughprize.org%2FLaureates%2F1%2FP4%2FY2013&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-255"><span class="mw-cite-backlink"><b><a href="#cite_ref-255">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/nobel_prizes/physics/laureates/2013/">"2013 Nobel Prize in Physics"</a>. <i>official Nobel Prize website</i> (Press release). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170611150717/http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/">Archived</a> from the original on 11 June 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">13 June</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=2013+Nobel+Prize+in+Physics&rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F2013%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-256"><span class="mw-cite-backlink"><b><a href="#cite_ref-256">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOverbye2013" class="citation news cs1">Overbye, Dennis (8 October 2013). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2013/10/09/science/englert-and-higgs-win-nobel-physics-prize.html?_r=3&">"For Nobel, they can thank the 'god particle'<span class="cs1-kern-right"></span>"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170630111148/http://www.nytimes.com/2013/10/09/science/englert-and-higgs-win-nobel-physics-prize.html?_r=3&">Archived</a> from the original on 30 June 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">3 November</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=For+Nobel%2C+they+can+thank+the+%27god+particle%27&rft.date=2013-10-08&rft.aulast=Overbye&rft.aufirst=Dennis&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2013%2F10%2F09%2Fscience%2Fenglert-and-higgs-win-nobel-physics-prize.html%3F_r%3D3%26&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-AP-20120710-257"><span class="mw-cite-backlink"><b><a href="#cite_ref-AP-20120710_257-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaigle2012" class="citation news cs1">Daigle, Katy (10 July 2012). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120923000409/http://apnews.excite.com/article/20120710/D9VU1DRG0.html">"India: Enough about Higgs, let's discuss the boson"</a>. <i><a href="/wiki/AP_News" class="mw-redirect" title="AP News">AP News</a></i>. Archived from <a rel="nofollow" class="external text" href="http://apnews.excite.com/article/20120710/D9VU1DRG0.html">the original</a> on 23 September 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">10 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=AP+News&rft.atitle=India%3A+Enough+about+Higgs%2C+let%27s+discuss+the+boson&rft.date=2012-07-10&rft.aulast=Daigle&rft.aufirst=Katy&rft_id=http%3A%2F%2Fapnews.excite.com%2Farticle%2F20120710%2FD9VU1DRG0.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-NYT-20120919-258"><span class="mw-cite-backlink"><b><a href="#cite_ref-NYT-20120919_258-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBal2012" class="citation news cs1">Bal, Hartosh Singh (19 September 2012). <a rel="nofollow" class="external text" href="http://latitude.blogs.nytimes.com/2012/09/19/indians-clamor-for-credit-for-the-bose-in-boson/">"The Bose in the Boson"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20191229062547/https://latitude.blogs.nytimes.com/2012/09/19/indians-clamor-for-credit-for-the-bose-in-boson/">Archived</a> from the original on 29 December 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">21 September</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=The+Bose+in+the+Boson&rft.date=2012-09-19&rft.aulast=Bal&rft.aufirst=Hartosh+Singh&rft_id=http%3A%2F%2Flatitude.blogs.nytimes.com%2F2012%2F09%2F19%2Findians-clamor-for-credit-for-the-bose-in-boson%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-outlook-in-bose-259"><span class="mw-cite-backlink"><b><a href="#cite_ref-outlook-in-bose_259-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlikhan2012" class="citation news cs1">Alikhan, Anvar (16 July 2012). <a rel="nofollow" class="external text" href="http://www.outlookindia.com/article.aspx?281539">"The spark in a crowded field"</a>. <i><a href="/wiki/Outlook_India" class="mw-redirect" title="Outlook India">Outlook India</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120709141149/http://outlookindia.com/article.aspx?281539">Archived</a> from the original on 9 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">10 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Outlook+India&rft.atitle=The+spark+in+a+crowded+field&rft.date=2012-07-16&rft.aulast=Alikhan&rft.aufirst=Anvar&rft_id=http%3A%2F%2Fwww.outlookindia.com%2Farticle.aspx%3F281539&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-PeskinSchroederHiggs-260"><span class="mw-cite-backlink">^ <a href="#cite_ref-PeskinSchroederHiggs_260-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-PeskinSchroederHiggs_260-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-PeskinSchroederHiggs_260-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-PeskinSchroederHiggs_260-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPeskinSchroeder1995">Peskin & Schroeder 1995</a>, Chapter 20</span> </li> <li id="cite_note-261"><span class="mw-cite-backlink"><b><a href="#cite_ref-261">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNakanoNishijima1953" class="citation journal cs1">Nakano, T.; Nishijima, N. (1953). <a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FPTP.10.581">"Charge independence for V-particles"</a>. <i><a href="/wiki/Progress_of_Theoretical_Physics" class="mw-redirect" title="Progress of Theoretical Physics">Progress of Theoretical Physics</a></i>. <b>10</b> (5): 581. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1953PThPh..10..581N">1953PThPh..10..581N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FPTP.10.581">10.1143/PTP.10.581</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Progress+of+Theoretical+Physics&rft.atitle=Charge+independence+for+V-particles&rft.volume=10&rft.issue=5&rft.pages=581&rft.date=1953&rft_id=info%3Adoi%2F10.1143%2FPTP.10.581&rft_id=info%3Abibcode%2F1953PThPh..10..581N&rft.aulast=Nakano&rft.aufirst=T.&rft.au=Nishijima%2C+N.&rft_id=https%3A%2F%2Fdoi.org%2F10.1143%252FPTP.10.581&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-262"><span class="mw-cite-backlink"><b><a href="#cite_ref-262">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNishijima1955" class="citation journal cs1">Nishijima, K. (1955). <a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FPTP.13.285">"Charge independence theory of V-particles"</a>. <i><a href="/wiki/Progress_of_Theoretical_Physics" class="mw-redirect" title="Progress of Theoretical Physics">Progress of Theoretical Physics</a></i>. <b>13</b> (3): 285–304. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1955PThPh..13..285N">1955PThPh..13..285N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FPTP.13.285">10.1143/PTP.13.285</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Progress+of+Theoretical+Physics&rft.atitle=Charge+independence+theory+of+V-particles&rft.volume=13&rft.issue=3&rft.pages=285-304&rft.date=1955&rft_id=info%3Adoi%2F10.1143%2FPTP.13.285&rft_id=info%3Abibcode%2F1955PThPh..13..285N&rft.aulast=Nishijima&rft.aufirst=K.&rft_id=https%3A%2F%2Fdoi.org%2F10.1143%252FPTP.13.285&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> <li id="cite_note-263"><span class="mw-cite-backlink"><b><a href="#cite_ref-263">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGell-Mann1956" class="citation journal cs1">Gell-Mann, M. (1956). "The interpretation of the new particles as displaced charged multiplets". <i><a href="/wiki/Il_Nuovo_Cimento" class="mw-redirect" title="Il Nuovo Cimento">Il Nuovo Cimento</a></i>. <b>4</b> (S2): 848–866. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1956NCim....4S.848G">1956NCim....4S.848G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02748000">10.1007/BF02748000</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121017243">121017243</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Il+Nuovo+Cimento&rft.atitle=The+interpretation+of+the+new+particles+as+displaced+charged+multiplets&rft.volume=4&rft.issue=S2&rft.pages=848-866&rft.date=1956&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121017243%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF02748000&rft_id=info%3Abibcode%2F1956NCim....4S.848G&rft.aulast=Gell-Mann&rft.aufirst=M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Sources">Sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=54" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 25em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernstein1974" class="citation journal cs1"><a href="/wiki/Jeremy_Bernstein" title="Jeremy Bernstein">Bernstein, Jeremy</a> (January 1974). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130121121537/http://www.calstatela.edu/faculty/kaniol/p544/rmp46_p7_higgs_goldstone.pdf">"Spontaneous symmetry breaking, gauge theories, the Higgs mechanism and all that"</a> <span class="cs1-format">(PDF)</span>. <i>Reviews of Modern Physics</i>. <b>46</b> (1): 7–48. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974RvMP...46....7B">1974RvMP...46....7B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.46.7">10.1103/RevModPhys.46.7</a>. Archived from <a rel="nofollow" class="external text" href="http://www.calstatela.edu/faculty/kaniol/p544/rmp46_p7_higgs_goldstone.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 21 January 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">10 December</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reviews+of+Modern+Physics&rft.atitle=Spontaneous+symmetry+breaking%2C+gauge+theories%2C+the+Higgs+mechanism+and+all+that&rft.volume=46&rft.issue=1&rft.pages=7-48&rft.date=1974-01&rft_id=info%3Adoi%2F10.1103%2FRevModPhys.46.7&rft_id=info%3Abibcode%2F1974RvMP...46....7B&rft.aulast=Bernstein&rft.aufirst=Jeremy&rft_id=http%3A%2F%2Fwww.calstatela.edu%2Ffaculty%2Fkaniol%2Fp544%2Frmp46_p7_higgs_goldstone.