CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 166 results for author: <span class="mathjax">Hillebrands, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hillebrands, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hillebrands%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hillebrands, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05113">arXiv:2312.05113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05113">pdf</a>, <a href="https://arxiv.org/format/2312.05113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L220404">10.1103/PhysRevB.108.L220404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards an experimental proof of the magnonic Aharonov$-$Casher effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Serha%2C+R+O">Rostyslav O. Serha</a>, <a href="/search/?searchtype=author&amp;query=Vasyuchka%2C+V+I">Vitaliy I. Vasyuchka</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05113v1-abstract-short" style="display: inline;"> Controlling the phase and amplitude of spin waves in magnetic insulators with an electric field opens the way to fast logic circuits with ultra-low power consumption. One way to achieve such control is to manipulate the magnetization of the medium via magnetoelectric effects. In experiments with magnetostatic spin waves in an yttrium iron garnet film, we have obtained the first evidence of a theor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05113v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05113v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05113v1-abstract-full" style="display: none;"> Controlling the phase and amplitude of spin waves in magnetic insulators with an electric field opens the way to fast logic circuits with ultra-low power consumption. One way to achieve such control is to manipulate the magnetization of the medium via magnetoelectric effects. In experiments with magnetostatic spin waves in an yttrium iron garnet film, we have obtained the first evidence of a theoretically predicted phenomenon: The change of the spin-wave phase due to the magnonic Aharonov$-$Casher effect$-$the geometric accumulation of the magnon phase as these quasiparticles propagate through an electric field region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05113v1-abstract-full').style.display = 'none'; document.getElementById('2312.05113v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 108, L220404 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14476">arXiv:2311.14476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14476">pdf</a>, <a href="https://arxiv.org/format/2311.14476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Local temperature control of magnon frequency and direction of supercurrents in a magnon Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schweizer%2C+M+R">Matthias R. Schweizer</a>, <a href="/search/?searchtype=author&amp;query=K%C3%BChn%2C+F">Franziska K眉hn</a>, <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Pomyalov%2C+A">Anna Pomyalov</a>, <a href="/search/?searchtype=author&amp;query=von+Freymann%2C+G">Georg von Freymann</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14476v1-abstract-short" style="display: inline;"> The creation of temperature variations in magnetization, and hence in the frequencies of the magnon spectrum in laser-heated regions of magnetic films, is an important method for studying Bose-Einstein condensation of magnons, magnon supercurrents, Bogoliubov waves, and similar phenomena. In our study, we demonstrate analytically, numerically, and experimentally that, in addition to the magnetizat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14476v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14476v1-abstract-full" style="display: none;"> The creation of temperature variations in magnetization, and hence in the frequencies of the magnon spectrum in laser-heated regions of magnetic films, is an important method for studying Bose-Einstein condensation of magnons, magnon supercurrents, Bogoliubov waves, and similar phenomena. In our study, we demonstrate analytically, numerically, and experimentally that, in addition to the magnetization variations, it is necessary to consider the connected variations of the demagnetizing field. In case of a heat induced local minimum of the saturation magnetization, the combination of these two effects results in a local increase in the minimum frequency value of the magnon dispersion at which the Bose-Einstein condensate emerges. As a result, a magnon supercurrent directed away from the hot region is formed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14476v1-abstract-full').style.display = 'none'; document.getElementById('2311.14476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05315">arXiv:2311.05315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.05315">pdf</a>, <a href="https://arxiv.org/format/2311.05315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.014301">10.1103/PhysRevB.109.014301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bose-Einstein condensation in systems with flux equilibrium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Pomyalov%2C+A">Anna Pomyalov</a>, <a href="/search/?searchtype=author&amp;query=Nazarenko%2C+S+V">Sergey V. Nazarenko</a>, <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">Dmytro A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Kreil%2C+A+J+E">Alexander J. E. Kreil</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05315v1-abstract-short" style="display: inline;"> We consider flux equilibrium in dissipative nonlinear wave systems subject to external energy pumping. In such systems, the elementary excitations, or quasiparticles, can create a Bose-Einstein condensate. We develop a theory on the Bose-Einstein condensation of quasiparticles for various regimes of external excitation, ranging from weak and stationary to ultra-strong pumping, enabling us to deter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05315v1-abstract-full').style.display = 'inline'; document.getElementById('2311.05315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05315v1-abstract-full" style="display: none;"> We consider flux equilibrium in dissipative nonlinear wave systems subject to external energy pumping. In such systems, the elementary excitations, or quasiparticles, can create a Bose-Einstein condensate. We develop a theory on the Bose-Einstein condensation of quasiparticles for various regimes of external excitation, ranging from weak and stationary to ultra-strong pumping, enabling us to determine the number of quasiparticles near the bottom of the energy spectrum and their distribution along wave vectors. We identify physical phenomena leading to condensation in each of the regimes. For weak stationary pumping, where the distribution of quasiparticles deviates only slightly from thermodynamic equilibrium, we define a range of pumping parameters where the condensation occurs and estimate the density of the condensate and the fraction of the condensed quasiparticles. As the pumping amplitude increases, a powerful influx of injected quasiparticles is created by the Kolmogorov-Zakharov scattering cascade, leading to their Bose-Einstein condensation. With even stronger pumping, kinetic instability may occur, resulting in a direct transfer of injected quasiparticles to the bottom of the spectrum. For the case of ultra-strong parametric pumping, we have developed a stationary nonlinear theory of kinetic instability. The theory agrees qualitatively with experimental data obtained using Brillouin light scattering spectroscopy during parametric pumping of magnons in room-temperature films of yttrium-iron garnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05315v1-abstract-full').style.display = 'none'; document.getElementById('2311.05315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 014301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05982">arXiv:2309.05982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05982">pdf</a>, <a href="https://arxiv.org/format/2309.05982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.L012011">10.1103/PhysRevResearch.6.L012011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropy-assisted magnon condensation in ferromagnetic thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Frostad%2C+T">Therese Frostad</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Brataas%2C+A">Arne Brataas</a>, <a href="/search/?searchtype=author&amp;query=Qaiumzadeh%2C+A">Alireza Qaiumzadeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05982v3-abstract-short" style="display: inline;"> We theoretically demonstrate that adding an easy-axis magnetic anisotropy facilitates magnon condensation in thin yttrium iron garnet (YIG) films. Dipolar interactions in a quasi-equilibrium state stabilize room-temperature magnon condensation in YIG. Even though the out-of-plane easy-axis anisotropy generally competes with the dipolar interactions, we show that adding such magnetic anisotropy may&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05982v3-abstract-full').style.display = 'inline'; document.getElementById('2309.05982v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05982v3-abstract-full" style="display: none;"> We theoretically demonstrate that adding an easy-axis magnetic anisotropy facilitates magnon condensation in thin yttrium iron garnet (YIG) films. Dipolar interactions in a quasi-equilibrium state stabilize room-temperature magnon condensation in YIG. Even though the out-of-plane easy-axis anisotropy generally competes with the dipolar interactions, we show that adding such magnetic anisotropy may even assist the generation of the magnon condensate electrically via the spin transfer torque mechanism. We use analytical calculations and micromagnetic simulations to illustrate this effect. Our results may explain the recent experiment on Bi-doped YIG and open a pathway toward applying current-driven magnon condensation in quantum spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05982v3-abstract-full').style.display = 'none'; document.getElementById('2309.05982v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + SM, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, L012011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11009">arXiv:2306.11009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11009">pdf</a>, <a href="https://arxiv.org/format/2306.11009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin transport and magnetic proximity effect in CoFeB/normal metal/Pt trilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=H%C3%A4user%2C+S">Simon H盲user</a>, <a href="/search/?searchtype=author&amp;query=Schweizer%2C+M+R">Matthias R. Schweizer</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+S">Sascha Keller</a>, <a href="/search/?searchtype=author&amp;query=Conca%2C+A">Andres Conca</a>, <a href="/search/?searchtype=author&amp;query=Hofherr%2C+M">Moritz Hofherr</a>, <a href="/search/?searchtype=author&amp;query=Papaioannou%2C+E">Evangelos Papaioannou</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Weiler%2C+M">Mathias Weiler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11009v2-abstract-short" style="display: inline;"> We present a study of the damping and spin pumping properties of CoFeB/X/Pt systems with $\rm X=Al,Cr$ and $\rm Ta$. We show that the total damping of the CoFeB/Pt systems is strongly reduced when an interlayer is introduced independently of the material. Using a model that considers spin relaxation, we identify the origin of this contribution in the magnetically polarized Pt formed by the magneti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11009v2-abstract-full').style.display = 'inline'; document.getElementById('2306.11009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11009v2-abstract-full" style="display: none;"> We present a study of the damping and spin pumping properties of CoFeB/X/Pt systems with $\rm X=Al,Cr$ and $\rm Ta$. We show that the total damping of the CoFeB/Pt systems is strongly reduced when an interlayer is introduced independently of the material. Using a model that considers spin relaxation, we identify the origin of this contribution in the magnetically polarized Pt formed by the magnetic proximity effect (MPE), which is suppressed by the introduction of the interlayer. The induced ferromagnetic order in the Pt layer is confirmed by transverse magneto-optical Kerr spectroscopy at the M$_{2,3}$ and N$_7$ absorption edges as an element-sensitive probe. We discuss the impact of the MPE on parameter extraction in the spin transport model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11009v2-abstract-full').style.display = 'none'; document.getElementById('2306.11009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06896">arXiv:2305.06896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06896">pdf</a>, <a href="https://arxiv.org/format/2305.06896">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.156705">10.1103/PhysRevLett.131.156705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation-enhanced interaction of a Bose-Einstein condensate with parametric magnon pairs and virtual magnons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Pomyalov%2C+A">Anna Pomyalov</a>, <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">Dmytro A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06896v1-abstract-short" style="display: inline;"> Nonlinear interactions are crucial in science and engineering. Here, we investigate wave interactions in a highly nonlinear magnetic system driven by parametric pumping leading to Bose--Einstein condensation of spin-wave quanta -- magnons. Using Brillouin light scattering spectroscopy in yttrium-iron garnet films, we found and identified a set of nonlinear processes resulting in off-resonant spin-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06896v1-abstract-full').style.display = 'inline'; document.getElementById('2305.06896v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06896v1-abstract-full" style="display: none;"> Nonlinear interactions are crucial in science and engineering. Here, we investigate wave interactions in a highly nonlinear magnetic system driven by parametric pumping leading to Bose--Einstein condensation of spin-wave quanta -- magnons. Using Brillouin light scattering spectroscopy in yttrium-iron garnet films, we found and identified a set of nonlinear processes resulting in off-resonant spin-wave excitations -- virtual magnons. In particular, we discovered a dynamically-strong, correlation-enhanced four-wave interaction process of the magnon condensate with pairs of parametric magnons having opposite wavevectors and fully correlated phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06896v1-abstract-full').style.display = 'none'; document.getElementById('2305.06896v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 131, 156705 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14957">arXiv:2304.14957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14957">pdf</a>, <a href="https://arxiv.org/format/2304.14957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Competing signatures of intersite and interlayer spin transfer in the ultrafast magnetization dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=H%C3%A4user%2C+S">Simon H盲user</a>, <a href="/search/?searchtype=author&amp;query=Weber%2C+S+T">Sebastian T. Weber</a>, <a href="/search/?searchtype=author&amp;query=Seibel%2C+C">Christopher Seibel</a>, <a href="/search/?searchtype=author&amp;query=Weber%2C+M">Marius Weber</a>, <a href="/search/?searchtype=author&amp;query=Scheuer%2C+L">Laura Scheuer</a>, <a href="/search/?searchtype=author&amp;query=Anstett%2C+M">Martin Anstett</a>, <a href="/search/?searchtype=author&amp;query=Zinke%2C+G">Gregor Zinke</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+H+C">Hans C. Schneider</a>, <a href="/search/?searchtype=author&amp;query=Rethfeld%2C+B">B盲rbel Rethfeld</a>, <a href="/search/?searchtype=author&amp;query=Stadtm%C3%BCller%2C+B">Benjamin Stadtm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14957v1-abstract-short" style="display: inline;"> Optically driven intersite and interlayer spin transfer are individually known as the fastest processes for manipulating the spin order of magnetic materials on the sub 100 fs time scale. However, their competing influence on the ultrafast magnetization dynamics remains unexplored. In our work, we show that optically induced intersite spin transfer (also known as OISTR) dominates the ultrafast mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14957v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14957v1-abstract-full" style="display: none;"> Optically driven intersite and interlayer spin transfer are individually known as the fastest processes for manipulating the spin order of magnetic materials on the sub 100 fs time scale. However, their competing influence on the ultrafast magnetization dynamics remains unexplored. In our work, we show that optically induced intersite spin transfer (also known as OISTR) dominates the ultrafast magnetization dynamics of ferromagnetic alloys such as Permalloy (Ni80Fe20) only in the absence of