CINXE.COM

Search results for: solidity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: solidity</title> <meta name="description" content="Search results for: solidity"> <meta name="keywords" content="solidity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="solidity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="solidity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: solidity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Effect of Thickness and Solidity on the Performance of Straight Type Vertical Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianyang%20Zhu">Jianyang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Jiang"> Lin Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tixian%20Tian"> Tixian Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the increasing interesting on the wind power associated with production of clear electric power, a numerical experiment is applied to investigate the aerodynamic performance of straight type vertical axis wind turbine with different thickness and solidity, where the incompressible Navier-Stokes (N-S) equations coupled with dynamic mesh technique is solved. By analyzing the flow field, as well as energy coefficient of different thickness and solidity turbine, it is found that the thickness and solidity can significantly influence the performance of vertical axis wind turbine. For the turbine under low tip speed, the mean energy coefficient increase with the increasing of thickness and solidity, which may improve the self starting performance of the turbine. However for the turbine under high tip speed, the appropriate thickness and smaller solidity turbine possesses better performance. In addition, delay stall and no interaction of the blade and previous separated vortex are observed around appropriate thickness and solidity turbine, therefore lead better performance characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis%20wind%20turbine" title="vertical axis wind turbine">vertical axis wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=N-S%20equations" title=" N-S equations"> N-S equations</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mesh%20technique" title=" dynamic mesh technique"> dynamic mesh technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=solidity" title=" solidity"> solidity</a> </p> <a href="https://publications.waset.org/abstracts/54216/effect-of-thickness-and-solidity-on-the-performance-of-straight-type-vertical-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Effect of Geometry on the Aerodynamic Performance of Darrieus H Yype Vertical Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belkheir%20Noura">Belkheir Noura</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Kerfah"> Rabah Kerfah</a>, <a href="https://publications.waset.org/abstracts/search?q=Boumehani%20Abdellah"> Boumehani Abdellah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of solidity variations on the aerodynamic performance of H type vertical axis wind turbine is studied in this paper. The wind turbine model used in this paper is the three-blade wind turbine with the symmetrical airfoil, NACA0021. The length of the chord is 0.265m. Numerical investigations were implemented for the different solidity by changing the radius and blade number. A two-dimensional model of the wind turbine is employed. The approach a Reynolds-Averaged Navier–Stokes equations, completed by the K- ώ SST turbulence model, is used. Motion mesh model capability of a computational fluid dynamics (CFD) solver is used. For each value of the solidity, the aerodynamics performances and the characteristics of the flow field are studied at several values of the tip speed ratio, λ = 0.5 to λ = 3, with an incoming wind speed of 8 m/s. The results show that increasing the number of blades will reduce the maximum value of the power coefficient of the wind turbine. Also, for the VAWT with a lower solidity can obtain the maximum Cp at a high tip speed ratio. The effects of changing the radius and blade number on aerodynamic performance are almost the same. Finally, for the validation, experimental data from the literature and computational results were compared. In conclusion, to study the influence of the solidity in the performances of the wind turbine is to provide the reference for the design of H type vertical axis wind turbines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=darrieus%20h%20type%20vertical%20axis%20wind%20turbine" title=" darrieus h type vertical axis wind turbine"> darrieus h type vertical axis wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamic" title=" computational fluid dynamic"> computational fluid dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=solidity" title=" solidity"> solidity</a> </p> <a href="https://publications.waset.org/abstracts/164160/effect-of-geometry-on-the-aerodynamic-performance-of-darrieus-h-yype-vertical-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficient to Solidity (Ct/σ) Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Saijaand">K. K. Saijaand</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Prabhakaran%20Nair"> K. Prabhakaran Nair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine change in optimal lo-cations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multi-objective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization results shows that the inboard flap location at low Ct/σ ratio move farther from the baseline value and at high Ct/σ ratio move towards the root of the blade for minimizing hub vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor" title="helicopter rotor">helicopter rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=trailing-edge%20flap" title=" trailing-edge