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeskinSchroeder1995" class="citation book cs1">Peskin, Michael E.; Schroeder, Daniel V. (1995). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoqu0000pesk"><i>An Introduction to Quantum Field Theory</i></a></span>. Reading, MA: Addison-Wesley Publishing Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-201-50397-5" title="Special:BookSources/978-0-201-50397-5"><bdi>978-0-201-50397-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+Quantum+Field+Theory&rft.place=Reading%2C+MA&rft.pub=Addison-Wesley+Publishing+Company&rft.date=1995&rft.isbn=978-0-201-50397-5&rft.aulast=Peskin&rft.aufirst=Michael+E.&rft.au=Schroeder%2C+Daniel+V.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoqu0000pesk&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTiplerLlewellyn2003" class="citation book cs1">Tipler, Paul; Llewellyn, Ralph (2003). <i>Modern Physics</i>. W. H. Freeman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7167-4345-3" title="Special:BookSources/978-0-7167-4345-3"><bdi>978-0-7167-4345-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Modern+Physics&rft.pub=W.+H.+Freeman&rft.date=2003&rft.isbn=978-0-7167-4345-3&rft.aulast=Tipler&rft.aufirst=Paul&rft.au=Llewellyn%2C+Ralph&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriffiths2008" class="citation book cs1">Griffiths, David (2008). <i>Introduction to Elementary Particles</i> (2nd revised ed.). WILEY-VCH. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-527-40601-2" title="Special:BookSources/978-3-527-40601-2"><bdi>978-3-527-40601-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Elementary+Particles&rft.edition=2nd+revised&rft.pub=WILEY-VCH&rft.date=2008&rft.isbn=978-3-527-40601-2&rft.aulast=Griffiths&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=55" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin refbegin-columns references-column-width" style="column-width: 25em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNambuJona-Lasinio1961" class="citation journal cs1"><a href="/wiki/Yoichiro_Nambu" title="Yoichiro Nambu">Nambu, Yoichiro</a>; <a href="/wiki/Giovanni_Jona-Lasinio" title="Giovanni Jona-Lasinio">Jona-Lasinio, Giovanni</a> (1961). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.122.345">"Dynamical model of elementary particles based on an analogy with superconductivity"</a>. <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>122</b> (1): 345–358. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1961PhRv..122..345N">1961PhRv..122..345N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.122.345">10.1103/PhysRev.122.345</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Dynamical+model+of+elementary+particles+based+on+an+analogy+with+superconductivity&rft.volume=122&rft.issue=1&rft.pages=345-358&rft.date=1961&rft_id=info%3Adoi%2F10.1103%2FPhysRev.122.345&rft_id=info%3Abibcode%2F1961PhRv..122..345N&rft.aulast=Nambu&rft.aufirst=Yoichiro&rft.au=Jona-Lasinio%2C+Giovanni&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRev.122.345&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnderson1963" class="citation journal cs1"><a href="/wiki/Philip_Warren_Anderson" class="mw-redirect" title="Philip Warren Anderson">Anderson, Philip W.</a> (1963). "Plasmons, gauge invariance, and mass". <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>130</b> (1): 439–442. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1963PhRv..130..439A">1963PhRv..130..439A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.130.439">10.1103/PhysRev.130.439</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Plasmons%2C+gauge+invariance%2C+and+mass&rft.volume=130&rft.issue=1&rft.pages=439-442&rft.date=1963&rft_id=info%3Adoi%2F10.1103%2FPhysRev.130.439&rft_id=info%3Abibcode%2F1963PhRv..130..439A&rft.aulast=Anderson&rft.aufirst=Philip+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleinLee1964" class="citation journal cs1"><a href="/wiki/Abraham_Klein_(physicist)" title="Abraham Klein (physicist)">Klein, Abraham</a>; <a href="/wiki/Benjamin_W._Lee" title="Benjamin W. Lee">Lee, Benjamin W.</a> (1964). "Does spontaneous breakdown of symmetry imply zero-mass particles?". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>12</b> (10): 266–268. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhRvL..12..266K">1964PhRvL..12..266K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.12.266">10.1103/PhysRevLett.12.266</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Does+spontaneous+breakdown+of+symmetry+imply+zero-mass+particles%3F&rft.volume=12&rft.issue=10&rft.pages=266-268&rft.date=1964&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.12.266&rft_id=info%3Abibcode%2F1964PhRvL..12..266K&rft.aulast=Klein&rft.aufirst=Abraham&rft.au=Lee%2C+Benjamin+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGilbert1964" class="citation journal cs1"><a href="/wiki/Walter_Gilbert" title="Walter Gilbert">Gilbert, Walter</a> (1964). "Broken symmetries and massless particles". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>12</b> (25): 713–714. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhRvL..12..713G">1964PhRvL..12..713G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.12.713">10.1103/PhysRevLett.12.713</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Broken+symmetries+and+massless+particles&rft.volume=12&rft.issue=25&rft.pages=713-714&rft.date=1964&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.12.713&rft_id=info%3Abibcode%2F1964PhRvL..12..713G&rft.aulast=Gilbert&rft.aufirst=Walter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggs1964" class="citation journal cs1"><a href="/wiki/Peter_Higgs" title="Peter Higgs">Higgs, Peter</a> (1964). "Broken symmetries, massless particles and gauge fields". <i><a href="/wiki/Physics_Letters" title="Physics Letters">Physics Letters</a></i>. <b>12</b> (2): 132–133. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhL....12..132H">1964PhL....12..132H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0031-9163%2864%2991136-9">10.1016/0031-9163(64)91136-9</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters&rft.atitle=Broken+symmetries%2C+massless+particles+and+gauge+fields&rft.volume=12&rft.issue=2&rft.pages=132-133&rft.date=1964&rft_id=info%3Adoi%2F10.1016%2F0031-9163%2864%2991136-9&rft_id=info%3Abibcode%2F1964PhL....12..132H&rft.aulast=Higgs&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuralnikHagenKibble1968" class="citation book cs1"><a href="/wiki/Gerald_Guralnik" title="Gerald Guralnik">Guralnik, Gerald S.</a>; <a href="/wiki/C._R._Hagen" title="C. R. Hagen">Hagen, C.R.</a>; <a href="/wiki/Tom_Kibble" title="Tom Kibble">Kibble, Tom W.B.</a> (1968). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120423102231/http://www.datafilehost.com/download-7d512618.html">"Broken symmetries and the Goldstone theorem"</a>. In <a href="/wiki/Rodney_L._Cool" title="Rodney L. Cool">Cool, R.L.</a>; Marshak, R.E. (eds.). <i>Advances in Physics</i>. Vol. 2. <a href="/wiki/Interscience_Publishers" class="mw-redirect" title="Interscience Publishers">Interscience Publishers</a>. pp. 567–708. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-17057-1" title="Special:BookSources/978-0-470-17057-1"><bdi>978-0-470-17057-1</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.datafilehost.com/download-7d512618.html">the original</a> on 23 April 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">18 June</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Broken+symmetries+and+the+Goldstone+theorem&rft.btitle=Advances+in+Physics&rft.pages=567-708&rft.pub=Interscience+Publishers&rft.date=1968&rft.isbn=978-0-470-17057-1&rft.aulast=Guralnik&rft.aufirst=Gerald+S.&rft.au=Hagen%2C+C.R.&rft.au=Kibble%2C+Tom+W.B.&rft_id=http%3A%2F%2Fwww.datafilehost.com%2Fdownload-7d512618.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarroll,_Sean2013" class="citation book cs1">Carroll, Sean (2013). <i>The Particle at the End of the Universe: How the hunt for the Higgs boson leads us to the edge of a new world</i>. Dutton. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-14-218030-3" title="Special:BookSources/978-0-14-218030-3"><bdi>978-0-14-218030-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Particle+at+the+End+of+the+Universe%3A+How+the+hunt+for+the+Higgs+boson+leads+us+to+the+edge+of+a+new+world&rft.pub=Dutton&rft.date=2013&rft.isbn=978-0-14-218030-3&rft.au=Carroll%2C+Sean&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJakobsSeez2015" class="citation journal cs1">Jakobs, Karl; Seez, Chris (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.32413">"The Higgs boson discovery"</a>. <i><a href="/wiki/Scholarpedia" title="Scholarpedia">Scholarpedia</a></i>. <b>10</b> (9): 32413. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.32413">10.4249/scholarpedia.32413</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scholarpedia&rft.atitle=The+Higgs+boson+discovery&rft.volume=10&rft.issue=9&rft.pages=32413&rft.date=2015&rft_id=info%3Adoi%2F10.4249%2Fscholarpedia.32413&rft.aulast=Jakobs&rft.aufirst=Karl&rft.au=Seez%2C+Chris&rft_id=https%3A%2F%2Fdoi.org%2F10.4249%252Fscholarpedia.32413&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=56" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Higgs_boson" class="extiw" title="commons:Category:Higgs boson">Higgs boson</a></span>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/Special:Search/higgs_boson" class="extiw" title="wiktionary:Special:Search/higgs boson">higgs boson</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/Higgs_boson" class="extiw" title="q:Special:Search/Higgs boson">Higgs boson</a></b></i>.