interlayer spin transfer into a substrate. Once interlayer spin transfer is possible, the influence of OISTR is significantly reduced and interlayer spin transfer dominates the ultrafast magnetization dynamics. This provides a new approach to control the magnetization dynamics of alloys on extremely short time scales by fine-tuning the interlayer spin transfer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14957v1-abstract-full').style.display = 'none'; document.getElementById('2304.14957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13658">arXiv:2304.13658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13658">pdf</a>, <a href="https://arxiv.org/format/2304.13658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0160280">10.1063/5.0160280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rapid-prototyping of microscopic thermal landscapes in Brillouin light scattering spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schweizer%2C+M+R">Matthias R. Schweizer</a>, <a href="/search/?searchtype=author&amp;query=K%C3%BChn%2C+F">Franziska K眉hn</a>, <a href="/search/?searchtype=author&amp;query=Koster%2C+M">Malte Koster</a>, <a href="/search/?searchtype=author&amp;query=von+Freymann%2C+G">Georg von Freymann</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13658v2-abstract-short" style="display: inline;"> Since temperature and its spatial and temporal variations affect a wide range of physical properties of material systems, they can be used to create reconfigurable spatial structures of various types in physical and biological objects. This paper presents an experimental optical setup for creating tunable two-dimensional temperature patterns on a micrometer scale. As an example of its practical ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13658v2-abstract-full').style.display = 'inline'; document.getElementById('2304.13658v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13658v2-abstract-full" style="display: none;"> Since temperature and its spatial and temporal variations affect a wide range of physical properties of material systems, they can be used to create reconfigurable spatial structures of various types in physical and biological objects. This paper presents an experimental optical setup for creating tunable two-dimensional temperature patterns on a micrometer scale. As an example of its practical application, we have produced temperature-induced magnetization landscapes in ferrimagnetic yttrium iron garnet films and investigated them using micro-focused Brillouin light scattering spectroscopy. It is shown that, due to the temperature dependence of the magnon spectrum, temperature changes can be visualized even for microscale thermal patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13658v2-abstract-full').style.display = 'none'; document.getElementById('2304.13658v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 94, 093903 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13507">arXiv:2208.13507</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.13507">pdf</a>, <a href="https://arxiv.org/format/2208.13507">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0123233">10.1063/5.0123233 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confinement of Bose-Einstein magnon condensates in adjustable complex magnetization landscapes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schweizer%2C+M+R">Matthias R. Schweizer</a>, <a href="/search/?searchtype=author&amp;query=Kreil%2C+A+J+E">Alexander J. E. Kreil</a>, <a href="/search/?searchtype=author&amp;query=von+Freymann%2C+G">Georg von Freymann</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13507v1-abstract-short" style="display: inline;"> Coherent wave states such as Bose-Einstein condensates (BECs), which spontaneously form in an overpopulated magnon gas even at room temperature, have considerable potential for wave-based computing and information processing at microwave frequencies. The ability to control the transport properties of magnon BECs plays an essential role for their practical use. Here, we demonstrate spatio-temporal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13507v1-abstract-full').style.display = 'inline'; document.getElementById('2208.13507v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13507v1-abstract-full" style="display: none;"> Coherent wave states such as Bose-Einstein condensates (BECs), which spontaneously form in an overpopulated magnon gas even at room temperature, have considerable potential for wave-based computing and information processing at microwave frequencies. The ability to control the transport properties of magnon BECs plays an essential role for their practical use. Here, we demonstrate spatio-temporal control of the BEC density distribution through the excitation of magnon supercurrents in an inhomogeneously magnetized yttrium iron garnet film. The BEC is created by microwave parametric pumping and probed by Brillouin light scattering spectroscopy. The desired magnetization profile is prepared by heating the film with optical patterns projected onto its surface using a phase-based wavefront modulation technique. Specifically, we observe a pronounced spatially localized magnon accumulation caused by magnon supercurrents flowing toward each other originating in two heated regions. This accumulation effect increases the BEC lifetime due to the constant influx of condensed magnons into the confinement region. The shown approach to manipulate coherent waves provides an opportunity to extend the lifetime of freely evolving magnon BECs, create dynamic magnon textures, and study the interaction of magnon condensates formed in different regions of the sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13507v1-abstract-full').style.display = 'none'; document.getElementById('2208.13507v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics 132, 183908 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11455">arXiv:2208.11455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11455">pdf</a>, <a href="https://arxiv.org/format/2208.11455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.156701">10.1103/PhysRevLett.131.156701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stimulated amplification of propagating spin waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Breitbach%2C+D">David Breitbach</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/?searchtype=author&amp;query=Heinz%2C+B">Bj枚rn Heinz</a>, <a href="/search/?searchtype=author&amp;query=Kohl%2C+F">Felix Kohl</a>, <a href="/search/?searchtype=author&amp;query=Maskill%2C+J">Jan Maskill</a>, <a href="/search/?searchtype=author&amp;query=Scheuer%2C+L">Laura Scheuer</a>, <a href="/search/?searchtype=author&amp;query=Serha%2C+R+O">Rostyslav O. Serha</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=L%C3%A4gel%2C+B">Bert L盲gel</a>, <a href="/search/?searchtype=author&amp;query=Dubs%2C+C">Carsten Dubs</a>, <a href="/search/?searchtype=author&amp;query=Tiberkevich%2C+V+S">Vasil S. Tiberkevich</a>, <a href="/search/?searchtype=author&amp;query=Slavin%2C+A+N">Andrei N. Slavin</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Chumak%2C+A+V">Andrii V. Chumak</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11455v2-abstract-short" style="display: inline;"> Spin-wave amplification techniques are key to the realization of magnon-based computing concepts. We introduce a novel mechanism to amplify spin waves in magnonic nanostructures. Using the technique of rapid cooling, we create a non-equilibrium state in excess of high-energy magnons and demonstrate the stimulated amplification of an externally seeded, propagating spin wave. Using an extended kinet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11455v2-abstract-full').style.display = 'inline'; document.getElementById('2208.11455v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11455v2-abstract-full" style="display: none;"> Spin-wave amplification techniques are key to the realization of magnon-based computing concepts. We introduce a novel mechanism to amplify spin waves in magnonic nanostructures. Using the technique of rapid cooling, we create a non-equilibrium state in excess of high-energy magnons and demonstrate the stimulated amplification of an externally seeded, propagating spin wave. Using an extended kinetic model, we qualitatively show that the amplification is mediated by an effective energy flux of high energy magnons into the low energy propagating mode, driven by a non-equilibrium magnon distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11455v2-abstract-full').style.display = 'none'; document.getElementById('2208.11455v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 131, 156701 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00704">arXiv:2204.00704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00704">pdf</a>, <a href="https://arxiv.org/format/2204.00704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/">10.1016/ <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/j.isci.2022.104319">j.isci.2022.104319 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> THz emission from Fe/Pt spintronic emitters with L1$_{0}$-FePt alloyed interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Scheuer%2C+L">Laura Scheuer</a>, <a href="/search/?searchtype=author&amp;query=Ruhwedel%2C+M">Moritz Ruhwedel</a>, <a href="/search/?searchtype=author&amp;query=Karfaridis%2C+D">Dimitris Karfaridis</a>, <a href="/search/?searchtype=author&amp;query=Vasileiadis%2C+I+G">Isaak G. Vasileiadis</a>, <a href="/search/?searchtype=author&amp;query=Sokoluk%2C+D">Dominik Sokoluk</a>, <a href="/search/?searchtype=author&amp;query=Torosyan%2C+G">Garik Torosyan</a>, <a href="/search/?searchtype=author&amp;query=Vourlias%2C+G">George Vourlias</a>, <a href="/search/?searchtype=author&amp;query=Dimitrakopoulos%2C+G+P">George P. Dimitrakopoulos</a>, <a href="/search/?searchtype=author&amp;query=Rahm%2C+M">Marco Rahm</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Kehagias%2C+T">Thomas Kehagias</a>, <a href="/search/?searchtype=author&amp;query=Beigang%2C+R">Ren茅 Beigang</a>, <a href="/search/?searchtype=author&amp;query=Papaioannou%2C+E+T">Evangelos Th. Papaioannou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00704v1-abstract-short" style="display: inline;"> Recent developments in nanomagnetism and spintronics have enabled the use of ultrafast spin physics for terahertz (THz) emission. Spintronic THz emitters, consisting of ferromagnetic FM / non-magnetic (NM) thin film heterostructures, have demonstrated impressive properties for the use in THz spectroscopy and have great potential in scientific and industrial applications. In this work, we focus on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00704v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00704v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00704v1-abstract-full" style="display: none;"> Recent developments in nanomagnetism and spintronics have enabled the use of ultrafast spin physics for terahertz (THz) emission. Spintronic THz emitters, consisting of ferromagnetic FM / non-magnetic (NM) thin film heterostructures, have demonstrated impressive properties for the use in THz spectroscopy and have great potential in scientific and industrial applications. In this work, we focus on the impact of the FM/NM interface on the THz emission by investigating Fe/Pt bilayers with engineered interfaces. In particular, we intentionally modify the Fe/Pt interface by inserting an ordered L1$_{0}$-FePt alloy interlayer. Subsequently, we establish that a Fe/L1$_{0}$-FePt (2\,nm)/Pt configuration is significantly superior to a Fe/Pt bilayer structure, regarding THz emission amplitude. The latter depends on the extent of alloying on either side of the interface. The unique trilayer structure opens new perspectives in terms of material choices for the next generation of spintronic THz emitters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00704v1-abstract-full').style.display = 'none'; document.getElementById('2204.00704v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> iScience 25, 104319 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04033">arXiv:2201.04033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.04033">pdf</a>, <a href="https://arxiv.org/format/2201.04033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Parametric Excitation and Instabilities of Spin Waves driven by Surface Acoustic Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Geilen%2C+M">Moritz Geilen</a>, <a href="/search/?searchtype=author&amp;query=Verba%2C+R">Roman Verba</a>, <a href="/search/?searchtype=author&amp;query=Nicoloiu%2C+A">Alexandra Nicoloiu</a>, <a href="/search/?searchtype=author&amp;query=Narducci%2C+D">Daniele Narducci</a>, <a href="/search/?searchtype=author&amp;query=Dinescu%2C+A">Adrian Dinescu</a>, <a href="/search/?searchtype=author&amp;query=Ender%2C+M">Milan Ender</a>, <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">Morteza Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Ciubotaru%2C+F">Florin Ciubotaru</a>, <a href="/search/?searchtype=author&amp;query=Weiler%2C+M">Mathias Weiler</a>, <a href="/search/?searchtype=author&amp;query=M%C3%BCller%2C+A">Alexandru M眉ller</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Adelmann%2C+C">Christoph Adelmann</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04033v2-abstract-short" style="display: inline;"> The parametric excitation of spin waves by coherent surface acoustic waves is demonstrated experimentally in metallic magnetic thin film structures. The involved magnon modes are analyzed with micro-focused Brillouin light scattering spectroscopy and complementary micromagnetic simulations combined with analytical modelling are used to determine the origin of the spin-wave instabilities. Depending&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04033v2-abstract-full').style.display = 'inline'; document.getElementById('2201.04033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04033v2-abstract-full" style="display: none;"> The parametric excitation of spin waves by coherent surface acoustic waves is demonstrated experimentally in metallic magnetic thin film structures. The involved magnon modes are analyzed with micro-focused Brillouin light scattering spectroscopy and complementary micromagnetic simulations combined with analytical modelling are used to determine the origin of the spin-wave instabilities. Depending on the experimental conditions, we observe spin-wave instabilities originating from different phonon-magnon and magnon-magnon scattering processes. Our results demonstrate that an efficient excitation of high amplitude, strongly nonlinear magnons in metallic ferromagnets is possible by surface acoustic waves, which opens novel ways to create micro-scaled nonlinear magnonic systems for logic and data processing that can profit from the high excitation efficiency of phonons using piezoelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04033v2-abstract-full').style.display = 'none'; document.getElementById('2201.04033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This project has received funding from the European Union&#39;s Horizon 2020 research and innovation program under grant agreement No. 801055 &#34;Spin Wave Computing for Ultimately-Scaled Hybrid Low-Power Electronics&#34; - CHIRON</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11348">arXiv:2112.11348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.11348">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0082724">10.1063/5.0082724 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast long-wavelength exchange spin waves in partially-compensated Ga:YIG </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=B%C3%B6ttcher%2C+T">T. B枚ttcher</a>, <a href="/search/?searchtype=author&amp;query=Ruhwedel%2C+M">M. Ruhwedel</a>, <a href="/search/?searchtype=author&amp;query=Levchenko%2C+K+O">K. O. Levchenko</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/?searchtype=author&amp;query=Chumak%2C+H+L">H. L. Chumak</a>, <a href="/search/?searchtype=author&amp;query=Popov%2C+M+A">M. A. Popov</a>, <a href="/search/?searchtype=author&amp;query=Zavislyak%2C+I+V">I. V. Zavislyak</a>, <a href="/search/?searchtype=author&amp;query=Dubs%2C+C">C. Dubs</a>, <a href="/search/?searchtype=author&amp;query=Surzhenko%2C+O">O. Surzhenko</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">B. Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Chumak%2C+A+V">A. V. Chumak</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">P. Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11348v1-abstract-short" style="display: inline;"> Spin waves in yttrium iron garnet (YIG) nano-structures attract increasing attention from the perspective of novel magnon-based data processing applications. For short wavelengths needed in small-scale devices, the group velocity is directly proportional to the spin-wave exchange stiffness constant $位_\mathrm{ex}$. Using wave vector resolved Brillouin Light Scattering (BLS) spectroscopy, we direct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11348v1-abstract-full').style.display = 'inline'; document.getElementById('2112.11348v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11348v1-abstract-full" style="display: none;"> Spin waves in yttrium iron garnet (YIG) nano-structures attract increasing attention from the perspective of novel magnon-based data processing applications. For short wavelengths needed in small-scale devices, the group velocity is directly proportional to the spin-wave exchange stiffness constant $位_\mathrm{ex}$. Using wave vector resolved Brillouin Light Scattering (BLS) spectroscopy, we directly measure $位_\mathrm{ex}$ in Ga-substituted YIG thin films and show that it is about three times larger than for pure YIG. Consequently, the spin-wave group velocity overcomes the one in pure YIG for wavenumbers $k &gt; 4$ rad/$渭$m, and the ratio between the velocities reaches a constant value of around 3.4 for all $k &gt; 20$ rad/$渭$m. As revealed by vibrating-sample magnetometry (VSM) and ferromagnetic resonance (FMR) spectroscopy, Ga:YIG films with thicknesses down to 59 nm have a low Gilbert damping ($伪&lt; 10^{-3}$), a decreased saturation magnetization $渭_0 M_\mathrm{S}~\approx~20~$mT and a pronounced out-of-plane uniaxial anisotropy of about $渭_0 H_{\textrm{u1}} \approx 95 $ mT which leads to an out-of-plane easy axis. Thus, Ga:YIG opens access to fast and isotropic spin-wave transport for all wavelengths in nano-scale systems independently of dipolar effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11348v1-abstract-full').style.display = 'none'; document.getElementById('2112.11348v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, 39 references, Supplemental material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03310">arXiv:2112.03310</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03310">pdf</a>, <a href="https://arxiv.org/format/2112.03310">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.144421">10.1103/PhysRevB.105.144421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accumulation of magnetoelastic bosons in yttrium iron garnet: kinetic theory and wave vector resolved Brillouin light scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hahn%2C+V">Viktor Hahn</a>, <a href="/search/?searchtype=author&amp;query=Frey%2C+P">Pascal Frey</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Vasyuchka%2C+V+I">Vitaliy I. Vasyuchka</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Kopietz%2C+P">Peter Kopietz</a>, <a href="/search/?searchtype=author&amp;query=R%C3%BCckriegel%2C+A">Andreas R眉ckriegel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03310v2-abstract-short" style="display: inline;"> We derive and solve quantum kinetic equations describing the accumulation of magnetoelastic bosons in an overpopulated magnon gas realized in a thin film of the magnetic insulator yttrium iron garnet. We show that in the presence of a magnon condensate, there is a non-equilibrium steady state in which incoherent magnetoelastic bosons accumulate in a narrow region in momentum space for energies sli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03310v2-abstract-full').style.display = 'inline'; document.getElementById('2112.03310v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03310v2-abstract-full" style="display: none;"> We derive and solve quantum kinetic equations describing the accumulation of magnetoelastic bosons in an overpopulated magnon gas realized in a thin film of the magnetic insulator yttrium iron garnet. We show that in the presence of a magnon condensate, there is a non-equilibrium steady state in which incoherent magnetoelastic bosons accumulate in a narrow region in momentum space for energies slightly below the bottom of the magnon spectrum. The results of our calculations agree quite well with Brillouin light scattering measurements of the stationary non-equilibrium state of magnons and magnetoelastic bosons in yttrium iron garnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03310v2-abstract-full').style.display = 'none'; document.getElementById('2112.03310v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures repeated simulations with different parameter values, new figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105 (2022) 144421 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06798">arXiv:2111.06798</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.06798">pdf</a>, <a href="https://arxiv.org/format/2111.06798">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-022-00970-8">10.1038/s42005-022-00970-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Classical analog of qubit logic based on a magnon Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">Morteza Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Vasyuchka%2C+V+I">Vitaliy I. Vasyuchka</a>, <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06798v2-abstract-short" style="display: inline;"> We present a classical version of several quantum bit (qubit) functionalities using a two-component magnon Bose-Einstein condensate formed at opposite wavevectors in a room-temperature yttrium-iron-garnet ferrimagnetic film. The macroscopic wavefunctions of these two condensates serve as orthonormal basis states that form a system being a classical counterpart of a single qubit. Solving the Gross-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06798v2-abstract-full').style.display = 'inline'; document.getElementById('2111.06798v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06798v2-abstract-full" style="display: none;"> We present a classical version of several quantum bit (qubit) functionalities using a two-component magnon Bose-Einstein condensate formed at opposite wavevectors in a room-temperature yttrium-iron-garnet ferrimagnetic film. The macroscopic wavefunctions of these two condensates serve as orthonormal basis states that form a system being a classical counterpart of a single qubit. Solving the Gross-Pitaevskii equation and employing micromagnetic numerical simulations, we first show how to initialize the system in one of the basis states: the application of wavevector-selective parallel parametric pumping allows us to form only a single condensate in one of the two lowest energy states of the magnon gas. Next, by translating the concept of Rabi-oscillations into the wavevector domain, we demonstrate how to manipulate the magnon-BEC system along the polar axis in the Bloch sphere representation. We also discuss the manipulation regarding the azimuthal angle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06798v2-abstract-full').style.display = 'none'; document.getElementById('2111.06798v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics 5, 196 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00365">arXiv:2111.00365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.00365">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TMAG.2022.3149664">10.1109/TMAG.2022.3149664 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Roadmap on Spin-Wave Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chumak%2C+A+V">A. V. Chumak</a>, <a href="/search/?searchtype=author&amp;query=Kabos%2C+P">P. Kabos</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+M">M. Wu</a>, <a href="/search/?searchtype=author&amp;query=Abert%2C+C">C. Abert</a>, <a href="/search/?searchtype=author&amp;query=Adelmann%2C+C">C. Adelmann</a>, <a href="/search/?searchtype=author&amp;query=Adeyeye%2C+A">A. Adeyeye</a>, <a href="/search/?searchtype=author&amp;query=%C3%85kerman%2C+J">J. 脜kerman</a>, <a href="/search/?searchtype=author&amp;query=Aliev%2C+F+G">F. G. Aliev</a>, <a href="/search/?searchtype=author&amp;query=Anane%2C+A">A. Anane</a>, <a href="/search/?searchtype=author&amp;query=Awad%2C+A">A. Awad</a>, <a href="/search/?searchtype=author&amp;query=Back%2C+C+H">C. H. Back</a>, <a href="/search/?searchtype=author&amp;query=Barman%2C+A">A. Barman</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+G+E+W">G. E. W. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Becherer%2C+M">M. Becherer</a>, <a href="/search/?searchtype=author&amp;query=Beginin%2C+E+N">E. N. Beginin</a>, <a href="/search/?searchtype=author&amp;query=Bittencourt%2C+V+A+S+V">V. A. S. V. Bittencourt</a>, <a href="/search/?searchtype=author&amp;query=Blanter%2C+Y+M">Y. M. Blanter</a>, <a href="/search/?searchtype=author&amp;query=Bortolotti%2C+P">P. Bortolotti</a>, <a href="/search/?searchtype=author&amp;query=Boventer%2C+I">I. Boventer</a>, <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">D. A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Bunyaev%2C+S+A">S. A. Bunyaev</a>, <a href="/search/?searchtype=author&amp;query=Carmiggelt%2C+J+J">J. J. Carmiggelt</a>, <a href="/search/?searchtype=author&amp;query=Cheenikundil%2C+R+R">R. R. Cheenikundil</a>, <a href="/search/?searchtype=author&amp;query=Ciubotaru%2C+F">F. Ciubotaru</a>, <a href="/search/?searchtype=author&amp;query=Cotofana%2C+S">S. Cotofana</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00365v1-abstract-short" style="display: inline;"> Magnonics is a field of science that addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operations in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00365v1-abstract-full').style.display = 'inline'; document.getElementById('2111.00365v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00365v1-abstract-full" style="display: none;"> Magnonics is a field of science that addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operations in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the academic domain, the scientific and technological challenges of the field are being extensively investigated, and many proof-of-concept prototypes have already been realized in laboratories. This roadmap is a product of the collective work of many authors that covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. In particular, the roadmap discusses the computation operations with Boolean digital data, unconventional approaches like neuromorphic computing, and the progress towards magnon-based quantum computing. The article is organized as a collection of sub-sections grouped into seven large thematic sections. Each sub-section is prepared by one or a group of authors and concludes with a brief description of the current challenges and the outlook of the further development of the research directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00365v1-abstract-full').style.display = 'none'; document.getElementById('2111.00365v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">74 pages, 57 figures, 500 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Magnetics 58, 0800172 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.03909">arXiv:2109.03909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.03909">pdf</a>, <a href="https://arxiv.org/format/2109.03909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.094405">10.1103/PhysRevB.107.094405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying symmetric exchange in ultrathin ferromagnetic films with chirality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=B%C3%B6ttcher%2C+T">Tobias B枚ttcher</a>, <a href="/search/?searchtype=author&amp;query=Suraj%2C+T+S">T. S. Suraj</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+X">Xiaoye Chen</a>, <a href="/search/?searchtype=author&amp;query=Sinha%2C+B">Banibrato Sinha</a>, <a href="/search/?searchtype=author&amp;query=Tan%2C+H+R">Hui Ru Tan</a>, <a href="/search/?searchtype=author&amp;query=Tan%2C+H+K">Hang Khume Tan</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Kostylev%2C+M">Mikhail Kostylev</a>, <a href="/search/?searchtype=author&amp;query=Laskowski%2C+R">Robert Laskowski</a>, <a href="/search/?searchtype=author&amp;query=Khoo%2C+K+H">Khoong Hong Khoo</a>, <a href="/search/?searchtype=author&amp;query=Soumyanarayanan%2C+A">Anjan Soumyanarayanan</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.03909v4-abstract-short" style="display: inline;"> The symmetric (Heisenberg) exchange interaction is fundamental to magnetism and assumes critical importance in designing magnetic materials for novel emergent phenomena and device applications. However, quantifying exchange is extremely challenging for ultrathin ($\sim$ 1 nm) magnetic films, as techniques and approximations reliably used for bulk materials are largely inapplicable in the two-dimen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03909v4-abstract-full').style.display = 'inline'; document.getElementById('2109.03909v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.03909v4-abstract-full" style="display: none;"> The symmetric (Heisenberg) exchange interaction is fundamental to magnetism and assumes critical importance in designing magnetic materials for novel emergent phenomena and device applications. However, quantifying exchange is extremely challenging for ultrathin ($\sim$ 1 nm) magnetic films, as techniques and approximations reliably used for bulk materials are largely inapplicable in the two-dimensional (2D) limit. Here we present and contrast the measurement of exchange stiffness, $A$, by several methods on a series of five Co/Pt-based ultrathin ($1-2$ nm) films. We compare results from (a) spin-wave spectroscopy by Brillouin light scattering (BLS), (b) three analytical models describing the temperature dependence of magnetization obtained by magnetometry, (c) microscopic domain periodicity measurements and simulations, and (d) ab initio density functional theory (DFT) calculations. While different methods present some qualitatively consistent trends across samples, we note, for any given sample, considerable differences (up to $5\times$) in the absolute values of $A$ across the techniques, consistent with discrepancies of $A$ reported in literature for nominally similar samples. We analyze possible sources of the discrepancies across various methods, notably including their relationship to the spin-wave dispersion, and the wave-vector ranges probed. We compare the strengths and limitations of the techniques, and outline directions for their future use in characterizing exchange interactions in ultrathin films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03909v4-abstract-full').style.display = 'none'; document.getElementById('2109.03909v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 094405 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14710">arXiv:2106.14710</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14710">pdf</a>, <a href="https://arxiv.org/format/2106.14710">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L140405">10.1103/PhysRevB.104.L140405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stabilization of a nonlinear bullet coexisting with a Bose-Einstein condensate in a rapidly cooled magnonic system driven by a spin-orbit torque </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/?searchtype=author&amp;query=Breitbach%2C+D">David Breitbach</a>, <a href="/search/?searchtype=author&amp;query=Serha%2C+R+O">Rostyslav O. Serha</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">Morteza Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Slavin%2C+A+N">Andrei N. Slavin</a>, <a href="/search/?searchtype=author&amp;query=Tiberkevich%2C+V+S">Vasyl S. Tiberkevich</a>, <a href="/search/?searchtype=author&amp;query=Heinz%2C+B">Bj枚rn Heinz</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=L%C3%A4gel%2C+B">Bert L盲gel</a>, <a href="/search/?searchtype=author&amp;query=Dubs%2C+C">Carsten Dubs</a>, <a href="/search/?searchtype=author&amp;query=Knauer%2C+S">Sebastian Knauer</a>, <a href="/search/?searchtype=author&amp;query=Dobrovolskiy%2C+O+V">Oleksandr V. Dobrovolskiy</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Chumak%2C+A+V">Andrii V. Chumak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14710v1-abstract-short" style="display: inline;"> We have recently shown that injection of magnons into a magnetic dielectric via the spin-orbit torque (SOT) effect in the adjacent layer of a heavy metal subjected to the action of short (0.1 $渭$s) current pulses allows for control of a magnon Bose-Einstein Condensate (BEC). Here, the BEC was formed in the process of rapid cooling (RC), when the electric current heating the sample is abruptly term&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14710v1-abstract-full').style.display = 'inline'; document.getElementById('2106.14710v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14710v1-abstract-full" style="display: none;"> We have recently shown that injection of magnons into a magnetic dielectric via the spin-orbit torque (SOT) effect in the adjacent layer of a heavy metal subjected to the action of short (0.1 $渭$s) current pulses allows for control of a magnon Bose-Einstein Condensate (BEC). Here, the BEC was formed in the process of rapid cooling (RC), when the electric current heating the sample is abruptly terminated. In the present study, we show that the application of a longer (1.0 $渭$s) electric current pulse triggers the formation of a nonlinear localized magnonic bullet below the linear magnon spectrum. After pulse termination, the magnon BEC, as before, is formed at the bottom of the linear spectrum, but the nonlinear bullet continues to exist, stabilized for additional 30 ns by the same process of RC-induced