CINXE.COM

Search results for: enzyme

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: enzyme</title> <meta name="description" content="Search results for: enzyme"> <meta name="keywords" content="enzyme"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="enzyme" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="enzyme"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 896</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: enzyme</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">746</span> Effect of Zinc-Lysine on Growth, Photosynthesis, Oxidative Stress and Antioxidant System and Chromium Uptake in Rice under Cr Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shafaqat%20Ali">Shafaqat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Afzal%20Hussain"> Afzal Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rizwan"> Muhammad Rizwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Longhua%20Wu"> Longhua Wu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chromium (Cr) is one of the widespread and toxic trace elements present in the agricultural land. Chromium can enter into the food chain mainly through agricultural crops grown on Cr-contaminated soils such as rice (Oryza sativa L.). The current study was done to evaluate the effects of increasing concentrations foliar applied zinc (Zn) chelated with lysine (Zn-lys) (0, 10, 20, and 30 mg L⁻¹) on rice biomass, photosynthesis, oxidative stress, key antioxidant enzyme activities and Cr uptake under increasing levels of Cr in the soil (0, 100, 500 mg kg⁻¹). Cr-induced toxicity reduced the height of plants, biomass, chlorophyll contents, gas exchange parameters, and antioxidant enzyme activities while increased the Cr concentrations and oxidative stress (malondialdehyde, electrolyte leakage, and H₂O₂) in shoots and roots than control plants. Foliar application of Zn-lys increased the plant growth, photosynthesis, Zn concentrations, and enzyme activities in rice seedlings. In addition, Zn-lys reduced the Cr concentrations and oxidative stress compared to the respective Cr treatments alone. The present results indicate that foliar Zn-lys stimulates the antioxidant defense system in rice, increase the rice growth while reduced the Cr concentrations in plants by promoting the Zn uptake and photosynthesis. Taken together, foliar spray of Zn-lys chelate can efficiently be employed for improving plant growth and Zn contents while reducing Cr concentration in rice grown in Cr-contaminated and Zn-deficient soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc-lysine" title=" zinc-lysine"> zinc-lysine</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthesis" title=" photosynthesis"> photosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/76594/effect-of-zinc-lysine-on-growth-photosynthesis-oxidative-stress-and-antioxidant-system-and-chromium-uptake-in-rice-under-cr-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">745</span> The Effects of pH on p53 Phosphorylation by Ataxia Telangiectasia Mutated Kinase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serap%20Pektas">Serap Pektas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ataxia telangiectasia mutated (ATM) is a serine-threonine kinase, which is the major regulator of the DNA damage response. ATM is activated upon the formation of DNA double-strand breaks (DSBs) in the cells. ATM phosphorylates the proteins involved in apoptotic responses, cell cycle checkpoint control, DNA repair, etc. Tumor protein p53, known as p53 is one of these proteins that phosphorylated by ATM. Phosphorylation of p53 at Ser15 residue leads to p53 stabilization in the cells. Often enzymes activity is affected by hydrogen ion concentration (pH). In order to find the optimal pH range for ATM activity, steady-state kinetic assays were performed at acidic and basic pH ranges. Ser15 phosphorylation of p53 is determined by using ELISA. The results indicated that the phosphorylation rate was better at basic pH range compared with the acidic pH range. This could be due to enzyme stability, or enzyme-substrate interaction is pH dependent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ataxia%20telangiectasia%20mutated" title="ataxia telangiectasia mutated">ataxia telangiectasia mutated</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20double%20strand%20breaks" title=" DNA double strand breaks"> DNA double strand breaks</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20repair" title=" DNA repair"> DNA repair</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20protein%20p53" title=" tumor protein p53"> tumor protein p53</a> </p> <a href="https://publications.waset.org/abstracts/109929/the-effects-of-ph-on-p53-phosphorylation-by-ataxia-telangiectasia-mutated-kinase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">744</span> Activation of Caspase 3 by Terpenoids and Flavonoids in Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nusrat%20Masood">Nusrat Masood</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Dubey"> Vijaya Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Suaib%20Luqman"> Suaib Luqman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caspase 3, a member of cysteine-aspartic acid protease family, is an imperative indicator for cell death particularly when substantiating apoptosis. Thus, caspase 3 is an interesting target for the discovery and development of anticancer agent. We adopted a four level assessment of both terpenoids and flavonoids and thus experimentally performed the enzymatic assay in cell free system as well as in cancer cell line which was validated through real time expression and molecular interaction studies. A significant difference was observed with both the class of natural products indicating terpenoids as better activators of caspase 3 compared to flavonoids both in the cell free system as well as in cell lines. The expression analysis, activation constant and binding energy also correlate well with the enzyme activity. Overall, terpenoids had an unswerving effect on caspase 3 in all the tested system while flavonoids indirectly affect enzyme activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caspase%203" title="Caspase 3">Caspase 3</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenoids" title=" terpenoids"> terpenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20constant" title=" activation constant"> activation constant</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20energy" title=" binding energy"> binding energy</a> </p> <a href="https://publications.waset.org/abstracts/72938/activation-of-caspase-3-by-terpenoids-and-flavonoids-in-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">743</span> Effects of Irrigation Intervals on Antioxidant Enzyme Activity in Black Carrot Leaves (Daucus carota L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Arslan">Hakan Arslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Ekinci"> Deniz Ekinci</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Gungor"> Alper Gungor</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Bilir"> Gurkan Bilir</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Tas"> Omer Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Altun"> Mehmet Altun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drought is one of the major abiotic stresses affecting the agricultural production worldwide. In this study, Leaf samples were taken from the carrot plants grown under drought stress conditions during the harvesting period. The plants were irrigated in three irrigation interval (4, 6 and 8 days) and Irrigation water regime was set up in pots. The changes in activities of antioxidant enzymes such as glutathione reductase (GR), glutathione s-transferase (GST), superoxide dismutase (SOD)) in leaves of black carrot were investigated. The activities of antioxidant enzymes (GR, GST, SOD) were varied significantly with irrigation intervals. The highest value of GR, GST and SOD were determined in the irrigation interval of 6 days. All antioxidant activity values were decreased in 8 days of irrigation interval. As a result of the study, it has been suggested that optimum irrigation intervals for plants can be used in antioxidant enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzyme" title="antioxidant enzyme">antioxidant enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=carrot" title=" carrot"> carrot</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20interval" title=" irrigation interval"> irrigation interval</a> </p> <a href="https://publications.waset.org/abstracts/96989/effects-of-irrigation-intervals-on-antioxidant-enzyme-activity-in-black-carrot-leaves-daucus-carota-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">742</span> Magnetic Silica Nanoparticles as Viable Support for the Immobilization of Oxidative Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Moldes-Diz">Y. Moldes-Diz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gamallo"> M. Gamallo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Eibes"> G. Eibes</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Vazquez-Vazquez"> C. Vazquez-Vazquez</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Feijoo"> G. Feijoo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Lema"> J. M. Lema</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Moreira"> M. T. Moreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are