</div></div> </div> <div class="mw-heading mw-heading3"><h3 id="Popular_science,_mass_media,_and_general_coverage"><span id="Popular_science.2C_mass_media.2C_and_general_coverage"></span>Popular science, mass media, and general coverage</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=57" title="Edit section: Popular science, mass media, and general coverage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li><a rel="nofollow" class="external text" href="http://meroli.web.cern.ch/blog_higgs_animation.html">Higgs Boson observation at CERN</a></li> <li><a rel="nofollow" class="external text" href="http://cms.web.cern.ch/news/about-higgs-boson">Hunting the Higgs Boson at C.M.S. Experiment, at CERN</a></li> <li><a rel="nofollow" class="external text" href="http://www.exploratorium.edu/origins/cern/ideas/higgs.html">The Higgs Boson</a> by the CERN exploratorium.</li> <li><a rel="nofollow" class="external text" href="https://www.nytimes.com/2014/03/05/movies/particle-fever-tells-of-search-for-the-higgs-boson.html"><i>Particle Fever</i>, documentary film about the search for the Higgs Boson.</a></li> <li><a rel="nofollow" class="external text" href="http://theatomsmashers.com/"><i>The Atom Smashers</i>, documentary film about the search for the Higgs Boson at Fermilab.</a></li> <li><a rel="nofollow" class="external text" href="https://www.theguardian.com/science/higgs-boson">Collected Articles at the <i>Guardian</i></a></li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=vXZ-yzwlwMw">Video (04:38)</a> – <a href="/wiki/CERN" title="CERN">CERN</a> Announcement on 4 July 2012, of the discovery of a particle which is suspected will be a Higgs Boson.</li> <li><a rel="nofollow" class="external text" href="https://vimeo.com/41038445">Video1 (07:44)</a> + <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=0hn0jYjijNs">Video2 (07:44)</a> – Higgs Boson Explained by CERN Physicist, <a rel="nofollow" class="external text" href="http://www.faculty.uci.edu/profile.cfm?faculty_id=5436">Dr. Daniel Whiteson</a> (16 June 2011).</li> <li><a rel="nofollow" class="external text" href="http://science.howstuffworks.com/higgs-boson.htm">HowStuffWorks: What exactly is the Higgs Boson?</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarroll" class="citation web cs1"><a href="/wiki/Sean_M._Carroll" title="Sean M. Carroll">Carroll, Sean</a>. <a rel="nofollow" class="external text" href="http://www.sixtysymbols.com/videos/higgs_sean.htm">"Higgs Boson with Sean Carroll"</a>. <i>Sixty Symbols</i>. University of Nottingham.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Sixty+Symbols&rft.atitle=Higgs+Boson+with+Sean+Carroll&rft.aulast=Carroll&rft.aufirst=Sean&rft_id=http%3A%2F%2Fwww.sixtysymbols.com%2Fvideos%2Fhiggs_sean.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOverbye2013" class="citation news cs1">Overbye, Dennis (5 March 2013). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2013/03/05/science/chasing-the-higgs-boson-how-2-teams-of-rivals-at-CERN-searched-for-physics-most-elusive-particle.html">"Chasing the Higgs Boson: How 2 teams of rivals at CERN searched for physics' most elusive particle"</a>. <i><a href="/wiki/New_York_Times" class="mw-redirect" title="New York Times">New York Times</a> Science pages</i><span class="reference-accessdate">. Retrieved <span class="nowrap">22 July</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+York+Times+Science+pages&rft.atitle=Chasing+the+Higgs+Boson%3A+How+2+teams+of+rivals+at+CERN+searched+for+physics%27+most+elusive+particle&rft.date=2013-03-05&rft.aulast=Overbye&rft.aufirst=Dennis&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2013%2F03%2F05%2Fscience%2Fchasing-the-higgs-boson-how-2-teams-of-rivals-at-CERN-searched-for-physics-most-elusive-particle.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> –  <i>New York Times</i> "behind the scenes" style article on the Higgs' search at ATLAS and CMS</li> <li>The story of the Higgs theory by the authors of the PRL papers and others closely associated: <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggs2010" class="citation web cs1">Higgs, Peter (2010). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131104043410/http://www.kcl.ac.uk/nms/depts/physics/news/events/MyLifeasaBoson.pdf">"My Life as a Boson"</a> <span class="cs1-format">(PDF)</span>. Talk given at King's College, London, 24 November 2010. Archived from <a rel="nofollow" class="external text" href="http://www.kcl.ac.uk/nms/depts/physics/news/events/MyLifeasaBoson.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 November 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">17 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=My+Life+as+a+Boson&rft.pub=Talk+given+at+King%27s+College%2C+London%2C+24+November+2010&rft.date=2010&rft.aulast=Higgs&rft.aufirst=Peter&rft_id=http%3A%2F%2Fwww.kcl.ac.uk%2Fnms%2Fdepts%2Fphysics%2Fnews%2Fevents%2FMyLifeasaBoson.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> (also: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggs2010" class="citation journal cs1">Higgs, Peter (24 November 2010). "My Life As a Boson: The Story of "the Higgs"<span class="cs1-kern-right"></span>". <i>International Journal of Modern Physics A</i>. <b>17</b> (supp01): 86–88. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002IJMPA..17S..86H">2002IJMPA..17S..86H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0217751X02013046">10.1142/S0217751X02013046</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics+A&rft.atitle=My+Life+As+a+Boson%3A+The+Story+of+%22the+Higgs%22&rft.volume=17&rft.issue=supp01&rft.pages=86-88&rft.date=2010-11-24&rft_id=info%3Adoi%2F10.1142%2FS0217751X02013046&rft_id=info%3Abibcode%2F2002IJMPA..17S..86H&rft.aulast=Higgs&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span>)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKibble2009" class="citation web cs1">Kibble, Tom (2009). <a rel="nofollow" class="external text" href="http://www.scholarpedia.org/w/index.php?title=Englert–Brout–Higgs–Guralnik–Hagen–Kibble_mechanism_(history)&oldid=124215">"Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (history)"</a>. Scholarpedia<span class="reference-accessdate">. Retrieved <span class="nowrap">17 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Englert%E2%80%93Brout%E2%80%93Higgs%E2%80%93Guralnik%E2%80%93Hagen%E2%80%93Kibble+mechanism+%28history%29&rft.pub=Scholarpedia&rft.date=2009&rft.aulast=Kibble&rft.aufirst=Tom&rft_id=http%3A%2F%2Fwww.scholarpedia.org%2Fw%2Findex.php%3Ftitle%3DEnglert%E2%80%93Brout%E2%80%93Higgs%E2%80%93Guralnik%E2%80%93Hagen%E2%80%93Kibble_mechanism_%28history%29%26oldid%3D124215&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> (also: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKibble2009" class="citation journal cs1">Kibble, Tom (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.8741">"Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism (history)"</a>. <i>Scholarpedia</i>. <b>4</b> (1): 8741. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009SchpJ...4.8741K">2009SchpJ...4.8741K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.8741">10.4249/scholarpedia.8741</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scholarpedia&rft.atitle=Englert-Brout-Higgs-Guralnik-Hagen-Kibble+mechanism+%28history%29&rft.volume=4&rft.issue=1&rft.pages=8741&rft.date=2009&rft_id=info%3Adoi%2F10.4249%2Fscholarpedia.8741&rft_id=info%3Abibcode%2F2009SchpJ...4.8741K&rft.aulast=Kibble&rft.aufirst=Tom&rft_id=https%3A%2F%2Fdoi.org%2F10.4249%252Fscholarpedia.8741&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span>)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuralnik2009" class="citation journal cs1">Guralnik, Gerald (2009). "The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles". <i><a href="/wiki/International_Journal_of_Modern_Physics_A" class="mw-redirect" title="International Journal of Modern Physics A">International Journal of Modern Physics A</a></i>. <b>24</b> (14): 2601–2627. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0907.3466">0907.3466</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009IJMPA..24.2601G">2009IJMPA..24.2601G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0217751X09045431">10.1142/S0217751X09045431</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16298371">16298371</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics+A&rft.atitle=The+History+of+the+Guralnik%2C+Hagen+and+Kibble+development+of+the+Theory+of+Spontaneous+Symmetry+Breaking+and+Gauge+Particles&rft.volume=24&rft.issue=14&rft.pages=2601-2627&rft.date=2009&rft_id=info%3Aarxiv%2F0907.3466&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16298371%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS0217751X09045431&rft_id=info%3Abibcode%2F2009IJMPA..24.2601G&rft.aulast=Guralnik&rft.aufirst=Gerald&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuralnik2011" class="citation arxiv cs1">Guralnik, Gerald (2011). "The Beginnings of Spontaneous Symmetry Breaking in Particle Physics. Proceedings of the DPF-2011 Conference, Providence, RI, 8–13 August 2011". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1110.2253v1">1110.2253v1</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/physics.hist-ph">physics.hist-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=The+Beginnings+of+Spontaneous+Symmetry+Breaking+in+Particle+Physics.