CINXE.COM

Search results for: helicopter rotor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: helicopter rotor</title> <meta name="description" content="Search results for: helicopter rotor"> <meta name="keywords" content="helicopter rotor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="helicopter rotor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="helicopter rotor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 319</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: helicopter rotor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Environmental Impacts on the Appearance of Disbonds in Metal Rotor Blades of Mi-2 Helicopters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Synaszko">Piotr Synaszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Sa%C5%82aci%C5%84ski"> Michał Sałaciński</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Leski"> Andrzej Leski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the analysis of construction Mi-2 helicopter rotor blades in order to determine the causes of appearance disbonds. Authors describe construction of rotor blade with impact on bonded joins and areas of water migration. They also made analysis which determines possibility of disbond between critical parts of rotor blades based on more than one hundred non-destructive inspections results. They showed which parts of the blades most likely to damage. The main source of damage is water presence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disbonds" title="disbonds">disbonds</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20effect" title=" environmental effect"> environmental effect</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor%20blades" title=" helicopter rotor blades"> helicopter rotor blades</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life%20extension" title=" service life extension"> service life extension</a> </p> <a href="https://publications.waset.org/abstracts/46613/environmental-impacts-on-the-appearance-of-disbonds-in-metal-rotor-blades-of-mi-2-helicopters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Prediction of the Aerodynamic Stall of a Helicopter’s Main Rotor Using a Computational Fluid Dynamics Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assel%20Thami%20Lahlou">Assel Thami Lahlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Soufiane%20Stouti"> Soufiane Stouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Lagrat"> Ismail Lagrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Mounir"> Hamid Mounir</a>, <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Bouazaoui"> Oussama Bouazaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research work is to predict the helicopter from stalling by finding the minimum and maximum values that the pitch angle can take in order to fly in a hover state condition. The stall of a helicopter in hover occurs when the pitch angle is too small to generate the thrust required to support its weight or when the critical angle of attack that gives maximum lift is reached or exceeded. In order to find the minimum pitch angle, a 3D CFD simulation was done in this work using ANSYS FLUENT as the CFD solver. We started with a small value of the pitch angle θ, and we kept increasing its value until we found the thrust coefficient required to fly in a hover state and support the weight of the helicopter. For the CFD analysis, the Multiple Reference Frame (MRF) method with k-ε turbulent model was used to study the 3D flow around the rotor for θmin. On the other hand, a 2D simulation of the airfoil NACA 0012 was executed with a velocity inlet Vin=ΩR/2 to visualize the flow at the location span R/2 of the disk rotor using the Spallart-Allmaras turbulent model. Finding the critical angle of attack at this position will give us the ability to predict the stall in hover flight. The results obtained will be exposed later in the article. This study was so useful in analyzing the limitations of the helicopter’s main rotor and thus, in predicting accidents that can lead to a lot of damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=stall" title=" stall"> stall</a>, <a href="https://publications.waset.org/abstracts/search?q=blades" title=" blades"> blades</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20rotor" title=" main rotor"> main rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20pitch%20angle" title=" minimum pitch angle"> minimum pitch angle</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20pitch%20angle" title=" maximum pitch angle"> maximum pitch angle</a> </p> <a href="https://publications.waset.org/abstracts/186086/prediction-of-the-aerodynamic-stall-of-a-helicopters-main-rotor-using-a-computational-fluid-dynamics-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Development of a Tilt-Rotor Aircraft Model Using System Identification Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferdinando%20Montemari">Ferdinando Montemari</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Vitale"> Antonio Vitale</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicola%20Genito"> Nicola Genito</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Cuciniello"> Giovanni Cuciniello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot&#39;s workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flapping%20dynamics" title="flapping dynamics">flapping dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20dynamics" title=" flight dynamics"> flight dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt-rotor%20modeling%20and%20simulation" title=" tilt-rotor modeling and simulation"> tilt-rotor modeling and simulation</a> </p> <a href="https://publications.waset.org/abstracts/78487/development-of-a-tilt-rotor-aircraft-model-using-system-identification-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficient to Solidity (Ct/σ) Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Saijaand">K. K. Saijaand</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Prabhakaran%20Nair"> K. Prabhakaran