CINXE.COM
Search results for: anomalos couplings
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: anomalos couplings</title> <meta name="description" content="Search results for: anomalos couplings"> <meta name="keywords" content="anomalos couplings"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="anomalos couplings" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="anomalos couplings"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: anomalos couplings</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Turk%20Cakir">Ilkay Turk Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Altinli"> Murat Altinli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zekeriya%20Uysal"> Zekeriya Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkadir%20Senol"> Abdulkadir Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Olcay%20Bolukbasi%20Yalcinkaya"> Olcay Bolukbasi Yalcinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Yilmaz"> Ali Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalos%20couplings" title="anomalos couplings">anomalos couplings</a>, <a href="https://publications.waset.org/abstracts/search?q=FCC-eh" title=" FCC-eh"> FCC-eh</a>, <a href="https://publications.waset.org/abstracts/search?q=Higgs" title=" Higgs"> Higgs</a>, <a href="https://publications.waset.org/abstracts/search?q=Z%20boson" title=" Z boson"> Z boson</a> </p> <a href="https://publications.waset.org/abstracts/82433/the-search-of-anomalous-higgs-boson-couplings-at-the-large-hadron-electron-collider-and-future-circular-electron-hadron-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Turk%20Cakir">I. Turk Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Senol"> A. Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Tasci"> A. T. Tasci</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Cakir"> O. Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the anomalous WWγ and WWZ couplings by calculating total cross sections of the ep→νqγX and ep→νqZX processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (Δκγ,λγ) and (Δκz,λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101,0.065) and (0.320,0.002) at an integrated luminosity of Lint=100 fb-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalous%20couplings" title="anomalous couplings">anomalous couplings</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20circular%20collider" title=" future circular collider"> future circular collider</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20hadron%20electron%20collider" title=" large hadron electron collider"> large hadron electron collider</a>, <a href="https://publications.waset.org/abstracts/search?q=W-boson%20and%20Z-boson" title=" W-boson and Z-boson"> W-boson and Z-boson</a> </p> <a href="https://publications.waset.org/abstracts/17408/probing-anomalous-ww-gh-and-wwz-couplings-with-polarized-electron-beam-at-the-lhec-and-fcc-ep-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Vector Control of Two Five Phase PMSM Connected in Series Powered by Matrix Converter Application to the Rail Traction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Meguenni">S. Meguenni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Djahbar"> A. Djahbar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Tounsi"> K. Tounsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric railway traction systems are complex; they have electrical couplings, magnetic and solid mechanics. These couplings impose several constraints that complicate the modeling and analysis of these systems. An example of drive systems, which combine the advantages of the use of multiphase machines, power electronics and computing means, is mono convert isseur multi-machine system which can control a fully decoupled so many machines whose electric windings are connected in series. In this approach, our attention especially on modeling and independent control of two five phase synchronous machine with permanent magnet connected in series and fed by a matrix converter application to the rail traction (bogie of a locomotive BB 36000). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine" title="synchronous machine">synchronous machine</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20control%20Multi-machine%2F%20Multi-inverter" title=" vector control Multi-machine/ Multi-inverter"> vector control Multi-machine/ Multi-inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20inverter" title=" matrix inverter"> matrix inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=Railway%20traction" title=" Railway traction"> Railway traction</a> </p> <a href="https://publications.waset.org/abstracts/49131/vector-control-of-two-five-phase-pmsm-connected-in-series-powered-by-matrix-converter-application-to-the-rail-traction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Search for Flavour Changing Neutral Current Couplings of Higgs-up Sector Quarks at Future Circular Collider (FCC-eh)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Turk%20Cakir">I. Turk Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hacisahinoglu"> B. Hacisahinoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kartal"> S. Kartal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yilmaz"> A. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yilmaz"> A. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Uysal"> Z. Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Cakir"> O. Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the search for new physics beyond the Standard Model, Flavour Changing Neutral Current (FCNC) is a good research field in terms of the observability at future colliders. Increased Higgs production with higher energy and luminosity in colliders is essential for verification or falsification of our knowledge of physics and predictions, and the search for new physics. Prospective electron-proton collider constituent of the Future Circular Collider project is FCC-eh. It offers great sensitivity due to its high luminosity and low interference. In this work, thq FCNC interaction vertex with off-shell top quark decay at electron-proton colliders is studied. By using MadGraph5_aMC@NLO multi-purpose event generator, observability of tuh and tch couplings are obtained with equal coupling scenario. Upper limit on branching ratio of tree level top quark FCNC decay is determined as 0.012% at FCC-eh with 1 ab ^−1 luminosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FCC" title="FCC">FCC</a>, <a