CINXE.COM

Search results for: fed-batch fermentation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fed-batch fermentation</title> <meta name="description" content="Search results for: fed-batch fermentation"> <meta name="keywords" content="fed-batch fermentation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fed-batch fermentation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fed-batch fermentation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 438</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fed-batch fermentation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> Extractive Fermentation of Ethanol Using Vacuum Fractionation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weeraya%20Samnuknit">Weeraya Samnuknit</a>, <a href="https://publications.waset.org/abstracts/search?q=Apichat%20Boontawan"> Apichat Boontawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A vacuum fractionation technique was introduced to remove ethanol from fermentation broth. The effect of initial glucose and ethanol concentrations were investigated for specific productivity. The inhibitory ethanol concentration was observed at 100 g/L. In order to increase the fermentation performance, the ethanol product was removed as soon as it is produced. The broth was boiled at 35°C by reducing the pressure to 65 mBar. The ethanol/water vapor was fractionated for up to 90 wt% before leaving the column. Ethanol concentration in the broth was kept lower than 25 g/L, thus minimized the product inhibition effect to the yeast cells. For batch extractive fermentation, a high substrate utilization rate was obtained at 26.6 g/L.h and most of glucose was consumed within 21 h. For repeated-batch extractive fermentation, addition of glucose was carried out up to 9 times and ethanol was produced more than 8-fold higher than batch fermentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethanol" title="ethanol">ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=extractive%20fermentation" title=" extractive fermentation"> extractive fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20inhibition" title=" product inhibition"> product inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20fractionation" title=" vacuum fractionation"> vacuum fractionation</a> </p> <a href="https://publications.waset.org/abstracts/12965/extractive-fermentation-of-ethanol-using-vacuum-fractionation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> Effects of Fermentation Techniques on the Quality of Cocoa Beans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monday%20O.%20Ale">Monday O. Ale</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebukola%20A.%20Akintade"> Adebukola A. Akintade</a>, <a href="https://publications.waset.org/abstracts/search?q=Olasunbo%20O.%20Orungbemi"> Olasunbo O. Orungbemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fermentation as an important operation in the processing of cocoa beans is now affected by the recent climate change across the globe. The major requirement for effective fermentation is the ability of the material used to retain sufficient heat for the required microbial activities. Apart from the effects of climate on the rate of heat retention, the materials used for fermentation plays an important role. Most Farmers still restrict fermentation activities to the use of traditional methods. Improving on cocoa fermentation in this era of climate change makes it necessary to work on other materials that can be suitable for cocoa fermentation. Therefore, the objective of this study was to determine the effects of fermentation techniques on the quality of cocoa beans. The materials used in this fermentation research were heap-leaves (traditional), stainless steel, plastic tin, plastic basket and wooden box. The period of fermentation varies from zero days to 10 days. Physical and chemical tests were carried out for variables in quality determination in the samples. The weight per bean varied from 1.0-1.2 g after drying across the samples and the major color of the dry beans observed was brown except with the samples from stainless steel. The moisture content varied from 5.5-7%. The mineral content and the heavy metals decreased with increase in the fermentation period. A wooden box can conclusively be used as an alternative to heap-leaves as there was no significant difference in the physical features of the samples fermented with the two methods. The use of a wooden box as an alternative for cocoa fermentation is therefore recommended for cocoa farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=effects" title=" effects"> effects</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation%20materials" title=" fermentation materials"> fermentation materials</a>, <a href="https://publications.waset.org/abstracts/search?q=period" title=" period"> period</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/84520/effects-of-fermentation-techniques-on-the-quality-of-cocoa-beans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Medium Composition for the Laboratory Production of Enzyme Fructosyltransferase (FTase)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20R.%20Raimi">O. R. Raimi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lateef"> A. Lateef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inoculum developments of A. niger were used for inoculation of medium for submerged fermentation and solid state fermentation. The filtrate obtained were used as sources of the extra-cellular enzymes. The FTase activities and the course of pH in submerged fermentation ranged from 7.53-24.42µ/ml and 4.4-4.8 respectively. The maximum FTase activity was obtained at 48 hours fermentation. In solid state fermentation, FTase activities ranged from 2.41-27.77µ/ml. Using ripe plantain peel and kola nut pod respectively. Both substrates supported the growth of the fungus, producing profuse growth during fermentation. In the control experiment (using kolanut pod) that lack supplementation, appreciable FTase activity of 16.92µ/ml was obtained. The optimum temperature range was 600C. it was also active at broad pH range of 1-9 with optimum obtain at pH of 5.0. FTase was stable within the range of investigated pH showing more than 60% activities. FTase can be used in the production of fructooligosaccharide, a functional food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20niger" title="Aspergillus niger">Aspergillus niger</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=kola%20nut%20pods" title=" kola nut pods"> kola nut pods</a>, <a href="https://publications.waset.org/abstracts/search?q=Fructosyltransferase%20%28FTase%29" title=" Fructosyltransferase (FTase)"> Fructosyltransferase (FTase)</a> </p> <a href="https://publications.waset.org/abstracts/2063/medium-composition-for-the-laboratory-production-of-enzyme-fructosyltransferase-ftase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Evaluation of Microbial Community, Biochemical and Physiological Properties of Korean Black Raspberry (Rubus coreanus Miquel) Vinegar Manufacturing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nho-Eul%20Song">Nho-Eul Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Ho%20Baik"> Sang-Ho Baik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fermentation characteristics of black raspberry vinegar by using static cultures without any additives were has been investigated to establish of vinegar manufacturing conditions and improve the quality of vinegar by optimization the vinegar manufacturing process. The two vinegar manufacturing conditions were prepared; one-step fermentation condition only using mother vinegar that prepared naturally occurring black raspberry vinegar without starter yeast for alcohol fermentation (traditional method) and two-step fermentation condition using commercial wine yeast and mother vinegar for acetic acid fermentation. Approximately 12% ethanol was produced after 35 days fermentation with log 7.6 CFU/mL of yeast population in one-step fermentation, resulting sugar reduction from 14 to 6oBrix whereas in two-step fermentation, ethanol concentration was reached up to 8% after 27 days with continuous increasing yeast until log 7.0 CFU/mL. In addition, yeast and ethanol were decreased after day 60 accompanied with proliferation of acetic acid bacteria (log 5.8 CFU/mL) and titratable acidity; 4.4% in traditional method and 6% in two-step fermentation method. DGGE