CINXE.COM

Search results for: oxidative stress

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: oxidative stress</title> <meta name="description" content="Search results for: oxidative stress"> <meta name="keywords" content="oxidative stress"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="oxidative stress" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="oxidative stress"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4133</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: oxidative stress</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4133</span> Epigallocatechin Gallate Protects against Oxidative Stress-Mediated Neurotoxicity and Hippocampus Dysfunction Induced by Fluoride in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Thangapandiyan">S. Thangapandiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Miltonprabu"> S. Miltonprabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fl (Fl) exposure engenders neurodegeneration and induces oxidative stress in the brain. The Neuroprotective role of EGCG on oxidative stress-mediated neurotoxicity in Fl intoxicated rat hippocampus has not yet been explored so far. Hence, the present study is focused on witnessing whether EGCG (40mg/kg) supplementation prevents Fl induced oxidative stress in the brain of rats with special emphasis on the hippocampus. Fl (25mg/kg) intoxication for four weeks in rats showed an increase in Fl concentration along with the decrease the AChE, NP, DA, and 5-HT activity in the brain. The oxidative stress markers (ROS, TBARS, NO, and PC) were significantly increased with decreased enzymatic (SOD, CAT, GPx, GR, GST, and G6PD) and non-enzymatic antioxidants (GSH, TSH, and Vit.C) in Fl intoxicated rat hippocampus. Moreover, Fl intoxicated rats exhibited an intrinsic and extrinsic pathway mediated apoptosis in the hippocampus of rats. Fl intoxication significantly increased the DNA damage as evidenced by increased DNA fragmentation. Furthermore, the toxic impact of Fl on hippocampus was also proved by the immunohistochemical, histological, and ultrastructural studies. Pre-administration of EGCG has significantly protected the Fl induced oxidative stress, biochemical changes, cellular apoptotic, and histological alternations in the hippocampus of rats. In conclusion, EGCG supplementation significantly attenuated the Fl induced oxidative stress mediated neurotoxicity via its free radical scavenging and antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=hippocampal" title=" hippocampal"> hippocampal</a>, <a href="https://publications.waset.org/abstracts/search?q=NaF" title=" NaF"> NaF</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=EGCG" title=" EGCG"> EGCG</a> </p> <a href="https://publications.waset.org/abstracts/17597/epigallocatechin-gallate-protects-against-oxidative-stress-mediated-neurotoxicity-and-hippocampus-dysfunction-induced-by-fluoride-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4132</span> Protective Role of Peroxiredoxin V against Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Gyeong%20Lee">Eun Gyeong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Young%20Park"> Ji Young Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Ae%20Woo"> Hyun Ae Woo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reactive oxygen species (ROS) production is involved in ischemia/reperfusion (I/R) injury in kidney of mice. Oxidative stress develops from an imbalance between ROS production and reduced antioxidant defenses. Many enzymatic and nonenzymatic antioxidant systems including peroxiredoxins (Prxs) are present in kidney to maintain an appropriate level of ROS and prevent oxidative damage. Prxs are a family of peroxidases that reduce peroxides, with a conserved cysteine residue serving as the site of oxidation by peroxides. In this study, we examined the protective role of Prx V against I/R-induced acute kidney injury (AKI) using Prx V wild type (WT) and knockout (KO) mice. We compared the response of Prx V WT and KO mice in mice model of I/R injury. Renal structure, functions, oxidative stress markers, protein levels of oxidative damage marker were worse in Prx V KO mice. Ablation of Prx V enhanced susceptibility to I/R-induced oxidative stress. Prx V KO mice were seen to have more severe renal damage than Prx V WT mice in mice model of I/R injury. Our results demonstrate that Prx V is protective against I/R-induced AKI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peroxiredoxin" title="peroxiredoxin">peroxiredoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=ischemia%2Freperfusion" title=" ischemia/reperfusion"> ischemia/reperfusion</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/47859/protective-role-of-peroxiredoxin-v-against-ischemiareperfusion-induced-acute-kidney-injury-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4131</span> The Antioxidant Effect of Vitamin C against Oxidative Stress Generate by Dietary Zn-Deficiency in Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zine%20Kechrid">Zine Kechrid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to investigate the antioxidant effect of vitamin C on oxidative stress induced by dietary Zn-deficiency in albino diabetic rats. Thirty two males alloxan-diabetic rats divided into two groups of 16 individuals each; the first group was fed a zinc adequate diet (54 mg zinc/kg). The second group had given low zinc diet (1 mg zinc/kg). Then, half of each group was treated with vitamin C (1 g/l) in drinking water. After four weeks, animals were sacrificed and different parameters were determined. The findings showed that dietary deficiency zinc intake significantly increased serum glucose. Zn-deficiency was also led to an increase in oxidative stress, which was indicated by an increase of MDA level and glutathione-S-transferase activity. Meanwhile it was result in a decrease of reduced glutathione (GSH) content, glutathione peroxidase GSH-Px and catalase activities in liver. However, the administration of vitamin C restored all the previous parameters approximately to their normal values. In conclusion, vitamin C probably played a key role strong as antioxidant factor against oxidative stress provoked by dietary zinc inadequate. Therefore, it might be contributed in reduction diabetes complications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C" title="vitamin C">vitamin C</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20diabetes" title=" experimental diabetes"> experimental diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats "> rats </a> </p> <a href="https://publications.waset.org/abstracts/7136/the-antioxidant-effect-of-vitamin-c-against-oxidative-stress-generate-by-dietary-zn-deficiency-in-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4130</span> Appraisal of Oxidative Stress in Pregnant and Non-Pregnant Non Descript Goat from Arid Tracts in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudha%20Summarwar">Sudha Summarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudesh%20Agarwal"> Sudesh Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepali%20%20Lall"> Deepali Lall</a>, <a href="https://publications.waset.org/abstracts/search?q=Nalini%20Kataria"> Nalini Kataria</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotsana%20%20Pandey"> Jyotsana Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessment of antioxidant status is an effective tool to appraise the presence of oxidative stress. A combination of assays can be used to evaluate the antioxidant status like serum catalase (CAT), superoxide dismutase (SOD) and monoamine oxidase (MAO). In human medicine pregnancy is known to be associated with oxidative stress. Oxidative stress produces harmful effects to the developing foetus. Several metabolic changes occur in the maternal body to meet the demand of energy of developing foetus. Due to these changes susceptibility of maternal body increases to oxidative stress. There is paucity of research work on this aspect in nondescript goats. Therefore, the present study was intended to appraise the oxidative stress in pregnant and non-pregnant non-descript goat. Blood samples were collected for serum separation in otherwise healthy pregnant and non-pregnant nondescript goats. Mean values of serum CAT, SOD and MAO were found on a higher side (p≤0.05) with serum SOD values showing a rise of 2.5 times higher than the control healthy value. Correlations among all the three parameters were found to be highly significant (p≤0.01) especially greatest in youngest group of pregnant animals. Illustration of result enlightened the veracity of bumped up production of free radicals in pregnant animals. Technical savoir-faire of oxidative stress supervision is essential for upholding of health status of foetus. The upshot of present study undoubtedly implied the development of oxidative stress in pregnant goats on the basis of altered antioxidant status. These findings conclude that initially the oxidative stress due to pregnancy is critically combated by the intricate defensive mechanism of natural antioxidant system of the body. It appears that this imbalance between oxidant and antioxidant must be checked in time to prevent cellular damage by regularly appraising the antioxidant status through laboratory methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title=" pregnancy"> pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20catalase" title=" serum catalase"> serum catalase</a> </p> <a href="https://publications.waset.org/abstracts/51343/appraisal-of-oxidative-stress-in-pregnant-and-non-pregnant-non-descript-goat-from-arid-tracts-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4129</span> Night Shift Work as an Oxidative Stressor: A Systematic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madeline%20Gibson">Madeline Gibson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Night shift workers make up an essential part of the modern workforce. However, night shift workers have higher incidences of late in life diseases and earlier mortality. Night shift workers are exposed to constant light and experience circadian rhythm disruption. Sleep disruption is thought to increase oxidative stress, defined as an imbalance of excess pro-oxidative factors and reactive oxygen species over anti-oxidative activity. Oxidative stress can damage cells, proteins and DNA and can eventually lead to varied chronic diseases such as cancer, diabetes, cardiovascular disease, Alzheimer’s and dementia. This review aimed to understand whether night shift workers were at greater risk of oxidative stress and to contribute to a consensus on this relationship. Twelve studies published in 2001-2019 examining 2,081 workers were included in the review. Studies compared both the impact of working a single shift and in comparisons between those who regularly work night shifts and only day shifts. All studies had evidence to support this relationship across a range of oxidative stress indicators, including increased DNA damage, reduced DNA repair capacity, increased lipid peroxidation, higher levels of reactive oxygen species, and to a lesser extent, a reduction in antioxidant defense. This research supports the theory that melatonin and the sleep-wake cycle mediate the relationship between shift work and oxidative stress. It is concluded that night shift work increases the risk for oxidative stress and, therefore, future disease. Recommendations are made to promote the long-term health of shift workers considering these findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=night%20shift%20work" title="night shift work">night shift work</a>, <a href="https://publications.waset.org/abstracts/search?q=coxidative%20stress" title=" coxidative stress"> coxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=circadian%20rhythm" title=" circadian rhythm"> circadian rhythm</a>, <a href="https://publications.waset.org/abstracts/search?q=melatonin" title=" melatonin"> melatonin</a>, <a href="https://publications.waset.org/abstracts/search?q=disease" title=" disease"> disease</a>, <a href="https://publications.waset.org/abstracts/search?q=circadian%20rhythm%20disruption" title=" circadian rhythm disruption"> circadian rhythm disruption</a> </p> <a href="https://publications.waset.org/abstracts/140453/night-shift-work-as-an-oxidative-stressor-a-systematic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4128</span> Relationship of Oxidative Stress to Elevated Homocysteine and DNA Damage in Coronary Artery Disease Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shazia%20Anwer%20Bukhari">Shazia Anwer Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Javeed%20Ghani"> Madiha Javeed Ghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ibrahim%20Rajoka"> Muhammad Ibrahim Rajoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Biochemical, environmental, physical and genetic factors have a strong effect on the development of coronary disease (CAD). Plasma homocysteine (Hcy) level and DNA damage play a pivotal role in its development and progression. The aim of this study was to investigate the predictive strength of an oxidative stress, clinical biomarkers and total antioxidant status (TAS) in CAD patients to find the correlation of homocysteine, TOS and oxidative DNA damage with other clinical parameters. Methods: Sixty confirmed patients with CAD and 60 healthy individuals as control were included in this study. Different clinical and laboratory parameters were studied in blood samples obtained from patients and control subjects using commercially available biochemical kits and statistical software Results: As compared to healthy individuals, CAD patients had significantly higher concentrations of indices of oxidative stress: homocysteine (P=0.0001), total oxidative stress (TOS) (P=0.0001), serum cholesterol (P=0.04), low density lipoprotein cholesterol (LDL) (P=0.01), high density lipoprotein-cholesterol (HDL) (P=0.0001), and malondialdehyde (MDA) (P=0.001) than those of healthy individuals. Plasma homocysteine level and oxidative DNA damage were positively correlated with cholesterol, triglycerides, systolic blood pressure, urea, total protein and albumin (P values= 0.05). Both Hcy and oxidative DNA damage were negatively correlated with TAS and proteins. Conclusion: Coronary artery disease patients had a significant increase in homocysteine level and DNA damage due to increased oxidative stress. In conclusion, our study shows a significantly increase in lipid peroxidation, TOS, homocysteine and DNA damage in the erythrocytes of patients with CAD. A significant decrease level of HDL-C and TAS was observed only in CAD patients. Therefore these biomarkers may be useful diagnosis of patients with CAD and play an important role in the pathogenesis of CAD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery%20disease" title=" coronary artery disease"> coronary artery disease</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage" title=" DNA damage"> DNA damage</a>, <a href="https://publications.waset.org/abstracts/search?q=homocysteine" title=" homocysteine"> homocysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=malondialdehyde" title=" malondialdehyde"> malondialdehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=8-Hydroxy-2%E2%80%99deoxyguanosine" title=" 8-Hydroxy-2’deoxyguanosine"> 8-Hydroxy-2’deoxyguanosine</a> </p> <a href="https://publications.waset.org/abstracts/33536/relationship-of-oxidative-stress-to-elevated-homocysteine-and-dna-damage-in-coronary-artery-disease-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4127</span> Erythrophagocytic Role of Mast Cells in vitro and in vivo during Oxidative Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Sharma">Priyanka Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Niti%20Puri"> Niti Puri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anemia develops when blood lacks enough healthy erythrocytes. Past studies indicated that anemia, inflammatory process, and oxidative stress are interconnected. Erythrocytes are continuously exposed to reactive oxygen species (ROS) during circulation, due to normal aerobic cellular metabolism and also pathology of inflammatory diseases. Systemic mastocytosis and genetic depletion of mast cells have been shown to affect anaemia. In the present study, we attempted to reveal whether mast cells have a direct role in clearance or erythrophagocytosis of normal or oxidatively damaged erythrocytes. Murine erythrocytes were treated with tert-butyl hydroperoxidase (t-BHP), an agent that induces oxidative damage and mimics in vivo oxidative stress. Normal and oxidatively damaged erythrocytes were labeled with carboxyfluorescein succinimidyl ester (CFSE) to track erythrophagocytosis. We show, for the first time, direct erythrophagocytosis of oxidatively damaged erythrocytes in vitro by RBL-2H3 mast cells as well as in vivo by murine peritoneal mast cells. Also, activated mast cells, as may be present in inflammatory conditions, showed a significant increase in the uptake of oxidatively damaged erythrocytes than resting mast cells. This suggests the involvement of mast cells in erythrocyte clearance during oxidative stress or inflammatory disorders. Partial inhibition of phagocytosis by various inhibitors indicated that this process may be controlled by several pathways. Hence, our study provides important evidence for involvement of mast cells in severe anemia due to inflammation and oxidative stress and might be helpful to circumvent the adverse anemic disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mast%20cells" title="mast cells">mast cells</a>, <a href="https://publications.waset.org/abstracts/search?q=anemia" title=" anemia"> anemia</a>, <a href="https://publications.waset.org/abstracts/search?q=erythrophagocytosis" title=" erythrophagocytosis"> erythrophagocytosis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidatively%20damaged%20erythrocytes" title=" oxidatively damaged erythrocytes"> oxidatively damaged erythrocytes</a> </p> <a href="https://publications.waset.org/abstracts/78116/erythrophagocytic-role-of-mast-cells-in-vitro-and-in-vivo-during-oxidative-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4126</span> Effect of Oxidative Stress from Smoking on Erythrocyte Phosphatidylserine Externalization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratchaneewan%20Maneemaroj">Ratchaneewan Maneemaroj</a>, <a href="https://publications.waset.org/abstracts/search?q=Paveena%20Noisuwan"> Paveena Noisuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chonlada%20Lakhonphon"> Chonlada Lakhonphon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The smoking is one of