CINXE.COM

Search results for: natural rivers

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: natural rivers</title> <meta name="description" content="Search results for: natural rivers"> <meta name="keywords" content="natural rivers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="natural rivers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="natural rivers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6047</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: natural rivers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6047</span> Increasing Sustainability Using the Potential of Urban Rivers in Developing Countries with a Biophilic Design Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Mohammadian">Mohammad Reza Mohammadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariush%20Sattarzadeh"> Dariush Sattarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Mohammad%20Javad%20Poor%20Hadi%20Hosseini"> Mir Mohammad Javad Poor Hadi Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Population growth, urban development and urban buildup have disturbed the balance between the nature and the city, and so leading to the loss of quality of sustainability of proximity to rivers. While in the past, the sides of urban rivers were considered as urban green space. Urban rivers and their sides that have environmental, social and economic values are important to achieve sustainable development. So far, efforts have been made at various scales in various cities around the world to revitalize these areas. On the other hand, biophilic design is an innovative design approach in which attention to natural details and relation to nature is a fundamental concept. The purpose of this study is to provide an integrated framework of urban design using the potential of urban rivers (in order to increase sustainability) with a biophilic design approach to be used in cities in developing countries. The methodology of the research is based on the collection of data and information from research and projects including a study on biophilic design, investigations and projects related to the urban rivers, and a review of the literature on sustainable urban development. Then studying the boundary of urban rivers is completed by examining case samples. Eventually, integrated framework of urban design, to design the boundaries of urban rivers in the cities of developing countries is presented regarding the factors affecting the design of these areas. The result shows that according to this framework, the potential of the river banks is utilized to increase not only the environmental sustainability but also social, economic and physical stability with regard to water, light, and the usage of indigenous materials, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20rivers" title="urban rivers">urban rivers</a>, <a href="https://publications.waset.org/abstracts/search?q=biophilic%20design" title=" biophilic design"> biophilic design</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20sustainability" title=" urban sustainability"> urban sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=nature" title=" nature"> nature</a> </p> <a href="https://publications.waset.org/abstracts/79261/increasing-sustainability-using-the-potential-of-urban-rivers-in-developing-countries-with-a-biophilic-design-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6046</span> Reliable Method for Estimating Rating Curves in the Natural Rivers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20%20Ahmadi">Arash Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Kavousizadeh"> Amirreza Kavousizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanaz%20Heidarzadeh"> Sanaz Heidarzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stage-discharge curve is one of the conventional methods for continuous river flow measurement. In this paper, an innovative approach is proposed for predicting the stage-discharge relationship using the application of isovel contours. Using the proposed method, it is possible to estimate the stage-discharge curve in the whole section with only using discharge information from just one arbitrary water level. For this purpose, multivariate relationships are used to determine the mean velocity in a cross-section. The unknown exponents of the proposed relationship have been obtained by using the second version of the Strength Pareto Evolutionary Algorithm (SPEA2), and the appropriate equation was selected by applying the TOPSIS (Technique for Order Preferences by Similarity to an Ideal Solution) approach. Results showed a close agreement between the estimated and observed data in the different cross-sections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rating%20curves" title="rating curves">rating curves</a>, <a href="https://publications.waset.org/abstracts/search?q=SPEA2" title=" SPEA2"> SPEA2</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rivers" title=" natural rivers"> natural rivers</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness%20distribution" title=" bed roughness distribution"> bed roughness distribution</a> </p> <a href="https://publications.waset.org/abstracts/123107/reliable-method-for-estimating-rating-curves-in-the-natural-rivers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6045</span> Energy Potential of Salinity Gradient Mixing: Case Study of Mixing Energies of Rivers of Goa with the Arabian Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arijit%20Chakraborty">Arijit Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirban%20Roy"> Anirban Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Indian peninsula is strategically located in the Asian subcontinent with the Himalayas to the North and Oceans surrounding the other three directions with annual monsoons which takes care of water supply to the rivers. The total river water discharge into the Bay of Bengal and the Arabian Sea is 628 km³/year and 274 km³/year, respectively. Thus huge volumes of fresh water meet saline water, and this mixing of two streams of dissimilar salinity gives rise to tremendous mixing energies which can be harvested for various purposes like energy generation using pressure retarded osmosis or reverse electrodialysis. The present paper concentrates on analyzing the energy of mixing for the rivers in Goa. Goa has 10 rivers of various sizes all which meet the Arabian Sea. In the present work, the 8 rivers and their salinity (NaCl concentrations) have been analyzed along with their seasonal fluctuations. Next, a Gibbs free energy formulation has been implemented to analyze the energy of mixing of the selected rivers. The highest and lowest energies according to the seasonal fluctuations have been evaluated, and this provides two important insights into (i) amount of energy that can be harvested and (ii) decision on the location of such systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gibbs%20energy" title="Gibbs energy">Gibbs energy</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20energy" title=" mixing energy"> mixing energy</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20gradient%20energy" title=" salinity gradient energy"> salinity gradient energy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/86505/energy-potential-of-salinity-gradient-mixing-case-study-of-mixing-energies-of-rivers-of-goa-with-the-arabian-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6044</span> Spatial Variability of Heavy Metals in Sediments of Two Streams of the Olifants River System, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Addo-Bediako">Abraham Addo-Bediako</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophy%20Nukeri"> Sophy Nukeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tebatso%20Mmako"> Tebatso Mmako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many freshwater ecosystems have been subjected to prolonged and cumulative pollution as a result of human activities such as mining, agricultural, industrial and human settlements in their catchments. The objective of this study was to investigate spatial variability of heavy metal pollution of sediments and possible sources of pollutants in two streams of the Olifants River System, South Africa. Stream sediments were collected and analysed for Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Nickel (Ni) and Zinc (Zn) concentrations using inductively coupled plasma-mass mass spectrometry (ICP-MS). In both rivers, As, Cd, Cu, Pb and Zn fell within the concentration ranges recommended by CCME and ANZECC, while the concentrations of Cr and Ni exceeded the standards; the results indicated that Cr and Ni in the sediments originated from human activities and not from natural geological background. The index of geo-accumulation (Igeo) was used to assess the degree of pollution. The results of the geo-accumulation index evaluation showed that Cr and Ni were present in the sediments of the rivers at moderately to extremely polluted levels, while As, Cd, Cu, Pb and Zn existed at unpolluted to moderately polluted levels. Generally, heavy metal concentrations increased along the gradient in the rivers. The high concentrations of Cr and Ni in both rivers are of great concern, as previously these two rivers were classified to be supplying the Olifants River with water of good quality. There is a critical need, therefore to monitor heavy metal concentrations and distributions, as well as a comprehensive plan to prevent health risks, especially those communities still reliant on untreated water from the rivers, as sediment pollution may pose a risk of secondary water pollution under sediment disturbance and/or changes in the geo-chemistry of sediments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geo-accumulation%20index" title="geo-accumulation index">geo-accumulation index</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20pollution" title=" sediment pollution"> sediment pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/117190/spatial-variability-of-heavy-metals-in-sediments-of-two-streams-of-the-olifants-river-system-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6043</span> Mobility of Metallic Trace