Nair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine change in optimal lo-cations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multi-objective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization results shows that the inboard flap location at low Ct/σ ratio move farther from the baseline value and at high Ct/σ ratio move towards the root of the blade for minimizing hub vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor" title="helicopter rotor">helicopter rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=trailing-edge%20flap" title=" trailing-edge flap"> trailing-edge flap</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20coefficient%20to%20solidity%20%28Ct%20%2F%CF%83%29%20ratio" title=" thrust coefficient to solidity (Ct /σ) ratio"> thrust coefficient to solidity (Ct /σ) ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/2861/optimal-trailing-edge-flap-positions-of-helicopter-rotor-for-various-thrust-coefficient-to-solidity-cts-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Wendeker">M. Wendeker</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Siadkowska"> K. Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Magryta"> P. Magryta</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Czyz"> Z. Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Skiba"> K. Skiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/5115/optimal-diesel-engine-technology-analysis-matching-the-platform-of-the-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Numerical Study for Structural Design of Composite Rotor with Crack Initiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil">A. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nour"> A. Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb"> S. Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=H.Mechakra"> H.Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouderba"> A. Bouderba</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kebir"> H. Kebir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the numerical study for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor is developed. The use of the composite material for the rotor, offers a good Stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor" title="rotor">rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a> </p> <a href="https://publications.waset.org/abstracts/19109/numerical-study-for-structural-design-of-composite-rotor-with-crack-initiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czyz">Zbigniew Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Magryta"> Pawel Magryta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko"> Mateusz Paszko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20bearings" title="gas bearings">gas bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopters" title=" helicopters"> helicopters</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20maneuvers" title=" helicopter maneuvers"> helicopter maneuvers</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20engines" title=" turbine engines"> turbine engines</a> </p> <a href="https://publications.waset.org/abstracts/50082/analysis-of-the-operating-load-of-gas-bearings-in-the-gas-generator-of-the-turbine-engine-during-a-deceleration-to-dash-maneuver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingchen%20Yang">Yingchen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unidirectional%20rotation" title="unidirectional rotation">unidirectional rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis%20rotor" title=" vertical axis rotor"> vertical axis rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20conversion" title=" wave energy conversion"> wave energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-rotor%20interaction" title=" wave-rotor interaction"> wave-rotor interaction</a> </p> <a href="https://publications.waset.org/abstracts/121733/effect-of-blade-layout-on-unidirectional-rotation-of-a-vertical-axis-rotor-in-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Dynamic Analysis and Instability of a Rotating Composite Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil">A. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nour"> A. Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb"> S. Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mechakra"> H. Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouderba"> A. Bouderba</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kebir"> H. Kebir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the dynamic response for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade is developed. The use of the composite material for the rotor, offers a good stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor" title="rotor">rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a> </p> <a href="https://publications.waset.org/abstracts/16470/dynamic-analysis-and-instability-of-a-rotating-composite-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Designing and Simulation of the Rotor and Hub of the Unmanned Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czyz">Zbigniew Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska"> Ksenia Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba"> Krzysztof Skiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20Scislowski"> Karol Scislowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today’s progress in the rotorcraft is mostly associated with an optimization of aircraft performance achieved by active and passive modifications of main rotor assemblies and a tail propeller. The key task is to improve their performance, improve the hover quality factor for rotors but not change in specific fuel consumption. One of the tasks to improve the helicopter is an active optimization of the main rotor providing for flight stages, i.e., an ascend, flight, a descend. An active interference with the airflow around the rotor blade section can significantly change characteristics of the aerodynamic airfoil. The efficiency of actuator systems modifying aerodynamic coefficients in the current solutions