analysis showed that S. cerevisiae was detected until 77 days of traditional fermentation and gradually changed to AAB, Acetobacter pasteurianus, as dominant species and Komagataeibacter xylinus at the end of the fermentation. However, S. cerevisiae and A. pasteurianus was dominant in two-step fermentation process. The prepared two-step fermentation showed enhanced total polyphenol and flavonoid content significantly resulting in higher radical scavenging activity. Our studies firstly revealed the microbial community change with chemical change and demonstrated a suitable fermentation system for black raspberry vinegar by the static surface method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20raspberry" title=" black raspberry"> black raspberry</a>, <a href="https://publications.waset.org/abstracts/search?q=vinegar%20fermentation" title=" vinegar fermentation"> vinegar fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/40982/evaluation-of-microbial-community-biochemical-and-physiological-properties-of-korean-black-raspberry-rubus-coreanus-miquel-vinegar-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> Solid State Fermentation of Tamarind (Tamarindus indica) Seed to Produce Food Condiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olufunke%20O.%20Ezekiel">Olufunke O. Ezekiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Adenike%20O.%20Ogunshe"> Adenike O. Ogunshe</a>, <a href="https://publications.waset.org/abstracts/search?q=Omotola%20F.%20Olagunju"> Omotola F. Olagunju</a>, <a href="https://publications.waset.org/abstracts/search?q=Arinola%20O.%20Falola"> Arinola O. Falola </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies were conducted on fermentation of tamarind seed for production of food condiment. Fermentation followed the conventional traditional method of fermented locust bean (iru) production and was carried out over a period of three days (72 hours). Samples were withdrawn and analysed for proximate composition, pH, titratable acidity, tannin content, phytic acid content and trypsin inhibitor activity using standard methods. Effects of fermentation on proximate composition, anti-nutritional factors and sensory properties of the seed were evaluated. All data were analysed using ANOVA and means separated using Duncan multiple range test. Microbiological analysis to identify and characterize the microflora responsible for the fermentation of the seed was also carried out. Fermentation had significant effect on the proximate composition on the fermented seeds. As fermentation progressed, there was significant reduction in the anti-nutrient contents. Organisms isolated from the fermenting tamarind seeds were identified as non-pathogenic and common with fermented legumes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condiment" title="condiment">condiment</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=legume" title=" legume"> legume</a>, <a href="https://publications.waset.org/abstracts/search?q=tamarind%20seed" title=" tamarind seed"> tamarind seed</a> </p> <a href="https://publications.waset.org/abstracts/8682/solid-state-fermentation-of-tamarind-tamarindus-indica-seed-to-produce-food-condiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Analysis of Total Acid in Arabica Coffee Beans after Fermentation with Ohmic Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reta">Reta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coffee is widely consumed not only because of its typical taste, but coffee has antioxidant properties because of its polyphenols, and it stimulates brain's performance. The main problem with the consumption of coffee is its content of caffeine. Caffeine, when consumed in excess, can increase muscle tension, stimulate the heart, and increase the secretion of gastric acid. In this research, we applied ohmic-based fermentation technology, which is specially designed to mimic the stomach. We used Arabica coffee, which although cheaper than Luwak coffee, has high acidity, which needs to be reduced. Hence, we applied the ohmic technology, varied the time and temperature of the process and measured the total acidity of the coffee to determine optimum fermentation conditions. Results revealed total acidity of the coffee varied with fermentation conditions; 0.32% at 400C and 12 hr, and 0.52% at 400C and 6 hr. The longer the fermentation, the lower was the acidity. The acidity of the mongoose-fermented (natural fermentation) beans was 2.34%, which is substantially higher than the acidity of the ohmic samples. Ohmic-based fermentation technology, therefore, offers improvements in coffee quality, and this is discussed to highlight the potential of ohmic technology in coffee processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ohmic%20technology" title="ohmic technology">ohmic technology</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=coffee%20quality" title=" coffee quality"> coffee quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabica%20coffee" title=" Arabica coffee"> Arabica coffee</a> </p> <a href="https://publications.waset.org/abstracts/56713/analysis-of-total-acid-in-arabica-coffee-beans-after-fermentation-with-ohmic-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Colour Characteristics of Dried Cocoa Using Shallow Box Fermentation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Bariah%20Sulaiman">Khairul Bariah Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Tajul%20Aris%20Yang"> Tajul Aris Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fermentation is well known as an essential process in cocoa beans. Besides to develop the precursor of cocoa flavour, it also induce the colour changes in the beans.The fermentation process is reported to be influenced by duration of pod storage and fermentation. Therefore, this study was conducted to evaluate colour of Malaysian cocoa beans and how the pods storage and fermentation duration using shallow box technique will effect on it characteristics. There are two factors being studied ie duration of cocoa pod storage (0, 2, 4, and 6 days) and duration of cocoa fermentation (0, 1, 2, 3, 4 and 5 days). The experiment is arranged in 4 x 6 factorial design with 24 treatments and arrangement is in a Completely Randomised Design (CRD). The produced beans is inspected for colour changes under artificial light during cut test and divided into four groups of colour namely fully brown, purple brown, fully purple and slaty. Cut tests indicated that cocoa beans which are directly dried without undergone fermentation has the highest slaty percentage. However, application of pods storage before fermentation process is found to decrease the slaty percentage. In contrast, the percentages of fully brown beans start to dominate after two days of fermentation, especially from four and six days of pods storage batch. Whereas, almost all batch have percentage of fully purple less than 20%. Interestingly, the percentage of purple brown beans are scattered in the entire beans batch regardless any specific trend. Meanwhile, statistical analysis using General Linear Model showed that the pods storage has a significant effect on the colour characteristic of the Malaysian dried beans compared to fermentation duration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa%20beans" title="cocoa beans">cocoa beans</a>, <a href="https://publications.waset.org/abstracts/search?q=colour" title=" colour"> colour</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20box" title=" shallow box"> shallow box</a> </p> <a href="https://publications.waset.org/abstracts/34006/colour-characteristics-of-dried-cocoa-using-shallow-box-fermentation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Optimization of Monascus Orange Pigments Production Using pH-Controlled Fed-Batch Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Min%20Kim">Young Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Deokyeong%20Choe"> Deokyeong Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Soo%20Shin"> Chul Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monascus pigments, commonly used as a natural colorant in Asia, have many biological activities, such as cholesterol level control, anti-obesity, anti-cancer, and anti-oxidant, that have recently been elucidated. Especially, amino acid derivatives of Monascus pigments are receiving much attention because they have higher biological activities than original Monascus pigments. Previously, there have been two ways to produce amino acid derivatives: one-step production and two-step production. However, the one-step production has low purity, and the two-step production—precursor(orange pigments) fermentation and derivatives synthesis—has low productivity and growth rate during its precursor fermentation step. In this study, it was verified that pH is a key factor that affects the stability of orange pigments and the growth rate of Monascus. With an optimal pH profile obtained by pH-stat fermentation, we designed a process of precursor(orange pigments) fermentation that is a pH-controlled fed-batch fermentation. The final concentration of orange pigments in this process increased to 5.5g/L which is about 30% higher than the concentration produced from the previously used precursor fermentation step. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultivation%20process" title="cultivation process">cultivation process</a>, <a href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation" title=" fed-batch fermentation"> fed-batch fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=monascus%20pigments" title=" monascus pigments"> monascus pigments</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stability" title=" pH stability"> pH stability</a> </p> <a href="https://publications.waset.org/abstracts/55435/optimization-of-monascus-orange-pigments-production-using-ph-controlled-fed-batch-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Fermentation with Lactobacillus plantarum CK10 Enhanced Antioxidant Activity of Blueberry Puree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=So%20Yae%20Koh">So Yae Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=YeonWoo%20Song"> YeonWoo Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Yeon%20Ryu"> Ji-Yeon Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Yong%20Moon"> Jeong Yong Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Somi%20Kim%20Cho"> Somi Kim Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blueberry, a perennial shrub, is one of the most popular fruits due to its flavor and strong free radical scavenging properties. In this study, the blueberry puree was fermented by Lactobacillus plantarum CK10 and the antioxidant activities of fermentation products were examined. Various conditions with different supplements (5% sucrose or 10% skim milk) were evaluated for fermentation efficiency and the effects on antioxidant properties. The viable cell count of lactic acid bacteria, pH, total phenolic compounds and flavonoids contents were measured after 7 days of fermentation. DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] radical scavenging activities were highly enhanced compared to non-fermented blueberry puree after fermentation. Interestingly, the antioxidant activities were greatly increased in the fermentation of blueberry puree alone without supplements. The present results indicate that the blueberry puree fermented by Lactobacillus plantarum CK10 could be used as a potential source of natural antioxidants and these findings will facilitate the utilization of blueberry as a resource for food additive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=blueberry" title=" blueberry"> blueberry</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20plantarum%20CK10" title=" lactobacillus plantarum CK10"> lactobacillus plantarum CK10</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/55851/fermentation-with-lactobacillus-plantarum-ck10-enhanced-antioxidant-activity-of-blueberry-puree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> New Methodology for Monitoring Alcoholic Fermentation Processes Using Refractometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukhiar%20Aissa">Boukhiar Aissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Iguergaziz%20Nadia"> Iguergaziz Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Halladj%20Fatima"> Halladj Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamrani%20Yasmina"> Lamrani Yasmina</a>, <a href="https://publications.waset.org/abstracts/search?q=Benamara%20Salem"> Benamara Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining the alcohol content in alcoholic fermentation bioprocess has a great importance. In fact, it is a key indicator for monitoring this fermentation bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic...) are used to the determination of this parameter. However, these techniques are very long and require: rigorous preparations, sometimes dangerous chemical reagents, and/or expensive equipment. In the present study, the date juice is used as a substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of this process revealed a good correlation (R2 = 0.98) between initial and final ° Brix: ° Brix f = 0.377× ° Brixi. In addition, we verified the relationship between the variation in final and initial ° Brix (Δ ° Brix) and alcoholic rate produced (A exp): CΔ° Brix / A exp = 1.1. This allows the tracing of abacus isoresponses that permit to determine the alcoholic and residual sugar rates with a mean relative error (MRE) of 5.35%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractometry" title="refractometry">refractometry</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol" title=" alcohol"> alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20sugar" title=" residual sugar"> residual sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=brix" title=" brix"> brix</a>, <a href="https://publications.waset.org/abstracts/search?q=date" title=" date"> date</a>, <a href="https://publications.waset.org/abstracts/search?q=juice" title=" juice "> juice </a> </p> <a href="https://publications.waset.org/abstracts/3201/new-methodology-for-monitoring-alcoholic-fermentation-processes-using-refractometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peerawat%20Khongkliang">Peerawat Khongkliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Prawit%20Kongjan"> Prawit Kongjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Imai"> Tsuyoshi Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonsuk%20Prasertsan"> Poonsuk Prasertsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sompong%20O-Thong"> Sompong O-Thong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cassava%20starch%20processing%20wastewater" title="cassava starch processing wastewater">cassava starch processing wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=biohydrogen" title=" biohydrogen"> biohydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20fermentation" title=" thermophilic fermentation"> thermophilic fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20electrolysis%20cell" title=" microbial electrolysis cell"> microbial electrolysis cell</a> </p> <a href="https://publications.waset.org/abstracts/43009/high-efficient-biohydrogen-production-from-cassava-starch-processing-wastewater-by-two-stage-thermophilic-fermentation-and-electrohydrogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> The Effect of Fermentation and Germination on the Nutrient and Antinutrient Composition of Lima Bean (Phaseolus lunatus) Flour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Okeke">P. N. Okeke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fermentation and germination of legumes have been an ancient practice. In this study, the influence of fermentation and germination on the chemical properties of Lima bean (Phaseolus lunatus) flour were evaluated. The flours were analyzed for their proximate and mineral composition, using the standard assay methods. The result showed that fermentation and germination increased the moisture, protein and ash content of the flours while fiber, fat and carbohydrate were decreased. The protein level of fermented and germinated lima bean increased from 21.06–26.60%. The minerals: iron, copper, zinc, and phosphorous increased due to germination and fermentation. The phytate and tannin levels were drastically reduced in both the fermented and germinated flours. The result of this study revealed that fermentation and germination makes the nutrient in lima beans more accessible as it reduces the anti-nutrients. It is therefore recommended that lima bean be process accordingly for richer and more bio-availability of the nutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nutrient" title="nutrient">nutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-nutrient" title=" anti-nutrient"> anti-nutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented" title=" fermented"> fermented</a>, <a