Elements (MTE) in Water and Sediment of the Rivers: Case of Nil River, North-Eastern Algerian</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benessam">S. Benessam</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Debieche"> T. H. Debieche</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Amiour"> S. Amiour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chine"> A. Chine</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khelili"> S. Khelili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The metallic trace elements (MTE) are present in water and sediments of the rivers with weak concentrations. Several physicochemical parameters (Eh, pH and oxygen dissolved) and chemical processes (adsorption, absorption, complexation and precipitation) as well as nature of the sediments control their mobility. In order to determine the effect of these factors on the mobility of some MTE (Cd, Cr, Cu, Fe, Pb and Zn) in water of the rivers, a two-monthly monitoring of the physicochemical parameters and chemistry of water and sediments of the Nil wadi (Algeria) was carried out during the period from November 2013 to January 2015. The results show that each MTE has its own conditions of mobility and generally are very influence by the variations of the pH and Eh. Under the natural conditions, neutral pH with basic and medium oxidizing, only the lead presented in water with raised values, indicating its solubility in water and its salting out of the sediments. The other MTE present raised concentrations in the sediments, indicating their trapping by adsorption and/or chemical precipitation. The chemical form of each ETM was given by Eh-pH diagrams. The spatio-temporal monitoring of these ETM shows the effect of the rains, the dry periods and the rejects in the variation of their concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemistry" title="chemistry">chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20trace%20elements" title=" metallic trace elements"> metallic trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/48257/mobility-of-metallic-trace-elements-mte-in-water-and-sediment-of-the-rivers-case-of-nil-river-north-eastern-algerian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6042</span> Preserving Heritage in the Face of Natural Disasters: Lessons from the Bam Experience in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Seddighi">Mohammad Javad Seddighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Avar%20Almukhtar"> Avar Almukhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of natural disasters, such as floods and earthquakes, can cause significant damage to heritage sites and surrounding areas. In Iran, the city of Bam was devastated by an earthquake in 2003, which had a major impact on the rivers and watercourses around the city. This study aims to investigate the environmental design techniques and sustainable hazard mitigation strategies that can be employed to preserve heritage sites in the face of natural disasters, using the Bam experience as a case study. The research employs a mixed-methods approach, combining both qualitative and quantitative data collection and analysis methods. The study begins with a comprehensive literature review of recent publications on environmental design techniques and sustainable hazard mitigation strategies in heritage conservation. This is followed by a field study of the rivers and watercourses around Bam, including the Adoori River (Talangoo) and other watercourses, to assess the current conditions and identify potential hazards. The data collected from the field study is analysed using statistical methods and GIS mapping techniques. The findings of this study reveal the importance of sustainable hazard mitigation strategies and environmental design techniques in preserving heritage sites during natural disasters. The study suggests that these techniques can be used to prevent the outbreak of another natural disaster in Bam and the surrounding areas. Specifically, the study recommends the establishment of a comprehensive early warning system, the creation of flood-resistant landscapes, and the use of eco-friendly building materials in the reconstruction of heritage sites. These findings contribute to the current knowledge of sustainable hazard mitigation and environmental design in heritage conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20disasters" title="natural disasters">natural disasters</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage%20conservation" title=" heritage conservation"> heritage conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20hazard%20mitigation" title=" sustainable hazard mitigation"> sustainable hazard mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20design" title=" environmental design"> environmental design</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20architecture" title=" landscape architecture"> landscape architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title=" flood management"> flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20resilience" title=" disaster resilience"> disaster resilience</a> </p> <a href="https://publications.waset.org/abstracts/165658/preserving-heritage-in-the-face-of-natural-disasters-lessons-from-the-bam-experience-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6041</span> Study on Practice of Improving Water Quality in Urban Rivers by Diverting Clean Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjie%20Li">Manjie Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangju%20Cheng"> Xiangju Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongcan%20Chen"> Yongcan Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With rapid development of industrialization and urbanization, water environmental deterioration is widespread in majority of urban rivers, which seriously affects city image and life satisfaction of residents. As an emergency measure to improve water quality, clean water diversion is introduced for water environmental management. Lubao River and Southwest River, two urban rivers in typical plain tidal river network, are identified as technically and economically feasible for the application of clean water diversion. One-dimensional hydrodynamic-water quality model is developed to simulate temporal and spatial variations of water level and water quality, with satisfactory accuracy. The mathematical model after calibration is applied to investigate hydrodynamic and water quality variations in rivers as well as determine the optimum operation scheme of water diversion. Assessment system is developed for evaluation of positive and negative effects of water diversion, demonstrating the effectiveness of clean water diversion and the necessity of pollution reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment%20system" title="assessment system">assessment system</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20water%20diversion" title=" clean water diversion"> clean water diversion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic-water%20quality%20model" title=" hydrodynamic-water quality model"> hydrodynamic-water quality model</a>, <a href="https://publications.waset.org/abstracts/search?q=tidal%20river%20network" title=" tidal river network"> tidal river network</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20rivers" title=" urban rivers"> urban rivers</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20environment%20improvement" title=" water environment improvement"> water environment improvement</a> </p> <a href="https://publications.waset.org/abstracts/90577/study-on-practice-of-improving-water-quality-in-urban-rivers-by-diverting-clean-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6040</span> A New Approach to Achieve the Regime Equations in Sand-Bed Rivers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Imanshoar">Farhad Imanshoar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The regime or equilibrium geometry of alluvial rivers remains a topic of fundamental scientific and engineering interest. There are several approaches to analyze the problem, namely: empirical formulas, semi-theoretical methods and rational (extreme) procedures. However, none of them is widely accepted at present, due to lack of knowledge of some physical processes associated with channel formation and the simplification hypotheses imposed in order to reduce the high quantity of involved variables. The study presented in this paper shows a new approach to estimate stable width and depth of sand-bed rivers by using developed stream power equation (DSPE). At first, a new procedure based on theoretical analysis and by considering DSPE and ultimate sediment concentration were developed. Then, experimental data for regime condition in sand-bed rivers (flow depth, flow width, sediment feed rate for several cases) were gathered. Finally, the results of this research (regime equations) are compared with the field data and other regime equations. A good agreement was observed between the field data and the values resulted from developed regime equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regime%20equations" title="regime equations">regime equations</a>, <a href="https://publications.waset.org/abstracts/search?q=developed%20stream%20power%20equation" title=" developed stream power equation"> developed stream power equation</a>, <a href="https://publications.waset.org/abstracts/search?q=sand-bed%20rivers" title=" sand-bed rivers"> sand-bed rivers</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-theoretical%20methods" title=" semi-theoretical methods"> semi-theoretical methods</a> </p> <a href="https://publications.waset.org/abstracts/28554/a-new-approach-to-achieve-the-regime-equations-in-sand-bed-rivers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6039</span> Flood Management Plans in Different Flooding Zones of Gujranwala and Rawalpindi Divisions, Punjab, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naveed">Muhammad Naveed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, flood issues in Gujranwala and Rawalpindi divisions are discussed as a primary importance as these zones