+Proceedings+of+the+DPF-2011+Conference%2C+Providence%2C+RI%2C+8%E2%80%9313+August+2011&rft.date=2011&rft_id=info%3Aarxiv%2F1110.2253v1&rft.aulast=Guralnik&rft.aufirst=Gerald&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span>, and Guralnik, Gerald (2013). <a rel="nofollow" class="external text" href="http://www.sps.ch/en/articles/milestones_in_physics/heretical_ideas_that_provided_the_cornerstone_for_the_standard_model_of_particle_physics_1/">"Heretical Ideas that Provided the Cornerstone for the Standard Model of Particle Physics".</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131015095448/http://www.sps.ch/en/articles/milestones_in_physics/heretical_ideas_that_provided_the_cornerstone_for_the_standard_model_of_particle_physics_1/">Archived</a> 15 October 2013 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> SPG Mitteilungen March 2013, No. 39, (p. 14), and <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=WLZ78gwWQI0">Talk at Brown University about the 1964 PRL papers</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20131020072910/http://www.conferences.uiuc.edu/bcs50/PDF/Anderson.pdf">Philip Anderson (not one of the PRL authors) on symmetry breaking in superconductivity and its migration into particle physics and the PRL papers</a></li></ul></li> <li><a rel="nofollow" class="external text" href="http://xkcd.com/812/">Cartoon about the search</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCham2014" class="citation web cs1">Cham, Jorge (19 February 2014). <a rel="nofollow" class="external text" href="http://www.phdcomics.com/comics.php?f=1684">"True Tales from the Road: The Higgs Boson Re-Explained"</a>. <i><a href="/wiki/Piled_Higher_and_Deeper" title="Piled Higher and Deeper">Piled Higher and Deeper</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">25 February</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Piled+Higher+and+Deeper&rft.atitle=True+Tales+from+the+Road%3A+The+Higgs+Boson+Re-Explained&rft.date=2014-02-19&rft.aulast=Cham&rft.aufirst=Jorge&rft_id=http%3A%2F%2Fwww.phdcomics.com%2Fcomics.php%3Ff%3D1684&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://www.bbc.co.uk/programmes/p004y2b7">Higgs Boson</a>, BBC Radio 4 discussion with Jim Al-Khalili, David Wark & Roger Cashmore (<i>In Our Time</i>, 18 November 2004)</li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Significant_papers_and_other">Significant papers and other</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=58" title="Edit section: Significant papers and other"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAad2012" class="citation journal cs1">"Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC". <i>Physics Letters B</i>. <b>716</b> (2012): 1–29. 2012. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1207.7214">1207.7214</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhLB..716....1A">2012PhLB..716....1A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2012.08.020">10.1016/j.physletb.2012.08.020</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119169617">119169617</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=Observation+of+a+new+particle+in+the+search+for+the+Standard+Model+Higgs+boson+with+the+ATLAS+detector+at+the+LHC&rft.volume=716&rft.issue=2012&rft.pages=1-29&rft.date=2012&rft_id=info%3Aarxiv%2F1207.7214&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119169617%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2012.08.020&rft_id=info%3Abibcode%2F2012PhLB..716....1A&rft.aulast=Aad&rft.aufirst=G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChatrchyan2012" class="citation journal cs1">"Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC". <i>Physics Letters B</i>. <b>716</b> (2012): 30–61. 2012. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1207.7235">1207.7235</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhLB..716...30C">2012PhLB..716...30C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physletb.2012.08.021">10.1016/j.physletb.2012.08.021</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=Observation+of+a+new+boson+at+a+mass+of+125+GeV+with+the+CMS+experiment+at+the+LHC&rft.volume=716&rft.issue=2012&rft.pages=30-61&rft.date=2012&rft_id=info%3Aarxiv%2F1207.7235&rft_id=info%3Adoi%2F10.1016%2Fj.physletb.2012.08.021&rft_id=info%3Abibcode%2F2012PhLB..716...30C&rft.aulast=Chatrchyan&rft.aufirst=S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://pdg.lbl.gov/2012/listings/rpp2012-list-higgs-boson.pdf">Particle Data Group: Review of searches for Higgs Bosons.</a></li> <li><a rel="nofollow" class="external text" href="https://books.google.com/books?id=ONhnbpq00xIC&pg=PA86">2001, a spacetime odyssey: proceedings of the Inaugural Conference of the Michigan Center for Theoretical Physics</a> : Michigan, 21–25 May 2001, (pp. 86–88), ed. Michael J. Duff, James T. Liu, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-238-231-3" title="Special:BookSources/978-981-238-231-3">978-981-238-231-3</a>, containing Higgs' story of the Higgs Boson.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMigdalPolyakov1966" class="citation journal cs1">Migdal, A. A.; Polyakov, A. M. (1966). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180921225808/https://pdfs.semanticscholar.org/0865/a2bb7f85f8898e144c133b3d008ef9b96c0e.pdf">"Spontaneous Breakdown of Strong Interaction Symmetry and the Absence of Massless Particles"</a> <span class="cs1-format">(PDF)</span>. <i>Soviet Physics JETP</i>. <b>24</b> (1): 91. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1967JETP...24...91M">1967JETP...24...91M</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34510322">34510322</a>. Archived from <a rel="nofollow" class="external text" href="https://pdfs.semanticscholar.org/0865/a2bb7f85f8898e144c133b3d008ef9b96c0e.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 21 September 2018.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Soviet+Physics+JETP&rft.atitle=Spontaneous+Breakdown+of+Strong+Interaction+Symmetry+and+the+Absence+of+Massless+Particles&rft.volume=24&rft.issue=1&rft.pages=91&rft.date=1966&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34510322%23id-name%3DS2CID&rft_id=info%3Abibcode%2F1967JETP...24...91M&rft.aulast=Migdal&rft.aufirst=A.+A.&rft.au=Polyakov%2C+A.+M.&rft_id=https%3A%2F%2Fpdfs.semanticscholar.org%2F0865%2Fa2bb7f85f8898e144c133b3d008ef9b96c0e.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AHiggs+boson" class="Z3988"></span> –  example of a 1966 Russian paper on the subject.</li> <li><a rel="nofollow" class="external text" href="https://www.energy.gov/science/doe-explainsthe-higgs-boson">The Department of Energy Explains ... the Higgs Boson</a></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Introductions_to_the_field">Introductions to the field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Higgs_boson&action=edit&section=59" title="Edit section: Introductions to the field"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180901085224/http://www.quantumfieldtheory.info/Electroweak_Sym_breaking.pdf">Electroweak Symmetry Breaking</a> – A pedagogic introduction to electroweak symmetry breaking with step by step derivations of many key relations, by Robert D. Klauber, 15 January 2018 (archived at Wayback Machine)</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130121121537/http://www.calstatela.edu/faculty/kaniol/p544/rmp46_p7_higgs_goldstone.pdf">Spontaneous symmetry breaking, gauge theories, the Higgs mechanism and all that (Bernstein, <i>Reviews of Modern Physics</i> Jan 1974)</a> –  an introduction of 47 pages covering the development, history and mathematics of Higgs theories from around 1950 to 1974.</li></ul> </div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Particles_in_physics" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align: center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Particles" title="Template:Particles"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Particles" title="Template talk:Particles"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Particles" title="Special:EditPage/Template:Particles"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Particles_in_physics" style="font-size:114%;margin:0 4em"><a href="/wiki/Particle_physics" title="Particle physics">Particles in physics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%"><a href="/wiki/Elementary_particle" title="Elementary particle">Elementary</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;"><a href="/wiki/Fermion" title="Fermion">Fermions</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Quark" title="Quark">Quarks</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Up_quark" title="Up quark">Up (quark</a></li> <li><a href="/wiki/Up_antiquark" class="mw-redirect" title="Up antiquark">antiquark)</a></li> <li><a href="/wiki/Down_quark" title="Down quark">Down (quark</a></li> <li><a href="/wiki/Down_antiquark" class="mw-redirect" title="Down antiquark">antiquark)</a></li> <li><a href="/wiki/Charm_quark" title="Charm quark">Charm (quark</a></li> <li><a href="/wiki/Charm_antiquark" class="mw-redirect" title="Charm antiquark">antiquark)</a></li> <li><a href="/wiki/Strange_quark" title="Strange quark">Strange (quark</a></li> <li><a href="/wiki/Strange_antiquark" class="mw-redirect" title="Strange antiquark">antiquark)</a></li> <li><a href="/wiki/Top_quark" title="Top quark">Top (quark</a></li> <li><a href="/wiki/Top_antiquark" class="mw-redirect" title="Top antiquark">antiquark)</a></li> <li><a href="/wiki/Bottom_quark" title="Bottom quark">Bottom (quark</a></li> <li><a href="/wiki/Bottom_antiquark" class="mw-redirect" title="Bottom antiquark">antiquark)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Lepton" title="Lepton">Leptons</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Electron" title="Electron">Electron</a></li> <li><a