excellent biocatalysts for biotechnological and environmental applications because of their high activity, selectivity, and specificity. Specifically, these characteristics allow them to perform the oxidation of recalcitrant compounds with simple requirements for the catalysis (presence of molecular oxygen). Nevertheless, the low stability under unfavorable conditions (pH, inactivating agents or temperature) and high production costs still limits their use for practical applications. Immobilization of enzymes has proven particularly valuable to avoid some of the aforementioned drawbacks. Magnetic nanoparticles (MNPs) have received increasing attention as carriers for enzyme immobilization since they can potentially provide an easy recovery of the biocatalyst from the reaction medium under an external magnetic field. In the present work, silica-coated magnetic nanoparticles (Fe3O4@SiO2) were prepared, characterized and used for laccase immobilization by covalent binding. The synthesis of Fe3O4@SiO2 was performed in a two-step procedure: co-precipitation and reverse microemulsion. The influence of immobilization conditions: concentrations of the functionalization agent (3-aminopropyl-triethoxy-silane) and the cross-linker (glutaraldehyde) as well as the influence of pH, T or inactivating agents were evaluated. In general, immobilized laccase showed superior stability compared to that of free enzyme. The reusability of the biocatalyst was demonstrated in successive batch reactions, where enzyme activity was maintained above 65% after 8 cycles of oxidation of the substrate 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica-coated%20magnetic%20nanoparticles" title="silica-coated magnetic nanoparticles">silica-coated magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=laccase" title=" laccase"> laccase</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/55780/magnetic-silica-nanoparticles-as-viable-support-for-the-immobilization-of-oxidative-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">741</span> Candida antartica Lipase Assisted Enrichment of n-3 PUFA in Indian Sardine Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Belur">Prasanna Belur</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Ashwini"> P. R. Ashwini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sampath%20Charanyaa"> Sampath Charanyaa</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Regupathi"> I. Regupathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indian oil sardine (Sardinella longiceps) are one of the richest and cheapest sources of n-3 polyunsaturated fatty acids (n-3 PUFA) such as Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA). The health benefits conferred by n-3 PUFA upon consumption, in the prevention and treatment of coronary, neuromuscular, immunological disorders and allergic conditions are well documented. Natural refined Indian Sardine oil generally contain about 25% (w/w) n-3 PUFA along with various unsaturated and saturated fatty acids in the form of mono, di, and triglycerides. Having high concentration of n-3 PUFA content in the glyceride form is most desirable for human consumption to avail maximum health benefits. Thus, enhancing the n-3 PUFA content while retaining it in the glyceride form with green technology is the need of the hour. In this study, refined Indian Sardine oil was subjected to selective hydrolysis by Candida antartica lipase to enhance n-3 PUFA content. The degree of hydrolysis and enhancement of n-3 PUFA content was estimated by determining acid value, Iodine value, EPA and DHA content (by Gas Chromatographic methods after derivitization) before and after hydrolysis. Various reaction parameters such as pH, temperature, enzyme load, lipid to aqueous phase volume ratio and incubation time were optimized by conducting trials with one parameter at a time approach. Incubating enzyme solution with refined sardine oil with a volume ratio of 1:1, at pH 7.0, for 60 minutes at 50 °C, with an enzyme load of 60 mg/ml was found to be optimum. After enzymatic treatment, the oil was subjected to refining to remove free fatty acids and moisture content using previously optimized refining technology. Enzymatic treatment at the optimal conditions resulted in 12.11 % enhancement in Degree of hydrolysis. Iodine number had increased by 9.7 % and n-3 PUFA content was enhanced by 112 % (w/w). Selective enhancement of n-3 PUFA glycerides, eliminating saturated and unsaturated fatty acids from the oil using enzyme is an interesting preposition as this technique is environment-friendly, cost effective and provide natural source of n-3 PUFA rich oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Candida%20antartica" title="Candida antartica">Candida antartica</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=n-3%20polyunsaturated%20fatty%20acids" title=" n-3 polyunsaturated fatty acids"> n-3 polyunsaturated fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=sardine%20oil" title=" sardine oil"> sardine oil</a> </p> <a href="https://publications.waset.org/abstracts/67470/candida-antartica-lipase-assisted-enrichment-of-n-3-pufa-in-indian-sardine-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">740</span> Amperometric Biosensor for Glucose Determination Based on a Recombinant Mn Peroxidase from Corn Cross-linked to a Gold Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Izadyar">Anahita Izadyar</a>, <a href="https://publications.waset.org/abstracts/search?q=My%20Ni%20Van"> My Ni Van</a>, <a href="https://publications.waset.org/abstracts/search?q=Kayleigh%20Amber%20Rodriguez"> Kayleigh Amber Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilwoo%20Seok"> Ilwoo Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20E.%20Hood"> Elizabeth E. Hood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a recombinant enzyme derived from corn and a simple modification, we fabricated a facile, fast, and cost-beneficial biosensor to measure glucose. The Nafion/ Plant Produced Mn Peroxidase (PPMP)– glucose oxidase (GOx)- Bovine serum albumin (BSA) /Au electrode showed an excellent amperometric response to detect glucose. This biosensor is capable of responding to a wide range of glucose—20.0 µM−15.0 mM and has a lower detection limit (LOD) of 2.90µM. The reproducibility response using six electrodes is also very substantial and indicates the high capability of this biosensor to detect a wide range of 3.10±0.19µM to 13.2±1.8 mM glucose concentration. Selectivity of this electrode was investigated in an optimized experimental solution contains 10% diet green tea with citrus containing ascorbic acid (AA), and citric acid (CA) in a wide concentration of glucose at 0.02 to 14.0mM with an LOD of 3.10µM. Reproducibility was also investigated using 4 electrodes in this sample and shows notable results in the wide concentration range of 3.35±0.45µM to of 13.0 ± 0.81 mM. We also used other voltammetry methods to evaluate this biosensor. We applied linear sweep voltammetry (LSV) and this technique shows a wide range of 0.10−15.0 mM to detect glucose with a lower detection limit of 19.5µM. The performance and strength of this enzyme biosensor were the simplicity, wide linear ranges, sensitivities, selectivity, and low limits of detection. We expect that the modified biosensor has the potential for monitoring various biofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant-produced%20manganese%20peroxidase" title="plant-produced manganese peroxidase">plant-produced manganese peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme-based%20biosensors" title=" enzyme-based biosensors"> enzyme-based biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20gold%20electrode" title=" modified gold electrode"> modified gold electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20oxidase" title=" glucose oxidase"> glucose oxidase</a> </p> <a href="https://publications.waset.org/abstracts/133907/amperometric-biosensor-for-glucose-determination-based-on-a-recombinant-mn-peroxidase-from-corn-cross-linked-to-a-gold-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">739</span> The Effects of Eriocitrin on Obesity and Hepatic Steatosis in High-Fat Diet-Induced Obese C57BL/6 Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=So%20Young%20Kim">So Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Young%20Kwon"> Eun-Young Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Bora%20Choi"> Bora Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi%20Kyeong%20Yu"> Mi Kyeong Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Seon%20Jeong%20Lee"> Seon Jeong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Sook%20Choi"> Myung-Sook Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lemon (Citrus limon) has various beneficial effect. Eriocitrin (eriodictyol 7-rutinoside) is the main ingredient of lemon fruit and is known to have antioxidative effects. However, there has been little research about the effects of eriocitrin on obesity and regulation of lipid profiles levels. In the present study, we investigated the anti-obesity and lipid-lowering effects of eriocitrin in mice fed high-fat diet (HFD). The 4 week-old