CINXE.COM
Radiocarbon dating - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Radiocarbon dating - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"21b463fd-7206-4797-9428-fcc890bce1f1","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Radiocarbon_dating","wgTitle":"Radiocarbon dating","wgCurRevisionId":1256411979,"wgRevisionId":1256411979,"wgArticleId":26197,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Featured articles","Use Oxford spelling from August 2016","Wikipedia articles incorporating text from open access publications","Commons category link is defined as the pagename","Wikipedia articles published in peer-reviewed literature","Wikipedia articles published in WikiJournal of Science","Externally peer reviewed articles","Wikipedia articles published in peer-reviewed literature (W2J)", "Radiocarbon dating","1940s introductions","American inventions","Carbon","Conservation and restoration of cultural heritage","Isotopes of carbon","Radioactivity","Radiometric dating"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Radiocarbon_dating","wgRelevantArticleId":26197,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false, "wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q173412","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage": "ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8a/The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg/1200px-The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="861"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8a/The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg/800px-The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="574"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8a/The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg/640px-The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="459"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Radiocarbon dating - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Radiocarbon_dating"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Radiocarbon_dating&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Radiocarbon_dating"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Radiocarbon_dating rootpage-Radiocarbon_dating skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Radiocarbon+dating" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Radiocarbon+dating" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Radiocarbon+dating" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Radiocarbon+dating" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Background" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Background"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Background</span> </div> </a> <button aria-controls="toc-Background-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Background subsection</span> </button> <ul id="toc-Background-sublist" class="vector-toc-list"> <li id="toc-History" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Physical_and_chemical_details" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Physical_and_chemical_details"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Physical and chemical details</span> </div> </a> <ul id="toc-Physical_and_chemical_details-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Principles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Principles"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Principles</span> </div> </a> <ul id="toc-Principles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Carbon_exchange_reservoir" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Carbon_exchange_reservoir"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Carbon exchange reservoir</span> </div> </a> <ul id="toc-Carbon_exchange_reservoir-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Dating_considerations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Dating_considerations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Dating considerations</span> </div> </a> <button aria-controls="toc-Dating_considerations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Dating considerations subsection</span> </button> <ul id="toc-Dating_considerations-sublist" class="vector-toc-list"> <li id="toc-Atmospheric_variation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Atmospheric_variation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Atmospheric variation</span> </div> </a> <ul id="toc-Atmospheric_variation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Isotopic_fractionation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isotopic_fractionation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Isotopic fractionation</span> </div> </a> <ul id="toc-Isotopic_fractionation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reservoir_effects" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reservoir_effects"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Reservoir effects</span> </div> </a> <ul id="toc-Reservoir_effects-sublist" class="vector-toc-list"> <li id="toc-Marine_effect" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Marine_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.1</span> <span>Marine effect</span> </div> </a> <ul id="toc-Marine_effect-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hemisphere_effect" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Hemisphere_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.2</span> <span>Hemisphere effect</span> </div> </a> <ul id="toc-Hemisphere_effect-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_effects" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Other_effects"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.3</span> <span>Other effects</span> </div> </a> <ul id="toc-Other_effects-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Contamination" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Contamination"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Contamination</span> </div> </a> <ul id="toc-Contamination-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Samples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Samples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Samples</span> </div> </a> <button aria-controls="toc-Samples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Samples subsection</span> </button> <ul id="toc-Samples-sublist" class="vector-toc-list"> <li id="toc-Material_considerations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Material_considerations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Material considerations</span> </div> </a> <ul id="toc-Material_considerations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Preparation_and_size" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Preparation_and_size"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Preparation and size</span> </div> </a> <ul id="toc-Preparation_and_size-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Measurement_and_results" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Measurement_and_results"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Measurement and results</span> </div> </a> <button aria-controls="toc-Measurement_and_results-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Measurement and results subsection</span> </button> <ul id="toc-Measurement_and_results-sublist" class="vector-toc-list"> <li id="toc-Beta_counting" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Beta_counting"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Beta counting</span> </div> </a> <ul id="toc-Beta_counting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Accelerator_mass_spectrometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Accelerator_mass_spectrometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Accelerator mass spectrometry</span> </div> </a> <ul id="toc-Accelerator_mass_spectrometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calculations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Calculations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Calculations</span> </div> </a> <ul id="toc-Calculations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Errors_and_reliability" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Errors_and_reliability"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Errors and reliability</span> </div> </a> <ul id="toc-Errors_and_reliability-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calibration" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Calibration"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Calibration</span> </div> </a> <ul id="toc-Calibration-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reporting_dates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reporting_dates"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Reporting dates</span> </div> </a> <ul id="toc-Reporting_dates-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Use_in_archaeology" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Use_in_archaeology"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Use in archaeology</span> </div> </a> <button aria-controls="toc-Use_in_archaeology-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Use in archaeology subsection</span> </button> <ul id="toc-Use_in_archaeology-sublist" class="vector-toc-list"> <li id="toc-Interpretation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Interpretation</span> </div> </a> <ul id="toc-Interpretation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Use_outside_archaeology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Use_outside_archaeology"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Use outside archaeology</span> </div> </a> <ul id="toc-Use_outside_archaeology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notable_applications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notable_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Notable applications</span> </div> </a> <ul id="toc-Notable_applications-sublist" class="vector-toc-list"> <li id="toc-Pleistocene/Holocene_boundary_in_Two_Creeks_Fossil_Forest" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Pleistocene/Holocene_boundary_in_Two_Creeks_Fossil_Forest"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3.1</span> <span>Pleistocene/Holocene boundary in Two Creeks Fossil Forest</span> </div> </a> <ul id="toc-Pleistocene/Holocene_boundary_in_Two_Creeks_Fossil_Forest-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dead_Sea_Scrolls" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Dead_Sea_Scrolls"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3.2</span> <span>Dead Sea Scrolls</span> </div> </a> <ul id="toc-Dead_Sea_Scrolls-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Impact" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Impact"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Impact</span> </div> </a> <ul id="toc-Impact-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Radiocarbon dating</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 70 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-70" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">70 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Radiokoolstofdatering" title="Radiokoolstofdatering – Afrikaans" lang="af" hreflang="af" data-title="Radiokoolstofdatering" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%A3%D8%B1%D9%8A%D8%AE_%D8%A8%D8%A7%D9%84%D9%83%D8%B1%D8%A8%D9%88%D9%86_%D8%A7%D9%84%D9%85%D8%B4%D8%B9" title="تأريخ بالكربون المشع – Arabic" lang="ar" hreflang="ar" data-title="تأريخ بالكربون المشع" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Radiokarbon_tarixl%C9%99ndirm%C9%99_%C3%BCsulu" title="Radiokarbon tarixləndirmə üsulu – Azerbaijani" lang="az" hreflang="az" data-title="Radiokarbon tarixləndirmə üsulu" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A4%E0%A7%87%E0%A6%9C%E0%A6%B8%E0%A7%8D%E0%A6%95%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%AF%E0%A6%BC_%E0%A6%95%E0%A6%BE%E0%A6%B0%E0%A7%8D%E0%A6%AC%E0%A6%A8%E0%A6%AD%E0%A6%BF%E0%A6%A4%E0%A7%8D%E0%A6%A4%E0%A6%BF%E0%A6%95_%E0%A6%95%E0%A6%BE%E0%A6%B2%E0%A6%A8%E0%A6%BF%E0%A6%B0%E0%A7%82%E0%A6%AA%E0%A6%A3" title="তেজস্ক্রিয় কার্বনভিত্তিক কালনিরূপণ – Bangla" lang="bn" hreflang="bn" data-title="তেজস্ক্রিয় কার্বনভিত্তিক কালনিরূপণ" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D1%8B%D0%B5%D0%B2%D1%83%D0%B3%D0%BB%D1%8F%D1%80%D0%BE%D0%B4%D0%BD%D0%B0%D0%B5_%D0%B4%D0%B0%D1%82%D0%B0%D0%B2%D0%B0%D0%BD%D0%BD%D0%B5" title="Радыевугляроднае датаванне – Belarusian" lang="be" hreflang="be" data-title="Радыевугляроднае датаванне" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%BE%D0%B2%D1%8A%D0%B3%D0%BB%D0%B5%D1%80%D0%BE%D0%B4%D0%BD%D0%BE_%D0%B4%D0%B0%D1%82%D0%B8%D1%80%D0%B0%D0%BD%D0%B5" title="Радиовъглеродно датиране – Bulgarian" lang="bg" hreflang="bg" data-title="Радиовъглеродно датиране" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Datiranje_ugljikom-14" title="Datiranje ugljikom-14 – Bosnian" lang="bs" hreflang="bs" data-title="Datiranje ugljikom-14" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Amzeriatadur_dre_radiokarbon" title="Amzeriatadur dre radiokarbon – Breton" lang="br" hreflang="br" data-title="Amzeriatadur dre radiokarbon" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Dataci%C3%B3_basada_en_el_carboni_14" title="Datació basada en el carboni 14 – Catalan" lang="ca" hreflang="ca" data-title="Datació basada en el carboni 14" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%BE%D0%BA%C4%83%D0%BC%D1%80%C4%83%D0%BA%D0%B0%D0%BC%C4%83%D1%88%D0%BB%D3%91_%D0%B2%D3%91%D1%85%D3%91%D1%82%D0%BB%D0%B0%D0%B2" title="Радиокăмрăкамăшлӑ вӑхӑтлав – Chuvash" lang="cv" hreflang="cv" data-title="Радиокăмрăкамăшлӑ вӑхӑтлав" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Radiokarbonov%C3%A1_metoda_datov%C3%A1n%C3%AD" title="Radiokarbonová metoda datování – Czech" lang="cs" hreflang="cs" data-title="Radiokarbonová metoda datování" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Dyddio_radiocarbon" title="Dyddio radiocarbon – Welsh" lang="cy" hreflang="cy" data-title="Dyddio radiocarbon" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Kulstof_14-datering" title="Kulstof 14-datering – Danish" lang="da" hreflang="da" data-title="Kulstof 14-datering" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://de.wikipedia.org/wiki/Radiokarbonmethode" title="Radiokarbonmethode – German" lang="de" hreflang="de" data-title="Radiokarbonmethode" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Radios%C3%BCsinikumeetod" title="Radiosüsinikumeetod – Estonian" lang="et" hreflang="et" data-title="Radiosüsinikumeetod" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A1%CE%B1%CE%B4%CE%B9%CE%BF%CF%87%CF%81%CE%BF%CE%BD%CE%BF%CE%BB%CF%8C%CE%B3%CE%B7%CF%83%CE%B7_%CE%AC%CE%BD%CE%B8%CF%81%CE%B1%CE%BA%CE%B1-14" title="Ραδιοχρονολόγηση άνθρακα-14 – Greek" lang="el" hreflang="el" data-title="Ραδιοχρονολόγηση άνθρακα-14" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Dataci%C3%B3n_por_radiocarbono" title="Datación por radiocarbono – Spanish" lang="es" hreflang="es" data-title="Datación por radiocarbono" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Radiokarbona_datado" title="Radiokarbona datado – Esperanto" lang="eo" hreflang="eo" data-title="Radiokarbona datado" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Karbono-14_bidezko_datazioa" title="Karbono-14 bidezko datazioa – Basque" lang="eu" hreflang="eu" data-title="Karbono-14 bidezko datazioa" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%B1%DB%8C%D8%AE%E2%80%8C%DA%AF%D8%B0%D8%A7%D8%B1%DB%8C_%D8%B1%D8%A7%D8%AF%DB%8C%D9%88%DA%A9%D8%B1%D8%A8%D9%86" title="تاریخگذاری رادیوکربن – Persian" lang="fa" hreflang="fa" data-title="تاریخگذاری رادیوکربن" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Datation_au_carbone_14" title="Datation au carbone 14 – French" lang="fr" hreflang="fr" data-title="Datation au carbone 14" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/D%C3%A1t%C3%BA_radacarb%C3%B3in" title="Dátú radacarbóin – Irish" lang="ga" hreflang="ga" data-title="Dátú radacarbóin" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Dataci%C3%B3n_por_radiocarbono" title="Datación por radiocarbono – Galician" lang="gl" hreflang="gl" data-title="Datación por radiocarbono" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B0%A9%EC%82%AC%EC%84%B1_%ED%83%84%EC%86%8C_%EC%97%B0%EB%8C%80_%EC%B8%A1%EC%A0%95" title="방사성 탄소 연대 측정 – Korean" lang="ko" hreflang="ko" data-title="방사성 탄소 연대 측정" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8C%D5%A1%D5%A4%D5%AB%D5%B8%D5%A1%D5%AE%D5%AD%D5%A1%D5%AE%D5%B6%D5%A1%D5%B5%D5%AB%D5%B6_%D5%A9%D5%BE%D5%A1%D5%A3%D6%80%D5%B8%D6%82%D5%B4" title="Ռադիոածխածնային թվագրում – Armenian" lang="hy" hreflang="hy" data-title="Ռադիոածխածնային թվագրում" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B0%E0%A5%8D%E0%A4%AC%E0%A4%A8-%E0%A5%A7%E0%A5%AA_%E0%A4%A6%E0%A5%8D%E0%A4%B5%E0%A4%BE%E0%A4%B0%E0%A4%BE_%E0%A4%95%E0%A4%BE%E0%A4%B2%E0%A4%A8%E0%A4%BF%E0%A4%B0%E0%A5%8D%E0%A4%A7%E0%A4%BE%E0%A4%B0%E0%A4%A3" title="कार्बन-१४ द्वारा कालनिर्धारण – Hindi" lang="hi" hreflang="hi" data-title="कार्बन-१४ द्वारा कालनिर्धारण" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Datiranje_ugljikom-14" title="Datiranje ugljikom-14 – Croatian" lang="hr" hreflang="hr" data-title="Datiranje ugljikom-14" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Penanggalan_radiokarbon" title="Penanggalan radiokarbon – Indonesian" lang="id" hreflang="id" data-title="Penanggalan radiokarbon" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/C-14_aldursgreining" title="C-14 aldursgreining – Icelandic" lang="is" hreflang="is" data-title="C-14 aldursgreining" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Metodo_del_carbonio-14" title="Metodo del carbonio-14 – Italian" lang="it" hreflang="it" data-title="Metodo del carbonio-14" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%AA%D7%99%D7%90%D7%A8%D7%95%D7%9A_%D7%A4%D7%97%D7%9E%D7%9F-14" title="תיארוך פחמן-14 – Hebrew" lang="he" hreflang="he" data-title="תיארוך פחמן-14" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A0%E1%83%90%E1%83%93%E1%83%98%E1%83%9D%E1%83%9C%E1%83%90%E1%83%AE%E1%83%A8%E1%83%98%E1%83%A0%E1%83%91%E1%83%90%E1%83%93%E1%83%A3%E1%83%9A%E1%83%98_%E1%83%93%E1%83%90%E1%83%97%E1%83%90%E1%83%A0%E1%83%98%E1%83%A6%E1%83%94%E1%83%91%E1%83%90" title="რადიონახშირბადული დათარიღება – Georgian" lang="ka" hreflang="ka" data-title="რადიონახშირბადული დათარიღება" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Mbinu_ya_rediokaboni" title="Mbinu ya rediokaboni – Swahili" lang="sw" hreflang="sw" data-title="Mbinu ya rediokaboni" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Computatio_radiocarbonica" title="Computatio radiocarbonica – Latin" lang="la" hreflang="la" data-title="Computatio radiocarbonica" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Radioakt%C4%ABv%C4%81_oglek%C4%BCa_dat%C4%93%C5%A1ana" title="Radioaktīvā oglekļa datēšana – Latvian" lang="lv" hreflang="lv" data-title="Radioaktīvā oglekļa datēšana" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Sz%C3%A9nizot%C3%B3pos_kormeghat%C3%A1roz%C3%A1s" title="Szénizotópos kormeghatározás – Hungarian" lang="hu" hreflang="hu" data-title="Szénizotópos kormeghatározás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%BE%D1%98%D0%B0%D0%B3%D0%BB%D0%B5%D1%80%D0%BE%D0%B4%D0%BD%D0%BE_%D0%B4%D0%B0%D1%82%D0%B8%D1%80%D0%B0%D1%9A%D0%B5" title="Радиојаглеродно датирање – Macedonian" lang="mk" hreflang="mk" data-title="Радиојаглеродно датирање" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Fanomezana_daty_amin%27_ny_karb%C3%B4nina-14" title="Fanomezana daty amin' ny karbônina-14 – Malagasy" lang="mg" hreflang="mg" data-title="Fanomezana daty amin' ny karbônina-14" data-language-autonym="Malagasy" data-language-local-name="Malagasy" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%95%E0%B4%BE%E0%B5%BC%E0%B4%AC%E0%B5%BA_%E0%B4%AA%E0%B4%B4%E0%B4%95%E0%B5%8D%E0%B4%95%E0%B4%A8%E0%B4%BF%E0%B5%BC%E0%B4%A3%E0%B5%8D%E0%B4%A3%E0%B4%AF%E0%B4%82" title="കാർബൺ പഴക്കനിർണ്ണയം – Malayalam" lang="ml" hreflang="ml" data-title="കാർബൺ പഴക്കനിർണ്ണയം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B0%E0%A5%8D%E0%A4%AC%E0%A4%A8_%E0%A5%A7%E0%A5%AA_%E0%A4%95%E0%A4%BF%E0%A4%B0%E0%A4%A3%E0%A5%8B%E0%A4%A4%E0%A5%8D%E0%A4%B8%E0%A4%B0%E0%A5%8D%E0%A4%97_%E0%A4%95%E0%A4%BE%E0%A4%B2%E0%A4%AE%E0%A4%BE%E0%A4%AA%E0%A4%A8_%E0%A4%AA%E0%A4%A6%E0%A5%8D%E0%A4%A7%E0%A4%A4%E0%A5%80" title="कार्बन १४ किरणोत्सर्ग कालमापन पद्धती – Marathi" lang="mr" hreflang="mr" data-title="कार्बन १४ किरणोत्सर्ग कालमापन पद्धती" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Pentarikhan_radiokarbon" title="Pentarikhan radiokarbon – Malay" lang="ms" hreflang="ms" data-title="Pentarikhan radiokarbon" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/C14-datering" title="C14-datering – Dutch" lang="nl" hreflang="nl" data-title="C14-datering" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B0%E0%A5%8D%E0%A4%AC%E0%A4%A8_%E0%A4%95%E0%A4%BE%E0%A4%B2_%E0%A4%A8%E0%A4%BF%E0%A4%B0%E0%A5%8D%E0%A4%A7%E0%A4%BE%E0%A4%B0%E0%A4%A3_%E0%A4%B5%E0%A4%BF%E0%A4%A7%E0%A4%BF" title="कार्बन काल निर्धारण विधि – Nepali" lang="ne" hreflang="ne" data-title="कार्बन काल निर्धारण विधि" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-ja badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://ja.wikipedia.org/wiki/%E6%94%BE%E5%B0%84%E6%80%A7%E7%82%AD%E7%B4%A0%E5%B9%B4%E4%BB%A3%E6%B8%AC%E5%AE%9A" title="放射性炭素年代測定 – Japanese" lang="ja" hreflang="ja" data-title="放射性炭素年代測定" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Karbondatering" title="Karbondatering – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Karbondatering" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Radiokarbondatering" title="Radiokarbondatering – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Radiokarbondatering" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Radiokarbon_bilan_tanishish" title="Radiokarbon bilan tanishish – Uzbek" lang="uz" hreflang="uz" data-title="Radiokarbon bilan tanishish" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%B1%DB%8C%DA%88%DB%8C%D9%88_%DA%A9%D8%A7%D8%B1%D8%A8%D9%86_%DA%88%DB%8C%D9%B9%D9%86%DA%AF" title="ریڈیو کاربن ڈیٹنگ – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ریڈیو کاربن ڈیٹنگ" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Datowanie_radiow%C4%99glowe" title="Datowanie radiowęglowe – Polish" lang="pl" hreflang="pl" data-title="Datowanie radiowęglowe" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Data%C3%A7%C3%A3o_por_radiocarbono" title="Datação por radiocarbono – Portuguese" lang="pt" hreflang="pt" data-title="Datação por radiocarbono" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Datare_cu_radiocarbon" title="Datare cu radiocarbon – Romanian" lang="ro" hreflang="ro" data-title="Datare cu radiocarbon" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%BE%D1%83%D0%B3%D0%BB%D0%B5%D1%80%D0%BE%D0%B4%D0%BD%D0%BE%D0%B5_%D0%B4%D0%B0%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5" title="Радиоуглеродное датирование – Russian" lang="ru" hreflang="ru" data-title="Радиоуглеродное датирование" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Datazziuni_cu_lu_radiucarboniu_14" title="Datazziuni cu lu radiucarboniu 14 – Sicilian" lang="scn" hreflang="scn" data-title="Datazziuni cu lu radiucarboniu 14" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Radiocarbon_dating" title="Radiocarbon dating – Simple English" lang="en-simple" hreflang="en-simple" data-title="Radiocarbon dating" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Uhl%C3%ADkov%C3%A1_met%C3%B3da_C14" title="Uhlíková metóda C14 – Slovak" lang="sk" hreflang="sk" data-title="Uhlíková metóda C14" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%BE%DB%95%DA%98%D9%85%DB%8E%D8%B1%DB%8C_%DA%95%D8%A7%D8%AF%DB%8C%DB%86%DA%A9%D8%A7%D8%B1%D8%A8%DB%86%D9%86" title="ھەژمێری ڕادیۆکاربۆن – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ھەژمێری ڕادیۆکاربۆن" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D1%80%D0%B0%D0%B4%D0%B8%D0%BE%D0%B0%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D0%B3_%D1%83%D0%B3%D1%99%D0%B5%D0%BD%D0%B8%D0%BA%D0%B0" title="Метод радиоактивног угљеника – Serbian" lang="sr" hreflang="sr" data-title="Метод радиоактивног угљеника" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Radiokarbonsko_datiranje" title="Radiokarbonsko datiranje – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Radiokarbonsko datiranje" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Radiohiiliajoitus" title="Radiohiiliajoitus – Finnish" lang="fi" hreflang="fi" data-title="Radiohiiliajoitus" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Kol-14-metoden" title="Kol-14-metoden – Swedish" lang="sv" hreflang="sv" data-title="Kol-14-metoden" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AE%A4%E0%AE%BF%E0%AE%B0%E0%AE%BF%E0%AE%AF%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%B0%E0%AE%BF%E0%AE%AE%E0%AE%95%E0%AF%8D_%E0%AE%95%E0%AE%BE%E0%AE%B2%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AF%81" title="கதிரியக்கக்கரிமக் காலக்கணிப்பு – Tamil" lang="ta" hreflang="ta" data-title="கதிரியக்கக்கரிமக் காலக்கணிப்பு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B0%E0%B1%87%E0%B0%A1%E0%B0%BF%E0%B0%AF%E0%B1%8B%E0%B0%95%E0%B0%BE%E0%B0%B0%E0%B1%8D%E0%B0%AC%E0%B0%A8%E0%B1%8D_%E0%B0%A1%E0%B1%87%E0%B0%9F%E0%B0%BF%E0%B0%82%E0%B0%97%E0%B1%8D" title="రేడియోకార్బన్ డేటింగ్ – Telugu" lang="te" hreflang="te" data-title="రేడియోకార్బన్ డేటింగ్" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AB%E0%B8%B2%E0%B8%AD%E0%B8%B2%E0%B8%A2%E0%B8%B8%E0%B8%88%E0%B8%B2%E0%B8%81%E0%B8%84%E0%B8%B2%E0%B8%A3%E0%B9%8C%E0%B8%9A%E0%B8%AD%E0%B8%99%E0%B8%81%E0%B8%B1%E0%B8%A1%E0%B8%A1%E0%B8%B1%E0%B8%99%E0%B8%95%E0%B8%A3%E0%B8%B1%E0%B8%87%E0%B8%AA%E0%B8%B5" title="การหาอายุจากคาร์บอนกัมมันตรังสี – Thai" lang="th" hreflang="th" data-title="การหาอายุจากคาร์บอนกัมมันตรังสี" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Radyokarbon_tarihleme_y%C3%B6ntemi" title="Radyokarbon tarihleme yöntemi – Turkish" lang="tr" hreflang="tr" data-title="Radyokarbon tarihleme yöntemi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D1%96%D0%BE%D0%B2%D1%83%D0%B3%D0%BB%D0%B5%D1%86%D0%B5%D0%B2%D0%B5_%D0%B4%D0%B0%D1%82%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F" title="Радіовуглецеве датування – Ukrainian" lang="uk" hreflang="uk" data-title="Радіовуглецеве датування" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B1%DB%8C%DA%88%DB%8C%D9%88_%DA%A9%D8%A7%D8%B1%D8%A8%D9%86_%DA%88%DB%8C%D9%B9%D9%86%DA%AF" title="ریڈیو کاربن ڈیٹنگ – Urdu" lang="ur" hreflang="ur" data-title="ریڈیو کاربن ڈیٹنگ" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_tu%E1%BB%95i_b%E1%BA%B1ng_carbon-14" title="Định tuổi bằng carbon-14 – Vietnamese" lang="vi" hreflang="vi" data-title="Định tuổi bằng carbon-14" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Pagpepetsa_radyokarbono" title="Pagpepetsa radyokarbono – Waray" lang="war" hreflang="war" data-title="Pagpepetsa radyokarbono" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%94%BE%E5%B0%84%E6%80%A7%E7%A2%B3%E5%AE%9A%E5%B9%B4%E6%B3%95" title="放射性碳定年法 – Wu" lang="wuu" hreflang="wuu" data-title="放射性碳定年法" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://zh.wikipedia.org/wiki/%E6%94%BE%E5%B0%84%E6%80%A7%E7%A2%B3%E5%AE%9A%E5%B9%B4%E6%B3%95" title="放射性碳定年法 – Chinese" lang="zh" hreflang="zh" data-title="放射性碳定年法" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q173412#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Radiocarbon_dating" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Radiocarbon_dating" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Radiocarbon_dating"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Radiocarbon_dating&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Radiocarbon_dating&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Radiocarbon_dating"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Radiocarbon_dating&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Radiocarbon_dating&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Radiocarbon_dating" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Radiocarbon_dating" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Radiocarbon_dating&oldid=1256411979" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Radiocarbon_dating&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Radiocarbon_dating&id=1256411979&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRadiocarbon_dating"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRadiocarbon_dating"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Radiocarbon_dating&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Radiocarbon_dating&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Carbon-14" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Geochronology/Radiocarbon_dating" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q173412" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-Journal_Icon.svg" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="https://doi.org/10.15347/WJS/2018.006" title="This article has been published in the peer-reviewed journal WikiJournal of Science (2018). Click to view the published version." rel="nofollow"><img alt="This article has been published in the peer-reviewed journal WikiJournal of Science (2018). Click to view the published version." src="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Journal_Icon.svg/20px-Journal_Icon.svg.png" decoding="async" width="20" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Journal_Icon.svg/30px-Journal_Icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/63/Journal_Icon.svg/40px-Journal_Icon.svg.png 2x" data-file-width="525" data-file-height="479" /></a></span></div></div> <div id="mw-indicator-featured-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Featured_articles*" title="This is a featured article. Click here for more information."><img alt="Featured article" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e7/Cscr-featured.svg/20px-Cscr-featured.svg.png" decoding="async" width="20" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e7/Cscr-featured.svg/30px-Cscr-featured.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e7/Cscr-featured.svg/40px-Cscr-featured.svg.png 2x" data-file-width="466" data-file-height="443" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Method of determining the age of objects</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:The_Temple_Scroll_(11Q20)_-_Google_Art_Project.jpg" class="mw-file-description"><img alt="A long, tattered piece of old parchment with Hebrew writing." src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg/330px-The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg" decoding="async" width="330" height="237" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg/495px-The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg/660px-The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg 2x" data-file-width="6273" data-file-height="4501" /></a><figcaption>Radiocarbon dating helped verify the authenticity of the <a href="/wiki/Dead_Sea_scrolls" class="mw-redirect" title="Dead Sea scrolls">Dead Sea scrolls</a>.