are affected continuously from flooding in recent years, provincial variability of the issue, introduce status of the continuous administration measures, their adequacy and future needs in flood administration are secured. Flood issues in these zones are exhibited by Chenab River Basin, Jhelum Rivers Basin. Some unique problems, related to floods in these divisions is lack of major dams on Chenab and Jhelum rivers and also mismanagement of rivers and canal water like dam break stream, and water signing in Tal zones, are additionally mentioned. There are major Nalaas in these regions like Nalaa Lai of Rawalpindi and Nalaa Daik, Nalaa Palkhu, Nalaa Aik of Gujranwala are major cause of floods in these regions other than rivers. Proper management of these Nalaas and moving of nearby population well in time could reduce impacts from flood in these regions. Progress of different flood administration measures, both auxiliary and non-basic, are discussed. Likewise, future needs to accomplish proficient and fruitful flood management measures in Pakistan are additionally brought up. In this paper, we describe different hard and soft engineering techniques to overcome flood situations in these zones as these zones are more vulnerable due to lack of management in canal and river water. Effective management and use of hard and soft techniques are need of time in coming future for controlling greater flooding in flood risk zones to overcome or minimize people’s death as well as agricultural and financial resources as flood and other natural disasters are a major drawback in the economic prosperity of the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title="flood management">flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=rivers" title=" rivers"> rivers</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20dams" title=" major dams"> major dams</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20and%20financial%20loss" title=" agricultural and financial loss"> agricultural and financial loss</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20management%20and%20control" title=" future management and control"> future management and control</a> </p> <a href="https://publications.waset.org/abstracts/77970/flood-management-plans-in-different-flooding-zones-of-gujranwala-and-rawalpindi-divisions-punjab-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6038</span> Monitoring the Change of Padma River Bank at Faridpur, Bangladesh Using Remote Sensing Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilme%20Faridatul">Ilme Faridatul</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wu"> Bo Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bangladesh is often called as a motherland of rivers. It contains about 700 rivers among all these the Padma River is one of the largest rivers of Bangladesh. The change of river bank and erosion has become a common environmental natural hazard in Bangladesh. The river banks are under intense pressure from natural processes such as erosion and accretion as well as anthropogenic processes such as urban growth and pollution. The Padma River is flowing along ten districts of Bangladesh among all these Faridpur district is most vulnerable to river bank erosion. The severity of the river erosion is so high that each year a thousand of populations become homeless and lose their agricultural lands. Though the Faridpur district is most vulnerable to river bank erosion no specific research has been conducted to identify the changing pattern of river bank along this district. The outcome of the research may serve as guidance to prepare river bank monitoring program and management. This research has utilized integrated techniques of remote sensing and geographic information system to monitor the changes from 1995 to 2015 at Faridpur district. To discriminate the land water interface Modified Normalized Difference Water Index (MNDWI) algorithm is applied and on screen digitization approach is used over MNDWI images of 1995, 2002 and 2015 for river bank line extraction. The extent of changes in the river bank along Faridpur district is estimated through overlaying the digitized maps of all three years. The river bank lines are highlighted to infer the erosion and accretion and the changes are calculated. The result shows that the middle of the river is gaining land through sedimentation and the both side river bank is shifting causing severe erosion that consequently resulting the loss of farmland and homestead. Over the study period from 1995 to 2015 it witnessed huge erosion and accretion that played an active role in the changes of the river bank. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20bank" title="river bank">river bank</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20and%20accretion" title=" erosion and accretion"> erosion and accretion</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20monitoring" title=" change monitoring"> change monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/57859/monitoring-the-change-of-padma-river-bank-at-faridpur-bangladesh-using-remote-sensing-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6037</span> Judging Restoration Success of Kamisaigo River Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Lopa">Rita Lopa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukihiro%20Shimatani"> Yukihiro Shimatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this research is 880m extension development along the Kamisaigo River. The river is flowing tributary of grade 2 rivers Fukutsu City, Fukuoka Prefecture. This river is a small-scale urban river and the river was formerly a straight concrete sea wall construction. The river runs through National Highway No. 3 from the confluence of Saigo River. The study covers the river basin about 326 ha with a catchment area of 20.63 ha and 4,700 m3 capacity regulating pond. The river is not wide, shallow, and has a straight alignment with active (un-vegetated) river channel sinuosity (ratio of river length to valley length) ranging between 1 and 1.3. However, the alignment of the low-flow river channel does have meandering or sinuous characteristics. Flooding is likely to occur. It has become difficult to live in the environment for organisms of the river. Hydrophilic is very low (children cannot play). There is little connection with the local community. Overall, the Kamisaigo River watershed is heavily urbanized and from a morphological, biological and habitat perspective, Kamisaigo River functions marginally not well. For river improvement and maintenance of the Kamisaigo River, the workshop was conducted in the form of planning for the proposed model is presented by the Watershed Management Laboratory. This workshop showed the relationship between citizens, City Government, and University of mutual trust has been established, that have been made landscape, environment, usage, etc.: retaining wall maintenance, hydrophilic zone, landscape zone, nature walks zone: adjacent medical facilities and adjacent to large commercial facilities. Propose of Nature walks zone with point of the design: provide slope that the wheelchair can access and walking paths to enjoy the scenery, and summary of the Kamisaigo River workshop: creating a multi-model study and creation of natural rivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20restoration" title="river restoration">river restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20improvement" title=" river improvement"> river improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rivers" title=" natural rivers"> natural rivers</a>, <a href="https://publications.waset.org/abstracts/search?q=Saigo%20River" title=" Saigo River"> Saigo River</a> </p> <a href="https://publications.waset.org/abstracts/49147/judging-restoration-success-of-kamisaigo-river-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6036</span> Investigation of Effective Parameters on Water Quality of Iranian Rivers Using Hydrochemical and Statistical Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Sayadi">Maryam Sayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Sedighpour"> Rana Sedighpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Rezaie"> Hossein Rezaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, in order to evaluate water quality of Gamasiab and Gharehsoo rivers located in Kermanshah province, the information of a 5-year statistical period during the years 2014-2018 was used. To evaluate the hydrochemistry of water, first the type and hydrogeochemical facies of river water were determined using Stiff and Piper diagrams. Then, based on Gibbs diagram and combination diagrams, the factors controlling the chemical parameters of the two rivers were identified. Saturation indices were used to predict the possibility of dissolution and deposition of some minerals. Then, in order to classify water in different sections, fourteen water quality indicators for different uses along with WHO standard were used. Finally, factor analysis was used to determine the processes affecting the hydrochemistry of the two rivers. The results of this study showed that in both rivers, the predominant type and facies are bicarbonate of calcite. Also, the main factor in changing the chemical quality of water in both Gamasiab and Gharehsoo rivers is the water-rock reaction. According to the results of factor analysis in both rivers, two factors have the greatest impact on water quality in the region. Among the parameters of Gamasiab river in the first factor, HCO3-, Na+ and Cl-, respectively, had the highest factor loads, and in the second factor, SO42- and Mg2+ were selected as the main parameters. The parameters Ca2+, Cl- and Na have the highest factor loads in the first factor and in the second factor Mg2+ and SO42- have the highest factor loads in Gharehsoo river. The dissolution of carbonate formations due to their abundance and expansion in the two basins has a more significant effect on changing water chemistry. It has saturated the water of rivers with aragonite, calcite and dolomite. Due to the low contribution of the second factor in changing the chemical parameters, the