href="https://publications.waset.org/abstracts/search?q=germinated" title=" germinated"> germinated</a>, <a href="https://publications.waset.org/abstracts/search?q=lima%20bean%20flour" title=" lima bean flour "> lima bean flour </a> </p> <a href="https://publications.waset.org/abstracts/22168/the-effect-of-fermentation-and-germination-on-the-nutrient-and-antinutrient-composition-of-lima-bean-phaseolus-lunatus-flour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Fermentation of Tolypocladium inflatum to Produce Cyclosporin in Dairy Waste Culture Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fereshteh%20Falah">Fereshteh Falah</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Vasiee"> Alireza Vasiee</a>, <a href="https://publications.waset.org/abstracts/search?q=Farideh%20Tabatabaei-Yazdi"> Farideh Tabatabaei-Yazdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we investigated the usage of dairy sludge in the fermentation process and cyclosporin production. This bioactive compound is a metabolite produced by Tolypocladium inflatum. Results showed that about 200 ppm of cyclosporin can be produced in this fermentation. In order to have a proper and specific function, CyA must be free of any impurities, so we need purification. In this downstream processing, we used chromatographic extraction and evaluation of pharmacological activities of cyA. Results showed that the obtained metabolite has very high activity against Aspergilus niger (25mm clear zone). This cyclosporin was isolated for use as an antibiotic. The current research shows that this drug is very vital and commercially very important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclosporin%20A" title=" cyclosporin A"> cyclosporin A</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolypocladium%20inflatum" title=" Tolypocladium inflatum"> Tolypocladium inflatum</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC" title=" TLC"> TLC</a> </p> <a href="https://publications.waset.org/abstracts/150769/fermentation-of-tolypocladium-inflatum-to-produce-cyclosporin-in-dairy-waste-culture-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Assessment of Green Fluorescent Protein Signal for Effective Monitoring of Recombinant Fermentation Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Sani">I. Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdulhamid"> A. Abdulhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bello"> F. Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Isah%20M.%20Fakai"> Isah M. Fakai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research has focused on the application of green fluorescent protein (GFP) as a new technique for direct monitoring of fermentation processes involving cultured bacteria. To use GFP as a sensor for pH and oxygen, percentage ratio of red fluorescence to green (% R/G) was evaluated. Assessing the magnitude of the % R/G ratio in relation to low or high pH and oxygen concentration, the bacterial strains were cultivated under aerobic and anaerobic conditions. SCC1 strains of E. coli were grown in a 5 L laboratory fermenter, and during the fermentation, the pH and temperature were controlled at 7.0 and 370C respectively. Dissolved oxygen tension (DOT) was controlled between 15-100% by changing the agitation speed between 20-500 rpm respectively. Effect of reducing the DOT level from 100% to 15% was observed after 4.5 h fermentation. There was a growth arrest as indicated by the decrease in the OD650 at this time (4.5-5 h). The relative fluorescence (green) intensity was decreased from about 460 to 420 RFU. However, %R/G ratio was significantly increased from about 0.1% to about 0.25% when the DOT level was decreased to 15%. But when the DOT was changed to 100%, a little increase in the RF and decrease in the %R/G ratio were observed. Therefore, GFP can effectively detect and indicate any change in pH and oxygen level during fermentation processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20SCC1" title="Escherichia coli SCC1">Escherichia coli SCC1</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation%20process" title=" fermentation process"> fermentation process</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein" title=" green fluorescent protein"> green fluorescent protein</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20fluorescence" title=" red fluorescence"> red fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/17962/assessment-of-green-fluorescent-protein-signal-for-effective-monitoring-of-recombinant-fermentation-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Impact of Varying Malting and Fermentation Durations on Specific Chemical, Functional Properties, and Microstructural Behaviour of Pearl Millet and Sorghum Flour Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Olamiti%3B%20TK.%20Takalani%3B%20D.%20Beswa">G. Olamiti; TK. Takalani; D. Beswa</a>, <a href="https://publications.waset.org/abstracts/search?q=AIO%20Jideani">AIO Jideani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the effects of malting and fermentation times on some chemical, functional properties and microstructural behaviour of Agrigreen, Babala pearl millet cultivars and sorghum flours using response surface methodology (RSM). Central Composite Rotatable Design (CCRD) was performed on two independent variables: malting and fermentation times (h), at intervals of 24, 48, and 72, respectively. The results of dependent parameters such as pH, titratable acidity (TTA), Water absorption capacity (WAC), Oil absorption capacity (OAC), bulk density (BD), dispersibility and microstructural behaviour of the flours studied showed a significant difference in p < 0.05 upon malting and fermentation time. Babala flour exhibited a higher pH value at 4.78 at 48 h malted and 81.9 fermentation times. Agrigreen flour showed a higher TTA value at 0.159% at 81.94 h malted and 48 h fermentation times. WAC content was also higher in malted and fermented Babala flour at 2.37 ml g-1 for 81.94 h malted and 48 h fermentation time. Sorghum flour exhibited the least OAC content at 1.67 ml g-1 at 14 h malted and 48 h fermentation times. Agrigreen flour recorded the least bulk density, at 0.53 g ml-1 for 72 h malted and 24 h fermentation time. Sorghum flour exhibited a higher content of dispersibility, at 56.34%, after 24 h malted and 72 h fermented time. The response surface plots showed that increased malting and fermentation time influenced the dependent parameters. The microstructure behaviour of malting and fermentation times of pearl millet varieties and sorghum flours showed isolated, oval, spherical, or polygonal to smooth surfaces. The optimal processing conditions, such as malting and fermentation time for Agrigreen, were 32.24 h and 63.32 h; 35.18 h and 34.58 h for Babala; and 36.75 h and 47.88 h for sorghum with high desirability of 1.00. The validation of the optimum processing malting and fermentation times (h) on the dependent improved the experimented values. Food processing companies can use the study's findings to improve food processing and quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pearl%20millet" title="Pearl millet">Pearl millet</a>, <a href="https://publications.waset.org/abstracts/search?q=malting" title=" malting"> malting</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20behaviour" title=" microstructural behaviour"> microstructural behaviour</a> </p> <a href="https://publications.waset.org/abstracts/169679/impact-of-varying-malting-and-fermentation-durations-on-specific-chemical-functional-properties-and-microstructural-behaviour-of-pearl-millet-and-sorghum-flour-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Effect of Fermentation Time on Some Functional Properties of Moringa (Moringa oleifera) Seed Flour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ocheme%20B.%20Ocheme">Ocheme B. Ocheme</a>, <a href="https://publications.waset.org/abstracts/search?q=Omobolanle%20O.%20Oloyede"> Omobolanle O. Oloyede</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20James"> S. James</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleojo%20V.