CINXE.COM

Search results for: sediments

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sediments</title> <meta name="description" content="Search results for: sediments"> <meta name="keywords" content="sediments"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sediments" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sediments"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 345</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sediments</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> Physicochemical Characterizations of Marine and River Sediments in the North of France</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abriak%20Nor%20Edine">Abriak Nor Edine</a>, <a href="https://publications.waset.org/abstracts/search?q=Zentar%20Rachid"> Zentar Rachid</a>, <a href="https://publications.waset.org/abstracts/search?q=Achour%20Raouf"> Achour Raouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Ngoc%20Thanh"> Tran Ngoc Thanh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is undertaken to develop a methodology to enhance the management of dredged marine and river sediments in the North of France. The main objective of this study is to determine the main characteristics of these sediments. In this order, physical, mineralogical and chemical properties of both types of sediments are measured. Moreover, their potential impacts on the environment are assessed throughout leaching tests. From the obtained results, the potential of their use in road engineering is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20sediments" title="marine sediments">marine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20sediments" title=" river sediments"> river sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=physico%20chemical%20characterizations" title=" physico chemical characterizations"> physico chemical characterizations</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20characterizations" title=" environmental characterizations"> environmental characterizations</a> </p> <a href="https://publications.waset.org/abstracts/18912/physicochemical-characterizations-of-marine-and-river-sediments-in-the-north-of-france" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Treatment of Dredged Marine Sediments for Their Reuse in Road Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Ben%20Abdelghani">F. Ben Abdelghani</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Maherezi"> W. Maherezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dredging operations generate, each year, a great quantity of marine sediments. These raw materials can not be used in road construction without a specific treatment process. Sediments suitability tests has shown that most of studied sediments are not suitable to be used in road construction. In order to improve their compacity and their mechanical performance, addition of a granular material is recommended. The use of a dredged sand, to improve the granular mixture containing sediments, allows a better management of the two types of dredge materials (sand and sediment). In this study, a new road material containing dredged marine sediments and dredged sand is formulated and treated by adding various binders. Mechanical performance investigation of different mixtures by measuring Proctor-IPI values and simple compressive strengths is realized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dredged%20sediments" title="dredged sediments">dredged sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=suitability%20tests" title=" suitability tests"> suitability tests</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20construction" title=" road construction"> road construction</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20binder" title=" hydraulic binder"> hydraulic binder</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20performance" title=" mechanical performance"> mechanical performance</a> </p> <a href="https://publications.waset.org/abstracts/41254/treatment-of-dredged-marine-sediments-for-their-reuse-in-road-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> Experimental Evaluation of Workability and Compressive Strength of Concrete With Sediments From Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khouadjia%20Mohamed%20Lyes%20Kamel">Khouadjia Mohamed Lyes Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensalem%20Sara"> Bensalem Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdou%20Kamel"> Abdou Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkadi%20Ahmed%20Abderraouf"> Belkadi Ahmed Abderraouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kessal%20Oussama"> Kessal Oussama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental study was conducted on sediments dredging from the dam of Bni Haroun, the most important and the largest dam in Algeria. The first phase of the work was to substitution of crushed sand with sediments to study the workability and compressive strength of ordinary concretes. The second phase of the work is to study the behavior of concrete with sediment under the effect of the freeze-thaw cycles. The results showed that the mechanical performance of concretes with sediments is better with a substitution rate of 10%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediments" title="sediments">sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=dam" title=" dam"> dam</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-thaw%20cycles" title=" freeze-thaw cycles"> freeze-thaw cycles</a> </p> <a href="https://publications.waset.org/abstracts/160304/experimental-evaluation-of-workability-and-compressive-strength-of-concrete-with-sediments-from-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Geochemical Approach of Rare Earth Element Distribution: A Case Study from Lake Acigol, Denizli, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Budakoglu">M. Budakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karaman"> M. Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdelnasser"> A. Abdelnasser</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kiran"> D. Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kumral"> M. Kumral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> About 50 mg lake sediment was digested in two steps. While first stage was completed with 6 ml 37% HCl, 2 ml 65% HNO3 and 1 ml 38-40% HF in an pressure and temperature controlled Teflon beaker using Berghoff Microwave™ at average 135°C, digestion procedure was completed with the addition of 6 ml 5% boric acid solution. REE contents of sediment samples were determined by Perkin Elmer DRC II ICP-MS in Geochemistry Research Laboratories (JAL/GRL) of Faculty of Mines, Istanbul Technical University. Chondrite-normalized REE patterns of Lake Acıgöl sediments show generally high abundance of REE compared to chondritic concentrations, with particular enrichment in LREE [(La/Lu)N = 4.85-19.90], [(La/Lu)N = 7.09-15.14], [(La/Lu)N = 9.42-15.52] and [(La/Lu)N = 7.69-15.63] for the surface sediment and 0-10 cm-, 10-20 cm- and 20-30 cm-subsurface sediments respectively. Also these samples showed flat HREE normalized to chondrite as (La/Sm)N ranging from 2.98 to 4.8 for surface sediments and for subsurface sediments from 3.28 to 3.97 (0-10 cm), 3.57 to 3.94 (10-20 cm) and 3.36 to 3.94 (20-30 cm) while (Gd/Yb)N ranging from 2.14 to 2.93, from 2.03 to 2.76, from 2.26 to 2.79 and from 2.05 to 2.76 from the surface and subsurface sediments respectively. Moreover, their REE profiles are similar to profiles of the continental collision basin (CCB) with negative Eu anomalies. In addition, their REE patterns illustrate generally low abundance of REE compared to concentrations of NASC, PAAS and UCC with very slight enrichment of LREE and positive Eu* anomalies. Therefore there is no comparable between our samples of surface and subsurface sediments and these types of international sediments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chondrite-normalized%20REE%20patterns" title="chondrite-normalized REE patterns">chondrite-normalized REE patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersaline%20lake" title=" hypersaline lake"> hypersaline lake</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20sediments" title=" surface sediments"> surface sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20sediments" title=" subsurface sediments"> subsurface sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=Lake%20Ac%C4%B1g%C3%B6l" title=" Lake Acıgöl"> Lake Acıgöl</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/10632/geochemical-approach-of-rare-earth-element-distribution-a-case-study-from-lake-acigol-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> Availability