water of both rivers is saturated with respect to evaporative minerals such as gypsum, halite and anhydrite in all stations. Based on Schoeller diagrams, Wilcox and other quality indicators in these two sections, the amount of main physicochemical parameters are in the desired range for drinking and agriculture. The results of Langelier, Ryznar, Larson-Skold and Puckorius indices showed that water is corrosive in industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title="factor analysis">factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochemical" title=" hydrochemical"> hydrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20index" title=" saturation index"> saturation index</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water%20quality" title=" surface water quality"> surface water quality</a> </p> <a href="https://publications.waset.org/abstracts/135723/investigation-of-effective-parameters-on-water-quality-of-iranian-rivers-using-hydrochemical-and-statistical-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6035</span> Cloudburst-Triggered Natural Hazards in Uttarakhand Himalaya: Mechanism, Prevention, and Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishwambhar%20Prasad%20Sati">Vishwambhar Prasad Sati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article examines cloudburst-triggered natural hazards mainly flashfloods and landslides in the Uttarakhand Himalaya. It further describes mechanism and implications of natural hazards and illustrates the preventive and mitigation measures. We conducted this study through collection of archival data, case study of cloudburst hit areas, and rapid field visit of the affected regions. In the second week of August 2017, about 50 people died and huge losses to property were noticed due to cloudburst-triggered flashfloods. Our study shows that although cloudburst triggered hazards in the Uttarakhand Himalaya are natural phenomena and unavoidable yet, disasters can be minimized if preventive measures are taken up appropriately. We suggested that construction of human settlements, institutions and infrastructural facilities along the seasonal streams and the perennial rivers should be avoided to prevent disasters. Further, large-scale tree plantation on the degraded land will reduce the magnitude of hazards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloudburst" title="cloudburst">cloudburst</a>, <a href="https://publications.waset.org/abstracts/search?q=flash%20floods" title=" flash floods"> flash floods</a>, <a href="https://publications.waset.org/abstracts/search?q=landslides" title=" landslides"> landslides</a>, <a href="https://publications.waset.org/abstracts/search?q=fragile%20landscape" title=" fragile landscape"> fragile landscape</a> </p> <a href="https://publications.waset.org/abstracts/79629/cloudburst-triggered-natural-hazards-in-uttarakhand-himalaya-mechanism-prevention-and-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6034</span> The Effects of Land Use Types to Determine the Status of Sustainable River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Louis%20Sunaris">Michael Louis Sunaris</a>, <a href="https://publications.waset.org/abstracts/search?q=Robby%20Yussac%20Tallar"> Robby Yussac Tallar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of sustainable river is evolving in Indonesia today. Many rivers condition in Indonesia have decreased by quality and quantity. The degradation of this condition is caused by rapid land use change as a result of increased population growth and human activity. It brings the degradation of the existing watersheds including some types of land use that an important factor in determining the status of river sustainability. Therefore, an evaluation method is required to determine the sustainability status of waterbody within watershed. The purpose of this study is to analyze various types of land use in determining the status of river sustainability. This study takes the watersheds of Citarum Upstream as a study area. The results of the analysis prove the index of sustainability status of the river that changes from good to bad or average in the rivers in the study area. The rapid and uncontrolled changes of land use especially in the upper watersheds area are the main causes that happened over time. It was indicated that the cumulative runoff coefficients were increased significantly. These situations indicated that the damage of watersheds has an impact on the water surplus or deficit problem yearly. Therefore, the rivers in Indonesia should be protected and conserved. The sustainability index of the rivers is an index to indicate the condition of watersheds by defining status of rivers in order to achieve sustainable water resource management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%20change" title="land use change">land use change</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20coefficient" title=" runoff coefficient"> runoff coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20simple%20index" title=" a simple index"> a simple index</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20river" title=" sustainable river"> sustainable river</a> </p> <a href="https://publications.waset.org/abstracts/96805/the-effects-of-land-use-types-to-determine-the-status-of-sustainable-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6033</span> Quantitative Polymerase Chain Reaction Analysis of Phytoplankton Composition and Abundance to Assess Eutrophication: A Multi-Year Study in Twelve Large Rivers across the United States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiqian%20Zhang">Chiqian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyle%20D.%20McIntosh"> Kyle D. McIntosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Sienkiewicz"> Nathan Sienkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Struewing"> Ian Struewing</a>, <a href="https://publications.waset.org/abstracts/search?q=Erin%20A.%20Stelzer"> Erin A. Stelzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20L.%20Graham"> Jennifer L. Graham</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingrang%20Lu"> Jingrang Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytoplankton plays an essential role in freshwater aquatic ecosystems and is the primary group synthesizing organic carbon and providing food sources or energy to ecosystems. Therefore, the identification and quantification of phytoplankton are important for estimating and assessing ecosystem productivity (carbon fixation), water quality, and eutrophication. Microscopy is the current gold standard for identifying and quantifying phytoplankton composition and abundance. However, microscopic analysis of phytoplankton is time-consuming, has a low sample throughput, and requires deep knowledge and rich experience in microbial morphology to implement. To improve this situation, quantitative polymerase chain reaction (qPCR) was considered for phytoplankton identification and quantification. Using qPCR to assess phytoplankton composition and abundance, however, has not been comprehensively evaluated. This study focused on: 1) conducting a comprehensive performance comparison of qPCR and microscopy techniques in identifying and quantifying phytoplankton and 2) examining the use of qPCR as a tool for assessing eutrophication. Twelve large rivers located throughout the United States were evaluated using data collected from 2017 to 2019 to understand the relation between qPCR-based phytoplankton abundance and eutrophication. This study revealed that temporal variation of phytoplankton abundance in the twelve rivers was limited within years (from late spring to late fall) and among different years (2017, 2018, and 2019). Midcontinent rivers had moderately greater phytoplankton abundance than eastern and western rivers, presumably because midcontinent rivers were more eutrophic. The study also showed that qPCR- and microscope-determined phytoplankton abundance had a significant positive linear correlation (adjusted R² 0.772, p-value < 0.001). In addition, phytoplankton abundance assessed via qPCR showed promise as an indicator of the eutrophication status of those rivers, with oligotrophic rivers having low phytoplankton abundance and eutrophic rivers having (relatively) high phytoplankton abundance. This study demonstrated that qPCR could serve as an alternative tool to traditional microscopy for phytoplankton quantification and eutrophication assessment in freshwater rivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoplankton" title="phytoplankton">phytoplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=eutrophication" title=" eutrophication"> eutrophication</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a>, <a href="https://publications.waset.org/abstracts/search?q=qPCR" title=" qPCR"> qPCR</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopy" title=" microscopy"> microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=spatiotemporal%20variation" title=" spatiotemporal variation"> spatiotemporal variation</a> </p> <a href="https://publications.waset.org/abstracts/160030/quantitative-polymerase-chain-reaction-analysis-of-phytoplankton-composition-and-abundance-to-assess-eutrophication-a-multi-year-study-in-twelve-large-rivers-across-the-united-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6032</span> Circular Economy-Relationship of Natural Water Collection System, Afforestation and Country Park Towards Environmental Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwok%20Tak%20Kit">Kwok Tak Kit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The government and community have raised their awareness of the benefits of water reuse. Deforestation has a significant effect to climate change as it causes the drying out of the tropical rainforest and hence increases the chance of natural hazards. The loss of forests due to natural fire or human factors would be threatening the storage and supply of clean water. In this paper, we will focus on the discussion of the relationship of the natural water collection system, afforestation and country parks towards environmental sustainability and circular economy with a case study of water conservation policy and strategy in Hong Kong and Singapore for further research. The UN General Assembly launched the Water Action Decade in 2018 to mobilize action that will help to tackle the growing challenge of water scarcity through water conservation and protect and restore water-related ecosystems, including forests, wetlands, rivers, aquifers and lakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=afforestation" title="afforestation">afforestation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title=" environmental sustainability"> environmental sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20conservation" title=" water conservation"> water conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development%20goal" title=" sustainable development goal"> sustainable development goal</a> </p> <a href="https://publications.waset.org/abstracts/145832/circular-economy-relationship-of-natural-water-collection-system-afforestation-and-country-park-towards-environmental-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6031</span> Spatial Distribution of Natural Radionuclides in Soil, Sediment and Waters in Oil Producing Areas in Niger Delta Region of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20O.