flap"> trailing-edge flap</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20coefficient%20to%20solidity%20%28Ct%20%2F%CF%83%29%20ratio" title=" thrust coefficient to solidity (Ct /σ) ratio"> thrust coefficient to solidity (Ct /σ) ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/2861/optimal-trailing-edge-flap-positions-of-helicopter-rotor-for-various-thrust-coefficient-to-solidity-cts-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Design a Small-Scale Irrigation Wind-Powered Water Pump Using a Savonius Type VAWT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getnet%20Ayele%20%20Kebede">Getnet Ayele Kebede</a>, <a href="https://publications.waset.org/abstracts/search?q=Tasew%20Tadiwose%20%20Zewdie"> Tasew Tadiwose Zewdie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a novel design of a wind-powered water pump for small-scale irrigation application by using the Savonius wind turbine of Vertical Axis Wind Turbine(VAWT) with 2 blades has been used. Calculations have been made on the energy available in the wind and an energy analysis was then performed to see what wind speed is required for the system to work. The rotor has a radius of 0.53 m giving a swept area of 1.27 m2 and this gives a solidity of 0.5, which is the minimum theoretical optimum value for wind turbine. The average extracted torque of the wind turbine is 0.922 Nm and Tip speed ratio is one this shows, the tips are moving at equal the speed of the wind and by 2 rotating of blades. This is sufficient to sustain the desired flow rate of (0.3125X 10-3) m3 per second with a maximum head of 10m and the expected working is 4hr/day, and also overcome other barriers to motion such as friction. Based on this novel design, we are able to achieve a cost-effective solution and simultaneously effective in self-starting under low wind speeds and it can catch the wind from all directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savonius%20wind%20turbine" title="Savonius wind turbine">Savonius wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=Small-scale%20irrigation" title=" Small-scale irrigation"> Small-scale irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Vertical%20Axis%20Wind%20Turbine" title=" Vertical Axis Wind Turbine"> Vertical Axis Wind Turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=Water%20pump" title=" Water pump"> Water pump</a> </p> <a href="https://publications.waset.org/abstracts/121075/design-a-small-scale-irrigation-wind-powered-water-pump-using-a-savonius-type-vawt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> An Investigation on Designing and Enhancing the Performance of H-Darrieus Wind Turbine of 10KW at the Medium Range of Wind Speed in Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ich%20Long%20Ngo">Ich Long Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinh%20Tai%20Dang"> Dinh Tai Dang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20Tu%20Nguyen"> Ngoc Tu Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Minh%20Duc%20Nguyen"> Minh Duc Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an investigation on designing and enhancing the performance of H-Darrieus wind turbine (HDWT) of 10kW at the medium wind speed. The aerodynamic characteristics of this turbine were investigated by both theoretical and numerical approaches. The optimal design procedure was first proposed to enhance the power coefficient under various effects, such as airfoil type, number of blades, solidity, aspect ratio, and tip speed ratio. As a result, the overall design of the 10kW HDWT was well achieved, and the power characteristic of this turbine was found by numerical approach. Additionally, the maximum power coefficient predicted is up to 0.41 at the tip speed ratio of 3.7 and wind speed of 8 m/s. Particularly, a generalized correlation of power coefficient with tip speed ratio and wind speed is first proposed. These results obtained are very useful for enhancing the performance of the HDWTs placed in a country with high wind power potential like Vietnam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20multiple%20stream%20tube" title=" double multiple stream tube"> double multiple stream tube</a>, <a href="https://publications.waset.org/abstracts/search?q=h-darrieus%20wind%20turbine" title=" h-darrieus wind turbine"> h-darrieus wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/163982/an-investigation-on-designing-and-enhancing-the-performance-of-h-darrieus-wind-turbine-of-10kw-at-the-medium-range-of-wind-speed-in-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Employing a Knime-based and Open-source Tools to Identify AMI and VER Metabolites from UPLC-MS Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20Alourfi">Nouf Alourfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the metabolism of amitriptyline (AMI) and verapamil (VER) using a KNIME-based method. KNIME improved workflow is an open-source data-analytics platform that integrates a number of open-source metabolomics tools such as CFMID and MetFrag to provide standard data visualisations, predict candidate metabolites, assess them against experimental data, and produce reports on identified metabolites. The use of this workflow is demonstrated by employing three types of liver microsomes (human, rat, and Guinea pig) to study the in vitro metabolism of the two drugs (AMI and VER). This workflow is used to create and treat UPLC-MS (Orbitrap) data. The formulas and structures of these drugs' metabolites can be assigned automatically. The key metabolic routes for amitriptyline are hydroxylation, N-dealkylation, N-oxidation, and conjugation, while N-demethylation, O-demethylation and N-dealkylation, and conjugation are the