the major risk factors in Non-Communicable Disease. Free radicals from cigarette smoke can cause oxidative stress. The oxidative insults can lead to red blood cell (RBC) senescence and are involved in the clearance of red blood cells. The objective of the present study is to assess the association between smoke, oxidative stress evaluated with serum Malondialdehyde (MDA) level and phosphatidylserine (PS) externalization (biomarker of RBC senescence) evaluated with annexin V binding. A total of sixty-four male volunteers aged 25-60 years old were recruited in this study. MDA was measured by colorimetric method. Annexin V binding was detected by flow cytometry. Our results show that there was a significant increase in MDA levels in cigarette smokers as compared to non-smokers (p < 0.001). However, there was no significant different between annexin V binding (% gate) in cigarette smokers and non-smokers (p = 0.978). These results provide evidence of free radical from smoking is associated with oxidative damage to erythrocytes. However, our results suggest that PS externalization is unlikely to have a role in RBC senescence pathway of stressed erythrocytes from cigarette smoke. The other biomarker of RBC senescence should be determined on cigarette smoker erythrocytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malondialdehyde" title="malondialdehyde">malondialdehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphatidylserine" title=" phosphatidylserine"> phosphatidylserine</a>, <a href="https://publications.waset.org/abstracts/search?q=RBC%20senescence" title=" RBC senescence"> RBC senescence</a>, <a href="https://publications.waset.org/abstracts/search?q=annexin%20V" title=" annexin V"> annexin V</a> </p> <a href="https://publications.waset.org/abstracts/28190/effect-of-oxidative-stress-from-smoking-on-erythrocyte-phosphatidylserine-externalization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4125</span> Effects of Benzo(k)Fluoranthene, a Polycyclic Aromatic Hydrocarbon, on DNA Damage and Oxidative Stress in Marine Gastropod Morula Granulata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacky%20Bhagat">Jacky Bhagat</a>, <a href="https://publications.waset.org/abstracts/search?q=Baban%20S%20Ingole"> Baban S Ingole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, in vivo experiments were carried out to investigate the effects of a toxic polycyclic aromatic hydrocarbon (PAH), benzo(k)fluoranthene (B[k]F), on marine gastropod, Morula granulata collected from Goa, west coast of India. Snails were exposed to different concentrations of B(k)F (1, 10, 25 and 50 µg/L) for 96 h. The genotoxic effects were evaluated by measuring DNA strand breaks using alkaline comet assay and oxidative stress were measured with the help of battery of biomarkers such as superoxide dismutase (SOD) catalase (CAT), glutathione-s-transferase (GST), and lipid peroxidation (LPO). Concentration-dependent increase in percentage tail DNA (TDNA) was observed in snails exposed to B(k)F. Exposure concentrations above 1 µg/L of B(k)F, showed significant increase in SOD activity and LPO value in snails. After 96 h, SOD activity were found to be doubled for 50 µg/L of B(k)F with reference to control. Significant increase in CAT and GST activity was observed at all exposure conditions at the end of the exposure time. Our study showed that B(k)F induces oxidative stress in snails which further lead to genotoxic damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzo%28k%29fluoranthene" title="benzo(k)fluoranthene">benzo(k)fluoranthene</a>, <a href="https://publications.waset.org/abstracts/search?q=comet%20assay" title=" comet assay"> comet assay</a>, <a href="https://publications.waset.org/abstracts/search?q=gastropod" title=" gastropod"> gastropod</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/39775/effects-of-benzokfluoranthene-a-polycyclic-aromatic-hydrocarbon-on-dna-damage-and-oxidative-stress-in-marine-gastropod-morula-granulata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4124</span> Effect of Zinc-Lysine on Growth, Photosynthesis, Oxidative Stress and Antioxidant System and Chromium Uptake in Rice under Cr Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shafaqat%20Ali">Shafaqat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Afzal%20Hussain"> Afzal Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rizwan"> Muhammad Rizwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Longhua%20Wu"> Longhua Wu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chromium (Cr) is one of the widespread and toxic trace elements present in the agricultural land. Chromium can enter into the food chain mainly through agricultural crops grown on Cr-contaminated soils such as rice (Oryza sativa L.). The current study was done to evaluate the effects of increasing concentrations foliar applied zinc (Zn) chelated with lysine (Zn-lys) (0, 10, 20, and 30 mg L⁻¹) on rice biomass, photosynthesis, oxidative stress, key antioxidant enzyme activities and Cr uptake under increasing levels of Cr in the soil (0, 100, 500 mg kg⁻¹). Cr-induced toxicity reduced the height of plants, biomass, chlorophyll contents, gas exchange parameters, and antioxidant enzyme activities while increased the Cr concentrations and oxidative stress (malondialdehyde, electrolyte leakage, and H₂O₂) in shoots and roots than control plants. Foliar application of Zn-lys increased the plant growth, photosynthesis, Zn concentrations, and enzyme activities in rice seedlings. In addition, Zn-lys reduced the Cr concentrations and oxidative stress compared to the respective Cr treatments alone. The present results indicate that foliar Zn-lys stimulates the antioxidant defense system in rice, increase the rice growth while reduced the Cr concentrations in plants by promoting the Zn uptake and photosynthesis. Taken together, foliar spray of Zn-lys chelate can efficiently be employed for improving plant growth and Zn contents while reducing Cr concentration in rice grown in Cr-contaminated and Zn-deficient soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc-lysine" title=" zinc-lysine"> zinc-lysine</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthesis" title=" photosynthesis"> photosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/76594/effect-of-zinc-lysine-on-growth-photosynthesis-oxidative-stress-and-antioxidant-system-and-chromium-uptake-in-rice-under-cr-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4123</span> Fluoride-Induced Stress and Its Association with Bone Developmental Pathway in Osteosarcoma Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepa%20Gandhi">Deepa Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20K.%20Naoghare"> Pravin K. Naoghare</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Bafana"> Amit Bafana</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnamurthi%20Kannan"> Krishnamurthi Kannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saravanadevi%20Sivanesana"> Saravanadevi Sivanesana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidative stress is known to depreciate normal functioning of osteoblast cells. Present study reports oxidative/inflammatory signatures in fluoride exposed human osteosarcoma (HOS) cells and its possible association with the genes involved in bone developmental pathway. Microarray analysis was performed to understand the possible molecular mechanisms of stress-mediated bone lose in HOS cells. Cells were chronically exposed with sub-lethal concentration of fluoride. Global gene expression is profiling revealed 34 up regulated and 2598 down-regulated genes, which were associated with several biological processes including bone development, osteoblast differentiation, stress response, inflammatory response, apoptosis, regulation of cell proliferation. Microarray data were further validated through qRT-PCR and western blot analyses using key representative genes. Based on these findings, it can be proposed that chronic exposure of fluoride may impair bone development via oxidative and inflammatory stress. The present finding also provides important biological clues, which will be helpful for the development of therapeutic targets against diseases related bone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone" title="bone">bone</a>, <a href="https://publications.waset.org/abstracts/search?q=HOS%20cells" title=" HOS cells"> HOS cells</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray" title=" microarray"> microarray</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/40877/fluoride-induced-stress-and-its-association-with-bone-developmental-pathway-in-osteosarcoma-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4122</span> Imipramine Ameliorate Altered Biochemical Parameter and Oxidative Damage in Depression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Mohale">D. S. Mohale</a>, <a href="https://publications.waset.org/abstracts/search?q=A.V.