%20Avwiri">G. O. Avwiri</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20O.%20Agbalagba"> E. O. Agbalagba</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Ononugbo"> C. P. Ononugbo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activity concentrations of natural radionuclides (226Ra, 232Th and 40K) in the soil, sediment and water of oil producing communities in Delta and Rivers States were determined using γ-ray spectrometry. The mean soil/sediment activity concentration of 226Ra, 232Th and 40K in onshore west in Delta state is 40.2±5.1Bqkg-1, 29.9±4.2Bqkg-1 and 361.5±20.0Bqkg-1 respectively, the corresponding values obtained in onshore east1 of Rivers state is 20.9±2.8Bqkg-1, 19.4±2.5Bqkg-1and 260.0±14.1Bqkg-1 respectively. While the mean activity concentration of 226Ra, 232Th and 40K in onshore east2 of Rivers state is 29.3±3.5Bqkg-1, 21.6±2.6Bqkg-1 and 262.1±14.6Bqkg-1 respectively. These values obtained show enhanced NORMs but are well within the world range. All the radiation hazard indices examined in soil have mean values lower than their maximum permissible limits. In drinking water, the obtained average values of226Ra, 228Ra and 40K is 8.4±0.9, 7.3±0.7 and 29.9±2.2Bql-1 respectively for well water, 4.5±0.6, 5.1±0.4 and 20.9±2.0Bql-1 respectively for borehole water and 11.3±1.2, 8.5±0.7 and 32.4±3.7Bql-1 respectively for river water in onshore west. For onshore east1, average activity concentration of 226Ra, 228Ra and 40K is 8.3±1.0, 8.6±1.1 and 39.6±3.3Bql-1 respectively for well water, 3.8±0.8, 4.9±0.6 and 35.7±4.1Bql-1 respectively for borehole water and 5.5±0.8, 5.4±0.7 and 36.9±3.8Bql-1 respectively for river water. While in onshore east2 average value of 226Ra, 228Ra and 40K is 10.1±1.1, 8.3±1.0 and 50.0±3.9Bql-1 respectively for well water, 4.7±0.9, 4.0±0.4 and 28.8±3.0Bql-1 respectively for borehole water and 7.7±0.9, 6.1±0.8 and 27.1±2.9Bql-1 respectively for river water and the average activity concentrations in the produced water226Ra, 228Ra and 40K is 5.182.14Bql-1, 6.042.48Bql-1 and 48.7813.67Bql-1 respectively. These values obtained are well above world average values of 1.0, 0.1 and 10Bql-1 for 226Ra, 228Ra and 40K respectively, those of the control site values and most reported values around the world. Though the hazard indices (Raeq, Hex, Hin) examined in water is still within the tolerable level, the committed effective dose estimated are above ICPR 0.1 mSvy-1 permissible limits. The overall results show that soil and sediment in the area are safe radiologically, but the result indicates some level of water pollution in the studied area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radioactivity" title="radioactivity">radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20and%20water" title=" sediment and water"> sediment and water</a>, <a href="https://publications.waset.org/abstracts/search?q=Niger%20Delta" title=" Niger Delta"> Niger Delta</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20detector" title=" gamma detector"> gamma detector</a> </p> <a href="https://publications.waset.org/abstracts/26627/spatial-distribution-of-natural-radionuclides-in-soil-sediment-and-waters-in-oil-producing-areas-in-niger-delta-region-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6030</span> Major Mechanisms of Atmospheric Moisture Transport and Their Role in Precipitation Extreme Events in the Amazonia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Gimeno">Luis Gimeno</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosmeri%20da%20Rocha"> Rosmeri da Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquel%20Nieto"> Raquel Nieto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tercio%20Ambrizzi"> Tercio Ambrizzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Ramos"> Alex Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Drumond"> Anita Drumond</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transport of moisture from oceanic sources to the continents represents the atmospheric branch of the water cycle, forming the connection between evaporation from the ocean and precipitation over the continents. In this regard two large scale dynamical/meteorological structures appear to play a key role, namely Low Level Jet (LLJ) systems and Atmospheric Rivers (ARs). The former are particularly important in tropical and subtropical regions; the latter is mostly confined to extratropical regions. A key question relates to the anomalies in the transport of moisture observed during natural hazards related to extremes of precipitation (i.e., drought or wet spells). In this study we will be focused on these two major atmospheric moisture transport mechanisms (LLJs and ARs) and its role in precipitation extreme events (droughts and wet spells) in the Amazonia paying particular attention to i) intensification (decreasing) of moisture transport by them and its role in wet spells (droughts), and ii) changes in their positions and occurrence with associated flooding and wet spells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droughts" title="droughts">droughts</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20spells" title=" wet spells"> wet spells</a>, <a href="https://publications.waset.org/abstracts/search?q=amazonia" title=" amazonia"> amazonia</a>, <a href="https://publications.waset.org/abstracts/search?q=LLJs" title=" LLJs"> LLJs</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20rivers" title=" atmospheric rivers"> atmospheric rivers</a> </p> <a href="https://publications.waset.org/abstracts/38231/major-mechanisms-of-atmospheric-moisture-transport-and-their-role-in-precipitation-extreme-events-in-the-amazonia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6029</span> Assessment of Surface Water Quality in Belarus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasiya%20Vouchak">Anastasiya Vouchak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaksandr%20Volchak"> Aliaksandr Volchak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Belarus is not short of water. However, there is a problem of water quality. Its pollution has both natural and man-made origin. This research is based on data from State Water Cadastre of the Republic of Belarus registered from 1994 to 2014. We analyzed changes in such hydro-chemical criteria as concentration of ammonium ions, suspended matter, dissolved oxygen, oil-products, nitrites, phosphates in water, dichromate value, water impurity index, 5-day biochemical oxygen demand (BOD). Pollution of water with ammonium ions was observed in Belarus rivers of the Western Dvina, Polota, Schara, Usha, Muhavets, Berzina, Plissa, Svisloch, Pripiat, Yaselda in 2006-2014. The threshold limit value (TLV) was 1.5-3 times as much. Concentration of ammonia in the Berezina exceeded 3 – 5 times the TLVs in 2006-2010. Maximum excess of TLV was registered in the Svisloch (10 km downstream of Minsk) in 2006-2007. It was over 4 mg/dm³ whereas the norm is 0.39 mg/dm³. In 1997 there were ammonia pollution spots in the Dnieper, the Berezina, and the Svisloch Rivers. Since 2006 we have observed pollution spots in the Neman, Ross, Vilia, Sozh, Gorin Rivers, the Osipovichi and Soligorsk reservoirs. Dichromate value exceeds the TLVs in 40% cases. The most polluted waters are the Muhavets, Berezina, Pripiat, Yaselda, Gorin Rivers, the Vileyka and Soligorsk reservoirs. The Western Dvina, Neman, Viliya, Schara, Svisloch, and Plissa Rivers are less polluted. The Dnieper is the cleanest in this respect. In terms of BOD, water is polluted in the Neman, Muhavets, Svisloch, Yaselda, Gorin Rivers, the Osipovichi, Zaslavl, and Soligorsk reservoirs. The Western Dvina, Polota, Sozh, Iputs Rivers and Lake Naroch are not polluted in this respect. This criterion has been decreasing in 33 out of 42 cases. The least suspended matter is in the Berezina, Sozh, Iputs Rivers and Lake Naroch. The muddiest water is in the Neman, Usha, Svisloch, Pripyat, Yaselda Rivers, the Osipovichi and Soligorsk reservoirs. Water impurity index shows reduction of this criterion at all gauge stations. Multi-year average values predominantly (66.6%) correspond to the third class of water quality, i.e. moderately polluted. They include the Western Dvina, Ross, Usha, Muhavets, Dnieper, Berezina, Plissa, Iputs, Pripyat, Yaselda, Gorin Rivers, the Osipovichi and Soligorsk reservoirs. Water in the Svisloch River downstream of Minsk is of the forth quality class, i.e. most polluted. In the rest cases (33.3%) water is relatively clean. They include the Lidea, Schara, Viliya, Sozh Rivers, Lake Lukoml, Lake Naroch, Vileyka and Zaslavl reservoirs. Multi-year average values range from 7.0 to 9.5 mg О₂/dm³. The Yaselda has the least value - 6.7 mg О₂/dm³. A shortage of dissolved oxygen was found in the Berezina (2010), the Yaselda (2007), the Plissa (2011-2014), the Soligorsk reservoir (1996). Contamination of water with oil-products was observed