primary metabolic routes for verapamil. The identified metabolites are compatible to the published, clarifying the solidity of the workflow technique and the usage of computational tools like KNIME in supporting the integration and interoperability of emerging novel software packages in the metabolomics area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KNIME" title="KNIME">KNIME</a>, <a href="https://publications.waset.org/abstracts/search?q=CFMID" title=" CFMID"> CFMID</a>, <a href="https://publications.waset.org/abstracts/search?q=MetFrag" title=" MetFrag"> MetFrag</a>, <a href="https://publications.waset.org/abstracts/search?q=Data%20Analysis" title=" Data Analysis"> Data Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Metabolomics" title=" Metabolomics"> Metabolomics</a> </p> <a href="https://publications.waset.org/abstracts/147907/employing-a-knime-based-and-open-source-tools-to-identify-ami-and-ver-metabolites-from-uplc-ms-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> The Meaning of Stillness: Based on the Errand Boy Project in Tibet during the Pandemic Quarantine in Shanghai in the Mayday Holiday</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingyuan%20Duan">Mingyuan Duan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many scholars have paid attention to the relationship between mobility and stillness, but most of them focus on stillness from the perspective of serving mobility. This study believes that more attention should be paid to the importance of stillness, and we suggest reexamining the meaning of stillness in terms of the value of stillness to people. The Errand Boy Project was launched by a social innovation enterprise called Bottle Dream during the May Day holiday in 2022. It linked volunteers from all over the world online to help people who are trapped at home due to the epidemic realize their outdoor wishes: get closer to nature and relieve their anxious mood. Taking Errand Boy in Tibet as a case study, this paper analyzes the emotional expressions and comments of people with limited mobility in the face of nature in the webcast room and explains the importance of stillness to humans from a non-human perspective. This study points out that the significance of stillness to human beings during the pandemic is composed of three aspects: the sense of solidity established by a steady mobile phone network connection, the stable possibility of wish fulfillment predicted by the periodic regularity of plant growth, and the transcendent spiritual power from the stable sacred mountain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stillness" title="stillness">stillness</a>, <a href="https://publications.waset.org/abstracts/search?q=non-human" title=" non-human"> non-human</a>, <a href="https://publications.waset.org/abstracts/search?q=pandemic" title=" pandemic"> pandemic</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a> </p> <a href="https://publications.waset.org/abstracts/157699/the-meaning-of-stillness-based-on-the-errand-boy-project-in-tibet-during-the-pandemic-quarantine-in-shanghai-in-the-mayday-holiday" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Securing Online Voting With Blockchain and Smart Contracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anant%20Mehrotra">Anant Mehrotra</a>, <a href="https://publications.waset.org/abstracts/search?q=Krish%20Phagwani"> Krish Phagwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Democratic voting is vital for any country, but current methods like ballot papers or EVMs have drawbacks, including transparency issues, low voter turnout, and security concerns. Blockchain technology offers a potential solution by providing a secure, decentralized, and transparent platform for e-voting. With features like immutability, security, and anonymity, blockchain combined with smart contracts can enhance trust and prevent vote tampering. This paper explores an Ethereum-based e-voting application using Solidity, showcasing a web app that prevents duplicate voting through a token-based system, while also discussing the advantages and limitations of blockchain in digital voting. Voting is a crucial component of democratic decision-making, yet current methods, like paper ballots, remain outdated and inefficient. This paper reviews blockchain-based voting systems, highlighting strategies and guidelines to create a comprehensive electronic voting system that leverages cryptographic techniques, such as zero-knowledge proofs, to enhance privacy. It addresses limitations of existing e-voting solutions, including cost, identity management, and scalability, and provides key insights for organizations looking to design their own blockchain-based voting systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20voting" title="electronic voting">electronic voting</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20contracts" title=" smart contracts"> smart contracts</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain%20nased%20voting" title=" blockchain nased voting"> blockchain nased voting</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/193842/securing-online-voting-with-blockchain-and-smart-contracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> A Cross-Sectional Examination of Children’s Developing Understanding of the Rainbow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Hast">Michael Hast</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surprisingly little is known from a research perspective about children’s understanding of rainbows and rainbow formation, and how this understanding changes with increasing age. Yet this kind of research is useful when conceptualizing pedagogy, lesson plans, or more general