%20Chandewar"> A.V. Chandewar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study was undertaken to investigate the effect of imipramine on various biochemical parameters and oxidative stress markers in short and long term depression on rats. Rats were subjected for short (21 days) and long term (84 days) social isolation for and checked for depression on force swim test and tail suspension method. Various markers of oxidative stress like lipid peroxidation (LPO), reduced glutathione (GSH), Supersoxide dismutase (SOD), catalase (CAT) and biochemical parameters like Serum glutamate oxaloacetate transaminase (SGOT), Serum glutamate pyruate transaminase (SGPT), and blood glucose were determined in depressed, control, imipramine and Vitamin E treated group. The rats displayed an increase in depression on force swim test and tail suspension method relative to control. There was significant increase in the level of LPO and decrease in the levels of GSH, SOD and CAT after short and long term depression. Increased oxidative stress in depression which may leads to alteration of biochemical parameters. Treatment with imipramine an tricyclic antidepressant significantly decreases in level of LPO, SGOT, SGPT and increase in the levels of GSH, SOD and CAT in long term depression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depression" title="depression">depression</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20glutathione" title=" reduced glutathione"> reduced glutathione</a> </p> <a href="https://publications.waset.org/abstracts/23137/imipramine-ameliorate-altered-biochemical-parameter-and-oxidative-damage-in-depression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4121</span> Diallyl Trisulfide Protects the Rat Liver from CCl4-Induced Injury and Fibrogenesis by Attenuating Oxidative Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao-Jing%20Zhu">Xiao-Jing Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Zhou"> Liang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi-Zhong%20Zheng"> Shi-Zhong Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various studies have shown that diallyl trisulfide (DATS) can protect the liver injury, and DATS has a strong antioxidant property. The aim of this study is to evaluate the in vivo role of DATS in protecting the liver against injury and fibrogenesis and further explores the underlying mechanisms. Our results demonstrated that DATS protected the liver from CCl4-caused injury by suppressing the elevation of ALT and AST activities, and by improving the histological architecture of the liver. Treatment with DATS or colchicine improved the liver fibrosis by sirius red staining and immunofluorescence. In addition, immunohistochemistry, western blot, and RT-PCR analyses indicated that DATS inhibited HSC activation. Furthermore, DATS attenuated oxidative stress by increasing glutathione and reducing lipid peroxides and malondialdehyde. These findings suggest that the protective effect of DATS on CCl4-caused liver injury and liver fibrogenesis was, at least partially, attributed to its antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver%20fibrogenesis" title="liver fibrogenesis">liver fibrogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20injury" title=" liver injury"> liver injury</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=DATS" title=" DATS"> DATS</a> </p> <a href="https://publications.waset.org/abstracts/2858/diallyl-trisulfide-protects-the-rat-liver-from-ccl4-induced-injury-and-fibrogenesis-by-attenuating-oxidative-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4120</span> Beneficial Effects of Curcumin against Stress Oxidative and Mitochondrial Dysfunction Induced by Trinitrobenzene Sulphonic Acid in Colon </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souad%20Mouzaoui">Souad Mouzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahia%20Djerdjouri"> Bahia Djerdjouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidative stress is one of the main factors involved in the onset and chronicity of inflammatory bowel disease (IBD). In this study, we investigated the beneficial effects of a potent natural antioxidant, curcumin (Cur) on colitis and mitochondrial dysfunction in trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Rectal instillation of the chemical irritant TNBS (30 mg kg-1) induced the disruption of distal colonic architecture and a massive inflammatory cells influx to the mucosa and submucosa layers. Under these conditions, daily administration of Cur (25 mg kg-1) efficiently decreased colitis scores in the inflamed distal colon by reducing leukocyte infiltrate as attested by reduced myeloperoxidase (MPO) activity. Moreover, the levels of nitrite, an end product of inducible NO synthase activity (iNOS) and malonyl dialdehyde (MDA), a marker of lipid peroxidation increased in a time depending manner in response to TNBS challenge. Conversely, the markers of the antioxidant pool, reduced glutathione (GSH) and catalase activity (CAT) were drastically reduced. Cur attenuated oxidative stress markers and partially restored CAT and GSH levels. Moreover, our results expanded the effect of Cur on TNBS-induced colonic mitochondrial dysfunction. In fact, TNBS induced mitochondrial swelling and lipids peroxidation. These events reflected in the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. TNBS inhibited also mitochondrial respiratory activity, caused overproduction of mitochondrial superoxide anion (O2-.) and reduced level of mitochondrial GSH. Nevertheless, Cur reduced the extent of mitochondrial oxidative stress induced by TNBS and restored colonic mitochondrial function. In conclusion, our results showed the critical role of oxidative stress in TNBS-induced colitis. They highlight the role of colonic mitochondrial dysfunction induced by TNBS, as a potential source of oxidative damages. Due to its potent antioxidant properties, Cur opens a promising therapeutic approach against oxidative inflammation in IBD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colitis" title="colitis">colitis</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=TNBS" title=" TNBS"> TNBS</a> </p> <a href="https://publications.waset.org/abstracts/1767/beneficial-effects-of-curcumin-against-stress-oxidative-and-mitochondrial-dysfunction-induced-by-trinitrobenzene-sulphonic-acid-in-colon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4119</span> Safety Assessment and Prophylactic Efficacy of Moringa stenopetala Leaf Extract Through Mitigation of Oxidative Stress in BV-2 Microglial Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Adeniyi%20Adefegha">Stephen Adeniyi Adefegha</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitor%20Mostardeiro"> Vitor Mostardeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Maria%20Morsch"> Vera Maria Morsch</a>, <a href="https://publications.waset.org/abstracts/search?q=Ademir%20F.%20Morel"> Ademir F. Morel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Beatrice%20Manica%20Da%20Cruz"> Ivana Beatrice Manica Da Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Somacal%20Maria%20Rosa%20Chitolina%20Schetinger"> Sabrina Somacal Maria Rosa Chitolina Schetinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moringa stenopetala is often consumed as food and used in folkloric medicine for the management of several diseases. Purpose: This study was set up in order to assess the effect of aqueous extract of Moringa stenopetala on cell viability and oxidative stress biomarkers in BV-2 microglial cells. Aqueous extracts of M. stenopetala were prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with M. stenopetala extracts (0.1 - 100 µg/ml) for cell viability and nitric oxide (NO) production tests. However, M. stenopetala extract (50 µg/ml) was used in the treatment of cells for the determination of protein carbonyl content and reactive oxygen species (ROS) level. Incubation of BV-2 microglia cell with M. stenopetala extract maintained cell viability, diminished NO and ROS levels, and reduced protein carbonyl contents Chlorogenic acid, rutin, kaempferol and quercetin derivatives were the main phenolic compounds identified in M. stenopetala leaf extract. These phenolic compounds present in M. stenopetala may be responsible for the mitigation of oxidative stress in BV-2 microglial cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title="oxidative stress">oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=BV-2%20microglial%20cell" title=" BV-2 microglial cell"> BV-2 microglial cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20stenopetala" title=" Moringa stenopetala"> Moringa stenopetala</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20viability" title=" cell viability"> cell viability</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/157189/safety-assessment-and-prophylactic-efficacy-of-moringa-stenopetala-leaf-extract-through-mitigation-of-oxidative-stress-in-bv-2-microglial-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4118</span> Modulation of Isoprenaline-Induced Myocardial Damage by Atorvastatin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Atallah">Dalia Atallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamiaa%20Ahmed"> Lamiaa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Zaki"> Hala Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Khattab"> Mahmoud Khattab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Isoprenaline (ISO) administration induces myocardial damage via oxidative stress and endothelial dysfunction. Atorvastatin (ATV) treatment improves both oxidative stress and endothelial dysfunction yet recent studies have reported a pro-oxidant effect upon ATV administration on both clinical and experimental studies. The present