%20Akpa"> Eleojo V. Akpa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of fermentation time on some functional properties of Moringa (Moringa oleifera) seed flour was examined. Fermentation, an effective processing method used to improve nutritional quality of plant foods, tends to affect the characteristics of food components and their behaviour in food systems just like other processing methods. Hence the need for this study. Moringa seeds were fermented naturally by soaking in potable water and allowing it to stand for 12, 24, 48 and 72 hours. At the end of fermentation, the seeds were oven dried at 600C for 12 hours and then milled into flour. Flour obtained from unfermented seeds served as control: hence a total of five flour samples. The functional properties were analyzed using standard methods. Fermentation significantly (p<0.05) increased the water holding capacity of Moringa seed flour from 0.86g/g - 2.31g/g. The highest value was observed after 48 hours of fermentation The same trend was observed for oil absorption capacity with values between 0.87 and 1.91g/g. Flour from unfermented Moringa seeds had a bulk density of 0.60g/cm3 which was significantly (p<0.05) higher than the bulk densities of flours from seeds fermented for 12, 24 and 48. Fermentation significantly (p<0.05) decreased the dispersibility of Moringa seed flours from 36% to 21, 24, 29 and 20% after 12, 24, 48 and 72 hours of fermentation respectively. The flours’ emulsifying capacities increased significantly (p<0.05) with increasing fermentation time with values between 50 – 68%. The flour obtained from seeds fermented for 12 hours had a significantly (p<0.05) higher foaming capacity of 16% while the flour obtained from seeds fermented for 0, 24 and 72 hours had the least foaming capacities of 9%. Flours from seeds fermented for 12 and 48 hours had better functional properties than flours from seeds fermented for 24 and 72 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=flour" title=" flour"> flour</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20properties" title=" functional properties"> functional properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa" title=" Moringa"> Moringa</a> </p> <a href="https://publications.waset.org/abstracts/20328/effect-of-fermentation-time-on-some-functional-properties-of-moringa-moringa-oleifera-seed-flour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">688</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Application of Refractometric Methodology for Simultaneous Determination of Alcohol and Residual Sugar Concentrations during Alcoholic Fermentation Bioprocess of Date Juice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukhiar%20Aissa">Boukhiar Aissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Halladj%20Fatima"> Halladj Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Iguergaziz%20Nadia"> Iguergaziz Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamrani%20yasmina"> Lamrani yasmina</a>, <a href="https://publications.waset.org/abstracts/search?q=Benamara%20Salem"> Benamara Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining the alcohol content in alcoholic fermentation bioprocess is of great importance. In fact, it is a key indicator for monitoring this bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic) are used to the determination of this parameter. However, these techniques are very long and they require: rigorous preparations, sometimes dangerous chemical reagents and/or expensive equipment. In the present study, the date juice is used as the substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of alcoholic fermentation revealed a good correlation (R2=0.98) between initial and final °Brix: °Brixf=0.377×°Brixi. In addition, the relationship between Δ°Brix and alcoholic content of the final product (A,%) has been determined: Δ°Brix/A=1.1. The obtained results allowed us to establish iso-responses abacus, which can be used for the determination of alcohol and residual sugar content, with a mean relative error (MRE) of 5.35%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alcoholic%20fermentation" title="alcoholic fermentation">alcoholic fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20juice" title=" date juice"> date juice</a>, <a href="https://publications.waset.org/abstracts/search?q=refractometry" title=" refractometry"> refractometry</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20sugar" title=" residual sugar"> residual sugar</a> </p> <a href="https://publications.waset.org/abstracts/2808/application-of-refractometric-methodology-for-simultaneous-determination-of-alcohol-and-residual-sugar-concentrations-during-alcoholic-fermentation-bioprocess-of-date-juice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Isolation, Identification and Characterization of the Bacteria and Yeast from the Fermented Stevia Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asato%20Takaishi">Asato Takaishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masashi%20Nasuhara"> Masashi Nasuhara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki"> Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenichi%20Suga"> Kenichi Suga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stevia (Stevia rebaudiana Bertoni) is a composite plant native to Paraguay. Stevia sweetener is derived from a hot water extract of Stevia (Stevia extract), which has some effects such as histamine decomposition, antioxidative effect, and blood sugar level-lowering function. The steviol glycosides in the Stevia extract are considered to contribute to these effects. In addition, these effects increase by the fermentation. However, it takes a long time for fermentation of Stevia extract and the fermentation liquid sometimes decays during the fermentation process because natural fermentation method is used. The aim of this study is to perform the fermentation of Stevia extract in a shorter period, and to produce the fermentation liquid in stable quality. From the natural fermentation liquid of Stevia extract, the four strains of useful (good taste) microorganisms were isolated using dilution plate count method and some properties were determined. The base sequences of 16S rDNA and 28S rDNA revealed three bacteria (two Lactobacillus sp. and Microbacterium sp.) and one yeast (Issatchenkia sp.). This result has corresponded that several kinds of lactic bacterium such as Lactobacillus pentosus and Lactobacillus buchneri were isolated from Stevia leaves. Liquid chromatography/mass spectrometory (LC/MS/MS) and High-Performance Liquid Chromatography (HPLC) were used to determine the contents of steviol glycosides and neutral sugars. When these strains were cultured in the sterile Stevia extract, the steviol and stevioside were increased in the fermented Stevia extract. So, it was suggested that the rebaudioside A and the mixture of steviol glycosides in the Stevia extract were decomposed into stevioside and steviol by microbial metabolism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus" title=" lactobacillus"> lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=Stevia" title=" Stevia"> Stevia</a>, <a href="https://publications.waset.org/abstracts/search?q=steviol%20glycosides" title=" steviol glycosides"> steviol glycosides</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/62007/isolation-identification-and-characterization-of-the-bacteria-and-yeast-from-the-fermented-stevia-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Optimization of Cacao Fermentation in Davao Philippines Using Sustainable Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20Marc%20G.