href="/wiki/Positron" title="Positron">Positron</a></li> <li><a href="/wiki/Muon" title="Muon">Muon</a></li> <li><a href="/wiki/Muon" title="Muon">Antimuon</a></li> <li><a href="/wiki/Tau_(particle)" title="Tau (particle)">Tau</a></li> <li><a href="/wiki/Tau_(particle)" title="Tau (particle)">Antitau</a></li> <li><a href="/wiki/Neutrino" title="Neutrino">Neutrino</a> <ul><li><a href="/wiki/Electron_neutrino" title="Electron neutrino">Electron neutrino</a></li> <li><a href="/wiki/Neutrino#Antineutrinos" title="Neutrino">Electron antineutrino</a></li> <li><a href="/wiki/Muon_neutrino" title="Muon neutrino">Muon neutrino</a></li> <li><a href="/wiki/Neutrino#Antineutrinos" title="Neutrino">Muon antineutrino</a></li> <li><a href="/wiki/Tau_neutrino" title="Tau neutrino">Tau neutrino</a></li> <li><a href="/wiki/Neutrino#Antineutrinos" title="Neutrino">Tau antineutrino</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;"><a href="/wiki/Boson" title="Boson">Bosons</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:4em;font-weight:normal; text-align: center;"><a href="/wiki/Gauge_boson" title="Gauge boson">Gauge</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Photon" title="Photon">Photon</a></li> <li><a href="/wiki/Gluon" title="Gluon">Gluon</a></li> <li><a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W and Z bosons</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:4em;font-weight:normal; text-align: center;"><a href="/wiki/Scalar_boson" title="Scalar boson">Scalar</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Higgs boson </a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;;font-weight:normal; text-align: center;"><a href="/wiki/Ghost_(physics)" title="Ghost (physics)">Ghost fields</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Faddeev%E2%80%93Popov_ghost" title="Faddeev–Popov ghost">Faddeev–Popov ghosts</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;"><a href="/wiki/Hypothetical_particles" class="mw-redirect" title="Hypothetical particles">Hypothetical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal; text-align: center;"><a href="/wiki/Superpartner" title="Superpartner">Superpartners</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal; text-align: center;"><a href="/wiki/Gaugino" title="Gaugino">Gauginos</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gluino" title="Gluino">Gluino</a></li> <li><a href="/wiki/Gravitino" title="Gravitino">Gravitino</a></li> <li><a href="/wiki/Photino" title="Photino">Photino</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal; text-align: center;">Others</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Axino" title="Axino">Axino</a></li> <li><a href="/wiki/Chargino" title="Chargino">Chargino</a></li> <li><a href="/wiki/Higgsino" title="Higgsino">Higgsino</a></li> <li><a href="/wiki/Neutralino" title="Neutralino">Neutralino</a></li> <li><a href="/wiki/Sfermion" title="Sfermion">Sfermion</a> (<a href="/wiki/Stop_squark" title="Stop squark">Stop squark</a>)</li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal; text-align: center;">Others</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Axion" title="Axion">Axion</a></li> <li><a href="/wiki/Curvaton" title="Curvaton">Curvaton</a></li> <li><a href="/wiki/Dilaton" title="Dilaton">Dilaton</a></li> <li><a href="/wiki/Dual_graviton" title="Dual graviton">Dual graviton</a></li> <li><a href="/wiki/Graviphoton" title="Graviphoton">Graviphoton</a></li> <li><a href="/wiki/Graviton" title="Graviton">Graviton</a></li> <li><a href="/wiki/Inflaton" title="Inflaton">Inflaton</a></li> <li><a href="/wiki/Leptoquark" title="Leptoquark">Leptoquark</a></li> <li><a href="/wiki/Magnetic_monopole" title="Magnetic monopole">Magnetic monopole</a></li> <li><a href="/wiki/Majoron" title="Majoron">Majoron</a></li> <li><a href="/wiki/Majorana_fermion" title="Majorana fermion">Majorana fermion</a></li> <li><a href="/wiki/Dark_photon" title="Dark photon">Dark photon</a></li> <li><a href="/wiki/Preon" title="Preon">Preon</a></li> <li><a href="/wiki/Sterile_neutrino" title="Sterile neutrino">Sterile neutrino</a></li> <li><a href="/wiki/Tachyon" title="Tachyon">Tachyon</a></li> <li><a href="/wiki/W%E2%80%B2_and_Z%E2%80%B2_bosons" title="W′ and Z′ bosons">W′ and Z′ bosons</a></li> <li><a href="/wiki/X_and_Y_bosons" title="X and Y bosons">X and Y bosons</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%"><a href="/wiki/Bound_state" title="Bound state">Composite</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Hadrons" scope="row" class="navbox-group" style="width:1%;text-align: center;"><a href="/wiki/Hadron" title="Hadron">Hadrons</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal; text-align: center;"><a href="/wiki/Baryon" title="Baryon">Baryons</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nucleon" title="Nucleon">Nucleon</a> <ul><li><a href="/wiki/Proton" title="Proton">Proton</a></li> <li><a href="/wiki/Antiproton" title="Antiproton">Antiproton</a></li> <li><a href="/wiki/Neutron" title="Neutron">Neutron</a></li> <li><a href="/wiki/Antineutron" title="Antineutron">Antineutron</a></li></ul></li> <li><a href="/wiki/Delta_baryon" title="Delta baryon">Delta baryon</a></li> <li><a href="/wiki/Lambda_baryon" title="Lambda baryon">Lambda baryon</a></li> <li><a href="/wiki/Sigma_baryon" title="Sigma baryon">Sigma baryon</a></li> <li><a href="/wiki/Xi_baryon" title="Xi baryon">Xi baryon</a></li> <li><a href="/wiki/Omega_baryon" title="Omega baryon">Omega baryon</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal; text-align: center;"><a href="/wiki/Meson" title="Meson">Mesons</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pion" title="Pion">Pion</a></li> <li><a href="/wiki/Rho_meson" title="Rho meson">Rho meson</a></li> <li><a href="/wiki/Eta_meson" class="mw-redirect" title="Eta meson">Eta and eta prime mesons</a></li> <li><a href="/wiki/Bottom_eta_meson" title="Bottom eta meson">Bottom eta meson</a></li> <li><a href="/wiki/Phi_meson" title="Phi meson">Phi meson</a></li> <li><a href="/wiki/J/psi_meson" title="J/psi meson">J/psi meson</a></li> <li><a href="/wiki/Omega_meson" title="Omega meson">Omega meson</a></li> <li><a href="/wiki/Upsilon_meson" title="Upsilon meson">Upsilon meson</a></li> <li><a href="/wiki/Kaon" title="Kaon">Kaon</a></li> <li><a href="/wiki/B_meson" title="B meson">B meson</a></li> <li><a href="/wiki/D_meson" title="D meson">D meson</a></li> <li><a href="/wiki/Quarkonium" title="Quarkonium">Quarkonium</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal; text-align: center;"><a href="/wiki/Exotic_hadron" title="Exotic hadron">Exotic hadrons</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tetraquark" title="Tetraquark">Tetraquark</a> (<a href="/wiki/Double-charm_tetraquark" title="Double-charm tetraquark">Double-charm tetraquark</a>)</li> <li><a href="/wiki/Pentaquark" title="Pentaquark">Pentaquark</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;;font-weight:normal; text-align: center;">Others</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atomic_nucleus" title="Atomic nucleus">Atomic nuclei</a></li> <li><a href="/wiki/Atom" title="Atom">Atoms</a></li> <li><a href="/wiki/Exotic_atom" title="Exotic atom">Exotic atoms</a> <ul><li><a href="/wiki/Positronium" title="Positronium">Positronium</a></li> <li><a href="/wiki/Muonium" title="Muonium">Muonium</a></li> <li><a href="/wiki/Tauonium" class="mw-redirect" title="Tauonium">Tauonium</a></li> <li><a href="/wiki/Onium" title="Onium">Onia</a></li> <li><a href="/wiki/Pionium" title="Pionium">Pionium</a></li> <li><a href="/wiki/Protonium" title="Protonium">Protonium</a></li></ul></li> <li><a href="/wiki/Superatom" title="Superatom">Superatoms</a></li> <li><a href="/wiki/Molecule" title="Molecule">Molecules</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;"><a href="/wiki/Category:Hypothetical_composite_particles" title="Category:Hypothetical composite particles">Hypothetical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Baryons</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hexaquark" title="Hexaquark">Hexaquark</a></li> <li><a href="/wiki/Heptaquark" title="Heptaquark">Heptaquark</a></li> <li><a href="/wiki/Skyrmion" title="Skyrmion">Skyrmion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Mesons</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Glueball" title="Glueball">Glueball</a></li> <li><a href="/wiki/Theta_meson" title="Theta meson">Theta meson</a></li> <li><a href="/wiki/T_meson" title="T meson">T meson</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal; text-align: center;;font-weight:normal; text-align: center;">Others</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mesonic_molecule" title="Mesonic molecule">Mesonic molecule</a></li> <li><a href="/wiki/Pomeron" title="Pomeron">Pomeron</a></li> <li><a href="/wiki/Diquark" title="Diquark">Diquark</a></li> <li><a href="/wiki/R-hadron" title="R-hadron">R-hadron</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%"><a href="/wiki/Quasiparticle" title="Quasiparticle">Quasiparticles</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anyon" title="Anyon">Anyon</a></li> <li><a href="/wiki/Davydov_soliton" title="Davydov soliton">Davydov soliton</a></li> <li><a href="/wiki/Dropleton" title="Dropleton">Dropleton</a></li> <li><a href="/wiki/Exciton" title="Exciton">Exciton</a></li> <li><a href="/wiki/Fracton_(subdimensional_particle)" title="Fracton (subdimensional particle)">Fracton</a></li> <li><a href="/wiki/Electron_hole" title="Electron hole">Hole</a></li> <li><a href="/wiki/Magnon" title="Magnon">Magnon</a></li> <li><a href="/wiki/Phonon" title="Phonon">Phonon</a></li> <li><a