magnon condensation. Our results suggest that a stimulated condensation of excess magnons to all highly populated magnonic states occurs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14710v1-abstract-full').style.display = 'none'; document.getElementById('2106.14710v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 104, L140405 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14705">arXiv:2106.14705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14705">pdf</a>, <a href="https://arxiv.org/format/2106.14705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0088924">10.1063/5.0088924 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fully Resonant Magneto-elastic Spin-wave Excitation by Surface Acoustic Waves under Conservation of Energy and Linear Momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Geilen%2C+M">Moritz Geilen</a>, <a href="/search/?searchtype=author&amp;query=Nicoloiu%2C+A">Alexandra Nicoloiu</a>, <a href="/search/?searchtype=author&amp;query=Narducci%2C+D">Daniele Narducci</a>, <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">Morteza Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Bechberger%2C+M">Moritz Bechberger</a>, <a href="/search/?searchtype=author&amp;query=Ender%2C+M">Milan Ender</a>, <a href="/search/?searchtype=author&amp;query=Ciubotaru%2C+F">Florin Ciubotaru</a>, <a href="/search/?searchtype=author&amp;query=M%C3%BCller%2C+A">Alexandru M眉ller</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Adelmann%2C+C">Christoph Adelmann</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14705v3-abstract-short" style="display: inline;"> We report on the resonant excitation of spin waves in micro-structured magnetic thin films by surface acoustic waves (SAWs). The spin waves as well as the acoustic waves are studied by micro-focused Brillouin light scattering spectroscopy. Besides the excitation of the ferromagnetic resonance, a process which does not fulfill momentum conservation, also the excitation of finite-wavelength spin wav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14705v3-abstract-full').style.display = 'inline'; document.getElementById('2106.14705v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14705v3-abstract-full" style="display: none;"> We report on the resonant excitation of spin waves in micro-structured magnetic thin films by surface acoustic waves (SAWs). The spin waves as well as the acoustic waves are studied by micro-focused Brillouin light scattering spectroscopy. Besides the excitation of the ferromagnetic resonance, a process which does not fulfill momentum conservation, also the excitation of finite-wavelength spin waves can be observed at low magnetic fields. Using micromagnetic simulations, we verify that during this excitation both energy and linear momentum are conserved and fully transferred from the SAW to the spin wave. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14705v3-abstract-full').style.display = 'none'; document.getElementById('2106.14705v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This project has received funding from the European Union&#39;s Horizon 2020 research and innovation program under grant agreement No. 801055 &#34;Spin Wave Computing for Ultimately-Scaled Hybrid Low-Power Electronics&#34; - CHIRON</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12318">arXiv:2106.12318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.12318">pdf</a>, <a href="https://arxiv.org/format/2106.12318">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0046046">10.1063/5.0046046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stimulated-Raman-Adiabatic-Passage mechanism in a magnonic environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=Fleischhauer%2C+M">Michael Fleischhauer</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12318v1-abstract-short" style="display: inline;"> We discuss the realization of a magnonic version of the STImulated-Raman-Adiabatic-Passage (m-STIRAP) mechanism using micromagnetic simulations. We consider the propagation of magnons in curved magnonic directional couplers. Our results demonstrate that quantum-classical analogy phenomena are accessible in magnonics. Specifically, the inherent advantages of the STIRAP mechanism, associated with da&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12318v1-abstract-full').style.display = 'inline'; document.getElementById('2106.12318v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12318v1-abstract-full" style="display: none;"> We discuss the realization of a magnonic version of the STImulated-Raman-Adiabatic-Passage (m-STIRAP) mechanism using micromagnetic simulations. We consider the propagation of magnons in curved magnonic directional couplers. Our results demonstrate that quantum-classical analogy phenomena are accessible in magnonics. Specifically, the inherent advantages of the STIRAP mechanism, associated with dark states, can now be utilized in magnonics. Applications of this effect for future magnonic device functionalities and designs are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12318v1-abstract-full').style.display = 'none'; document.getElementById('2106.12318v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl Phys Lett, 118, 182404, (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07338">arXiv:2103.07338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.07338">pdf</a>, <a href="https://arxiv.org/format/2103.07338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.014420">10.1103/PhysRevB.104.014420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double accumulation and anisotropic transport of magneto-elastic bosons in yttrium iron garnet films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Frey%2C+P">Pascal Frey</a>, <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">Dmytro A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07338v1-abstract-short" style="display: inline;"> Interaction between quasiparticles of a different nature, such as magnons and phonons in a magnetic medium, leads to the mixing of their properties and the formation of hybrid states in the areas of intersection of individual spectral branches. We recently reported the discovery of a new phenomenon mediated by the magnon-phonon interaction: the spontaneous bottleneck accumulation of magneto-elasti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07338v1-abstract-full').style.display = 'inline'; document.getElementById('2103.07338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07338v1-abstract-full" style="display: none;"> Interaction between quasiparticles of a different nature, such as magnons and phonons in a magnetic medium, leads to the mixing of their properties and the formation of hybrid states in the areas of intersection of individual spectral branches. We recently reported the discovery of a new phenomenon mediated by the magnon-phonon interaction: the spontaneous bottleneck accumulation of magneto-elastic bosons under electromagnetic pumping of pure magnons into a ferrimagnetic yttrium iron garnet film. Here, by studying the transport properties of the accumulated magneto-elastic bosons, we reveal that such accumulation occurs in two frequency-distant groups of quasiparticles: quasi-phonons and quasi-magnons. They propagate with different speeds in different directions relative to the magnetization field. The theoretical model we propose qualitatively describes the double accumulation effect, and the analysis of the two-dimensional spectrum of quasiparticles in the hybridization region allows us to determine the wavevectors and frequencies of each of the groups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07338v1-abstract-full').style.display = 'none'; document.getElementById('2103.07338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 104, 014420 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03694">arXiv:2103.03694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.03694">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0049491">10.1063/5.0049491 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local heat emission due to unidirectional spin-wave heat conveyer effect observed by lock-in thermography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kainuma%2C+Y">Yuta Kainuma</a>, <a href="/search/?searchtype=author&amp;query=Iguchi%2C+R">Ryo Iguchi</a>, <a href="/search/?searchtype=author&amp;query=Prananto%2C+D">Dwi Prananto</a>, <a href="/search/?searchtype=author&amp;query=Vasyuchka%2C+V+I">Vitaliy I. Vasyuchka</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=An%2C+T">Toshu An</a>, <a href="/search/?searchtype=author&amp;query=Uchida%2C+K">Ken-ichi Uchida</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03694v1-abstract-short" style="display: inline;"> Lock-in thermography measurements were performed to reveal heat source distribution induced by the unidirectional spin-wave heat conveyer effect (USHCE) of magnetostatic surface spin waves. When the magnetostatic surface spin waves are excited in an yttrium iron garnet slab, the lock-in thermography images show spatially biased sharp and complicated heating patterns, indicating the importance of e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03694v1-abstract-full').style.display = 'inline'; document.getElementById('2103.03694v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03694v1-abstract-full" style="display: none;"> Lock-in thermography measurements were performed to reveal heat source distribution induced by the unidirectional spin-wave heat conveyer effect (USHCE) of magnetostatic surface spin waves. When the magnetostatic surface spin waves are excited in an yttrium iron garnet slab, the lock-in thermography images show spatially biased sharp and complicated heating patterns, indicating the importance of edge spin-wave dynamics for USHCE. The accessibility to the local heat emission properties allows us to clarify a capability of remote heating realized by USHCE; it can transfer energy for heating even through a macro-scale air gap between two magnetic materials owing to the long-range dipole-dipole coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03694v1-abstract-full').style.display = 'none'; document.getElementById('2103.03694v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.13481">arXiv:2102.13481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.13481">pdf</a>, <a href="https://arxiv.org/format/2102.13481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.237203">10.1103/PhysRevLett.127.237203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control of the Bose-Einstein Condensation of Magnons by the Spin-Hall Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/?searchtype=author&amp;query=Breitbach%2C+D">David Breitbach</a>, <a href="/search/?searchtype=author&amp;query=Serha%2C+R+O">Rostyslav O. Serha</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Slavin%2C+A+N">Andrei N. Slavin</a>, <a href="/search/?searchtype=author&amp;query=Tiberkevich%2C+V+S">Vasyl S. Tiberkevich</a>, <a href="/search/?searchtype=author&amp;query=Heinz%2C+B">Bj枚rn Heinz</a>, <a href="/search/?searchtype=author&amp;query=L%C3%A4gel%2C+B">Bert L盲gel</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=Dubs%2C+C">Carsten Dubs</a>, <a href="/search/?searchtype=author&amp;query=Knauer%2C+S">Sebastian Knauer</a>, <a href="/search/?searchtype=author&amp;query=Dobrovolskiy%2C+O+V">Oleksandr V. Dobrovolskiy</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Chumak%2C+A+V">Andrii V. Chumak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.13481v2-abstract-short" style="display: inline;"> Previously, it has been shown that rapid cooling of yttrium-iron-garnet (YIG)/platinum (Pt) nano structures, preheated by an electric current sent through the Pt layer, leads to overpopulation of a magnon gas and to subsequent formation of a Bose-Einstein condensate (BEC) of magnons. The spin Hall effect (SHE), which creates a spin-polarized current in the Pt layer, can inject or annihilate magnon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.13481v2-abstract-full').style.display = 'inline'; document.getElementById('2102.13481v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.13481v2-abstract-full" style="display: none;"> Previously, it has been shown that rapid cooling of yttrium-iron-garnet (YIG)/platinum (Pt) nano structures, preheated by an electric current sent through the Pt layer, leads to overpopulation of a magnon gas and to subsequent formation of a Bose-Einstein condensate (BEC) of magnons. The spin Hall effect (SHE), which creates a spin-polarized current in the Pt layer, can inject or annihilate magnons depending on the electric current and applied field orientations. Here we demonstrate that the injection or annihilation of magnons via the SHE can prevent or promote the formation of a rapid cooling induced magnon BEC. Depending on the current polarity, a change in the BEC threshold of -8% and +6% was detected. These findings demonstrate a new method to control macroscopic quantum states, paving the way for their application in spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.13481v2-abstract-full').style.display = 'none'; document.getElementById('2102.13481v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 127, 237203 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.07890">arXiv:2101.07890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.07890">pdf</a>, <a href="https://arxiv.org/format/2101.07890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L100410">10.1103/PhysRevB.104.L100410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of room-temperature magnon gas toward coherent Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Noack%2C+T+B">Timo B. Noack</a>, <a href="/search/?searchtype=author&amp;query=Vasyuchka%2C+V+I">Vitaliy I. Vasyuchka</a>, <a href="/search/?searchtype=author&amp;query=Pomyalov%2C+A">Anna Pomyalov</a>, <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.07890v1-abstract-short" style="display: inline;"> The appearance of spontaneous coherence is a fundamental feature of a Bose-Einstein condensate and an essential requirement for possible applications of the condensates for data processing and quantum computing. In the case of a magnon condensate in a magnetic crystal, such computing can be performed even at room temperature. So far, the process of coherence formation in a magnon condensate was in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07890v1-abstract-full').style.display = 'inline'; document.getElementById('2101.07890v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.07890v1-abstract-full" style="display: none;"> The appearance of spontaneous coherence is a fundamental feature of a Bose-Einstein condensate and an essential requirement for possible applications of the condensates for data processing and quantum computing. In the case of a magnon condensate in a magnetic crystal, such computing can be performed even at room temperature. So far, the process of coherence formation in a magnon condensate was inaccessible. We study the evolution of magnon radiation spectra by direct detection of microwave radiation emitted by magnons in a parametrically driven yttrium iron garnet crystal. By using specially shaped bulk samples, we show that the parametrically overpopulated magnon gas evolves to a state, whose coherence is only limited by the natural magnon relaxation into the crystal lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07890v1-abstract-full').style.display = 'none'; document.getElementById('2101.07890v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 104, 100410 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.04797">arXiv:2009.04797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.04797">pdf</a>, <a href="https://arxiv.org/ps/2009.04797">ps</a>, <a href="https://arxiv.org/format/2009.04797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0029308">10.1063/5.0029308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interference of co-propagating Rayleigh and Sezawa waves observed with micro-focussed Brillouin Light Scattering Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Geilen%2C+M">Moritz Geilen</a>, <a href="/search/?searchtype=author&amp;query=Kohl%2C+F">Felix Kohl</a>, <a href="/search/?searchtype=author&amp;query=Stefanescu%2C+A">Alexandra Stefanescu</a>, <a href="/search/?searchtype=author&amp;query=M%C3%BCller%2C+A">Alexandru M眉ller</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.04797v1-abstract-short" style="display: inline;"> We use micro-focussed Brillouin light scattering spectroscopy ($渭$BLS) to investigate surface acoustic waves (SAWs) in a GaN layer on a Si substrate at GHz frequencies. Furthermore, we discuss the concept of $渭$BLS for SAWs and show that the crucial parameters of SAW excitation and propagation can be measured. We investigate a broad range of excitation parameters and observe that Rayleigh and Seza&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.04797v1-abstract-full').style.display = 'inline'; document.getElementById('2009.04797v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.04797v1-abstract-full" style="display: none;"> We use micro-focussed