curricula. The present study aims to rectify this shortcoming. In a cross-sectional approach, children of three different age groups (4-5, 7-8 and 10-11 years) were asked to draw pictures that included rainbows. The pictures will be evaluated according to their scientific representation of rainbows, such as the order of colors, as well as according to any non-scientific conceptions, such as solidity. In addition to the drawings, the children took part in small focus groups where they had to discuss various questions about rainbows and rainbow formation. Similar to the drawings, these conversations will be evaluated around the degree of scientific accuracy of the children’s explanations. Gaining a complete developmental picture of children’s understanding of the rainbow may have important implications for pedagogy in early science education. Many other concepts in science, while not explicitly linked to rainbows and rainbow formation, can benefit from the use of rainbows as illustrations – such as understanding light and color, or the use of prisms. Even in non-science domains, such as art and even storytelling, recognizing the differentiation between fact and myth in relation to rainbows could be of value. In addition, research has pointed out that teachers tend to overestimate the proportion of students’ correct answers, so clarifying the actual level of conceptual understanding is crucial in this respect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptual%20development" title="conceptual development">conceptual development</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20research" title=" cross-sectional research"> cross-sectional research</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20science%20education" title=" primary science education"> primary science education</a>, <a href="https://publications.waset.org/abstracts/search?q=rainbows" title=" rainbows"> rainbows</a> </p> <a href="https://publications.waset.org/abstracts/94904/a-cross-sectional-examination-of-childrens-developing-understanding-of-the-rainbow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Tandis">E. Tandis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Assareh"> E. Assareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employed <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blade%20Design" title="Blade Design">Blade Design</a>, <a href="https://publications.waset.org/abstracts/search?q=Optimization" title=" Optimization"> Optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Genetic%20Algorithm" title=" Genetic Algorithm"> Genetic Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Bees%20Algorithm" title=" Bees Algorithm"> Bees Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Genetic-Based%20Bees%20Algorithm" title=" Genetic-Based Bees Algorithm"> Genetic-Based Bees Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Large%20Wind%20Turbine" title=" Large Wind Turbine"> Large Wind Turbine</a> </p> <a href="https://publications.waset.org/abstracts/52022/hybrid-intelligent-optimization-methods-for-optimal-design-of-horizontal-axis-wind-turbine-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Governance and Financial Constraints the Impact on Corporate Social Responsibility Implementation in Cooperatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanlapha%20Phraibueng">Wanlapha Phraibueng</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Sentis"> Patrick Sentis</a>, <a href="https://publications.waset.org/abstracts/search?q=Geraldine%20Riviere-Giordano"> Geraldine Riviere-Giordano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corporate Social Responsibility (CSR) initiatives have been widely discussed especially in investor-oriented firms. In contrast, cooperatives pay less attention to CSR because their activities have integrated the responsibility and the solidity of social, economic and environment. On the other hand, by adopting ownership theory and agency theory – cooperatives ignore CSR investment due to unclarified decision control in the governance and the limitation to acquire the capital financed. The unique governance and financial structures in cooperatives lead to the conflict among the stakeholders and long-term investment which have an impact on firm financial performance. As an illustration of cooperatives dilemmas, we address the question of Whether or not cooperatives in term of governance and financial structures are the constraints on implementing CSR policies. We find that the governance and financial structures in large cooperatives are the influence factors which predispose cooperatives to invest on CSR. In contrast, in the startup or small cooperatives, its governance and financial structures are the constraints on implementing CSR policies. We propose the alternative financial structure based on the trade-off between debt and equity which aims to relax the restrictions in cooperatives’ governance and allow cooperatives to acquire the capital financed either from its members or non-members. We suggest that engaging equity as a financial structure induces cooperatives to invest on CSR policies. Alternative financial structure eliminates not only cooperative ownership control problem but also the constraints in capital acquisition. By implementing CSR activities consistent with the alternative financial choice, cooperatives can increase firm’s value and reduce the conflict among their stakeholders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooperatives" title="cooperatives">cooperatives</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20social%20responsibility" title=" corporate social responsibility"> corporate social responsibility</a>, <a