of Metals in Fired Bricks Incorporating Harbour Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabienne%20Baraud">Fabienne Baraud</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Leleyter"> Lydia Leleyter</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Poree"> Sandra Poree</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Lemoine"> Melanie Lemoine</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Oudghiri"> Fatiha Oudghiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alternative solutions to immersion at sea are searched for the huge amounts of dredged sediments around the world that might contain various types of contaminants. Possible re-uses of such materials in civil engineering appear as sustainable solutions. The French SEDIBRIC project (valorisation de SEDIments en BRIQues et tuiles) aims to replace a part of natural clays with dredged sediments in the preparation of fired bricks. The potential environmental impact of this re-use is explored to complete the technical and economic feasibility of the study. As part of the project, we investigate the environmental availability of metallic elements (Al, Ca, Cd, Co, Cr, Cu, Fe, Ni, Mg, Mn, Pb, Ti, and Zn) initially present in the dredged sediments selected for the project. Leaching tests (with H₂O, HCl, or EDTA) are conducted in the sediments than in the final bricks in order to evaluate the possible influence of some steps of the bricks manufacturing (desalination pre-treatment, firing, etc.). The desalination pre-treatment using tap water has no or few impacts on the environmental availability of the studied elements. On the opposite, the firing process (900°C) affects the value of the total content of elements detected in the bricks but also the environmental availability for various elements. For instance, Cd, Cu, Pb, and Zn are stabilized in the bricks, whereas the availability of some other elements (i.e., Cr, Ni) increases, depending on the nature of the extracting solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availability" title="availability">availability</a>, <a href="https://publications.waset.org/abstracts/search?q=bricks" title=" bricks"> bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=dredged%20sediments" title=" dredged sediments"> dredged sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a> </p> <a href="https://publications.waset.org/abstracts/129774/availability-of-metals-in-fired-bricks-incorporating-harbour-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Effect of Weathering on the Mineralogy and Geochemistry of Sediments of the Hyper Saline Urmia Salt Lake, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samad%20Alipour">Samad Alipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadije%20Mosavi%20Onlaghi"> Khadije Mosavi Onlaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urmia Salt Lake (USL) is a hypersaline lake in the northwest of Iran. It contains halite as main dissolved and precipitated mineral and the major mineral mixed with lake bed sediments. Other detrital minerals such as calcite, aragonite, dolomite, quartz, feldspars, augite are forming lake sediments. This study examined the impact of weathering of this sediments collected from 1.5 meters depth and augite placers. The study indicated that weathering of tephritic and adakite rocks of the Islamic Island at the immediate boundary of the lake play a main control of lake bed sediments and has produced a large volume of augite placer along the lake bank. Weathering increases from south to toward north with increasing distance from Islamic Island. Geochemistry of lake sediments demonstrated the enrichment of MgO, CaO, Sr with an elevated anomaly of Eu, possibly due to surface absorbance of Mn and Fe associated Sr elevation originating from adakite volcanic rocks in the vicinity of the lake basin. The study shows the local geology is the major factor in origin of lake sediments than chemical and biochemical produced mineral during diagenetic processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urmia%20Lake" title="Urmia Lake">Urmia Lake</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering" title=" weathering"> weathering</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=augite" title=" augite"> augite</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/54597/effect-of-weathering-on-the-mineralogy-and-geochemistry-of-sediments-of-the-hyper-saline-urmia-salt-lake-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor-Edine%20Abriak">Nor-Edine Abriak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Benzerzour"> Mahfoud Benzerzour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamadou%20Amar"> Mouhamadou Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdeljalil%20Zri"> Abdeljalil Zri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC&reg;645 increase with the amount of ROLAC&reg;645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC&reg;645 can be used in subgrades and foundation layers for roads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment" title="sediment">sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=roadway" title=" roadway"> roadway</a> </p> <a href="https://publications.waset.org/abstracts/53905/study-of-the-potential-of-raw-sediments-and-sediments-treated-with-lime-or-cement-for-use-in-a-foundation-layer-and-the-base-layer-of-a-roadway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Spatial REE Geochemical Modeling at Lake Acıgöl, Denizli, Turkey: Analytical Approaches on Spatial Interpolation and Spatial Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Budakoglu">M. Budakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karaman"> M. Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdelnasser"> A. Abdelnasser</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kumral"> M. Kumral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial interpolation and spatial correlation of the rare earth elements (REE) of lake surface sediments of Lake Acıgöl and its surrounding lithological units is carried out by using GIS techniques like Inverse Distance Weighted (IDW) and Geographically Weighted Regression (GWR) techniques. IDW technique which makes the spatial interpolation shows that the lithological units like Hayrettin Formation at north of Lake Acigol have high REE contents than lake sediments as well as ∑LREE and ∑HREE contents. However, Eu/Eu* values (based on chondrite-normalized REE pattern) show high value in some lake surface sediments than in lithological units and that refers to negative Eu-anomaly. Also, the spatial interpolation of the V/Cr ratio indicated that Acıgöl lithological units and lake sediments deposited in in oxic and dysoxic conditions. But, the spatial correlation is carried out by GWR technique. This technique shows high spatial correlation coefficient between ∑LREE and ∑HREE which is higher in the lithological units (Hayrettin Formation and Cameli Formation) than in the other lithological units and lake surface sediments. Also, the matching between REEs and Sc and Al refers to REE abundances of Lake Acıgöl sediments weathered from local bedrock around the lake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20geochemical%20modeling" title="spatial geochemical modeling">spatial geochemical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=IDW" title=" IDW"> IDW</a>, <a href="https://publications.waset.org/abstracts/search?q=GWR%20techniques" title=" GWR techniques"> GWR techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=REE" title=" REE"> REE</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20sediments" title=" lake sediments"> lake sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=Lake%20Ac%C4%B1g%C3%B6l" title=" Lake Acıgöl"> Lake Acıgöl</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/10634/spatial-ree-geochemical-modeling-at-lake-acigol-denizli-turkey-analytical-approaches-on-spatial-interpolation-and-spatial-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Use of Chemical Extractions to Estimate the Metals Availability in Bricks Made of Dredged Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabienne%20Baraud">Fabienne Baraud</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Leleyter"> Lydia Leleyter</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Poree"> Sandra Poree</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Lemoine"> Melanie Lemoine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SEDIBRIC (valorization de SEDIments en BRIQues et tuiles) is a French project that aims to replace a part of natural clays with dredged sediments in the preparation of fired