male C57BL/6 mice were randomly divided into two groups and were fed HFD (20% fat, w/w) and HFD supplemented with eriocitrin (0.005%, w/w, EC) for 16 weeks. Food intake, body weight and white adipose tissue weight (WAT) were measured and plasma free fatty acid (FFA), apolipoprotein (Apo) B100 level and hepatic enzyme activity were analyzed. No differences were shown between the HFD and EC groups in body weight and food intake. However EC supplementation significantly reduced the weights of epididymal, subcutaneous and total WAT. In addition, the levels of plasma FFA and Apo B100 were significantly decreased in the EC group compared with the HFD group. Moreover, the activities of glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) related to fatty acids synthesis were significantly lower in the EC group than in the HFD group in liver. Therefore, this study indicates that eriocitrin has beneficial effects on adiposity and nonalcholic fatty liver diseases by modulating hepatic lipid-regulating enzyme activities and plasma lipid profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiobesity" title="antiobesity">antiobesity</a>, <a href="https://publications.waset.org/abstracts/search?q=eriocitrin" title=" eriocitrin"> eriocitrin</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20fat%20diet" title=" high fat diet"> high fat diet</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20lowering" title=" lipid lowering"> lipid lowering</a> </p> <a href="https://publications.waset.org/abstracts/60909/the-effects-of-eriocitrin-on-obesity-and-hepatic-steatosis-in-high-fat-diet-induced-obese-c57bl6-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">738</span> Comparative Study between Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blockers on Ulcerative Colitis Induced Experimentally in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20H.%20El-Medany">Azza H. El-Medany</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20H.%20Hagar"> Hanan H. Hagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamila%20H.%20El-Medany"> Jamila H. El-Medany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ulcerative colitis (UC) is one of chronic inflammatory diseases primarily affecting colon with unknown etiology. Some researches papers mentioned the possibility of the use of drugs that affect the angiotensin II in reducing the complication of ulcerative colitis. The aim of the present study is to evaluate the potential protective and therapeutic effects of captopril and valsartan on ulcerative colitis induced experimentally in rats using acetic acid. The results were assessed by histological assessment of colonic tissues and measurement of malondialdehyde (MDA), tumor necrosis factor (TNF-α), transforming growth factor (TGF-1B), angiotensin converting enzyme (ACE), reduced glutathione (GSH) and platelet activating factor (PAF) levels in colonic tissues. Oral pre-treatment with captopril or valsartan in a dose of 30 mgkg-1 body weight for 2 weeks before induction of colitis (prophylactic groups) and continuously for 2 weeks after induction (therapeutic groups) significantly reduce MDA, TNF-α, PAF, TGF-1B and ACE levels in colonic tissues as compared to acetic acid control group. Also, a significant increase in GSH level was observed in colonic tissues. Captopril and valsartan attenuated the macroscopic and microscopic colonic damage induced by acetic acid. These results suggest that either captopril or valsartan may be effective as prophylactic or treatment of UC through inhibition of ACE and scavenging effect on oxygen-derived free radicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=captopril" title="captopril">captopril</a>, <a href="https://publications.waset.org/abstracts/search?q=valsartan" title=" valsartan"> valsartan</a>, <a href="https://publications.waset.org/abstracts/search?q=angiotensin%20converting%20enzyme" title=" angiotensin converting enzyme"> angiotensin converting enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20glutathione" title=" reduced glutathione"> reduced glutathione</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20necrosis%20factor" title=" tumor necrosis factor"> tumor necrosis factor</a> </p> <a href="https://publications.waset.org/abstracts/3473/comparative-study-between-angiotensin-converting-enzyme-inhibitors-and-angiotensin-receptor-blockers-on-ulcerative-colitis-induced-experimentally-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">737</span> Antibacterial and Antityrosinase Activity of Isolated Compounds from Stem Bark of Ficus platyphylla Del</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminu%20Muhammad">Aminu Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Ya%E2%80%99u"> Mustapha Ya’u</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasnah%20Mohd%20Sirat"> Hasnah Mohd Sirat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation of the chemical constituents into the stem bark of Ficus platyphylla (Moraceae) has resulted in the isolation of hordenine, epicatechin, lupeol, lupeol acetate and α-amyrin acetate. Their structures were determined using spectroscopic data as well as comparison with literature data. The antibacterial assay has been tested against Gram positive and Gram negative bacteria, while the tyrosinase inhibition assay was examined using L-Dopa as a substrate of mushroom tyrosinase enzyme. hordenine, epicatechin, lupeol, lupeol acetate and α-amyrin acetate showed minimum inhibition concentration (MIC) values in the range of 225-900 µg/mL against the bacterial strains. Lupeol, lupeol acetate and α-amyrin acetate showed significant antityrosinase activity against mushroom tyrosinase enzyme with percent inhibition of 67.7%, 66.2% and 62.2%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antityrosinase" title=" antityrosinase"> antityrosinase</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20constituents" title=" chemical constituents"> chemical constituents</a>, <a href="https://publications.waset.org/abstracts/search?q=Ficus%20platyphylla" title=" Ficus platyphylla"> Ficus platyphylla</a> </p> <a href="https://publications.waset.org/abstracts/46753/antibacterial-and-antityrosinase-activity-of-isolated-compounds-from-stem-bark-of-ficus-platyphylla-del" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">736</span> Growth Performance and Meat Quality of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum-Based Diets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magaya%20Rutendo%20P.">Magaya Rutendo P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutibvu%20Tonderai"> Mutibvu Tonderai</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyahangare%20emmanuel%20T."> Nyahangare emmanuel T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ncube%20Sharai"> Ncube Sharai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to evaluate the effects of phytase and tannase addition in broiler diets on growth performance and meat quality of broilers fed sorghum-based diets. Twelve experimental diets were formulated at three sorghum levels, which include 0, 50, and 100%, and 4 enzyme levels: No enzyme, 5000FTU phytase, 25TU tannase, and a combination of 5000FTU phytase plus 25TU tannase. Data on voluntary feed intake, average weekly weight gain and feed conversion ratio were recorded and used to assess growth performance. Meat technical and nutritional parameters were used to determine meat quality. Broilers fed total sorghum diets with phytase and tannase enzyme combination had the highest feed intake in the first (24.4 ± 0.04g/bird/day) and second weeks of life (23.0 ± 1.06g/bird/day), respectively. Complete sorghum diets with phytase (83.0 ± 0.88g/bird/day) and tannase (122.0 ± 0.88g/bird/day) showed the highest feed intake in the third and fourth weeks, respectively. Broilers fed 50% sorghum diets with tannase (135.3 ± 0.05g/bird/day) and complete maize diets with phytase (158.1 ± 0.88g/bird/day) had the highest feed intake during weeks five and six, respectively. Broilers fed a 50% sorghum diet without enzymes had the highest weight gain in the final week (606.5 ± 32.39g). Comparable feed conversion was observed in birds fed complete maize and 50% sorghum diets. Dietary treatment significantly influences the live body, carcass, liver, kidneys, abdominal fat pad weight, and intestinal length. However, it did not affect Pectoralis major meat nutritional and technical parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feed%20efficiency" title="feed efficiency">feed efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sorghum" title=" sorghum"> sorghum</a>, <a href="https://publications.waset.org/abstracts/search?q=carcass" title=" carcass"> carcass</a>, <a href="https://publications.waset.org/abstracts/search?q=exogenous%20enzymes" title=" exogenous enzymes"> exogenous enzymes</a> </p> <a href="https://publications.waset.org/abstracts/182189/growth-performance-and-meat-quality-of-cobb-500-broilers-fed-phytase-and-tannase-treated-sorghum-based-diets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">735</span> Effects of Bile Acids and Lipase Supplementation in Low-Energy Diets on Growth Performance and Meat Quality in Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Adeel%20Arshad">Muhammad