href="https://publications.waset.org/abstracts/search?q=financial" title=" financial"> financial</a>, <a href="https://publications.waset.org/abstracts/search?q=governance" title=" governance"> governance</a> </p> <a href="https://publications.waset.org/abstracts/89476/governance-and-financial-constraints-the-impact-on-corporate-social-responsibility-implementation-in-cooperatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Interactive IoT-Blockchain System for Big Data Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Al-ZoubI">Abdallah Al-ZoubI</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamoun%20Dmour"> Mamoun Dmour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spectrum of IoT devices is becoming widely diversified, entering almost all possible fields and finding applications in industry, health, finance, logistics, education, to name a few. The IoT active endpoint sensors and devices exceeded the 12 billion mark in 2021 and are expected to reach 27 billion in 2025, with over $34 billion in total market value. This sheer rise in numbers and use of IoT devices bring with it considerable concerns regarding data storage, analysis, manipulation and protection. IoT Blockchain-based systems have recently been proposed as a decentralized solution for large-scale data storage and protection. COVID-19 has actually accelerated the desire to utilize IoT devices as it impacted both demand and supply and significantly affected several regions due to logistic reasons such as supply chain interruptions, shortage of shipping containers and port congestion. An IoT-blockchain system is proposed to handle big data generated by a distributed network of sensors and controllers in an interactive manner. The system is designed using the Ethereum platform, which utilizes smart contracts, programmed in solidity to execute and manage data generated by IoT sensors and devices. such as Raspberry Pi 4, Rasbpian, and add-on hardware security modules. The proposed system will run a number of applications hosted by a local machine used to validate transactions. It then sends data to the rest of the network through InterPlanetary File System (IPFS) and Ethereum Swarm, forming a closed IoT ecosystem run by blockchain where a number of distributed IoT devices can communicate and interact, thus forming a closed, controlled environment. A prototype has been deployed with three IoT handling units distributed over a wide geographical space in order to examine its feasibility, performance and costs. Initial results indicated that big IoT data retrieval and storage is feasible and interactivity is possible, provided that certain conditions of cost, speed and thorough put are met. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT%20devices" title="IoT devices">IoT devices</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethereum" title=" Ethereum"> Ethereum</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a> </p> <a href="https://publications.waset.org/abstracts/145749/interactive-iot-blockchain-system-for-big-data-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Logistics and Supply Chain Management Using Smart Contracts on Blockchain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armen%20Grigoryan">Armen Grigoryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Milena%20Arakelyan"> Milena Arakelyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of smart logistics is still quite a complicated one. It can be used to market products to a large number of customers or to acquire raw materials of the highest quality at the lowest cost in geographically dispersed areas. The use of smart contracts in logistics and supply chain management has the potential to revolutionize the way that goods are tracked, transported, and managed. Smart contracts are simply computer programs written in one of the blockchain programming languages (Solidity, Rust, Vyper), which are capable of self-execution once the predetermined conditions are met. They can be used to automate and streamline many of the traditional manual processes that are currently used in logistics and supply chain management, including the tracking and movement of goods, the management of inventory, and the facilitation of payments and settlements between different parties in the supply chain. Currently, logistics is a core area for companies which is concerned with transporting products between parties. Still, the problem of this sector is that its scale may lead to detainments and defaults in the delivery of goods, as well as other issues. Moreover, large distributors require a large number of workers to meet all the needs of their stores. All this may contribute to big detainments in order processing and increases the potentiality of losing orders. In an attempt to break this problem, companies have automated all their procedures, contributing to a significant augmentation in the number of businesses and distributors in the logistics sector. Hence, blockchain technology and smart contracted legal agreements seem to be suitable concepts to redesign and optimize collaborative business processes and supply chains. The main purpose of this paper is to examine the scope of blockchain technology and smart contracts in the field of logistics and supply chain management. This study discusses the research question of how and to which extent smart contracts and blockchain technology can facilitate and improve the implementation of collaborative business structures for sustainable entrepreneurial activities in smart supply chains. The intention is to provide a comprehensive overview of the existing research on the use of smart contracts in logistics and supply chain management and to identify any gaps or limitations in the