Brillouin light scattering spectroscopy ($渭$BLS) to investigate surface acoustic waves (SAWs) in a GaN layer on a Si substrate at GHz frequencies. Furthermore, we discuss the concept of $渭$BLS for SAWs and show that the crucial parameters of SAW excitation and propagation can be measured. We investigate a broad range of excitation parameters and observe that Rayleigh and Sezawa waves are excited simultaneously at the same frequency. Spatially resolved measurements of these co-propagating waves show a periodic pattern, which proves their coherent interference. From the periodicity of the spatial phonon patterns, the wavevector difference between the two waves has been identified and compared to the dispersion relation. This concept of co-propagating phonons might be used to produce acoustic or magneto-elastic fields with a time-independent spatial variation similar to the situations realized using counter-propagating waves. However, co-propagating SAW have a well defined direction of the wave vector and thus, posses a finite phonon angular momentum which offers new opportunities, e.g. for angular momentum conversion experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.04797v1-abstract-full').style.display = 'none'; document.getElementById('2009.04797v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 117, 213501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.09205">arXiv:2007.09205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.09205">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A nonlinear magnonic nano-ring resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/?searchtype=author&amp;query=Hamadeh%2C+A">Abbass Hamadeh</a>, <a href="/search/?searchtype=author&amp;query=Verba%2C+R">Roman Verba</a>, <a href="/search/?searchtype=author&amp;query=Lomakin%2C+V">Vitaliy Lomakin</a>, <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">Morteza Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Chumak%2C+A+V">Andrii V. Chumak</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.09205v2-abstract-short" style="display: inline;"> The field of magnonics, which aims at using spin waves as carriers in data processing devices, has attracted increasing interest in recent years. We present and study micromagnetically a nonlinear nanoscale magnonic ring resonator device for enabling implementations of magnonic logic gates and neuromorphic magnonic circuits. In the linear regime, this device efficiently suppresses spin-wave transm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09205v2-abstract-full').style.display = 'inline'; document.getElementById('2007.09205v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.09205v2-abstract-full" style="display: none;"> The field of magnonics, which aims at using spin waves as carriers in data processing devices, has attracted increasing interest in recent years. We present and study micromagnetically a nonlinear nanoscale magnonic ring resonator device for enabling implementations of magnonic logic gates and neuromorphic magnonic circuits. In the linear regime, this device efficiently suppresses spin-wave transmission using the phenomenon of critical resonant coupling, thus exhibiting the behavior of a notch filter. By increasing the spin-wave input power, the resonance frequency is shifted leading to transmission curves, depending on the frequency, reminiscent of the activation functions of neurons or showing the characteristics of a power limiter. An analytical theory is developed to describe the transmission curve of magnonic ring resonators in the linear and nonlinear regimes and validated by a comprehensive micromagnetic study. The proposed magnonic ring resonator provides a multi-functional nonlinear building block for unconventional magnonic circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09205v2-abstract-full').style.display = 'none'; document.getElementById('2007.09205v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.02690">arXiv:2006.02690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.02690">pdf</a>, <a href="https://arxiv.org/ps/2006.02690">ps</a>, <a href="https://arxiv.org/format/2006.02690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Heisenberg Exchange and Dzyaloshinskii-Moriya Interaction in Ultrathin CoFeB Single and Multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=B%C3%B6ttcher%2C+T">Tobias B枚ttcher</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+K">Kyujoon Lee</a>, <a href="/search/?searchtype=author&amp;query=Heussner%2C+F">Frank Heussner</a>, <a href="/search/?searchtype=author&amp;query=Jaiswal%2C+S">Samridh Jaiswal</a>, <a href="/search/?searchtype=author&amp;query=Jakob%2C+G">Gerhard Jakob</a>, <a href="/search/?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.02690v1-abstract-short" style="display: inline;"> We present results of the analysis of Brillouin Light Scattering (BLS) measurements of spin waves performed on ultrathin single and multirepeat CoFeB layers with adjacent heavy metal layers. From a detailed study of the spin-wave dispersion relation, we independently extract the Heisenberg exchange interaction (also referred to as symmetric exchange interaction), the Dzyaloshinskii-Moriya interact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02690v1-abstract-full').style.display = 'inline'; document.getElementById('2006.02690v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.02690v1-abstract-full" style="display: none;"> We present results of the analysis of Brillouin Light Scattering (BLS) measurements of spin waves performed on ultrathin single and multirepeat CoFeB layers with adjacent heavy metal layers. From a detailed study of the spin-wave dispersion relation, we independently extract the Heisenberg exchange interaction (also referred to as symmetric exchange interaction), the Dzyaloshinskii-Moriya interaction (DMI, also referred to as antisymmetric exchange interaction), and the anisotropy field. We find a large DMI in CoFeB thin films adjacent to a Pt layer and nearly vanishing DMI for CoFeB films adjacent to a W layer. Furthermore, the residual influence of the dipolar interaction on the dispersion relation and on the evaluation of the Heisenberg exchange parameter is demonstrated. In addition, an experimental analysis of the DMI on the spin-wave lifetime is presented. All these parameters play a crucial role in designing skyrmionic or spin-orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02690v1-abstract-full').style.display = 'none'; document.getElementById('2006.02690v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.09965">arXiv:2005.09965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.09965">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.014445">10.1103/PhysRevB.102.014445 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling the propagation of dipole-exchange spin waves using local inhomogeneity of the anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">Morteza Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/?searchtype=author&amp;query=Kostylev%2C+M">Mikhail Kostylev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.09965v2-abstract-short" style="display: inline;"> Spin waves are promising candidates to carry, transport, and process information. Controlling the propagation characteristics of spin waves in magnetic materials is an essential ingredient for designing spin-wave based computing architectures. Here, we study the influence of surface inhomogeneities on the spin-wave signals transmitted through thin films. We use micromagnetic simulations to study t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09965v2-abstract-full').style.display = 'inline'; document.getElementById('2005.09965v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.09965v2-abstract-full" style="display: none;"> Spin waves are promising candidates to carry, transport, and process information. Controlling the propagation characteristics of spin waves in magnetic materials is an essential ingredient for designing spin-wave based computing architectures. Here, we study the influence of surface inhomogeneities on the spin-wave signals transmitted through thin films. We use micromagnetic simulations to study the spin-wave dynamics in an in-plane magnetized yttrium iron garnet thin film with a thickness in the nanometre range in the presence of surface defects in the form of locally introduced uniaxial anisotropies. These defects are used to demonstrate that the Backward Volume Magnetostatic Spin Waves (BVMSW) are more responsive to backscattering in comparison to Magnetostatic Surface Spin Waves (MSSWs). For this particular defect type, the reason for this behavior can be quantitatively related to the difference in the magnon band structures for the two types of spin waves. To demonstrate this, we develop a quasi-analytical theory for the scattering process. It shows an excellent agreement with the micromagnetic simulations, sheds light on the backscattering processes and provides a new way to analyze the spin-wave transmission rates in the presence of surface inhomogeneities in sufficiently thin films, for which the role of exchange energy in the spin-wave dynamics is significant. Our study paves the way to designing magnonic logic devices for data processing which rely on a designed control of the spin-wave transmission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09965v2-abstract-full').style.display = 'none'; document.getElementById('2005.09965v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Figures, 21 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 014445 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.09777">arXiv:2002.09777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.09777">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aba98c">10.1088/1367-2630/aba98c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bose-Einstein Condensation of Nonequilibrium Magnons in Confined Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">Morteza Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Qaiumzadeh%2C+A">Alireza Qaiumzadeh</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Brataas%2C+A">Arne Brataas</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.09777v2-abstract-short" style="display: inline;"> We study the formation of a room temperature magnon Bose-Einstein condensate (BEC) in nanoscopic systems and demonstrate that its lifetime is influenced by the spatial confinement. We predict how dipolar interactions and nonlinear magnon scattering assist in the generation of a metastable magnon BEC in energy-quantized nanoscopic devices. We verify our prediction by a full numerical simulation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09777v2-abstract-full').style.display = 'inline'; document.getElementById('2002.09777v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.09777v2-abstract-full" style="display: none;"> We study the formation of a room temperature magnon Bose-Einstein condensate (BEC) in nanoscopic systems and demonstrate that its lifetime is influenced by the spatial confinement. We predict how dipolar interactions and nonlinear magnon scattering assist in the generation of a metastable magnon BEC in energy-quantized nanoscopic devices. We verify our prediction by a full numerical simulation of the Landau-Lifshitz-Gilbert equation and demonstrate the generation of magnon BEC in confined insulating magnets of yttrium iron garnet. We directly map out the nonlinear magnon scattering processes behind this phase transition to show how fast quantized thermalization channels allow the BEC formation in confined structures. Based on our results, we discuss a new mechanism to manipulate the BEC lifetime in nanoscaled systems. Our study greatly extends the freedom to study the dynamics of magnon BEC in realistic systems and to design integrated circuits for BEC-based applications at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09777v2-abstract-full').style.display = 'none'; document.getElementById('2002.09777v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Journal of Physics 22, 083080 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.08967">arXiv:2001.08967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.08967">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.024040">10.1103/PhysRevApplied.13.024040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Propagating magnetic droplet solitons as moveable nanoscale spin-wave sources with tunable direction of emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">Morteza Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">Majid Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.08967v1-abstract-short" style="display: inline;"> Magnetic droplets are strongly nonlinear and localized spin-wave solitons that can be formed in current-driven nanocontacts. Here, we propose a simple way to launch droplets in an inhomogeneous nanoscopic waveguide. We use the drift motion of a droplet and show that in a system with broken translational symmetry, the droplet acquires a linear momentum and propagates. We find that the droplet veloc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08967v1-abstract-full').style.display = 'inline'; document.getElementById('2001.08967v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.08967v1-abstract-full" style="display: none;"> Magnetic droplets are strongly nonlinear and localized spin-wave solitons that can be formed in current-driven nanocontacts. Here, we propose a simple way to launch droplets in an inhomogeneous nanoscopic waveguide. We use the drift motion of a droplet and show that in a system with broken translational symmetry, the droplet acquires a linear momentum and propagates. We find that the droplet velocity can be tuned via the strength of the break in symmetry and the size of the nanocontact. In addition, we demonstrate that the launched droplet can propagate up to several micrometers in a realistic system with reasonable damping. Finally, we demonstrate how an annihilating droplet delivers its momentum to a highly nonreciprocal spin-wave burst with a tunable wave vector with nanometer wavelengths. Such a propagating droplet can be used as a moveable spin-wave source in nanoscale magnonic networks. The presented method enables full control of the spin-wave emission direction, which can largely extend the freedom to design integrated magnonic circuits with a single spin-wave source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08967v1-abstract-full').style.display = 'none'; document.getElementById('2001.08967v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 024040 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.07802">arXiv:1911.07802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.07802">pdf</a>, <a href="https://arxiv.org/format/1911.07802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.144414">10.1103/PhysRevB.104.144414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental observation of Josephson oscillations in a room-temperature Bose-Einstein magnon condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kreil%2C+A+J+E">Alexander J. E. Kreil</a>, <a href="/search/?searchtype=author&amp;query=Musiienko-Shmarova%2C+H+Y">Halyna Yu. Musiienko-Shmarova</a>, <a href="/search/?searchtype=author&amp;query=Frey%2C+P">Pascal Frey</a>, <a href="/search/?searchtype=author&amp;query=Pomyalov%2C+A">Anna Pomyalov</a>, <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Melkov%2C+G+A">Gennadii A. Melkov</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.07802v3-abstract-short" style="display: inline;"> The alternating current (ac) Josephson effect in a time-independent spatially-inhomogeneous setting is manifested by the occurrence of Josephson oscillations - periodic macroscopic phase-induced collective motions of the quantum condensate. So far, this phenomenon was observed at cryogenic temperatures in superconductors, in superfluid helium, and in Bose-Einstein condensates (BECs) of trapped ato&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07802v3-abstract-full').style.display = 'inline'; document.getElementById('1911.07802v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.07802v3-abstract-full" style="display: none;"> The alternating current (ac) Josephson effect in a time-independent spatially-inhomogeneous setting is manifested by the occurrence of Josephson oscillations - periodic macroscopic phase-induced collective motions of the quantum condensate. So far, this phenomenon was observed at cryogenic temperatures in superconductors, in superfluid helium, and in Bose-Einstein condensates (BECs) of trapped atoms. Here, we report on the discovery of the ac Josephson effect in a magnon BEC carried by a room-temperature ferrimagnetic film. The BEC is formed in a parametrically populated magnon gas in the spatial vicinity of a magnetic trench created by a dc electric current. The appearance of the Josephson effect is manifested by oscillations of the magnon BEC density in the trench, caused by a coherent phase shift between this BEC and the BEC in the nearby regions. Our findings advance the physics of room-temperature macroscopic quantum phenomena and will allow for their application for data processing in magnon spintronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07802v3-abstract-full').style.display = 'none'; document.getElementById('1911.07802v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 104, 144414 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04926">arXiv:1911.04926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.04926">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssr.202000011">10.1002/pssr.202000011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parametric generation of propagating spin-waves in ultra thin yttrium iron garnet waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">M. Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Kewenig%2C+M">M. Kewenig</a>, <a href="/search/?searchtype=author&amp;query=Verba%2C+R">R. Verba</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/?searchtype=author&amp;query=Heinz%2C+B">B. Heinz</a>, <a href="/search/?searchtype=author&amp;query=Kohl%2C+F">F. Kohl</a>, <a href="/search/?searchtype=author&amp;query=Dubs%2C+C">C. Dubs</a>, <a href="/search/?searchtype=author&amp;query=L%C3%A4gel%2C+B">B. L盲gel</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">A. A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">B. Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Chumak%2C+A+V">A. V. Chumak</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">P. Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04926v2-abstract-short" style="display: inline;"> We present the experimental demonstration of the parallel parametric generation of spin-waves in a microscaled yttrium iron garnet waveguide with nanoscale thickness. Using Brillouin light scattering microscopy, we observe the excitation of the first and second waveguide modes generated by a stripline microwave pumping source. Micromagnetic simulations reveal the wave vector of the parametrically&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04926v2-abstract-full').style.display = 'inline'; document.getElementById('1911.04926v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04926v2-abstract-full" style="display: none;"> We present the experimental demonstration of the parallel parametric generation of spin-waves in a microscaled yttrium iron garnet waveguide with nanoscale thickness. Using Brillouin light scattering microscopy, we observe the excitation of the first and second waveguide modes generated by a stripline microwave pumping source. Micromagnetic simulations reveal the wave vector of the parametrically generated spin-waves. Based on analytical calculations, which are in excellent agreement with our experiments and simulations, we prove that the spin-wave radiation losses are the determinative term of the parametric instability threshold in this miniaturized system. The used method enables the direct excitation and amplification of nanometer spin-waves dominated by exchange interactions. Our results pave the way for integrated magnonics based on insulating nano-magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04926v2-abstract-full').style.display = 'none'; document.getElementById('1911.04926v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica Status Solidi RRL 14, 2000011 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.01611">arXiv:1908.01611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.01611">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/ab3995">10.1088/1361-6455/ab3995 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Roadmap on STIRAP applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bergmann%2C+K">Klaas Bergmann</a>, <a href="/search/?searchtype=author&amp;query=N%C3%A4gerl%2C+H">Hanns-Christoph N盲gerl</a>, <a href="/search/?searchtype=author&amp;query=Panda%2C+C">Cristian Panda</a>, <a href="/search/?searchtype=author&amp;query=Gabrielse%2C+G">Gerald Gabrielse</a>, <a href="/search/?searchtype=author&amp;query=Miloglyadov%2C+E">Eduard Miloglyadov</a>, <a href="/search/?searchtype=author&amp;query=Quack%2C+M">Martin Quack</a>, <a href="/search/?searchtype=author&amp;query=Seyfang%2C+G">Georg Seyfang</a>, <a href="/search/?searchtype=author&amp;query=Wichmann%2C+G">Gunther Wichmann</a>, <a href="/search/?searchtype=author&amp;query=Ospelkaus%2C+S">Silke Ospelkaus</a>, <a href="/search/?searchtype=author&amp;query=Kuhn%2C+A">Axel Kuhn</a>, <a href="/search/?searchtype=author&amp;query=Longhi%2C+S">Stefano Longhi</a>, <a href="/search/?searchtype=author&amp;query=Szameit%2C+A">Alexander Szameit</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+X">Xue-Feng Zhu</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+J">Jie Zhu</a>, <a href="/search/?searchtype=author&amp;query=Drewsen%2C+M">Michael Drewsen</a>, <a href="/search/?searchtype=author&amp;query=Hensinger%2C+W+K">Winfried K. Hensinger</a>, <a href="/search/?searchtype=author&amp;query=Weidt%2C+S">Sebastian Weidt</a>, <a href="/search/?searchtype=author&amp;query=Halfmann%2C+T">Thomas Halfmann</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+H">Hailin Wang</a>, <a href="/search/?searchtype=author&amp;query=Paraoanu%2C+G+S">G. S. Paraoanu</a>, <a href="/search/?searchtype=author&amp;query=Vitanov%2C+N+V">Nikolay V. Vitanov</a>, <a href="/search/?searchtype=author&amp;query=Mompart%2C+J">J. Mompart</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+T">Th. Busch</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.01611v1-abstract-short" style="display: inline;"> STIRAP (Stimulated Raman Adiabatic Passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of population between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state even though the lifetime of the latter can be much shorter than the inter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01611v1-abstract-full').style.display = 'inline'; document.getElementById('1908.01611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.01611v1-abstract-full" style="display: none;"> STIRAP (Stimulated Raman Adiabatic Passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of population between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published in The Journal of Chemical Physics. However, as of about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations of some experimental parameters stimulated many researchers to apply the scheme in a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01611v1-abstract-full').style.display = 'none'; document.getElementById('1908.01611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in Journal of Physics B: Atomic, Molecular and Optical Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys. 52 202001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08805">arXiv:1907.08805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08805">pdf</a>, <a href="https://arxiv.org/ps/1907.08805">ps</a>, <a href="https://arxiv.org/format/1907.08805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.15407/ujpe64.10.927">10.15407/ujpe64.10.927 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnon Bose-Einstein condensate and supercurrents over a wide temperature range </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mihalceanu%2C+L">L. Mihalceanu</a>, <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">D. A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Vasyuchka%2C+V+I">V. I. Vasyuchka</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">A. A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">B. Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Pomyalov%2C+A">A. Pomyalov</a>, <a href="/search/?searchtype=author&amp;query=L%27Vov%2C+V+S">V. S. L&#39;Vov</a>, <a href="/search/?searchtype=author&amp;query=Tiberkevich%2C+V+S">V. S. Tiberkevich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08805v1-abstract-short" style="display: inline;"> Magnon Bose-Einstein Condensates (BECs) and supercurrents are coherent quantum phenomena, which appear on a macroscopic scale in parametrically populated solid state spinsystems. One of the most fascinating and attractive features of these processes is the possibility of magnon condensation and supercurrent excitation even at room temperature. At the same time, valuable information about a magnon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08805v1-abstract-full').style.display = 'inline'; document.getElementById('1907.08805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08805v1-abstract-full" style="display: none;"> Magnon Bose-Einstein Condensates (BECs) and supercurrents are coherent quantum phenomena, which appear on a macroscopic scale in parametrically populated solid state spinsystems. One of the most fascinating and attractive features of these processes is the possibility of magnon condensation and supercurrent excitation even at room temperature. At the same time, valuable information about a magnon BEC state, such as its lifetime, its formation threshold, and coherency, is provided by experiments at various temperatures. Here, we use Brillouin Light Scattering (BLS) spectroscopy for the investigation of the magnon BEC dynamics in a single-crystal film of yttrium iron garnet in a wide temperature range from 30 K to 380 K. By comparing the BLS results with previous microwave measurements, we re-vealed the direct relation between the damping of the condensed and the parametrically injected magnons. The enhanced supercurrent dynamics was detected at 180 K near the minimum of BEC damping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08805v1-abstract-full').style.display = 'none'; document.getElementById('1907.08805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Ukr. J. Phys. 64, 927 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.04993">arXiv:1906.04993</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.04993">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssr.201800409">10.1002/pssr.201800409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frequency-Division Multiplexing in Magnonic Logic Networks Based on Caustic-Like Spin-Wave Beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Heussner%2C+F">Frank Heussner</a>, <a href="/search/?searchtype=author&amp;query=Nabinger%2C+M">Matthias Nabinger</a>, <a href="/search/?searchtype=author&amp;query=Fischer%2C+T">Tobias Fischer</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.04993v2-abstract-short" style="display: inline;"> Wave-based data processing by spin waves and their quanta, magnons, is a promising technique to overcome the challenges which CMOS-based logic networks are facing nowadays. The advantage of these quasi-particles lies in their potential for the realization of energy efficient devices on the micro- to nanometer scale due to their charge-less propagation in magnetic materials. In this paper, the freq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04993v2-abstract-full').style.display = 'inline'; document.getElementById('1906.04993v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.04993v2-abstract-full" style="display: none;"> Wave-based data processing by spin waves and their quanta, magnons, is a promising technique to overcome the challenges which CMOS-based logic networks are facing nowadays. The advantage of these quasi-particles lies in their potential for the realization of energy efficient devices on the micro- to nanometer scale due to their charge-less propagation in magnetic materials. In this paper, the frequency dependence of the propagation direction of caustic-like spin-wave beams in microstructured ferromagnets is studied by micromagnetic simulations. Based on the observed alteration of the propagation angle, an approach to spatially combine and separate spin-wave signals of different frequencies is demonstrated. The presented magnetic structure constitutes a prototype design of a passive circuit enabling frequency-division multiplexing in magnonic logic networks. It is verified that spin-wave signals of different frequencies can be transmitted through the device simultaneously without any interaction or creation of spurious signals. Due to the wave-based approach of computing in magnonic networks, the technique of frequency-division multiplexing can be the basis for parallel data processing in single magnonic devices, enabling the multiplication of the data throughput. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04993v2-abstract-full').style.display = 'none'; document.getElementById('1906.04993v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Status Solidi RRL 2018, 12, 1800409 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.02301">arXiv:1906.02301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.02301">pdf</a>, <a href="https://arxiv.org/format/1906.02301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0018519">10.1063/5.0018519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Wave Optical Elements: Towards Spin-Wave Fourier Optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vogel%2C+M">Marc Vogel</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=von+Freymann%2C+G">Georg von Freymann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.02301v1-abstract-short" style="display: inline;"> We perform micromagnetic simulations to investigate the propagation of spin-wave beams through spin-wave optical elements. Despite spin-wave propagation in magnetic media being strongly anisotropic, we use axicons to excite spinwave Bessel-Gaussian beams and gradient-index lenses to focus spin waves in analogy to conventional optics with light in isotropic media. Moreover, we demonstrate spin-wave&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02301v1-abstract-full').style.display = 'inline'; document.getElementById('1906.02301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.02301v1-abstract-full" style="display: none;"> We perform micromagnetic simulations to investigate the propagation of spin-wave beams through spin-wave optical elements. Despite spin-wave propagation in magnetic media being strongly anisotropic, we use axicons to excite spinwave Bessel-Gaussian beams and gradient-index lenses to focus spin waves in analogy to conventional optics with light in isotropic media. Moreover, we demonstrate spin-wave Fourier optics using gradient-index lenses. These results contribute to the growing field of spin-wave optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02301v1-abstract-full').style.display = 'none'; document.getElementById('1906.02301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.11941">arXiv:1905.11941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.11941">pdf</a>, <a href="https://arxiv.org/format/1905.11941">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/d0nr00198h">10.1039/d0nr00198h <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broadband enhancement of the magneto-optical activity of hybrid Au loaded Bi:YIG </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pappas%2C+S+D">Spiridon D. Pappas</a>, <a href="/search/?searchtype=author&amp;query=Lang%2C+P">Philipp Lang</a>, <a href="/search/?searchtype=author&amp;query=Eul%2C+T">Tobias Eul</a>, <a href="/search/?searchtype=author&amp;query=Hartelt%2C+M">Michael Hartelt</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Aeschlimann%2C+M">Martin Aeschlimann</a>, <a href="/search/?searchtype=author&amp;query=Papaioannou%2C+E+T">Evangelos Th. Papaioannou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.11941v1-abstract-short" style="display: inline;"> We unravel the underlying near-field mechanism of the enhancement of the magneto-optical activity of bismuth-substituted yttrium iron garnet films (Bi:YIG) loaded with gold nanoparticles. The experimental results show that the embedded gold nanoparticles lead to a broadband enhancement of the magneto-optical activity with respect to the activity of the bare Bi:YIG films. Full vectorial near- and f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11941v1-abstract-full').style.display = 'inline'; document.getElementById('1905.11941v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.11941v1-abstract-full" style="display: none;"> We unravel the underlying near-field mechanism of the enhancement of the magneto-optical activity of bismuth-substituted yttrium iron garnet films (Bi:YIG) loaded with gold nanoparticles. The experimental results show that the embedded gold nanoparticles lead to a broadband enhancement of the magneto-optical activity with respect to the activity of the bare Bi:YIG films. Full vectorial near- and far-field simulations demonstrate that this broadband enhancement is the result of a magneto-optically enabled cross-talking of orthogonal localized plasmon resonances. Our results pave the way to the on-demand design of the magneto-optical properties of hybrid magneto-plasmonic circuitry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11941v1-abstract-full').style.display = 'none'; document.getElementById('1905.11941v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages, 3 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Nanoscale, 2020, 12, 7309 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale, 2020, 12, 7309 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.03006">arXiv:1905.03006</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.03006">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5109623">10.1063/1.5109623 