everywhere in 1994-1999. Some spots were found in the Western Dvina, Vilia, Usha, Dnieper in 2003-2006, in the Svisloch in 2002-2012. We are observing gradual decrease of oil pollutants in surface water. The quality of 67 % surface water is referred to as moderately polluted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=belarus" title="belarus">belarus</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro-chemical%20criteria" title=" hydro-chemical criteria"> hydro-chemical criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title=" water pollution"> water pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/89275/assessment-of-surface-water-quality-in-belarus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6028</span> The Genetic Diversity and Conservation Status of Natural Populus Nigra Populations in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asiye%20Ciftci">Asiye Ciftci</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeki%20Kaya"> Zeki Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Populus nigra is one of the most economically and ecologically important forest trees in Turkey, well known for its rapid growth, good ability to vegetative propagation and the extreme uses of its wood. Due to overexploitation, loss of natural distribution area and extreme hybridization and introgression, Populus nigra is one of the most threatened tree species in Turkey and Europe. Using 20 nuclear microsatellite loci, the genetic structure of European black poplar populations along the two largest rivers of Turkey was analyzed. All tested loci were highly polymorphic, displaying 5 to 15 alleles per locus. Observed heterozygosity (overall Ho = 0.79) has been higher than the expected (overall He = 0.58) in each population. Low level of genetic differentiation among populations (FST= 0,03) and excess of heterozygotes for each river were found. Human-mediated dispersal, phenotypic selection, high level of gene flow and extensive circulations of clonal materials may cause those situations. The genetic data obtained from this study could provide the basis for efficient in situ and ex-situ conservation and restoration of species natural populations in its natural habitat as well as having sustainable breeding and poplar plantations in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=populus" title="populus">populus</a>, <a href="https://publications.waset.org/abstracts/search?q=clonal" title=" clonal"> clonal</a>, <a href="https://publications.waset.org/abstracts/search?q=loci" title=" loci"> loci</a>, <a href="https://publications.waset.org/abstracts/search?q=ex%20situ" title=" ex situ"> ex situ</a> </p> <a href="https://publications.waset.org/abstracts/87986/the-genetic-diversity-and-conservation-status-of-natural-populus-nigra-populations-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6027</span> Participation of Students and Lecturers in Social Networking for Teaching and Learning in Public Universities in Rivers State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkeiruka%20Queendarline%20Nwaizugbu">Nkeiruka Queendarline Nwaizugbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of social media and mobile devices has become acceptable in virtually all areas of today’s world. Hence, this study is a survey that was carried out to find out if students and lecturers in public universities in Rivers State use social networking for educational purposes. The sample of the study comprised of 240 students and 99 lecturers from the University of Port Harcourt and the Rivers State University of science and Technology. The study had five research questions, two hypotheses and the instrument for data collection was a 4-point Likert-type rating scale questionnaire. The data was analysed using mean, standard deviation and z-test. The findings gotten from the analysed data shows that students participate in social networking using different types of web applications but they hardly use them for educational purposes. Some recommendations were also made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20access" title="internet access">internet access</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20learning" title=" mobile learning"> mobile learning</a>, <a href="https://publications.waset.org/abstracts/search?q=participation" title=" participation"> participation</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20networking" title=" social networking"> social networking</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/14077/participation-of-students-and-lecturers-in-social-networking-for-teaching-and-learning-in-public-universities-in-rivers-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6026</span> The Physicochemical Properties of Two Rivers in Eastern Cape South Africa as Relates to Vibrio Spp Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwatayo%20Abioye">Oluwatayo Abioye</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Okoh"> Anthony Okoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past view decades; human has experienced outbreaks of infections caused by pathogenic Vibrio spp which are commonly found in aquatic milieu. Asides the well-known Vibrio cholerae, discovery of other pathogens in this genus has been on the increase. While the dynamics of occurrence and distribution of Vibrio spp have been linked to some physicochemical parameters in salt water, data in relation to fresh water is limited. Hence, two rivers of importance in the Eastern Cape, South Africa were selected for this study. In all, eleven sampling sites were systematically identified and relevant physicochemical parameters, as well as Vibrio spp density, were determined for the period of six months using standard instruments and methods. Results were statistically analysed to determined key physicochemical parameters that determine the density of Vibrio spp in the selected rivers. Results: The density of Vibrio spp in all the sampling points ranges between < 1 CFU/mL to 174 x 10-2 CFU/mL. The physicochemical parameters of some of the sampling points were above the recommended standards. The regression analysis showed that Vibrio density in the selected rivers depends on a complex relationship between various physicochemical parameters. Conclusion: This study suggests that Vibrio spp density in fresh water does not depend on only temperature and salinity as suggested by earlier studies on salt water but rather on a complex relationship between several physicochemical parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibrio%20density" title="vibrio density">vibrio density</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogen" title=" pathogen"> pathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20milieu" title=" aquatic milieu"> aquatic milieu</a> </p> <a href="https://publications.waset.org/abstracts/77315/the-physicochemical-properties-of-two-rivers-in-eastern-cape-south-africa-as-relates-to-vibrio-spp-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6025</span> Determination of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District of South Africa Using GC-TOF-MS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joshua%20N.%20Edokpayi">Joshua N. Edokpayi</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20O.%20Odiyo"> John O. Odiyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Titus%20A.%20M.%20Msagati"> Titus A. M. Msagati</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20O.%20Popoola"> Elizabeth O. Popoola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycyclic aromatic hydrocarbons (PAHs) are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs classified by the United State Environmental Protection Agency as priority pollutants in Mvudi and Nzhelele Rivers and sediments. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using ultrasonication method. The extracts were purified using SPE technique and reconstituted in n-hexane before analyses with GC-TOF-MS. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174-26.382 mg/L and 27.10-55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs determined in both river waters and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbon" title="polycyclic aromatic hydrocarbon">polycyclic aromatic hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=rivers" title=" rivers"> rivers</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20effluents" title=" wastewater effluents"> wastewater effluents</a> </p> <a href="https://publications.waset.org/abstracts/40608/determination-of-polycyclic-aromatic-hydrocarbons-in-rivers-sediments-and-wastewater-effluents-in-vhembe-district-of-south-africa-using-gc-tof-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6024</span> The Influence of Activity Selection and Travel Distance on Forest Recreation Policies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Morgan">Mark Morgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Li"> Christine Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuangyu%20Xu"> Shuangyu Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20McCarty"> Jenny McCarty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The National Wild and Scenic Rivers System was created by the U.S. Congress in 1968 (Public Law 90-542; 16 U.S.C. 1271 et seq.) to preserve outstanding natural, cultural, and recreational values of some U.S. rivers in a free-flowing condition for the enjoyment of present and future generations. This Act is notable for safeguarding the special character of these rivers while supporting management action that encourages public participation for co-creating river protection goals and strategies. This is not an easy task. To meet the challenges of modern ecosystem management, federal resource agencies must address many legal, environmental, economic, political, and social issues. The U.S. Forest Service manages a 44-mile section of the Eleven Point National Scenic River (EPR) in southern Missouri, mainly for outdoor recreation purposes. About half of the acreage is in private lands, while the remainder flows through the Mark Twain National Forest. Private land along the river is managed by scenic easements to ensure protection of