current knowledge on this topic. This review aims to provide a summary and evaluation of the key findings and themes that emerge from the research, as well as to suggest potential directions for future research on the use of smart contracts in logistics and supply chain management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20contracts" title="smart contracts">smart contracts</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20logistics" title=" smart logistics"> smart logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20supply%20chain%20management" title=" smart supply chain management"> smart supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain%20and%20smart%20contracts%20in%20logistics" title=" blockchain and smart contracts in logistics"> blockchain and smart contracts in logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20contracts%20for%20controlling%20supply%20chain%20management" title=" smart contracts for controlling supply chain management"> smart contracts for controlling supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/161535/logistics-and-supply-chain-management-using-smart-contracts-on-blockchain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gilberto%20Goracci">Gilberto Goracci</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Curti"> Fabio Curti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title=" extended Kalman filter"> extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=orbit%20determination" title=" orbit determination"> orbit determination</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/163587/artificial-intelligence-aided-extended-kalman-filter-for-magnetometer-based-orbit-determination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Rehabilitation of The Covered Bridge Leclerc (P-00249) Passing Over the Bouchard Stream in LaSarre, Quebec</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nairy%20Kechichian">Nairy Kechichian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The original Leclerc Bridge is a covered wooden bridge that is considered a Quebec heritage structure with an index of 60, making it a very important provincial bridge from a historical point of view. It was constructed in 1927 and is in the rural area of Abitibi-Temiscamingue. It is a “town Québécois” type of structure, which is generally rare but common for covered bridges in Abitibi-Temiscamingue. This type of structure is composed of two trusses on both sides formed with diagonals, internal bracings, uprights and top and bottom chords to allow the transmission of loads. This structure is mostly known for its solidity, lightweightness, and ease of construction. It is a single-span bridge with a length of 25.3 meters and allows the passage of one vehicle at a time with a 4.22-meter driving lane. The structure is composed of 2 trusses located at each end of the deck, two gabion foundations at both ends, uprights and top and bottom chords. WSP (Williams Sale Partnership) Canada inc. was mandated by the Transport Minister of Quebec in 2019 to increase the capacity of the bridge from 5 tons to 30.6 tons and rehabilitate it, as it has deteriorated quite significantly over the years. The bridge was damaged due to material deterioration over time, exposure to humidity, high load effects and insect infestation. To allow the passage of 3 axle trucks, as well as to keep the integrity of this heritage structure, the final design chosen to rehabilitate the bridge involved adding a new deck independent from the roof structure of the bridge. Essentially, new steel beams support the deck loads and the desired vehicle loads. The roof of the bridge is linked to the steel deck for lateral support, but it is isolated from the wooden deck. The roof is preserved for aesthetic reasons and remains intact as it is a heritage piece. Due to strict traffic management obstacles, an efficient construction method was put into place, which consisted of building a temporary bridge and moving the existing roof onto it to allow the circulation of vehicles on one side of the temporary bridge while providing a working space for the repairs of the roof on the other side to take place simultaneously. In parallel, this method allowed the demolition and reconstruction of the existing foundation, building a new steel deck, and transporting back the roof on the new bridge. One of the main criteria for the rehabilitation of the wooden bridge was to preserve, as much as possible, the existing patrimonial architectural design of the bridge. The project was completed successfully by the end of 2021. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=covered%20bridge" title="covered bridge">covered bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-steel" title=" wood-steel"> wood-steel</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20span" title=" short span"> short span</a>, <a href="https://publications.waset.org/abstracts/search?q=town%20Qu%C3%A9b%C3%A9cois%20structure" title=" town Québécois structure"> town Québécois structure</a> </p> <a href="https://publications.waset.org/abstracts/172214/the-rehabilitation-of-the-covered-bridge-leclerc-p-00249-passing-over-the-bouchard-stream-in-lasarre-quebec" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The Church of San Paolo in Ferrara, Restoration and Accessibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benedetta%20Caglioti">Benedetta Caglioti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ecclesiastical complex of San Paolo in Ferrara represents a monument of great historical, religious and architectural importance. Its long and articulated story, over time, is already manifested by the mere reading of its planimetric and altimetric