bricks in order to propose an alternative solution for the management of harbor dredged sediments. The feasibility of such re-use is explored from a technical, economic, and environmental point of view. The present study focuses on the potential environmental impact of various chemical elements (Al, Ca, Cd, Co, Cr, Cu, Fe, Ni, Mg, Mn, Pb, Ti, and Zn) that are initially present in the dredged sediments. The total content (after acid digestion) and the environmental availability (estimated by single extractions with various extractants) of these elements are determined in the raw sediments and in the obtained fired bricks. The possible influence of some steps of the manufacturing process (sediment pre-treatment, firing) is also explored. The first results show that the pre-treatment step, which uses tap water to desalinate the raw sediment, does not influence the environmental availability of the studied elements. However, the firing process, performed at 900°C, can affect the amount of some elements detected in the bricks, as well as their environmental availability. We note that for Cr, or Ni, the HCl or EDTA availability was increased in the brick (compared to the availability in the raw sediment). For Cd, Cu, Pb, and Zn, the HCl and EDTA availability was reduced in the bricks, meaning that these elements were stabilized within the bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bricks" title="bricks">bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20extraction" title=" chemical extraction"> chemical extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/132584/use-of-chemical-extractions-to-estimate-the-metals-availability-in-bricks-made-of-dredged-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Radioactive Contamination by ¹³⁷Cs in Marine Sediments Taken up from Cuba&#039;s North and South Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maris%C3%A9%20Garc%C3%ADa%20Batlle">Marisé García Batlle</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Manuel%20Navarrete%20Tejero"> Juan Manuel Navarrete Tejero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In aquatic ecosystems, the main indicators of pollution are contaminated sediments, which are the primary repository of radionuclides and chemicals elements in the marine environment. Radioactive Contamination Factor (RCF) has been proposed as a suitable unit to measure the magnitude of radioactive contamination at global scale, caused mainly by more than 2,000 nuclear explosions tests performed during the 1945-65 period. It is obtained as percentage of contaminant radioactivity (¹³⁷Cs) compared to natural radioactivity (⁴⁰K), both expressed in Bq/g of marine sediments conditioned in Marinelli containers and detected in both NaI(Tl) and HPGe detectors. So, in this paper samples of marine sediments were taken up along the occidental Cuban coasts and analyzed by gamma spectrometry for the determination of gamma-emitting radioisotopes with energies between 60 and 2000 keV. The results proved that the proposed method is simple and suitable to evaluated radioactive contamination. Also, the RCF values provide an appropriate indicator to predict which pollution levels in the future will be and if the rate will go down as disintegrates the ¹³⁷Cs present when only 2,4 half-lives have passed away. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuba" title="Cuba">Cuba</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectrometry" title=" gamma spectrometry"> gamma spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20sediments" title=" marine sediments"> marine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20pollution" title=" radioactive pollution"> radioactive pollution</a> </p> <a href="https://publications.waset.org/abstracts/81508/radioactive-contamination-by-137cs-in-marine-sediments-taken-up-from-cubas-north-and-south-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Investigation of the Catalytic Role of Surfactants on Carbon Dioxide Hydrate Formation in Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Heidaryan">Ehsan Heidaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas hydrate sediments are ice like permafrost in deep see and oceans. Methane production in sequestration process and reducing atmospheric carbon dioxide, a main source of greenhouse gas, has been accentuated recently. One focus is capture, separation, and sequestration of industrial carbon dioxide. As a hydrate former, carbon dioxide forms hydrates at moderate temperatures and pressures. This phenomenon could be utilized to capture and separate carbon dioxide from flue gases, and also has the potential to sequester carbon dioxide in the deep seabeds. This research investigated the effect of synthetic surfactants on carbon dioxide hydrate formation, catalysis and consequently, methane production from hydrate permafrosts in sediments. It investigated the sequestration potential of carbon dioxide hydrates in ocean sediments. Also, the catalytic effect of biosurfactants in these processes was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate" title=" hydrate"> hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=sequestration" title=" sequestration"> sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a> </p> <a href="https://publications.waset.org/abstracts/24778/investigation-of-the-catalytic-role-of-surfactants-on-carbon-dioxide-hydrate-formation-in-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Measure Determination and Zoning of Oil Pollution (TPH) on ‎Costal Sediments of Bandar Abbas (Hormoz Strait) ‎</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ehsanpour">Maryam Ehsanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Afkhami%20%E2%80%8E"> Majid Afkhami ‎ </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the presence of hydrocarbon pollution in industrial waste water sediments found in west coast of Bandar Abass (northern part of Hormoz strait). Therefore, six transects from west of the city were selected. Each transect consists of three stations intervals 100, 600 and 1100 meter from the low tide were sampled in both the summer and winter season (July and January 2009). Physical and chemical parameters of water, concentration of total petroleum hydrocarbons (TPH) and soil tissue deposition were evaluated according to standard procedures of MOOPAM. Average results of dissolved oxygen were 6.42 mg/l, temperature 26.31°C, pH 8.55, EC 54.47 ms/cm and salinity 35.98 g/l respectively. Results indicate that minimum, maximum and average concentration of total petroleum hydrocarbons (TPH) in sediments were, 60.18, 751.83, and 229.21 µg/kg respectively which are less than comparable studies in other parts of Persian Gulf. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20pollution" title="oil pollution">oil pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=Bandar%20Abbas" title=" Bandar Abbas"> Bandar Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=costal%20sediments" title=" costal sediments"> costal sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=TPH%20%E2%80%8E" title=" TPH ‎"> TPH ‎</a> </p> <a href="https://publications.waset.org/abstracts/13330/measure-determination-and-zoning-of-oil-pollution-tph-on-costal-sediments-of-bandar-abbas-hormoz-strait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">718</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Enhancing Value of Dam Dredged Sediments as a Component of a Self Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Belas">N. Belas</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Belaribi"> O. Belaribi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Aggoun"> S. Aggoun</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bendani"> K. Bendani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bouhamou"> N. Bouhamou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mebrouki"> A. Mebrouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental work is a part of a long research on the valorization of the dam dredged sediments issued from Fergoug Dam (Mascara-West Algeria). These sediments have to be subjected to thermal treatment to become reactive with the cement and thus to obtain an artificial pozzolana. It is therefore a question of developing the calcined mud as substitutable material in part to the cement used in the composition of self compacting concrete. The objective of the present work is to highlight its influence on the behavior of self compacting concrete compared to that of the natural pozzolana and this, in fresh and hardened states. The study is being conducted on three SCC, the first using 20% in volume of natural pozzolana, the second with 20 % of calcined mud and the third for the sake of comparison is made with cement only. The first results showed the possibility of obtaining SCC with calcined mud complying with the AFGC recommendations having a good mechanical behavior which makes interesting its development as construction materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam" title="dam">dam</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20state" title=" fresh state"> fresh state</a>, <a href="https://publications.waset.org/abstracts/search?q=hardened%20state%20mud" title=" hardened state mud"> hardened state mud</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title=" self compacting concrete"> self compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization "> valorization </a> </p> <a href="https://publications.waset.org/abstracts/19053/enhancing-value-of-dam-dredged-sediments-as-a-component-of-a-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Mechanical Characterization and Impact Study on the Environment of Raw Sediments and Sediments Dehydrated by Addition of Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kasmi">A. Kasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20E.