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale spin-wave wake-up receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">Morteza Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Vasyuchka%2C+V+I">Vitaliy I. Vasyuchka</a>, <a href="/search/?searchtype=author&amp;query=Chumak%2C+A+V">Andrii V. Chumak</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.03006v1-abstract-short" style="display: inline;"> We present the concept of a passive spin-wave device which is able to distinguish different radio-frequency pulse trains and validate its functionality using micromagnetic simulations. The information is coded in the phase of the individual pulses which are transformed into spin-wave packets. The device splits every incoming packet into two arms, one of which is coupled to a magnonic ring which in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03006v1-abstract-full').style.display = 'inline'; document.getElementById('1905.03006v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.03006v1-abstract-full" style="display: none;"> We present the concept of a passive spin-wave device which is able to distinguish different radio-frequency pulse trains and validate its functionality using micromagnetic simulations. The information is coded in the phase of the individual pulses which are transformed into spin-wave packets. The device splits every incoming packet into two arms, one of which is coupled to a magnonic ring which introduces a well-defined time delay and phase shift. Since the time delay is matched to the pulse repetition rate, adjacent packets interfere in a combiner which makes it possible to distinguish simple pulse train patterns by the read-out of the time-integrated spin-wave intensity in the output. Due to its passive construction, this device may serve as an energy-efficient wake-up receiver used to activate the main receiver circuit in power critical IoT applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03006v1-abstract-full').style.display = 'none'; document.getElementById('1905.03006v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12744">arXiv:1904.12744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.12744">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssr.201900695">10.1002/pssr.201900695 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Realization of a Passive GHz Frequency-Division Demultiplexer for Magnonic Logic Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Heussner%2C+F">Frank Heussner</a>, <a href="/search/?searchtype=author&amp;query=Talmelli%2C+G">Giacomo Talmelli</a>, <a href="/search/?searchtype=author&amp;query=Geilen%2C+M">Moritz Geilen</a>, <a href="/search/?searchtype=author&amp;query=Heinz%2C+B">Bj枚rn Heinz</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=Meyer%2C+T">Thomas Meyer</a>, <a href="/search/?searchtype=author&amp;query=Ciubotaru%2C+F">Florin Ciubotaru</a>, <a href="/search/?searchtype=author&amp;query=Adelmann%2C+C">Christoph Adelmann</a>, <a href="/search/?searchtype=author&amp;query=Yamamoto%2C+K">Kei Yamamoto</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12744v2-abstract-short" style="display: inline;"> The emerging field of magnonics employs spin waves and their quanta, magnons, to implement wave-based computing on the micro- and nanoscale. Multi-frequency magnon networks would allow for parallel data processing within single logic elements whereas this is not the case with conventional transistor-based electronic logic. However, a lack of experimentally proven solutions to efficiently combine a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12744v2-abstract-full').style.display = 'inline'; document.getElementById('1904.12744v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12744v2-abstract-full" style="display: none;"> The emerging field of magnonics employs spin waves and their quanta, magnons, to implement wave-based computing on the micro- and nanoscale. Multi-frequency magnon networks would allow for parallel data processing within single logic elements whereas this is not the case with conventional transistor-based electronic logic. However, a lack of experimentally proven solutions to efficiently combine and separate magnons of different frequencies has impeded the intensive use of this concept. In this Letter, the experimental realization of a spin-wave demultiplexer enabling frequency-dependent separation of magnonic signals in the GHz range is demonstrated. The device is based on two-dimensional magnon transport in the form of spin-wave beams in unpatterned magnetic films. The intrinsic frequency-dependence of the beam direction is exploited to realize a passive functioning obviating an external control and additional power consumption. This approach paves the way to magnonic multiplexing circuits enabling simultaneous information transport and processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12744v2-abstract-full').style.display = 'none'; document.getElementById('1904.12744v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica Status Solidi RRL 14, 1900695 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12610">arXiv:1904.12610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.12610">pdf</a>, <a href="https://arxiv.org/ps/1904.12610">ps</a>, <a href="https://arxiv.org/format/1904.12610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.023324">10.1103/PhysRevResearch.2.023324 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional spin currents in magnetic films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">Dmytro A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Musiienko-Shmarova%2C+H+Y">Halyna Yu. Musiienko-Shmarova</a>, <a href="/search/?searchtype=author&amp;query=Tiberkevich%2C+V+S">Vasyl S. Tiberkevich</a>, <a href="/search/?searchtype=author&amp;query=Slavin%2C+A+N">Andrei N. Slavin</a>, <a href="/search/?searchtype=author&amp;query=Syvorotka%2C+I+I">Ihor I. Syvorotka</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12610v1-abstract-short" style="display: inline;"> A spin current - a flow of spin angular momentum - can be carried either by spin polarised free electrons or by magnons, the quanta of a moving collective oscillation of localised electron spins - a spin wave. Traditionally, it was assumed, that a spin wave in a magnetic film with spin-sink-free surfaces can transfer energy and angular momentum only along its propagation direction. In this work, u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12610v1-abstract-full').style.display = 'inline'; document.getElementById('1904.12610v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12610v1-abstract-full" style="display: none;"> A spin current - a flow of spin angular momentum - can be carried either by spin polarised free electrons or by magnons, the quanta of a moving collective oscillation of localised electron spins - a spin wave. Traditionally, it was assumed, that a spin wave in a magnetic film with spin-sink-free surfaces can transfer energy and angular momentum only along its propagation direction. In this work, using Brillouin light scattering spectroscopy in combination with a theory of dipole-exchange spin-wave spectra, we show that in obliquely magnetized free magnetic films the in-plane propagation of spin waves is accompanied by a transverse spin current along the film normal without any corresponding transverse transport of energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12610v1-abstract-full').style.display = 'none'; document.getElementById('1904.12610v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 023324 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.11247">arXiv:1904.11247</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.11247">pdf</a>, <a href="https://arxiv.org/ps/1904.11247">ps</a>, <a href="https://arxiv.org/format/1904.11247">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Low damping magnetic properties and perpendicular magnetic anisotropy with strong volume contribution in the Heusler alloy Fe1.5CoGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Conca%2C+A">Andres Conca</a>, <a href="/search/?searchtype=author&amp;query=Niesen%2C+A">Alessia Niesen</a>, <a href="/search/?searchtype=author&amp;query=Reiss%2C+G">G眉nter Reiss</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.11247v1-abstract-short" style="display: inline;"> We present a study of the dynamic magnetic properties of TiN-buffered epitaxial thin films of the Heusler alloy Fe$_{1.5}$CoGe. Thickness series annealed at different temperatures are prepared and the magnetic damping is measured, a lowest value of $伪=2.18\times 10^{-3}$ is obtained. The perpendicular magnetic anisotropy properties in Fe$_{1.5}$CoGe/MgO are also characterized. The evolution of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11247v1-abstract-full').style.display = 'inline'; document.getElementById('1904.11247v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.11247v1-abstract-full" style="display: none;"> We present a study of the dynamic magnetic properties of TiN-buffered epitaxial thin films of the Heusler alloy Fe$_{1.5}$CoGe. Thickness series annealed at different temperatures are prepared and the magnetic damping is measured, a lowest value of $伪=2.18\times 10^{-3}$ is obtained. The perpendicular magnetic anisotropy properties in Fe$_{1.5}$CoGe/MgO are also characterized. The evolution of the interfacial perpendicular anisotropy constant $K^{\perp}_{\rm S}$ with the annealing temperature is shown and compared with the widely used CoFeB/MgO interface. A large volume contribution to the perpendicular anisotropy of $(4.3\pm0.5)\times 10^{5}$ $\rm J/m^3$ is also found, in contrast with vanishing bulk contribution in common Co- and Fe-based Heusler alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11247v1-abstract-full').style.display = 'none'; document.getElementById('1904.11247v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.09007">arXiv:1903.09007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.09007">pdf</a>, <a href="https://arxiv.org/format/1903.09007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-13121-5">10.1038/s41467-019-13121-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ramos%2C+R">R. Ramos</a>, <a href="/search/?searchtype=author&amp;query=Hioki%2C+T">T. Hioki</a>, <a href="/search/?searchtype=author&amp;query=Hashimoto%2C+Y">Y. Hashimoto</a>, <a href="/search/?searchtype=author&amp;query=Kikkawa%2C+T">T. Kikkawa</a>, <a href="/search/?searchtype=author&amp;query=Frey%2C+P">P. Frey</a>, <a href="/search/?searchtype=author&amp;query=Kreil%2C+A+J+E">A. J. E. Kreil</a>, <a href="/search/?searchtype=author&amp;query=Vasyuchka%2C+V+I">V. I. Vasyuchka</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">A. A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">B. Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Saitoh%2C+E">E. Saitoh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.09007v1-abstract-short" style="display: inline;"> Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications. Here we report observation of phonon-resonant enhancement of SSE at room temperature and l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.09007v1-abstract-full').style.display = 'inline'; document.getElementById('1903.09007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.09007v1-abstract-full" style="display: none;"> Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications. Here we report observation of phonon-resonant enhancement of SSE at room temperature and low magnetic field. We observed in Lu2BiFe4GaO12 and enhancement 700 % greater than that in a YIG film and at very low magnetic fields around 10-1 T, almost one order of magnitude lower than that of YIG. The result can be explained by the change in the magnon dispersion induced by magnetic compensation due to the presence of non-magnetic ion substitutions. Our study provides a way to tune the magnon response in a crystal by chemical doping with potential applications for spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.09007v1-abstract-full').style.display = 'none'; document.getElementById('1903.09007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10, 5162 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06156">arXiv:1901.06156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.06156">pdf</a>, <a href="https://arxiv.org/ps/1901.06156">ps</a>, <a href="https://arxiv.org/format/1901.06156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-019-0428-5">10.1038/s41567-019-0428-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnon-Fluxon interaction in a ferromagnet/superconductor heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dobrovolskiy%2C+O+V">O. V. Dobrovolskiy</a>, <a href="/search/?searchtype=author&amp;query=Sachser%2C+R">R. Sachser</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">T. Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=Fischer%2C+T">T. Fischer</a>, <a href="/search/?searchtype=author&amp;query=Kruglyak%2C+V+V">V. V. Kruglyak</a>, <a href="/search/?searchtype=author&amp;query=Vovk%2C+R+V">R. V. Vovk</a>, <a href="/search/?searchtype=author&amp;query=Shklovskij%2C+V+A">V. A. Shklovskij</a>, <a href="/search/?searchtype=author&amp;query=Huth%2C+M">M. Huth</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">B. Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Chumak%2C+A+V">A. V. Chumak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06156v1-abstract-short" style="display: inline;"> Ferromagnetism and superconductivity are most fundamental phenomena in condensed matter physics. Entailing opposite spin orders, they share an important conceptual similarity: Disturbances in magnetic ordering in magnetic materials can propagate in the form of spin waves (magnons) while magnetic fields penetrate superconductors as a lattice of magnetic flux quanta (fluxons). Despite a rich choice&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06156v1-abstract-full').style.display = 'inline'; document.getElementById('1901.06156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06156v1-abstract-full" style="display: none;"> Ferromagnetism and superconductivity are most fundamental phenomena in condensed matter physics. Entailing opposite spin orders, they share an important conceptual similarity: Disturbances in magnetic ordering in magnetic materials can propagate in the form of spin waves (magnons) while magnetic fields penetrate superconductors as a lattice of magnetic flux quanta (fluxons). Despite a rich choice of wave and quantum phenomena predicted, magnon-fluxon coupling has not been observed experimentally so far. Here, we clearly evidence the interaction of spin waves with a flux lattice in ferromagnet/superconductor Py/Nb bilayers. We demonstrate that, in this system, the magnon frequency spectrum exhibits a Bloch-like band structure which can be tuned by the biasing magnetic field. Furthermore, we observe Doppler shifts in the frequency spectra of spin waves scattered on a flux lattice moving under the action of a transport current in the superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06156v1-abstract-full').style.display = 'none'; document.getElementById('1901.06156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05801">arXiv:1811.05801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.05801">pdf</a>, <a href="https://arxiv.org/format/1811.05801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.020406">10.1103/PhysRevB.100.020406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable space-time crystal in room-temperature magnetodielectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kreil%2C+A+J+E">Alexander J. E. Kreil</a>, <a href="/search/?searchtype=author&amp;query=Musiienko-Shmarova%2C+H+Y">Halyna Yu. Musiienko-Shmarova</a>, <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">Dmytro A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Pomyalov%2C+A">Anna Pomyalov</a>, <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Eggert%2C+S">Sebastian Eggert</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05801v1-abstract-short" style="display: inline;"> We report the experimental realization of a space-time crystal with tunable periodicity in time and space in the magnon Bose-Einstein Condensate (BEC), formed in a room-temperature Yttrium Iron Garnet (YIG) film by radio-frequency space-homogeneous magnetic field. The magnon BEC is prepared to have a well defined frequency and non-zero wavevector. We demonstrate how the crystalline &#34;density&#34; as we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05801v1-abstract-full').style.display = 'inline'; document.getElementById('1811.05801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05801v1-abstract-full" style="display: none;"> We report the experimental realization of a space-time crystal with tunable periodicity in time and space in the magnon Bose-Einstein Condensate (BEC), formed in a room-temperature Yttrium Iron Garnet (YIG) film by radio-frequency space-homogeneous magnetic field. The magnon BEC is prepared to have a well defined frequency and non-zero wavevector. We demonstrate