is relatively high and significantly affects the increase in strength. The solution to actively change aerodynamic characteristics assumes a periodic change of geometric features of blades depending on flight stages. Changing geometric parameters of blade warping enables an optimization of main rotor performance depending on helicopter flight stages. Structurally, an adaptation of shape memory alloys does not significantly affect rotor blade fatigue strength, which contributes to reduce costs associated with an adaptation of the system to the existing blades, and gains from a better performance can easily amortize such a modification and improve profitability of such a structure. In order to obtain quantitative and qualitative data to solve this research problem, a number of numerical analyses have been necessary. The main problem is a selection of design parameters of the main rotor and a preliminary optimization of its performance to improve the hover quality factor for rotors. This design concept assumes a three-bladed main rotor with a chord of 0.07 m and radius R = 1 m. The value of rotor speed is a calculated parameter of an optimization function. To specify the initial distribution of geometric warping, a special software has been created that uses a numerical method of a blade element which respects dynamic design features such as fluctuations of a blade in its joints. A number of performance analyses as a function of rotor speed, forward speed, and altitude have been performed. The calculations were carried out for the full model assembly. This approach makes it possible to observe the behavior of components and their mutual interaction resulting from the forces. The key element of each rotor is the shaft, hub and pins holding the joints and blade yokes. These components are exposed to the highest loads. As a result of the analysis, the safety factor was determined at the level of k > 1.5, which gives grounds to obtain certification for the strength of the structure. The construction of the joint rotor has numerous moving elements in its structure. Despite the high safety factor, the places with the highest stresses, where the signs of wear and tear may appear, have been indicated. The numerical analysis carried out showed that the most loaded element is the pin connecting the modular bearing of the blade yoke with the element of the horizontal oscillation joint. The stresses in this element result in a safety factor of k=1.7. The other analysed rotor components have a safety factor of more than 2 and in the case of the shaft, this factor is more than 3. However, it must be remembered that the structure is as strong as the weakest cell is. Designed rotor for unmanned aerial vehicles adapted to work with blades with intelligent materials in its structure meets the requirements for certification testing. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=main%20rotor" title="main rotor">main rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=rotorcraft%20aerodynamics" title=" rotorcraft aerodynamics"> rotorcraft aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20helicopter" title=" unmanned helicopter"> unmanned helicopter</a> </p> <a href="https://publications.waset.org/abstracts/106637/designing-and-simulation-of-the-rotor-and-hub-of-the-unmanned-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Numerical Simulation of Air Flow, Exhaust and Their Mixture in a Helicopter Exhaust Injective Cooler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko">Mateusz Paszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Pietrykowski"> Konrad Pietrykowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba"> Krzysztof Skiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to low-altitude and relatively low flight speed, today’s combat assets like missile weapons equipped with infrared guidance systems are one of the most important threats to the helicopters performing combat missions. Especially meaningful in helicopter aviation is infrared emission by exhaust gases, regressed to the surroundings. Due to high temperature, exhaust gases are a major factor in detectability of a helicopter performing air combat operations. This study presents the results of simulating the flow of the mixture of exhaust and air in the flow duct of an injective exhaust cooler, adapted to cooperate with the PZL 10W turbine engine. The simulation was performed using a numerical model and the ANSYS Fluent software. Simulation computations were conducted for set flight conditions of the PZL W-3 Falcon helicopter. The conclusions resulting from the conducted numerical computations should allow for optimisation of the flow duct geometry in the cooler, in order to achieve the greatest possible temperature reduction of exhaust exiting into the surroundings. It is expected that the obtained results should be useful for further works related to the development of the final version of exhaust cooler for the PZL W-3 Falcon helicopter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20cooler" title="exhaust cooler">exhaust cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stealth" title=" stealth"> stealth</a> </p> <a href="https://publications.waset.org/abstracts/106682/numerical-simulation-of-air-flow-exhaust-and-their-mixture-in-a-helicopter-exhaust-injective-cooler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> Cooling of Exhaust Gases Emitted Into the Atmosphere as the Possibility to Reduce the Helicopter Radiation Emission Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko">Mateusz Paszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Wendeker"> Mirosław Wendeker</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Majczak"> Adam Majczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every material body that temperature is higher than 0K (absolute zero) emits infrared radiation to the surroundings. Infrared radiation is highly meaningful in military aviation, especially in military applications of helicopters. Helicopters, in comparison to other aircraft, have much lower flight speeds and maneuverability, which makes them easy targets for actual combat assets like infrared-guided missiles. When designing new helicopter types, especially for combat applications, it is essential to pay enormous attention to infrared emissions of the solid parts composing the helicopter’s structure, as well as to exhaust gases egressing from the engine’s exhaust system. Due to their high temperature, exhaust gases, egressed to the surroundings are a major factor in infrared radiation emission and, in consequence, detectability of a helicopter performing air combat operations. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. This paper presents the analysis of possibilities to decrease the infrared radiation level that is emitted to the environment by helicopter in flight, by cooling exhaust in special ejection-based coolers. The paper also presents the concept 3D model and results of numeric analysis of ejective-based cooler cooperation with PA-10W turbine engine. Numeric analysis presented promising results in decreasing the infrared emission level by PA W-3 helicopter in flight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20cooler" title="exhaust cooler">exhaust cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20propulsion" title=" helicopter propulsion"> helicopter propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20radiation" title=" infrared radiation"> infrared radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=stealth" title=" stealth"> stealth</a> </p> <a href="https://publications.waset.org/abstracts/50177/cooling-of-exhaust-gases-emitted-into-the-atmosphere-as-the-possibility-to-reduce-the-helicopter-radiation-emission-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> Condition Monitoring for Controlling the Stability of the Rotating Machinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil">A. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Gahlouz"> I. Gahlouz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb"> S. Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nour"> A. Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chellil"> S. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mechakra"> H. Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kebir"> H. Kebir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor are developed. Numerical calculations on the model develop of three dimensions prove that the defects effect has a negative effect on the stability of the rotor. Experimentally, the study of the rotor in the transient system allowed to determine the vibratory responses due to the unbalances and various excitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor" title="rotor">rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=specter" title=" specter"> specter</a> </p> <a href="https://publications.waset.org/abstracts/40714/condition-monitoring-for-controlling-the-stability-of-the-rotating-machinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> Self-Tuning Dead-Beat PD Controller for Pitch Angle Control of a Bench-Top Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mansor">H. Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.B.%20Mohd-Noor"> S.B. Mohd-Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Othman"> N. I. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tazali"> N. Tazali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20I.%20Boby"> R. I. Boby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an improved robust Proportional Derivative controller for a 3-Degree-of-Freedom (3-DOF) bench-top helicopter by using adaptive methodology. Bench-top helicopter is a laboratory scale helicopter used for experimental purposes which is widely used in teaching laboratory and research. Proportional Derivative controller has been developed for a 3-DOF bench-top helicopter by Quanser. Experiments showed that the transient response of designed PD controller has very large steady state error i.e., 50%, which is very serious. The objective of this research is to improve the performance of existing pitch angle control of PD controller on the bench-top helicopter by integration of PD controller with adaptive controller. Usually standard adaptive controller will produce zero steady state error; however response time to reach desired set point is large. Therefore, this paper proposed an adaptive with deadbeat algorithm to overcome the limitations. The output response that is fast, robust and updated online is expected. Performance comparisons have been performed between the proposed self-tuning deadbeat PD controller and standard PD controller. The efficiency of the self-tuning dead beat controller has been proven from the tests results in terms of faster settling time, zero steady state error and capability of the controller to be updated online. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=deadbeat%20control" title=" deadbeat control"> deadbeat control</a>, <a href="https://publications.waset.org/abstracts/search?q=bench-top%20helicopter" title=" bench-top helicopter"> bench-top helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=self-tuning%20control" title=" self-tuning control"> self-tuning control</a> </p> <a href="https://publications.waset.org/abstracts/10581/self-tuning-dead-beat-pd-controller-for-pitch-angle-control-of-a-bench-top-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">305</span> A Model for Helicopter Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Sipahioglu">Aydin Sipahioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Celik"> Gokhan Celik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Helicopter routing problem (HRP) is finding good tours for helicopter so as to pick up and deliver personnel or material among specified nodes, mutually. It can be encountered in case of being lots of supply and demand points for different commodities and requiring delivering commodities with helicopter. For instance, to deliver personnel or material from shore to oil rig is a good example. In fact, HRP is a branch of vehicle routing problem with pickup and delivery (VRPPD). However, it has additional constraints such that fuel capacity, performance of helicopter in different altitude and temperature, and the number of maximum takeoff and landing allowed. This kind of pickup and delivery problems can be classified into 3 groups, basically. 