CINXE.COM

One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents</title> <meta name="description" content="One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents"> <meta name="keywords" content="Feature selection methods, Machine learning, NB, One-class SVM, Sentiment Analysis, Support Vector Machine."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <meta name="citation_title" content="One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents"> <meta name="citation_author" content="Chothmal"> <meta name="citation_author" content="Basant Agarwal"> <meta name="citation_publication_date" content="2015/11/04"> <meta name="citation_journal_title" content="International Journal of Computer and Information Engineering"> <meta name="citation_volume" content="9"> <meta name="citation_issue" content="12"> <meta name="citation_firstpage" content="2451"> <meta name="citation_lastpage" content="2454"> <meta name="citation_pdf_url" content="https://publications.waset.org/10003083/pdf"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value=""> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33093</div> </div> </div> </div> <div class="card publication-listing mt-3 mb-3"> <h5 class="card-header" style="font-size:.9rem">One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chothmal">Chothmal</a>, <a href="https://publications.waset.org/search?q=Basant%20Agarwal"> Basant Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model. <iframe src="https://publications.waset.org/10003083.pdf" style="width:100%; height:400px;" frameborder="0"></iframe> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Feature%20selection%20methods" title="Feature selection methods">Feature selection methods</a>, <a href="https://publications.waset.org/search?q=Machine%20learning" title=" Machine learning"> Machine learning</a>, <a href="https://publications.waset.org/search?q=NB" title=" NB"> NB</a>, <a href="https://publications.waset.org/search?q=One-class%20SVM" title=" One-class SVM"> One-class SVM</a>, <a href="https://publications.waset.org/search?q=Sentiment%20Analysis" title=" Sentiment Analysis"> Sentiment Analysis</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine." title=" Support Vector Machine."> Support Vector Machine.</a> </p> <p class="card-text"><strong>Digital Object Identifier (DOI):</strong> <a href="https://doi.org/10.5281/zenodo.1110393" target="_blank">doi.org/10.5281/zenodo.1110393</a> </p> <a href="https://publications.waset.org/10003083/one-class-support-vector-machine-for-sentiment-analysis-of-movie-review-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003083/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003083/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003083/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003083/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003083/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003083/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003083/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003083/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003083/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003083/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3303</span> </span> <p class="card-text"><strong>References:</strong></p> <br>[1] Liu B., “Sentiment Analysis and Opinion Mining”, Synthesis Lectures on Human Language Technologies, Morgan & Claypool Publishers, 2012. <br>[2] Liu B., “Sentiment Analysis and Subjectivi,” Handbook of Natural Language Processing”, 2nd ed., N. Indurkhya and F.J. Damerau, eds., Chapman & Hall / CRC Press, 2010, pp. 627-666. <br>[3] Agarwal B., Mittal N., “Enhancing Performance of Sentiment Analysis by Semantic Clustering of Features”, In IETE Journal of Research, Taylor and Francis, 2014, pp: 1-9. <br>[4] Agarwal B., Mittal N., “Prominent Feature Extraction for Sentiment Analysis”, Springer Book Series: Socio-Affective Computing series, ISBN: 978-3-319-25343-5, DOI: 10.1007/978-3-319-25343-5, pages: 1- 115. <br>[5] Pang B., Lee L., Vaithyanathan S., “Thumbs up? Sentiment classification using machine learning techniques”, In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2002, pp: 79-86. <br>[6] Tan S., Zhang J., “An empirical study of sentiment analysis for Chinese documents”, In Expert Systems with Applications, Vol: 34, No: 4, 2008, pp: 2622-2629. <br>[7] O’keefe T., Koprinska I., “Feature Selection and Weighting Methods in Sentiment Analysis”, In Proceedings of the 14th Australasian Document Computing Symposium, Sydney, Australia, 2009, pp: 67-74. <br>[8] Ye Q., Zhang Z., Law R., “Sentiment classification of online reviews to travel destinations by supervised machine learning approaches”, In Expert Systems with Applications, Vol: 36, No: 3, 2009, pp: 6527-6535. <br>[9] Cui H., Mittal V., Datar M., ”Comparative experiments on sentiment classification for online product reviews”, In Proceedings of the 21st national conference on Artificial Intelligence, 2006, pp: 1265-1270. <br>[10] Moraes R., Valiati JF, Neto WPG, “Document-level sentiment classification: An empirical comparison between SVM and ANN”, In Expert Systems with Applications, Vol: 40, No: 2, 2013, pp: 621-633. <br>[11] Saleh MR, Martin-Valdivia MT, Montejo-Raez A., Urena-Lopez LA, “Experiments with SVM to classify opinions in different domains”, In Expert Systems with Applications, Vol: 38, No: 12, 2011, pp: 14799- 14804. <br>[12] Li S., Zong C., Wang X., “Sentiment Classification through Combining classifiers with multiple feature sets”, In Proceedings of the International Conference on Natural Language Processing and Knowledge Engineering (NLP-KE), 2007, pp: 135- 140. <br>[13] Tsutsumi K., Shimada K., Endo T., “Movie Review Classification Based on a Multiple Classifier”, In Proceedings of the Annual meetings of the Pacific Asia Conference on Language, Information and Computation (PACLIC), 2007, pp: 481-488. <br>[14] Xia R., Zong C., Li S., “Ensemble of Feature Sets and Classification Algorithms for Sentiment Classification”. In Journal of Information Sciences, Vol: 181, No: 6, 2011, pages: 1138-1152. <br>[15] Prabowo R., Thelwall M., “Sentiment analysis: A combined approach”, In Journal of Informatics, Vol: 3, No: 2, 2009, pp:143-157. <br>[16] Agarwal B., Mittal N., “Optimal Feature Selection for Sentiment Analysis”, In 14th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing 2013),Vol-7817, pages-13-24, Greece, Samos. 2013. <br>[17] Schaolkopf B., Platt J. C., Shawe-Taylor J. C., Smola A. J., Williamson, R.C, “Estimating the support of a high-dimensional distribution.”, In Neural Comput.13, 7, 1443-1471. <br>[18] Pang B., Lee L., “A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts”, In Proceedings of the Association for Computational Linguistics (ACL), 2004, pp. 271- 278. <br>[19] Agarwal B., Mittal N., Bansal P., Garg S., “Sentiment Analysis Using Common-Sense and Context Information”, In Computational Intelligence and Neuroscience, Article ID 715730, 9 pages, 2015, DOI: http://dx.doi.org/10.1155/2015/715730. <br>[20] Agarwal B., Mittal N., “Prominent Feature Extraction for Review Analysis: An Empirical Study”, In Journal of Experimental and theoretical Artificial Intelligence, Taylor Francis, 2014, DOI:10.1080/0952813X.2014.977830. </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10