</figcaption></figure> <p><b>Radiocarbon dating</b> (also referred to as <b>carbon dating</b> or <b>carbon-14 dating</b>) is a method for <a href="/wiki/Chronological_dating" title="Chronological dating">determining the age</a> of an object containing <a href="/wiki/Organic_material" class="mw-redirect" title="Organic material">organic material</a> by using the properties of <a href="/wiki/Carbon-14" title="Carbon-14">radiocarbon</a>, a <a href="/wiki/Radioactive" class="mw-redirect" title="Radioactive">radioactive</a> <a href="/wiki/Isotopes_of_carbon" title="Isotopes of carbon">isotope of carbon</a>. </p><p>The method was developed in the late 1940s at the <a href="/wiki/University_of_Chicago" title="University of Chicago">University of Chicago</a> by <a href="/wiki/Willard_Libby" title="Willard Libby">Willard Libby</a>, based on the constant creation of radiocarbon (<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>) in the <a href="/wiki/Atmosphere_of_Earth" title="Atmosphere of Earth">Earth's atmosphere</a> by the interaction of <a href="/wiki/Cosmic_ray" title="Cosmic ray">cosmic rays</a> with atmospheric <a href="/wiki/Nitrogen" title="Nitrogen">nitrogen</a>. The resulting <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> combines with atmospheric <a href="/wiki/Oxygen" title="Oxygen">oxygen</a> to form radioactive <a href="/wiki/Carbon_dioxide" title="Carbon dioxide">carbon dioxide</a>, which is incorporated into plants by <a href="/wiki/Photosynthesis" title="Photosynthesis">photosynthesis</a>; animals then acquire <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> by eating the plants. When the animal or plant dies, it stops exchanging carbon with its environment, and thereafter the amount of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> it contains begins to decrease as the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> undergoes <a href="/wiki/Radioactive_decay" title="Radioactive decay">radioactive decay</a>. Measuring the proportion of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in a sample from a dead plant or animal, such as a piece of wood or a fragment of bone, provides information that can be used to calculate when the animal or plant died. The older a sample is, the less <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> there is to be detected, and because the <a href="/wiki/Half-life" title="Half-life">half-life</a> of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> (the period of time after which half of a given sample will have decayed) is about 5,730 years, the oldest dates that can be reliably measured by this process date to approximately 50,000 years ago (in this interval about 99.8% of the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> will have decayed), although special preparation methods occasionally make an accurate analysis of older samples possible. In 1960, Libby received the <a href="/wiki/Nobel_Prize_in_Chemistry" title="Nobel Prize in Chemistry">Nobel Prize in Chemistry</a> for his work. </p><p>Research has been ongoing since the 1960s to determine what the proportion of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the atmosphere has been over the past 50,000 years. The resulting data, in the form of a <a href="/wiki/Calibration_curve" title="Calibration curve">calibration curve</a>, is now used to convert a given measurement of radiocarbon in a sample into an estimate of the sample's calendar age. Other corrections must be made to account for the proportion of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in different types of organisms (fractionation), and the varying levels of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> throughout the <a href="/wiki/Biosphere" title="Biosphere">biosphere</a> (reservoir effects). Additional complications come from the burning of fossil fuels such as coal and oil, and from the above-ground <a href="/wiki/Nuclear_weapons_testing" title="Nuclear weapons testing">nuclear tests</a> performed in the 1950s and 1960s. </p><p>Because the time it takes to convert biological materials to <a href="/wiki/Fossil_fuels" class="mw-redirect" title="Fossil fuels">fossil fuels</a> is substantially longer than the time it takes for its <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to decay below detectable levels, fossil fuels contain almost no <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>. As a result, beginning in the late 19th century, there was a noticeable drop in the proportion of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the atmosphere as the carbon dioxide generated from burning fossil fuels began to accumulate. Conversely, <a href="/wiki/Nuclear_weapons_testing" title="Nuclear weapons testing">nuclear testing</a> increased the amount of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the atmosphere, which reached a maximum in about 1965 of almost double the amount present in the atmosphere prior to nuclear testing. </p><p>Measurement of radiocarbon was originally done with beta-counting devices, which counted the amount of <a href="/wiki/Beta_radiation" class="mw-redirect" title="Beta radiation">beta radiation</a> emitted by decaying <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> atoms in a sample. More recently, <a href="/wiki/Accelerator_mass_spectrometry" title="Accelerator mass spectrometry">accelerator mass spectrometry</a> has become the method of choice; it counts all the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> atoms in the sample and not just the few that happen to decay during the measurements; it can therefore be used with much smaller samples (as small as individual plant seeds), and gives results much more quickly. The development of radiocarbon dating has had a profound impact on <a href="/wiki/Archaeology" title="Archaeology">archaeology</a>. In addition to permitting more accurate dating within archaeological sites than previous methods, it allows comparison of dates of events across great distances. Histories of archaeology often refer to its impact as the "radiocarbon revolution". Radiocarbon dating has allowed key transitions in prehistory to be dated, such as the end of the <a href="/wiki/Younger_Dryas" title="Younger Dryas">last ice age</a>, and the beginning of the <a href="/wiki/Neolithic" title="Neolithic">Neolithic</a> and <a href="/wiki/Bronze_Age" title="Bronze Age">Bronze Age</a> in different regions. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Background">Background</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=1" title="Edit section: Background"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="History">History</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=2" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1939, <a href="/wiki/Martin_Kamen" title="Martin Kamen">Martin Kamen</a> and <a href="/wiki/Sam_Ruben" title="Sam Ruben">Samuel Ruben</a> of the <a href="/wiki/Lawrence_Radiation_Laboratory" class="mw-redirect" title="Lawrence Radiation Laboratory">Radiation Laboratory at Berkeley</a> began experiments to determine if any of the elements common in organic matter had isotopes with half-lives long enough to be of value in biomedical research. They synthesized <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> using the laboratory's cyclotron accelerator and soon discovered that the atom's <a href="/wiki/Half-life" title="Half-life">half-life</a> was far longer than had been previously thought.<sup id="cite_ref-renamed_from_20_on_20200701175743_1-0" class="reference"><a href="#cite_note-renamed_from_20_on_20200701175743-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> This was followed by a prediction by <a href="/wiki/Serge_A._Korff" class="mw-redirect" title="Serge A. Korff">Serge A. Korff</a>, then employed at the <a href="/wiki/Franklin_Institute" title="Franklin Institute">Franklin Institute</a> in <a href="/wiki/Philadelphia" title="Philadelphia">Philadelphia</a>, that the interaction of <a href="/wiki/Neutron_temperature" title="Neutron temperature">thermal neutrons</a> with <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>N</span> in the upper atmosphere would create <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>note 1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-taylor269_4-0" class="reference"><a href="#cite_note-taylor269-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-acs_5-0" class="reference"><a href="#cite_note-acs-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> It had previously been thought that <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> would be more likely to be created by <a href="/wiki/Deuteron" class="mw-redirect" title="Deuteron">deuterons</a> interacting with <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>.<sup id="cite_ref-renamed_from_20_on_20200701175743_1-1" class="reference"><a href="#cite_note-renamed_from_20_on_20200701175743-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> At some time during World War II, <a href="/wiki/Willard_Libby" title="Willard Libby">Willard Libby</a>, who was then at Berkeley, learned of Korff's research and conceived the idea that it might be possible to use radiocarbon for dating.<sup id="cite_ref-taylor269_4-1" class="reference"><a href="#cite_note-taylor269-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-acs_5-1" class="reference"><a href="#cite_note-acs-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>In 1945, Libby moved to the <a href="/wiki/University_of_Chicago" title="University of Chicago">University of Chicago</a>, where he began his work on radiocarbon dating. He published a paper in 1946 in which he proposed that the carbon in living matter might include <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> as well as non-radioactive carbon.<sup id="cite_ref-Bowman_9_6-0" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Libby and several collaborators proceeded to experiment with <a href="/wiki/Methane" title="Methane">methane</a> collected from sewage works in Baltimore, and after <a href="/wiki/Isotope_enrichment" class="mw-redirect" title="Isotope enrichment">isotopically enriching</a> their samples they were able to demonstrate that they contained <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>. By contrast, methane created from petroleum showed no radiocarbon activity because of its age. The results were summarized in a paper in <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i> in 1947, in which the authors commented that their results implied it would be possible to date materials containing carbon of organic origin.<sup id="cite_ref-Bowman_9_6-1" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Anderson_1947_8-0" class="reference"><a href="#cite_note-Anderson_1947-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p>Libby and <a href="/wiki/James_R._Arnold" title="James R. Arnold">James Arnold</a> proceeded to test the radiocarbon dating theory by analyzing samples with known ages. For example, two samples taken from the tombs of two Egyptian kings, <a href="/wiki/Zoser" class="mw-redirect" title="Zoser">Zoser</a> and <a href="/wiki/Sneferu" title="Sneferu">Sneferu</a>, independently dated to 2625 BC plus or minus 75 years, were dated by radiocarbon measurement to an average of 2800 BC plus or minus 250 years. These results were published in <i>Science</i> in December 1949.<sup id="cite_ref-libby49_9-0" class="reference"><a href="#cite_note-libby49-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Aitken_60_10-0" class="reference"><a href="#cite_note-Aitken_60-10"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>note 2<span class="cite-bracket">]</span></a></sup> Within 11 years of their announcement, more than 20 radiocarbon dating laboratories had been set up worldwide.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> In 1960, Libby was awarded the <a href="/wiki/Nobel_Prize_in_Chemistry" title="Nobel Prize in Chemistry">Nobel Prize in Chemistry</a> for this work.<sup id="cite_ref-Bowman_9_6-2" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Physical_and_chemical_details">Physical and chemical details</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=3" title="Edit section: Physical and chemical details"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Carbon-14" title="Carbon-14">Carbon-14</a></div> <p>In nature, <a href="/wiki/Carbon" title="Carbon">carbon</a> exists as three <a href="/wiki/Isotope" title="Isotope">isotopes</a>. <a href="/wiki/Carbon-12" title="Carbon-12">Carbon-12</a> (<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>) and <a href="/wiki/Carbon-13" title="Carbon-13">carbon-13</a> (<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>) are stable and nonradioactive; <a href="/wiki/Carbon-14" title="Carbon-14">carbon-14</a> (<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>), also known as "radiocarbon", is radioactive. The half-life of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> (the time it takes for half of a given amount of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to <a href="/wiki/Radioactive_decay" title="Radioactive decay">decay</a>) is about 5,730 years, so its concentration in the atmosphere might be expected to decrease over thousands of years, but <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is constantly being produced in the lower <a href="/wiki/Stratosphere" title="Stratosphere">stratosphere</a> and upper <a href="/wiki/Troposphere" title="Troposphere">troposphere</a>, primarily by galactic <a href="/wiki/Cosmic_ray" title="Cosmic ray">cosmic rays</a>, and to a lesser degree by solar cosmic rays.<sup id="cite_ref-Bowman_9_6-3" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Russel_14-0" class="reference"><a href="#cite_note-Russel-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> These cosmic rays generate neutrons as they travel through the atmosphere which can strike <a href="/wiki/Nitrogen-14" class="mw-redirect" title="Nitrogen-14">nitrogen-14</a> (<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>N</span>) atoms and turn them into <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>.<sup id="cite_ref-Bowman_9_6-4" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> The following <a href="/wiki/Nuclear_reaction" title="Nuclear reaction">nuclear reaction</a> is the main pathway by which <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is created: </p><p>n + <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">7</sub></span></span>N<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> → <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">6</sub></span></span>C<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> + p </p><p>where n represents a <a href="/wiki/Neutron" title="Neutron">neutron</a> and p represents a <a href="/wiki/Proton" title="Proton">proton</a>.<sup id="cite_ref-CES_476_15-0" class="reference"><a href="#cite_note-CES_476-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-LJ_2001_16-0" class="reference"><a href="#cite_note-LJ_2001-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>note 3<span class="cite-bracket">]</span></a></sup> </p><p>Once produced, the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> quickly combines with the oxygen (<span class="chemf nowrap">O</span>) in the atmosphere to form first carbon monoxide (<span class="chemf nowrap">CO</span>),<sup id="cite_ref-LJ_2001_16-2" class="reference"><a href="#cite_note-LJ_2001-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> and ultimately carbon dioxide (<span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>).<sup id="cite_ref-Alves2018_18-0" class="reference"><a href="#cite_note-Alves2018-18"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p><style data-mw-deduplicate="TemplateStyles:r1123817410">.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}</style><span class="chemf nowrap"><sup class="template-chem2-sup">14</sup>C + O<sub class="template-chem2-sub">2</sub> → <sup class="template-chem2-sup">14</sup>CO + O</span> </p><p><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap"><sup class="template-chem2-sup">14</sup>CO + OH → <sup class="template-chem2-sup">14</sup>CO<sub class="template-chem2-sub">2</sub> + H</span> </p><p>Carbon dioxide produced in this way diffuses in the atmosphere, is dissolved in the ocean, and is taken up by plants via <a href="/wiki/Photosynthesis" title="Photosynthesis">photosynthesis</a>. Animals eat the plants, and ultimately the radiocarbon is distributed throughout the <a href="/wiki/Biosphere" title="Biosphere">biosphere</a>. The ratio of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is approximately 1.25 parts of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to 10<sup>12</sup> parts of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>.<sup id="cite_ref-tsip_19-0" class="reference"><a href="#cite_note-tsip-19"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> In addition, about 1% of the carbon atoms are of the stable isotope <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>.<sup id="cite_ref-Bowman_9_6-5" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>The equation for the radioactive decay of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is:<sup id="cite_ref-Currie_2004_20-0" class="reference"><a href="#cite_note-Currie_2004-20"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p><span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">6</sub></span></span>C<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> → <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">7</sub></span></span>N<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> + <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>e<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> + <span class="texhtml"><span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span><span style="text-decoration:overline;">ν</span><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">e</sub></span></span></span></span> </p><p>By emitting a beta particle (an <a href="/wiki/Electron" title="Electron">electron</a>, e<sup>−</sup>) and an <a href="/wiki/Antineutrino" class="mw-redirect" title="Antineutrino">electron antineutrino</a> (<span class="texhtml"><span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span><span style="text-decoration:overline;">ν</span><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">e</sub></span></span></span></span>), one of the neutrons in the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> nucleus changes to a proton and the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> nucleus reverts to the stable (non-radioactive) isotope <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>N</span>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Principles">Principles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=4" title="Edit section: Principles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>During its life, a plant or animal is in equilibrium with its surroundings by exchanging carbon either with the atmosphere or through its diet. It will, therefore, have the same proportion of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> as the atmosphere, or in the case of marine animals or plants, with the ocean. Once it dies, it ceases to acquire <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, but the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> within its biological material at that time will continue to decay, and so the ratio of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in its remains will gradually decrease. Because <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> decays at a known rate, the proportion of radiocarbon can be used to determine how long it has been since a given sample stopped exchanging carbon – the older the sample, the less <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> will be left.<sup id="cite_ref-tsip_19-1" class="reference"><a href="#cite_note-tsip-19"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>The equation governing the decay of a radioactive isotope is:<sup id="cite_ref-Bowman_9_6-6" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=N_{0}\,e^{-\lambda t}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=N_{0}\,e^{-\lambda t}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a40a3d676d9b0ac0d1dc73571ae7a6015ea5d80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.003ex; height:3.009ex;" alt="{\displaystyle N=N_{0}\,e^{-\lambda t}\,}"></span> </p><p>where <i>N</i><sub>0</sub> is the number of atoms of the isotope in the original sample (at time <i>t</i> = 0, when the organism from which the sample was taken died), and <i>N</i> is the number of atoms left after time <i>t</i>.<sup id="cite_ref-Bowman_9_6-7" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> <i>λ</i> is a constant that depends on the particular isotope; for a given isotope it is equal to the <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">reciprocal</a> of the <a href="/wiki/Radioactive_decay#Time_constant_and_mean-life" title="Radioactive decay">mean-life</a> – i.e. the average or expected time a given atom will survive before undergoing radioactive decay.<sup id="cite_ref-Bowman_9_6-8" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> The mean-life, denoted by <i>τ</i>, of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is 8,267 years,<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>note 4<span class="cite-bracket">]</span></a></sup> so the equation above can be rewritten as:<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=\ln(N_{0}/N)\cdot {\text{8267 years}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>8267 years</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=\ln(N_{0}/N)\cdot {\text{8267 years}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b49173e07cb3b9de5381c76eae9980c39133bb22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.993ex; height:2.843ex;" alt="{\displaystyle t=\ln(N_{0}/N)\cdot {\text{8267 years}}}"></span> </p><p>The sample is assumed to have originally had the same <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio as the ratio in the atmosphere, and since the size of the sample is known, the total number of atoms in the sample can be calculated, yielding <i>N</i><sub>0</sub>, the number of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> atoms in the original sample. Measurement of <i>N</i>, the number of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> atoms currently in the sample, allows the calculation of <i>t</i>, the age of the sample, using the equation above.<sup id="cite_ref-tsip_19-2" class="reference"><a href="#cite_note-tsip-19"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>The half-life of a radioactive isotope (usually denoted by t<sub>1/2</sub>) is a more familiar concept than the mean-life, so although the equations above are expressed in terms of the mean-life, it is more usual to quote the value of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>'s half-life than its mean-life. The currently accepted value for the half-life of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is 5,700 ± 30 years.<sup id="cite_ref-Nubase2020_25-0" class="reference"><a href="#cite_note-Nubase2020-25"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> This means that after 5,700 years, only half of the initial <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> will remain; a quarter will remain after 11,400 years; an eighth after 17,100 years; and so on. </p><p>The above calculations make several assumptions, such as that the level of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the atmosphere has remained constant over time.<sup id="cite_ref-Bowman_9_6-10" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> In fact, the level of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the atmosphere has varied significantly and as a result, the values provided by the equation above have to be corrected by using data from other sources.<sup id="cite_ref-Aitken1990_26-0" class="reference"><a href="#cite_note-Aitken1990-26"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> This is done by calibration curves (discussed below), which convert a measurement of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in a sample into an estimated calendar age. The calculations involve several steps and include an intermediate value called the "radiocarbon age", which is the age in "radiocarbon years" of the sample: an age quoted in radiocarbon years means that no calibration curve has been used − the calculations for radiocarbon years assume that the atmospheric <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio has not changed over time.<sup id="cite_ref-renamed_from_12_on_20200701175743_27-0" class="reference"><a href="#cite_note-renamed_from_12_on_20200701175743-27"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-renamed_from_0_on_20200701175743_28-0" class="reference"><a href="#cite_note-renamed_from_0_on_20200701175743-28"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:IntCal20_full.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/IntCal20_full.svg/220px-IntCal20_full.svg.png" decoding="async" width="220" height="63" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/IntCal20_full.svg/330px-IntCal20_full.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/IntCal20_full.svg/440px-IntCal20_full.svg.png 2x" data-file-width="1920" data-file-height="548" /></a><figcaption>The correction factor applied to radiocarbon years to produce the calibrated date.</figcaption></figure> <p>Calculating radiocarbon ages also requires the value of the half-life for <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>. In Libby's 1949 paper he used a value of 5720 ± 47 years, based on research by Engelkemeir et al.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> This was remarkably close to the modern value, but shortly afterwards the accepted value was revised to 5568 ± 30 years,<sup id="cite_ref-Johnson_30-0" class="reference"><a href="#cite_note-Johnson-30"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> and this value was in use for more than a decade. It was revised again in the early 1960s to 5,730 ± 40 years,<sup id="cite_ref-Godwin_31-0" class="reference"><a href="#cite_note-Godwin-31"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Plicht_32-0" class="reference"><a href="#cite_note-Plicht-32"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> which meant that many calculated dates in papers published prior to this were incorrect (the error in the half-life is about 3%).<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>note 5<span class="cite-bracket">]</span></a></sup> For consistency with these early papers, it was agreed at the 1962 Radiocarbon Conference in Cambridge (UK) to use the "Libby half-life" of 5568 years. Radiocarbon ages are still calculated using this half-life, and are known as "Conventional Radiocarbon Age". Since the calibration curve (IntCal) also reports past atmospheric <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> concentration using this conventional age, any conventional ages calibrated against the IntCal curve will produce a correct calibrated age. When a date is quoted, the reader should be aware that if it is an uncalibrated date (a term used for dates given in radiocarbon years) it may differ substantially from the best estimate of the actual calendar date, both because it uses the wrong value for the half-life of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, and because no correction (calibration) has been applied for the historical variation of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the atmosphere over time.<sup id="cite_ref-renamed_from_12_on_20200701175743_27-1" class="reference"><a href="#cite_note-renamed_from_12_on_20200701175743-27"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-renamed_from_0_on_20200701175743_28-1" class="reference"><a href="#cite_note-renamed_from_0_on_20200701175743-28"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-INTCAL13_35-0" class="reference"><a href="#cite_note-INTCAL13-35"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>note 6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Carbon_exchange_reservoir">Carbon exchange reservoir</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=5" title="Edit section: Carbon exchange reservoir"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Carbon_exchange_reservoir_2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/20/Carbon_exchange_reservoir_2.svg/400px-Carbon_exchange_reservoir_2.svg.png" decoding="async" width="400" height="339" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/20/Carbon_exchange_reservoir_2.svg/600px-Carbon_exchange_reservoir_2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/20/Carbon_exchange_reservoir_2.svg/800px-Carbon_exchange_reservoir_2.svg.png 2x" data-file-width="620" data-file-height="525" /></a><figcaption>Simplified version of the carbon exchange reservoir, showing proportions of carbon and relative activity of the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in each reservoir<sup id="cite_ref-Bowman_9_6-11" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>note 7<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>Carbon is distributed throughout the atmosphere, the biosphere, and the oceans; these are referred to collectively as the carbon exchange reservoir,<sup id="cite_ref-Aitken2003_40-0" class="reference"><a href="#cite_note-Aitken2003-40"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> and each component is also referred to individually as a carbon exchange reservoir. The different elements of the carbon exchange reservoir vary in how much carbon they store, and in how long it takes for the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> generated by cosmic rays to fully mix with them. This affects the ratio of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the different reservoirs, and hence the radiocarbon ages of samples that originated in each reservoir.<sup id="cite_ref-Bowman_9_6-12" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> The atmosphere, which is where <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is generated, contains about 1.9% of the total carbon in the reservoirs, and the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> it contains mixes in less than seven years.<sup id="cite_ref-Warneck_690_41-0" class="reference"><a href="#cite_note-Warneck_690-41"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> The ratio of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the atmosphere is taken as the baseline for the other reservoirs: if another reservoir has a lower ratio of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, it indicates that the carbon is older and hence that either some of the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> has decayed, or the reservoir is receiving carbon that is not at the atmospheric baseline.<sup id="cite_ref-Aitken1990_26-1" class="reference"><a href="#cite_note-Aitken1990-26"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> The ocean surface is an example: it contains 2.4% of the carbon in the exchange reservoir, but there is only about 95% as much <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> as would be expected if the ratio were the same as in the atmosphere.<sup id="cite_ref-Bowman_9_6-13" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> The time it takes for carbon from the atmosphere to mix with the surface ocean is only a few years,<sup id="cite_ref-Ferronsky_42-0" class="reference"><a href="#cite_note-Ferronsky-42"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> but the surface waters also receive water from the deep ocean, which has more than 90% of the carbon in the reservoir.<sup id="cite_ref-Aitken1990_26-2" class="reference"><a href="#cite_note-Aitken1990-26"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Water in the deep ocean takes about 1,000 years to circulate back through surface waters, and so the surface waters contain a combination of older water, with depleted <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, and water recently at the surface, with <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in equilibrium with the atmosphere.<sup id="cite_ref-Aitken1990_26-3" class="reference"><a href="#cite_note-Aitken1990-26"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>Creatures living at the ocean surface have the same <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratios as the water they live in, and as a result of the reduced <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio, the radiocarbon age of marine life is typically about 400 years.<sup id="cite_ref-Bowman1995_43-0" class="reference"><a href="#cite_note-Bowman1995-43"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Cronin2010_44-0" class="reference"><a href="#cite_note-Cronin2010-44"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> Organisms on land are in closer equilibrium with the atmosphere and have the same <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio as the atmosphere.<sup id="cite_ref-Bowman_9_6-14" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>note 8<span class="cite-bracket">]</span></a></sup> These organisms contain about 1.3% of the carbon in the reservoir; sea organisms have a mass of less than 1% of those on land and are not shown in the diagram. Accumulated dead organic matter, of both plants and animals, exceeds the mass of the biosphere by a factor of nearly 3, and since this matter is no longer exchanging carbon with its environment, it has a <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio lower than that of the biosphere.<sup id="cite_ref-Bowman_9_6-15" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Dating_considerations">Dating considerations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=6" title="Edit section: Dating considerations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Radiocarbon_dating_considerations" title="Radiocarbon dating considerations">Radiocarbon dating considerations</a></div> <p>The variation in the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in different parts of the carbon exchange reservoir means that a straightforward calculation of the age of a sample based on the amount of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> it contains will often give an incorrect result. There are several other possible sources of error that need to be considered. The errors are of four general types: </p> <ul><li>variations in the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in the atmosphere, both geographically and over time;</li> <li>isotopic fractionation;</li> <li>variations in the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in different parts of the reservoir;</li> <li>contamination.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Atmospheric_variation">Atmospheric variation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=7" title="Edit section: Atmospheric variation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Hemispheric_14C_graphs_1950s_to_2010.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Hemispheric_14C_graphs_1950s_to_2010.png/220px-Hemispheric_14C_graphs_1950s_to_2010.png" decoding="async" width="220" height="186" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Hemispheric_14C_graphs_1950s_to_2010.png/330px-Hemispheric_14C_graphs_1950s_to_2010.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Hemispheric_14C_graphs_1950s_to_2010.png/440px-Hemispheric_14C_graphs_1950s_to_2010.png 2x" data-file-width="598" data-file-height="505" /></a><figcaption>Atmospheric <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> for the northern and southern hemispheres, showing percentage excess above pre-bomb levels. The <a href="/wiki/Partial_Test_Ban_Treaty" class="mw-redirect" title="Partial Test Ban Treaty">Partial Test Ban Treaty</a> went into effect on 10 October 1963.<sup id="cite_ref-Hua_etal_46-0" class="reference"><a href="#cite_note-Hua_etal-46"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>In the early years of using the technique, it was understood that it depended on the atmospheric <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio having remained the same over the preceding few thousand years. To verify the accuracy of the method, several artefacts that were datable by other techniques were tested; the results of the testing were in reasonable agreement with the true ages of the objects. Over time, however, discrepancies began to appear between the known chronology for the oldest Egyptian dynasties and the radiocarbon dates of Egyptian artefacts. Neither the pre-existing Egyptian chronology nor the new radiocarbon dating method could be assumed to be accurate, but a third possibility was that the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio had changed over time. The question was resolved by the <a href="/wiki/Dendrochronology" title="Dendrochronology">study of tree rings</a>:<sup id="cite_ref-Bowman_16_47-0" class="reference"><a href="#cite_note-Bowman_16-47"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Suess_1970_48-0" class="reference"><a href="#cite_note-Suess_1970-48"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Taylor2014_49-0" class="reference"><a href="#cite_note-Taylor2014-49"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> comparison of overlapping series of tree rings allowed the construction of a continuous sequence of tree-ring data that spanned 8,000 years.