Adeel Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaukat%20Ali%20Bhatti"> Shaukat Ali Bhatti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aimed to investigate the effect of bile acids and lipase supplementation in low-energy diets on growth performance and meat quality of broilers. Seven hundred day-old Cobb-500 broiler chicks with an average initial body weight of 45.9 ± 0.3 g were assigned to 5 dietary treatments, with five replications of 28 birds each in a completely randomized design. The five treatments were as follows: (i) HE: broilers received a diet with high energy content; (ii) LE: broilers received a diet with low energy content and energy content reduced by 100 kcal/kg as compared to HE; (iii) LEB: broilers received a diet similar to the LE group supplemented with 300 g/ton bile acids; (iv) LEL: broilers received a diet similar to the LE group supplemented with 180 g/ton lipase enzyme and (v) LEBL: broilers received a diet similar to the LE group supplemented with both 300 g/ton bile acids and 180 g/ton lipase enzyme. The experimental period lasted for 35 days. Broilers fed HE had a lower (P < 0.05) body weight (BW) gain and lower feed intake (1-35 d), but during finisher period (21-35 d), BW gain was similar with other treatments. Feed conversion ratio (FCR) was lower in HE and higher in LEBL group (P < 0.05), while the LE, LEB, and LEL had intermediate values. At 35 d no difference occurred between treatment for water holding capacity and pH of breast and thigh muscles (P > 0.05). The relative weight of pancreas was higher (P < 0.05) in LEB treatment but lower (P < 0.05) in LEL treatment. In conclusion, bile acids and lipase supplementation at 300 g/ton and 150g/ton of feed in low-energy diets respectively had no effect on broiler performance and meat quality. However, FCR was improved in HE treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bile%20acids" title="bile acids">bile acids</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a> </p> <a href="https://publications.waset.org/abstracts/128011/effects-of-bile-acids-and-lipase-supplementation-in-low-energy-diets-on-growth-performance-and-meat-quality-in-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">734</span> Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Bibi">Zainab Bibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Afsheen%20Aman"> Afsheen Aman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Ali%20Ul%20Qader"> Shah Ali Ul Qader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geobacillus" title="geobacillus">geobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/66925/enhanced-production-of-endo-v-14-xylanase-from-a-newly-isolated-thermophile-geobacillus-stearothermophilus-kibge-ib29-for-prospective-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">733</span> Antidiabetic Effect of Methanolic Leaves Extract and Isolated Constituents from Saraca Asoca</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar">Sunil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The present study was performed to investigate the antidiabetic effect of the constituents isolated from Sarca asoca by enzyme inhibitory activity. Methods: The dried leaves of Sarca asoca were defatted with petroleum ether and further the same amount plant materials were extracted with methanol. The dried methanol extract was subjected to fractionation and chromatographic separation, which led to the isolation of kaemferol, β-sitosterol and quercetin stigmasterol. Their structures were elucidated on the basis of spectroscopic studies as well as by comparison with the data available in the literature. The compounds were evaluated for in vitro enzyme inhibition effect. Results: The isolated compounds kaemferol, β-sitosterol and stigmasterol showed 45.32, 40.5 and 41.23% α-amylase inhibition respectively and 43.45, 39.29 and 32.43% α-glucosidase inhibition respectively at the conc. of 50 µg/kg. Conclusion: The compounds isolated from Sarca asoca showed in vitro and in vivo antidiabetic activity. So, Euphorbia hirta is a beneficial plant for management of diabetic disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=quercetin" title=" quercetin"> quercetin</a>, <a href="https://publications.waset.org/abstracts/search?q=sitosterol" title=" sitosterol"> sitosterol</a>, <a href="https://publications.waset.org/abstracts/search?q=stigmasterol" title=" stigmasterol"> stigmasterol</a> </p> <a href="https://publications.waset.org/abstracts/30536/antidiabetic-effect-of-methanolic-leaves-extract-and-isolated-constituents-from-saraca-asoca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">732</span> Selective Immobilization of Fructosyltransferase onto Glutaraldehyde Modified Support and Its Application in the Production of Fructo-Oligosaccharides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milica%20B.%20Veljkovi%C4%87">Milica B. Veljković</a>, <a href="https://publications.waset.org/abstracts/search?q=Milica%20B.%20Simovi%C4%87"> Milica B. Simović</a>, <a href="https://publications.waset.org/abstracts/search?q=Marija%20M.%20%C4%86orovi%C4%87"> Marija M. Ćorović</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20D.%20Milivojevi%C4%87"> Ana D. Milivojević</a>, <a href="https://publications.waset.org/abstracts/search?q=Anja%20I.%20Petrov"> Anja I. Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarina%20M.%20Banjanac"> Katarina M. Banjanac</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejan%20I.%20Bezbradica"> Dejan I. Bezbradica</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, the scientific community has recognized the growing importance of prebiotics, and therefore, numerous studies are focused on their economic production due to their low presence in natural resources. It has been confirmed that prebiotics is a source of energy for probiotics in the gastrointestinal tract (GIT) and enable their proliferation, consequently leading to the normal functioning of the intestinal microbiota. Also, products of their fermentation are short-chain fatty acids (SCFA), which play a key role in maintaining and improving the health not only of the GIT but also of the whole organism. Among several confirmed prebiotics, fructooligosaccharides (FOS) are considered interesting candidates for use in a wide range of products in the food industry. They are characterized as low-calorie and non-cariogenic substances that represent an adequate sugar substitute and can be considered suitable for use in products intended for diabetics. The subject of this research will be the production of FOS by transforming sucrose using a fructosyltransferase (FTase) present in commercial preparation Pectinex® Ultra SP-L, with special emphasis on the development of adequate FTase immobilization method that would enable selective isolation of the enzyme responsible for the synthesis of FOS from the complex enzymatic mixture. This would lead to considerable enzyme purification and allow its direct incorporation into different sucrose-based products without the fear that the action of the other hydrolytic enzymes may adversely affect the products' functional characteristics. Accordingly, the possibility of selective immobilization of the enzyme using support with primary amino groups, Purolite® A109, which was previously activated and modified using glutaraldehyde (GA), was investigated. In the initial phase of the research, the effects of individual immobilization parameters such as pH, enzyme concentration, and immobilization time were investigated to optimize the process using support chemically activated with 15% and 0.5% GA to form dimers and monomers, respectively. It was determined that highly active immobilized preparations (371.8 IU/g of support - dimer and 213.8 IU/g of support – monomer) were achieved under acidic conditions (pH 4) provided that an enzyme concentration was 50 mg/g of support after 7 h and 3 h, respectively. Bearing in mind the obtained results of the expressed activity, it is noticeable that the formation of dimers showed higher reactivity compared to the form of monomers. Also, in the case of support modification using 15% GA, the value of the ratio of FTase and pectinase (as dominant enzyme mixture component) activity immobilization yields was 16.45, indicating the high feasibility of selective immobilization of FTase on modified polystyrene resin. After obtaining immobilized preparations of satisfactory features, they were tested in a reaction of FOS synthesis under determined optimal conditions. The maximum FOS yields of approximately 50% of total carbohydrates in the reaction mixture were recorded after 21 h. Finally, it can be concluded that the examined immobilization method yielded highly active, stable and, more importantly, refined enzyme preparation that can be further utilized on a larger scale for the development of continual processes for FOS synthesis, as well as for modification of different sucrose-based mediums. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20modification" title="chemical modification">chemical modification</a>, <a href="https://publications.waset.org/abstracts/search?q=fructooligosaccharides" title=" fructooligosaccharides"> fructooligosaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=glutaraldehyde" title=" glutaraldehyde"> glutaraldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization%20of%20fructosyltransferase" title=" immobilization of fructosyltransferase"> immobilization of fructosyltransferase</a> </p> <a href="https://publications.waset.org/abstracts/145471/selective-immobilization-of-fructosyltransferase-onto-glutaraldehyde-modified-support-and-its-application-in-the-production-of-fructo-oligosaccharides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">731</span> Extremophilic Amylases of Mycelial Fungi Strains Isolated in South Caucasus for Starch Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Urushadze">T. Urushadze</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khvedelidze"> R. Khvedelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kutateladze"> L. Kutateladze</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jobava"> M. Jobava</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Burduli"> T. Burduli</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Alexidze"> T. Alexidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing interest in reliable, wasteless, ecologically friendly technologies. About 40% of enzymes produced all over the world are used for production of syrups with high concentration of glucose-fructose. One of such technologies complies obtaining fermentable sugar glucose from raw materials containing starch by means of amylases. In modern alcohol-producing factories this process is running in two steps, involving two enzymes of different origin: bacterial α-amylase and fungal glucoamylase, as generally fungal amylases are less thermostable as compared to bacterial amylases. Selection of stable and operable at 700С and higher temperatures enzyme preparation with both α- and glucoamylase activities will allow conducting this process in one step. S. Durmishidze Institute of Biochemistry and Biotechnology owns unique collection of mycelial fungi, isolated from different ecological niches of Caucasus. As a result of screening our collection 39 strains poducing amylases were revealed. Most of them belong to the genus Aspergillus. Optimum temperatures of action of selected amylases from three producers were estableshed to be within the range 67-80°C. A. niger B-6 showed higher α-amylase activity at 67°C, and glucoamylase activity at 62°C, A. niger 6-12 showed higher α-amylase activity at 72°C, and glucoamylase activity at 65°C, Aspergillus niger p8-3 showed higher activities at 82°C and 70°C, for α-amylase and glucoamylase activities, respectively. Exhaustive hydrolysis process of starch solutions of different concentrations (3, 5, 15, and 30 %) with cultural liquid and technical preparation of Aspergillus niger p8-3 enzyme was studied. In case of low concentrations exhaustive hydrolysis of starch lasts 40–60 minutes, in case of high concentrations hydrolysis takes longer time. 98, 6% yield of glucose can be reached at incubation during 12 hours with enzyme cultural liquid and 8 hours incubation with technical preparation of the enzyme at gradual increase of temperature from 50°C to 82°C during the first 20 minutes and further decrease of temperature to 70°C. Temperature setting for high yield of glucose and high hydrolysis (pasteurizing), optimal for activity of these strains is the prerequisite to be able to carry out hydrolysis of starch to glucose in one step, and consequently, using one strain, what will be economically justified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amylase" title="amylase">amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20hydrolisis" title=" glucose hydrolisis"> glucose hydrolisis</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a> </p> <a href="https://publications.waset.org/abstracts/27123/extremophilic-amylases-of-mycelial-fungi-strains-isolated-in-south-caucasus-for-starch-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">730</span> Degree of Hydrolysis of Proteinaceous Components of Porang Flour Using Papain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadilah%20Fadilah">Fadilah Fadilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rochmadi%20Rochmadi"> Rochmadi Rochmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Syamsiah"> Siti Syamsiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Djagal%20W.%20Marseno"> Djagal W. Marseno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glucomannan can be found in the tuber of porang together with starch and proteinaceous components which were regarded as impurities. An enzymatic process for obtaining higher glucomannan content from Porang flour have been conducted. Papain was used for hydrolysing proteinaceous components in Porang flour which was conducted after a simultaneous extraction of glucomannan and enzymatic starch hydrolysis. Three variables affecting the rate were studied, i.e. temperature, the amount of enzyme and the stirring speed. The ninhydrin method was used to determine degree of protein hydrolysis. Results showed that the rising of degree of hydrolysis were fast in the first ten minutes of the reaction and then proceeded slowly afterward. The optimum temperature for hydrolysis was 60 <sup>o</sup>C. Increasing the amount of enzyme showed a remarkable effect to degree of hydrolysis, but the stirring speed had no significant effect. This indicated that the reaction controlled the rate of hydrolysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20hydrolysis" title="degree of hydrolysis">degree of hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ninhydrin" title=" ninhydrin"> ninhydrin</a>, <a href="https://publications.waset.org/abstracts/search?q=papain" title=" papain"> papain</a>, <a href="https://publications.waset.org/abstracts/search?q=porang%20flour" title=" porang flour"> porang flour</a>, <a href="https://publications.waset.org/abstracts/search?q=proteinaceous%20components" title=" proteinaceous components"> proteinaceous components</a> </p> <a href="https://publications.waset.org/abstracts/47785/degree-of-hydrolysis-of-proteinaceous-components-of-porang-flour-using-papain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">729</span> Spectrophotometric Detection of Histidine Using Enzyme Reaction and Examination of Reaction Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akimitsu%20Kugimiya">Akimitsu Kugimiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kouhei%20Iwato"> Kouhei Iwato</a>, <a href="https://publications.waset.org/abstracts/search?q=Toru%20Saito"> Toru Saito</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiro%20Kohda"> Jiro Kohda</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhisa%20Nakano"> Yasuhisa Nakano</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Takano"> Yu Takano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The measurement of amino acid content is reported to be useful for the diagnosis of several types of diseases, including lung cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, and diabetes. The conventional detection methods for amino acid are high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS), but they have several drawbacks as the equipment is cumbersome and the techniques are costly in terms of time and costs. In contrast, biosensors and biosensing methods provide more rapid and facile detection strategies that use simple equipment. The authors have reported a novel approach for the detection of each amino acid that involved the use of aminoacyl-tRNA synthetase (aaRS) as a molecular recognition element because aaRS is expected to a selective binding ability for corresponding amino acid. The consecutive enzymatic reactions used in this study are as follows: aaRS binds to its cognate amino acid and releases inorganic pyrophosphate. Hydrogen peroxide (H₂O₂) was produced by the enzyme reactions of inorganic pyrophosphatase and pyruvate oxidase. The Trinder’s reagent was added into the reaction mixture, and the absorbance change at 556 nm was measured using a microplate reader. In this study, an amino acid-sensing method using histidyl-tRNA synthetase (HisRS; histidine-specific aaRS) as molecular recognition element in combination with the Trinder’s reagent spectrophotometric method was developed. The quantitative performance and selectivity of the method were evaluated, and the optimal enzyme reaction and detection conditions were determined. The authors developed a simple and rapid method for detecting histidine with a combination of enzymatic reaction and spectrophotometric detection. In this study, HisRS was used to detect histidine, and the reaction and detection conditions were optimized for quantitation of these amino acids in the ranges of 1–100 µM histidine. The detection limits are sufficient to analyze these amino acids in biological fluids. This work was partly supported by Hiroshima City University Grant for Special Academic Research (General Studies). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title="amino acid">amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=aminoacyl-tRNA%20synthetase" title=" aminoacyl-tRNA synthetase"> aminoacyl-tRNA synthetase</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensing" title=" biosensing"> biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20reaction" title=" enzyme reaction"> enzyme reaction</a> </p> <a href="https://publications.waset.org/abstracts/70824/spectrophotometric-detection-of-histidine-using-enzyme-reaction-and-examination-of-reaction-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">728</span> Production, Extraction and Purification of Fungal Chitosan and Its Modification for Medical Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debajyoti%20Bose">Debajyoti Bose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Chitosan is a positively charged natural biodegradable and biocompatible polymer. It is a linear polysaccharide consisting of β-1,4 linked monomers of glucosamine and N-acetylglucosamine. Chitosan can be mainly obtained from fungal sources during large fermentation process. In this study,three different fungal strains Aspergillus niger NCIM 1045, Aspergillus oryzae NCIM 645 and Mucor indicus MTCC 3318 were used for the production of chitosan. The growth mediums were optimized for maximum fungal production. The produced chitosan was characterized by determining degree of deacetylation. Chitosan possesses one reactive amino at the C-2 position of the glucosamine residue, and these amines confer important functional properties to chitosan which can be exploited for biofabrication to generate various chemically modified derivatives and explore their potential for pharmaceutical field. Chitosan nanoparticles were prepared by ionic cross-linking with tripolyphosphate (TPP). The major effect on encapsulation and release of protein (e.g. enzyme diastase) in chitosan-TPP nanoparticles was investigated in order to control the loading and release efficiency. It was noted that the chitosan loading and releasing efficiency as a nanocapsule, obtained from different fungal sources was almost near to initial enzyme activity(12026 U/ml) with a negligible loss. This signify, chitosan can be used as a polymeric drug as well as active component or protein carrier material in dosage by design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. Based upon these initial experiments, studies were also carried out on modification of chitosan based nanocapsules incorporated with physiologically important enzymes and nutraceuticals for target delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fungi" title="fungi">fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocapsule" title=" nanocapsule"> nanocapsule</a> </p> <a href="https://publications.waset.org/abstracts/14998/production-extraction-and-purification-of-fungal-chitosan-and-its-modification-for-medical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">727</span> Synthesis and Molecular Docking Studies of Hydrazone Derivatives Potent Inhibitors as a Human Carbonic Anhydrase IX</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sema%20%C5%9Eeno%C4%9Flu">Sema Şenoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevgi%20Karaku%C5%9F"> Sevgi Karakuş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrazone scaffold is important to design new drug groups and is found to possess numerous uses in pharmaceutical chemistry. Besides, hydrazone derivatives are also known for biological activities such as anticancer, antimicrobial, antiviral, and antifungal. Hydrazone derivatives are promising anticancer agents because they inhibit cancer proliferation and induce apoptosis. Human carbonic anhydrase IX has a high potential to be an antiproliferative drug target, and targeting this protein is also important for obtaining potential anticancer inhibitors. The protein construct was retrieved as a PDB file from the RCSB protein database. This binding interaction of proteins and ligands was performed using Discovery Studio Visualizer. In vitro inhibitory activity of hydrazone derivatives was tested against enzyme carbonic anhydrase IX on the PyRx programme. Most of these molecules showed remarkable human carbonic anhydrase IX inhibitory activity compared to the acetazolamide. As a result, these compounds appear to be a potential target in drug design against human carbonic anhydrase IX. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonic%20anhydrase%20IX%20enzyme" title=" carbonic anhydrase IX enzyme"> carbonic anhydrase IX enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrazone" title=" hydrazone"> hydrazone</a> </p> <a href="https://publications.waset.org/abstracts/171356/synthesis-and-molecular-docking-studies-of-hydrazone-derivatives-potent-inhibitors-as-a-human-carbonic-anhydrase-ix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">726</span> Improvement on the Specific Activities of Immobilized Enzymes by Poly(Ethylene Oxide) Surface Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaohua%20Li">Shaohua Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Zhang"> Aihua Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelly%20Zatopek"> Kelly Zatopek</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Parvez"> Saba Parvez</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20F.%20Gardner"> Andrew F. Gardner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20R.%20Corr%C3%AAa%20Jr."> Ivan R. Corrêa Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20J.%20Noren"> Christopher J. Noren</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Qun%20Xu"> Ming-Qun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Covalent immobilization of enzymes on solid supports is an alternative approach to biocatalysis with the added benefits of simple enzyme removal, improved stability, and adaptability to automation and high-throughput applications. Nevertheless, immobilized enzymes generally suffer from reduced activities compared to their soluble counterparts. One major factor leading to activity loss is the intrinsic hydrophobic property of the supporting material surface, which could result in the conformational change/confinement of enzymes. We report a strategy of utilizing flexible poly (ethylene oxide) (PEO) moieties as to improve the surface hydrophilicity of solid supports used for enzyme immobilization. DNA modifying enzymes were covalently conjugated to PEO-coated magnetic-beads. Kinetics studies proved that the activities of the covalently-immobilized DNA modifying enzymes were greatly enhanced by the PEO modification on the bead surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilized%20enzymes" title="immobilized enzymes">immobilized enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title=" biocatalysis"> biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20oxide%29" title=" poly(ethylene oxide)"> poly(ethylene oxide)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/79716/improvement-on-the-specific-activities-of-immobilized-enzymes-by-polyethylene-oxide-surface-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">725</span> Susceptibility of Spodoptera littoralis, Field Populations in Egypt to Chlorantraniliprole and the Role of Detoxification Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Khalifa">Mohamed H. Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fikry%20I.%20El-Shahawi"> Fikry I. El-Shahawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20A.%20Mansour"> Nabil A. Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cotton leafworm, <em>Spodoptera</em> <em>littoralis</em> (Boisduval) is a major insect pest of vegetables and cotton crops in Egypt, and exhibits different levels of tolerance to certain insecticides. Chlorantraniliprole has been registered recently in Egypt for control this insect. The susceptibilities of three <em>S. littoralis</em> populations collected from El Behaira governorate, north Egypt to chlorantraniliprole were determined by leaf-dipping technique on 4<sup>th</sup> instar larvae. Obvious variation of toxicity was observed among the laboratory susceptible, and three field populations with LC<sub>50</sub> values ranged between 1.53 &micro;g/ml and 6.22 &micro;g/ml. However, all the three field populations were less susceptible to chlorantraniliprole than a laboratory susceptible population. The most tolerant populations were sampled from El Delengat (ED) Province where <em>S. littoralis</em> had been frequently challenged by insecticides. Certain enzyme activity assays were carried out to be correlated with the mechanism of the observed field population tolerance. All field populations showed significantly enhanced activities of detoxification enzymes compared with the susceptible strain. The regression analysis between chlorantraniliprole toxicities and enzyme activities revealed that the highest correlation is between &alpha;-esterase or &beta;-esterase (&alpha;-&beta;-EST) activity and collected field strains susceptibility, otherwise this correlation is not significant (P &gt; 0.05). Synergism assays showed the ED and susceptible strains could be synergized by known detoxification inhibitors such as piperonyl butoxide (PBO), triphenyl phosphate (TPP) and diethyl-maleate (DEM) at different levels (1.01-8.76-fold and 1.09-2.94 fold, respectively), TPP showed the maximum synergism in both strains. The results show that there is a correlation between the enzyme activity and tolerance, and carboxylic-esterase (Car-EST) is likely the main detoxification mechanism responsible for tolerance of <em>S. littoralis</em> to chlorantraniliprole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorantraniliprole" title="chlorantraniliprole">chlorantraniliprole</a>, <a href="https://publications.waset.org/abstracts/search?q=detoxification%20enzymes" title=" detoxification enzymes"> detoxification enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=Spodoptera%20littoralis" title=" Spodoptera littoralis"> Spodoptera littoralis</a> </p> <a href="https://publications.waset.org/abstracts/62316/susceptibility-of-spodoptera-littoralis-field-populations-in-egypt-to-chlorantraniliprole-and-the-role-of-detoxification-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">724</span> Exploring the Role of Phosphorylation on the β-lactamase Activity of OXA24/40</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharshika%20Rajalingam">Dharshika Rajalingam</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffery%20W.