study was directed to investigate the effect of ATV pre-treatment and treatment on ISO-induced myocardial damage. Methods: Male rats were divided into five groups (n = 10). Rats were given ISO (5mg/kg/day, i.p.) for one week with or without ATV (10mg/kg/day, p.o.). ATV was given either as pre-treatment for one week before its co-administration with ISO for another week or as a treatment for two weeks at the end of the ISO administration. At the end of the experiment, the electrocardiographic examination was done and blood was isolated for the estimation of plasma creatine kinase MB (CK-MB) activity. Rats were then sacrificed and the whole ventricles were isolated for histological examination and the estimation of lipid peroxides as malondialdehyde (MDA) level, reduced glutathione (GSH) level, catalase activity, total nitrate-nitrite (NOx), as well as the estimation of both endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) protein expression. Results: ISO-induced myocardial damage showed a significant elevation in ST segment, an increase in CK-MB activity, as well as increased oxidative stress biomarkers. Also, ISO-treated rats showed a significant decrease in myocardial NOx level and eNOS as well as degeneration in the myocardium. ATV pre-treatment didn’t show any protection to ISO-treated rats. On the other hand, ATV treatment showed a significant decrease in both the elevated ST wave and CK-MB activity. Moreover, ATV Treatment succeeded to improve oxidative stress biomarkers, tissue NOx, and eNOS protein expression, as well as amelioration of the histological alterations. Conclusion: Pre-treatment with ATV failed to protect against ISO-induced damage. This might suggest a synergistic pro-oxidant effect upon administration of the pro-oxidant ISO along with ATV as demonstrated by the increased oxidative stress and endothelial dysfunction. On the other side, ATV treatment succeeded to significantly improve oxidative stress biomarkers, endothelial dysfunction and myocardial degeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atorvastatin" title="atorvastatin">atorvastatin</a>, <a href="https://publications.waset.org/abstracts/search?q=endothelial%20dysfunction" title=" endothelial dysfunction"> endothelial dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=isoprenaline" title=" isoprenaline"> isoprenaline</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/14947/modulation-of-isoprenaline-induced-myocardial-damage-by-atorvastatin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4117</span> Oxidative Stress Markers in Sports Related to Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Antevska">V. Antevska</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dejanova"> B. Dejanova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Todorovska"> L. Todorovska</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pluncevic"> J. Pluncevic</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sivevska"> E. Sivevska</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Petrovska"> S. Petrovska</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mancevska"> S. Mancevska</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Karagjozova"> I. Karagjozova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The aim of this study was to optimise the laboratory oxidative stress (OS) markers in soccer players. Material and methods: In a number of 37 soccer players (21±3 years old) and 25 control subjects (sedenters), plasma samples were taken for d-ROMs (reactive oxygen metabolites) and NO (nitric oxide) determination. The d-ROMs test was performed by measurement of hydroperoxide levels (Diacron, Italy). For NO determination the method of nitrate enzyme reduction with the Greiss reagent was used (OXIS, USA). The parameters were taken after the training of the soccer players and were compared with the control group. Training was considered as maximal exercise treadmill test. The criteria of maximum loading for each subject was established as >95% maximal heart rate. Results: The level of d-ROMs was found to be increased in the soccer players vs. control group but no significant difference was noticed. After the training d-ROMs in soccer players showed increased value of 299±44 UCarr (p<0.05). NO showed increased level in all soccer players vs. controls but significant difference was found after the training 102±29 μmol (p<0.05). Conclusion: Due to these results we may suggest that the measuring these OS markers in sport medicine may be useful for better estimation and evaluation of the training program. More oxidative stress should be used to clarify optimization of the training intensity program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress%20markers" title="oxidative stress markers">oxidative stress markers</a>, <a href="https://publications.waset.org/abstracts/search?q=soccer%20players" title=" soccer players"> soccer players</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a>, <a href="https://publications.waset.org/abstracts/search?q=sport" title=" sport"> sport</a> </p> <a href="https://publications.waset.org/abstracts/10708/oxidative-stress-markers-in-sports-related-to-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4116</span> Protective Effect of Celosia Argentea Leaf Extract on Cadmium Induced Toxicity and Oxidative Stress in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulyman%20Abdulhakeem%20Olarewaju">Sulyman Abdulhakeem Olarewaju</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Malomo"> S. O. Malomo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Yakubu"> M. T. Yakubu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Akolade"> J. O. Akolade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ameliorative effect of Celosia argentea var. cristata leaf extract against cadmium (Cd) induced oxidative stress and toxicity in selected tissues of rats was investigated. Toxicity coupled with oxidative stress was induced in rats by oral administration of Cd (8 mg/kg b. wt). Preliminary quantitative phytochemical and in vitro antioxidant analyses showed that the methanolic extract of C. argentea leaves was constituted by polyphenols (5.72%), saponins (3.20%), tannins (0.65%) and cadenolides (0.006%). IC50 of 9800, 7406, and 45.04 μg/ml were recorded for inhibition of linoleic acid oxidation, 2, 2-diphenyl-1-picrylhydrazyl and hydrogen peroxide radicals respectively. Simultaneous administration of C. argentea leaf extract with Cd significantly attenuated Cd-induced elevation of serum enzyme markers such as aspartate and alanine transaminase, alkaline and acid phosphatase as well as γ-glutaryltransferase in a dose-dependent fashion, while their reduced level in the liver were significantly increased. Higher levels of enzymatic antioxidants; superoxide dismutase and catalase activities were observed in the liver, brain, kidney and testes of the Cd-induced rats treated with C. argentea extract, while lipid peroxidation expressed in malondialdehyde concentrations were lower when compared to values in rats administered Cd only. Other Cd-induced toxicity and stress markers in the serum viz. reduced uric acid and albumin levels as well as elevated total and unconjugated bilirubin were attenuated by the extract and their values compared favorably with those animals co-administered cadmium with ascorbic acid. Data from the study showed that oral administration of extract from the leaf C. argentea may ameliorate Cd-induced oxidative stress and toxicity in rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toxicity" title="toxicity">toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=celosia" title=" celosia"> celosia</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title=" antioxidants"> antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/27502/protective-effect-of-celosia-argentea-leaf-extract-on-cadmium-induced-toxicity-and-oxidative-stress-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4115</span> Bioactivity Profiling of Botswana’s Medicinal Ethnobotany With Potential to Mitigate Oxidative Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Motlhanka">Daniel Motlhanka</a>, <a href="https://publications.waset.org/abstracts/search?q=Neo%20Kerebotswe"> Neo Kerebotswe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The strong and long history of use of medicinal plants in Botswana to address existing and emerging health threats provides undebatable evidence for their potential as innovative therapeutic tools. The prevalence of emerging health threats, such as COVID-19 and hard-to-treat non-communicable diseases, warrants the scientific community to revisit and exploit ethnopharmacology for its potential as a source of therapeutic tools. Many studies conducted on bioactivity-guided bioassays of ethnobotanical resources have proved a number of health beneficial properties of these plants, such as free radical scavenging, anti-inflammatory, antimicrobial and, most importantly, the capability of medicinal plants to alleviate oxidative stress. In this work, a number of medicinal plants used in Botswana traditional medicine were investigated for both their free radical scavenging capability and total phenolic contents using the Free Radical Scavenging Power (FRSP) and Folin Ciocalteau (FC) method. At 100 micrograms/ml all the studied plants expressed above 