<sup id="cite_ref-Bowman_16_47-1" class="reference"><a href="#cite_note-Bowman_16-47"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> (Since that time the tree-ring data series has been extended to 13,900 years.)<sup id="cite_ref-INTCAL13_35-1" class="reference"><a href="#cite_note-INTCAL13-35"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> In the 1960s, <a href="/wiki/Hans_Suess" title="Hans Suess">Hans Suess</a> was able to use the tree-ring sequence to show that the dates derived from radiocarbon were consistent with the dates assigned by Egyptologists. This was possible because although annual plants, such as corn, have a <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio that reflects the atmospheric ratio at the time they were growing, trees only add material to their outermost tree ring in any given year, while the inner tree rings do not get their <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> replenished and instead only lose <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> through radioactive decay. Hence each ring preserves a record of the atmospheric <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio of the year it grew in. Carbon-dating the wood from the tree rings themselves provides the check needed on the atmospheric <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio: with a sample of known date, and a measurement of the value of <i>N</i> (the number of atoms of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> remaining in the sample), the carbon-dating equation allows the calculation of <i>N</i><sub>0</sub> – the number of atoms of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the sample at the time the tree ring was formed – and hence the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in the atmosphere at that time.<sup id="cite_ref-Bowman_16_47-2" class="reference"><a href="#cite_note-Bowman_16-47"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Taylor2014_49-1" class="reference"><a href="#cite_note-Taylor2014-49"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> Equipped with the results of carbon-dating the tree rings, it became possible to construct calibration curves designed to correct the errors caused by the variation over time in the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio.<sup id="cite_ref-renamed_from_18_on_20200701175743_50-0" class="reference"><a href="#cite_note-renamed_from_18_on_20200701175743-50"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> These curves are described in more detail <a class="mw-selflink-fragment" href="#Calibration">below</a>. </p><p>Coal and oil began to be burned in large quantities during the 19th century. Both are sufficiently old that they contain little or no detectable <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> and, as a result, the <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> released substantially diluted the atmospheric <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio. Dating an object from the early 20th century hence gives an apparent date older than the true date. For the same reason, <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> concentrations in the neighbourhood of large cities are lower than the atmospheric average. This fossil fuel effect (also known as the Suess effect, after Hans Suess, who first reported it in 1955) would only amount to a reduction of 0.2% in <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> activity if the additional carbon from fossil fuels were distributed throughout the carbon exchange reservoir, but because of the long delay in mixing with the deep ocean, the actual effect is a 3% reduction.<sup id="cite_ref-Bowman_16_47-3" class="reference"><a href="#cite_note-Bowman_16-47"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Aitken_71_51-0" class="reference"><a href="#cite_note-Aitken_71-51"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p><p>A much larger effect comes from above-ground nuclear testing, which released large numbers of neutrons into the atmosphere, resulting in the creation of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>. From about 1950 until 1963, when atmospheric nuclear testing was <a href="/wiki/Limited_Test_Ban_Treaty" class="mw-redirect" title="Limited Test Ban Treaty">banned</a>, it is estimated that several tonnes of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> were created. If all this extra <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> had immediately been spread across the entire carbon exchange reservoir, it would have led to an increase in the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio of only a few per cent, but the immediate effect was to almost double the amount of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the atmosphere, with the peak level occurring in 1964 for the northern hemisphere, and in 1966 for the southern hemisphere. The level has since dropped, as this <a href="/wiki/Bomb_pulse" title="Bomb pulse">bomb pulse</a> or "bomb carbon" (as it is sometimes called) percolates into the rest of the reservoir.<sup id="cite_ref-Bowman_16_47-4" class="reference"><a href="#cite_note-Bowman_16-47"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Aitken_71_51-1" class="reference"><a href="#cite_note-Aitken_71-51"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-PTBT_52-0" class="reference"><a href="#cite_note-PTBT-52"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Hua_etal_46-1" class="reference"><a href="#cite_note-Hua_etal-46"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Isotopic_fractionation">Isotopic fractionation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=8" title="Edit section: Isotopic fractionation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Photosynthesis is the primary process by which carbon moves from the atmosphere into living things. In photosynthetic pathways <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is absorbed slightly more easily than <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, which in turn is more easily absorbed than <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>. The differential uptake of the three carbon isotopes leads to <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> and <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratios in plants that differ from the ratios in the atmosphere. This effect is known as isotopic fractionation.<sup id="cite_ref-Bowman_20_53-0" class="reference"><a href="#cite_note-Bowman_20-53"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Leng_246_54-0" class="reference"><a href="#cite_note-Leng_246-54"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p>To determine the degree of fractionation that takes place in a given plant, the amounts of both <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> and <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> isotopes are measured, and the resulting <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio is then compared to a standard ratio known as PDB.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>note 9<span class="cite-bracket">]</span></a></sup> The <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio is used instead of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> because the former is much easier to measure, and the latter can be easily derived: the depletion of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> relative to <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is proportional to the difference in the atomic masses of the two isotopes, so the depletion for <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is twice the depletion of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>.<sup id="cite_ref-Aitken1990_26-4" class="reference"><a href="#cite_note-Aitken1990-26"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> The fractionation of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, known as <a href="/wiki/%CE%9413C" title="Δ13C"><span class="texhtml">δ</span><sup>13</sup>C</a>, is calculated as follows:<sup id="cite_ref-Bowman_20_53-1" class="reference"><a href="#cite_note-Bowman_20-53"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta {\ce {^{13}C}}=\left({\frac {\left({\frac {{\ce {^{13}C}}}{{\ce {^{12}C}}}}\right)_{\text{sample}}}{\left({\frac {{\ce {^{13}C}}}{{\ce {^{12}C}}}}\right)_{\text{standard}}}}-1\right)\times 1000}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mmultiscripts> <mtext>C</mtext> <none /> <none /> <mprescripts /> <none /> <mn>13</mn> </mmultiscripts> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mmultiscripts> <mtext>C</mtext> <none /> <none /> <mprescripts /> <none /> <mn>13</mn> </mmultiscripts> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mmultiscripts> <mtext>C</mtext> <none /> <none /> <mprescripts /> <none /> <mn>12</mn> </mmultiscripts> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>sample</mtext> </mrow> </msub> <msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mmultiscripts> <mtext>C</mtext> <none /> <none /> <mprescripts /> <none /> <mn>13</mn> </mmultiscripts> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mmultiscripts> <mtext>C</mtext> <none /> <none /> <mprescripts /> <none /> <mn>12</mn> </mmultiscripts> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>standard</mtext> </mrow> </msub> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>×<!-- × --></mo> <mn>1000</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta {\ce {^{13}C}}=\left({\frac {\left({\frac {{\ce {^{13}C}}}{{\ce {^{12}C}}}}\right)_{\text{sample}}}{\left({\frac {{\ce {^{13}C}}}{{\ce {^{12}C}}}}\right)_{\text{standard}}}}-1\right)\times 1000}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df9349ea9a2ad40647f9d0f775079cf3965810ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:36.846ex; height:10.843ex;" alt="{\displaystyle \delta {\ce {^{13}C}}=\left({\frac {\left({\frac {{\ce {^{13}C}}}{{\ce {^{12}C}}}}\right)_{\text{sample}}}{\left({\frac {{\ce {^{13}C}}}{{\ce {^{12}C}}}}\right)_{\text{standard}}}}-1\right)\times 1000}"></span> ‰ </p><p>where the ‰ sign indicates <a href="/wiki/Parts_per_thousand" class="mw-redirect" title="Parts per thousand">parts per thousand</a>.<sup id="cite_ref-Bowman_20_53-2" class="reference"><a href="#cite_note-Bowman_20-53"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> Because the PDB standard contains an unusually high proportion of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>,<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>note 10<span class="cite-bracket">]</span></a></sup> most measured <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> values are negative. </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:NR_sheep.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/NR_sheep.jpg/300px-NR_sheep.jpg" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/NR_sheep.jpg/450px-NR_sheep.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/02/NR_sheep.jpg/600px-NR_sheep.jpg 2x" data-file-width="640" data-file-height="480" /></a><figcaption><a href="/wiki/North_Ronaldsay_sheep" title="North Ronaldsay sheep">North Ronaldsay sheep</a> on the beach in <a href="/wiki/North_Ronaldsay" title="North Ronaldsay">North Ronaldsay</a>, Scotland. In the winter, these sheep eat seaweed, which has a higher <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> content than grass; samples from these sheep have a <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> value of about −13‰, which is much higher than for sheep that feed on grasses.<sup id="cite_ref-Bowman_20_53-3" class="reference"><a href="#cite_note-Bowman_20-53"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup></figcaption></figure> <table class="wikitable" style="font-size: 10pt; margin-left: 2em; text-align: center; float: right"> <tbody><tr> <th>Material</th> <th>Typical <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> range </th></tr> <tr> <td><a href="/wiki/%CE%9413C#Reference_material" title="Δ13C">PDB</a></td> <td>0‰ </td></tr> <tr> <td>Marine plankton</td> <td>−22‰ to −17‰<sup id="cite_ref-Leng_246_54-1" class="reference"><a href="#cite_note-Leng_246-54"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/C3_carbon_fixation" title="C3 carbon fixation">C3 plants</a></td> <td>−30‰ to −22‰<sup id="cite_ref-Leng_246_54-2" class="reference"><a href="#cite_note-Leng_246-54"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/C4_carbon_fixation" title="C4 carbon fixation">C4 plants</a></td> <td>−15‰ to −9‰<sup id="cite_ref-Leng_246_54-3" class="reference"><a href="#cite_note-Leng_246-54"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>Atmospheric <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></td> <td>−8‰<sup id="cite_ref-Bowman_20_53-4" class="reference"><a href="#cite_note-Bowman_20-53"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>Marine <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span></td> <td>−32‰ to −13‰<sup id="cite_ref-Leng_246_54-4" class="reference"><a href="#cite_note-Leng_246-54"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </td></tr></tbody></table> <p>For marine organisms, the details of the photosynthesis reactions are less well understood, and the <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> values for marine photosynthetic organisms are dependent on temperature. At higher temperatures, <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> has poor solubility in water, which means there is less <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> available for the photosynthetic reactions. Under these conditions, fractionation is reduced, and at temperatures above 14 °C (57 °F) the <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> values are correspondingly higher, while at lower temperatures, <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> becomes more soluble and hence more available to marine organisms.<sup id="cite_ref-Leng_246_54-5" class="reference"><a href="#cite_note-Leng_246-54"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p>The <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> value for animals depends on their diet. An animal that eats food with high <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> values will have a higher <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> than one that eats food with lower <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> values.<sup id="cite_ref-Bowman_20_53-5" class="reference"><a href="#cite_note-Bowman_20-53"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> The animal's own biochemical processes can also impact the results: for example, both bone minerals and bone collagen typically have a higher concentration of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> than is found in the animal's diet, though for different biochemical reasons. The enrichment of bone <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> also implies that excreted material is depleted in <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> relative to the diet.<sup id="cite_ref-Schoeninger_59-0" class="reference"><a href="#cite_note-Schoeninger-59"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>Since <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> makes up about 1% of the carbon in a sample, the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio can be accurately measured by <a href="/wiki/Mass_spectrometry" title="Mass spectrometry">mass spectrometry</a>.<sup id="cite_ref-Aitken1990_26-5" class="reference"><a href="#cite_note-Aitken1990-26"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Typical values of <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> have been found by experiment for many plants, as well as for different parts of animals such as bone <a href="/wiki/Collagen" title="Collagen">collagen</a>, but when dating a given sample it is better to determine the <span class="texhtml">δ</span><sup>13</sup>C<sub></sub> value for that sample directly than to rely on the published values.<sup id="cite_ref-Bowman_20_53-6" class="reference"><a href="#cite_note-Bowman_20-53"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p><p>The carbon exchange between atmospheric <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> and carbonate at the ocean surface is also subject to fractionation, with <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the atmosphere more likely than <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to dissolve in the ocean. The result is an overall increase in the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in the ocean of 1.5%, relative to the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in the atmosphere. This increase in <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> concentration almost exactly cancels out the decrease caused by the upwelling of water (containing old, and hence <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>-depleted, carbon) from the deep ocean, so that direct measurements of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> radiation are similar to measurements for the rest of the biosphere. Correcting for isotopic fractionation, as is done for all radiocarbon dates to allow comparison between results from different parts of the biosphere, gives an apparent age of about 400 years for ocean surface water.<sup id="cite_ref-Aitken1990_26-6" class="reference"><a href="#cite_note-Aitken1990-26"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Cronin2010_44-1" class="reference"><a href="#cite_note-Cronin2010-44"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Reservoir_effects">Reservoir effects</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=9" title="Edit section: Reservoir effects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Libby's original exchange reservoir hypothesis assumed that the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in the exchange reservoir is constant all over the world,<sup id="cite_ref-Libby1965_60-0" class="reference"><a href="#cite_note-Libby1965-60"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> but it has since been discovered that there are several causes of variation in the ratio across the reservoir.<sup id="cite_ref-Bowman1995_43-1" class="reference"><a href="#cite_note-Bowman1995-43"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Marine_effect">Marine effect</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=10" title="Edit section: Marine effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> in the atmosphere transfers to the ocean by dissolving in the surface water as carbonate and bicarbonate ions; at the same time the carbonate ions in the water are returning to the air as <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>.<sup id="cite_ref-Libby1965_60-1" class="reference"><a href="#cite_note-Libby1965-60"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> This exchange process brings <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> from the atmosphere into the surface waters of the ocean, but the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> thus introduced takes a long time to percolate through the entire volume of the ocean. The deepest parts of the ocean mix very slowly with the surface waters, and the mixing is uneven. The main mechanism that brings deep water to the surface is upwelling, which is more common in regions closer to the equator. Upwelling is also influenced by factors such as the topography of the local ocean bottom and coastlines, the climate, and wind patterns. Overall, the mixing of deep and surface waters takes far longer than the mixing of atmospheric <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> with the surface waters, and as a result water from some deep ocean areas has an apparent radiocarbon age of several thousand years. Upwelling mixes this "old" water with the surface water, giving the surface water an apparent age of about several hundred years (after correcting for fractionation).<sup id="cite_ref-Bowman1995_43-2" class="reference"><a href="#cite_note-Bowman1995-43"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> This effect is not uniform – the average effect is about 400 years, but there are local deviations of several hundred years for areas that are geographically close to each other.<sup id="cite_ref-Bowman1995_43-3" class="reference"><a href="#cite_note-Bowman1995-43"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Cronin2010_44-2" class="reference"><a href="#cite_note-Cronin2010-44"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> These deviations can be accounted for in calibration, and users of software such as CALIB can provide as an input the appropriate correction for the location of their samples.<sup id="cite_ref-Alves2018_18-1" class="reference"><a href="#cite_note-Alves2018-18"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> The effect also applies to marine organisms such as shells, and marine mammals such as whales and seals, which have radiocarbon ages that appear to be hundreds of years old.<sup id="cite_ref-Bowman1995_43-4" class="reference"><a href="#cite_note-Bowman1995-43"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Hemisphere_effect">Hemisphere effect</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=11" title="Edit section: Hemisphere effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The northern and southern hemispheres have <a href="/wiki/Atmospheric_circulation" title="Atmospheric circulation">atmospheric circulation</a> systems that are sufficiently independent of each other that there is a noticeable time lag in mixing between the two. The atmospheric <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio is lower in the southern hemisphere, with an apparent additional age of about 40 years for radiocarbon results from the south as compared to the north.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>note 11<span class="cite-bracket">]</span></a></sup> This is because the greater surface area of ocean in the southern hemisphere means that there is more carbon exchanged between the ocean and the atmosphere than in the north. Since the surface ocean is depleted in <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> because of the marine effect, <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is removed from the southern atmosphere more quickly than in the north.<sup id="cite_ref-Bowman1995_43-5" class="reference"><a href="#cite_note-Bowman1995-43"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Hoggetal_61-1" class="reference"><a href="#cite_note-Hoggetal-61"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> The effect is strengthened by strong upwelling around Antarctica.<sup id="cite_ref-Russel_14-1" class="reference"><a href="#cite_note-Russel-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Other_effects">Other effects</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=12" title="Edit section: Other effects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the carbon in freshwater is partly acquired from aged carbon, such as rocks, then the result will be a reduction in the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in the water. For example, rivers that pass over <a href="/wiki/Limestone" title="Limestone">limestone</a>, which is mostly composed of <a href="/wiki/Calcium_carbonate" title="Calcium carbonate">calcium carbonate</a>, will acquire carbonate ions. Similarly, groundwater can contain carbon derived from the rocks through which it has passed. These rocks are usually so old that they no longer contain any measurable <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, so this carbon lowers the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio of the water it enters, which can lead to apparent ages of thousands of years for both the affected water and the plants and freshwater organisms that live in it.<sup id="cite_ref-Aitken1990_26-7" class="reference"><a href="#cite_note-Aitken1990-26"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> This is known as the <a href="/wiki/Hard_water" title="Hard water">hard water</a> effect because it is often associated with calcium ions, which are characteristic of hard water; other sources of carbon such as <a href="/wiki/Humus" title="Humus">humus</a> can produce similar results, and can also reduce the apparent age if they are of more recent origin than the sample.<sup id="cite_ref-Bowman1995_43-6" class="reference"><a href="#cite_note-Bowman1995-43"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> The effect varies greatly and there is no general offset that can be applied; additional research is usually needed to determine the size of the offset, for example by comparing the radiocarbon age of deposited freshwater shells with associated organic material.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Volcanic_eruptions" class="mw-redirect" title="Volcanic eruptions">Volcanic eruptions</a> eject large amounts of carbon into the air. The carbon is of geological origin and has no detectable <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, so the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in the vicinity of the volcano is depressed relative to surrounding areas. Dormant volcanoes can also emit aged carbon. Plants that photosynthesize this carbon also have lower <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratios: for example, plants in the neighbourhood of the <a href="/wiki/Furnas" title="Furnas">Furnas</a> caldera in the <a href="/wiki/Azores" title="Azores">Azores</a> were found to have apparent ages that ranged from 250 years to 3320 years.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Contamination">Contamination</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=13" title="Edit section: Contamination"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Any addition of carbon to a sample of a different age will cause the measured date to be inaccurate. Contamination with modern carbon causes a sample to appear to be younger than it really is: the effect is greater for older samples. If a sample that is 17,000 years old is contaminated so that 1% of the sample is modern carbon, it will appear to be 600 years younger; for a sample that is 34,000 years old, the same amount of contamination would cause an error of 4,000 years. Contamination with old carbon, with no remaining <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, causes an error in the other direction independent of age – a sample contaminated with 1% old carbon will appear to be about 80 years older than it truly is, regardless of the date of the sample.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Samples">Samples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=14" title="Edit section: Samples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Radiocarbon_dating_samples" title="Radiocarbon dating samples">Radiocarbon dating samples</a></div> <p>Samples for dating need to be converted into a form suitable for measuring the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> content; this can mean conversion to gaseous, liquid, or solid form, depending on the measurement technique to be used. Before this can be done, the sample must be treated to remove any contamination and any unwanted constituents.<sup id="cite_ref-Bowman_27_66-0" class="reference"><a href="#cite_note-Bowman_27-66"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> This includes removing visible contaminants, such as rootlets that may have penetrated the sample since its burial.<sup id="cite_ref-Bowman_27_66-1" class="reference"><a href="#cite_note-Bowman_27-66"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> Alkali and acid washes can be used to remove <a href="/wiki/Humic_substance" title="Humic substance">humic</a> acid and carbonate contamination, but care has to be taken to avoid removing the part of the sample that contains the carbon to be tested.<sup id="cite_ref-AitkenWashing_67-0" class="reference"><a href="#cite_note-AitkenWashing-67"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Material_considerations">Material considerations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=15" title="Edit section: Material considerations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>It is common to reduce a wood sample to just the cellulose component before testing, but since this can reduce the volume of the sample to 20% of its original size, testing of the whole wood is often performed as well. Charcoal is often tested but is likely to need treatment to remove contaminants.<sup id="cite_ref-Bowman_27_66-2" class="reference"><a href="#cite_note-Bowman_27-66"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-AitkenWashing_67-1" class="reference"><a href="#cite_note-AitkenWashing-67"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup></li> <li>Unburnt bone can be tested; it is usual to date it using <a href="/wiki/Collagen" title="Collagen">collagen</a>, the protein fraction that remains after washing away the bone's structural material. <a href="/wiki/Hydroxyproline" title="Hydroxyproline">Hydroxyproline</a>, one of the constituent amino acids in bone, was once thought to be a reliable indicator as it was not known to occur except in bone, but it has since been detected in groundwater.<sup id="cite_ref-Bowman_27_66-3" class="reference"><a href="#cite_note-Bowman_27-66"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup></li> <li>For burnt bone, testability depends on the conditions under which the bone was burnt. If the bone was heated under <a href="/wiki/Reducing_conditions" class="mw-redirect" title="Reducing conditions">reducing conditions</a>, it (and associated organic matter) may have been carbonized. In this case, the sample is often usable.<sup id="cite_ref-Bowman_27_66-4" class="reference"><a href="#cite_note-Bowman_27-66"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup></li> <li>Shells from both marine and land organisms consist almost entirely of calcium carbonate, either as <a href="/wiki/Aragonite" title="Aragonite">aragonite</a> or as <a href="/wiki/Calcite" title="Calcite">calcite</a>, or some mixture of the two. Calcium carbonate is very susceptible to dissolving and recrystallizing; the recrystallized material will contain carbon from the sample's environment, which may be of geological origin. If testing recrystallized shell is unavoidable, it is sometimes possible to identify the original shell material from a sequence of tests.<sup id="cite_ref-silar_68-0" class="reference"><a href="#cite_note-silar-68"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> It is also possible to test <a href="/wiki/Conchiolin" title="Conchiolin">conchiolin</a>, an organic protein found in shell, but it constitutes only 1–2% of shell material.<sup id="cite_ref-AitkenWashing_67-2" class="reference"><a href="#cite_note-AitkenWashing-67"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup></li> <li>The three major components of peat are <a href="/wiki/Humic_acid" class="mw-redirect" title="Humic acid">humic acid</a>, <a href="/wiki/Humins" class="mw-redirect" title="Humins">humins</a>, and <a href="/wiki/Fulvic_acid" class="mw-redirect" title="Fulvic acid">fulvic acid</a>. Of these, humins give the most reliable date as they are insoluble in alkali and less likely to contain contaminants from the sample's environment.<sup id="cite_ref-AitkenWashing_67-3" class="reference"><a href="#cite_note-AitkenWashing-67"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> A particular difficulty with dried peat is the removal of rootlets, which are likely to be hard to distinguish from the sample material.<sup id="cite_ref-Bowman_27_66-5" class="reference"><a href="#cite_note-Bowman_27-66"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup></li> <li>Soil contains organic material, but because of the likelihood of contamination by humic acid of more recent origin, it is very difficult to get satisfactory radiocarbon dates. It is preferable to sieve the soil for fragments of organic origin, and date the fragments with methods that are tolerant of small sample sizes.<sup id="cite_ref-AitkenWashing_67-4" class="reference"><a href="#cite_note-AitkenWashing-67"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup></li> <li>Other materials that have been successfully dated include ivory, paper, textiles, individual seeds and grains, straw from within mud bricks, and charred food remains found in pottery.<sup id="cite_ref-AitkenWashing_67-5" class="reference"><a href="#cite_note-AitkenWashing-67"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Preparation_and_size">Preparation and size</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=16" title="Edit section: Preparation and size"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Particularly for older samples, it may be useful to enrich the amount of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the sample before testing. This can be done with a thermal diffusion column. The process takes about a month and requires a sample about ten times as large as would be needed otherwise, but it allows more precise measurement of the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in old material and extends the maximum age that can be reliably reported.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> </p><p>Once contamination has been removed, samples must be converted to a form suitable for the measuring technology to be used.