configuration, apparently unitary but, in reality, marked by modifications and repeated additions, even of high quality. It follows, in terms of protection, restoration and enhancement, a commitment of due respect for how the ancient building was built and enriched over its centuries of life. Hence a rigorous methodological approach, while being aware of the fact that every monument, in order to live and make use of the indispensable maintenance, must always be enjoyed and visited, therefore it must enjoy, in the right measure and compatibly with its nature, the possibility of improvements and functional, distributive, technological adjustments and related to the safety of people and things. The methodological approach substantiates the different elements of the project (such as distribution functionality, safety, structural solidity, environmental comfort, the character of the site, building and urban planning regulations, financial resources and materials, the same organization methods of the construction site) through the guiding principles of restoration, defined for a long time: the 'minimum intervention,' the 'recognisability' or 'distinguishability' of old and new, the Physico-chemical and figurative 'compatibility,' the 'durability' and the, at least potential, 'reversibility' of what is done, leading to the definition of appropriate "critical choices." The project tackles, together with the strictly functional ones, also the directly conservative and restoration issues, of a static, structural and material technology nature, with special attention to precious architectural surfaces, In order to ensure the best architectural quality through conscious enhancement, the project involves a redistribution of the interior and service spaces, an accurate lighting system inside and outside the church and a reorganization of the adjacent urban space. The reorganization of the interior is designed with particular attention to the issue of accessibility for people with disabilities. To accompany the community to regain possession of the use of the church's own space, already in its construction phase, the project proposal has hypothesized a permeability and flexibility in the management of the works such as to allow the perception of the found Monument to gradually become more and more familiar at the citizenship. Once the interventions have been completed, it is expected that the Church of San Paolo, second in importance only to the Cathedral, from which it is a few steps away, will be inserted in an already existing circuit of use of the city which over the years has systematized the different aspects of culture, the environment and tourism for the creation of greater awareness in the perception of what Ferrara can offer in cultural terms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=accessibility" title=" accessibility"> accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20space" title=" urban space"> urban space</a> </p> <a href="https://publications.waset.org/abstracts/158149/the-church-of-san-paolo-in-ferrara-restoration-and-accessibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Modern Technology for Strengthening Concrete Structures Makes Them Resistant to Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Abdelrazek%20Khorshid%20Ali%20Selim">Mohsen Abdelrazek Khorshid Ali Selim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disadvantages and errors of current concrete reinforcement methodsL: Current concrete reinforcement methods are adopted in most parts of the world in their various doctrines and names. They adopt the so-called concrete slab system, where these slabs are semi-independent and isolated from each other and from the surrounding environment of concrete columns or beams, so that the reinforcing steel does not cross from one slab to another or from one slab to adjacent columns. It or the beams surrounding it and vice versa are only a few centimeters and no more. The same applies exactly to the concrete columns that support the building, where the reinforcing steel does not extend from the slabs or beams to the inside of the columns or vice versa except for a few centimeters and no more, just as the reinforcing steel does not extend from inside the column at the top. The ceiling is only a few centimetres, and the same thing is literally repeated in the concrete beams that connect the columns and separate the slabs, where the reinforcing steel does not cross from one beam to another or from one beam to the slabs or columns adjacent to it and vice versa, except for a few centimeters, which makes the basic building elements of columns, slabs and beams They all work in isolation from each other and from the environment surrounding them from all sides. This traditional method of reinforcement may be valid and lasting in geographical areas that are not exposed to earthquakes and earthquakes, where all the loads and tensile forces in the building are constantly directed vertically downward due to gravity and are borne directly by the vertical reinforcement of the building. However, in the case of earthquakes and earthquakes, the loads and tensile forces in the building shift from the vertical direction to the horizontal direction at an angle of inclination that depends on the strength of the earthquake, and most of them are borne by the horizontal reinforcement extending between the basic elements of the building, such as columns, slabs and beams, and since the crossing of the reinforcement between each of the columns, slabs and beams between them And each other, and vice versa, does not exceed several centimeters. In any case, the tensile strength, cohesion and bonding between the various parts of the building