%20Cabugsa">Ian Marc G. Cabugsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Ryan%20Won"> Kim Ryan Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Kareem%20Mamac"> Kareem Mamac</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Dee"> Manuel Dee</a>, <a href="https://publications.waset.org/abstracts/search?q=Merlita%20Garcia"> Merlita Garcia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An optimized cacao fermentation technique was developed for the cacao farmers of Davao City Philippines. Cacao samples with weights ranging from 150-250 kilograms were collected from various cacao farms in Davao City and Zamboanga City Philippines. Different fermentation techniques were used starting with design of the sweat box, prefermentation conditionings, number of days for fermentation and number of turns. As the beans are being fermented, its temperature was regularly monitored using a digital thermometer. The resultant cacao beans were assessed using physical and chemical means. For the physical assessment, the bean cut test, bean count tests, and sensory test were used. Quantification of theobromine, caffeine, and antioxidants in the form of equivalent quercetin was used for chemical assessment. Both the theobromine and caffeine were analyzed using HPLC method while the antioxidant was analyzed spectrometrically. To come up with the best fermentation procedure, the different assessment were given priority coefficients wherein the physical tests – taste test, cut, and bean count tests were given priority over the results of the chemical test. The result of the study was an optimized fermentation protocol that is readily adaptable and transferable to any cacao cooperatives or groups in Mindanao or even Philippines as a whole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cacao" title="cacao">cacao</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippines" title=" Philippines"> Philippines</a> </p> <a href="https://publications.waset.org/abstracts/64839/optimization-of-cacao-fermentation-in-davao-philippines-using-sustainable-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Schizosaccharomyces pombe, Saccharomyces cerevisiae Yeasts and Acetic Acid Bacteria in Alcoholic and Acetous Fermentations: Effect on Phenolic Acids of Kei-Apple (Dovyalis caffra L.) Vinegar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Minnaar">Phillip Minnaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Jolly"> Neil Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Louisa%20Beukes"> Louisa Beukes</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Benito-Saez"> Santiago Benito-Saez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dovyalis caffra is a tree found on the African continent. Limited information exists on the effect of acetous fermentation on the phytochemicals of Kei-apple fruit. The phytochemical content of vinegars is derived from compounds present in the fruit the vinegar is made of. Kei-apple fruit juice was co-inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae to induce alcoholic fermentation (AF). Acetous fermentation followed AF, using an acetic acid bacteria consortium as an inoculant. Juice had the lowest pH and highest total acidity (TA). The wine had the highest pH and vinegars lowest TA. Total soluble solids and L-malic acid decreased during AF and acetous fermentation. Volatile acidity concentration was not different among vinegars. Gallic, syringic, caffeic, p-coumaric, and chlorogenic acids increased during acetous fermentation, whereas ferulic, sinapic, and protocatechuic acids decreased. Chlorogenic acid was the most abundant phenolic acid in both wines and vinegars. It is evident from this investigation that Kei-apple vinegar is a source of plant-derived phenolics, which evolved through fermentation. However, the AAB selection showed minimal performance with respect to VA production. Acetic acid bacteria selection for acetous fermentation should be reconsidered, and the reasons for the decrease of certain phenolic acids during acetous fermentation needs to be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20bacteria" title="acetic acid bacteria">acetic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=acetous%20fermentation" title=" acetous fermentation"> acetous fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20acids" title=" phenolic acids"> phenolic acids</a> </p> <a href="https://publications.waset.org/abstracts/128490/schizosaccharomyces-pombe-saccharomyces-cerevisiae-yeasts-and-acetic-acid-bacteria-in-alcoholic-and-acetous-fermentations-effect-on-phenolic-acids-of-kei-apple-dovyalis-caffra-l-vinegar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Investigating the Role of Lactiplantibacillus Plantarum vs. Spontaneous Fermentation in Improving Nutritional and Consumer Safety of the Fermented White Cabbage Sprouts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anam%20Layla">Anam Layla</a>, <a href="https://publications.waset.org/abstracts/search?q=Qamar%20Abbas%20Syed"> Qamar Abbas Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Zahoor"> Tahir Zahoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahid"> Muhammad Shahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5 – 7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum inoculated fermentation and spontaneous fermentation. Plant material was dehydrated at 40˚C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/ 100g d.w.), Mg (204 mg/100g d.w.), Fe (9.3 mg/100g d.w.), Zn (5 mg/100g d.w.) and Cu (0.5 mg/100g d.w.) were recorded in IF-BCS. L. plantarum led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 to 56%. The results suggest L. plantarum led lactic acid fermentation coupled with sprouts blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20fermentation" title="lactic acid fermentation">lactic acid fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-nutrients" title=" anti-nutrients"> anti-nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20content" title=" mineral content"> mineral content</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20quality" title=" nutritional quality"> nutritional quality</a> </p> <a href="https://publications.waset.org/abstracts/183531/investigating-the-role-of-lactiplantibacillus-plantarum-vs-spontaneous-fermentation-in-improving-nutritional-and-consumer-safety-of-the-fermented-white-cabbage-sprouts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Preliminary Study of Fermented Pickle of Tabah Bamboo Shoot: Gigantochloa nigrociliata (Buese) Kurz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luh%20Putu%20T.%20Darmayanti">Luh Putu T. Darmayanti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Duwipayana"> A. A. Duwipayana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nengah%20K.%20Putra"> I. Nengah K. Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyoman%20S.%20Antara"> Nyoman S. Antara </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tabah Bamboo (Gigantochloa nigrociliata (Buese) Kurz) is the indigenous bamboo species which grows in District of Pupuan, Tabanan at Province of Bali. Compared to the others, this shoot has low concentration of hydrocyanide acid (HCN). However, as found for almost of bamboo shoot, its seasonal availability, perishable in nature, and short-lived. This study aimed to gather information about total of lactic acid bacteria (LAB), pH, total acidity, HCN content, detection of LAB’s type involved during fermentation, and organic acids’ profiles of fermented pickles of Tabah bamboo shoot. The pickle was made by natural fermentation with 6 % salt concentration and fermentation conducted for 13 days. The result showed during the fermentation time, in the fourth day we found LAB’s number was highest as much as 72 x 107 CFU/ml and the lowest pH was 3.09. We also found decreasing in HCN from 37.8 ppm at the beginning to 20.52 ppm at the end of fermentation process. The total number of indigenous LAB isolated from the pickle are 48 strains we found 18 out of these had rod shape. For the preliminary study, all of the LAB with rod shape were detected by PCR as member of Lactobacillus spp., in which 17 strains detected as L. plantarum. The organic acids detected during the fermentation were lactic acid with the highest concentration was 0.0546 g/100 g and small amount of acetic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=LAB" title=" LAB"> LAB</a>, <a href="https://publications.waset.org/abstracts/search?q=pickle" title=" pickle"> pickle</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabah%20Bamboo%20shoot" title=" Tabah Bamboo shoot "> Tabah Bamboo shoot </a> </p> <a href="https://publications.waset.org/abstracts/9425/preliminary-study-of-fermented-pickle-of-tabah-bamboo-shoot-gigantochloa-nigrociliata-buese-kurz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Simultaneous Saccharification and Fermentation for D-Lactic Acid Production from Dried Distillers Grains with Solubles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Aqilah%20Mohd%20Zaini">Nurul Aqilah Mohd Zaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Afroditi%20Chatzifragkou"> Afroditi Chatzifragkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitris%20Charalampopoulos"> Dimitris Charalampopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> D-Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, Polylactic Acid (PLA). In this study, D-lactic acid was produced in microbial cultures