<sup id="cite_ref-BowmanMeasure_70-0" class="reference"><a href="#cite_note-BowmanMeasure-70"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> Where gas is required, <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> is widely used.<sup id="cite_ref-BowmanMeasure_70-1" class="reference"><a href="#cite_note-BowmanMeasure-70"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Aitken_76_71-0" class="reference"><a href="#cite_note-Aitken_76-71"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> For samples to be used in <a href="/wiki/Liquid_scintillation_counting" title="Liquid scintillation counting">liquid scintillation counters</a>, the carbon must be in liquid form; the sample is typically converted to <a href="/wiki/Benzene" title="Benzene">benzene</a>. For <a href="/wiki/Accelerator_mass_spectrometry" title="Accelerator mass spectrometry">accelerator mass spectrometry</a>, solid graphite targets are the most common, although gaseous <span class="chemf nowrap">CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> can also be used.<sup id="cite_ref-BowmanMeasure_70-2" class="reference"><a href="#cite_note-BowmanMeasure-70"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Trumbore96_72-0" class="reference"><a href="#cite_note-Trumbore96-72"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>The quantity of material needed for testing depends on the sample type and the technology being used. There are two types of testing technology: detectors that record radioactivity, known as beta counters, and accelerator mass spectrometers. For beta counters, a sample weighing at least 10 grams (0.35 ounces) is typically required.<sup id="cite_ref-BowmanMeasure_70-3" class="reference"><a href="#cite_note-BowmanMeasure-70"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> Accelerator mass spectrometry is much more sensitive, and samples containing as little as 0.5 milligrams of carbon can be used.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Measurement_and_results">Measurement and results</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=17" title="Edit section: Measurement and results"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:1_MV_accelerator_mass_spectrometer.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/1_MV_accelerator_mass_spectrometer.jpg/220px-1_MV_accelerator_mass_spectrometer.jpg" decoding="async" width="220" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/1_MV_accelerator_mass_spectrometer.jpg/330px-1_MV_accelerator_mass_spectrometer.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/1_MV_accelerator_mass_spectrometer.jpg/440px-1_MV_accelerator_mass_spectrometer.jpg 2x" data-file-width="800" data-file-height="530" /></a><figcaption>Measuring <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> is now most commonly done with an accelerator mass spectrometer</figcaption></figure> <p>For decades after Libby performed the first radiocarbon dating experiments, the only way to measure the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in a sample was to detect the radioactive decay of individual carbon atoms.<sup id="cite_ref-BowmanMeasure_70-4" class="reference"><a href="#cite_note-BowmanMeasure-70"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> In this approach, what is measured is the activity, in number of decay events per unit mass per time period, of the sample.<sup id="cite_ref-Aitken_76_71-1" class="reference"><a href="#cite_note-Aitken_76-71"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> This method is also known as "beta counting", because it is the beta particles emitted by the decaying <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> atoms that are detected.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> In the late 1970s an alternative approach became available: directly counting the number of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> and <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> atoms in a given sample, via accelerator mass spectrometry, usually referred to as AMS.<sup id="cite_ref-BowmanMeasure_70-5" class="reference"><a href="#cite_note-BowmanMeasure-70"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> AMS counts the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio directly, instead of the activity of the sample, but measurements of activity and <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio can be converted into each other exactly.<sup id="cite_ref-Aitken_76_71-2" class="reference"><a href="#cite_note-Aitken_76-71"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> For some time, beta counting methods were more accurate than AMS, but AMS is now more accurate and has become the method of choice for radiocarbon measurements.<sup id="cite_ref-renamed_from_14_on_20200701175743_75-0" class="reference"><a href="#cite_note-renamed_from_14_on_20200701175743-75"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Killick_76-0" class="reference"><a href="#cite_note-Killick-76"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> In addition to improved accuracy, AMS has two further significant advantages over beta counting: it can perform accurate testing on samples much too small for beta counting, and it is much faster – an accuracy of 1% can be achieved in minutes with AMS, which is far quicker than would be achievable with the older technology.<sup id="cite_ref-Malainey_77-0" class="reference"><a href="#cite_note-Malainey-77"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Beta_counting">Beta counting</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=18" title="Edit section: Beta counting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Libby's first detector was a <a href="/wiki/Geiger_counter" title="Geiger counter">Geiger counter</a> of his own design. He converted the carbon in his sample to lamp black (soot) and coated the inner surface of a cylinder with it. This cylinder was inserted into the counter in such a way that the counting wire was inside the sample cylinder, in order that there should be no material between the sample and the wire.<sup id="cite_ref-BowmanMeasure_70-6" class="reference"><a href="#cite_note-BowmanMeasure-70"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> Any interposing material would have interfered with the detection of radioactivity, since the beta particles emitted by decaying <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> are so weak that half are stopped by a 0.01 mm (0.00039 in) thickness of aluminium.<sup id="cite_ref-Aitken_76_71-3" class="reference"><a href="#cite_note-Aitken_76-71"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p><p>Libby's method was soon superseded by gas <a href="/wiki/Proportional_counter" title="Proportional counter">proportional counters</a>, which were less affected by bomb carbon (the additional <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> created by nuclear weapons testing). These counters record bursts of ionization caused by the beta particles emitted by the decaying <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> atoms; the bursts are proportional to the energy of the particle, so other sources of ionization, such as background radiation, can be identified and ignored. The counters are surrounded by lead or steel shielding, to eliminate background radiation and to reduce the incidence of cosmic rays. In addition, <a href="/wiki/Electronic_anticoincidence" title="Electronic anticoincidence">anticoincidence</a> detectors are used; these record events outside the counter and any event recorded simultaneously both inside and outside the counter is regarded as an extraneous event and ignored.<sup id="cite_ref-Aitken_76_71-4" class="reference"><a href="#cite_note-Aitken_76-71"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p><p>The other common technology used for measuring <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> activity is liquid scintillation counting, which was invented in 1950, but which had to wait until the early 1960s, when efficient methods of benzene synthesis were developed, to become competitive with gas counting; after 1970 liquid counters became the more common technology choice for newly constructed dating laboratories. The counters work by detecting flashes of light caused by the beta particles emitted by <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> as they interact with a fluorescing agent added to the benzene. Like gas counters, liquid scintillation counters require shielding and anticoincidence counters.<sup id="cite_ref-th_78-0" class="reference"><a href="#cite_note-th-78"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-a2012_79-0" class="reference"><a href="#cite_note-a2012-79"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> </p><p>For both the gas proportional counter and liquid scintillation counter, what is measured is the number of beta particles detected in a given time period. Since the mass of the sample is known, this can be converted to a standard measure of activity in units of either counts per minute per gram of carbon (cpm/g C), or <a href="/wiki/Becquerel" title="Becquerel">becquerels</a> per kg (Bq/kg C, in <a href="/wiki/SI_units" class="mw-redirect" title="SI units">SI units</a>). Each measuring device is also used to measure the activity of a blank sample – a sample prepared from carbon old enough to have no activity. This provides a value for the background radiation, which must be subtracted from the measured activity of the sample being dated to get the activity attributable solely to that sample's <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>. In addition, a sample with a standard activity is measured, to provide a baseline for comparison.<sup id="cite_ref-er_80-0" class="reference"><a href="#cite_note-er-80"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Accelerator_mass_spectrometry">Accelerator mass spectrometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=19" title="Edit section: Accelerator mass spectrometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Accelerator_mass_spectrometer_schematic_for_radiocarbon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Accelerator_mass_spectrometer_schematic_for_radiocarbon.svg/400px-Accelerator_mass_spectrometer_schematic_for_radiocarbon.svg.png" decoding="async" width="400" height="148" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Accelerator_mass_spectrometer_schematic_for_radiocarbon.svg/600px-Accelerator_mass_spectrometer_schematic_for_radiocarbon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Accelerator_mass_spectrometer_schematic_for_radiocarbon.svg/800px-Accelerator_mass_spectrometer_schematic_for_radiocarbon.svg.png 2x" data-file-width="605" data-file-height="224" /></a><figcaption>Simplified schematic layout of an accelerator mass spectrometer used for counting carbon isotopes for carbon dating</figcaption></figure> <p>AMS counts the atoms of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> and <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in a given sample, determining the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio directly. The sample, often in the form of graphite, is made to emit C<sup>−</sup> ions (carbon atoms with a single negative charge), which are injected into an <a href="/wiki/Particle_accelerator" title="Particle accelerator">accelerator</a>. The ions are accelerated and passed through a stripper, which removes several electrons so that the ions emerge with a positive charge. The ions, which may have from 1 to 4 positive charges (C<sup>+</sup> to C<sup>4+</sup>), depending on the accelerator design, are then passed through a magnet that curves their path; the heavier ions are curved less than the lighter ones, so the different isotopes emerge as separate streams of ions. A particle detector then records the number of ions detected in the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> stream, but since the volume of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> (and <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, needed for calibration) is too great for individual ion detection, counts are determined by measuring the electric current created in a <a href="/wiki/Faraday_cup" title="Faraday cup">Faraday cup</a>.<sup id="cite_ref-renamed_from_9_on_20200701175743_81-0" class="reference"><a href="#cite_note-renamed_from_9_on_20200701175743-81"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> The large positive charge induced by the stripper forces molecules such as <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>CH</span>, which has a weight close enough to <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to interfere with the measurements, to dissociate, so they are not detected.<sup id="cite_ref-Wiebert_82-0" class="reference"><a href="#cite_note-Wiebert-82"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> Most AMS machines also measure the sample's <span class="texhtml">δ</span><sup>13</sup>C<sub></sub>, for use in calculating the sample's radiocarbon age.<sup id="cite_ref-Tuniz_83-0" class="reference"><a href="#cite_note-Tuniz-83"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> The use of AMS, as opposed to simpler forms of mass spectrometry, is necessary because of the need to distinguish the carbon isotopes from other atoms or molecules that are very close in mass, such as <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>N</span> and <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>CH</span>.<sup id="cite_ref-BowmanMeasure_70-7" class="reference"><a href="#cite_note-BowmanMeasure-70"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> As with beta counting, both blank samples and standard samples are used.<sup id="cite_ref-renamed_from_9_on_20200701175743_81-1" class="reference"><a href="#cite_note-renamed_from_9_on_20200701175743-81"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> Two different kinds of blank may be measured: a sample of dead carbon that has undergone no chemical processing, to detect any machine background, and a sample known as a process blank made from dead carbon that is processed into target material in exactly the same way as the sample which is being dated. Any <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> signal from the machine background blank is likely to be caused either by beams of ions that have not followed the expected path inside the detector or by carbon hydrides such as <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>CH<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> or <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>CH</span>. A <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> signal from the process blank measures the amount of contamination introduced during the preparation of the sample. These measurements are used in the subsequent calculation of the age of the sample.<sup id="cite_ref-renamed_from_11_on_20200701175743_84-0" class="reference"><a href="#cite_note-renamed_from_11_on_20200701175743-84"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Calculations">Calculations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=20" title="Edit section: Calculations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Calculation_of_radiocarbon_dates" title="Calculation of radiocarbon dates">Calculation of radiocarbon dates</a></div> <p>The calculations to be performed on the measurements taken depend on the technology used, since beta counters measure the sample's radioactivity whereas AMS determines the ratio of the three different carbon isotopes in the sample.<sup id="cite_ref-renamed_from_11_on_20200701175743_84-1" class="reference"><a href="#cite_note-renamed_from_11_on_20200701175743-84"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> </p><p>To determine the age of a sample whose activity has been measured by beta counting, the ratio of its activity to the activity of the standard must be found. To determine this, a blank sample (of old, or dead, carbon) is measured, and a sample of known activity is measured. The additional samples allow errors such as background radiation and systematic errors in the laboratory setup to be detected and corrected for.<sup id="cite_ref-er_80-1" class="reference"><a href="#cite_note-er-80"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> The most common standard sample material is oxalic acid, such as the HOxII standard, 1,000 lb (450 kg) of which was prepared by the <a href="/wiki/National_Institute_of_Standards_and_Technology" title="National Institute of Standards and Technology">National Institute of Standards and Technology</a> (NIST) in 1977 from French beet harvests.<sup id="cite_ref-Terasmae_85-0" class="reference"><a href="#cite_note-Terasmae-85"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-a2007_86-0" class="reference"><a href="#cite_note-a2007-86"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> </p><p>The results from AMS testing are in the form of ratios of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, and <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, which are used to calculate Fm, the "fraction modern". This is defined as the ratio between the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in the sample and the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio in modern carbon, which is in turn defined as the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio that would have been measured in 1950 had there been no fossil fuel effect.<sup id="cite_ref-renamed_from_11_on_20200701175743_84-2" class="reference"><a href="#cite_note-renamed_from_11_on_20200701175743-84"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> </p><p>Both beta counting and AMS results have to be corrected for fractionation. This is necessary because different materials of the same age, which because of fractionation have naturally different <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratios, will appear to be of different ages because the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio is taken as the indicator of age. To avoid this, all radiocarbon measurements are converted to the measurement that would have been seen had the sample been made of wood, which has a known δ<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> value of −25‰.<sup id="cite_ref-renamed_from_12_on_20200701175743_27-2" class="reference"><a href="#cite_note-renamed_from_12_on_20200701175743-27"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p><p>Once the corrected <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio is known, a "radiocarbon age" is calculated using:<sup id="cite_ref-renamed_from_13_on_20200701175743_87-0" class="reference"><a href="#cite_note-renamed_from_13_on_20200701175743-87"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{Age}}=-\ln({\text{Fm}})\cdot 8033{\text{ years}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Age</mtext> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Fm</mtext> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>8033</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> years</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{Age}}=-\ln({\text{Fm}})\cdot 8033{\text{ years}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8a966c6011a10cb03e61c8e1fa9f2bd0100fa3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.594ex; height:2.843ex;" alt="{\displaystyle {\text{Age}}=-\ln({\text{Fm}})\cdot 8033{\text{ years}}}"></span> </p><p>The calculation uses 8,033 years, the mean-life derived from Libby's half-life of 5,568 years, not 8,267 years, the mean-life derived from the more accurate modern value of 5,730 years. Libby's value for the half-life is used to maintain consistency with early radiocarbon testing results; calibration curves include a correction for this, so the accuracy of final reported calendar ages is assured.<sup id="cite_ref-renamed_from_13_on_20200701175743_87-1" class="reference"><a href="#cite_note-renamed_from_13_on_20200701175743-87"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Errors_and_reliability">Errors and reliability</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=21" title="Edit section: Errors and reliability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The reliability of the results can be improved by lengthening the testing time. For example, if counting beta decays for 250 minutes is enough to give an error of ± 80 years, with 68% confidence, then doubling the counting time to 500 minutes will allow a sample with only half as much <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to be measured with the same error term of 80 years.<sup id="cite_ref-Bowman_38_88-0" class="reference"><a href="#cite_note-Bowman_38-88"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> </p><p>Radiocarbon dating is generally limited to dating samples no more than 50,000 years old, as samples older than that have insufficient <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> to be measurable. Older dates have been obtained by using special sample preparation techniques, large samples, and very long measurement times. These techniques can allow measurement of dates up to 60,000 and in some cases up to 75,000 years before the present.<sup id="cite_ref-renamed_from_14_on_20200701175743_75-1" class="reference"><a href="#cite_note-renamed_from_14_on_20200701175743-75"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>Radiocarbon dates are generally presented with a range of one <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> (usually represented by the Greek letter sigma as 1σ) on either side of the mean. However, a date range of 1σ represents only a 68% confidence level, so the true age of the object being measured may lie outside the range of dates quoted. This was demonstrated in 1970 by an experiment run by the British Museum radiocarbon laboratory, in which weekly measurements were taken on the same sample for six months. The results varied widely (though consistently with a <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> of errors in the measurements), and included multiple date ranges (of 1σ confidence) that did not overlap with each other. The measurements included one with a range from about 4,250 to about 4,390 years ago, and another with a range from about 4,520 to about 4,690.<sup id="cite_ref-t1987-125_89-0" class="reference"><a href="#cite_note-t1987-125-89"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> </p><p>Errors in procedure can also lead to errors in the results. If 1% of the benzene in a modern reference sample accidentally evaporates, scintillation counting will give a radiocarbon age that is too young by about 80 years.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Calibration">Calibration</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=22" title="Edit section: Calibration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Radiocarbon_calibration" title="Radiocarbon calibration">Radiocarbon calibration</a></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Prometheus_tree1.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Prometheus_tree1.jpg/220px-Prometheus_tree1.jpg" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Prometheus_tree1.jpg/330px-Prometheus_tree1.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Prometheus_tree1.jpg/440px-Prometheus_tree1.jpg 2x" data-file-width="796" data-file-height="533" /></a><figcaption>The stump of a very old bristlecone pine. Tree rings from these trees (among others) are used in building calibration curves.</figcaption></figure> <p>The calculations given above produce dates in radiocarbon years: i.e. dates that represent the age the sample would be if the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio had been constant historically.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> Although Libby had pointed out as early as 1955 the possibility that this assumption was incorrect, it was not until discrepancies began to accumulate between measured ages and known historical dates for artefacts that it became clear that a correction would need to be applied to radiocarbon ages to obtain calendar dates.<sup id="cite_ref-Aitken_66_92-0" class="reference"><a href="#cite_note-Aitken_66-92"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> </p><p>To produce a curve that can be used to relate calendar years to radiocarbon years, a sequence of securely dated samples is needed which can be tested to determine their radiocarbon age. The study of tree rings led to the first such sequence: individual pieces of wood show characteristic sequences of rings that vary in thickness because of environmental factors such as the amount of rainfall in a given year. These factors affect all trees in an area, so examining tree-ring sequences from old wood allows the identification of overlapping sequences. In this way, an uninterrupted sequence of tree rings can be extended far into the past. The first such published sequence, based on bristlecone pine tree rings, was created by <a href="/wiki/Wesley_Ferguson" title="Wesley Ferguson">Wesley Ferguson</a>.<sup id="cite_ref-Taylor2014_49-2" class="reference"><a href="#cite_note-Taylor2014-49"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> Hans Suess used this data to publish the first calibration curve for radiocarbon dating in 1967.<sup id="cite_ref-Bowman_16_47-5" class="reference"><a href="#cite_note-Bowman_16-47"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Suess_1970_48-1" class="reference"><a href="#cite_note-Suess_1970-48"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Aitken_66_92-1" class="reference"><a href="#cite_note-Aitken_66-92"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> The curve showed two types of variation from the straight line: a long term fluctuation with a period of about 9,000 years, and a shorter-term variation, often referred to as "wiggles", with a period of decades. Suess said he drew the line showing the wiggles by "cosmic <i>schwung</i>", by which he meant that the variations were caused by extraterrestrial forces. It was unclear for some time whether the wiggles were real or not, but they are now well-established.<sup id="cite_ref-Bowman_16_47-6" class="reference"><a href="#cite_note-Bowman_16-47"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Suess_1970_48-2" class="reference"><a href="#cite_note-Suess_1970-48"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> These short term fluctuations in the calibration curve are now known as de Vries effects, after <a href="/wiki/Hessel_de_Vries" title="Hessel de Vries">Hessel de Vries</a>.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> </p><p>A calibration curve is used by taking the radiocarbon date reported by a laboratory and reading across from that date on the vertical axis of the graph. The point where this horizontal line intersects the curve will give the calendar age of the sample on the horizontal axis. This is the reverse of the way the curve is constructed: a point on the graph is derived from a sample of known age, such as a tree ring; when it is tested, the resulting radiocarbon age gives a data point for the graph.<sup id="cite_ref-renamed_from_18_on_20200701175743_50-1" class="reference"><a href="#cite_note-renamed_from_18_on_20200701175743-50"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Intcal_20_calibration_curve.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Intcal_20_calibration_curve.png/220px-Intcal_20_calibration_curve.png" decoding="async" width="220" height="186" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Intcal_20_calibration_curve.png/330px-Intcal_20_calibration_curve.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Intcal_20_calibration_curve.png/440px-Intcal_20_calibration_curve.png 2x" data-file-width="786" data-file-height="666" /></a><figcaption>The Northern hemisphere curve from IntCal20. As of 2020, this is the most recent version of the standard calibration curve. The diagonal line shows where the curve would lie if radiocarbon ages and calendar ages were the same.<sup id="cite_ref-:0_95-0" class="reference"><a href="#cite_note-:0-95"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>Over the next thirty years many calibration curves were published using a variety of methods and statistical approaches.<sup id="cite_ref-renamed_from_18_on_20200701175743_50-2" class="reference"><a href="#cite_note-renamed_from_18_on_20200701175743-50"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> These were superseded by the IntCal series of curves, beginning with IntCal98, published in 1998, and updated in 2004, 2009, 2013, and 2020.<sup id="cite_ref-:0_95-1" class="reference"><a href="#cite_note-:0-95"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup> The improvements to these curves are based on new data gathered from tree rings, <a href="/wiki/Varve" title="Varve">varves</a>, <a href="/wiki/Coral" title="Coral">coral</a>, plant <a href="/wiki/Macrofossil" title="Macrofossil">macrofossils</a>, <a href="/wiki/Speleothem" title="Speleothem">speleothems</a>, and <a href="/wiki/Foraminifera" title="Foraminifera">foraminifera</a>. There are separate curves for the northern hemisphere (IntCal20) and southern hemisphere (SHCal20), as they differ systematically because of the hemisphere effect. The continuous sequence of tree-ring dates for the northern hemisphere goes back to 13,910 BP as of 2020, and this provides close to annual dating for IntCal20 much of the period, reduced where there are calibration plateaus, and increased when short term <sup>14</sup>C spikes due to <a href="/wiki/Miyake_event" title="Miyake event">Miyake events</a> provide additional correlation. Radiocarbon dating earlier than the continuous tree ring sequence relies on correlation with more approximate records.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> SHCal20 is based on independent data where possible and derived from the northern curve by adding the average offset for the southern hemisphere where no direct data was available. There is also a separate marine calibration curve, MARINE20.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> For a set of samples forming a sequence with a known separation in time, these samples form a subset of the calibration curve. The sequence can be compared to the calibration curve and the best match to the sequence established. This "wiggle-matching" technique can lead to more precise dating than is possible with individual radiocarbon dates.<sup id="cite_ref-Walker2005_99-0" class="reference"><a href="#cite_note-Walker2005-99"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> Wiggle-matching can be used in places where there is a plateau on the calibration curve,<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">[</span>note 12<span class="cite-bracket">]</span></a></sup> and hence can provide a much more accurate date than the intercept or probability methods are able to produce.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup> The technique is not restricted to tree rings; for example, a stratified <a href="/wiki/Tephra" title="Tephra">tephra</a> sequence in New Zealand, believed to predate human colonization of the islands, has been dated to 1314 AD ± 12 years by wiggle-matching.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> The wiggles also mean that reading a date from a calibration curve can give more than one answer: this occurs when the curve wiggles up and down enough that the radiocarbon age intercepts the curve in more than one place, which may lead to a radiocarbon result being reported as two separate age ranges, corresponding to the two parts of the curve that the radiocarbon age intercepted.<sup id="cite_ref-renamed_from_18_on_20200701175743_50-3" class="reference"><a href="#cite_note-renamed_from_18_on_20200701175743-50"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian statistical techniques</a> can be applied when there are several radiocarbon dates to be calibrated. For example, if a series of radiocarbon dates is taken from different levels in a stratigraphic sequence, Bayesian analysis can be used to evaluate dates which are outliers and can calculate improved probability distributions, based on the prior information that the sequence should be ordered in time.<sup id="cite_ref-Walker2005_99-1" class="reference"><a href="#cite_note-Walker2005-99"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> When Bayesian analysis was introduced, its use was limited by the need to use mainframe computers to perform the calculations, but the technique has since been implemented on programs available for personal computers, such as OxCal.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Reporting_dates">Reporting dates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=23" title="Edit section: Reporting dates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Several formats for citing radiocarbon results have been used since the first samples were dated. As of 2019, the standard format required by the journal <i><a href="/wiki/Radiocarbon_(magazine)" class="mw-redirect" title="Radiocarbon (magazine)">Radiocarbon</a></i> is as follows.<sup id="cite_ref-Radiocarbon_Authors_105-0" class="reference"><a href="#cite_note-Radiocarbon_Authors-105"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> </p><p>Uncalibrated dates should be reported as "<var style="padding-right: 1px;">laboratory</var>: <var style="padding-right: 1px;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {{}^14C}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mmultiscripts> <mtext>C</mtext> <none /> <none /> <mprescripts /> <none /> <mn>14</mn> </mmultiscripts> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {{}^14C}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dabb3d484334df33afd5c56f725dfaffac93d614" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.496ex; height:2.676ex;" alt="{\displaystyle {\ce {{}^14C}}}"></span> year</var> ± <var style="padding-right: 1px;">range</var> BP", where: </p> <ul><li><var style="padding-right: 1px;">laboratory</var> identifies the laboratory that tested the sample, and the sample ID</li> <li><var style="padding-right: 1px;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {{}^14C}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mmultiscripts> <mtext>C</mtext> <none /> <none /> <mprescripts /> <none /> <mn>14</mn> </mmultiscripts> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {{}^14C}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dabb3d484334df33afd5c56f725dfaffac93d614" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.496ex; height:2.676ex;" alt="{\displaystyle {\ce {{}^14C}}}"></span> year</var> is the laboratory's determination of the age of the sample, in radiocarbon years</li> <li><var style="padding-right: 1px;">range</var> is the laboratory's estimate of the error in the age, at 1σ confidence.