how the crystalline &#34;density&#34; as well as the time and space textures of the resulting crystal may be tuned by varying the experimental parameters: external static magnetic field, temperature, thickness of the YIG film and power of the radio-frequency field. The proposed space-time crystals provide a new dimension for exploring dynamical phases of matter and can serve as a model nonlinear Floquet system, that brings in touch the rich fields of classical nonlinear waves, magnonics and periodically driven systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05801v1-abstract-full').style.display = 'none'; document.getElementById('1811.05801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 100, 020406 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.01042">arXiv:1809.01042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.01042">pdf</a>, <a href="https://arxiv.org/ps/1809.01042">ps</a>, <a href="https://arxiv.org/format/1809.01042">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.214439">10.1103/PhysRevB.98.214439 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separation of the two-magnon scattering contribution to damping for the determination of the spin mixing conductance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Conca%2C+A">Andres Conca</a>, <a href="/search/?searchtype=author&amp;query=Keller%2C+S">Sascha Keller</a>, <a href="/search/?searchtype=author&amp;query=Schweizer%2C+M+R">Matthias R. Schweizer</a>, <a href="/search/?searchtype=author&amp;query=Papaioannou%2C+E+T">Evangelos Th. Papaioannou</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.01042v1-abstract-short" style="display: inline;"> We present angle dependent measurements of the damping properties of epitaxial Fe layers with MgO, Al and Pt capping layers. Based on the preferential distribution of lattice defects following the crystal symmetry, we make use of a model of the defect density to separate the contribution of two-magnon scattering to the damping from the isotropic contribution originating in the spin pumping effect,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01042v1-abstract-full').style.display = 'inline'; document.getElementById('1809.01042v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.01042v1-abstract-full" style="display: none;"> We present angle dependent measurements of the damping properties of epitaxial Fe layers with MgO, Al and Pt capping layers. Based on the preferential distribution of lattice defects following the crystal symmetry, we make use of a model of the defect density to separate the contribution of two-magnon scattering to the damping from the isotropic contribution originating in the spin pumping effect, the viscous Gilbert damping and the magnetic proximity effect. The separation of the two-magnon contribution, which depends strongly on the defect density, allows for the measurement of a value of the effective spin mixing conductance which is closer to the value exclusively due to spin pumping. The influence of the defect density for bilayers systems due to the different capping layers and to the unavoidable spread in defect density from sample to sample is thus removed. This shows the potential of studying spin pumping phenomena in fully ordered systems in which this separation is possible, contrary to polycrystalline or amorphous metallic thin films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01042v1-abstract-full').style.display = 'none'; document.getElementById('1809.01042v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 214439 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.07407">arXiv:1808.07407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.07407">pdf</a>, <a href="https://arxiv.org/ps/1808.07407">ps</a>, <a href="https://arxiv.org/format/1808.07407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-10118-y">10.1038/s41467-019-10118-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-distance supercurrent transport in a room-temperature Bose-Einstein magnon condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">Dmytro A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Kreil%2C+A+J+E">Alexander J. E. Kreil</a>, <a href="/search/?searchtype=author&amp;query=Musiienko-Shmarova%2C+H+Y">Halyna Yu. Musiienko-Shmarova</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/?searchtype=author&amp;query=Pomyalov%2C+A">Anna Pomyalov</a>, <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.07407v1-abstract-short" style="display: inline;"> The term supercurrent relates to a macroscopic dissipation-free collective motion of a quantum condensate and is commonly associated with such famous low-temperature phenomena as superconductivity and superfluidity. Another type of motion of quantum condensates is second sound - a wave of the density of a condensate. Recently, we reported on an enhanced decay of a parametrically induced Bose-Einst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07407v1-abstract-full').style.display = 'inline'; document.getElementById('1808.07407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.07407v1-abstract-full" style="display: none;"> The term supercurrent relates to a macroscopic dissipation-free collective motion of a quantum condensate and is commonly associated with such famous low-temperature phenomena as superconductivity and superfluidity. Another type of motion of quantum condensates is second sound - a wave of the density of a condensate. Recently, we reported on an enhanced decay of a parametrically induced Bose-Einstein condensate (BEC) of magnons caused by a supercurrent outflow of the BEC phase from the locally heated area of a room temperature magnetic film. Here, we present the direct experimental observation of a long-distance spin transport in such a system. The condensed magnons being pushed out from the potential well within the heated area form a density wave, which propagates through the BEC many hundreds of micrometers in the form of a specific second sound pulse - Bogoliubov waves - and is reflected from the sample edge. The discovery of the long distance supercurrent transport in the magnon BEC further advances the frontier of the physics of quasiparticles and allows for the application of related transport phenomena for low-loss data transfer in perspective magnon spintronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07407v1-abstract-full').style.display = 'none'; document.getElementById('1808.07407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10:2460 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.01554">arXiv:1806.01554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.01554">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.197201">10.1103/PhysRevLett.122.197201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Backscattering immunity of dipole-exchange magnetostatic surface spin waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mohseni%2C+M">M. Mohseni</a>, <a href="/search/?searchtype=author&amp;query=Verba%2C+R">R. Verba</a>, <a href="/search/?searchtype=author&amp;query=Bracher%2C+T">T. Bracher</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">D. A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">B. Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">P. Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.01554v3-abstract-short" style="display: inline;"> The existence of backscattering-immune spin-wave modes is demonstrated in magnetic thin films of nano-scale thickness. Our results reveal that chiral Magneto Static Surface Waves (cMSSWs), which propagate perpendicular to the magnetization direction in an in-plane magnetized thin film, are robust against backscattering from surface defects. cMSSWs are protected against various types of surface inh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.01554v3-abstract-full').style.display = 'inline'; document.getElementById('1806.01554v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.01554v3-abstract-full" style="display: none;"> The existence of backscattering-immune spin-wave modes is demonstrated in magnetic thin films of nano-scale thickness. Our results reveal that chiral Magneto Static Surface Waves (cMSSWs), which propagate perpendicular to the magnetization direction in an in-plane magnetized thin film, are robust against backscattering from surface defects. cMSSWs are protected against various types of surface inhomogeneities and defects as long as their frequency lies inside the gap of the volume modes. Our explanation is independent of the topology of the modes and predicts that this robustness is a consequence of symmetry breaking of the dynamic magnetic fields of cMSSWs due to the off-diagonal part of the dipolar interaction tensor, which is present both for long- (dipole dominated) and short-wavelength (exchange dominated) spin waves. Micromagnetic simulations confirm the robust character of the cMSSWs. Our results open a new direction in designing highly efficient magnonic logic elements and devices employing cMSSWs in nano-scale thin films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.01554v3-abstract-full').style.display = 'none'; document.getElementById('1806.01554v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 197201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00228">arXiv:1806.00228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.00228">pdf</a>, <a href="https://arxiv.org/format/1806.00228">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7567/JJAP.57.070308">10.7567/JJAP.57.070308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical determination of the exchange stiffness constant in an iron garnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Matsumoto%2C+K">Keita Matsumoto</a>, <a href="/search/?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D">Dmytro Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Fischer%2C+T">Tobias Fischer</a>, <a href="/search/?searchtype=author&amp;query=Geilen%2C+M">Moritz Geilen</a>, <a href="/search/?searchtype=author&amp;query=Heussner%2C+F">Frank Heussner</a>, <a href="/search/?searchtype=author&amp;query=Meyer%2C+T">Thomas Meyer</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Satoh%2C+T">Takuya Satoh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00228v2-abstract-short" style="display: inline;"> Brillouin light scattering measurements were performed in the backscattering geometry on a Bi-substituted rare earth iron garnet. We observed two different peaks, one attributed to a surface spin wave in the dipole-exchange regime. The other is referred to as a backscattering magnon mode, because the incident light in this case is scattered backward by exchange-dominated spin wave inside the mater&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00228v2-abstract-full').style.display = 'inline'; document.getElementById('1806.00228v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00228v2-abstract-full" style="display: none;"> Brillouin light scattering measurements were performed in the backscattering geometry on a Bi-substituted rare earth iron garnet. We observed two different peaks, one attributed to a surface spin wave in the dipole-exchange regime. The other is referred to as a backscattering magnon mode, because the incident light in this case is scattered backward by exchange-dominated spin wave inside the material. We propose a method to estimate the exchange stiffness constant from the frequency of the backscattering magnon mode. The obtained value is comparable with the previously reported values for Y$ _3 $Fe$ _5 $O$ _{12} $. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00228v2-abstract-full').style.display = 'none'; document.getElementById('1806.00228v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Jpn. J. Appl. Phys. 57, 070508 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.11548">arXiv:1803.11548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.11548">pdf</a>, <a href="https://arxiv.org/ps/1803.11548">ps</a>, <a href="https://arxiv.org/format/1803.11548">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.077203">10.1103/PhysRevLett.121.077203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From Kinetic Instability to Bose-Einstein Condensation and Magnon Supercurrents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kreil%2C+A+J+E">Alexander J. E. Kreil</a>, <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">Dmytro A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Musiienko-Shmarova%2C+H+Y">Halyna Yu. Musiienko-Shmarova</a>, <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Pomyalov%2C+A">Anna Pomyalov</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.11548v1-abstract-short" style="display: inline;"> Evolution of an overpopulated gas of magnons to a Bose-Einstein condensate and excitation of a magnon supercurrent, propelled by a phase gradient in the condensate wave function, can be observed at room-temperature by means of the Brillouin light scattering spectroscopy in an yttrium iron garnet material. We study these phenomena in a wide range of external magnetic fields in order to understand t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.11548v1-abstract-full').style.display = 'inline'; document.getElementById('1803.11548v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.11548v1-abstract-full" style="display: none;"> Evolution of an overpopulated gas of magnons to a Bose-Einstein condensate and excitation of a magnon supercurrent, propelled by a phase gradient in the condensate wave function, can be observed at room-temperature by means of the Brillouin light scattering spectroscopy in an yttrium iron garnet material. We study these phenomena in a wide range of external magnetic fields in order to understand their properties when externally pumped magnons are transferred towards the condensed state via two distinct channels: A multistage Kolmogorov-Zakharov cascade of the weak-wave turbulence or a one-step kinetic-instability process. Our main result is that opening the kinetic instability channel leads to the formation of a much denser magnon condensate and to a stronger magnon supercurrent compared to the cascade mechanism alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.11548v1-abstract-full').style.display = 'none'; document.getElementById('1803.11548v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 077203 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.09593">arXiv:1802.09593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.09593">pdf</a>, <a href="https://arxiv.org/format/1802.09593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6463/aac0f1">10.1088/1361-6463/aac0f1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin Seebeck effect and ballistic transport of quasi-acoustic magnons in room-temperature yttrium iron garnet films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Noack%2C+T">Timo Noack</a>, <a href="/search/?searchtype=author&amp;query=Musiienko-Shmarova%2C+H+Y">Halyna Yu. Musiienko-Shmarova</a>, <a href="/search/?searchtype=author&amp;query=Langner%2C+T">Thomas Langner</a>, <a href="/search/?searchtype=author&amp;query=Heussner%2C+F">Frank Heussner</a>, <a href="/search/?searchtype=author&amp;query=Lauer%2C+V">Viktor Lauer</a>, <a href="/search/?searchtype=author&amp;query=Heinz%2C+B">Bj枚rn Heinz</a>, <a href="/search/?searchtype=author&amp;query=Bozhko%2C+D+A">Dmytro A. Bozhko</a>, <a href="/search/?searchtype=author&amp;query=Vasyuchka%2C+V+I">Vitaliy I. Vasyuchka</a>, <a href="/search/?searchtype=author&amp;query=Pomyalov%2C+A">Anna Pomyalov</a>, <a href="/search/?searchtype=author&amp;query=L%27vov%2C+V+S">Victor S. L&#39;vov</a>, <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.09593v1-abstract-short" style="display: inline;"> We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09593v1-abstract-full').style.display = 'inline'; document.getElementById('1802.09593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.09593v1-abstract-full" style="display: none;"> We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the time evolution of the LSSE is determined by the evolution of the thermal gradient triggering the flux of thermal magnons in the vicinity of the YIG/Pt interface. These magnons move ballistically within the YIG film with a constant group velocity, while their number decays exponentially within an effective propagation length. The ballistic flight of the magnons with energies above 20K is a result of their almost linear dispersion law, similar to that of acoustic phonons. By fitting the time-dependent LSSE signal for different film thicknesses varying by almost an order of magnitude, we found that the effective propagation length is practically independent of the YIG film thickness. We consider this fact as strong support of a ballistic transport scenario - the ballistic propagation of quasi-acoustic magnons in room temperature YIG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09593v1-abstract-full').style.display = 'none'; document.getElementById('1802.09593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. D: Appl. Phys. 51, 234003 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hillebrands%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10