%20Peng"> Jeffery W. Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acinetobacter baumannii is a challenging threat to global health, recognized as a multidrug-resistant pathogen. -lactamase is one of the principal resistant mechanisms developed by A. baumannii to survive against -lactam antibiotics. OXA24/40 is one of the types of -lactamases, a well-documented carbapenem hydrolyzing class D -lactamases (CHDL). It was revealed that OXA24/40 showed resistivity against doripenem, one of the carbapenems, by two different mechanisms as hydrolysis and -lactonization. Furthermore, it undergoes genetic mutations to broaden the -lactamase activity to survive against antibiotic environments. One of the crucial characterizations of prokaryotes to develop adaptation is post-translational modification (PTM), mainly phosphorylation. However, the PTM of OXA24/40 is an unknown feature, and the impact of PTM on antibiotic resistivity is yet to be explored. We approached these hypotheses using NMR and MS techniques and found that the OXA24/40 could be phosphorylated in vitro. The Ser81 at the active STFK motif of OXA24/40 of catalytic pocket was identified as the site of phosphorylation using 1D 31P NMR experiment, whereas S81 is required to form an acyl-enzyme complex between enzyme and -lactam antibiotics. The activity of completely phosphorylated OXA24/40 wild type against doripenem revealed that the phosphorylation of active Ser inactivates the -lactamases activity of OXA24/40. The 1D 1H CPMG NMR-based activity assay of phosphorylated OXA24/40 against doripenem confirmed that both deactivating mechanisms are inhibited by phosphorylation. Carbamylated Lysine at the active STFK motif is one of the critical features of CHDL required for the acylation and deacylation reactions of the enzyme. The 1D 13C NMR experiment confirmed that the K84 of phosphorylated OXA24/40 is de-carbamylated. Phosphorylation of OXA24/40 affects both active S81 and carbamylated K84 of OXA24 that are required for the resistivity of -lactamase. So, phosphorylation could be one of the reasons for the genetic mutation of OXA24/40 for the development of antibiotic resistivity. Further research can lead to an understanding of the effect of phosphorylation on the clinical mutants of the OXA24-like -lactamase family on the broadening of -lactamase activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OXA24%2F40" title="OXA24/40">OXA24/40</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorylation" title=" phosphorylation"> phosphorylation</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20mutants" title=" clinical mutants"> clinical mutants</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a> </p> <a href="https://publications.waset.org/abstracts/169739/exploring-the-role-of-phosphorylation-on-the-v-lactamase-activity-of-oxa2440" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">723</span> Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mat%20Radzi">S. Mat Radzi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20J.%20Abd%20Rahman"> N. J. Abd Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohd%20Noor"> H. Mohd Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ariffin"> N. Ariffin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferulic%20acid" title="ferulic acid">ferulic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20synthesis" title=" enzymatic synthesis"> enzymatic synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=esters" title=" esters"> esters</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a> </p> <a href="https://publications.waset.org/abstracts/11186/enzymatic-synthesis-of-olive-based-ferulate-esters-optimization-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">722</span> Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Istvan%20Szilagyi">Istvan Szilagyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marko%20Pavlovic"> Marko Pavlovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Rouster"> Paul Rouster</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolyte" title=" polyelectrolyte"> polyelectrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=formulation" title=" formulation"> formulation</a> </p> <a href="https://publications.waset.org/abstracts/69869/immobilization-of-superoxide-dismutase-enzyme-on-layered-double-hydroxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">721</span> Ability of Gastric Enzyme Extract of Adult Camel to Clot Bovine Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boudjenah-Haroun%20Saliha">Boudjenah-Haroun Saliha</a>, <a href="https://publications.waset.org/abstracts/search?q=Isselnane%20Souad"> Isselnane Souad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouani%20Abdelwahab"> Nouani Abdelwahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Baaissa%20Babelhadj"> Baaissa Babelhadj</a>, <a href="https://publications.waset.org/abstracts/search?q=Mati%20Abderrahmane"> Mati Abderrahmane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algeria is experiencing significant development of the dairy sector, where consumption of milk and milk products increased by 2.7 million tons in 2008 to 4,400,000 tons in 2013, and cheese production has reached 1640 tons in the year 2014 with average consumption of 0.7 kg/person/year. Although rennet is still the most used coagulating enzyme in cheese, its production has been growing worldwide shortage. This shortage is primarily due to a growing increase in the production and consumption of cheese, and the inability to increase in parallel the production of rennet. This shortage has caused very large fluctuations in its price). To overcome these obstacles, much research has been undertaken to find effective and competitive substitutes used industrially. For this, the selection of a local production of rennet substitute is desirable. It would allow a permanent supply with limited dependence on imports and price fluctuations. Investigations conducted by our research team showed that extracts coagulants from the stomachs of older camels are characterized by a coagulating power than those from younger camels. The objective of this work is to study the possibility of substituting commercial rennet coagulant by gastric enzymes from adult camels for coagulation bovine milk. Excerpts from the raw camel coagulants obtained are characterized through their teneures proteins and clotting and proteolytic activities. Milk clotting conditions by the action of these extracts were optimized. Milk clotting time all treated with enzyme preparations and under different conditions was calculated. Bovine rennet has been used for comparison. The results show that crude extracts from gastric adult camel can be good substituting bovine rennet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algeria" title="Algeria">Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=camel" title=" camel"> camel</a>, <a href="https://publications.waset.org/abstracts/search?q=cheese" title=" cheese"> cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation" title=" coagulation"> coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=gastric%20extracts" title=" gastric extracts"> gastric extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a> </p> <a href="https://publications.waset.org/abstracts/40947/ability-of-gastric-enzyme-extract-of-adult-camel-to-clot-bovine-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">720</span> The Effects of Acid Rain, Smog Cars on Antioxidant Systems, Associated Enzyme and H⁺-ATPase Activity in Rice Cultivars (Oriza sativa L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heidarali%20Malmir">Heidarali Malmir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of acid rain (AR), smog’s cars (SC), and combined AR+SC on the antioxidants enzymes, lipid-soluble antioxidants, and water-soluble antioxidants were studied in the two cultivars of rice. The results showed that simulated AR significantly increased the total glutathione (TGSH), thiobarbituric acid (TBA), and α-tocopherol, accompanied by decreases in dry weight and leaves area in the two cultivars, and this change was more obvious in Shirudi cultivar than in Aus cultivar (p≤0.05). Under SC stress cultivar shirudi had higher H+-ATPase, glutathione peroxidase (GSH-px), and catalase (CAT) activities than cultivar Aus. The results of superoxide dismutase (SOD) activity, TGSH, and α-tocopherol levels affected by AR treatments were very different to those of SOD activity, TGSH, and α-tocopherol levels, as shown in SC treatment. It seems that SOD activity coupled with the water-soluble antioxidants and α-tocopherol levels correlated with the lipid-soluble antioxidants. It is suggested that α-tocopherol increases H+-ATPase activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=H%2B-ATPase" title="H+-ATPase">H+-ATPase</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20permeability" title=" membrane permeability"> membrane permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20soluble%20antioxidants" title=" lipid soluble antioxidants"> lipid soluble antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20soluble%20antioxidants" title=" water soluble antioxidants"> water soluble antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=associated%20enzyme" title=" associated enzyme"> associated enzyme</a> </p> <a href="https://publications.waset.org/abstracts/168521/the-effects-of-acid-rain-smog-cars-on-antioxidant-systems-associated-enzyme-and-h-atpase-activity-in-rice-cultivars-oriza-sativa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">719</span> Virtual Screening and in Silico Toxicity Property Prediction of Compounds against Mycobacterium tuberculosis Lipoate Protein Ligase B (LipB)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junie%20B.