scenic values and natural resources, without public access. A portion of the EPR lies adjacent to a 16,500-acre tract known as the Irish Wilderness. The spring-fed river has steep bluffs, deep pools, clear water, and a slow current, making it an ideal setting for outdoor enthusiasts. A 10-month visitor study was conducted at five access points along the EPR during 2019 so the US Forest Service could update their river management plan. A mail-back survey was administered to 560 on-site visitors, yielding a response rate of 53%. Although different types of visitors use the EPR, boating and fishing were the predominant forms of outdoor recreation. Some river use was from locals, but other visitors came from farther away. Formulating unbiased policies for outdoor recreation is difficult because managers must assign relative values to recreational activities and travel distance. Because policymaking is a subjective process, management decisions can affect user groups in different ways (i.e., boaters vs. fishers; proximate vs. distal visitors), as seen through a GIS analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity%20selection" title="activity selection">activity selection</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20recreation" title=" forest recreation"> forest recreation</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20distance" title=" travel distance"> travel distance</a> </p> <a href="https://publications.waset.org/abstracts/128397/the-influence-of-activity-selection-and-travel-distance-on-forest-recreation-policies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6023</span> Oxygenation in Turbulent Flows over Block Ramps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thendiyath%20Roshni">Thendiyath Roshni</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Pagliara"> Stefano Pagliara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Block ramps (BR) or rock chutes are eco-friendly natural river restoration structures. BR are made of ramp of rocks and flows over BR develop turbulence and helps in the entrainment of ambient air. These act as natural aerators in river flow and therefore leads to oxygenation of water. As many of the hydraulic structures in rivers, hinders the natural path for aquatic habitat. However, flows over BR ascertains a natural rocky flow and ensures safe and natural movement for aquatic habitat. Hence, BR is considered as a better alternative for drop structures. As water quality is concerned, turbulent and aerated flows over BR or macro-roughness conditions improves aeration and thereby oxygenation. Hence, the objective of this paper is to study the oxygenation in the turbulent flows over BR. Experimental data were taken for a slope (S) of 27.5% for three discharges (Q = 9, 15 and 21 lps) conditions. Air concentration were measured with the help of air concentration probe for three different discharges in the uniform flow region. Oxygen concentration is deduced from the air concentration as ambient air is entrained in the flows over BR. Air concentration profiles and oxygen profiles are plotted in the uniform flow region for three discharges and found that air concentration and oxygen concentration does not show any remarkable variation in properties in the longitudinal profile in uniform flow region. An empirical relation is developed for finding the average oxygen concentration (Oₘ) for S = 27.5% in the uniform flow region for 9 < Q < 21 lps. The results show that as the discharge increases over BR, there is a reduction of oxygen concentration in the uniform flow region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeration" title="aeration">aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20ramps" title=" block ramps"> block ramps</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygenation" title=" oxygenation"> oxygenation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flows" title=" turbulent flows"> turbulent flows</a> </p> <a href="https://publications.waset.org/abstracts/98618/oxygenation-in-turbulent-flows-over-block-ramps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6022</span> Chongqing, a Megalopolis Disconnected with Its Rivers: An Assessment of Urban-Waterside Disconnect in a Chinese Megacity and Proposed Improvement Strategies, Chongqing City as a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaime%20E.%20Salazar%20Lagos">Jaime E. Salazar Lagos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chongqing is located in southwest China and is becoming one of the most significant cities in the world. Its urban territories and metropolitan-related areas have one of the largest urban populations in China and are partitioned and shaped by two of the biggest and longest rivers on Earth, the Yangtze and Jialing Rivers, making Chongqing a megalopolis intersected by rivers. Historically, Chongqing City enjoyed fundamental connections with its rivers; however, current urban development of Chongqing City has lost effective integration of the riverbanks within the urban space and structural dynamics of the city. Therefore, there exists a critical lack of physical and urban space conjoined with the rivers, which diminishes the economic, tourist, and environmental development of Chongqing. Using multi-scale satellite-map site verification the study confirmed the hypothesis and urban-waterside disconnect. Collected data demonstrated that the Chongqing urban zone, an area of 5292 square-kilometers and a water front of 203.4 kilometers, has only 23.49 kilometers of extension (just 11.5%) with high-quality physical and spatial urban-waterside connection. Compared with other metropolises around the world, this figure represents a significant lack of spatial development along the rivers, an issue that has not been successfully addressed in the last 10 years of urban development. On a macro scale, the study categorized the different kinds of relationships between the city and its riverbanks. This data was then utilized in the creation of an urban-waterfront relationship map that can be a tool for future city planning decisions and real estate development. On a micro scale, we discovered there are three primary elements that are causing the urban-waterside disconnect: extensive highways along the most dense areas and city center, large private real estate developments that do not provide adequate riverside access, and large industrial complexes that almost completely lack riverside utilization. Finally, as part of the suggested strategies, the study concludes that the most efficient and practical way to improve this situation is to follow the historic master-planning of Chongqing and create connective nodes in critical urban locations along the river, a strategy that has been used for centuries to handle the same urban-waterside relationship. Reviewing and implementing this strategy will allow the city to better connect with the rivers, reducing the various impacts of disconnect and urban transformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chongqing%20City" title="Chongqing City">Chongqing City</a>, <a href="https://publications.waset.org/abstracts/search?q=megalopolis" title=" megalopolis"> megalopolis</a>, <a href="https://publications.waset.org/abstracts/search?q=nodes" title=" nodes"> nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=riverbanks%20disconnection" title=" riverbanks disconnection"> riverbanks disconnection</a>, <a href="https://publications.waset.org/abstracts/search?q=urban" title=" urban"> urban</a> </p> <a href="https://publications.waset.org/abstracts/65144/chongqing-a-megalopolis-disconnected-with-its-rivers-an-assessment-of-urban-waterside-disconnect-in-a-chinese-megacity-and-proposed-improvement-strategies-chongqing-city-as-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6021</span> Calls for a Multi-Stakeholder Funding Strategy for Live Births Registration: A Case Study of Rivers State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Obenade">Moses Obenade</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20I.%20Okpiliya"> Francis I. Okpiliya</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordon%20T.%20Amangabara"> Gordon T. Amangabara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the 2006 Census of Nigeria, there are 2,525,690 females out of the total population of 5,198,716 of Rivers State. Of that figure, about 90 percent are still within the reproductive age of (0-49). With an annual growth rate of 3.4 percent, the population of Rivers State is estimated to grow to 7,262,755 by 2016. This means an increase of 2,064,039 within a ten year period. From a projected population increase of 182,766 in 2007 only 30,394 live births were registered while an astronomical increase of 543,275 live births were registered in 2008 as against the anticipated increase of 188,980. Preliminary investigations revealed that this exceptional figure in 2008 was occasioned by manpower and logistics support provided by the Rivers State Government for the Port Harcourt office of the National Population Commission (NPC). The mop-up exercise of 2008 by NPC that was engineered from the support provided by the Rivers State Government indicates that the agency needs the co-operation and partnership of the three tiers of government and the communities in performing its statutory duties that is pertinent to national planning, growth and development. Because the incentives received from Rivers State Government did not continue in 2009, live births registration noise-dived to only 60,546 from the expected increase of 195,405. It was further observed that Port Harcourt City and Obio/Akpor Local Government Areas which constitute the state capital have the highest number of live births registration during the period of 2007 to 2014 covered by this paper. This trend of not adequately accounting for or registering all live births in the state has continued till date without being addressed by the authorities concerned. The current situation if left unchecked portend serious danger for the state and indeed Nigeria, as paucity of data could hamper sound economic planning as well as proper allocation of resources to targeted sectors. This paper therefore recommends an innovative multi-stakeholder funding strategy comprising the federal, state, local government and communities. Their participation in an integrated manner will aid the achievement of comprehensive live births registration in the state. It is hoped that investments in education, health and social sectors could help in addressing most of the problems bedeviling the nation as such as lowering of fertility and improving lives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=live%20births%20registration" title="live births registration">live births registration</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=rivers%20state" title=" rivers state"> rivers state</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20population%20commission" title=" national population commission"> national population commission</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/40054/calls-for-a-multi-stakeholder-funding-strategy-for-live-births-registration-a-case-study-of-rivers-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6020</span> Spatio-Temporal Variability in Reciprocal Resource Subsidies across Adjacent Terrestrial and Aquatic Eastern Cape Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiyisani%20L.