%20Abriak"> N. E. Abriak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benzerzour"> M. Benzerzour</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Shahrour"> I. Shahrour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large volumes of river sediments are dredged each year in Europe in order to maintain harbour activities and prevent floods. The management of this sediment has become increasingly complex. Several European projects were implemented to find environmentally sound solutions for these materials. The main objective of this study is to show the ability of river sediment to be used in road. Since sediments contain a high amount of water, then a dehydrating treatment by addition of the flocculation aid has been used. Firstly, a lot of physical characteristics are measured and discussed for a better identification of the raw sediment and this dehydrated sediment by addition the flocculation aid. The identified parameters are, for example, the initial water content, the density, the organic matter content, the grain size distribution, the liquid limit and plastic limit and geotechnical parameters. The environmental impacts of the used material were evaluated. The results obtained show that there is a slight change on the physical-chemical and geotechnical characteristics of sediment after dehydration by the addition of polymer. However, these sediments cannot be used in road construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rive%20sediment" title="rive sediment">rive sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydration" title=" dehydration"> dehydration</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation%20aid%20or%20polymer" title=" flocculation aid or polymer"> flocculation aid or polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristics" title=" characteristics"> characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=treatments" title=" treatments"> treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=valorisation" title=" valorisation"> valorisation</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20construction" title=" road construction"> road construction</a> </p> <a href="https://publications.waset.org/abstracts/36314/mechanical-characterization-and-impact-study-on-the-environment-of-raw-sediments-and-sediments-dehydrated-by-addition-of-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Mobility of Metallic Trace Elements (MTE) in Water and Sediment of the Rivers: Case of Nil River, North-Eastern Algerian</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benessam">S. Benessam</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Debieche"> T. H. Debieche</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Amiour"> S. Amiour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chine"> A. Chine</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khelili"> S. Khelili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The metallic trace elements (MTE) are present in water and sediments of the rivers with weak concentrations. Several physicochemical parameters (Eh, pH and oxygen dissolved) and chemical processes (adsorption, absorption, complexation and precipitation) as well as nature of the sediments control their mobility. In order to determine the effect of these factors on the mobility of some MTE (Cd, Cr, Cu, Fe, Pb and Zn) in water of the rivers, a two-monthly monitoring of the physicochemical parameters and chemistry of water and sediments of the Nil wadi (Algeria) was carried out during the period from November 2013 to January 2015. The results show that each MTE has its own conditions of mobility and generally are very influence by the variations of the pH and Eh. Under the natural conditions, neutral pH with basic and medium oxidizing, only the lead presented in water with raised values, indicating its solubility in water and its salting out of the sediments. The other MTE present raised concentrations in the sediments, indicating their trapping by adsorption and/or chemical precipitation. The chemical form of each ETM was given by Eh-pH diagrams. The spatio-temporal monitoring of these ETM shows the effect of the rains, the dry periods and the rejects in the variation of their concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemistry" title="chemistry">chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20trace%20elements" title=" metallic trace elements"> metallic trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/48257/mobility-of-metallic-trace-elements-mte-in-water-and-sediment-of-the-rivers-case-of-nil-river-north-eastern-algerian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Organic Pollution of Waters and Sediments in the Middle and Lower Valley of the Medjerda, Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samia%20Khadhar">Samia Khadhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20Chekirbene"> Anis Chekirbene</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouha%20Khiari"> Nouha Khiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Mabrouki"> Amira Mabrouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The persistent organic pollutants (POPs) in aquatic environments are one of the most worrying problems for environmental sustainability and human health because of their carcinogenic and toxic characteristics. Human anthropogenic actions (wastewater discharges, agricultural and industrial activities) without prior treatment are the main cause of this organic pollution. Oued Madjerda is considered the most important river in Tunisia, hence the importance of assessing the level of organic pollution of water and sediments, taking into account the anthropogenic stress exerted on this river. Water and sediment samples were taken from the middle and lower valley of the Medjerda to determine the state of contamination by 7PCBs, priority 15PAHs, and pesticides. The analysis was performed by gas chromatography (GC) and liquid phase coupled to HPLC MS-MS mass spectroscopy. The results showed that for the waters, the total PAH and PCB contents vary respectively from 0.0023 to 7.72 mg/l and from 0.0001 to 0.179 mg/l. In surface sediments 0 to 15 cm, 7PCB levels vary from 1,112 to 110,062 µg/kg-1. In this study, we tried to determine the concentration of 96 pesticides in surface sediments; analyzes showed the presence of Buprofezin, propamocarb-HCl, hexaconazole, flutriafol, quinalphos, and tebufenpyrad with concentrations varying from 1.06 to 2.388 µg/kg-1. The pace of the spatial variation confirms the impact of wastewater discharged on the quality of water and sediments despite the perennial aspect of the river. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wadi%20Madjerda" title="Wadi Madjerda">Wadi Madjerda</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollution" title=" organic pollution"> organic pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20and%20sediments%20surface" title=" water and sediments surface"> water and sediments surface</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropics%20stress" title=" anthropics stress"> anthropics stress</a> </p> <a href="https://publications.waset.org/abstracts/150228/organic-pollution-of-waters-and-sediments-in-the-middle-and-lower-valley-of-the-medjerda-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Heavy Metal Contamination and Its Ecological Risks in the Beach Sediments along the Atlantic Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armel%20Zacharie%20Ekoa%20Bessa">Armel Zacharie Ekoa Bessa</a>, <a href="https://publications.waset.org/abstracts/search?q=Annick%20Kwewouo%20Janpou"> Annick Kwewouo Janpou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediments collected along the beaches of the Atlantic Ocean in Africa were analyzed by geochemical proxies such as the ICP-MS technique to determine their heavy metal contamination and related ecological risks. Several metals were selected and show a decreasing trend: Fe > Mn > Ni > Cu > Co > Zn > Cr > Cd. Several pollution indices have been calculated, including the enrichment factor (EF), whose values are generally higher than 1. 