href="/wiki/Plasmaron" title="Plasmaron">Plasmaron</a></li> <li><a href="/wiki/Plasmon" title="Plasmon">Plasmon</a></li> <li><a href="/wiki/Polariton" title="Polariton">Polariton</a></li> <li><a href="/wiki/Polaron" title="Polaron">Polaron</a></li> <li><a href="/wiki/Roton" title="Roton">Roton</a></li> <li><a href="/wiki/Trion_(physics)" title="Trion (physics)">Trion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Lists</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_baryons" title="List of baryons">Baryons</a></li> <li><a href="/wiki/List_of_mesons" title="List of mesons">Mesons</a></li> <li><a href="/wiki/List_of_particles" title="List of particles">Particles</a></li> <li><a href="/wiki/List_of_quasiparticles" title="List of quasiparticles">Quasiparticles</a></li> <li><a href="/wiki/Timeline_of_particle_discoveries" title="Timeline of particle discoveries">Timeline of particle discoveries</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_subatomic_physics" title="History of subatomic physics">History of subatomic physics</a> <ul><li><a href="/wiki/Timeline_of_atomic_and_subatomic_physics" title="Timeline of atomic and subatomic physics">timeline</a></li></ul></li> <li><a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a> <ul><li><a href="/wiki/Mathematical_formulation_of_the_Standard_Model" title="Mathematical formulation of the Standard Model">mathematical formulation</a></li></ul></li> <li><a href="/wiki/Subatomic_particle" title="Subatomic particle">Subatomic particles</a></li> <li><a href="/wiki/Particle" title="Particle">Particles</a></li> <li><a href="/wiki/Antiparticle" title="Antiparticle">Antiparticles</a></li> <li><a href="/wiki/Nuclear_physics" title="Nuclear physics">Nuclear physics</a></li> <li><a href="/wiki/Eightfold_way_(physics)" title="Eightfold way (physics)">Eightfold way</a> <ul><li><a href="/wiki/Quark_model" title="Quark model">Quark model</a></li></ul></li> <li><a href="/wiki/Exotic_matter" title="Exotic matter">Exotic matter</a></li> <li><a href="/wiki/Massless_particle" title="Massless particle">Massless particle</a></li> <li><a href="/wiki/Relativistic_particle" title="Relativistic particle">Relativistic particle</a></li> <li><a href="/wiki/Virtual_particle" title="Virtual particle">Virtual particle</a></li> <li><a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">Wave–particle duality</a></li> <li><a href="/wiki/Particle_chauvinism" title="Particle chauvinism">Particle chauvinism</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="text-align: center;"><div><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <b><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics portal</a></b></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Standard_Model" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Standard_model_of_physics" title="Template:Standard model of physics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Standard_model_of_physics" title="Template talk:Standard model of physics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Standard_model_of_physics" title="Special:EditPage/Template:Standard model of physics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Standard_Model" style="font-size:114%;margin:0 4em"><a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Particle_physics" title="Particle physics">Particle physics</a> <ul><li><a href="/wiki/Fermion" title="Fermion">Fermions</a></li> <li><a href="/wiki/Gauge_boson" title="Gauge boson">Gauge boson</a></li> <li><a class="mw-selflink selflink">Higgs boson</a></li></ul></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a></li> <li><a href="/wiki/Gauge_theory" title="Gauge theory">Gauge theory</a></li> <li><a href="/wiki/Strong_interaction" title="Strong interaction">Strong interaction</a> <ul><li><a href="/wiki/Color_charge" title="Color charge">Color charge</a></li> <li><a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">Quantum chromodynamics</a></li> <li><a href="/wiki/Quark_model" title="Quark model">Quark model</a></li></ul></li> <li><a href="/wiki/Electroweak_interaction" title="Electroweak interaction">Electroweak interaction</a> <ul><li><a href="/wiki/Weak_interaction" title="Weak interaction">Weak interaction</a></li> <li><a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">Quantum electrodynamics</a></li> <li><a href="/wiki/Fermi%27s_interaction" title="Fermi's interaction">Fermi's interaction</a></li> <li><a href="/wiki/Weak_hypercharge" title="Weak hypercharge">Weak hypercharge</a></li> <li><a href="/wiki/Weak_isospin" title="Weak isospin">Weak isospin</a></li></ul></li></ul> </div></td><td class="noviewer navbox-image" rowspan="4" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/150px-Standard_Model_of_Elementary_Particles.svg.png" decoding="async" width="150" height="144" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/225px-Standard_Model_of_Elementary_Particles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/300px-Standard_Model_of_Elementary_Particles.svg.png 2x" data-file-width="1390" data-file-height="1330" /></span></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constituents</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">CKM matrix</a></li> <li><a href="/wiki/Spontaneous_symmetry_breaking" title="Spontaneous symmetry breaking">Spontaneous symmetry breaking</a></li> <li><a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a></li> <li><a href="/wiki/Mathematical_formulation_of_the_Standard_Model" title="Mathematical formulation of the Standard Model">Mathematical formulation of the Standard Model</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Physics_beyond_the_Standard_Model" title="Physics beyond the Standard Model">Beyond the<br />Standard Model</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Evidence</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hierarchy_problem" title="Hierarchy problem">Hierarchy problem</a></li> <li><a href="/wiki/Dark_matter" title="Dark matter">Dark matter</a></li> <li><a href="/wiki/Cosmological_constant" title="Cosmological constant">Cosmological constant</a> <ul><li><a href="/wiki/Cosmological_constant_problem" title="Cosmological constant problem">problem</a></li></ul></li> <li><a href="/wiki/CP_violation" title="CP violation">Strong CP problem</a></li> <li><a href="/wiki/Neutrino_oscillation" title="Neutrino oscillation">Neutrino oscillation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theories</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Technicolor_(physics)" title="Technicolor (physics)">Technicolor</a></li> <li><a href="/wiki/Kaluza%E2%80%93Klein_theory" title="Kaluza–Klein theory">Kaluza–Klein theory</a></li> <li><a href="/wiki/Grand_Unified_Theory" title="Grand Unified Theory">Grand Unified Theory</a></li> <li><a href="/wiki/Theory_of_everything" title="Theory of everything">Theory of everything</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Supersymmetry" title="Supersymmetry">Supersymmetry</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Minimal_Supersymmetric_Standard_Model" title="Minimal Supersymmetric Standard Model">MSSM</a></li> <li><a href="/wiki/Next-to-Minimal_Supersymmetric_Standard_Model" title="Next-to-Minimal Supersymmetric Standard Model">NMSSM</a></li> <li><a href="/wiki/Split_supersymmetry" title="Split supersymmetry">Split supersymmetry</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/String_theory" title="String theory">String theory</a></li> <li><a href="/wiki/Superstring_theory" title="Superstring theory">Superstring theory</a></li> <li><a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/Causal_dynamical_triangulation" title="Causal dynamical triangulation">Causal dynamical triangulation</a></li> <li><a href="/wiki/Canonical_quantum_gravity" title="Canonical quantum gravity">Canonical quantum gravity</a></li> <li><a href="/wiki/Superfluid_vacuum_theory" title="Superfluid vacuum theory">Superfluid vacuum theory</a></li> <li><a href="/wiki/Twistor_theory" title="Twistor theory">Twistor theory</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Experiments</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Laboratori_Nazionali_del_Gran_Sasso" title="Laboratori Nazionali del Gran Sasso">Gran Sasso</a></li> <li><a href="/wiki/India-based_Neutrino_Observatory" title="India-based Neutrino Observatory">INO</a></li> <li><a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">LHC</a></li> <li><a href="/wiki/Sudbury_Neutrino_Observatory" title="Sudbury Neutrino Observatory">SNO</a></li> <li><a href="/wiki/Super-Kamiokande" title="Super-Kamiokande">Super-K</a></li> <li><a href="/wiki/Tevatron" title="Tevatron">Tevatron</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Standard_Model" title="Category:Standard Model">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Standard_Model_(physics)" class="extiw" title="commons:Category:Standard Model (physics)">Commons</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Science_Breakthroughs_of_the_Year" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align:center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Breakthrough_of_the_Year" title="Template:Breakthrough of the Year"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Breakthrough_of_the_Year" title="Template talk:Breakthrough of the Year"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Breakthrough_of_the_Year" title="Special:EditPage/Template:Breakthrough of the Year"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Science_Breakthroughs_of_the_Year" style="font-size:114%;margin:0 4em"><a href="/wiki/Breakthrough_of_the_Year" title="Breakthrough of the Year"><i>Science</i> Breakthroughs of the