%20Chavalala">Tiyisani L. Chavalala</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20B.%20Richoux"> Nicole B. Richoux</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20H.%20Villet"> Martin H. Villet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rivers and their adjacent ecosystems are linked by reciprocal ecological subsidies. Rivers receive nutrients and energy from land, and these transfers can represent important food subsidies, a phenomenon known as allochthony. Emergence of adult aquatic invertebrates can also provide important food sources to terrestrial consumers. Reciprocal subsidies are influenced by factors such as canopy cover, river flow rate and channel width, which can be highly variable through space and time. The aim of this study is to identify and quantify the main trophic links between adjacent ecosystems (terrestrial and freshwater systems) in several Eastern Cape Rivers with different catchment sizes and flow rates and to develop an understanding of the factors that affect the strength of these links and their spatial dynamics. Food sources and consumers were sampled during four seasons (August 2016, November 2016, February 2017 and May 2017), and stable isotope ratios will serve as tracers to estimate the food web structures. Emergence traps are being used to quantify the rates of emergence of adult aquatic insects, and infall-pan traps are being used to quantify the terrestrial insects falling into rivers as potential food subsidies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emerging%20aquatic%20insects" title="emerging aquatic insects">emerging aquatic insects</a>, <a href="https://publications.waset.org/abstracts/search?q=in-falling%20terrestrial%20insects" title=" in-falling terrestrial insects"> in-falling terrestrial insects</a>, <a href="https://publications.waset.org/abstracts/search?q=reciprocal%20resource%20subsidies" title=" reciprocal resource subsidies"> reciprocal resource subsidies</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotopes" title=" stable isotopes"> stable isotopes</a> </p> <a href="https://publications.waset.org/abstracts/80313/spatio-temporal-variability-in-reciprocal-resource-subsidies-across-adjacent-terrestrial-and-aquatic-eastern-cape-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6019</span> People&#039;s Perspective on Water Commons in Trans-Boundary Water Governance: A Case Study from Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sristi%20Silwal">Sristi Silwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> South Asian rivers support ecosystems and sustain well-being of thousands of riparian communities. Rivers however are also sources of conflict between countries and one of the contested issues between governments of the region. Governments have signed treaties to harness some of the rivers but their provisions have not been successful in improving the quality of life of those who depend on water as common property resources. This paper will present a case of the study of the status of the water commons along the lower command areas of Koshi, Gandka and Mahakali rivers. Nepal and India have signed treaties for development and management of these rivers in 1928, 1954 and 1966. The study investigated perceptions of the local community on climate-induced disasters, provision of the treaties such as water for irrigation, participation in decision-making and specific impact of women. It looked at how the local community coped with adversities. The study showed that the common pool resources are gradually getting degraded, flood events increasing while community blame ‘other state’ and state administration for exacerbating these ills. The level of awareness about provisions of existing treatise is poor. Ongoing approach to trans-boundary water management has taken inadequate cognizance of these realities as the dominant narrative perpetuates cooperation between the governments. The paper argues that on-going discourses on trans-boundary water development and management need to use a new metrics of taking cognizance of the condition of the commons and that of the people depended on them for sustenance. In absence of such narratives, the scale of degradation would increase making those already marginalized more vulnerable to impacts of global climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20vulnerability" title="climate change vulnerability">climate change vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict" title=" conflict"> conflict</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperation" title=" cooperation"> cooperation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20commons" title=" water commons"> water commons</a> </p> <a href="https://publications.waset.org/abstracts/45347/peoples-perspective-on-water-commons-in-trans-boundary-water-governance-a-case-study-from-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6018</span> Belarus Rivers Runoff: Current State, Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliaksandr%20Volchak">Aliaksandr Volchak</a>, <a href="https://publications.waset.org/abstracts/search?q=%D0%9Caryna%20Barushka"> Мaryna Barushka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The territory of Belarus is studied quite well in terms of hydrology but runoff fluctuations over time require more detailed research in order to forecast changes in rivers runoff in future. Generally, river runoff is shaped by natural climatic factors, but man-induced impact has become so big lately that it can be compared to natural processes in forming runoffs. In Belarus, a heavy man load on the environment was caused by large-scale land reclamation in the 1960s. Lands of southern Belarus were reclaimed most, which contributed to changes in runoff. Besides, global warming influences runoff. Today we observe increase in air temperature, decrease in precipitation, changes in wind velocity and direction. These result from cyclic climate fluctuations and, to some extent, the growth of concentration of greenhouse gases in the air. Climate change affects Belarus’s water resources in different ways: in hydropower industry, other water-consuming industries, water transportation, agriculture, risks of floods. In this research we have done an assessment of river runoff according to the scenarios of climate change and global climate forecast presented in the 4th and 5th Assessment Reports conducted by Intergovernmental Panel on Climate Change (IPCC) and later specified and adjusted by experts from Vilnius Gediminas Technical University with the use of a regional climatic model. In order to forecast changes in climate and runoff, we analyzed their changes from 1962 up to now. This period is divided into two: from 1986 up to now in comparison with the changes observed from 1961 to 1985. Such a division is a common world-wide practice. The assessment has revealed that, on the average, changes in runoff are insignificant all over the country, even with its irrelevant increase by 0.5 – 4.0% in the catchments of the Western Dvina River and north-eastern part of the Dnieper River. However, changes in runoff have become more irregular both in terms of the catchment area and inter-annual distribution over seasons and river lengths. Rivers in southern Belarus (the Pripyat, the Western Bug, the Dnieper, the Neman) experience reduction of runoff all year round, except for winter, when their runoff increases. The Western Bug catchment is an exception because its runoff reduces all year round. Significant changes are observed in spring. Runoff of spring floods reduces but the flood comes much earlier. There are different trends in runoff changes in spring, summer, and autumn. Particularly in summer, we observe runoff reduction in the south and west of Belarus, with its growth in the north and north-east. Our forecast of runoff up to 2035 confirms the trend revealed in 1961 – 2015. According to it, in the future, there will be a strong difference between northern and southern Belarus, between small and big rivers. Although we predict irrelevant changes in runoff, it is quite possible that they will be uneven in terms of seasons or particular months. Especially, runoff can change in summer, but decrease in the rest seasons in the south of Belarus, whereas in the northern part the runoff is predicted to change insignificantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20fluctuation" title=" climate fluctuation"> climate fluctuation</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20runoff" title=" river runoff"> river runoff</a> </p> <a href="https://publications.waset.org/abstracts/89284/belarus-rivers-runoff-current-state-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=201">201</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=202">202</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20rivers&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10