5; the geo-accumulation index (I-geo), with values of some elements (Co, Ni and Cu) in the sediments of the study area being higher than 0, and other metals (Zn, Cr, Fe and Mn) being lower than 0; the contamination factor (CF), where the values of all the selected elements are between 1 and 3; and the pollution load index (PLI), where the values in almost all the study sites are higher than 1. These results show moderate contamination of the investigated sediments with heavy metals. The potential ecological risk assessment (Eri and RI) suggests that this part of the African coast is a low to a slight risk area. Statistical analyses indicate that heavy metals have shown fairly similar trends with anthropogenic and natural sources. This study shows that this coastal area is not highly concentrated in heavy metals and reveals that the Atlantic coast of Africa would be moderately polluted by the metals studied, with a low to moderate ecological risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=atlantic%20ocean" title=" atlantic ocean"> atlantic ocean</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a> </p> <a href="https://publications.waset.org/abstracts/165141/heavy-metal-contamination-and-its-ecological-risks-in-the-beach-sediments-along-the-atlantic-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Assessment of Trace Metals Contamination in Surficial and Core Sediments from Ghannouch- Gabes Coastline, Impact of Phosphogypsum Discharge, Southeastern of Tunisia, Mediterranean Sea: Geochemical and Mineralogical Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Ben%20Amor">Rim Ben Amor</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Abidi"> Myriam Abidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moncef%20Gueddari"> Moncef Gueddari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study is to assess the level and the distribution of CaO, SO3, Cd, Cu, Pb and Zn incore sediments of Ghannouch-Gabes coast, Gulf of Gabes, Tunisian Mediterranean coast. The XRD analyses indicate that the sediments of Ghannouch-Gabes coast are mainly composed of quartz, calcite, gypsum and fluorine reflecting the impact of the phosphate fertilizer industrial waste. The vertical distribution of surface sediments shows for all the elements analyzed, that the area located between the commercial and the fishing port of Gabes, is the most polluted zone, where the two harbors acted as barriers and limited the dispersion of phosphogypsum discharge. The abundance order of metals was found to be Zn > Cd > Cu >Pb and that the highest levels of heavy metals were found in the uppermost segment of the sediment core compared to lower depth subsurface due to a continuous input of PG release and showed that the area between the two harbor suffered from several types of pollutants compared to reference core C1, collected from non-industrialized area. The level of pollution was evaluated using contamination factor (Cf), pollution load index (PLI) and the geoaccumulation index (Igeo). The obtained results of Igeo allowed us to distinguish that the area between the commercial harbor of Ghannouch and the fishing harbor of Gabes is the most polluted where sediments are strongly contaminated for Pb, Cu and Cd. The pollution load index (PLI) of all sediments collected classified them as "polluted". According to contamination factor (Cf), the sediments can be considered as ‘considerable’ to ‘very high’ contaminated for Pb, ‘very high to moderate’ for Cd, ‘ moderate’ for Zn, between ‘moderate’ and ‘considerable’ for Cu. Statistical analyses show that heavy metals, fluoride, calcium and sulphate are resulting from the same anthropogenic origin. The metallic pollution status of sediments of Ghanouch -Gabes coast is worrying and requires a serious intervention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title="trace metals">trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphogypsum" title=" phosphogypsum"> phosphogypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20sediments" title=" core sediments"> core sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulation%20factor" title=" accumulation factor"> accumulation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title=" contamination factor"> contamination factor</a> </p> <a href="https://publications.waset.org/abstracts/73427/assessment-of-trace-metals-contamination-in-surficial-and-core-sediments-from-ghannouch-gabes-coastline-impact-of-phosphogypsum-discharge-southeastern-of-tunisia-mediterranean-sea-geochemical-and-mineralogical-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Heavy Minerals Distribution in the Recent Stream Sediments of Diyala River Basin, Northeastern Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20R.%20Ali">Abbas R. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Daroon%20Hasan%20Khorsheed"> Daroon Hasan Khorsheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twenty one samples of stream sediments were collected from the Diyala River Basin (DRB), which represent one of three major tributaries of the Tigris River at northeastern Iraq. This study is concerned with the heavy minerals (HM) analysis in the + 63μ m fraction of the Diyala River sediments, distribution pattern in the various river basin sectors, as well as comparing the present results with previous works.The metastable heavy minerals (epidote, staurolite, garnet) represent more than (30%) Whereas the ultrastable heavy minerals (pyroxene and amphibole) make only about (19 %). Opaques are present in high proportions reaching about (29%) as an average. The ultrastable (zircon, tourmaline, rutile) heavy minerals are the miner constituents (7%) in the sediments.According to the laboratory analytical data of heavy mineral distributions the studied sediments are derived from mafic and ultramafic rocks are found in northeastern Iraq that represent Walash – Nawpordan Series and Mawat complexes in Zagros zones. The presence of zircon and tourmaline in trace amounts may give an indication for the weak role of acidic rocks in the source area whereas the epidote group minerals give an indication for the role of metamorphic rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20minerals" title="heavy minerals">heavy minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20distribution" title=" mineral distribution"> mineral distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=recent%20stream%20sediment" title=" recent stream sediment"> recent stream sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=Diyala%20river" title=" Diyala river"> Diyala river</a>, <a href="https://publications.waset.org/abstracts/search?q=northeastern%20Iraq" title=" northeastern Iraq "> northeastern Iraq </a> </p> <a href="https://publications.waset.org/abstracts/20950/heavy-minerals-distribution-in-the-recent-stream-sediments-of-diyala-river-basin-northeastern-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Heavy Metal Contamination and Environmental Risk in Surface Sediments along the Coasts of Suez and Aqaba Gulfs, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20M.%20Younis">Alaa M. Younis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20S.%20Ismail"> Ismail S. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamiaa%20I.%20Mohamedein"> Lamiaa I. Mohamedein</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20F.