</li> <li>'BP' stands for "<a href="/wiki/Before_present" class="mw-redirect" title="Before present">before present</a>", referring to a reference date of 1950, so that "500 BP" means the year AD 1450.</li></ul> <p>For example, the uncalibrated date "UtC-2020: 3510 ± 60 BP" indicates that the sample was tested by the Utrecht van der Graaff Laboratorium ("UtC"), where it has a sample number of "2020", and that the uncalibrated age is 3510 years before present, ± 60 years. Related forms are sometimes used: for example, "2.3 ka BP" means 2,300 radiocarbon years before present (i.e. 350 BC), and "<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> yr BP" might be used to distinguish the uncalibrated date from a date derived from another dating method such as <a href="/wiki/Thermoluminescence_dating" title="Thermoluminescence dating">thermoluminescence</a>.<sup id="cite_ref-Radiocarbon_Authors_105-1" class="reference"><a href="#cite_note-Radiocarbon_Authors-105"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> </p><p>Calibrated <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> dates are frequently reported as "cal BP", "cal BC", or "cal AD", again with 'BP' referring to the year 1950 as the zero date.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> <i>Radiocarbon</i> gives two options for reporting calibrated dates. A common format is "cal <var style="padding-right: 1px;">date-range</var> <var style="padding-right: 1px;">confidence</var>", where: </p> <ul><li><var style="padding-right: 1px;">date-range</var> is the range of dates corresponding to the given confidence level</li> <li><var style="padding-right: 1px;">confidence</var> indicates the confidence level for the given date range.</li></ul> <p>For example, "cal 1220–1281 AD (1σ)" means a calibrated date for which the true date lies between AD 1220 and AD 1281, with a confidence level of '1 sigma', or <a href="/wiki/68%E2%80%9395%E2%80%9399.7_rule" title="68–95–99.7 rule">approximately 68%</a>. Calibrated dates can also be expressed as "BP" instead of using "BC" and "AD". The curve used to calibrate the results should be the latest available IntCal curve. Calibrated dates should also identify any programs, such as OxCal, used to perform the calibration.<sup id="cite_ref-Radiocarbon_Authors_105-2" class="reference"><a href="#cite_note-Radiocarbon_Authors-105"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> In addition, an article in <i>Radiocarbon</i> in 2014 about radiocarbon date reporting conventions recommends that information should be provided about sample treatment, including the sample material, pretreatment methods, and quality control measurements; that the citation to the software used for calibration should specify the version number and any options or models used; and that the calibrated date should be given with the associated probabilities for each range.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Use_in_archaeology">Use in archaeology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=24" title="Edit section: Use in archaeology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Interpretation">Interpretation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=25" title="Edit section: Interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A key concept in interpreting radiocarbon dates is <a href="/wiki/Archaeological_association" class="mw-redirect" title="Archaeological association">archaeological association</a>: what is the true relationship between two or more objects at an archaeological site? It frequently happens that a sample for radiocarbon dating can be taken directly from the object of interest, but there are also many cases where this is not possible. Metal grave goods, for example, cannot be radiocarbon dated, but they may be found in a grave with a coffin, charcoal, or other material which can be assumed to have been deposited at the same time. In these cases, a date for the coffin or charcoal is indicative of the date of deposition of the grave goods, because of the direct functional relationship between the two. There are also cases where there is no functional relationship, but the association is reasonably strong: for example, a layer of charcoal in a rubbish pit provides a date which has a relationship to the rubbish pit.<sup id="cite_ref-Mook_108-0" class="reference"><a href="#cite_note-Mook-108"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> </p><p>Contamination is of particular concern when dating very old material obtained from archaeological excavations and great care is needed in the specimen selection and preparation. In 2014, <a href="/wiki/Thomas_Higham_(archaeologist)" title="Thomas Higham (archaeologist)">Thomas Higham</a> and co-workers suggested that many of the dates published for <a href="/wiki/Neanderthal" title="Neanderthal">Neanderthal</a> artifacts are too recent because of contamination by "young carbon".<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> </p><p>As a tree grows, only the outermost tree ring exchanges carbon with its environment, so the age measured for a wood sample depends on where the sample is taken from. This means that radiocarbon dates on wood samples can be older than the date at which the tree was felled. In addition, if a piece of wood is used for multiple purposes, there may be a significant delay between the felling of the tree and the final use in the context in which it is found.<sup id="cite_ref-renamed_from_17_on_20200701175743_110-0" class="reference"><a href="#cite_note-renamed_from_17_on_20200701175743-110"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> This is often referred to as the <a href="/wiki/Old_wood_problem" class="mw-redirect" title="Old wood problem">old wood problem</a>.<sup id="cite_ref-Bowman_9_6-16" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> One example is the Bronze Age <a href="/wiki/Trackway" class="mw-redirect" title="Trackway">trackway</a> at Withy Bed Copse, in England; the trackway was built from wood that had clearly been worked for other purposes before being re-used in the trackway. Another example is <a href="/wiki/Driftwood" title="Driftwood">driftwood</a>, which may be used as construction material. It is not always possible to recognize re-use. Other materials can present the same problem: for example, <a href="/wiki/Bitumen" title="Bitumen">bitumen</a> is known to have been used by some <a href="/wiki/Neolithic" title="Neolithic">Neolithic</a> communities to waterproof baskets; the bitumen's radiocarbon age will be greater than is measurable by the laboratory, regardless of the actual age of the context, so testing the basket material will give a misleading age if care is not taken. A separate issue, related to re-use, is that of lengthy use, or delayed deposition. For example, a wooden object that remains in use for a lengthy period will have an apparent age greater than the actual age of the context in which it is deposited.<sup id="cite_ref-renamed_from_17_on_20200701175743_110-1" class="reference"><a href="#cite_note-renamed_from_17_on_20200701175743-110"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Use_outside_archaeology">Use outside archaeology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=26" title="Edit section: Use outside archaeology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Archaeology is not the only field to make use of radiocarbon dating. Radiocarbon dates can also be used in geology, sedimentology, and lake studies, for example. The ability to date minute samples using AMS has meant that palaeobotanists and palaeoclimatologists can use radiocarbon dating directly on pollen purified from sediment sequences, or on small quantities of plant material or charcoal. Dates on organic material recovered from strata of interest can be used to correlate strata in different locations that appear to be similar on geological grounds. Dating material from one location gives date information about the other location, and the dates are also used to place strata in the overall geological timeline.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup> </p><p>Radiocarbon is also used to date carbon released from ecosystems, particularly to monitor the release of old carbon that was previously stored in soils as a result of human disturbance or climate change.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> Recent advances in field collection techniques also allow the radiocarbon dating of <a href="/wiki/Methane" title="Methane">methane</a> and <a href="/wiki/Carbon_dioxide" title="Carbon dioxide">carbon dioxide</a>, which are important <a href="/wiki/Greenhouse_gas" title="Greenhouse gas">greenhouse gases</a>.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Notable_applications">Notable applications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=27" title="Edit section: Notable applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Pleistocene/Holocene_boundary_in_Two_Creeks_Fossil_Forest"><span id="Pleistocene.2FHolocene_boundary_in_Two_Creeks_Fossil_Forest"></span>Pleistocene/Holocene boundary in Two Creeks Fossil Forest</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=28" title="Edit section: Pleistocene/Holocene boundary in Two Creeks Fossil Forest"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Pleistocene" title="Pleistocene">Pleistocene</a> is a geological epoch that began about 2.6 million years ago. The <a href="/wiki/Holocene" title="Holocene">Holocene</a>, the current geological epoch, begins about 11,700 years ago when the Pleistocene ends.<sup id="cite_ref-renamed_from_15_on_20200701175743_115-0" class="reference"><a href="#cite_note-renamed_from_15_on_20200701175743-115"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> Establishing the date of this boundary − which is defined by sharp climatic warming − as accurately as possible has been a goal of geologists for much of the 20th century.<sup id="cite_ref-renamed_from_15_on_20200701175743_115-1" class="reference"><a href="#cite_note-renamed_from_15_on_20200701175743-115"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bousman_116-0" class="reference"><a href="#cite_note-Bousman-116"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> At <a href="/wiki/Two_Creeks,_Wisconsin" title="Two Creeks, Wisconsin">Two Creeks</a>, in Wisconsin, a fossil forest was discovered (<a href="/wiki/Two_Creeks_Buried_Forest_State_Natural_Area" title="Two Creeks Buried Forest State Natural Area">Two Creeks Buried Forest State Natural Area</a>), and subsequent research determined that the destruction of the forest was caused by the Valders ice readvance, the last southward movement of ice before the end of the Pleistocene in that area. Before the advent of radiocarbon dating, the fossilized trees had been dated by correlating sequences of annually deposited layers of sediment at Two Creeks with sequences in Scandinavia. This led to estimates that the trees were between 24,000 and 19,000 years old,<sup id="cite_ref-renamed_from_15_on_20200701175743_115-2" class="reference"><a href="#cite_note-renamed_from_15_on_20200701175743-115"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> and hence this was taken to be the date of the last advance of the <a href="/wiki/Wisconsin_glaciation" title="Wisconsin glaciation">Wisconsin glaciation</a> before its final retreat marked the end of the Pleistocene in North America.<sup id="cite_ref-gall_117-0" class="reference"><a href="#cite_note-gall-117"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> In 1952 Libby published radiocarbon dates for several samples from the Two Creeks site and two similar sites nearby; the dates were averaged to 11,404 BP with a standard error of 350 years. This result was uncalibrated, as the need for calibration of radiocarbon ages was not yet understood. Further results over the next decade supported an average date of 11,350 BP, with the results thought to be the most accurate averaging 11,600 BP. There was initial resistance to these results on the part of <a href="/wiki/Ernst_Antevs" title="Ernst Antevs">Ernst Antevs</a>, the <a href="/wiki/Palaeobotanist" class="mw-redirect" title="Palaeobotanist">palaeobotanist</a> who had worked on the Scandinavian varve series, but his objections were eventually discounted by other geologists. In the 1990s samples were tested with AMS, yielding (uncalibrated) dates ranging from 11,640 BP to 11,800 BP, both with a standard error of 160 years. Subsequently, a sample from the fossil forest was used in an interlaboratory test, with results provided by over 70 laboratories. These tests produced a median age of 11,788 ± 8 BP (2σ confidence) which when calibrated gives a date range of 13,730 to 13,550 cal BP.<sup id="cite_ref-renamed_from_15_on_20200701175743_115-3" class="reference"><a href="#cite_note-renamed_from_15_on_20200701175743-115"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> The Two Creeks radiocarbon dates are now regarded as a key result in developing the modern understanding of North American glaciation at the end of the Pleistocene.<sup id="cite_ref-gall_117-1" class="reference"><a href="#cite_note-gall-117"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Dead_Sea_Scrolls">Dead Sea Scrolls</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=29" title="Edit section: Dead Sea Scrolls"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Great_Isaiah_Scroll_Ch53.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Great_Isaiah_Scroll_Ch53.jpg/220px-Great_Isaiah_Scroll_Ch53.jpg" decoding="async" width="220" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Great_Isaiah_Scroll_Ch53.jpg/330px-Great_Isaiah_Scroll_Ch53.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Great_Isaiah_Scroll_Ch53.jpg/440px-Great_Isaiah_Scroll_Ch53.jpg 2x" data-file-width="2040" data-file-height="2319" /></a><figcaption>Part of the Great Isaiah Scroll, one of the Dead Sea Scrolls</figcaption></figure> <p>In 1947, <a href="/wiki/Dead_Sea_Scrolls" title="Dead Sea Scrolls">scrolls</a> were discovered in caves near the <a href="/wiki/Dead_Sea" title="Dead Sea">Dead Sea</a> that proved to contain writing in <a href="/wiki/Hebrew_language" title="Hebrew language">Hebrew</a> and <a href="/wiki/Aramaic_language" class="mw-redirect" title="Aramaic language">Aramaic</a>, most of which are thought to have been produced by the <a href="/wiki/Essenes" title="Essenes">Essenes</a>, a small Jewish sect. These scrolls are of great significance in the study of Biblical texts because many of them contain the earliest known version of books of the Hebrew bible.<sup id="cite_ref-taylor38_118-0" class="reference"><a href="#cite_note-taylor38-118"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> A sample of the linen wrapping from one of these scrolls, the <a href="/wiki/Great_Isaiah_scroll" class="mw-redirect" title="Great Isaiah scroll">Great Isaiah Scroll</a>, was included in a 1955 analysis by Libby, with an estimated age of 1,917 ± 200 years.<sup id="cite_ref-taylor38_118-1" class="reference"><a href="#cite_note-taylor38-118"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> Based on an analysis of the writing style, <a href="/wiki/Palaeography" title="Palaeography">palaeographic</a> estimates were made of the age of 21 of the scrolls, and samples from most of these, along with other scrolls which had not been palaeographically dated, were tested by two AMS laboratories in the 1990s. The results ranged in age from the early 4th century BC to the mid 4th century AD. In all but two cases the scrolls were determined to be within 100 years of the palaeographically determined age. The Isaiah scroll was included in the testing and was found to have two possible date ranges at a 2σ confidence level, because of the shape of the calibration curve at that point: there is a 15% chance that it dates from 355 to 295 BC, and an 84% chance that it dates from 210 to 45 BC. Subsequently, these dates were criticized on the grounds that before the scrolls were tested, they had been treated with modern <a href="/wiki/Castor_oil" title="Castor oil">castor oil</a> in order to make the writing easier to read; it was argued that failure to remove the castor oil sufficiently would have caused the dates to be too young. Multiple papers have been published both supporting and opposing the criticism.<sup id="cite_ref-taylor38_118-2" class="reference"><a href="#cite_note-taylor38-118"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Impact">Impact</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=30" title="Edit section: Impact"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Soon after the publication of Libby's 1949 paper in <i>Science</i>, universities around the world began establishing radiocarbon-dating laboratories, and by the end of the 1950s, there were more than 20 active <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> research laboratories. It quickly became apparent that the principles of radiocarbon dating were valid, despite certain discrepancies, the causes of which then remained unknown.<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup> </p><p>The development of radiocarbon dating has had a profound impact on archaeology – often described as the "radiocarbon revolution".<sup id="cite_ref-t1997_121-0" class="reference"><a href="#cite_note-t1997-121"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup> In the words of anthropologist R. E. Taylor, "<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> data made a <em>world</em> prehistory possible by contributing a time scale that transcends local, regional and continental boundaries". It provides more accurate dating within sites than previous methods, which usually derived either from stratigraphy or from typologies (e.g. of stone tools or pottery); it also allows comparison and synchronization of events across great distances. The advent of radiocarbon dating may even have led to better field methods in archaeology since better data recording leads to a firmer association of objects with the samples to be tested. These improved field methods were sometimes motivated by attempts to prove that a <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> date was incorrect. Taylor also suggests that the availability of definite date information freed archaeologists from the need to focus so much of their energy on determining the dates of their finds, and led to an expansion of the questions archaeologists were willing to research. For example, from the 1970s questions about the evolution of human behaviour were much more frequently seen in archaeology.<sup id="cite_ref-t1987-143_122-0" class="reference"><a href="#cite_note-t1987-143-122"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup> </p><p>The dating framework provided by radiocarbon led to a change in the prevailing view of how innovations spread through prehistoric Europe. Researchers had previously thought that many ideas spread by diffusion through the continent, or by invasions of peoples bringing new cultural ideas with them. As radiocarbon dates began to prove these ideas wrong in many instances, it became apparent that these innovations must sometimes have arisen locally. This has been described as a "second radiocarbon revolution". More broadly, the success of radiocarbon dating stimulated interest in analytical and statistical approaches to archaeological data.<sup id="cite_ref-t1987-143_122-1" class="reference"><a href="#cite_note-t1987-143-122"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup> Taylor has also described the impact of AMS, and the ability to obtain accurate measurements from very small samples, as ushering in a third radiocarbon revolution.<sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup> </p><p>Occasionally, radiocarbon dating techniques date an object of popular interest, for example, the <a href="/wiki/Shroud_of_Turin" title="Shroud of Turin">Shroud of Turin</a>, a piece of linen cloth thought by some to bear an image of Jesus Christ after his crucifixion. Three separate laboratories <a href="/wiki/Radiocarbon_dating_of_the_Shroud_of_Turin" title="Radiocarbon dating of the Shroud of Turin">dated samples of linen from the Shroud in 1988</a>; the results pointed to 14th-century origins, raising doubts about the shroud's authenticity as an alleged 1st-century relic.<sup id="cite_ref-Currie_2004_20-1" class="reference"><a href="#cite_note-Currie_2004-20"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>Researchers have studied other isotopes created by cosmic rays to determine if they could also be used to assist in dating objects of archaeological interest; such isotopes include <a href="/wiki/Helium-3" title="Helium-3"><span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>He</span></a>, <a href="/wiki/Beryllium-10" title="Beryllium-10"><span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">10</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>Be</span></a>, <a href="/wiki/Neon-21" class="mw-redirect" title="Neon-21"><span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">21</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>Ne</span></a>, <a href="/wiki/Aluminium-26" title="Aluminium-26"><span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">26</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>Al</span></a>, and <a href="/wiki/Chlorine-36" title="Chlorine-36"><span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">36</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>Cl</span></a>. With the development of AMS in the 1980s it became possible to measure these isotopes precisely enough for them to be the basis of useful dating techniques, which have been primarily applied to dating rocks.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup> Naturally occurring radioactive isotopes can also form the basis of dating methods, as with <a href="/wiki/K%E2%80%93Ar_dating" title="K–Ar dating">potassium–argon dating</a>, <a href="/wiki/Argon%E2%80%93argon_dating" title="Argon–argon dating">argon–argon dating</a>, and <a href="/wiki/Uranium%E2%80%93thorium_dating" title="Uranium–thorium dating">uranium series dating</a>.<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup> Other dating techniques of interest to archaeologists include <a href="/wiki/Thermoluminescence_dating" title="Thermoluminescence dating">thermoluminescence</a>, <a href="/wiki/Optically_stimulated_luminescence" title="Optically stimulated luminescence">optically stimulated luminescence</a>, <a href="/wiki/Electron_spin_resonance" class="mw-redirect" title="Electron spin resonance">electron spin resonance</a>, and <a href="/wiki/Fission_track_dating" title="Fission track dating">fission track dating</a>, as well as techniques that depend on annual bands or layers, such as <a href="/wiki/Dendrochronology" title="Dendrochronology">dendrochronology</a>, <a href="/wiki/Tephrochronology" title="Tephrochronology">tephrochronology</a>, and <a href="/wiki/Varve" title="Varve">varve</a> chronology.<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=31" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/774%E2%80%93775_carbon-14_spike" title="774–775 carbon-14 spike">774–775 carbon-14 spike</a></li> <li><a href="/wiki/Chronological_dating" title="Chronological dating">Chronological dating</a>, archaeological chronology <ul><li><a href="/wiki/Absolute_dating" title="Absolute dating">Absolute dating</a></li> <li><a href="/wiki/Relative_dating" title="Relative dating">Relative dating</a></li></ul></li> <li><a href="/wiki/Geochronology" title="Geochronology">Geochronology</a></li> <li><a href="/wiki/Radiometric_dating" title="Radiometric dating">Radiometric dating</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=32" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Korff's paper actually referred to slow neutrons, a term that since Korff's time has acquired a more specific meaning, referring to a range of neutron energies that does not overlap with thermal neutrons.<sup id="cite_ref-Korff_1949_2-0" class="reference"><a href="#cite_note-Korff_1949-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Some of Libby's original samples have since been retested, and the results, published in 2018, were generally in good agreement with Libby's original results.<sup id="cite_ref-LJ_2018_11-0" class="reference"><a href="#cite_note-LJ_2018-11"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">The interaction of cosmic rays with nitrogen and oxygen below the earth's surface can also create <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>, and in some circumstances (e.g. near the surface of snow accumulations, which are permeable to gases) this <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> migrates into the atmosphere. However, this pathway is estimated to be responsible for less than 0.1% of the total production of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>.<sup id="cite_ref-LJ_2001_16-1" class="reference"><a href="#cite_note-LJ_2001-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">The half-life of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> (which determines the mean-life) was thought to be 5568 ± 30 years in 1952.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> The mean-life and half-life are related by the following equation:<sup id="cite_ref-Bowman_9_6-9" class="reference"><a href="#cite_note-Bowman_9-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\frac {1}{2}}=0.69314\cdot \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>=</mo> <mn>0.69314</mn> <mo>⋅<!-- ⋅ --></mo> <mi>τ<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\frac {1}{2}}=0.69314\cdot \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0359c101ac1e5b2885b29c3c50d4859e26040807" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:16.694ex; height:4.009ex;" alt="{\displaystyle T_{\frac {1}{2}}=0.69314\cdot \tau }"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">Two experimentally determined values from the early 1950s were not included in the value Libby used: ~6,090 years, and 5900 ± 250 years.<sup id="cite_ref-Taylor_287_33-0" class="reference"><a href="#cite_note-Taylor_287-33"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">The term "conventional radiocarbon age" is also used. The definition of radiocarbon years is as follows: the age is calculated by using the following <a href="/wiki/Calculation_of_radiocarbon_dates#Standards" title="Calculation of radiocarbon dates">standards</a>: a) using the Libby half-life of 5568 years, rather than the currently accepted actual half-life of 5730 years; (b) the use of an NIST standard known as HOxII to define the activity of radiocarbon in 1950; (c) the use of 1950 as the date from which years "before present" are counted; (d) a correction for <a class="mw-selflink-fragment" href="#Isotopic_fractionation">fractionation</a>, based on a standard isotope ratio, and (e) the assumption that the <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> ratio has not changed over time.<sup id="cite_ref-Taylor_4_36-0" class="reference"><a href="#cite_note-Taylor_4-36"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">The data on carbon percentages in each part of the reservoir is drawn from an estimate of reservoir carbon for the mid-1990s; estimates of carbon distribution during pre-industrial times are significantly different.<sup id="cite_ref-GC_128_38-0" class="reference"><a href="#cite_note-GC_128-38"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">For marine life, the age only appears to be 400 years once a correction for <a class="mw-selflink-fragment" href="#Isotopic_fractionation">fractionation</a> is made. This effect is accounted for during calibration by using a different marine calibration curve; without this curve, modern marine life would appear to be 400 years old when radiocarbon dated. Similarly, the statement about land organisms is only true once fractionation is taken into account.</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">"PDB" stands for "Pee Dee Belemnite", a fossil from the <a href="/wiki/Pee_Dee_Formation" class="mw-redirect" title="Pee Dee Formation">Pee Dee formation</a> in South Carolina.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text">The PDB value is 11.2372‰.<sup id="cite_ref-Dass_57-0" class="reference"><a href="#cite_note-Dass-57"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text">Two recent estimates included 8–80 radiocarbon years over the last 1000 years, with an average of 41 ± 14 years; and −2 to 83 radiocarbon years over the last 2000 years, with an average of 44 ± 17 years. For older datasets an offset of about 50 years has been estimated.<sup id="cite_ref-Hoggetal_61-0" class="reference"><a href="#cite_note-Hoggetal-61"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text">A plateau in the calibration curve occurs when the ratio of <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>/<span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">12</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> in the atmosphere decreases at the same rate as the reduction due to radiocarbon decay in the sample. For example, there was a plateau between around 750 and 400 BCE, which makes radiocarbon dates less accurate for samples dating to this period.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> </span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=33" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span typeof="mw:File"><a href="/wiki/File:Open_Access_logo_PLoS_transparent.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/9px-Open_Access_logo_PLoS_transparent.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/14px-Open_Access_logo_PLoS_transparent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/18px-Open_Access_logo_PLoS_transparent.svg.png 2x" data-file-width="640" data-file-height="1000" /></a></span> This article was submitted to <i>WikiJournal of Science</i> for external <a href="/wiki/Scholarly_peer_review" title="Scholarly peer review">academic peer review</a> in 2017 (<a class="external text" href="https://en.wikiversity.org/wiki/talk:WikiJournal_of_Science/Radiocarbon_dating">reviewer reports</a>). The updated content was reintegrated into the Wikipedia page under a <a href="//creativecommons.org/licenses/by-sa/3.0/" class="extiw" title="creativecommons:by-sa/3.0/">CC-BY-SA-3.0</a> license (<span class="plainlinks"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Radiocarbon_dating&action=history&date-range-to=2018-06-10">2018</a></span>). The version of record as reviewed is: <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation journal cs1">Mike Christie; et al. (1 June 2018). <a class="external text" href="https://upload.wikimedia.org/wikiversity/en/7/7b/Radiocarbon_dating.pdf">"Radiocarbon dating"</a> <span class="cs1-format">(PDF)</span>. <i>WikiJournal of Science</i>. <b>1</b> (1): 6. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.15347%2FWJS%2F2018.006">10.15347/WJS/2018.006</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2470-6345">2470-6345</a>. <a href="/wiki/WDQ_(identifier)" class="mw-redirect" title="WDQ (identifier)">Wikidata</a> <a href="https://www.wikidata.org/wiki/Q55120317" class="extiw" title="d:Q55120317">Q55120317</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=WikiJournal+of+Science&rft.atitle=Radiocarbon+dating&rft.volume=1&rft.issue=1&rft.pages=6&rft.date=2018-06-01&rft_id=info%3Adoi%2F10.15347%2FWJS%2F2018.006&rft.issn=2470-6345&rft.au=Mike+Christie&rft_id=https%3A%2F%2Fupload.wikimedia.org%2Fwikiversity%2Fen%2F7%2F7b%2FRadiocarbon_dating.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-renamed_from_20_on_20200701175743-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-renamed_from_20_on_20200701175743_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-renamed_from_20_on_20200701175743_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, p. 268.</span> </li> <li id="cite_note-Korff_1949-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Korff_1949_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKorff1940" class="citation journal cs1">Korff, S.A. (1940). "On the contribution to the ionization at sea-level produced by the neutrons in the cosmic radiation". <i>Journal of the Franklin Institute</i>. <b>230</b> (6): 777–779. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1940TeMAE..45..133K">1940TeMAE..45..133K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0016-0032%2840%2990838-9">10.1016/s0016-0032(40)90838-9</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Franklin+Institute&rft.atitle=On+the+contribution+to+the+ionization+at+sea-level+produced+by+the+neutrons+in+the+cosmic+radiation&rft.volume=230&rft.issue=6&rft.pages=777-779&rft.date=1940&rft_id=info%3Adoi%2F10.1016%2Fs0016-0032%2840%2990838-9&rft_id=info%3Abibcode%2F1940TeMAE..45..133K&rft.aulast=Korff&rft.aufirst=S.A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-taylor269-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-taylor269_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-taylor269_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, p. 269.