90% Scavenging power and expressed total phenolic contents between 5000- 8890 mg/L.GAE. These plants are promising tools for engineering active therapeutic tools against life-threatening diseases of oxidative stress origin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title="oxidative stress">oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=non-communicable%20diseases" title=" non-communicable diseases"> non-communicable diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics"> total phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnobotanicals" title=" ethnobotanicals"> ethnobotanicals</a> </p> <a href="https://publications.waset.org/abstracts/186011/bioactivity-profiling-of-botswanas-medicinal-ethnobotany-with-potential-to-mitigate-oxidative-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4114</span> The Effects of Therapy on Oxidative Stress, Ghrelin and Nesfatin-1 Levels in Iron Deficiency Anemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Caylak">Emrah Caylak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate the effect of iron therapy on oxidative stress, ghrelin, and nesfatin-1 levels in patients with iron deficiency anemia (IDA). Thirty patients who applied to Internal Medicine Clinic and were diagnosed with IDA and also 30 healthy individuals as a control were included in the study. The samples were collected from IDA patients before and after treatment. Differences in serum MDA, TAC, and plasma ghrelin, nesfatin-1 were analyzed among the three groups. Serum MDA and TAC levels were found higher and lower in IDA patients before the treatment group compared to the controls (p < 0.05). After the iron therapy, plasma acylated ghrelin and nesfatin-1 levels in IDA patients were found higher in IDA patients before the treatment group and controls (p < 0.05). Plasma ghrelin and nesfatin-1 levels increase with iron treatment in IDA patients. The iron therapy induces the synthesis of ghrelin and nesfatin-1 in human body, thus causes increased appetite and food intake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anemia" title="anemia">anemia</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=ghrelin" title=" ghrelin"> ghrelin</a>, <a href="https://publications.waset.org/abstracts/search?q=nesfatin-1" title=" nesfatin-1"> nesfatin-1</a> </p> <a href="https://publications.waset.org/abstracts/144512/the-effects-of-therapy-on-oxidative-stress-ghrelin-and-nesfatin-1-levels-in-iron-deficiency-anemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4113</span> The Oxidative Damage Marker for Sodium Formate Exposure on Lymphocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malinee%20Pongsavee">Malinee Pongsavee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sodium formate is the chemical substance used for food additive. Catalase is the important antioxidative enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). The resultant level of oxidative stress in sodium formatetreated lymphocytes was investigated. The sodium formate concentrations of 0.05, 0.1, 0.2, 0.4 and 0.6 mg/mL were treated in human lymphocytes for 12 hours. After 12 treated hours, catalase activity change was measured in sodium formate-treated lymphocytes. The results showed that the sodium formate concentrations of 0.4 and 0.6 mg/mL significantly decreased catalase activities in lymphocytes (P < 0.05). The change of catalase activity in sodium formate-treated lymphocytes may be the oxidative damage marker for detect sodium formate exposure in human. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20formate" title="sodium formate">sodium formate</a>, <a href="https://publications.waset.org/abstracts/search?q=catalase%20activity" title=" catalase activity"> catalase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20damage%20marker" title=" oxidative damage marker"> oxidative damage marker</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/31219/the-oxidative-damage-marker-for-sodium-formate-exposure-on-lymphocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4112</span> Phyllantus nuriri Protect against Fe2+ and SNP Induced Oxidative Damage in Mitochondrial Rich Fractions of Rats Brain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusola%20Olalekan%20Elekofehinti">Olusola Olalekan Elekofehinti</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Gbadura%20Adanlawo"> Isaac Gbadura Adanlawo</a>, <a href="https://publications.waset.org/abstracts/search?q=Joao%20Batista%20Teixeira%20Rocha"> Joao Batista Teixeira Rocha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We evaluated the potential neuroprotective effect of Phyllantus nuriri against Fe2+ and SNP induced oxidative stress in mitochondria of rats brain. Cellular viability was assessed by MTT reduction, reactive oxygen species (ROS) generation was measured using the probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Glutathione content was measured using dithionitrobenzoic acid (DTNB). Fe2+ (10µM) and SNP (5µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, this occurred in parallel with increased glutathione oxidation, ROS production and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with methanolic extract of Phyllantus nuriri (10-100 µg/ml) reduced the disruption of mitochondrial activity, gluthathione oxidation, ROS production as well as the increase in TBARS levels caused by both Fe2+ and SNP in a dose dependent manner. HPLC analysis of the extract revealed the presence of gallic acid (20.54±0.01), caffeic acid (7.93±0.02), rutin (25.31±0.05), quercetin (31.28±0.03) and kaemferol (14.36±0.01). This result suggests that these phytochemicals account for the protective actions of Phyllantus nuriri against Fe2+ and SNP -induced oxidative stress. Our results show that Phyllantus nuriri consist important bioactive molecules in the search for an improved therapy against the deleterious effects of Fe2+, an intrinsic producer of reactive oxygen species (ROS), that leads to neuronal oxidative stress and neurodegeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phyllantus%20niruri" title="Phyllantus niruri">Phyllantus niruri</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprotection" title=" neuroprotection"> neuroprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=synaptosome" title=" synaptosome"> synaptosome</a> </p> <a href="https://publications.waset.org/abstracts/20633/phyllantus-nuriri-protect-against-fe2-and-snp-induced-oxidative-damage-in-mitochondrial-rich-fractions-of-rats-brain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4111</span> The Growth Reaction, Membrane Potential and Oxidative Stress of Maize Coleoptile Cells Incubated in the Presence of the Naphthoquinones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Rudnicka">Malgorzata Rudnicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Waldemar%20Karcz"> Waldemar Karcz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Naphthoquinones are widely occurring organic compounds produced by bacteria, fungi, and plants. They can act as the functional components of biochemical systems (plastoquinone) as well as biologically active substances, which have a negative impact on environmental processes. Naphthoquinones seem to act through two mechanisms: a covalent modification of biological molecules at their nucleophilic sites or by generation of reactive oxygen species (ROS) connected with redox cycling. Investigating the effect of naphthoquinones (1,4-naphthoquinone, lawsone and naphthazarin) on the elongation growth, membrane potential and the level of oxidative stress of maize cells seems to be important due to the possibility of using these substances as herbicides. Methods: All experiments were performed on etiolated maize coleoptile segments. Simultaneous measurements of elongation growth and pH of the incubation medium were carried out using an angular position transducer, allowing a precise record of the growth kinetics. To compare the oxidative stress level induced by all tested naphthoquinones, the changes in malondialdehyde content, as well as superoxide dismutase and catalase activities were measured. In order to measure the membrane potential of parenchymal cells the standard electrophysiology technique was used. Results: Naphthoquinones such as: 1,4-naphthoquinone, lawsone and naphthazarin were studied. It was found that all of the naphthoquinones diminished the growth of the maize coleoptile cells depending on the type of naphthoquinones and their concentration. Interestingly, naphthazarin at the intermediate concentration was less toxic compared to the others. In addition, the effect of naphthoquinones on the oxidative stress was dependent on their concentration as well. Superoxide dismutase and catalase activities were changed in the presence of higher concentrations of naphthoquinones. Similar interrelations were observed for membrane potential changes. Conclusion: It can be concluded that naphthoquinones tested differ in their toxic effect on the growth of maize coleoptile cells. Furthermore, naphthoquinones can be distinguish considering the oxidative stress level and membrane potential changes. The results presented here give new insight into the possible opportunities of practical usage of naphthoquinones for herbicides improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20rate" title="growth