%20Ahmed"> Shimaa F. Ahmed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandy surface sediments collected from fourteen sites along the gulfs of Suez and Aqaba coasts, Egypt were analyzed for heavy metals including Iron, Manganese, Zinc, Chromium, Nickel, Lead, Copper and Cadmium in order to evaluate the pollution status and environmental risk assessment of the study area. The obtained results showed that the concentrations of investigated metals are represented in the following sequence; For Gulf of Aqaba sediments Fe > Mn > Zn > Pb > Cr > Ni > Cu > Cd. While for Gulf of Suez Sediments Fe > Mn > Pb > Zn > Cu > Cr > Ni > Cd. The degree of surface sediment contamination using Geo-accumulation index (I geo) and Metal Pollution Index (MPI) was computed. Higher MPI values were observed at the sites III (Nama Bay) and VIII (Rex Beach). According to Sediment quality guidelines (SQGs) approach, Pb and Cu in the gulf of Suez at station IX (Kabanon Beach) had probably adverse ecological effects to marine organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20risk" title=" environmental risk"> environmental risk</a>, <a href="https://publications.waset.org/abstracts/search?q=Suez%20gulf" title=" Suez gulf"> Suez gulf</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqaba%20gulf" title=" Aqaba gulf"> Aqaba gulf</a> </p> <a href="https://publications.waset.org/abstracts/62062/heavy-metal-contamination-and-environmental-risk-in-surface-sediments-along-the-coasts-of-suez-and-aqaba-gulfs-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Vertical Distribution of Heavy Metals and Enrichment in Core Marine Sediments of East Malaysia by INAA and ICP-MS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadreza%20Ashraf">Ahmadreza Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Saion"> Elias Saion</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Gharib%20Shahi"> Elham Gharib Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee%20Kong%20Yap"> Chee Kong Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Suhaimi%20Hamzah"> Mohd Suhaimi Hamzah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia was analyzed for heavy metals using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Mass Spectroscopy. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42 to 4.26, 0.50 to 2.34, 0.31 to 0.82, 0.20 to 0.61, 0.91 to 1.92, 0.23 to 1.52, and 0.90 to 1.28 respectively, with the modified degree of contamination values below 0.6. Comparative data show that coastal East Malaysia is of low levels of contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20East%20Malaysia" title="coastal East Malaysia">coastal East Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20marine%20sediments" title=" core marine sediments"> core marine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor" title=" enrichment factor"> enrichment factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=INAA%20and%20ICP%20method" title=" INAA and ICP method"> INAA and ICP method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20degree%20of%20contamination" title=" modified degree of contamination"> modified degree of contamination</a> </p> <a href="https://publications.waset.org/abstracts/44263/vertical-distribution-of-heavy-metals-and-enrichment-in-core-marine-sediments-of-east-malaysia-by-inaa-and-icp-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> The Effects of Siltation in Seagrass along Claver Surigao Del Norte</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawn%20Rosarie%20M.%20Fajardo">Dawn Rosarie M. Fajardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seagrass plays a crucial role in sustaining marine ecosystem. In this investigation two areas (Panyug and Kinalablaban) were studied to assess the effect of siltation in seagrass condition. The size of the sediment was also examined. Data analysis showed that Panyug had higher level of silt compared to Kinalablaban. The results indicate that seagrass is vulnerable to environmental disturbances. The results also indicate that plants grown in undisturbed natural sediments were more successful than plants in sediments which were disturbed. In addition to that, there are total of seven species of seagrass that are found tolerant with siltation it includes Enhalus acoroides, Cymodocea rotundata, Halophila minor, Halodule pinifolia, Halodule uninervis, Syringodium isoetifolium, and Thalassia hemprichii. The results were given emphasis especially for the five representative quadrats in each area. Among these species of seagrass Cymodocea rotundata is the most tolerant to siltation. There is also no significant relationships between silt and seagrass percent cover which had r² = 0.192, Panyug and r² = 0.145, at Kinalablaban at P> 0.05. The data showed that Panyug (area 1) was characterized with high level of silt compared to that of Kinalablaban that contains more granulated sediments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seagrass" title="seagrass">seagrass</a>, <a href="https://publications.waset.org/abstracts/search?q=siltation" title=" siltation"> siltation</a>, <a href="https://publications.waset.org/abstracts/search?q=cymodocea%20rotundata" title=" cymodocea rotundata"> cymodocea rotundata</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20issues" title=" environmental issues"> environmental issues</a> </p> <a href="https://publications.waset.org/abstracts/20353/the-effects-of-siltation-in-seagrass-along-claver-surigao-del-norte" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Investigations of Heavy Metals Pollution in Sediments of Small Urban Lakes in Karelia Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20Medvedev">Aleksandr Medvedev</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakhar%20Slukovsii"> Zakhar Slukovsii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waterbodies, which are located either within urban areas or nearby towns, permanently undergo anthropogenic load. The extent of the load can be determined via investigations of chemical composition of both water and sediments. Lakes, as a rule, are considered as a landscape depressions, hence they are capable of natural material accumulating, which has been delivered from the catchment area through rivers as well as temporary flows. As a result, lacustrine sediments (especially closed-basin lakes sediments) are considered as perfect archives, which are served for reconstructing past sedimentation process, assessment of the modern contamination level, and prognostication of possible ways of changing in the future. The purposes of the survey are to define a heavy metals content in lake sediments cores, which were retrieved from four urban lakes located in the southern part of Karelia Republic, and to ascertain the main sources of heavy metals input to these waterbodies. It is really crucial to be aware of heavy metals content in environment, because chemical composition of a landscape may have a significant effect on living organisms and people’s health. Sediment columns were sampled in a field with 2-cm intervals by a gravitational corer called «Limnos». The sediment samples were analyzed by inductively coupled plasma spectrometry (ICP MS) for 8 chemical elements (Pb, Cd, Zn, Cr, Ni, Cu, Mn, V). The highest concentrations of trace elements were established in the upper and middle layers of the cores. It has also been ascertained that the extent of contamination mostly depends on a remoteness of a lake from various pollution sources and features of the sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20sediments" title="bottom sediments">bottom sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title=" environmental pollution"> environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=lakes" title=" lakes"> lakes</a> </p> <a href="https://publications.waset.org/abstracts/84105/investigations-of-heavy-metals-pollution-in-sediments-of-small-urban-lakes-in-karelia-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Comparative Assessment of a Distributed Model and a Lumped Model for Estimating of Sediments Yielding in Small Urban Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.Zambrano%20N%C3%A1jera">J.Zambrano Nájera</a>, <a href="https://publications.waset.org/abstracts/search?q=M.G%C3%B3mez%20Valent%C3%ADn"> M.Gómez Valentín</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increases in urbanization during XX century, have brought as one major problem the increased of sediment production. Hydraulic erosion is one of the major causes of increasing of sediments in small urban catchments. Such increments in sediment yielding in header urban catchments can caused obstruction of drainage systems, making impossible to capture urban runoff, increasing runoff volumes and thus exacerbating problems of urban flooding. For these reasons, it is more and more important to study of sediment production in urban watershed for properly analyze and solve problems associated to sediments. The study of sediments production has improved with the use of mathematical modeling. For that reason, it is proposed a new physically based model applicable to small header urban watersheds that includes the advantages of distributed physically base models, but with more realistic data requirements. Additionally, in this paper the model proposed is compared with a lumped model, reviewing the