1-1 (one to one), M-M (many to many) and 1-M-1 (one to many to one). 1-1 means each commodity has only one supply and one demand point. M-M means there can be more than one supply and demand points for each kind of commodity. 1-M-1 means commodities at depot are delivered to demand points and commodities at customers are delivered to depot. In this case helicopter takes off from its own base, complete its tour and return to its own base. In this study, we define 1-M-M-1 type HRP. That means helicopter takes off from its home base, deliver commodities among the nodes as well as between depot and customers and return to its home base. These problems have NP-hard nature. Therefore, obtaining a good solution in a reasonable time is not easy. In this study, a model is offered for 1-M-M-1 type HRP. It is shown on small scale test instances that the model can find the optimal solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20routing%20problem" title="helicopter routing problem">helicopter routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20routing%20with%20pickup%20and%20delivery" title=" vehicle routing with pickup and delivery"> vehicle routing with pickup and delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20programming" title=" integer programming"> integer programming</a> </p> <a href="https://publications.waset.org/abstracts/9651/a-model-for-helicopter-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">304</span> Numerical and Experimental Analysis of Rotor Dynamic Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil">A. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nour"> A. Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb"> S. Lecheb </a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mechakra"> H. Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouderba"> A. Bouderba</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kebir"> H. Kebir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the rotor dynamic in transient system allowed to determine the vibratory responses due to various excitations. This work presents a coupled gyroscopic effect in the defects of a rotor under dynamic loading. Calculations of different energies and virtual work from the various elements of the rotor are developed. To treat real systems a model of finite element was developed. This model of the rotor makes it possible to extract the frequencies and modal deformed, and to calculate the stresses in the critical zone. The study of the rotor in transient system allowed to determine the vibratory responses due to the unbalances, crack and various excitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor" title="rotor">rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=defect" title=" defect"> defect</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a> </p> <a href="https://publications.waset.org/abstracts/18589/numerical-and-experimental-analysis-of-rotor-dynamic-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">303</span> A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingchen%20Yang">Yingchen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unidirectional" title="unidirectional">unidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis" title=" vertical axis"> vertical axis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20converter" title=" wave energy converter"> wave energy converter</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20rotor" title=" wave rotor"> wave rotor</a> </p> <a href="https://publications.waset.org/abstracts/94935/a-vertical-axis-unidirectional-rotor-with-nested-blades-for-wave-energy-conversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">302</span> Fault-Tolerant Fuzzy Gain-Adaptive PID Control for a 2 DOF Helicopter, TRMS System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahmen%20Bouguerra">Abderrahmen Bouguerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Kara"> Kamel Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Saigaa"> Djamel Saigaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Zeghlache"> Samir Zeghlache</a>, <a href="https://publications.waset.org/abstracts/search?q=Keltoum%20Loukal"> Keltoum Loukal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a Fault-Tolerant control of 2 DOF Helicopter (TRMS System) Based on Fuzzy Gain-Adaptive PID is presented. In particular, the introduction part of the paper presents a Fault-Tolerant Control (FTC), the first part of this paper presents a description of the mathematical model of TRMS, an adaptive PID controller is proposed for fault-tolerant control of a TRMS helicopter system in the presence of actuator faults, A fuzzy inference scheme is used to tune in real-time the controller gains, The proposed adaptive PID controller is compared with the conventional PID. The obtained results show the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title="fuzzy control">fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=gain-adaptive%20PID" title=" gain-adaptive PID"> gain-adaptive PID</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20model" title=" helicopter model"> helicopter model</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20control" title=" PID control"> PID control</a>, <a href="https://publications.waset.org/abstracts/search?q=TRMS%20system" title=" TRMS system"> TRMS system</a> </p> <a href="https://publications.waset.org/abstracts/21698/fault-tolerant-fuzzy-gain-adaptive-pid-control-for-a-2-dof-helicopter-trms-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">301</span> In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20X.