using Lactobacillus coryniformis subsp. torquens as D-lactic acid producer and hydrolysates of Dried Distillers Grains with Solubles (DDGS) as fermentation substrate. Prior to fermentation, DDGS was first alkaline pretreated with 5% (w/v) NaOH, for 15 minutes (121oC/ ~16 psi). This led to the generation of DDGS solid residues, rich in carbohydrates and especially cellulose (~52%). The carbohydrate-rich solids were then subjected to enzymatic hydrolysis with Accellerase® 1500. For Separate Hydrolysis and Fermentation (SHF), enzymatic hydrolysis was carried out at 50oC for 24 hours, followed by fermentation of D-lactic acid at 37oC in controlled pH 6. The obtained hydrolysate contained 24 g/l glucose, 5.4 g/l xylose and 0.6 g/l arabinose. In the case of Simultaneous Saccharification and Fermentation (SSF), hydrolysis and fermentation were conducted in a single step process at 37oC in pH 5. The enzymatic hydrolysis of DGGS pretreated solids took place mostly during lag phase of L. coryniformis fermentation, with only a small amount of glucose consumed during the first 6 h. When exponential phase was started, glucose generation reduced as the microorganism started to consume glucose for D-lactic acid production. Higher concentrations of D-lactic acid were produced when SSF approach was applied, with 28 g/l D-lactic acid after 24 h of fermentation (84.5% yield). In contrast, 21.2 g/l D-lactic acid were produced when SHF was used. The optical pu rity of D-lactic acid produced from both experiments was 99.9%. Besides, approximately 2 g/l acetic acid was also generated due to lactic acid degradation after glucose depletion in SHF. SSF was proved an efficient towards DDGS ulilisation and D-lactic acid production, by reducing the overall processing time, yielding sufficient D-lactic acid concentrations without the generation of fermentation by-products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DDGS" title="DDGS">DDGS</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20pretreatment" title=" alkaline pretreatment"> alkaline pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=SSF" title=" SSF"> SSF</a>, <a href="https://publications.waset.org/abstracts/search?q=D-lactic%20acid" title=" D-lactic acid"> D-lactic acid</a> </p> <a href="https://publications.waset.org/abstracts/67133/simultaneous-saccharification-and-fermentation-for-d-lactic-acid-production-from-dried-distillers-grains-with-solubles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Development of an in vitro Fermentation Chicken Ileum Microbiota Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bello%20Gonzalez">Bello Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Setten%20Van%20M."> Setten Van M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Brouwer%20M."> Brouwer M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broilers" title="broilers">broilers</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20model" title=" in vitro model"> in vitro model</a>, <a href="https://publications.waset.org/abstracts/search?q=ileum%20microbiota" title=" ileum microbiota"> ileum microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/185845/development-of-an-in-vitro-fermentation-chicken-ileum-microbiota-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Compositional Analysis and Antioxidant Activities of the Chocolate Fermented by Lactobacillus plantarum CK10</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye%20Rim%20Kang">Hye Rim Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=So%20Yae%20Koh"> So Yae Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Yeon%20Ryu"> Ji-Yeon Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Kyu%20Lee"> Chang Kyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hee%20Lim"> Ji Hee Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20A.%20Kim"> Hyeon A. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Geun%20Hyung%20Im"> Geun Hyung Im</a>, <a href="https://publications.waset.org/abstracts/search?q=Somi%20Kim%20Cho"> Somi Kim Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, antioxidant properties and compositional analysis of fermented chocolate were examined. Chocolate was fermented with Lactobacillus plantarum CK10. As fermentation time went by, pH was decreased (5.26±0.02 to 3.98±0.06) while titratable acidity was increased (5.36±0.19 to 13.31±0.34). The total polyphenol contents were maintained through the fermentation. The contents of total polyphenol were slightly increased at 8 hr (6.34±0.12 mg GAE (Gallic acid equivalent)/g), and it reached to comparable levels of the control at 24 hr (control, 5.47±0.36 mg GAE/g); 24 hr, 5.19±0.23 mg GAE/g). Similarly, the total flavonoid contents were not significantly changed during fermentation. The pronounced radical scavenging activities of chocolate, against DPPH-, ABTS-, and Alkyl radical, were observed. The levels of antioxidant activities were not dramatically altered in the course of fermentation. By gas chromatography-mass spectrometry analysis, the increase in lactic acid was measured and four major compounds, HMF, xanthosine, caffeine, and theobromine, were identified. The relative peak area of caffeine and theobromine was considerably changed during fermentation. However, no significant difference in the levels of caffeine and theobromine were observed by high-performance liquid chromatography analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=chocolate" title=" chocolate"> chocolate</a>, <a href="https://publications.waset.org/abstracts/search?q=compositional%20analysis" title=" compositional analysis"> compositional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactobaillus%20plantarum" title=" Lactobaillus plantarum"> Lactobaillus plantarum</a> </p> <a href="https://publications.waset.org/abstracts/55853/compositional-analysis-and-antioxidant-activities-of-the-chocolate-fermented-by-lactobacillus-plantarum-ck10" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Isolation and Characterization of an Ethanol Resistant Bacterium from Sap of Saccharum officinarum for Efficient Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rukshika%20S%20Hewawasam">Rukshika S Hewawasam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sisira%20K.%20Weliwegamage"> Sisira K. Weliwegamage</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanath%20Rajapakse"> Sanath Rajapakse</a>, <a href="https://publications.waset.org/abstracts/search?q=Subramanium%20Sotheeswaran"> Subramanium Sotheeswaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio fuel is one of the emerging industries around the world due to arise of crisis in petroleum fuel. Fermentation is a cost effective and eco-friendly process in production of bio-fuel. So inventions in microbes, substrates, technologies in fermentation cause new modifications in fermentation. One major problem in microbial ethanol fermentation is the low resistance of conventional microorganisms to the high ethanol concentrations, which ultimately lead to decrease in the efficiency of the process. In the present investigation, an ethanol resistant bacterium was isolated from sap of Saccharum officinarum (sugar cane). The optimal cultural conditions such as pH, temperature, incubation period, and microbiological characteristics, morphological characteristics, biochemical characteristics, ethanol tolerance, sugar tolerance, growth curve assay were investigated. Isolated microorganism was tolerated to 18% (V/V) of ethanol concentration in the medium and 40% (V/V) glucose concentration in the medium. Biochemical characteristics have revealed as Gram negative, non-motile, negative for Indole test ,Methyl Red test, Voges- Proskauer`s test, Citrate Utilization test, and Urease test. Positive results for Oxidase test was shown by isolated bacterium. Sucrose, Glucose, Fructose, Maltose, Dextrose, Arabinose, Raffinose, Lactose, and Sachcharose can be utilized by this particular bacterium. It is a significant feature in effective fermentation. The fermentation process was carried out in glucose medium under optimum conditions; pH 4, temperature 30˚C, and incubated for 72 hours. Maximum ethanol production was recorded as 12.0±0.6% (V/V). Methanol was not detected in the final product of the fermentation process. This bacterium is especially useful in bio-fuel production due to high ethanol tolerance of this microorganism; it can be used to enhance the fermentation process over conventional microorganisms. Investigations are currently conducted on establishing the identity of the bacterium <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterium" title="bacterium">bacterium</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-fuel" title=" bio-fuel"> bio-fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20tolerance" title=" ethanol tolerance"> ethanol tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/41338/isolation-and-characterization-of-an-ethanol-resistant-bacterium-from-sap-of-saccharum-officinarum-for-efficient-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Adjustment and Scale-Up Strategy of Pilot Liquid Fermentation Process of Azotobacter sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Quiroga-Cubides">G. Quiroga-Cubides</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D%C3%ADaz"> A. Díaz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C3%B3mez"> M. Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The genus <em>Azotobacter</em> has been widely used as bio-fertilizer due to its significant effects on the stimulation and promotion of plant growth in various agricultural species of commercial interest. In order to obtain significantly viable cellular concentration, a scale-up strategy for a liquid fermentation process (SmF) with two strains of <em>A. chroococcum </em>(named Ac1 and Ac10) was validated and adjusted at laboratory and pilot scale. A batch fermentation process under previously defined conditions was carried out on a biorreactor Infors&reg;, model Minifors of 3.5 L, which served as a baseline for this research. For the purpose of increasing process efficiency, the effect of the reduction of stirring speed was evaluated in combination with a fed-batch-type fermentation laboratory scale. To reproduce the efficiency parameters obtained, a scale-up strategy with geometric and fluid dynamic behavior similarities was evaluated. According to the analysis of variance, this scale-up strategy did not have significant effect on cellular concentration and in laboratory and pilot fermentations (Tukey, p &gt; 0.05). Regarding air consumption, fermentation process at pilot scale showed a reduction of 23% versus the baseline. The percentage of reduction related to energy consumption reduction under laboratory and pilot scale conditions was 96.9% compared with baseline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azotobacter%20chroococcum" title="Azotobacter chroococcum">Azotobacter chroococcum</a>, <a href="https://publications.waset.org/abstracts/search?q=scale-up" title=" scale-up"> scale-up</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20fermentation" title=" liquid fermentation"> liquid fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=fed-batch%20process" title=" fed-batch process"> fed-batch process</a> </p> <a href="https://publications.waset.org/abstracts/57291/adjustment-and-scale-up-strategy-of-pilot-liquid-fermentation-process-of-azotobacter-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Exploring the Biochemical and Therapeutic Properties of Aged Garlic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Saeed">Farhan Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The core objective of this work is to explicate the biochemical and therapeutic properties of aged garlic. For this purpose, two varieties of garlic were obtained from Ayub Agricultural Research Institute (AARI) Faisalabad-Pakistan. Additionally, fresh garlic was converted into aged garlic via fermentation method in the incubator at 70 to 80 % humidity level and 60C0 temperature for one month. Similarly, biochemical and antioxidant properties of fresh and aged garlic were also elucidated. Mean values showed that moisture content was decreased, whereas crude fat, crude protein, crude fiber, crude ash and total carbohydrates were enhanced after fermentation. Additionally, crude protein of fresh and aged garlic was 7.57±0.16 and 5.52±0.12%, respectively, whilst 9.68±0.41 and 8.78±0.29%, respectively, after the fermentation process. In addition, NFE contents were also enhanced up to 39% after the fermentation method. Moreover, Zn, S, Al, K, Fe, Na, Mg, and Cu contents were also increased. Furthermore, Total phenolic contents (TPC) of fresh and aged garlic were 2498.70 & 2188.50mg GAE/kg whilst 3008.59, & 2591.81mg GAE/kg for aged garlic. In conclusion, aged garlic explicated the better biochemical properties, mineral profile and antioxidant properties as compared to fresh garlic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aged%20garlic" title="aged garlic">aged garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20values" title=" nutritional values"> nutritional values</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20properties" title=" bioactive properties"> bioactive properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/143777/exploring-the-biochemical-and-therapeutic-properties-of-aged-garlic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Concentration of D-Pinitol from Carob Kibble Using Submerged Fermentation by Saccharomyces cerevisiae </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Vu">Thi Huong Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Jayasena"> Vijay Jayasena</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongxiang%20Fang"> Zhongxiang Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Dykes"> Gary Dykes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> D-pinitol (3-O-methyl ether of D-chiro-inosito) has been known to have health benefits for diabetic patients. Carob kibble has received attention due to the presence of high value D-pinitol and polyphenol antioxidants. D-pinitol was concentrated from carob kibble using submerged fermentation with Saccharomyces cerevisiae. Total carbohydrates and D-pinitol were determined by the phenol-sulphuric acid method and HPLC, respectively. The content of D-pinitol increased from approximately 43 to 70 mg/g dry weight after fermentation. The yeast consumed over 70% of total carbohydrates in carob kibble without any negative effect on D-pinitol content. A range of substrate medium pH’s from 5.0 – 7.0 had no significant effect on the removal of carbohydrates and D-pinitol. This method may provide a practical solution for production of D-pinitol from carob in a cost effective manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carob%20kibble" title="carob kibble">carob kibble</a>, <a href="https://publications.waset.org/abstracts/search?q=d-pinitol" title=" d-pinitol"> d-pinitol</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20fermentation" title=" submerged fermentation"> submerged fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20carbohydrates" title=" total carbohydrates"> total carbohydrates</a> </p> <a href="https://publications.waset.org/abstracts/54361/concentration-of-d-pinitol-from-carob-kibble-using-submerged-fermentation-by-saccharomyces-cerevisiae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Effect of Aeration on Bacterial Cellulose (BC) Production by Gluconacetobacter xylinus DSM46604 in Batch Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azila%20Adnan">Azila Adnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Giridhar%20R.%20Nair"> Giridhar R. Nair</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20C.%20Lay"> Mark C. Lay</a>, <a href="https://publications.waset.org/abstracts/search?q=Janis%20E.%20Swan"> Janis E. Swan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of aeration on bacterial cellulose (BC) production by Gluconacetobacter xylinus DSM46604 was studied in 5-L bioreactor. Four aeration rates were applied (0.3, 0.6, 1.0 and 1.5 vvm) in the fermentation media at constant agitation rate, 150 rpm. One vvm enhanced BC concentration (4.4 g/L) and productivity (0.44 g/L/day) while greater agitation rate (1.5 vvm) decreased BC concentration (4.0 g/L) and productivity (0.40 g/L/day). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeration" title="aeration">aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20cellulose" title=" bacterial cellulose"> bacterial cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=gluconacetobacter%20xylinus" title=" gluconacetobacter xylinus"> gluconacetobacter xylinus</a> </p> <a href="https://publications.waset.org/abstracts/37713/effect-of-aeration-on-bacterial-cellulose-bc-production-by-gluconacetobacter-xylinus-dsm46604-in-batch-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10