%20Billones">Junie B. Billones</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Constancia%20O.%20Carrillo"> Maria Constancia O. Carrillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Voltaire%20G.%20Organo"> Voltaire G. Organo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephani%20Joy%20Y.%20Macalino"> Stephani Joy Y. Macalino</a>, <a href="https://publications.waset.org/abstracts/search?q=Inno%20A.%20Emnacen"> Inno A. Emnacen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamie%20Bernadette%20A.%20Sy"> Jamie Bernadette A. Sy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drug discovery and development process is generally known to be a very lengthy and labor-intensive process. Therefore, in order to be able to deliver prompt and effective responses to cure certain diseases, there is an urgent need to reduce the time and resources needed to design, develop, and optimize potential drugs. Computer-aided drug design (CADD) is able to alleviate this issue by applying computational power in order to streamline the whole drug discovery process, starting from target identification to lead optimization. This drug design approach can be predominantly applied to diseases that cause major public health concerns, such as tuberculosis. Hitherto, there has been no concrete cure for this disease, especially with the continuing emergence of drug resistant strains. In this study, CADD is employed for tuberculosis by first identifying a key enzyme in the mycobacterium’s metabolic pathway that would make a good drug target. One such potential target is the lipoate protein ligase B enzyme (LipB), which is a key enzyme in the M. tuberculosis metabolic pathway involved in the biosynthesis of the lipoic acid cofactor. Its expression is considerably up-regulated in patients with multi-drug resistant tuberculosis (MDR-TB) and it has no known back-up mechanism that can take over its function when inhibited, making it an extremely attractive target. Using cutting-edge computational methods, compounds from AnalytiCon Discovery Natural Derivatives database were screened and docked against the LipB enzyme in order to rank them based on their binding affinities. Compounds which have better binding affinities than LipB’s known inhibitor, decanoic acid, were subjected to in silico toxicity evaluation using the ADMET and TOPKAT protocols. Out of the 31,692 compounds in the database, 112 of these showed better binding energies than decanoic acid. Furthermore, 12 out of the 112 compounds showed highly promising ADMET and TOPKAT properties. Future studies involving in vitro or in vivo bioassays may be done to further confirm the therapeutic efficacy of these 12 compounds, which eventually may then lead to a novel class of anti-tuberculosis drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmacophore" title="pharmacophore">pharmacophore</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=lipoate%20protein%20ligase%20B%20%28LipB%29" title=" lipoate protein ligase B (LipB)"> lipoate protein ligase B (LipB)</a>, <a href="https://publications.waset.org/abstracts/search?q=ADMET" title=" ADMET"> ADMET</a>, <a href="https://publications.waset.org/abstracts/search?q=TOPKAT" title=" TOPKAT"> TOPKAT</a> </p> <a href="https://publications.waset.org/abstracts/9951/virtual-screening-and-in-silico-toxicity-property-prediction-of-compounds-against-mycobacterium-tuberculosis-lipoate-protein-ligase-b-lipb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">718</span> Bioremediation of PAHs-Contaminated Soil Using Land Treatment Processes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Eskandary">Somaye Eskandary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycyclic aromatic hydrocarbons (PAHs) are present in crude oil and its derivatives contaminate soil and also increase carcinogen and mutagen contamination, which is a concern for researchers. Land farming is one of the methods that remove pollutants from the soil by native microorganisms. It seems that this technology is cost-effective, environmentally friendly and causes less debris problem to be disposed. This study aimed to refine the polycyclic aromatic hydrocarbons from oil-contaminated soil using the land farming method. In addition to examine the concentration of polycyclic aromatic hydrocarbons by GC-FID, some characteristics such as soil microbial respiration and dehydrogenase, peroxidase, urease, acid and alkaline phosphatase enzyme concentration were also measured. The results showed that after land farming process the concentrations of some polycyclic aromatic hydrocarbons dropped to 50 percent. The results showed that the enzyme concentration is reduced by reducing the concentration of hydrocarbons and microbial respiration. These results emphasize the process of land farming for removal of polycyclic aromatic hydrocarbons from soil by indigenous microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title="soil contamination">soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20microorganisms" title=" native microorganisms"> native microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20enzymes" title=" soil enzymes"> soil enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20respiration" title=" microbial respiration"> microbial respiration</a>, <a href="https://publications.waset.org/abstracts/search?q=carcinogen" title=" carcinogen"> carcinogen</a> </p> <a href="https://publications.waset.org/abstracts/5748/bioremediation-of-pahs-contaminated-soil-using-land-treatment-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">717</span> Design, Synthesis, and Evaluation of Small Peptides for Managing Inflammation: Inhibition to Substrate Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palwinder%20Singh">Palwinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Baljit%20Kaur"> Baljit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhmeet%20Kaur"> Sukhmeet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amongst a library of rationally designed small peptides, (H)Gly-Gly-Phe-Leu(OMe) was identified, reducing prostaglandin production of COX-2 with IC50 60 nM vs. 6000 nM for COX-1. The 5 mg Kg-1 dose of this compound rescued albino mice by 80% from capsaicin-induced paw licking and recovered it by 60% from carrageenan-induced inflammation. The mode of action of the compound for targeting COX-2, iNOS, and VGSC was investigated by using substances P, L-arginine, and veratrine, respectively, as the biomarkers. The interactions of the potent compound with COX-2 were supported by the isothermal calorimetry experiments showing Ka 6.10±1.10x104 mol-1 and ΔG -100.3 k J mol-1 in comparison to Ka 0.41x103 ±0.09 mol-1 and ΔG -19.2±0.06 k J mol-1 for COX-1. This compound did not show toxicity up to 2000 mg Kg-1 dose. Furthermore, beyond the conventional mode of working with anti-inflammatory agents through enzyme inhibition, COX-2 was provided with a peptide-based alternate substrate. Proline-centered pentapeptide iso-conformational to arachidonic acid exhibited appreciable selectivity for COX-2 overcoming acetic acid and formalin-induced pain in rats to almost 80% and was treated as a substrate by the enzyme. Hence, we suggest small peptides as highly potent and promising candidates for their further development into an anti-inflammatory drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20peptides" title="small peptides">small peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclooxygenase" title=" cyclooxygenase"> cyclooxygenase</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a> </p> <a href="https://publications.waset.org/abstracts/160257/design-synthesis-and-evaluation-of-small-peptides-for-managing-inflammation-inhibition-to-substrate-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=5" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=5">5</a></li> <li class="page-item active"><span class="page-link">6</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzyme&amp;page=7" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10