are very weak, which causes the buildings to disintegrate and collapse in the horrific manner that we saw in the earthquake in Turkey and Syria in February 2023, which caused the collapse of tens of thousands of buildings in A few seconds later, it left more than 50,000 dead, hundreds of thousands injured, and millions displaced. Description of the new earthquake-resistant model: The idea of the new model in the reinforcement of concrete buildings and constructions is based on the theory that we have formulated as follows: [The tensile strength, cohesion and bonding between the basic parts of the concrete building (columns, beams and slabs) increases as the lengths of the reinforcing steel bars increase and they extend and branch and the different parts of the building share them with each other.] . In other words, the strength, solidity, and cohesion of concrete buildings increase and they become resistant to earthquakes as the lengths of the reinforcing steel bars increase, extend, branch, and share with the various parts of the building, such as columns, beams, and slabs. That is, the reinforcing skewers of the columns must extend in their lengths without cutting to cross from one floor to another until their end. Likewise, the reinforcing skewers of the beams must extend in their lengths without cutting to cross from one beam to another. The ends of these skewers must rest at the bottom of the columns adjacent to the beams. The same thing applies to the reinforcing skewers of the slabs where they must These skewers should be extended in their lengths without cutting to cross from one tile to another, and the ends of these skewers should rest either under the adjacent columns or inside the beams adjacent to the slabs as follows: First, reinforce the columns: The columns have the lion's share of the reinforcing steel in this model in terms of type and quantity, as the columns contain two types of reinforcing bars. The first type is large-diameter bars that emerge from the base of the building, which are the nerves of the column. These bars must extend over their normal length of 12 meters or more and extend to a height of three floors, if desired. In raising other floors, bars with the same diameter and the same length are added to the top after the second floor. The second type is bars with a smaller diameter, and they are the same ones that are used to reinforce beams and slabs, so that the bars that reinforce the beams and slabs facing each column are bent down inside this column and along the entire length of the column. This requires an order. Most engineers do not prefer it, which is to pour the entire columns and pour the roof at once, but we prefer this method because it enables us to extend the reinforcing bars of both the beams and slabs to the bottom of the columns so that the entire building becomes one concrete block that is cohesive and resistant to earthquakes. Secondly, arming the cameras: The beams' reinforcing skewers must also extend to a full length of 12 meters or more without cutting. The ends of the skewers are bent and dropped inside the column at the beginning of the beam to its bottom. Then the skewers are extended inside the beam so that their other end falls under the facing column at the end of the beam. The skewers may cross over the head of a column. Another passes through another adjacent beam and rests at the bottom of a third column, according to the lengths of each of the skewers and beams. Third, reinforcement of slabs: The slab reinforcing skewers must also extend their entire length, 12 meters or more, without cutting, distinguishing between two cases. The first case is the skewers opposite the columns, and their ends are dropped inside one of the columns. Then the skewers cross inside the adjacent slab and their other end falls below the opposite column. The skewers may cross over The head of the adjacent column passes through another adjacent slab and rests at the bottom of a third column, according to the dimensions of the slabs and the lengths of the skewers. The second case is the skewers opposite the beams, and their ends must be bent in the form of a square or rectangle according to the dimensions of the beam’s width and height, and this square or rectangle is dropped inside the beam at the beginning of the slab, and it serves as The skewers are for the beams, then the skewers are extended along the length of the slab, and at the end of the slab, the skewers are bent down to the bottom of the adjacent beam in the shape of the letter U, after which the skewers are extended inside the adjacent slab, and this is repeated in the same way inside the other adjacent beams until the end of the skewer, then it is bent downward in the form of a square or rectangle inside the beam, as happened. In its beginning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20buildings" title="earthquake resistant buildings">earthquake resistant buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20concrete%20constructions" title=" earthquake resistant concrete constructions"> earthquake resistant concrete constructions</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technology%20for%20reinforcement%20of%20concrete%20buildings" title=" new technology for reinforcement of concrete buildings"> new technology for reinforcement of concrete buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technology%20in%20concrete%20reinforcement" title=" new technology in concrete reinforcement"> new technology in concrete reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/177554/modern-technology-for-strengthening-concrete-structures-makes-them-resistant-to-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10