</span> </li> <li id="cite_note-acs-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-acs_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-acs_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/radiocarbon-dating.html">"Radiocarbon Dating – American Chemical Society"</a>. <i>American Chemical Society</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2016-10-09</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=American+Chemical+Society&rft.atitle=Radiocarbon+Dating+%E2%80%93+American+Chemical+Society&rft_id=https%3A%2F%2Fwww.acs.org%2Fcontent%2Facs%2Fen%2Feducation%2Fwhatischemistry%2Flandmarks%2Fradiocarbon-dating.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Bowman_9-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bowman_9_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-Bowman_9_6-16"><sup><i><b>q</b></i></sup></a></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 9–15.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLibby1946" class="citation journal cs1">Libby, W.F. (1946). "Atmospheric helium three and radiocarbon from cosmic radiation". <i>Physical Review</i>. <b>69</b> (11–12): 671–672. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1946PhRv...69..671L">1946PhRv...69..671L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.69.671.2">10.1103/PhysRev.69.671.2</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Atmospheric+helium+three+and+radiocarbon+from+cosmic+radiation&rft.volume=69&rft.issue=11%E2%80%9312&rft.pages=671-672&rft.date=1946&rft_id=info%3Adoi%2F10.1103%2FPhysRev.69.671.2&rft_id=info%3Abibcode%2F1946PhRv...69..671L&rft.aulast=Libby&rft.aufirst=W.F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Anderson_1947-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Anderson_1947_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndersonLibbyWeinhouseReid1947" class="citation journal cs1">Anderson, E.C.; Libby, W.F.; Weinhouse, S.; Reid, A.F.; Kirshenbaum, A.D.; Grosse, A.V. (1947). "Radiocarbon from cosmic radiation". <i>Science</i>. <b>105</b> (2765): 576–577. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1947Sci...105..576A">1947Sci...105..576A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.105.2735.576">10.1126/science.105.2735.576</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17746224">17746224</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Radiocarbon+from+cosmic+radiation&rft.volume=105&rft.issue=2765&rft.pages=576-577&rft.date=1947&rft_id=info%3Apmid%2F17746224&rft_id=info%3Adoi%2F10.1126%2Fscience.105.2735.576&rft_id=info%3Abibcode%2F1947Sci...105..576A&rft.aulast=Anderson&rft.aufirst=E.C.&rft.au=Libby%2C+W.F.&rft.au=Weinhouse%2C+S.&rft.au=Reid%2C+A.F.&rft.au=Kirshenbaum%2C+A.D.&rft.au=Grosse%2C+A.V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-libby49-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-libby49_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArnoldLibby1949" class="citation journal cs1">Arnold, J.R.; Libby, W.F. (1949). <a rel="nofollow" class="external text" href="http://hbar.phys.msu.ru/gorm/fomenko/libby.htm">"Age determinations by radiocarbon content: checks with samples of known age"</a>. <i>Science</i>. <b>110</b> (2869): 678–680. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1949Sci...110..678A">1949Sci...110..678A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.110.2869.678">10.1126/science.110.2869.678</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1677049">1677049</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15407879">15407879</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Age+determinations+by+radiocarbon+content%3A+checks+with+samples+of+known+age&rft.volume=110&rft.issue=2869&rft.pages=678-680&rft.date=1949&rft_id=info%3Adoi%2F10.1126%2Fscience.110.2869.678&rft_id=info%3Apmid%2F15407879&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1677049%23id-name%3DJSTOR&rft_id=info%3Abibcode%2F1949Sci...110..678A&rft.aulast=Arnold&rft.aufirst=J.R.&rft.au=Libby%2C+W.F.&rft_id=http%3A%2F%2Fhbar.phys.msu.ru%2Fgorm%2Ffomenko%2Flibby.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Aitken_60-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Aitken_60_10-0">^</a></b></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, pp. 60–61.</span> </li> <li id="cite_note-LJ_2018-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-LJ_2018_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJullPearsonTaylorSouthon2018" class="citation journal cs1">Jull, A.J.T.; Pearson, C.L.; Taylor, R.E.; Southon, J.R.; Santos, G.M.; Kohl, C.P.; Hajdas, I.; Molnar, M.; Baisan, C.; Lange, T.E.; Cruz, R.; Janovics, R.; Major, I. (2018). "Radiocarbon dating and intercomparison of some early historical radiocarbon samples". <i>Radiocarbon</i>. <b>60</b> (2): 535–548. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018Radcb..60..535J">2018Radcb..60..535J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FRDC.2018.18">10.1017/RDC.2018.18</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/20.500.11850%2F263957">20.500.11850/263957</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:134723966">134723966</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=Radiocarbon+dating+and+intercomparison+of+some+early+historical+radiocarbon+samples&rft.volume=60&rft.issue=2&rft.pages=535-548&rft.date=2018&rft_id=info%3Ahdl%2F20.500.11850%2F263957&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A134723966%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1017%2FRDC.2018.18&rft_id=info%3Abibcode%2F2018Radcb..60..535J&rft.aulast=Jull&rft.aufirst=A.J.T.&rft.au=Pearson%2C+C.L.&rft.au=Taylor%2C+R.E.&rft.au=Southon%2C+J.R.&rft.au=Santos%2C+G.M.&rft.au=Kohl%2C+C.P.&rft.au=Hajdas%2C+I.&rft.au=Molnar%2C+M.&rft.au=Baisan%2C+C.&rft.au=Lange%2C+T.E.&rft.au=Cruz%2C+R.&rft.au=Janovics%2C+R.&rft.au=Major%2C+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20181012090959/http://www.c14dating.com/int.html">"The method"</a>. <i>www.c14dating.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.c14dating.com/int.html">the original</a> on 2018-10-12<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-10-09</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.c14dating.com&rft.atitle=The+method&rft_id=http%3A%2F%2Fwww.c14dating.com%2Fint.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Russel-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-Russel_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Russel_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRussell2011" class="citation book cs1">Russell, Nicola (2011). <a rel="nofollow" class="external text" href="http://theses.gla.ac.uk/2941/1/2011russellphd.pdf"><i>Marine radiocarbon reservoir effects (MRE) in archaeology: temporal and spatial changes through the Holocene within the UK coastal environment (PhD thesis)</i></a> <span class="cs1-format">(PDF)</span>. Glasgow, Scotland UK: University of Glasgow. p. 16<span class="reference-accessdate">. Retrieved <span class="nowrap">11 December</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Marine+radiocarbon+reservoir+effects+%28MRE%29+in+archaeology%3A+temporal+and+spatial+changes+through+the+Holocene+within+the+UK+coastal+environment+%28PhD+thesis%29&rft.place=Glasgow%2C+Scotland+UK&rft.pages=16&rft.pub=University+of+Glasgow&rft.date=2011&rft.aulast=Russell&rft.aufirst=Nicola&rft_id=http%3A%2F%2Ftheses.gla.ac.uk%2F2941%2F1%2F2011russellphd.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-CES_476-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-CES_476_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBianchiCanuel2011" class="citation book cs1"><a href="/wiki/Thomas_S._Bianchi" title="Thomas S. Bianchi">Bianchi, Thomas S.</a>; <a href="/wiki/Elizabeth_Canuel" title="Elizabeth Canuel">Canuel, Elizabeth A.</a> (2011). <i>Chemical Markers in Aquatic Ecosystems</i>. Princeton: Princeton University Press. p. 35. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-13414-7" title="Special:BookSources/978-0-691-13414-7"><bdi>978-0-691-13414-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Chemical+Markers+in+Aquatic+Ecosystems&rft.place=Princeton&rft.pages=35&rft.pub=Princeton+University+Press&rft.date=2011&rft.isbn=978-0-691-13414-7&rft.aulast=Bianchi&rft.aufirst=Thomas+S.&rft.au=Canuel%2C+Elizabeth+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-LJ_2001-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-LJ_2001_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LJ_2001_16-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-LJ_2001_16-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLalJull2001" class="citation journal cs1">Lal, D.; Jull, A.J.T. (2001). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0033822200041394">"In-situ cosmogenic <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span>: production and examples of its unique applications in studies of terrestrial and extraterrestrial processes"</a>. <i>Radiocarbon</i>. <b>43</b> (2B): 731–742. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001Radcb..43..731L">2001Radcb..43..731L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0033822200041394">10.1017/S0033822200041394</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=In-situ+cosmogenic+%3Cspan+class%3D%22chemf+nowrap%22%3E%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A0.5em%3Bline-height%3A1em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E14%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3EC%3C%2Fspan%3E%3A+production+and+examples+of+its+unique+applications+in+studies+of+terrestrial+and+extraterrestrial+processes&rft.volume=43&rft.issue=2B&rft.pages=731-742&rft.date=2001&rft_id=info%3Adoi%2F10.1017%2FS0033822200041394&rft_id=info%3Abibcode%2F2001Radcb..43..731L&rft.aulast=Lal&rft.aufirst=D.&rft.au=Jull%2C+A.J.T.&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252FS0033822200041394&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Alves2018-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Alves2018_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Alves2018_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQueiroz-AlvesMacarioAscoughBronk_Ramsey2018" class="citation journal cs1">Queiroz-Alves, Eduardo; Macario, Kita; Ascough, Philippa; Bronk Ramsey, Christopher (2018). <a rel="nofollow" class="external text" href="http://eprints.gla.ac.uk/160036/7/160036.pdf">"The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms and prospects"</a> <span class="cs1-format">(PDF)</span>. <i>Reviews of Geophysics</i>. <b>56</b> (1): 278–305. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018RvGeo..56..278A">2018RvGeo..56..278A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F2017RG000588">10.1002/2017RG000588</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:59153548">59153548</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reviews+of+Geophysics&rft.atitle=The+worldwide+marine+radiocarbon+reservoir+effect%3A+Definitions%2C+mechanisms+and+prospects&rft.volume=56&rft.issue=1&rft.pages=278-305&rft.date=2018&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A59153548%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1002%2F2017RG000588&rft_id=info%3Abibcode%2F2018RvGeo..56..278A&rft.aulast=Queiroz-Alves&rft.aufirst=Eduardo&rft.au=Macario%2C+Kita&rft.au=Ascough%2C+Philippa&rft.au=Bronk+Ramsey%2C+Christopher&rft_id=http%3A%2F%2Feprints.gla.ac.uk%2F160036%2F7%2F160036.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-tsip-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-tsip_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-tsip_19-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-tsip_19-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTsipenyuk1997" class="citation book cs1">Tsipenyuk, Yuri M. (1997). <i>Nuclear Methods in Science and Technology</i>. Bristol, UK: Institute of Physics Publishing. p. 343. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0750304221" title="Special:BookSources/978-0750304221"><bdi>978-0750304221</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Nuclear+Methods+in+Science+and+Technology&rft.place=Bristol%2C+UK&rft.pages=343&rft.pub=Institute+of+Physics+Publishing&rft.date=1997&rft.isbn=978-0750304221&rft.aulast=Tsipenyuk&rft.aufirst=Yuri+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Currie_2004-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Currie_2004_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Currie_2004_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCurrie2004" class="citation journal cs1">Currie, Lloyd A. (2004). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853109">"The remarkable metrological history of radiocarbon dating II"</a>. <i>Journal of Research of the National Institute of Standards and Technology</i>. <b>109</b> (2): 185–217. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.6028%2Fjres.109.013">10.6028/jres.109.013</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853109">4853109</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27366605">27366605</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Research+of+the+National+Institute+of+Standards+and+Technology&rft.atitle=The+remarkable+metrological+history+of+radiocarbon+dating+II&rft.volume=109&rft.issue=2&rft.pages=185-217&rft.date=2004&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4853109%23id-name%3DPMC&rft_id=info%3Apmid%2F27366605&rft_id=info%3Adoi%2F10.6028%2Fjres.109.013&rft.aulast=Currie&rft.aufirst=Lloyd+A.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4853109&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, p. 33.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><a href="#Libby">Libby (1965)</a>, p. 42.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, p. 59.</span> </li> <li id="cite_note-Nubase2020-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nubase2020_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKondevWangHuangNaimi2021" class="citation journal cs1">Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). <a rel="nofollow" class="external text" href="https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf">"The NUBASE2020 evaluation of nuclear properties"</a> <span class="cs1-format">(PDF)</span>. <i>Chinese Physics C</i>. <b>45</b> (3): 030001-22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1674-1137%2Fabddae">10.1088/1674-1137/abddae</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chinese+Physics+C&rft.atitle=The+NUBASE2020+evaluation+of+nuclear+properties&rft.volume=45&rft.issue=3&rft.pages=030001-22&rft.date=2021&rft_id=info%3Adoi%2F10.1088%2F1674-1137%2Fabddae&rft.aulast=Kondev&rft.aufirst=F.+G.&rft.au=Wang%2C+M.&rft.au=Huang%2C+W.+J.&rft.au=Naimi%2C+S.&rft.au=Audi%2C+G.&rft_id=https%3A%2F%2Fwww-nds.iaea.org%2Famdc%2Fame2020%2FNUBASE2020.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Aitken1990-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-Aitken1990_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Aitken1990_26-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Aitken1990_26-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Aitken1990_26-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Aitken1990_26-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Aitken1990_26-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Aitken1990_26-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Aitken1990_26-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, pp. 61–66.</span> </li> <li id="cite_note-renamed_from_12_on_20200701175743-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-renamed_from_12_on_20200701175743_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-renamed_from_12_on_20200701175743_27-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-renamed_from_12_on_20200701175743_27-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, pp. 92–95.</span> </li> <li id="cite_note-renamed_from_0_on_20200701175743-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-renamed_from_0_on_20200701175743_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-renamed_from_0_on_20200701175743_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, p. 42.</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEngelkemeirHamillInghramLibby1949" class="citation journal cs1">Engelkemeir, Antoinette G.; Hamill, W.H.; Inghram, Mark G.; Libby, W.F. (1949). "The Half-Life of Radiocarbon (C<sup>14</sup>)". <i>Physical Review</i>. <b>75</b> (12): 1825. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1949PhRv...75.1825E">1949PhRv...75.1825E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.75.1825">10.1103/PhysRev.75.1825</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=The+Half-Life+of+Radiocarbon+%28C%3Csup%3E14%3C%2Fsup%3E%29&rft.volume=75&rft.issue=12&rft.pages=1825&rft.date=1949&rft_id=info%3Adoi%2F10.1103%2FPhysRev.75.1825&rft_id=info%3Abibcode%2F1949PhRv...75.1825E&rft.aulast=Engelkemeir&rft.aufirst=Antoinette+G.&rft.au=Hamill%2C+W.H.&rft.au=Inghram%2C+Mark+G.&rft.au=Libby%2C+W.F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Johnson-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Johnson_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson,_Frederick1951" class="citation journal cs1">Johnson, Frederick (1951). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0081130000000873">"Introduction"</a>. <i>Memoirs of the Society for American Archaeology</i>. <b>8</b> (8): 1–19. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0081130000000873">10.1017/S0081130000000873</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/25146610">25146610</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Memoirs+of+the+Society+for+American+Archaeology&rft.atitle=Introduction&rft.volume=8&rft.issue=8&rft.pages=1-19&rft.date=1951&rft_id=info%3Adoi%2F10.1017%2FS0081130000000873&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F25146610%23id-name%3DJSTOR&rft.au=Johnson%2C+Frederick&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252FS0081130000000873&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Godwin-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Godwin_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGodwin,_H.1962" class="citation journal cs1">Godwin, H. (1962). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F195984a0">"Half-life of Radiocarbon"</a>. <i>Nature</i>. <b>195</b> (4845): 984. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1962Natur.195..984G">1962Natur.195..984G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F195984a0">10.1038/195984a0</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:27534222">27534222</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Half-life+of+Radiocarbon&rft.volume=195&rft.issue=4845&rft.pages=984&rft.date=1962&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A27534222%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2F195984a0&rft_id=info%3Abibcode%2F1962Natur.195..984G&rft.au=Godwin%2C+H.&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F195984a0&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Plicht-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-Plicht_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_Plicht,_J.Hogg,_A.2006" class="citation journal cs1">van der Plicht, J.; Hogg, A. (2006). <a rel="nofollow" class="external text" href="http://www.ees.nmt.edu/outside/courses/hyd558/downloads/Set_9-10_Carbon-14/van_der_Plicht2006.pdf">"A note on reporting radiocarbon"</a> <span class="cs1-format">(PDF)</span>. <i>Quaternary Geochronology</i>. <b>1</b> (4): 237–240. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006QuGeo...1..237V">2006QuGeo...1..237V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.quageo.2006.07.001">10.1016/j.quageo.2006.07.001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:128628228">128628228</a><span class="reference-accessdate">. Retrieved <span class="nowrap">9 December</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Quaternary+Geochronology&rft.atitle=A+note+on+reporting+radiocarbon&rft.volume=1&rft.issue=4&rft.pages=237-240&rft.date=2006&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A128628228%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.quageo.2006.07.001&rft_id=info%3Abibcode%2F2006QuGeo...1..237V&rft.au=van+der+Plicht%2C+J.&rft.au=Hogg%2C+A.&rft_id=http%3A%2F%2Fwww.ees.nmt.edu%2Foutside%2Fcourses%2Fhyd558%2Fdownloads%2FSet_9-10_Carbon-14%2Fvan_der_Plicht2006.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Taylor_287-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Taylor_287_33-0">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, p. 287.</span> </li> <li id="cite_note-INTCAL13-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-INTCAL13_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-INTCAL13_35-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReimerBardBaylissBeck2013" class="citation journal cs1">Reimer, Paula J.; Bard, Edouard; Bayliss, Alex; Beck, J. Warren; Blackwell, Paul G.; Ramsey, Christopher Bronk; Buck, Caitlin E.; Cheng, Hai; Edwards, R. Lawrence (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.2458%2Fazu_js_rc.55.16947">"IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP"</a>. <i>Radiocarbon</i>. <b>55</b> (4): 1869–1887. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013Radcb..55.1869R">2013Radcb..55.1869R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2458%2Fazu_js_rc.55.16947">10.2458/azu_js_rc.55.16947</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10289%2F8955">10289/8955</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=IntCal13+and+Marine13+Radiocarbon+Age+Calibration+Curves+0%E2%80%9350%2C000+Years+cal+BP&rft.volume=55&rft.issue=4&rft.pages=1869-1887&rft.date=2013&rft_id=info%3Ahdl%2F10289%2F8955&rft_id=info%3Adoi%2F10.2458%2Fazu_js_rc.55.16947&rft_id=info%3Abibcode%2F2013Radcb..55.1869R&rft.aulast=Reimer&rft.aufirst=Paula+J.&rft.au=Bard%2C+Edouard&rft.au=Bayliss%2C+Alex&rft.au=Beck%2C+J.+Warren&rft.au=Blackwell%2C+Paul+G.&rft.au=Ramsey%2C+Christopher+Bronk&rft.au=Buck%2C+Caitlin+E.&rft.au=Cheng%2C+Hai&rft.au=Edwards%2C+R.+Lawrence&rft_id=https%3A%2F%2Fdoi.org%2F10.2458%252Fazu_js_rc.55.16947&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Taylor_4-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Taylor_4_36-0">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, pp. 26–27.</span> </li> <li id="cite_note-GC_128-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-GC_128_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPost2001" class="citation book cs1">Post, Wilfred M. (2001). "Carbon cycle". In Goudie, Andrew; Cuff, David J. (eds.). <i>Encyclopedia of Global Change: Environmental Change and Human Society, Volume 1</i>. Oxford: Oxford University Press. pp. 128–129. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-514518-2" title="Special:BookSources/978-0-19-514518-2"><bdi>978-0-19-514518-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Carbon+cycle&rft.btitle=Encyclopedia+of+Global+Change%3A+Environmental+Change+and+Human+Society%2C+Volume+1&rft.place=Oxford&rft.pages=128-129&rft.pub=Oxford+University+Press&rft.date=2001&rft.isbn=978-0-19-514518-2&rft.aulast=Post&rft.aufirst=Wilfred+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Aitken2003-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Aitken2003_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAitken2003" class="citation book cs1">Aitken, Martin J. (2003). "Radiocarbon dating". In Ellis, Linda (ed.). <i>Archaeological Method and Theory</i>. New York: Garland Publishing. p. 506.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Radiocarbon+dating&rft.btitle=Archaeological+Method+and+Theory&rft.place=New+York&rft.pages=506&rft.pub=Garland+Publishing&rft.date=2003&rft.aulast=Aitken&rft.aufirst=Martin+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Warneck_690-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-Warneck_690_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWarneck2000" class="citation book cs1">Warneck, Peter (2000). <i>Chemistry of the Natural Atmosphere</i>. London: Academic Press. p. 690. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-735632-7" title="Special:BookSources/978-0-12-735632-7"><bdi>978-0-12-735632-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Chemistry+of+the+Natural+Atmosphere&rft.place=London&rft.pages=690&rft.pub=Academic+Press&rft.date=2000&rft.isbn=978-0-12-735632-7&rft.aulast=Warneck&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Ferronsky-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ferronsky_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerronskyPolyakov2012" class="citation book cs1">Ferronsky, V.I.; Polyakov, V.A. (2012). <i>Isotopes of the Earth's Hydrosphere</i>. New York: Springer. p. 372. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-94-007-2855-4" title="Special:BookSources/978-94-007-2855-4"><bdi>978-94-007-2855-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Isotopes+of+the+Earth%27s+Hydrosphere&rft.place=New+York&rft.pages=372&rft.pub=Springer&rft.date=2012&rft.isbn=978-94-007-2855-4&rft.aulast=Ferronsky&rft.aufirst=V.I.&rft.au=Polyakov%2C+V.A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Bowman1995-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bowman1995_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bowman1995_43-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bowman1995_43-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bowman1995_43-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Bowman1995_43-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Bowman1995_43-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Bowman1995_43-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 24–27.</span> </li> <li id="cite_note-Cronin2010-44"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cronin2010_44-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cronin2010_44-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Cronin2010_44-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCronin2010" class="citation book cs1">Cronin, Thomas M. (2010). <i>Paleoclimates: Understanding Climate Change Past and Present</i>. New York: Columbia University Press. p. 35. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-231-14494-0" title="Special:BookSources/978-0-231-14494-0"><bdi>978-0-231-14494-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Paleoclimates%3A+Understanding+Climate+Change+Past+and+Present&rft.place=New+York&rft.pages=35&rft.pub=Columbia+University+Press&rft.date=2010&rft.isbn=978-0-231-14494-0&rft.aulast=Cronin&rft.aufirst=Thomas+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Hua_etal-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hua_etal_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hua_etal_46-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuaBarbettiRakowski2013" class="citation journal cs1">Hua, Quan; Barbetti, Mike; Rakowski, Andrzej Z. (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.2458%2Fazu_js_rc.v55i2.16177">"Atmospheric Radiocarbon for the Period 1950–2010"</a>. <i>Radiocarbon</i>. <b>55</b> (4): 2059–2072. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013Radcb..55.2059H">2013Radcb..55.2059H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2458%2Fazu_js_rc.v55i2.16177">10.2458/azu_js_rc.v55i2.16177</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=Atmospheric+Radiocarbon+for+the+Period+1950%E2%80%932010&rft.volume=55&rft.issue=4&rft.pages=2059-2072&rft.date=2013&rft_id=info%3Adoi%2F10.2458%2Fazu_js_rc.v55i2.16177&rft_id=info%3Abibcode%2F2013Radcb..55.2059H&rft.aulast=Hua&rft.aufirst=Quan&rft.au=Barbetti%2C+Mike&rft.au=Rakowski%2C+Andrzej+Z.&rft_id=https%3A%2F%2Fdoi.org%2F10.2458%252Fazu_js_rc.v55i2.16177&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Bowman_16-47"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bowman_16_47-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bowman_16_47-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bowman_16_47-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bowman_16_47-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Bowman_16_47-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Bowman_16_47-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Bowman_16_47-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 16–20.</span> </li> <li id="cite_note-Suess_1970-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-Suess_1970_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Suess_1970_48-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Suess_1970_48-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuess1970" class="citation book cs1">Suess, H.E. (1970). "Bristlecone-pine calibration of the radiocarbon time-scale 5200 B.C. to the present". In Olsson, Ingrid U. (ed.). <i>Radiocarbon Variations and Absolute Chronology</i>. New York: John Wiley & Sons. p. 303.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Bristlecone-pine+calibration+of+the+radiocarbon+time-scale+5200+B.C.+to+the+present&rft.btitle=Radiocarbon+Variations+and+Absolute+Chronology&rft.place=New+York&rft.pages=303&rft.pub=John+Wiley+%26+Sons&rft.date=1970&rft.aulast=Suess&rft.aufirst=H.E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Taylor2014-49"><span class="mw-cite-backlink">^ <a href="#cite_ref-Taylor2014_49-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Taylor2014_49-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Taylor2014_49-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, pp. 50–52.</span> </li> <li id="cite_note-renamed_from_18_on_20200701175743-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-renamed_from_18_on_20200701175743_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-renamed_from_18_on_20200701175743_50-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-renamed_from_18_on_20200701175743_50-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-renamed_from_18_on_20200701175743_50-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 43–49.</span> </li> <li id="cite_note-Aitken_71-51"><span class="mw-cite-backlink">^ <a href="#cite_ref-Aitken_71_51-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Aitken_71_51-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, pp. 71–72.</span> </li> <li id="cite_note-PTBT-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-PTBT_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://2009-2017.state.gov/t/isn/4797.htm">"Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water"</a>. US Department of State<span class="reference-accessdate">. Retrieved <span class="nowrap">2 February</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Treaty+Banning+Nuclear+Weapon+Tests+in+the+Atmosphere%2C+in+Outer+Space+and+Under+Water&rft.pub=US+Department+of+State&rft_id=https%3A%2F%2F2009-2017.state.gov%2Ft%2Fisn%2F4797.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Bowman_20-53"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bowman_20_53-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bowman_20_53-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bowman_20_53-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bowman_20_53-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Bowman_20_53-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Bowman_20_53-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Bowman_20_53-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 20–23.</span> </li> <li id="cite_note-Leng_246-54"><span class="mw-cite-backlink">^ <a href="#cite_ref-Leng_246_54-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Leng_246_54-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Leng_246_54-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Leng_246_54-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Leng_246_54-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Leng_246_54-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaslinSwann2006" class="citation book cs1">Maslin, Mark A.; Swann, George E.A. (2006). "Isotopes in marine sediments". In Leng, Melanie J. (ed.). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/isotopespalaeoen00leng"><i>Isotopes in Palaeoenvironmental Research</i></a></span>. Dordrecht: Springer. p. 246. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F1-4020-2504-1_06">10.1007/1-4020-2504-1_06</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-2503-7" title="Special:BookSources/978-1-4020-2503-7"><bdi>978-1-4020-2503-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Isotopes+in+marine+sediments&rft.btitle=Isotopes+in+Palaeoenvironmental+Research&rft.place=Dordrecht&rft.pages=246&rft.pub=Springer&rft.date=2006&rft_id=info%3Adoi%2F10.1007%2F1-4020-2504-1_06&rft.isbn=978-1-4020-2503-7&rft.aulast=Maslin&rft.aufirst=Mark+A.&rft.au=Swann%2C+George+E.A.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fisotopespalaeoen00leng&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, p. 125.</span> </li> <li id="cite_note-Dass-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dass_57-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDass2007" class="citation book cs1">Dass, Chhabil (2007). <i>Fundamentals of Contemporary Mass Spectrometry</i>. Hoboken, New Jersey: John Wiley & Sons. p. 276. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-68229-5" title="Special:BookSources/978-0-471-68229-5"><bdi>978-0-471-68229-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Contemporary+Mass+Spectrometry&rft.place=Hoboken%2C+New+Jersey&rft.pages=276&rft.pub=John+Wiley+%26+Sons&rft.date=2007&rft.isbn=978-0-471-68229-5&rft.aulast=Dass&rft.aufirst=Chhabil&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Schoeninger-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-Schoeninger_59-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchoeninger2010" class="citation book cs1"><a href="/wiki/Margaret_Schoeninger" title="Margaret Schoeninger">Schoeninger, Margaret J.</a> (2010). <a rel="nofollow" class="external text" href="https://archive.org/details/companiontobiolo00lars/page/n473">"Diet reconstruction and ecology using stable isotope ratios"</a>. In Larsen, Clark Spencer (ed.). <i>A Companion to Biological Anthropology</i>. Oxford: Blackwell. p. 446. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9781444320039.ch25">10.1002/9781444320039.ch25</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4051-8900-2" title="Special:BookSources/978-1-4051-8900-2"><bdi>978-1-4051-8900-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Diet+reconstruction+and+ecology+using+stable+isotope+ratios&rft.btitle=A+Companion+to+Biological+Anthropology&rft.place=Oxford&rft.pages=446&rft.pub=Blackwell&rft.date=2010&rft_id=info%3Adoi%2F10.1002%2F9781444320039.ch25&rft.isbn=978-1-4051-8900-2&rft.aulast=Schoeninger&rft.aufirst=Margaret+J.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcompaniontobiolo00lars%2Fpage%2Fn473&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Libby1965-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-Libby1965_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Libby1965_60-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#Libby">Libby (1965)</a>, p. 6.</span> </li> <li id="cite_note-Hoggetal-61"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hoggetal_61-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hoggetal_61-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoggHuaBlackwellNiu2013" class="citation journal cs1">Hogg, A.G.; Hua, Q.; Blackwell, P.G.; Niu, M.; Buck, C.E.; Guilderson, T.P.; Heaton, T.J.; Palmer, J.G.; Reimer, P.J.; Reimer, R.W.; Turney, C.S.M.; Zimmerman, S.R.H. (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.2458%2Fazu_js_rc.55.16783">"SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP"</a>. <i>Radiocarbon</i>. <b>55</b> (4): 1889–1903. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013Radcb..55.1889H">2013Radcb..55.1889H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2458%2Fazu_js_rc.55.16783">10.2458/azu_js_rc.55.16783</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10289%2F7799">10289/7799</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:59269731">59269731</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=SHCal13+Southern+Hemisphere+Calibration%2C+0%E2%80%9350%2C000+Years+cal+BP&rft.volume=55&rft.issue=4&rft.pages=1889-1903&rft.date=2013&rft_id=info%3Ahdl%2F10289%2F7799&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A59269731%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.2458%2Fazu_js_rc.55.16783&rft_id=info%3Abibcode%2F2013Radcb..55.1889H&rft.aulast=Hogg&rft.aufirst=A.G.&rft.au=Hua%2C+Q.&rft.au=Blackwell%2C+P.G.&rft.au=Niu%2C+M.&rft.au=Buck%2C+C.E.&rft.au=Guilderson%2C+T.P.&rft.au=Heaton%2C+T.J.&rft.au=Palmer%2C+J.G.&rft.au=Reimer%2C+P.J.&rft.au=Reimer%2C+R.W.&rft.au=Turney%2C+C.S.M.&rft.au=Zimmerman%2C+S.R.H.&rft_id=https%3A%2F%2Fdoi.org%2F10.2458%252Fazu_js_rc.55.16783&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, pp. 74–75.</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPasquier-CardinAllardFerreiraHatte1999" class="citation journal cs1">Pasquier-Cardin, Aline; Allard, Patrick; Ferreira, Teresa; Hatte, Christine; Coutinho, Rui; Fontugne, Michel; Jaudon, Michel (1999). "Magma-derived <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> emissions recorded in <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> and <span class="chemf nowrap"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.5em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">13</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>C</span> content of plants growing in Furnas caldera, Azores". <i>Journal of Volcanology and Geothermal Research</i>. <b>92</b> (1–2): 200–201. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0377-0273%2899%2900076-1">10.1016/S0377-0273(99)00076-1</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Volcanology+and+Geothermal+Research&rft.atitle=Magma-derived+%3Cspan+class%3D%22chemf+nowrap%22%3E%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A0.5em%3Bline-height%3A1em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E14%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3ECO%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A-0.4em%3Bline-height%3A1em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E2%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3E%3C%2Fspan%3E+emissions+recorded+in+%3Cspan+class%3D%22chemf+nowrap%22%3E%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A0.5em%3Bline-height%3A1em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E14%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3EC%3C%2Fspan%3E+and+%3Cspan+class%3D%22chemf+nowrap%22%3E%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A0.5em%3Bline-height%3A1em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E13%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3EC%3C%2Fspan%3E+content+of+plants+growing+in+Furnas+caldera%2C+Azores&rft.volume=92&rft.issue=1%E2%80%932&rft.pages=200-201&rft.date=1999&rft_id=info%3Adoi%2F10.1016%2FS0377-0273%2899%2900076-1&rft.aulast=Pasquier-Cardin&rft.aufirst=Aline&rft.au=Allard%2C+Patrick&rft.au=Ferreira%2C+Teresa&rft.au=Hatte%2C+Christine&rft.au=Coutinho%2C+Rui&rft.au=Fontugne%2C+Michel&rft.au=Jaudon%2C+Michel&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, pp. 85–86.</span> </li> <li id="cite_note-Bowman_27-66"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bowman_27_66-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bowman_27_66-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bowman_27_66-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bowman_27_66-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Bowman_27_66-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Bowman_27_66-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 27–30.</span> </li> <li id="cite_note-AitkenWashing-67"><span class="mw-cite-backlink">^ <a href="#cite_ref-AitkenWashing_67-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AitkenWashing_67-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-AitkenWashing_67-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-AitkenWashing_67-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-AitkenWashing_67-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-AitkenWashing_67-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, pp. 86–89.</span> </li> <li id="cite_note-silar-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-silar_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFŠilar2004" class="citation book cs1">Šilar, Jan (2004). "Application of environmental radionuclides in radiochronology: Radiocarbon". In Tykva, Richard; Berg, Dieter (eds.). <i>Man-made and Natural Radioactivity in Environmental Pollution and Radiochronology</i>. Dordrecht: Kluwer Academic Publishers. p. 166. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-1860-2" title="Special:BookSources/978-1-4020-1860-2"><bdi>978-1-4020-1860-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Application+of+environmental+radionuclides+in+radiochronology%3A+Radiocarbon&rft.btitle=Man-made+and+Natural+Radioactivity+in+Environmental+Pollution+and+Radiochronology&rft.place=Dordrecht&rft.pages=166&rft.pub=Kluwer+Academic+Publishers&rft.date=2004&rft.isbn=978-1-4020-1860-2&rft.aulast=%C5%A0ilar&rft.aufirst=Jan&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 37–42.</span> </li> <li id="cite_note-BowmanMeasure-70"><span class="mw-cite-backlink">^ <a href="#cite_ref-BowmanMeasure_70-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BowmanMeasure_70-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-BowmanMeasure_70-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-BowmanMeasure_70-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-BowmanMeasure_70-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-BowmanMeasure_70-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-BowmanMeasure_70-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-BowmanMeasure_70-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 31–37.</span> </li> <li id="cite_note-Aitken_76-71"><span class="mw-cite-backlink">^ <a href="#cite_ref-Aitken_76_71-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Aitken_76_71-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Aitken_76_71-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Aitken_76_71-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Aitken_76_71-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, pp. 76–78.</span> </li> <li id="cite_note-Trumbore96-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-Trumbore96_72-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrumbore1996" class="citation book cs1"><a href="/wiki/Susan_Trumbore" title="Susan Trumbore">Trumbore, Susan E.</a> (1996). "Applications of accelerator mass spectrometry to soil science". In Boutton, Thomas W.; Yamasaki, Shin-ichi (eds.). <i>Mass Spectrometry of Soils</i>. New York: Marcel Dekker. p. 318. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8247-9699-0" title="Special:BookSources/978-0-8247-9699-0"><bdi>978-0-8247-9699-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Applications+of+accelerator+mass+spectrometry+to+soil+science&rft.btitle=Mass+Spectrometry+of+Soils&rft.place=New+York&rft.pages=318&rft.pub=Marcel+Dekker&rft.date=1996&rft.isbn=978-0-8247-9699-0&rft.aulast=Trumbore&rft.aufirst=Susan+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, pp. 103–104.</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><a href="#Walker">Walker (2005)</a>, p. 20.</span> </li> <li id="cite_note-renamed_from_14_on_20200701175743-75"><span class="mw-cite-backlink">^ <a href="#cite_ref-renamed_from_14_on_20200701175743_75-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-renamed_from_14_on_20200701175743_75-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#Walker">Walker (2005)</a>, p. 23.</span> </li> <li id="cite_note-Killick-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-Killick_76-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKillick2014" class="citation book cs1">Killick, David (2014). "Using evidence from natural sciences in archaeology". In Chapman, Robert; Alison, Wylie (eds.). <i>Material Evidence: Learning From Archaeological Practice</i>. Abingdon, UK: Routledge. p. 166. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-415-83745-3" title="Special:BookSources/978-0-415-83745-3"><bdi>978-0-415-83745-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Using+evidence+from+natural+sciences+in+archaeology&rft.btitle=Material+Evidence%3A+Learning+From+Archaeological+Practice&rft.place=Abingdon%2C+UK&rft.pages=166&rft.pub=Routledge&rft.date=2014&rft.isbn=978-0-415-83745-3&rft.aulast=Killick&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Malainey-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-Malainey_77-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalainey2010" class="citation book cs1">Malainey, Mary E. (2010). <i>A Consumer's Guide to Archaeological Science</i>. New York: Springer. p. 96. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4419-5704-7" title="Special:BookSources/978-1-4419-5704-7"><bdi>978-1-4419-5704-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Consumer%27s+Guide+to+Archaeological+Science&rft.place=New+York&rft.pages=96&rft.pub=Springer&rft.date=2010&rft.isbn=978-1-4419-5704-7&rft.aulast=Malainey&rft.aufirst=Mary+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-th-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-th_78-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTheodórsson1996" class="citation book cs1">Theodórsson, Páll (1996). <i>Measurement of Weak Radioactivity</i>. Singapore: World Scientific Publishing. p. 24. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-9810223151" title="Special:BookSources/978-9810223151"><bdi>978-9810223151</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Measurement+of+Weak+Radioactivity&rft.place=Singapore&rft.pages=24&rft.pub=World+Scientific+Publishing&rft.date=1996&rft.isbn=978-9810223151&rft.aulast=Theod%C3%B3rsson&rft.aufirst=P%C3%A1ll&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-a2012-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-a2012_79-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL'AnnunziataKessler2012" class="citation book cs1">L'Annunziata, Michael F.; Kessler, Michael J. (2012). "Liquid scintillation analysis: principles and practice". In L'Annunziata, Michael F. (ed.). <i>Handbook of Radioactivity Analysis</i> (3rd ed.). Oxford: Academic Press. pp. 423–573 [424]. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fb978-012436603-9%2F50010-7">10.1016/b978-012436603-9/50010-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-384873-4" title="Special:BookSources/978-0-12-384873-4"><bdi>978-0-12-384873-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Liquid+scintillation+analysis%3A+principles+and+practice&rft.btitle=Handbook+of+Radioactivity+Analysis&rft.place=Oxford&rft.pages=423-573+424&rft.edition=3rd&rft.pub=Academic+Press&rft.date=2012&rft_id=info%3Adoi%2F10.1016%2Fb978-012436603-9%2F50010-7&rft.isbn=978-0-12-384873-4&rft.aulast=L%27Annunziata&rft.aufirst=Michael+F.&rft.au=Kessler%2C+Michael+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-er-80"><span class="mw-cite-backlink">^ <a href="#cite_ref-er_80-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-er_80-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEriksson_StenströmSkogGeorgiadouGenberg2011" class="citation book cs1">Eriksson Stenström, Kristina; Skog, Göran; Georgiadou, Elisavet; Genberg, Johan; Johansson, Anette (2011). <a rel="nofollow" class="external text" href="http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=2173656&fileOId=2173661"><i>A guide to radiocarbon units and calculations</i></a>. Lund: Lund University. p. 3.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+guide+to+radiocarbon+units+and+calculations&rft.place=Lund&rft.pages=3&rft.pub=Lund+University&rft.date=2011&rft.aulast=Eriksson+Stenstr%C3%B6m&rft.aufirst=Kristina&rft.au=Skog%2C+G%C3%B6ran&rft.au=Georgiadou%2C+Elisavet&rft.au=Genberg%2C+Johan&rft.au=Johansson%2C+Anette&rft_id=http%3A%2F%2Flup.lub.lu.se%2Fluur%2Fdownload%3Ffunc%3DdownloadFile%26recordOId%3D2173656%26fileOId%3D2173661&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-renamed_from_9_on_20200701175743-81"><span class="mw-cite-backlink">^ <a href="#cite_ref-renamed_from_9_on_20200701175743_81-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-renamed_from_9_on_20200701175743_81-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, pp. 82–85.</span> </li> <li id="cite_note-Wiebert-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wiebert_82-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWiebert1995" class="citation book cs1">Wiebert, Anders (1995). <i>Development of the Lund AMS System and the Evaluation of a New AMS Detection Technique</i>. Lund: University of Lund. p. 16.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Development+of+the+Lund+AMS+System+and+the+Evaluation+of+a+New+AMS+Detection+Technique&rft.place=Lund&rft.pages=16&rft.pub=University+of+Lund&rft.date=1995&rft.aulast=Wiebert&rft.aufirst=Anders&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Tuniz-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-Tuniz_83-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTunizZoppiBarbetti2004" class="citation book cs1">Tuniz, C.; Zoppi, U.; Barbetti, M. (2004). "Radionuclide dating in archaeology by accelerator mass spectrometry". In Martini, M.; Milazzo, M.; Piacentini, M. (eds.). <i>Physics Methods in Archaeometry</i>. Amsterdam: IOS Press. p. 395. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-58603-424-5" title="Special:BookSources/978-1-58603-424-5"><bdi>978-1-58603-424-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Radionuclide+dating+in+archaeology+by+accelerator+mass+spectrometry&rft.btitle=Physics+Methods+in+Archaeometry&rft.place=Amsterdam&rft.pages=395&rft.pub=IOS+Press&rft.date=2004&rft.isbn=978-1-58603-424-5&rft.aulast=Tuniz&rft.aufirst=C.&rft.au=Zoppi%2C+U.&rft.au=Barbetti%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-renamed_from_11_on_20200701175743-84"><span class="mw-cite-backlink">^ <a href="#cite_ref-renamed_from_11_on_20200701175743_84-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-renamed_from_11_on_20200701175743_84-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-renamed_from_11_on_20200701175743_84-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcNicholJullBurr2001" class="citation journal cs1">McNichol, A.P.; Jull, A.T.S.; Burr, G.S. (2001). <a rel="nofollow" class="external text" href="https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/3969/3394">"Converting AMS data to radiocarbon values: considerations and conventions"</a>. <i>Radiocarbon</i>. <b>43</b> (2A): 313–320. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001Radcb..43..313M">2001Radcb..43..313M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0033822200038169">10.1017/S0033822200038169</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=Converting+AMS+data+to+radiocarbon+values%3A+considerations+and+conventions&rft.volume=43&rft.issue=2A&rft.pages=313-320&rft.date=2001&rft_id=info%3Adoi%2F10.1017%2FS0033822200038169&rft_id=info%3Abibcode%2F2001Radcb..43..313M&rft.aulast=McNichol&rft.aufirst=A.P.&rft.au=Jull%2C+A.T.S.&rft.au=Burr%2C+G.S.&rft_id=https%3A%2F%2Fjournals.uair.arizona.edu%2Findex.php%2Fradiocarbon%2Farticle%2Fview%2F3969%2F3394&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Terasmae-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-Terasmae_85-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTerasmae1984" class="citation book cs1">Terasmae, J. (1984). "Radiocarbon dating: some problems and potential developments". In Mahaney, W.C. (ed.). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/quaternarydating00maha"><i>Quaternary Dating Methods</i></a></span>. Amsterdam: Elsevier. p. 5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-42392-4" title="Special:BookSources/978-0-444-42392-4"><bdi>978-0-444-42392-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Radiocarbon+dating%3A+some+problems+and+potential+developments&rft.btitle=Quaternary+Dating+Methods&rft.place=Amsterdam&rft.pages=5&rft.pub=Elsevier&rft.date=1984&rft.isbn=978-0-444-42392-4&rft.aulast=Terasmae&rft.aufirst=J.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fquaternarydating00maha&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-a2007-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-a2007_86-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL'Annunziata2007" class="citation book cs1">L'Annunziata, Michael F. (2007). <i>Radioactivity: Introduction and History</i>. Amsterdam: Elsevier. p. 528. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-52715-8" title="Special:BookSources/978-0-444-52715-8"><bdi>978-0-444-52715-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Radioactivity%3A+Introduction+and+History&rft.place=Amsterdam&rft.pages=528&rft.pub=Elsevier&rft.date=2007&rft.isbn=978-0-444-52715-8&rft.aulast=L%27Annunziata&rft.aufirst=Michael+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-renamed_from_13_on_20200701175743-87"><span class="mw-cite-backlink">^ <a href="#cite_ref-renamed_from_13_on_20200701175743_87-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-renamed_from_13_on_20200701175743_87-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.whoi.edu/nosams/page.do?pid=40146">"Radiocarbon Data Calculations: NOSAMS"</a>. Woods Hole Oceanographic Institution. 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">27 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Radiocarbon+Data+Calculations%3A+NOSAMS&rft.pub=Woods+Hole+Oceanographic+Institution&rft.date=2007&rft_id=http%3A%2F%2Fwww.whoi.edu%2Fnosams%2Fpage.do%3Fpid%3D40146&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Bowman_38-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bowman_38_88-0">^</a></b></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 38–39.</span> </li> <li id="cite_note-t1987-125-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-t1987-125_89-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor1987" class="citation book cs1">Taylor, R.E. (1987). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/radiocarbondatin00tayl"><i>Radiocarbon Dating</i></a></span>. London: Academic Press. pp. 125–126. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-433663-6" title="Special:BookSources/978-0-12-433663-6"><bdi>978-0-12-433663-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Radiocarbon+Dating&rft.place=London&rft.pages=125-126&rft.pub=Academic+Press&rft.date=1987&rft.isbn=978-0-12-433663-6&rft.aulast=Taylor&rft.aufirst=R.E.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fradiocarbondatin00tayl&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 40–41.</span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, p. 155.</span> </li> <li id="cite_note-Aitken_66-92"><span class="mw-cite-backlink">^ <a href="#cite_ref-Aitken_66_92-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Aitken_66_92-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, p. 66–67.</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, p. 59.</span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, pp. 53–54.</span> </li> <li id="cite_note-:0-95"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_95-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_95-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReimer2020" class="citation journal cs1">Reimer, P.J.; et al. (2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FRDC.2020.41">"The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP)"</a>. <i>Radiocarbon</i>. <b>62</b> (4): 725–757. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Radcb..62..725R">2020Radcb..62..725R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FRDC.2020.41">10.1017/RDC.2020.41</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10023%2F20465">10023/20465</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=The+IntCal20+Northern+Hemisphere+Radiocarbon+Age+Calibration+Curve+%280%E2%80%9355+cal+kBP%29&rft.volume=62&rft.issue=4&rft.pages=725-757&rft.date=2020&rft_id=info%3Ahdl%2F10023%2F20465&rft_id=info%3Adoi%2F10.1017%2FRDC.2020.41&rft_id=info%3Abibcode%2F2020Radcb..62..725R&rft.aulast=Reimer&rft.aufirst=P.J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252FRDC.2020.41&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_Plicht2020" class="citation journal cs1">van der Plicht, J; et al. (2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FRDC.2020.22">"Recent Developments in Calibration for Archaeological and Environmental Samples"</a>. <i>Radiocarbon</i>. <b>62</b> (4): 1095. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Radcb..62.1095V">2020Radcb..62.1095V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FRDC.2020.22">10.1017/RDC.2020.22</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/11585%2F770537">11585/770537</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:219087775">219087775</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=Recent+Developments+in+Calibration+for+Archaeological+and+Environmental+Samples&rft.volume=62&rft.issue=4&rft.pages=1095&rft.date=2020&rft_id=info%3Ahdl%2F11585%2F770537&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A219087775%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1017%2FRDC.2020.22&rft_id=info%3Abibcode%2F2020Radcb..62.1095V&rft.aulast=van+der+Plicht&rft.aufirst=J&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252FRDC.2020.22&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoggHeatonHuaPalmer2020" class="citation journal cs1">Hogg, Alan G.; Heaton, Timothy J.; Hua, Quan; Palmer, Jonathan G.; Turney, Chris SM; Southon, John; Bayliss, Alex; Blackwell, Paul G.; Boswijk, Gretel; Ramsey, Christopher Bronk; Pearson, Charlotte (August 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FRDC.2020.59">"SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP"</a>. <i>Radiocarbon</i>. <b>62</b> (4): 759–778. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Radcb..62..759H">2020Radcb..62..759H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FRDC.2020.59">10.1017/RDC.2020.59</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1893%2F31560">1893/31560</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=SHCal20+Southern+Hemisphere+Calibration%2C+0%E2%80%9355%2C000+Years+cal+BP&rft.volume=62&rft.issue=4&rft.pages=759-778&rft.date=2020-08&rft_id=info%3Ahdl%2F1893%2F31560&rft_id=info%3Adoi%2F10.1017%2FRDC.2020.59&rft_id=info%3Abibcode%2F2020Radcb..62..759H&rft.aulast=Hogg&rft.aufirst=Alan+G.&rft.au=Heaton%2C+Timothy+J.&rft.au=Hua%2C+Quan&rft.au=Palmer%2C+Jonathan+G.&rft.au=Turney%2C+Chris+SM&rft.au=Southon%2C+John&rft.au=Bayliss%2C+Alex&rft.au=Blackwell%2C+Paul+G.&rft.au=Boswijk%2C+Gretel&rft.au=Ramsey%2C+Christopher+Bronk&rft.au=Pearson%2C+Charlotte&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252FRDC.2020.59&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeatonKöhlerButzinBard2020" class="citation journal cs1">Heaton, Timothy J.; Köhler, Peter; Butzin, Martin; Bard, Edouard; Reimer, Ron W.; Austin, William E. N.; Ramsey, Christopher Bronk; Grootes, Pieter M.; Hughen, Konrad A.; Kromer, Bernd; Reimer, Paula J. (August 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FRDC.2020.68">"Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)"</a>. <i>Radiocarbon</i>. <b>62</b> (4): 779–820. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Radcb..62..779H">2020Radcb..62..779H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FRDC.2020.68">10.1017/RDC.2020.68</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10023%2F20464">10023/20464</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=Marine20%E2%80%94The+Marine+Radiocarbon+Age+Calibration+Curve+%280%E2%80%9355%2C000+cal+BP%29&rft.volume=62&rft.issue=4&rft.pages=779-820&rft.date=2020-08&rft_id=info%3Ahdl%2F10023%2F20464&rft_id=info%3Adoi%2F10.1017%2FRDC.2020.68&rft_id=info%3Abibcode%2F2020Radcb..62..779H&rft.aulast=Heaton&rft.aufirst=Timothy+J.&rft.au=K%C3%B6hler%2C+Peter&rft.au=Butzin%2C+Martin&rft.au=Bard%2C+Edouard&rft.au=Reimer%2C+Ron+W.&rft.au=Austin%2C+William+E.+N.&rft.au=Ramsey%2C+Christopher+Bronk&rft.au=Grootes%2C+Pieter+M.&rft.au=Hughen%2C+Konrad+A.&rft.au=Kromer%2C+Bernd&rft.au=Reimer%2C+Paula+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252FRDC.2020.68&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Walker2005-99"><span class="mw-cite-backlink">^ <a href="#cite_ref-Walker2005_99-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Walker2005_99-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#Walker">Walker (2005)</a>, pp. 35–37.</span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuildersonReimerBrown2005" class="citation journal cs1">Guilderson, Tom; Reimer, Paula; Brown, Tom (21 January 2005). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3840039">"The Boon and Bane of Radiocarbon Dating"</a>. <i>Science</i>. <b>307</b> (5708): 363. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1104164">10.1126/science.1104164</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3840039">3840039</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15661996">15661996</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:128466798">128466798</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=The+Boon+and+Bane+of+Radiocarbon+Dating&rft.volume=307&rft.issue=5708&rft.pages=363&rft.date=2005-01-21&rft_id=info%3Apmid%2F15661996&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A128466798%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3840039%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1126%2Fscience.1104164&rft.aulast=Guilderson&rft.aufirst=Tom&rft.au=Reimer%2C+Paula&rft.au=Brown%2C+Tom&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3840039&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><a href="#Aitken1990">Aitken (1990)</a>, pp. 103–105.</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><a href="#Walker">Walker (2005)</a>, pp. 207–209.</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, pp. 148–149.</span> </li> <li id="cite_note-Radiocarbon_Authors-105"><span class="mw-cite-backlink">^ <a href="#cite_ref-Radiocarbon_Authors_105-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Radiocarbon_Authors_105-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Radiocarbon_Authors_105-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130810014457/http://www.radiocarbon.org/Authors/author-info.pdf">"Radiocarbon: Information for authors"</a> <span class="cs1-format">(PDF)</span>. <i>Radiocarbon</i>. University of Arizona. May 25, 2011. pp. 5–7. Archived from <a rel="nofollow" class="external text" href="http://www.radiocarbon.org/Authors/author-info.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 10 August 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">1 January</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Radiocarbon&rft.atitle=Radiocarbon%3A+Information+for+authors&rft.pages=5-7&rft.date=2011-05-25&rft_id=http%3A%2F%2Fwww.radiocarbon.org%2FAuthors%2Fauthor-info.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, p. 29.</span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMillard2014" class="citation journal cs1">Millard, Andrew R. (2014). <a rel="nofollow" class="external text" href="http://dro.dur.ac.uk/21052/1/21052.pdf">"Conventions for reporting radiocarbon determinations"</a> <span class="cs1-format">(PDF)</span>. <i>Radiocarbon</i>. <b>56</b> (2): 555–559. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014Radcb..56..555M">2014Radcb..56..555M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2458%2F56.17455">10.2458/56.17455</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiocarbon&rft.atitle=Conventions+for+reporting+radiocarbon+determinations&rft.volume=56&rft.issue=2&rft.pages=555-559&rft.date=2014&rft_id=info%3Adoi%2F10.2458%2F56.17455&rft_id=info%3Abibcode%2F2014Radcb..56..555M&rft.aulast=Millard&rft.aufirst=Andrew+R.&rft_id=http%3A%2F%2Fdro.dur.ac.uk%2F21052%2F1%2F21052.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-Mook-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mook_108-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMookWaterbolk1985" class="citation book cs1">Mook, W.G.; <a href="/wiki/Tjalling_Waterbolk" title="Tjalling Waterbolk">Waterbolk, H.T.</a> (1985). <i>Handbooks for Archaeologists: No. 3: Radiocarbon Dating</i>. Strasbourg: European Science Foundation. pp. 48–49. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-2-903148-44-7" title="Special:BookSources/978-2-903148-44-7"><bdi>978-2-903148-44-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbooks+for+Archaeologists%3A+No.+3%3A+Radiocarbon+Dating&rft.place=Strasbourg&rft.pages=48-49&rft.pub=European+Science+Foundation&rft.date=1985&rft.isbn=978-2-903148-44-7&rft.aulast=Mook&rft.aufirst=W.G.&rft.au=Waterbolk%2C+H.T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHighamWoodRamseyBrock2014" class="citation journal cs1">Higham, T.; et al. (2014). "The timing and spatiotemporal patterning of Neanderthal disappearance". <i>Nature</i>. <b>512</b> (7514): 306–309. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014Natur.512..306H">2014Natur.512..306H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature13621">10.1038/nature13621</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25143113">25143113</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205239973">205239973</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=The+timing+and+spatiotemporal+patterning+of+Neanderthal+disappearance&rft.volume=512&rft.issue=7514&rft.pages=306-309&rft.date=2014&rft_id=info%3Adoi%2F10.1038%2Fnature13621&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205239973%23id-name%3DS2CID&rft_id=info%3Apmid%2F25143113&rft_id=info%3Abibcode%2F2014Natur.512..306H&rft.aulast=Higham&rft.aufirst=T.&rft.au=Wood%2C+Rachel&rft.au=Ramsey%2C+Christopher+Bronk&rft.au=Brock%2C+Fiona&rft.au=Basell%2C+Laura&rft.au=Camps%2C+Marta&rft.au=Arrizabalaga%2C+Alvaro&rft.au=Baena%2C+Javier&rft.au=Barroso-Ru%C3%ADz%2C+Cecillio&rft.au=Bergman%2C+Christopher&rft.au=Boitard%2C+Coralie&rft.au=Boscato%2C+Paolo&rft.au=Caparr%C3%B3s%2C+Miguel&rft.au=Conard%2C+Nicholas+J.&rft.au=Draily%2C+Christelle&rft.au=Froment%2C+Alain&rft.au=Galv%C3%A1n%2C+Bertila&rft.au=Gambassini%2C+Paolo&rft.au=Garcia-Moreno%2C+Alejandro&rft.au=Grimaldi%2C+Stefano&rft.au=Haesaerts%2C+Paul&rft.au=Holt%2C+Brigitte&rft.au=Iriarte-Chiapusso%2C+Maria-Jose&rft.au=Jelinek%2C+Arthur&rft.au=Jord%C3%A1+Pardo%2C+Jes%C3%BAs+F.&rft.au=Ma%C3%ADllo-Fern%C3%A1ndez%2C+Jos%C3%A9-Manuel&rft.au=Marom%2C+Anat&rft.au=Maroto%2C+Juli%C3%A0&rft.au=Men%C3%A9ndez%2C+Mario&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-renamed_from_17_on_20200701175743-110"><span class="mw-cite-backlink">^ <a href="#cite_ref-renamed_from_17_on_20200701175743_110-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-renamed_from_17_on_20200701175743_110-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#Bowman">Bowman (1995)</a>, pp. 53–54.</span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGodwin1961" class="citation journal cs1">Godwin, Harry (1961). "The Croonian Lecture: Radiocarbon dating and Quaternary history in Britain". <i>Proceedings of the Royal Society of London B: Biological Sciences</i>. <b>153</b> (952): 287–320. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1961RSPSB.153..287G">1961RSPSB.153..287G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspb.1961.0001">10.1098/rspb.1961.0001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:140692260">140692260</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London+B%3A+Biological+Sciences&rft.atitle=The+Croonian+Lecture%3A+Radiocarbon+dating+and+Quaternary+history+in+Britain&rft.volume=153&rft.issue=952&rft.pages=287-320&rft.date=1961&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A140692260%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1098%2Frspb.1961.0001&rft_id=info%3Abibcode%2F1961RSPSB.153..287G&rft.aulast=Godwin&rft.aufirst=Harry&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeanGarnettSpyrakosBillett2019" class="citation journal cs1">Dean, Joshua F.; Garnett, Mark H.; Spyrakos, Evangelos; Billett, Michael F. (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2018JG004650">"The potential hidden age of dissolved organic carbon exported by peatland streams"</a>. <i>Journal of Geophysical Research: Biogeosciences</i>. <b>124</b> (2): 328–341. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019JGRG..124..328D">2019JGRG..124..328D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2018JG004650">10.1029/2018JG004650</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1893%2F28684">1893/28684</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Geophysical+Research%3A+Biogeosciences&rft.atitle=The+potential+hidden+age+of+dissolved+organic+carbon+exported+by+peatland+streams&rft.volume=124&rft.issue=2&rft.pages=328-341&rft.date=2019&rft_id=info%3Ahdl%2F1893%2F28684&rft_id=info%3Adoi%2F10.1029%2F2018JG004650&rft_id=info%3Abibcode%2F2019JGRG..124..328D&rft.aulast=Dean&rft.aufirst=Joshua+F.&rft.au=Garnett%2C+Mark+H.&rft.au=Spyrakos%2C+Evangelos&rft.au=Billett%2C+Michael+F.&rft_id=https%3A%2F%2Fdoi.org%2F10.1029%252F2018JG004650&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFElderXuWalkerSchnell2018" class="citation journal cs1">Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John W.; Gaglioti, Benjamin V. (2018). <a rel="nofollow" class="external text" href="https://escholarship.org/uc/item/9q0086pg">"Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon"</a>. <i>Nature Climate Change</i>. <b>8</b> (2): 166–171. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NatCC...8..166E">2018NatCC...8..166E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41558-017-0066-9">10.1038/s41558-017-0066-9</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:90232027">90232027</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Climate+Change&rft.atitle=Greenhouse+gas+emissions+from+diverse+Arctic+Alaskan+lakes+are+dominated+by+young+carbon&rft.volume=8&rft.issue=2&rft.pages=166-171&rft.date=2018&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A90232027%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fs41558-017-0066-9&rft_id=info%3Abibcode%2F2018NatCC...8..166E&rft.aulast=Elder&rft.aufirst=Clayton+D.&rft.au=Xu%2C+Xiaomei&rft.au=Walker%2C+Jennifer&rft.au=Schnell%2C+Jordan+L.&rft.au=Hinkel%2C+Kenneth+M.&rft.au=Townsend-Small%2C+Amy&rft.au=Arp%2C+Christopher+D.&rft.au=Pohlman%2C+John+W.&rft.au=Gaglioti%2C+Benjamin+V.&rft_id=https%3A%2F%2Fescholarship.org%2Fuc%2Fitem%2F9q0086pg&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeanBillettMurrayGarnett2017" class="citation journal cs1">Dean, Joshua F.; Billett, Michael F.; Murray, Callum; Garnett, Mark H. (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.watres.2017.03.009">"Ancient dissolved methane in inland waters revealed by a new collection method at low field concentrations for radiocarbon ( 14 C) analysis"</a>. <i>Water Research</i>. <b>115</b>: 236–244. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017WatRe.115..236D">2017WatRe.115..236D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.watres.2017.03.009">10.1016/j.watres.2017.03.009</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1893%2F25135">1893/25135</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28284090">28284090</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water+Research&rft.atitle=Ancient+dissolved+methane+in+inland+waters+revealed+by+a+new+collection+method+at+low+field+concentrations+for+radiocarbon+%28+14+C%29+analysis&rft.volume=115&rft.pages=236-244&rft.date=2017&rft_id=info%3Ahdl%2F1893%2F25135&rft_id=info%3Apmid%2F28284090&rft_id=info%3Adoi%2F10.1016%2Fj.watres.2017.03.009&rft_id=info%3Abibcode%2F2017WatRe.115..236D&rft.aulast=Dean&rft.aufirst=Joshua+F.&rft.au=Billett%2C+Michael+F.&rft.au=Murray%2C+Callum&rft.au=Garnett%2C+Mark+H.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.watres.2017.03.009&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-renamed_from_15_on_20200701175743-115"><span class="mw-cite-backlink">^ <a href="#cite_ref-renamed_from_15_on_20200701175743_115-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-renamed_from_15_on_20200701175743_115-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-renamed_from_15_on_20200701175743_115-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-renamed_from_15_on_20200701175743_115-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, pp. 34–37.</span> </li> <li id="cite_note-Bousman-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bousman_116-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBousmanVierra2012" class="citation book cs1">Bousman, C. Britt; Vierra, Bradley J. (2012). "Chronology, Environmental Setting, and Views of the Terminal Pleistocene and Early Holocene Cultural Transitions in North America". In Bousman, C. Britt; Vierra, Bradley J. (eds.). <i>From the Pleistocene to the Holocene: Human Organization and Cultural Transformations in Prehistoric North America</i>. College Station, Texas: Texas A&M University Press. p. 4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-60344-760-7" title="Special:BookSources/978-1-60344-760-7"><bdi>978-1-60344-760-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chronology%2C+Environmental+Setting%2C+and+Views+of+the+Terminal+Pleistocene+and+Early+Holocene+Cultural+Transitions+in+North+America&rft.btitle=From+the+Pleistocene+to+the+Holocene%3A+Human+Organization+and+Cultural+Transformations+in+Prehistoric+North+America&rft.place=College+Station%2C+Texas&rft.pages=4&rft.pub=Texas+A%26M+University+Press&rft.date=2012&rft.isbn=978-1-60344-760-7&rft.aulast=Bousman&rft.aufirst=C.+Britt&rft.au=Vierra%2C+Bradley+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-gall-117"><span class="mw-cite-backlink">^ <a href="#cite_ref-gall_117-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-gall_117-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacdougall2008" class="citation book cs1">Macdougall, Doug (2008). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/naturesclockshow00macd_0"><i>Nature's Clocks: How Scientists Measure the Age of Almost Everything</i></a></span>. Berkeley, California: University of California Press. pp. 94–95. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-520-24975-2" title="Special:BookSources/978-0-520-24975-2"><bdi>978-0-520-24975-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Nature%27s+Clocks%3A+How+Scientists+Measure+the+Age+of+Almost+Everything&rft.place=Berkeley%2C+California&rft.pages=94-95&rft.pub=University+of+California+Press&rft.date=2008&rft.isbn=978-0-520-24975-2&rft.aulast=Macdougall&rft.aufirst=Doug&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fnaturesclockshow00macd_0&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-taylor38-118"><span class="mw-cite-backlink">^ <a href="#cite_ref-taylor38_118-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-taylor38_118-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-taylor38_118-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, pp. 38–42.</span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><a href="#Libby">Libby (1965)</a>, p. 84.</span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, p. 288.</span> </li> <li id="cite_note-t1997-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-t1997_121-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor1997" class="citation book cs1">Taylor, R.E. (1997). "Radiocarbon dating". In Taylor, R.E.; Aitken, Martin J. (eds.). <i>Chronometric Dating in Archaeology</i>. New York: Plenum Press. pp. 65–97. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-306-45715-9" title="Special:BookSources/978-0-306-45715-9"><bdi>978-0-306-45715-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Radiocarbon+dating&rft.btitle=Chronometric+Dating+in+Archaeology&rft.place=New+York&rft.pages=65-97&rft.pub=Plenum+Press&rft.date=1997&rft.isbn=978-0-306-45715-9&rft.aulast=Taylor&rft.aufirst=R.E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-t1987-143-122"><span class="mw-cite-backlink">^ <a href="#cite_ref-t1987-143_122-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-t1987-143_122-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor1987" class="citation book cs1">Taylor, R.E. (1987). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/radiocarbondatin00tayl"><i>Radiocarbon Dating</i></a></span>. London: Academic Press. pp. 143–146. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-433663-6" title="Special:BookSources/978-0-12-433663-6"><bdi>978-0-12-433663-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Radiocarbon+Dating&rft.place=London&rft.pages=143-146&rft.pub=Academic+Press&rft.date=1987&rft.isbn=978-0-12-433663-6&rft.aulast=Taylor&rft.aufirst=R.E.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fradiocarbondatin00tayl&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><a href="#bar">Taylor & Bar-Yosef (2014)</a>, p. 13.</span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><a href="#Walker">Walker (2005)</a>, pp. 77–79.</span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text"><a href="#Walker">Walker (2005)</a>, pp. 57–77.</span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"><a href="#Walker">Walker (2005)</a>, pp. 93–162.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Sources">Sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=34" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="Aitken1990" class="citation book cs1">Aitken, M.J. (1990). <i>Science-based Dating in Archaeology</i>. London: Longman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-582-49309-4" title="Special:BookSources/978-0-582-49309-4"><bdi>978-0-582-49309-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Science-based+Dating+in+Archaeology&rft.place=London&rft.pub=Longman&rft.date=1990&rft.isbn=978-0-582-49309-4&rft.aulast=Aitken&rft.aufirst=M.J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="Bowman" class="citation book cs1">Bowman, Sheridan (1995) [1990]. <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/radiocarbondatin00bow_0va"><i>Radiocarbon Dating</i></a></span>. London: British Museum Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7141-2047-8" title="Special:BookSources/978-0-7141-2047-8"><bdi>978-0-7141-2047-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Radiocarbon+Dating&rft.place=London&rft.pub=British+Museum+Press&rft.date=1995&rft.isbn=978-0-7141-2047-8&rft.aulast=Bowman&rft.aufirst=Sheridan&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fradiocarbondatin00bow_0va&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="Libby" class="citation book cs1">Libby, Willard F. (1965) [1952]. <i>Radiocarbon Dating</i> (2nd (1955) ed.). Chicago: Phoenix.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Radiocarbon+Dating&rft.place=Chicago&rft.edition=2nd+%281955%29&rft.pub=Phoenix&rft.date=1965&rft.aulast=Libby&rft.aufirst=Willard+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="bar" class="citation book cs1">Taylor, R.E.; Bar-Yosef, Ofer (2014). <i>Radiocarbon Dating</i> (2nd ed.). Walnut Creek, California: Left Coast Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-59874-590-0" title="Special:BookSources/978-1-59874-590-0"><bdi>978-1-59874-590-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Radiocarbon+Dating&rft.place=Walnut+Creek%2C+California&rft.edition=2nd&rft.pub=Left+Coast+Press&rft.date=2014&rft.isbn=978-1-59874-590-0&rft.aulast=Taylor&rft.aufirst=R.E.&rft.au=Bar-Yosef%2C+Ofer&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="Walker" class="citation book cs1">Walker, Mike (2005). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171013101106/https://mypages.valdosta.edu/dmthieme/Geomorph/Walker_2005_QuaternaryDatingMethods.pdf"><i>Quaternary Dating Methods</i></a> <span class="cs1-format">(PDF)</span>. Chichester: John Wiley & Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-86927-7" title="Special:BookSources/978-0-470-86927-7"><bdi>978-0-470-86927-7</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://ww2.valdosta.edu/~dmthieme/Geomorph/Walker_2005_QuaternaryDatingMethods.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 13 October 2017.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quaternary+Dating+Methods&rft.place=Chichester&rft.pub=John+Wiley+%26+Sons&rft.date=2005&rft.isbn=978-0-470-86927-7&rft.aulast=Walker&rft.aufirst=Mike&rft_id=http%3A%2F%2Fww2.valdosta.edu%2F~dmthieme%2FGeomorph%2FWalker_2005_QuaternaryDatingMethods.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARadiocarbon+dating" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Radiocarbon_dating&action=edit&section=35" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/Historical_Geology" class="extiw" title="wikibooks:Historical Geology">Historical Geology</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Historical_Geology/Radiocarbon_dating" class="extiw" title="wikibooks:Historical Geology/Radiocarbon dating">Radiocarbon dating</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Radiocarbon_dating" class="extiw" title="commons:Category:Radiocarbon dating">Radiocarbon dating</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://phys.org/news/2024-06-almonds-pottery-wood-date-famed.html">Almonds, pottery, wood help date famed Kyrenia shipwreck - Phys.org - June 26, 2024</a></li> <li><a rel="nofollow" class="external text" href="https://historicengland.org.uk/images-books/publications/radiocarbon-dating-chronological-modelling/">Radiocarbon Dating and Chronological Modelling: Guidelines and Best Practice</a>, <a href="/wiki/Historic_England" title="Historic England">Historic England</a></li> <li><a rel="nofollow" class="external text" href="https://c14.arch.ox.ac.uk/oxcal.html">OxCal</a>, radiocarbon calibration program</li> <li><a rel="nofollow" class="external text" href="https://intcal.org/">IntCal working group</a></li> <li><a rel="nofollow" class="external text" href="https://intchron.org/">IntChron</a>, indexing service for radiocarbon dates</li> <li><a rel="nofollow" class="external text" href="https://www.p3k14c.org/">p3k14c</a>, global radiocarbon database</li> <li><a rel="nofollow" class="external text" href="https://xronos.ch/">XRONOS</a>, global radiocarbon database</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"></div><div role="navigation" class="navbox" aria-labelledby="Chronology" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Chronology" title="Template:Chronology"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Chronology" title="Template talk:Chronology"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Chronology" title="Special:EditPage/Template:Chronology"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Chronology" style="font-size:114%;margin:0 4em"><a href="/wiki/Chronology" title="Chronology">Chronology</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;background:#cc9;">Key topics</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Archaeology" title="Archaeology">Archaeology</a></li> <li><a href="/wiki/Astronomy" title="Astronomy">Astronomy</a></li> <li><a href="/wiki/Geology" title="Geology">Geology</a></li> <li><a href="/wiki/History" title="History">History</a> <ul><li><a href="/wiki/Big_History" title="Big History">Big History</a></li></ul></li> <li><a href="/wiki/Paleontology" title="Paleontology">Paleontology</a></li> <li><a href="/wiki/Time" title="Time">Time</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;background:#cc9;"><div class="hlist"><ul><li><a href="/wiki/Periodization" title="Periodization">Periods</a></li><li><a href="/wiki/Era" title="Era">Eras</a></li><li><a href="/wiki/Epoch_(reference_date)" class="mw-redirect" title="Epoch (reference date)">Epochs</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;"><a href="/wiki/Calendar_era" title="Calendar era">Calendar eras</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Holocene_calendar" title="Holocene calendar">Human Era</a></li> <li><i><a href="/wiki/Ab_urbe_condita" title="Ab urbe condita">Ab urbe condita</a></i></li> <li><a href="/wiki/Anno_Domini" title="Anno Domini">Anno Domini</a> / <a href="/wiki/Common_Era" title="Common Era">Common Era</a></li> <li><a href="/wiki/Anno_Mundi" title="Anno Mundi">Anno Mundi</a></li> <li><a href="/wiki/Bosporan_era" title="Bosporan era">Bosporan era</a></li> <li><a href="/wiki/Bostran_era" title="Bostran era">Bostran era</a></li> <li><a href="/wiki/Byzantine_calendar" title="Byzantine calendar">Byzantine era</a></li> <li><a href="/wiki/Seleucid_era" title="Seleucid era">Seleucid era</a></li> <li><a href="/wiki/Era_of_Caesar_(Iberian_Peninsula)" class="mw-redirect" title="Era of Caesar (Iberian Peninsula)">Era of Caesar (Iberia)</a></li> <li><a href="/wiki/Before_present" class="mw-redirect" title="Before present">Before present</a></li> <li><a href="/wiki/Islamic_calendar" title="Islamic calendar">Hijri</a></li> <li><a href="/wiki/Egyptian_chronology" title="Egyptian chronology">Egyptian</a></li> <li><a href="/wiki/Sothic_cycle" title="Sothic cycle">Sothic cycle</a></li> <li><a href="/wiki/Hindu_units_of_time" title="Hindu units of time">Hindu units of time</a> (<a href="/wiki/Yuga" title="Yuga">Yuga</a>)</li> <li><a href="/wiki/Mesoamerican_calendars" title="Mesoamerican calendars">Mesoamerican</a> <ul><li><a href="/wiki/Mesoamerican_Long_Count_calendar" title="Mesoamerican Long Count calendar">Long Count</a></li> <li><a href="/wiki/Maya_calendar#Short_Count" title="Maya calendar">Short Count</a></li> <li><a href="/wiki/Tzolk%27in" class="mw-redirect" title="Tzolk'in">Tzolk'in</a></li> <li><a href="/wiki/Haab%27" class="mw-redirect" title="Haab'">Haab'</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;"><a href="/wiki/Regnal_year" title="Regnal year">Regnal year</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anka_year" title="Anka year">Anka year</a></li> <li><a href="/wiki/Canon_of_Kings" title="Canon of Kings">Canon of Kings</a></li> <li><a href="/wiki/Regnal_years_of_English_and_British_monarchs" title="Regnal years of English and British monarchs">English and British regnal year</a></li> <li><a href="/wiki/Category:Regnal_lists" title="Category:Regnal lists">Lists of kings</a></li> <li><a href="/wiki/Limmu" title="Limmu">Limmu</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;"><a href="/wiki/Regnal_year" title="Regnal year">Era names</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chinese_era_name" title="Chinese era name">Chinese</a></li> <li><a href="/wiki/Japanese_era_name" title="Japanese era name">Japanese</a></li> <li><a href="/wiki/Korean_era_name" title="Korean era name">Korean</a></li> <li><a href="/wiki/Vietnamese_era_name" title="Vietnamese era name">Vietnamese</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;background:#cc9;"><a href="/wiki/Calendar" title="Calendar">Calendars</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;">Pre-Julian / Julian</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Roman_calendar" title="Roman calendar">Pre-Julian Roman</a></li> <li><a href="/wiki/Julian_calendar" title="Julian calendar">Original Julian</a></li> <li><a href="/wiki/Proleptic_Julian_calendar" title="Proleptic Julian calendar">Proleptic Julian</a></li> <li><a href="/wiki/Revised_Julian_calendar" title="Revised Julian calendar">Revised Julian</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;">Gregorian</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gregorian_calendar" title="Gregorian calendar">Gregorian</a></li> <li><a href="/wiki/Proleptic_Gregorian_calendar" title="Proleptic Gregorian calendar">Proleptic Gregorian</a></li> <li><a href="/wiki/Old_Style_and_New_Style_dates" title="Old Style and New Style dates">Old Style and New Style dates</a></li> <li><a href="/wiki/Adoption_of_the_Gregorian_calendar" title="Adoption of the Gregorian calendar">Adoption of the Gregorian calendar</a></li> <li><a href="/wiki/Dual_dating" title="Dual dating">Dual dating</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;">Astronomical</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Lunisolar_calendar" title="Lunisolar calendar">Lunisolar</a> (<a href="/wiki/Hebrew_calendar" title="Hebrew calendar">Hebrew</a>, <a href="/wiki/Hindu_calendar" title="Hindu calendar">Hindu</a>)</li> <li><a href="/wiki/Solar_calendar" title="Solar calendar">Solar</a></li> <li><a href="/wiki/Lunar_calendar" title="Lunar calendar">Lunar</a> (<a href="/wiki/Islamic_calendar" title="Islamic calendar">Islamic</a>)</li> <li><a href="/wiki/Astronomical_year_numbering" title="Astronomical year numbering">Astronomical year numbering</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;">Others</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sexagenary_cycle" title="Sexagenary cycle">Chinese sexagenary cycle</a></li> <li><a href="/wiki/Geologic_Calendar" title="Geologic Calendar">Geologic Calendar</a></li> <li><a href="/wiki/Iranian_calendars" title="Iranian calendars">Iranian</a></li> <li><a href="/wiki/ISO_week_date" title="ISO week date">ISO week date</a></li> <li><a href="/wiki/Mesoamerican_calendars" title="Mesoamerican calendars">Mesoamerican</a> <ul><li><a href="/wiki/Maya_calendar" title="Maya calendar">Maya</a></li> <li><a href="/wiki/Aztec_calendar" title="Aztec calendar">Aztec</a></li></ul></li> <li><a href="/wiki/Winter_count" title="Winter count">Winter count</a></li> <li><a href="/wiki/New_Earth_Time" title="New Earth Time">New Earth Time</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;background:#cc9;"><a href="/wiki/Astronomical_chronology" title="Astronomical chronology">Astronomic time</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0;background:#fff;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cosmic_Calendar" title="Cosmic Calendar">Cosmic Calendar</a></li> <li><a href="/wiki/Ephemeris" title="Ephemeris">Ephemeris</a></li> <li><a href="/wiki/Galactic_year" title="Galactic year">Galactic year</a></li> <li><a href="/wiki/Metonic_cycle" title="Metonic cycle">Metonic cycle</a></li> <li><a href="/wiki/Milankovitch_cycles" title="Milankovitch cycles">Milankovitch cycles</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;background:#cc9;"><a href="/wiki/Geologic_time_scale" title="Geologic time scale">Geologic time</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Deep_time" title="Deep time">Deep time</a></li> <li><a href="/wiki/Geological_history_of_Earth" title="Geological history of Earth">Geological history of Earth</a></li> <li><a href="/wiki/Geologic_time_scale#Terminology" title="Geologic time scale">Geological time units</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;">Standards</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Global_Standard_Stratigraphic_Age" title="Global Standard Stratigraphic Age">Global Standard Stratigraphic Age (GSSA)</a></li> <li><a href="/wiki/Global_Boundary_Stratotype_Section_and_Point" title="Global Boundary Stratotype Section and Point">Global Boundary Stratotype Section and Point (GSSP)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;">Methods</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chronostratigraphy" title="Chronostratigraphy">Chronostratigraphy</a></li> <li><a href="/wiki/Geochronology" title="Geochronology">Geochronology</a></li> <li><a href="/wiki/Isotope_geochemistry" title="Isotope geochemistry">Isotope geochemistry</a></li> <li><a href="/wiki/Law_of_superposition" title="Law of superposition">Law of superposition</a></li> <li><a href="/wiki/Luminescence_dating" title="Luminescence dating">Luminescence dating</a></li> <li><a href="/wiki/Samarium%E2%80%93neodymium_dating" title="Samarium–neodymium dating">Samarium–neodymium dating</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;background:#cc9;"><a href="/wiki/Chronological_dating" title="Chronological dating">Chronological<br />dating</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;"><a href="/wiki/Absolute_dating" title="Absolute dating">Absolute dating</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amino_acid_dating" title="Amino acid dating">Amino acid racemisation</a></li> <li><a href="/wiki/Archaeomagnetic_dating" title="Archaeomagnetic dating">Archaeomagnetic dating</a></li> <li><a href="/wiki/Dendrochronology" title="Dendrochronology">Dendrochronology</a></li> <li><a href="/wiki/Ice_core" title="Ice core">Ice core</a></li> <li><a href="/wiki/Incremental_dating" title="Incremental dating">Incremental dating</a></li> <li><a href="/wiki/Lichenometry" title="Lichenometry">Lichenometry</a></li> <li><a href="/wiki/Paleomagnetism" title="Paleomagnetism">Paleomagnetism</a></li> <li><a href="/wiki/Radiometric_dating" title="Radiometric dating">Radiometric dating</a> <ul><li><a href="/wiki/Lead%E2%80%93lead_dating" title="Lead–lead dating">Lead–lead</a></li> <li><a href="/wiki/K%E2%80%93Ar_dating" title="K–Ar dating">Potassium–argon</a></li> <li><a class="mw-selflink selflink">Radiocarbon</a></li> <li><a href="/wiki/Uranium%E2%80%93lead_dating" title="Uranium–lead dating">Uranium–lead</a></li></ul></li> <li><a href="/wiki/Tephrochronology" title="Tephrochronology">Tephrochronology</a></li> <li><a href="/wiki/Luminescence_dating" title="Luminescence dating">Luminescence dating</a></li> <li><a href="/wiki/Thermoluminescence_dating" title="Thermoluminescence dating">Thermoluminescence dating</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight:normal;background:#cc9;"><a href="/wiki/Relative_dating" title="Relative dating">Relative dating</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fluorine_absorption_dating" title="Fluorine absorption dating">Fluorine absorption</a></li> <li><a href="/wiki/Nitrogen_dating" title="Nitrogen dating">Nitrogen dating</a></li> <li><a href="/wiki/Obsidian_hydration_dating" title="Obsidian hydration dating">Obsidian hydration</a></li> <li><a href="/wiki/Seriation_(archaeology)" title="Seriation (archaeology)">Seriation</a></li> <li><a href="/wiki/Stratigraphy_(archaeology)" title="Stratigraphy (archaeology)">Stratigraphy</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;background:#cc9;">Genetic methods</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Molecular_clock" title="Molecular clock">Molecular clock</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;background:#cc9;">Linguistic methods</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Glottochronology" title="Glottochronology">Glottochronology</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;background:#cc9;">Related topics</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chronicle" title="Chronicle">Chronicle</a></li> <li><a href="/wiki/New_Chronology_(Fomenko)" class="mw-redirect" title="New Chronology (Fomenko)">New Chronology</a></li> <li><a href="/wiki/Synchronoptic_view" title="Synchronoptic view">Synchronoptic view</a></li> <li><a href="/wiki/Timeline" title="Timeline">Timeline</a></li> <li><a href="/wiki/Year_zero" title="Year zero">Year zero</a></li> <li><a href="/wiki/Floruit" title="Floruit">Floruit</a></li> <li><a href="/wiki/Terminus_post_quem" title="Terminus post quem">Terminus post quem</a></li> <li><a href="/wiki/ASPRO_chronology" title="ASPRO chronology">ASPRO chronology</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q173412#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Radiokarbonmethode"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4176833-4">Germany</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="radiokarbonové datování"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph138545&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007558199705171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐44cqd Cached time: 20241122140409 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.286 seconds Real time usage: 2.657 seconds Preprocessor visited node count: 37920/1000000 Post‐expand include size: 1002668/2097152 bytes Template argument size: 103413/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 9/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 339607/5000000 bytes Lua time usage: 1.091/10.000 seconds Lua memory usage: 11644154/52428800 bytes Lua Profile: ? 280 ms 26.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 140 ms 13.2% dataWrapper <mw.lua:672> 80 ms 7.5% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::anchorEncode 60 ms 5.7% require <package.lua:89> 40 ms 3.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::plain 40 ms 3.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 40 ms 3.8% gsub 40 ms 3.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getEntityStatements 40 ms 3.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 40 ms 3.8% [others] 260 ms 24.5% Number of Wikibase entities loaded: 3/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2238.737 1 -total 27.56% 617.078 2 Template:Reflist 23.00% 514.940 272 Template:Chem 21.75% 486.876 272 Template:Chem/link 15.15% 339.124 1 Template:Academic_peer_reviewed 13.49% 302.098 1 Template:Talk_other 13.38% 299.468 1 Template:Academic_peer_reviewed/other 12.45% 278.782 29 Template:Cite_journal 9.92% 222.133 257 Template:Su 9.12% 204.194 34 Template:Cite_book --> <!-- Saved in parser cache with key enwiki:pcache:idhash:26197-0!canonical and timestamp 20241122140409 and revision id 1256411979. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Radiocarbon_dating&oldid=1256411979">https://en.wikipedia.org/w/index.php?title=Radiocarbon_dating&oldid=1256411979</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Wikipedia_articles_published_in_peer-reviewed_literature" title="Category:Wikipedia articles published in peer-reviewed literature">Wikipedia articles published in peer-reviewed literature</a></li><li><a href="/wiki/Category:Wikipedia_articles_published_in_WikiJournal_of_Science" title="Category:Wikipedia articles published in WikiJournal of Science">Wikipedia articles published in WikiJournal of Science</a></li><li><a href="/wiki/Category:Externally_peer_reviewed_articles" title="Category:Externally peer reviewed articles">Externally peer reviewed articles</a></li><li><a href="/wiki/Category:Wikipedia_articles_published_in_peer-reviewed_literature_(W2J)" title="Category:Wikipedia articles published in peer-reviewed literature (W2J)">Wikipedia articles published in peer-reviewed literature (W2J)</a></li><li><a href="/wiki/Category:Radiocarbon_dating" title="Category:Radiocarbon dating">Radiocarbon dating</a></li><li><a href="/wiki/Category:1940s_introductions" title="Category:1940s introductions">1940s introductions</a></li><li><a href="/wiki/Category:American_inventions" title="Category:American inventions">American inventions</a></li><li><a href="/wiki/Category:Carbon" title="Category:Carbon">Carbon</a></li><li><a href="/wiki/Category:Conservation_and_restoration_of_cultural_heritage" title="Category:Conservation and restoration of cultural heritage">Conservation and restoration of cultural heritage</a></li><li><a href="/wiki/Category:Isotopes_of_carbon" title="Category:Isotopes of carbon">Isotopes of carbon</a></li><li><a href="/wiki/Category:Radioactivity" title="Category:Radioactivity">Radioactivity</a></li><li><a href="/wiki/Category:Radiometric_dating" title="Category:Radiometric dating">Radiometric dating</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Featured_articles" title="Category:Featured articles">Featured articles</a></li><li><a href="/wiki/Category:Use_Oxford_spelling_from_August_2016" title="Category:Use Oxford spelling from August 2016">Use Oxford spelling from August 2016</a></li><li><a href="/wiki/Category:Wikipedia_articles_incorporating_text_from_open_access_publications" title="Category:Wikipedia articles incorporating text from open access publications">Wikipedia articles incorporating text from open access publications</a></li><li><a href="/wiki/Category:Commons_category_link_is_defined_as_the_pagename" title="Category:Commons category link is defined as the pagename">Commons category link is defined as the pagename</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 9 November 2024, at 21:01<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Radiocarbon_dating&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-prwmm","wgBackendResponseTime":194,"wgPageParseReport":{"limitreport":{"cputime":"2.286","walltime":"2.657","ppvisitednodes":{"value":37920,"limit":1000000},"postexpandincludesize":{"value":1002668,"limit":2097152},"templateargumentsize":{"value":103413,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":339607,"limit":5000000},"entityaccesscount":{"value":3,"limit":400},"timingprofile":["100.00% 2238.737 1 -total"," 27.56% 617.078 2 Template:Reflist"," 23.00% 514.940 272 Template:Chem"," 21.75% 486.876 272 Template:Chem/link"," 15.15% 339.124 1 Template:Academic_peer_reviewed"," 13.49% 302.098 1 Template:Talk_other"," 13.38% 299.468 1 Template:Academic_peer_reviewed/other"," 12.45% 278.782 29 Template:Cite_journal"," 9.92% 222.133 257 Template:Su"," 9.12% 204.194 34 Template:Cite_book"]},"scribunto":{"limitreport-timeusage":{"value":"1.091","limit":"10.000"},"limitreport-memusage":{"value":11644154,"limit":52428800},"limitreport-logs":"1 1 Mike Christie\n","limitreport-profile":[["?","280","26.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","140","13.2"],["dataWrapper \u003Cmw.lua:672\u003E","80","7.5"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::anchorEncode","60","5.7"],["require \u003Cpackage.lua:89\u003E","40","3.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::plain","40","3.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","40","3.8"],["gsub","40","3.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getEntityStatements","40","3.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","40","3.8"],["[others]","260","24.5"]]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-44cqd","timestamp":"20241122140409","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Radiocarbon dating","url":"https:\/\/en.wikipedia.org\/wiki\/Radiocarbon_dating","sameAs":"http:\/\/www.wikidata.org\/entity\/Q173412","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q173412","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-17T14:35:40Z","dateModified":"2024-11-09T21:01:41Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/8a\/The_Temple_Scroll_%2811Q20%29_-_Google_Art_Project.jpg","headline":"technique based on carbon-14 decay to determine the age of organic materials"}</script> </body> </html>