Year</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i><br />journal</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nowrap">1996: <a href="/wiki/HIV" title="HIV">HIV</a> understanding</span></li> <li><span class="nowrap">1997: <a href="/wiki/Dolly_(sheep)" title="Dolly (sheep)">Dolly the sheep</a></span></li> <li><span class="nowrap">1998: <a href="/wiki/Accelerating_expansion_of_the_universe" title="Accelerating expansion of the universe">Accelerating universe</a></span></li> <li><span class="nowrap">1999: <a href="/wiki/Stem_cell" title="Stem cell">Stem cell</a></span></li> <li><span class="nowrap">2000: <a href="/wiki/Whole_genome_sequencing" title="Whole genome sequencing">Whole genome sequencing</a></span></li> <li><span class="nowrap">2001: <a href="/wiki/Nanocircuitry" title="Nanocircuitry">Nanocircuits</a> or <a href="/wiki/Molecular_scale_electronics" title="Molecular scale electronics">Molecular circuit</a></span></li> <li><span class="nowrap">2002: <a href="/wiki/RNA_interference" title="RNA interference">RNA interference</a></span></li> <li><span class="nowrap">2003: <a href="/wiki/Dark_energy" title="Dark energy">Dark energy</a></span></li> <li><span class="nowrap">2004: <a href="/wiki/Spirit_(rover)" title="Spirit (rover)"><i>Spirit</i> rover</a></span></li> <li><span class="nowrap">2005: <a href="/wiki/Evolution" title="Evolution">Evolution</a> in action</span></li> <li><span class="nowrap">2006: <a href="/wiki/Poincar%C3%A9_conjecture" title="Poincaré conjecture">Poincaré conjecture</a> proof</span></li> <li><span class="nowrap">2007: <a href="/wiki/Human_genetic_variation" title="Human genetic variation">Human genetic variation</a></span></li> <li><span class="nowrap">2008: <a href="/wiki/Induced_pluripotent_stem_cell" title="Induced pluripotent stem cell">Cellular reprogramming</a></span></li> <li><span class="nowrap">2009: <i><a href="/wiki/Ardipithecus_ramidus" title="Ardipithecus ramidus">Ardipithecus ramidus</a></i></span></li> <li><span class="nowrap">2010: First <a href="/wiki/Quantum_machine" title="Quantum machine">quantum machine</a></span></li> <li><span class="nowrap">2011: <a href="/wiki/HPTN_052" title="HPTN 052">HPTN 052</a> clinical trial</span></li> <li><span class="nowrap">2012: <a class="mw-selflink selflink">Higgs boson</a> discovery</span></li> <li><span class="nowrap">2013: <a href="/wiki/Cancer_immunotherapy" title="Cancer immunotherapy">Cancer immunotherapy</a></span></li> <li><span class="nowrap">2014: <a href="/wiki/Rosetta_(spacecraft)" title="Rosetta (spacecraft)"><i>Rosetta</i> comet mission</a></span></li> <li><span class="nowrap">2015: <a href="/wiki/CRISPR_gene_editing" title="CRISPR gene editing">CRISPR genome-editing method</a></span></li> <li><span class="nowrap">2016: <a href="/wiki/First_observation_of_gravitational_waves" title="First observation of gravitational waves">First observation</a> of <a href="/wiki/Gravitational_wave" title="Gravitational wave">gravitational waves</a></span></li> <li><span class="nowrap">2017: <a href="/wiki/GW170817" title="GW170817">GW170817</a> (<a href="/wiki/Neutron_star_merger" title="Neutron star merger">neutron star merger</a>)</span></li> <li><span class="nowrap">2018: <a href="/wiki/Single-cell_sequencing" title="Single-cell sequencing">Single-cell sequencing</a></span></li> <li><span class="nowrap">2019: A <a href="/wiki/Black_hole" title="Black hole">black hole</a> <a href="/wiki/Messier_87" title="Messier 87">made visible</a></span></li> <li><span class="nowrap">2020: <a href="/wiki/COVID-19_vaccine" title="COVID-19 vaccine">COVID-19 vaccines</a> developed at record speed</span></li> <li><span class="nowrap">2021: <a href="/wiki/AlphaFold" title="AlphaFold">AI</a> brings <a href="/wiki/Protein_structure_prediction" title="Protein structure prediction">protein structures</a> to all</span></li> <li><span class="nowrap">2022: <a href="/wiki/James_Webb_Space_Telescope" title="James Webb Space Telescope">James Webb Space Telescope</a> debut</span></li> <li><span class="nowrap">2023: <a href="/wiki/GLP-1_receptor_agonist" title="GLP-1 receptor agonist">GLP-1 Drugs</a></span></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q402#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4209328-4">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Higgs bosons"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh89005038">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Higgs"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb123974191">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Higgs"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb123974191">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Higgsův boson"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph705689&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007532146505171">Israel</a></span></li></ul></div></td></tr></tbody></table></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Higgs_boson&oldid=1259305724">https://en.wikipedia.org/w/index.php?title=Higgs_boson&oldid=1259305724</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:2012_in_science" title="Category:2012 in science">2012 in science</a></li><li><a href="/wiki/Category:Bosons" title="Category:Bosons">Bosons</a></li><li><a href="/wiki/Category:Electroweak_theory" title="Category:Electroweak theory">Electroweak theory</a></li><li><a href="/wiki/Category:Elementary_particles" title="Category:Elementary particles">Elementary particles</a></li><li><a href="/wiki/Category:Mass" title="Category:Mass">Mass</a></li><li><a href="/wiki/Category:Phase_transitions" title="Category:Phase transitions">Phase transitions</a></li><li><a href="/wiki/Category:Standard_Model" title="Category:Standard Model">Standard Model</a></li><li><a href="/wiki/Category:Quantum_field_theory" title="Category:Quantum field theory">Quantum field theory</a></li><li><a href="/wiki/Category:Subatomic_particles_with_spin_0" title="Category:Subatomic particles with spin 0">Subatomic particles with spin 0</a></li><li><a href="/wiki/Category:Force_carriers" title="Category:Force carriers">Force carriers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_August_2018" title="Category:Articles with dead external links from August 2018">Articles with dead external links from August 2018</a></li><li><a href="/wiki/Category:Webarchive_template_archiveis_links" title="Category:Webarchive template archiveis links">Webarchive template archiveis links</a></li><li><a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">CS1 maint: numeric names: authors list</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">CS1 maint: unfit URL</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_indefinitely_move-protected_pages" title="Category:Wikipedia indefinitely move-protected pages">Wikipedia indefinitely move-protected pages</a></li><li><a href="/wiki/Category:Wikipedia_pending_changes_protected_pages" title="Category:Wikipedia pending changes protected pages">Wikipedia pending changes protected pages</a></li><li><a href="/wiki/Category:Use_British_English_from_May_2020" title="Category:Use British English from May 2020">Use British English from May 2020</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_February_2024" title="Category:Use dmy dates from February 2024">Use dmy dates from February 2024</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_August_2012" title="Category:Articles with unsourced statements from August 2012">Articles with unsourced statements from August 2012</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_July_2017" title="Category:Articles containing potentially dated statements from July 2017">Articles containing potentially dated statements from July 2017</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2012" title="Category:Articles with unsourced statements from July 2012">Articles with unsourced statements from July 2012</a></li><li><a href="/wiki/Category:Wikipedia_articles_in_need_of_updating_from_July_2018" title="Category:Wikipedia articles in need of updating from July 2018">Wikipedia articles in need of updating from July 2018</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_in_need_of_updating" title="Category:All Wikipedia articles in need of updating">All Wikipedia articles in need of updating</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2024" title="Category:Articles with unsourced statements from May 2024">Articles with unsourced statements from May 2024</a></li><li><a href="/wiki/Category:Pages_displaying_short_descriptions_of_redirect_targets_via_Module:Annotated_link" title="Category:Pages displaying short descriptions of redirect targets via Module:Annotated link">Pages displaying short descriptions of redirect targets via Module:Annotated link</a></li><li><a href="/wiki/Category:Pages_displaying_wikidata_descriptions_as_a_fallback_via_Module:Annotated_link" title="Category:Pages displaying wikidata descriptions as a fallback via Module:Annotated link">Pages displaying wikidata descriptions as a fallback via Module:Annotated link</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 November 2024, at 12:43<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Higgs_boson&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-57488d5c7d-dl2kv","wgBackendResponseTime":230,"wgPageParseReport":{"limitreport":{"cputime":"3.322","walltime":"3.905","ppvisitednodes":{"value":27192,"limit":1000000},"postexpandincludesize":{"value":770521,"limit":2097152},"templateargumentsize":{"value":39865,"limit":2097152},"expansiondepth":{"value":22,"limit":100},"expensivefunctioncount":{"value":23,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":1049774,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 