results, the advantages and disadvantages between the both of them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrologic%20modeling" title=" hydrologic modeling"> hydrologic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20runoff" title=" urban runoff"> urban runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20modeling" title=" sediment modeling"> sediment modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yielding" title=" sediment yielding"> sediment yielding</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a> </p> <a href="https://publications.waset.org/abstracts/29771/comparative-assessment-of-a-distributed-model-and-a-lumped-model-for-estimating-of-sediments-yielding-in-small-urban-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Sedimentological and Geochemical Characteristics of Aeolian Sediments and Their Implication for Sand Origin in the Yarlung Zangbo River Valley, Southern Qinghai-Tibetan Plateau</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Na%20Zhou">Na Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Lai%20Zhang"> Chun-Lai Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Li"> Qing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingqi%20Zhu"> Bingqi Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xun-Ming%20Wang"> Xun-Ming Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of the dynamics of aeolian sand in the Yarlung Zangbo River Valley (YLZBV), southern Qinghai-Tibetan Plateau, including its origins, transportation,and deposition, remains preliminary. In this study, we investigated the extensive origin of aeolian sediments in the YLZBV by analyzing the distribution and composition of sediment’s grain size and geochemical composition in dune sediments collected from the wide river terraces. The major purpose is to characterize the sedimentological and geochemical compositions of these aeolian sediments, trace back to their sources, and understand their influencing factors. As a result, the grain size and geochemistry variations, which showed a significant correlation between grain sizes distribution and element abundances, give a strong evidence that the important part of the aeolian sediments in the downstream areas was firstly derived from the upper reaches by intense fluvial processes. However, the sediments experienced significant mixing process with local inputs and reconstructed by regional wind transportation. The diverse compositions and tight associations in the major and trace element geochemistry between the up- and down-stream aeolian sediments and the local detrital rocks, which were collected from the surrounding mountains, suggest that the upstream aeolian sediments had originated from the various close-range rock types, and experienced intensive mixing processes via aeolian- fluvial dynamics. Sand mass transported by water and wind was roughly estimated to qualify the interplay between the aeolian and fluvial processes controlling the sediment transport, yield, and ultimately shaping the aeolian landforms in the mainstream of the YLZBV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grain%20size%20distribution" title="grain size distribution">grain size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20and%20water%20load" title=" wind and water load"> wind and water load</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20source" title=" sand source"> sand source</a>, <a href="https://publications.waset.org/abstracts/search?q=Yarlung%20Zangbo%20River%20Valley" title=" Yarlung Zangbo River Valley"> Yarlung Zangbo River Valley</a> </p> <a href="https://publications.waset.org/abstracts/151172/sedimentological-and-geochemical-characteristics-of-aeolian-sediments-and-their-implication-for-sand-origin-in-the-yarlung-zangbo-river-valley-southern-qinghai-tibetan-plateau" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Heavy Metals Concentration in Sediments Along the Ports, Samoa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Imo">T. Imo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Lat%C5%AB"> F. Latū</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Aloi"> S. Aloi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Leung-Wai"> J. Leung-Wai</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vaurasi"> V. Vaurasi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Amosa"> P. Amosa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Sheikh"> M. A. Sheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contamination of heavy metals in coral reefs and coastal areas is a serious ecotoxicological and environmental problem due to direct runoff from anthropogenic wastes, commercial vessels, and discharge from industrial effluents. In Samoa, the information on the ecotoxicological impact of heavy metals on sediments is limited. This study presents baseline data on the concentration and distribution of heavy metals in sediments collected along the commercial and fishing ports in Samoa. Surface sediment samples were collected within the months of August-October 2013 from the 5 sites along the 2 ports. Sieved sample fractions were used for the evaluation of sediment physicochemical parameters namely pH, conductivity, organic matter, and bicarbonates of calcium. Heavy metal (Cu, Pb) analysis was achieved by flame atomic absorption spectrometry. Two heavy metals (Cu, Pb) were detected from each port with some concentration below the WHO permissible maximum concentration of environment quality standard. The results obtained from this study advocate for further studies regarding emerging threats of heavy metals on the vital marine resources which have significant importance to the livelihood of coastal societies, particularly Small Island States including Samoa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20environment" title="coastal environment">coastal environment</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a> </p> <a href="https://publications.waset.org/abstracts/32375/heavy-metals-concentration-in-sediments-along-the-ports-samoa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Recovery of Dredged Sediments With Lime or Cement as Platform Materials for Use in a Roadway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abriak%20Yassine">Abriak Yassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Zri%20Abdeljalil"> Zri Abdeljalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Benzerzour%20Mahfoud."> Benzerzour Mahfoud.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadj%20Sadok%20Rachid"> Hadj Sadok Rachid</a>, <a href="https://publications.waset.org/abstracts/search?q=Abriak%20Nor-Edine"> Abriak Nor-Edine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, firstly, the study of the capacity reuse of dredged sediments and treated sediments with lime or cement were used in an establishment layer and the base layer of the roadway. Also, the analysis of mineral changes caused by the addition of lime or cement on the way as described in the mechanical results of stabilised sediments. After determining the quantity of lime and cement required to stabilise the sediment, the compaction characteristics were studied using the modified Proctor method. Then the evolution of the three parameters, that is, ideal water content and maximum dry density had been determined. Mechanical exhibitions can be assessed across the resistance to compression, flexibility modulus and the resistance under traction. The resistance of the formulation treated with cement addition (ROLAC®645) increase with the quantity of ROLAC®645. Traction resistances and the elastic modulus were utilized to assess the potential of the formulation as road construction materials utilizing classification diagram. The results show the various formulations with ROLAC® 645may be employed in subgrades and foundation layers for roads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=dredged" title=" dredged"> dredged</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation%20layer" title=" foundation layer"> foundation layer</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/148227/recovery-of-dredged-sediments-with-lime-or-cement-as-platform-materials-for-use-in-a-roadway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Development of an Ecological Binder by Geopolymerization of Untreated Dredged Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Monteiro">Lisa Monteiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacqueline%20Saliba"> Jacqueline Saliba</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Saiyouri"> Nadia Saiyouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Humberto%20Y.