%20Tchomeni">B. X. Tchomeni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Alugongo"> A. A. Alugongo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Masu"> L. M. Masu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategies <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor" title="rotor">rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=rubbing" title=" rubbing"> rubbing</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20force" title=" axial force"> axial force</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear" title=" non linear"> non linear</a> </p> <a href="https://publications.waset.org/abstracts/15695/in-situ-modelling-of-lateral-torsional-vibration-of-a-rotor-stator-with-multiple-parametric-excitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">300</span> Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mansor">H. Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Mohd-Noor"> S. B. Mohd-Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Gunawan"> T. S. Gunawan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khan"> S. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Othman"> N. I. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tazali"> N. Tazali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Islam"> R. B. Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (pole-placement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=deadbeat" title=" deadbeat"> deadbeat</a>, <a href="https://publications.waset.org/abstracts/search?q=pole-placement" title=" pole-placement"> pole-placement</a>, <a href="https://publications.waset.org/abstracts/search?q=bench-top%20helicopter" title=" bench-top helicopter"> bench-top helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=self-tuning%20control" title=" self-tuning control"> self-tuning control</a> </p> <a href="https://publications.waset.org/abstracts/15094/performance-comparisons-between-pid-and-adaptive-pid-controllers-for-travel-angle-control-of-a-bench-top-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">299</span> Numerical Investigations on Dynamic Stall of a Pitching-Plunging Helicopter Blade Airfoil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xie%20Kai">Xie Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Laith%20K.%20Abbas"> Laith K. Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Dongyang"> Chen Dongyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Fufeng"> Yang Fufeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Xiaoting"> Rui Xiaoting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of plunging motion on the pitch oscillating NACA0012 airfoil is investigated using computational fluid dynamics (CFD). A simulation model based on overset grid technology and <em>k - &omega;</em> shear stress transport (SST) turbulence model is established, and the numerical simulation results are compared with available experimental data and other simulations. Two cases of phase angle <em>&phi; = 0, &mu; </em>which represents the phase difference between the pitching and plunging motions of an airfoil are performed. Airfoil vortex generation, moving, and shedding are discussed in detail. Good agreements have been achieved with the available literature. The upward plunging motion made the equivalent angle of attack less than the actual one during pitching analysis. It is observed that the formation of the stall vortex is suppressed, resulting in a decrease in the lift coefficient and a delay of the stall angle. However, the downward plunging motion made the equivalent angle of attack higher the actual one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stall" title="dynamic stall">dynamic stall</a>, <a href="https://publications.waset.org/abstracts/search?q=pitching-plunging" title=" pitching-plunging"> pitching-plunging</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20blade%20rotor" title=" helicopter blade rotor"> helicopter blade rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a> </p> <a href="https://publications.waset.org/abstracts/75693/numerical-investigations-on-dynamic-stall-of-a-pitching-plunging-helicopter-blade-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">298</span> 2D Point Clouds Features from Radar for Helicopter Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20Habermann">Danilo Habermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Medella"> Aleksander Medella</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Cremon"> Carla Cremon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusef%20Caceres"> Yusef Caceres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20classification" title="helicopter classification">helicopter classification</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20clouds%20features" title=" point clouds features"> point clouds features</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20classifiers" title=" supervised classifiers"> supervised classifiers</a> </p> <a href="https://publications.waset.org/abstracts/85676/2d-point-clouds-features-from-radar-for-helicopter-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">297</span> Dynamic Modeling of an Unmanned Aerial Vehicle with Petro-Engine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20A.%20Alsaif">Khaled A. Alsaif</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosaad%20A.