rate">growth rate</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20potential" title=" membrane potential"> membrane potential</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthoquinones" title=" naphthoquinones"> naphthoquinones</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/70298/the-growth-reaction-membrane-potential-and-oxidative-stress-of-maize-coleoptile-cells-incubated-in-the-presence-of-the-naphthoquinones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4110</span> Nanoparaquat Effects on Oxidative Stress Status and Liver Function in Male Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Azizi">Zahra Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Karbasi"> Ashkan Karbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzin%20Firouzian"> Farzin Firouzian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Soleimani%20Asl"> Sara Soleimani Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Ranjbar"> Akram Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: One of the most often used herbicides in agriculture is paraquat (PQ), which is very harmful to both people and animals. Chitosan is a well-known, non-toxic polymer commonly used in preparing particles via ionotropic gelation facilitated by negatively charged agents such as sodium alginate. This study aimed to compare the effects of PQ and nanoparaquat (PQNPs) on liver function in male rats. Materials & Methods: Rats were exposed to PQ & PQNPs (4 mg/kg/day, intraperitoneally) for seven days. Then, rats were anesthetized, and serum and liver samples were collected. Later, enzymatic activities such as alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) in serum and oxidative stress biomarkers such as lipid peroxidation (LPO), total antioxidant capacity (TAC) and total thiol groups (TTG) levels in liver tissue were measured by colorimetric methods. Also, histological changes in the liver were evaluated. Results: PQ altered the levels of ALT, AST, and ALP while inducing oxidative stress in the liver. Additionally, liver homogenates with PQ exposure had challenged LPO, TAC, and TTG levels. The severe liver damage is indicated by a significant increase in the enzyme activity of AST, ALT, and ALP in serum. According to the results of the current study, PQNPs, as compared to PQ and the control group, lowered ALT, AST, ALP, and LPO levels while increasing TAC and TTG levels. Conclusion: According to biochemical and histological investigations, PQ loaded in chitosan-alginate particles is more efficient than free PQ at reducing liver toxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraquat" title="paraquat">paraquat</a>, <a href="https://publications.waset.org/abstracts/search?q=paraquat%20nanoparticles" title=" paraquat nanoparticles"> paraquat nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/180939/nanoparaquat-effects-on-oxidative-stress-status-and-liver-function-in-male-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4109</span> Amelioration of Lipopolysaccharide Induced Murine Colitis by Cell Wall Contents of Probiotic Lactobacillus Casei: Targeting Immuno-Inflammation and Oxidative Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishvas%20N.%20Patel">Vishvas N. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehul%20Chorawala"> Mehul Chorawala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, according to the authors best knowledge there are less effective therapeutic agents to limit intestinal mucosa damage associated with inflammatory bowel disease (IBD). Clinical studies have shown beneficial effects of several probiotics in patients of IBD. Probiotics are live organisms; confer a health benefit to the host by modulating immunoinflammation and oxidative stress. Although probiotics in murine and human improve disease severity, very little is known about the specific contribution of cell wall contents of probiotics in IBD. Herein, we investigated the ameliorative potential of cell wall contents of Lactobacillus casei (LC) in lipopolysaccharide (LPS)-induced murine colitis. Methods: Colitis was induced in LPS-sensitized rats by intracolonic instillation of LPS (50 µg/rat) for consecutive 14 days. Concurrently, cell wall contents isolated from 103, 106 and 109 CFU of LC was given subcutaneously to each rat for 21 days, considering sulfasalazine (100 mg/kg, p.o.) as standard. The severity of colitis was assessed by body weight loss, food intake, stool consistency, rectal bleeding, colon weight/length, spleen weight and histological analysis. Colonic inflammatory markers (myeloperoxidase (MPO) activity, C-reactive protein and proinflammatory cytokines) and oxidative stress markers (malondialdehyde, reduced glutathione and nitric oxide) were also assayed. Results: Cell wall contents of isolated from 106 and 109 CFU of LC significantly improved the severity of colitis by reducing body weight loss and diarrhea & bleeding incidence, improving food intake, colon weight/length, spleen weight and microscopic damage to the colonic mucosa. The treatment also reduced levels of inflammatory and oxidative stress markers and boosted antioxidant molecule. However, cell wall contents of isolated from 103 were ineffective. Conclusion: In conclusion, cell wall contents of LC attenuate LPS-induced colitis by modulating immuno-inflammation and oxidative stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotics" title="probiotics">probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20casei" title=" Lactobacillus casei"> Lactobacillus casei</a>, <a href="https://publications.waset.org/abstracts/search?q=immuno-inflammation" title=" immuno-inflammation"> immuno-inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopolysaccharide" title=" lipopolysaccharide"> lipopolysaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=colitis" title=" colitis"> colitis</a> </p> <a href="https://publications.waset.org/abstracts/157252/amelioration-of-lipopolysaccharide-induced-murine-colitis-by-cell-wall-contents-of-probiotic-lactobacillus-casei-targeting-immuno-inflammation-and-oxidative-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4108</span> Ethylene Response Factor BnERF from Brassica napus L. Enhances Submergence Tolerance and Alleviates the Oxidative Damage Caused by Submergence in Arabidopsis thaliana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanxiong%20Fu">Sanxiong Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Lv"> Yanyan Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Chen"> Song Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhang"> Wei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cunkou%20Qi"> Cunkou Qi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethylene response factor proteins are known to play an important role in regulating a variety of stress responses in plants, but their exact functions in submergence stress are not completely understood. In this study, we isolated BnERF from Brassica napus L. to study the function of BnERF in submergence tolerance. The expression of BnERF gene in Brassica napus L. and the expression of antioxidant enzyme genes in transgenic Arabidopsis were analyzed by Quantitative RT-PCR. It was found that expression of BnERF is apparently induced by submergence in Brassica napus L. and overexpression of BnERF in Arabidopsis increases the tolerance level to submergence and oxidative stress. Histochemical method detected lower level of H2O2, O2•− and malondialdehyde (MDA) in the transgenic Arabidopsis. Compared to wild type, transgenic lines also have higher soluble sugar content and higher activity of antioxidant enzymes, which helps protect the plants against the oxidative damage caused by submergence. It was concluded that BnERF can increase the tolerance of plants to submergence stress and BnERF might be involved in regulating soluble sugar content and the antioxidant system in the defense against submergence stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzyme" title="antioxidant enzyme">antioxidant enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabidopsis" title=" Arabidopsis"> Arabidopsis</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20response%20factor" title=" ethylene response factor"> ethylene response factor</a>, <a href="https://publications.waset.org/abstracts/search?q=submergence" title=" submergence"> submergence</a> </p> <a href="https://publications.waset.org/abstracts/49140/ethylene-response-factor-bnerf-from-brassica-napus-l-enhances-submergence-tolerance-and-alleviates-the-oxidative-damage-caused-by-submergence-in-arabidopsis-thaliana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4107</span> Mechanism of Action of Troxerutin in Reducing Oxidative Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20Hosseinzad">Nasrin Hosseinzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Troxerutin, a trihydroxyethylated derived of rutin, is a flavonoid existing in tea, coffee, cereal grains, various fruits and vegetables have been conveyed to display radioprotective, antithrombotic, nephron-protective and hepato-protective possessions. Troxerutin, has been well-proved to utilize hepatoprotective assets. Troxerutin could upturn the resistance of hippocampal neurons alongside apoptosis by lessening the action of AChE and oxidative stress. Consequently, troxerutin may have advantageous properties in the administration of Alzheimer's disease and cancer. Troxerutin has been testified to have several welfares and medicinal stuffs. It could shelter the mouse kidney against d-gal-induced damage by refining renal utility, decreasing histopathologic changes, dropping ROS construction, reintroducing the activities of antioxidant enzymes and reducing DNA oxidative destruction. The DNA cleavage study clarifies that troxerutin showed DNA protection against hydroxyl radical persuaded DNA mutilation. Troxerutin uses anti-cancer effect in HuH-7 hepatocarcinoma cells conceivably through synchronized regulation of the molecular signalling pathways, Nrf2 and NF-κB. DNA binding at slight channel by troxerutin may have donated to feature breaks leading to improved radiation brought cell death. Furthermore, the mechanism principal the observed variance in the antioxidant activities of troxerutin and its esters was qualified to equally their free radical scavenging capabilities and dissemination on the cell membrane outward. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=troxerutin" title="troxerutin">troxerutin</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radical" title=" free radical"> free radical</a> </p> <a href="https://publications.waset.org/abstracts/143250/mechanism-of-action-of-troxerutin-in-reducing-oxidative-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4106</span> Zooplankton Health Status Monitoring in Bir Mcherga Dam (Tunisia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabria%20Barka">Sabria Barka</a>, <a href="https://publications.waset.org/abstracts/search?q=Imen%20Gdara"> Imen Gdara</a>, <a href="https://publications.waset.org/abstracts/search?q=Zouhour%20Ouan%C3%A8s"> Zouhour Ouanès</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Mouelhi"> Samia Mouelhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Monia%20El%20Bour"> Monia El Bour</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Hamza-Chaffai"> Amel Hamza-Chaffai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because dams are large semi-closed reservoirs of pollutants originating from numerous anthropogenic activities, they represent a threat to aquatic life and they should be monitored. The present work aims to use freshwater zooplankton (Copepods and Cladocerans) in order to evaluate the environmental health status of Bir M'cherga dam in Tunisia. Animals were collected in situ monthly between October and August. Genotoxicity (micronucleus test), neurotoxicity (acetylcholinesterase, AChE) and oxidative stress (catalase, CAT and malondialdehyde, MDA) biomarkers were analyzed in zooplankton. High frequencies of micronucleus were observed in zooplankton cells during summer. AChE activities were inhibited during early winter and summer. CAT and MDA biomarker levels showed high seasonal variability, suggesting that animals are permanently exposed to multiple oxidative stress. The results of this study suggest that the Bir Mcherga dam is subject to continuous multi-origin stress, probably amplified by abiotic parameters. It is then recommended to urgently monitor freshwater environments in Tunisia, especially those used for irrigation and consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biomonitoring" title="Biomonitoring">Biomonitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=Bir%20Mcherga%20Dam" title=" Bir Mcherga Dam"> Bir Mcherga Dam</a>, <a href="https://publications.waset.org/abstracts/search?q=cladocerans" title=" cladocerans"> cladocerans</a>, <a href="https://publications.waset.org/abstracts/search?q=copepods" title=" copepods"> copepods</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20zooplankton" title=" freshwater zooplankton"> freshwater zooplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title=" neurotoxicity"> neurotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/171979/zooplankton-health-status-monitoring-in-bir-mcherga-dam-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4105</span> Effects of Live Yeast Supplementation to Reduce Oxidative Stress and Increase Lactation Performance of Dairy Cattle during the Summer Season</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nawid%20Mirzad">Ahmad Nawid Mirzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Goto"> Akira Goto</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuto%20Endo"> Takuto Endo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Ano"> Hitoshi Ano</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromu%20Katamoto"> Hiromu Katamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Takenori%20Yamauchi"> Takenori Yamauchi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to evaluate the effects of live yeast supplementation on oxidative stress biomarker and antioxidant vitamin levels as well as lactation performance in Holstein Friesian cows during the summer season in Fukuoka prefecture. Sixteen lactating cows weighing 707.50 ± 13.09 kg (Mean ± SE) were used and randomly assigned to either supplemented (n = 8) or control (n = 8) group. The cows in supplemented group were administered with live yeast product at 10 g/d per cow from middle of July to middle of September for eight weeks. In treatment group, serum levels of derivatives of reactive oxygen metabolites (d-ROMs) were lower at week six. In addition, serum levels of glucose and retinol were higher at week eight and those of α-tocopherol were higher at week 2 in treatment group. During study period daily average milk yield decreased in both groups. Daily average milk yield 63 days after the onset of supplementation in treatment and control groups were 23.5 and 22.2 kg, respectively. The reduction rate of milk yield in treatment group tended to be lower (17.6 vs. 20.0%). These results suggest that live yeast supplementation may reduce oxidative stress and improve energy metabolism in lactating dairy cows during the summer season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow" title="cow">cow</a>, <a href="https://publications.waset.org/abstracts/search?q=live%20yeast" title=" live yeast"> live yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=summer%20season" title=" summer season"> summer season</a> </p> <a href="https://publications.waset.org/abstracts/102176/effects-of-live-yeast-supplementation-to-reduce-oxidative-stress-and-increase-lactation-performance-of-dairy-cattle-during-the-summer-season" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4104</span> Cucurbita pepo L. Attenuates Diabetic Neuropathy by Targeting Oxidative Stress in STZ-Nicotinamide Induced Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navpreet%20Kaur">Navpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Randhir%20Singh"> Randhir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic neuropathy is one of the most common microvascular complications of diabetes mellitus which affects more than 50% of diabetic patients. The present study targeted oxidative stress mediated nerve damage in diabetic rats using a hydro-alcohol extract of Cucurbita pepo L. (Family: Cucurbitaceae) and its potential in treatment of diabetic neuropathy. Diabetes neuropathy was induced in Wistar rats by injection of streptozotocin (65 mg/kg, i.p.) 15 min after Nicotinamide (230 mg/kg, i.p.) administration. Hydro-alcohol extract of C. pepo seeds was assessed by oral administration at 100, 200 and 400 mg/kg in STZ-nicotinamide induced diabetic rats. Thermal hyperalgesia (Eddy's hot plate and tail immersion), mechanical hyperalgesia (Randall-Selitto) and tactile allodynia (Von Frey hair tests) were evaluated in all groups of streptozotocin diabetic rats to assess the extent of neuropathy. Tissue (sciatic nerve) antioxidant enzymes (SOD, CAT, GSH and LPO) levels were measured along with the formation of AGEs in serum to assess the effect of hydro-alcohol extract of C. pepo in ameliorating oxidative stress. Diabetic rats exhibited significantly decreased tail-flick latency in the tail-immersion test and decreased paw withdrawal threshold in both Randall-Selitto and von-Frey hair test. A decrease in the nociceptive threshold was accompanied by significantly increased oxidative stress in sciatic nerve of diabetic rats. Treatment with the C. pepo hydro-alcohol extract significantly attenuated all the behavioral and biochemical alterations in a dose-dependent manner. C. pepo attenuated the diabetic condition and also reversed neuropathic pain through modulation of oxidative stress and thus it may find application as a possible therapeutic agent against diabetic neuropathy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20glycation%20end%20products" title="advanced glycation end products">advanced glycation end products</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title=" antioxidant enzymes"> antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=cucurbita%20pepo" title=" cucurbita pepo"> cucurbita pepo</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a> </p> <a href="https://publications.waset.org/abstracts/42884/cucurbita-pepo-l-attenuates-diabetic-neuropathy-by-targeting-oxidative-stress-in-stz-nicotinamide-induced-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=137">137</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=138">138</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxidative%20stress&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10