%20Godoy"> Humberto Y. Godoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theevolution of the global environmental context incites companies to reduce their impact by reusing local materials and promoting circular economy. Dredged sediments represent a potential source of materials due to their large volume. Indeed, the dredging operations carried out in Gironde alone generated an annual volume of sediment of approximately 9 million m³. Moreover, on the eve of the evolution of laws concerning dredging practices, the recovery of sediments is necessary to create a viable economy for their management. This thesis work is oriented towards the development of an ecological binder from the fine fraction of untreated dredged sediments. In fact, their physico-chemical properties make them favorable for the synthesis of geopolymer, current competitor of cement, thanks to its lower carbon footprint and environmental impact. However, several obstacles must be overcome before implementing this new family of materials: the use of sediments without thermal or chemical treatment, the absence of a formulation approach, ignorance of the reactions produced, etc. During the first year of the thesis, a physico-chemical characterization of the sediments made it possible to validate their use as precursors forgeopolymerization according to three criteria: their fineness, their mineralogical composition, and the percentage of amorphous phase. Following these results, several formulations have been defined, taking into account the environmental impact. The sediments were activated with an alkaline solution of sodium hydroxide and sodium silicate. Two other formulations with cement and blast furnace slag have been defined for comparison. The results highlighted the possibility of forming geopolymers from untreated and still wet dredged sediments. The development of structural bonds through the formation of hydrated sodium aluminosilicate thus leads to higher strengths at 90 days (4.78 MPa) than a mixture with cement (0.75 MPa). A 30% gain in CO₂ emissions has also been obtained compared to cement. In order to reduce the uncertainties linked to the absence of a formulation approach, to optimize the number of experiments to be carried out in the laboratory, and to obtain an optimal formulation, an analysis by mixing plan was conducted in order to frame the responses according to the proportions of the constituents. Following the obtaining of an optimal binder, the work will focus on the study of the durability and the interspecific variability of the sediments on the mechanical properties by testing the binder developed with different sediments dredged from the Bordeaux estuary. , the Grand Port Maritime of Bayonne, La Rochelle, and the Bassinsd'Arcachon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=dredged%20sediments" title=" dredged sediments"> dredged sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20binder" title=" ecological binder"> ecological binder</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymers" title=" geopolymers"> geopolymers</a> </p> <a href="https://publications.waset.org/abstracts/149018/development-of-an-ecological-binder-by-geopolymerization-of-untreated-dredged-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Spatial Variation of Trace Elements in Suspended Sediments from Urban River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Macedo%20Neto">Daniel Macedo Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20Froehner"> Sandro Froehner</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Sanez"> Juan Sanez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Suspended sediments (SS) are an environmental constituent able to represent the effects of land use changes on watersheds. One important consideration of land use change is its implication on trace element loading. Water bodies have the capacity to retain trace elements. Spatial variation in trace elements concentrations can be associated with land occupation and sources of pollution. In this work, the spatial variation of trace elements in suspended sediments from an urban river was assessed. Time-integrated fluvial suspended sediment samples were installed in three different sites of Barigui River. The suspend solids were collected every 30 days, from May 2015 to August 2015 (total samples 12). Site P1 covers 44 km2 drainage area and has low land occupation, whilst P2 cover an area of 87 km2 and it is totally urban as P3, which area is higher than 130 km2. Trace elements (As, Cd, Cr, P, Pb and Zn) were analysed by ICP-ES. All elements analyzed showed a similar pattern, i.e., the concentration raise with the urbanization, exception for As (P1=7.75; P2=5.75; P3=5.60mg/kg). There was increase in concentration for Cd (P1=0.75; P2=0.78; P3=1.45mg/kg), Cr (P1=59.50; P2=101.75; P3=102.00 mg/kg), Zn (P1=142.25; P2=152.50; P3=223.00mg/kg), P (P1=937.50; P2=1,545.00; P3=2,355.00 mg/kg) and for Pb (P1=31.25; P2=32.75; P3=39.17±2.56 mg/kg). The variation in concentrations were as follow -27.74% (As), +93.33% (Cd), +71.43% (Cr), +151.20% (P), +25.33% (Pb) e +56.77% (Zn). Cd, Cr, P, Pb and Zn presented a clear trend of increasing the concentration from upstream to downstream. Such variation is more notorious for P, Cd and Cr, possibly due the urbanization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trace%20elements" title="trace elements">trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20sediments" title=" suspended sediments"> suspended sediments</a> </p> <a href="https://publications.waset.org/abstracts/50716/spatial-variation-of-trace-elements-in-suspended-sediments-from-urban-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Sources and Potential Ecological Risks of Heavy Metals in the Sediment Samples From Coastal Area in Ondo, Southwest Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ogundele%20Lasun%20Tunde">Ogundele Lasun Tunde</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayeku%20Oluwagbemiga%20Patrick"> Ayeku Oluwagbemiga Patrick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals are released into the sediments in aquatic environment from both natural and anthropogenic sources and they are considered as worldwide issue due to their deleterious ecological risks and food chain disruption. In this study, sediments samples were collected at three major sites (Awoye, Abereke and Ayetoro) along Ondo coastal area using VanVeen grab sampler. The concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn were determined by employing Atomic Absorption Spectroscopy (AAS). The combined concentrations data were subjected to Positive Matrix Factorization (PMF) receptor approach for source identification and apportionment. The probable risks that might be posed by heavy metals in the sediment were estimated by potential and integrated ecological risks indices. Among the measured heavy metals, Fe had the average concentrations of 20.38 ± 2.86, 23.56 ± 4.16 and 25.32 ± 4.83 lg/g at Abereke, Awoye and Ayetoro sites, respectively. The PMF resulted in identification of four sources of heavy metals in the sediments. The resolved sources and their percentage contributions were oil exploration (39%), industrial waste/sludge (35%), detrital process (18%) and Mn-sources (8%). Oil exploration activities and industrial wastes are the major sources that contribute heavy metals into the coastal sediments. The major pollutants that posed ecological risks to the local aquatic ecosystem are As, Pb, Cr and Cd (40 B Ei ≤ 80) classifying the sites as moderate risk. The integrate risks values of Awoye, Abereke and Ayetoro are 231.2, 234.0 and 236.4, respectively suggesting that the study areas had a moderate ecological risk. The study showed the suitability of PMF receptor model for source identification of heavy metals in the sediments. Also, the intensive anthropogenic activities and natural sources could largely discharge heavy metals into the study area, which may increase the heavy metal contents of the sediments and further contribute to the associated ecological risk, thus affecting the local aquatic ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positive%20matrix%20factorization" title="positive matrix factorization">positive matrix factorization</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sources" title=" sources"> sources</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20risks" title=" ecological risks"> ecological risks</a> </p> <a href="https://publications.waset.org/abstracts/188368/sources-and-potential-ecological-risks-of-heavy-metals-in-the-sediment-samples-from-coastal-area-in-ondo-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediments&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10