%20Foda"> Mosaad A. Foda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the following article, we present the dynamic simulation of an unmanned aerial vehicle with main fuel engine in the middle to carry most of the weight. This configuration will increase the flight time of the vehicle for a given payload size as opposed to the traditional quad rotor, where only DC motors are used. A parametric study to investigate the effect of the propellers ratio (main rotor propeller diameter to secondary rotor propeller diameter), the angle of incidence of the main rotor and the twist angle of the main rotor blades on selected performance criteria is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title="unmanned aerial vehicle (UAV)">unmanned aerial vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrotor" title=" quadrotor"> quadrotor</a>, <a href="https://publications.waset.org/abstracts/search?q=petrol%20quadcopter" title=" petrol quadcopter"> petrol quadcopter</a>, <a href="https://publications.waset.org/abstracts/search?q=flying%20robot" title=" flying robot"> flying robot</a> </p> <a href="https://publications.waset.org/abstracts/36790/dynamic-modeling-of-an-unmanned-aerial-vehicle-with-petro-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">296</span> Increasing Performance of Autopilot Guided Small Unmanned Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugrul%20Oktay">Tugrul Oktay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Konar"> Mehmet Konar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soylak"> Mustafa Soylak</a>, <a href="https://publications.waset.org/abstracts/search?q=Firat%20Sal"> Firat Sal</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Onay"> Murat Onay</a>, <a href="https://publications.waset.org/abstracts/search?q=Orhan%20Kizilkaya"> Orhan Kizilkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, autonomous performance of a small manufactured unmanned helicopter is tried to be increased. For this purpose, a small unmanned helicopter is manufactured in Erciyes University, Faculty of Aeronautics and Astronautics. It is called as ZANKA-Heli-I. For performance maximization, autopilot parameters are determined via minimizing a cost function consisting of flight performance parameters such as settling time, rise time, overshoot during trajectory tracking. For this purpose, a stochastic optimization method named as simultaneous perturbation stochastic approximation is benefited. Using this approach, considerable autonomous performance increase (around %23) is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20helicopters" title="small helicopters">small helicopters</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20control" title=" hierarchical control"> hierarchical control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20optimization" title=" stochastic optimization"> stochastic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20performance%20maximization" title=" autonomous performance maximization"> autonomous performance maximization</a>, <a href="https://publications.waset.org/abstracts/search?q=autopilots" title=" autopilots"> autopilots</a> </p> <a href="https://publications.waset.org/abstracts/35994/increasing-performance-of-autopilot-guided-small-unmanned-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">295</span> Behavior Fatigue Life of Wind Turbine Rotor with Longitudinal Crack Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb">S. Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nour"> A. Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil"> A. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mechakra"> H. Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tchina"> N. Tchina</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kebir"> H. Kebir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study concerned the dynamic behavior of the wind turbine rotor. Before all, we have studied the loads applied to the rotor, which allows the knowledge their effect on the fatigue. We also studied the movement of the longitudinal cracked rotor in order to determine stress, strain and displacement. Moreover, to study the issues of cracks in the critical zone ABAQUS software is used, which based to the finite element to give the results. In the first we compared the first six modes shapes between cracking and uncracking of HAWT rotor. In the second part, we show the evolution of six first naturals frequencies with longitudinal crack propagation. Finally, we conclude that the residual change in the naturals frequencies can be used as in shaft crack diagnosis predictive maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20rotor" title="wind turbine rotor">wind turbine rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title=" natural frequencies"> natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20crack%20growth" title=" longitudinal crack growth"> longitudinal crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20time" title=" life time"> life time</a> </p> <a href="https://publications.waset.org/abstracts/18887/behavior-fatigue-life-of-wind-turbine-rotor-with-longitudinal-crack-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">294</span> On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdurrahim%20Dal">Abdurrahim Dal</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuncay%20Kara%C3%A7ay"> Tuncay Karaçay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamics of a rotor supported by air bearings is strongly depends on the pressure distribution between the rotor and the bearing. In this study, internal pressure in air bearings is numerical and experimental analyzed for different radial clearances. Firstly the pressure distribution between rotor and bearing is modeled using Reynold's equation and this model is solved numerically. The rotor-bearing system is also modeled in four degree of freedom and it is simulated for different radial clearances. Then, in order to validate numerical results, a test rig is designed and the rotor bearing system is run under the same operational conditions. Pressure signals of left and right bearings are recorded. Internal pressure variations are compared for numerical and experimental results for different radial clearances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20bearing" title="air bearing">air bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20pressure" title=" internal pressure"> internal pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynold%E2%80%99s%20equation" title=" Reynold’s equation"> Reynold’s equation</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor" title=" rotor"> rotor</a> </p> <a href="https://publications.waset.org/abstracts/26266/on-the-numerical-and-experimental-analysis-of-internal-pressure-in-air-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">293</span> Variation of Inductance