href="https://publications.waset.org/abstracts/search?q=FCNC" title=" FCNC"> FCNC</a>, <a href="https://publications.waset.org/abstracts/search?q=Higgs%20Boson" title=" Higgs Boson"> Higgs Boson</a>, <a href="https://publications.waset.org/abstracts/search?q=Top%20Quark" title=" Top Quark"> Top Quark</a> </p> <a href="https://publications.waset.org/abstracts/83207/search-for-flavour-changing-neutral-current-couplings-of-higgs-up-sector-quarks-at-future-circular-collider-fcc-eh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Supersymmetry versus Compositeness: 2-Higgs Doublet Models Tell the Story</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20De%20Curtis">S. De Curtis</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Delle%20Rose"> L. Delle Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moretti"> S. Moretti</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yagyu"> K. Yagyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersymmetry and compositeness are the two prevalent paradigms providing both a solution to the hierarchy problem and motivation for a light Higgs boson state. An open door towards the solution is found in the context of 2-Higgs Doublet Models (2HDMs), which are necessary to supersymmetry and natural within compositeness in order to enable Electro-Weak Symmetry Breaking. In scenarios of compositeness, the two isospin doublets arise as pseudo Nambu-Goldstone bosons from the breaking of SO(6). By calculating the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the global symmetry induced by the partial compositeness of fermions and gauge bosons, we derive the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider. These include modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We contrast the properties of this composite scenario to the well-known ones established in supersymmetry, with the MSSM being the most notorious example. We show how 2HDM spectra of masses and couplings accessible at the Large Hadron Collider may allow one to distinguish between the two paradigms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beyond%20the%20standard%20model" title="beyond the standard model">beyond the standard model</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20Higgs" title=" composite Higgs"> composite Higgs</a>, <a href="https://publications.waset.org/abstracts/search?q=supersymmetry" title=" supersymmetry"> supersymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Two-Higgs%20Doublet%20Model" title=" Two-Higgs Doublet Model"> Two-Higgs Doublet Model</a> </p> <a href="https://publications.waset.org/abstracts/102212/supersymmetry-versus-compositeness-2-higgs-doublet-models-tell-the-story" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suraka%20Bhattacharjee">Suraka Bhattacharjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Chaudhury"> Ranjan Chaudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20charge%20stiffness%20constant" title="generalized charge stiffness constant">generalized charge stiffness constant</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20coupling" title=" charge coupling"> charge coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20Coulomb%20interaction" title=" effective Coulomb interaction"> effective Coulomb interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=t-J-like%20models" title=" t-J-like models"> t-J-like models</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum-space%20pairing" title=" momentum-space pairing"> momentum-space pairing</a> </p> <a href="https://publications.waset.org/abstracts/111537/effective-charge-coupling-in-low-dimensional-doped-quantum-antiferromagnets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Discovering New Organic Materials through Computational Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucas%20Viani">Lucas Viani</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedetta%20%20Mennucci"> Benedetta Mennucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Young%20%20Park"> Soo Young Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20%20Gierschner"> Johannes Gierschner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20semiconductor" title="organic semiconductor">organic semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20crystals" title=" organic crystals"> organic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transport" title=" energy transport"> energy transport</a>, <a href="https://publications.waset.org/abstracts/search?q=excitonic%20couplings" title=" excitonic couplings"> excitonic couplings</a> </p> <a href="https://publications.waset.org/abstracts/51191/discovering-new-organic-materials-through-computational-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Andrade%20Brand%C3%A3o%20Soares">Alexandra Andrade Brandão Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Batista%20Gon%C3%A7alves"> Paulo Batista Gonçalves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20shells" title="cylindrical shells">cylindrical shells</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20material" title=" functionally graded material"> functionally graded material</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20vibrations" title=" nonlinear vibrations"> nonlinear vibrations</a> </p> <a href="https://publications.waset.org/abstracts/183404/nonlinear-free-vibrations-of-functionally-graded-cylindrical-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beata%20Jackowska-Zduniak">Beata Jackowska-Zduniak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20differential%20equations" title=" ordinary differential equations"> ordinary differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20system" title=" endocrine system"> endocrine system</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20differential%20equation" title=" delay differential equation"> delay differential equation</a> </p> <a href="https://publications.waset.org/abstracts/52938/stability-analysis-for-an-extended-model-of-the-hypothalamus-pituitary-thyroid-axis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> A Spin and Valley Modulating Device in Grapheme heterostructure: Controlling Valley and Spin Current</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Belayadi">Adel Belayadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation of two-dimensional (2D) heterostructures, whether in the presence or the absence of magnetic substrates that sustain several induced spin-orbit couplings, has shown a promising/essential application for advancing the emerging