3162.791 1 -total"," 39.80% 1258.895 2 Template:Reflist"," 17.35% 548.737 87 Template:Cite_journal"," 8.15% 257.728 15 Template:Annotated_link"," 7.75% 245.002 56 Template:Cite_web"," 6.91% 218.632 35 Template:Efn"," 6.41% 202.873 50 Template:Cite_news"," 4.95% 156.626 2 Template:Harvp"," 4.12% 130.247 26 Template:Cite_book"," 3.86% 122.007 1 Template:Infobox_particle"]},"scribunto":{"limitreport-timeusage":{"value":"1.999","limit":"10.000"},"limitreport-memusage":{"value":22028812,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFATLAS_collaboration2012\"] = 1,\n [\"CITEREFATLAS_collaboration2014\"] = 1,\n [\"CITEREFATLAS_collaboration2015\"] = 1,\n [\"CITEREFATLAS_collaboration2018\"] = 1,\n [\"CITEREFAad2012\"] = 1,\n [\"CITEREFAadAbajyanAbbottAbdallah2013\"] = 1,\n [\"CITEREFAadAbbottAbdallahAbdinov2016\"] = 1,\n [\"CITEREFAbbott1987\"] = 1,\n [\"CITEREFAharonovKomarSusskind1969\"] = 1,\n [\"CITEREFAlekhinDjouadiMoch2012\"] = 1,\n [\"CITEREFAlikhan2012\"] = 1,\n [\"CITEREFAnderson1963\"] = 2,\n [\"CITEREFAschenbach1993\"] = 1,\n [\"CITEREFAsquith2012\"] = 1,\n [\"CITEREFAtlas_Collaboration2018\"] = 1,\n [\"CITEREFBaggott2012\"] = 1,\n [\"CITEREFBaglioDjouadi2010\"] = 1,\n [\"CITEREFBaglioDjouadi2011\"] = 1,\n [\"CITEREFBal2012\"] = 1,\n [\"CITEREFBecker2012\"] = 1,\n [\"CITEREFBernstein1974\"] = 1,\n [\"CITEREFBezrukovShaposhnikov2008\"] = 1,\n [\"CITEREFBiever2012\"] = 1,\n [\"CITEREFBorowitz2012\"] = 1,\n [\"CITEREFBoyle2013\"] = 2,\n [\"CITEREFBrancoFerreiraLavouraRebelo2012\"] = 1,\n [\"CITEREFBrooks2012\"] = 1,\n [\"CITEREFButtazzoDegrassiGiardinoGiudice2013\"] = 1,\n [\"CITEREFCMS_Collaboration2017\"] = 1,\n [\"CITEREFCMS_Collaboration2018\"] = 3,\n [\"CITEREFCMS_collaboration2012\"] = 1,\n [\"CITEREFCMS_collaboration2015\"] = 1,\n [\"CITEREFCMS_collaboration2018\"] = 1,\n [\"CITEREFCalder2005\"] = 1,\n [\"CITEREFCallaway1988\"] = 1,\n [\"CITEREFCarenaGrojeanKadoSharma2013\"] = 1,\n [\"CITEREFCarroll\"] = 1,\n [\"CITEREFCarroll,_Sean2013\"] = 1,\n [\"CITEREFCarroll2012\"] = 1,\n [\"CITEREFCham2014\"] = 1,\n [\"CITEREFChatrchyan2012\"] = 1,\n [\"CITEREFChatrchyanKhachatryan2013\"] = 1,\n [\"CITEREFChatrchyanKhachatryanSirunyanTumasyan2013\"] = 1,\n [\"CITEREFChivers2011\"] = 1,\n [\"CITEREFCho2012\"] = 2,\n [\"CITEREFClose2011\"] = 2,\n [\"CITEREFCole2000\"] = 2,\n [\"CITEREFColeman,_S.de_Luccia,_F.1980\"] = 1,\n [\"CITEREFColeman1979\"] = 1,\n [\"CITEREFCsakiGrojeanPiloTerning2004\"] = 2,\n [\"CITEREFD\u0026#039;OnofrioRummukainen2016\"] = 2,\n [\"CITEREFDaigle2012\"] = 1,\n [\"CITEREFDe_DomenicoLimaMougelMusolesi2013\"] = 1,\n [\"CITEREFDel_Rosso2012\"] = 1,\n [\"CITEREFDiaz2012\"] = 1,\n [\"CITEREFDickerson2014\"] = 1,\n [\"CITEREFDittmaierMariottiPassarinoTanaka2012\"] = 1,\n [\"CITEREFDvorsky2013\"] = 1,\n [\"CITEREFEllisEspinosaGiudiceHoecker2009\"] = 1,\n [\"CITEREFEllisGaillardNanopoulos2012\"] = 1,\n [\"CITEREFEnglertBrout1964\"] = 1,\n [\"CITEREFEvans2008\"] = 1,\n [\"CITEREFEvans2011\"] = 1,\n [\"CITEREFFalkowski,_Adam_(writing_as_\u0026#039;Jester\u0026#039;)2013\"] = 1,\n [\"CITEREFFeinberg1967\"] = 1,\n [\"CITEREFFlam2012\"] = 1,\n [\"CITEREFFlatow2012\"] = 1,\n [\"CITEREFFrampton1976\"] = 1,\n [\"CITEREFFrampton1977\"] = 1,\n [\"CITEREFGell-Mann1956\"] = 1,\n [\"CITEREFGilbert1964\"] = 1,\n [\"CITEREFGillies2012\"] = 1,\n [\"CITEREFGillies2013\"] = 1,\n [\"CITEREFGlashow1961\"] = 1,\n [\"CITEREFGoldberg2010\"] = 1,\n [\"CITEREFGoldstoneSalamWeinberg1962\"] = 1,\n [\"CITEREFGordon2012\"] = 1,\n [\"CITEREFGoulette2012\"] = 1,\n [\"CITEREFGriffiths2008\"] = 1,\n [\"CITEREFGunion2000\"] = 1,\n [\"CITEREFGunionDawsonKaneHaber1990\"] = 1,\n [\"CITEREFGuralnik2009\"] = 2,\n [\"CITEREFGuralnik2011\"] = 3,\n [\"CITEREFGuralnikHagenKibble1964\"] = 1,\n [\"CITEREFGuralnikHagenKibble1967\"] = 1,\n [\"CITEREFGuralnikHagenKibble1968\"] = 1,\n [\"CITEREFHagen2010\"] = 1,\n [\"CITEREFHeilprin2013\"] = 2,\n [\"CITEREFHeinemeyerMariottiPassarinoTanaka2013\"] = 1,\n [\"CITEREFHiggs1964\"] = 3,\n [\"CITEREFHiggs1966\"] = 1,\n [\"CITEREFHiggs2001\"] = 1,\n [\"CITEREFHiggs2010\"] = 4,\n [\"CITEREFHoffman2013\"] = 1,\n [\"CITEREFJaeckel,_Ted2007\"] = 1,\n [\"CITEREFJakobsSeez2015\"] = 1,\n [\"CITEREFJammer2000\"] = 1,\n [\"CITEREFJepsen2012\"] = 1,\n [\"CITEREFJosé_Luis_LucioArnulfo_Zepeda1987\"] = 1,\n [\"CITEREFKevles1995\"] = 1,\n [\"CITEREFKibble1967\"] = 1,\n [\"CITEREFKibble2009\"] = 4,\n [\"CITEREFKleinLee1964\"] = 2,\n [\"CITEREFKlotz,_Irene2013\"] = 1,\n [\"CITEREFKutasov,_DavidMarino,_MarcosMoore,_Gregory_W.2000\"] = 1,\n [\"CITEREFLederman1993\"] = 2,\n [\"CITEREFLedermanTeresi1993\"] = 1,\n [\"CITEREFLedermanTeresi2006\"] = 1,\n [\"CITEREFLiuCheng2002\"] = 1,\n [\"CITEREFLykken2009\"] = 1,\n [\"CITEREFMasina2013\"] = 1,\n [\"CITEREFMcGrath2011\"] = 1,\n [\"CITEREFMerali2010\"] = 1,\n [\"CITEREFMigdalPolyakov1966\"] = 1,\n [\"CITEREFMiller1993\"] = 1,\n [\"CITEREFNaik2013\"] = 1,\n [\"CITEREFNakanoNishijima1953\"] = 1,\n [\"CITEREFNambuJona-Lasinio1961\"] = 1,\n [\"CITEREFNishijima1955\"] = 1,\n [\"CITEREFO\u0026#039;Luanaigh2013\"] = 1,\n [\"CITEREFOliver2012\"] = 1,\n [\"CITEREFOnyisi2012\"] = 1,\n [\"CITEREFOur_Bureau2012\"] = 1,\n [\"CITEREFOverbye2011\"] = 1,\n [\"CITEREFOverbye2013\"] = 3,\n [\"CITEREFPeralta2013\"] = 1,\n [\"CITEREFPeskin2012\"] = 1,\n [\"CITEREFPeskinSchroeder1995\"] = 1,\n [\"CITEREFPeskinWells2001\"] = 1,\n [\"CITEREFPlehn2012\"] = 1,\n [\"CITEREFPolitzer2004\"] = 1,\n [\"CITEREFRandall2006\"] = 1,\n [\"CITEREFRao2012\"] = 1,\n [\"CITEREFRueggRuiz-Altaba2004\"] = 1,\n [\"CITEREFSalam,_A.1968\"] = 1,\n [\"CITEREFSalvio2013\"] = 1,\n [\"CITEREFSalvio2015\"] = 1,\n [\"CITEREFSample2009\"] = 3,\n [\"CITEREFSample2010\"] = 1,\n [\"CITEREFSample2011\"] = 1,\n [\"CITEREFSample2012\"] = 2,\n [\"CITEREFSen2002\"] = 1,\n [\"CITEREFShu1982\"] = 1,\n [\"CITEREFSiegfried2012\"] = 1,\n [\"CITEREFStone,_M.1976\"] = 1,\n [\"CITEREFStrassler2011\"] = 1,\n [\"CITEREFStrassler2012\"] = 2,\n [\"CITEREFTaylor2011\"] = 1,\n [\"CITEREFTaylor2012\"] = 1,\n [\"CITEREFTeixeira-Dias_(LEP_Higgs_working_group)2008\"] = 1,\n [\"CITEREFThe_ATLAS_Collaboration2022\"] = 1,\n [\"CITEREFThe_CDF_CollaborationThe_D0_CollaborationThe_Tevatron_New_Physics,_Higgs_Working_Group2012\"] = 1,\n [\"CITEREFThe_CMS_Collaboration2022\"] = 1,\n [\"CITEREFThornhill2013\"] = 1,\n [\"CITEREFTiplerLlewellyn2003\"] = 1,\n [\"CITEREFTurnerWilczek1982\"] = 1,\n [\"CITEREFUniversity_of_Rochester_Physics_\u0026amp;_Astronomy_press_office2007\"] = 1,\n [\"CITEREFVeltman1999\"] = 1,\n [\"CITEREFWeinberg,_S.1967\"] = 1,\n [\"CITEREFWeinberg2012\"] = 1,\n [\"CITEREFWoit2010\"] = 1,\n [\"CITEREFWoit2013\"] = 1,\n [\"CITEREFWolchover2012\"] = 1,\n [\"CITEREFYao,_W.-M.2006\"] = 1,\n [\"CITEREFYeager2012\"] = 1,\n [\"CITEREFZimmer2012\"] = 1,\n [\"Current_status\"] = 1,\n}\ntemplate_list = table#1 {\n [\"'s\"] = 1,\n [\"=\"] = 3,\n [\"Anchor\"] = 1,\n [\"Annotated link\"] = 15,\n [\"As of\"] = 1,\n [\"Authority control\"] = 1,\n [\"Big\"] = 2,\n [\"Blockquote\"] = 6,\n [\"Breakthrough of the Year\"] = 1,\n [\"Circa\"] = 1,\n [\"Citation needed\"] = 2,\n [\"Cite AV media\"] = 1,\n [\"Cite arXiv\"] = 4,\n [\"Cite book\"] = 26,\n [\"Cite conference\"] = 2,\n [\"Cite journal\"] = 87,\n [\"Cite magazine\"] = 2,\n [\"Cite news\"] = 50,\n [\"Cite press release\"] = 18,\n [\"Cite report\"] = 3,\n [\"Cite web\"] = 56,\n [\"Cn\"] = 1,\n [\"Colend\"] = 2,\n [\"Cols\"] = 2,\n [\"Commons category\"] = 1,\n [\"Dead link\"] = 1,\n [\"Efn\"] = 35,\n [\"Em\"] = 3,\n [\"Further\"] = 1,\n [\"Harvnb\"] = 9,\n [\"Harvp\"] = 2,\n [\"ISBN\"] = 1,\n [\"Infobox particle\"] = 1,\n [\"Main\"] = 5,\n [\"Math\"] = 2,\n [\"Mvar\"] = 21,\n [\"Nbsp\"] = 13,\n [\"Nobr\"] = 2,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 18,\n [\"Overline\"] = 3,\n [\"Particles\"] = 1,\n [\"Pb\"] = 2,\n [\"Pipe\"] = 1,\n [\"Plain link\"] = 1,\n [\"Pp-move\"] = 1,\n [\"Pp-pc\"] = 1,\n [\"Redirect\"] = 1,\n [\"Refbegin\"] = 5,\n [\"Refend\"] = 5,\n [\"Reflist\"] = 1,\n [\"Refn\"] = 3,\n [\"Rp\"] = 12,\n [\"Sc\"] = 4,\n [\"See also\"] = 2,\n [\"Sfrac\"] = 5,\n [\"Short description\"] = 1,\n [\"Snd\"] = 48,\n [\"Standard model of particle physics\"] = 1,\n [\"Standard model of physics\"] = 1,\n [\"Sub\"] = 3,\n [\"SubatomicParticle\"] = 1,\n [\"Sup\"] = 9,\n [\"TOC limit\"] = 1,\n [\"Ubl\"] = 1,\n [\"Ubli\"] = 1,\n [\"Update\"] = 1,\n [\"Use British English\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"Val\"] = 60,\n [\"Webarchive\"] = 4,\n [\"Wikinews\"] = 1,\n [\"Wikiquote\"] = 1,\n [\"Wiktionary\"] = 1,\n [\"\\\\kappa\"] = 2,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["?","320","15.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","260","12.9"],["dataWrapper \u003Cmw.lua:672\u003E","160","7.9"],["\u003Cmw.lua:694\u003E","120","5.9"],["type","100","5.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","80","4.0"],["recursiveClone \u003CmwInit.lua:45\u003E","80","4.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","80","4.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","60","3.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","60","3.0"],["[others]","700","34.7"]]},"cachereport":{"origin":"mw-web.codfw.main-57488d5c7d-zg5wc","timestamp":"20241128021126","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Higgs boson","url":"https:\/\/en.wikipedia.org\/wiki\/Higgs_boson","sameAs":"http:\/\/www.wikidata.org\/entity\/Q402","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q402","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-06-04T18:18:49Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/79\/Candidate_Higgs_Events_in_ATLAS_and_CMS.png","headline":"elementary particle transmitting the Higgs field giving particles mass"}</script> </body> </html>