in a Switched-Reluctance Motor under Various Rotor Faults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asghar%20Saqib">Muhammad Asghar Saqib</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Saleem%20Khan"> Saad Saleem Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Abdul%20Rahman%20Kashif"> Syed Abdul Rahman Kashif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to have higher efficiency, performance and reliability the regular monitoring of an electrical motor is required. This article presents a novel view of the air-gap magnetic field analysis of a switched reluctance motor under rotor cracks and rotor tilt along its shaft axis. The fault diagnosis is illustrated on the basis of a 3-D model of the motor using finite element analysis (FEA). The analytical equations of flux linkages have been used to determine the inductance. The results of the 3-D finite element analysis on a 6/4 switched reluctance motor (SRM) shows the variation of mutual inductance with the tilting of the rotor shaft and cracked rotor conditions. These results present useful information regarding the detection of shaft tilting and cracked rotors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=switched%20reluctance%20motor" title="switched reluctance motor">switched reluctance motor</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cracked%20rotor" title=" cracked rotor"> cracked rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20modelling%20of%20a%20srm" title=" 3-D modelling of a srm"> 3-D modelling of a srm</a> </p> <a href="https://publications.waset.org/abstracts/30951/variation-of-inductance-in-a-switched-reluctance-motor-under-various-rotor-faults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">663</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">292</span> Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar">Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Roopali%20Dogra"> Roopali Dogra</a>, <a href="https://publications.waset.org/abstracts/search?q=Puneet%20Aggarwal"> Puneet Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB%2FSimulink" title="MATLAB/Simulink">MATLAB/Simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20resistance%20method" title=" rotor resistance method"> rotor resistance method</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20power%20recovery%20method" title=" slip power recovery method"> slip power recovery method</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20rotor%20induction%20motor" title=" wound rotor induction motor"> wound rotor induction motor</a> </p> <a href="https://publications.waset.org/abstracts/73488/rotor-side-speed-control-methods-using-matlabsimulink-for-wound-induction-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> Helicopter Exhaust Gases Cooler in Terms of Computational Fluid Dynamics (CFD) Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko">Mateusz Paszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska"> Ksenia Siadkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the low-altitude and relatively low-speed flight, helicopters are easy targets for actual combat assets e.g. infrared-guided missiles. Current techniques aim to increase the combat effectiveness of the military helicopters. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. One of them is cooling hot exhaust gasses, emitting from the engines to the atmosphere in special heat exchangers. Nowadays, this process is realized in ejective coolers, where strong heat and momentum exchange between hot exhaust gases and cold air ejected from atmosphere takes place. Flow effects of air, exhaust gases; mixture of those two and the heat transfer between cold air and hot exhaust gases are given by differential equations of: Mass transportation–flow continuity, ejection of cold air through expanding exhaust gasses, conservation of momentum, energy and physical relationship equations. Calculation of those processes in ejective cooler by means of classic mathematical analysis is extremely hard or even impossible. Because of this, it is necessary to apply the numeric approach with modern, numeric computer programs. The paper discussed the general usability of the Computational Fluid Dynamics (CFD) in a process of projecting the ejective exhaust gases cooler cooperating with helicopter turbine engine. In this work, the CFD calculations have been performed for ejective-based cooler cooperating with the PA W3 helicopter’s engines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation" title="aviation">aviation</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ejective-cooler" title=" ejective-cooler"> ejective-cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20techniques" title=" helicopter techniques"> helicopter techniques</a> </p> <a href="https://publications.waset.org/abstracts/50171/helicopter-exhaust-gases-cooler-in-terms-of-computational-fluid-dynamics-cfd-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">290</span> Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Aghazadeh">Hadi Aghazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ebrahim%20Afjei"> Seyed Ebrahim Afjei</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Siadatan"> Alireza Siadatan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20assisted%20synchronous%20reluctance%20motor" title="permanent magnet assisted synchronous reluctance motor">permanent magnet assisted synchronous reluctance motor</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20barrier" title=" flux barrier"> flux barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20carrier" title=" flux carrier"> flux carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20torque" title=" electromagnetic torque"> electromagnetic torque</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20power%20factor" title=" and power factor"> and power factor</a> </p> <a href="https://publications.waset.org/abstracts/85367/sensitivity-analysis-of-external-rotor-permanent-magnet-assisted-synchronous-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10