fields of spintronics and valleytronics. In this contribution, we study spin/valley transport in graphene-like substrates in the presence of one or several locally induced spin-orbit coupling (SOC) terms resulting from graphene-based heterostructures. The models we proposed are based on the tight-binding approach, and our findings imply an alternative approach for conducting valley-polarized currents and suggest a corresponding mechanism for valley-dependent electron optics and optoelectronic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene-heterostructures" title="graphene-heterostructures">graphene-heterostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=tight%20binding%20pproch" title=" tight binding pproch"> tight binding pproch</a>, <a href="https://publications.waset.org/abstracts/search?q=Spintronics" title=" Spintronics"> Spintronics</a>, <a href="https://publications.waset.org/abstracts/search?q=Valleytronics" title=" Valleytronics"> Valleytronics</a> </p> <a href="https://publications.waset.org/abstracts/192032/a-spin-and-valley-modulating-device-in-grapheme-heterostructure-controlling-valley-and-spin-current" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Paris">Thomas Paris</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Bruyere"> Vincent Bruyere</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Namy"> Patrick Namy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressible%20flow" title="compressible flow">compressible flow</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title=" fluid mechanics"> fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a> </p> <a href="https://publications.waset.org/abstracts/95747/compressible-flow-modeling-in-pipes-and-porous-media-during-blowdown-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Active Control of Multiferroic Composite Shells Using 1-3 Piezoelectric Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Kattimani">S. C. Kattimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with the analysis of active constrained layer damping (ACLD) of smart multiferroic or magneto-electro-elastic doubly curved shells. The kinematics of deformations of the multiferroic doubly curved shell is described by a layer-wise shear deformation theory. A three-dimensional finite element model of multiferroic shells has been developed taking into account the electro-elastic and magneto-elastic couplings. A simple velocity feedback control law is employed to incorporate the active damping. Influence of layer stacking sequence and boundary conditions on the response of the multiferroic doubly curved shell has been studied. In addition, for the different orientation of the fibers of the constraining layer, the performance of the ACLD treatment has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20constrained%20layer%20damping%20%28ACLD%29" title="active constrained layer damping (ACLD)">active constrained layer damping (ACLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20curved%20shells" title=" doubly curved shells"> doubly curved shells</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-electro-elastic" title=" magneto-electro-elastic"> magneto-electro-elastic</a>, <a href="https://publications.waset.org/abstracts/search?q=multiferroic%20composite" title=" multiferroic composite"> multiferroic composite</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20structures" title=" smart structures"> smart structures</a> </p> <a href="https://publications.waset.org/abstracts/61791/active-control-of-multiferroic-composite-shells-using-1-3-piezoelectric-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> A Four Free Element Radiofrequency Coil with High B₁ Homogeneity for Magnetic Resonance Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Al-Snaie">Khalid Al-Snaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the design and the testing of a symmetrical radiofrequency prototype coil with high B₁ magnetic field homogeneity are presented. The developed coil comprises four tuned coaxial circular loops that can produce a relatively homogeneous radiofrequency field. In comparison with a standard Helmholtz pair that provides 2nd-order homogeneity, it aims to provide fourth-order homogeneity of the B₁ field while preserving the simplicity of implementation. Electrical modeling of the probe, including all couplings, is used to ensure these requirements. Results of comparison tests, in free space and in a spectro-imager, between a standard Helmholtz pair and the presented prototype coil are introduced. In terms of field homogeneity, an improvement of 30% is observed. Moreover, the proposed prototype coil possesses a better quality factor (+25% on average) and a noticeable improvement in sensitivity (+20%). Overall, this work, which includes both theoretical and experimental aspects, aims to contribute to the study and understanding of four-element radio frequency (RF) systems derived from Helmholtz coils for Magnetic Resonance Imaging <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%E2%82%81%20homogeneity" title="B₁ homogeneity">B₁ homogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=radiofrequency" title=" radiofrequency"> radiofrequency</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20coil" title=" RF coil"> RF coil</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20element%20systems" title=" free element systems"> free element systems</a> </p> <a href="https://publications.waset.org/abstracts/166325/a-four-free-element-radiofrequency-coil-with-high-b1-homogeneity-for-magnetic-resonance-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Design of Advanced Materials for Alternative Cooling Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emilia%20Olivos">Emilia Olivos</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Arroyave"> R. Arroyave</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vargas-Calderon"> A. Vargas-Calderon</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Dominguez-Herrera"> J. E. Dominguez-Herrera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More efficient cooling systems are needed to reduce building energy consumption and environmental impact. At present researchers focus mainly on environmentally-friendly magnetic materials and the potential application in cooling devices. The magnetic materials presented in this project belong to a group known as Heusler alloys. These compounds are characterized by a strong coupling between their structure and magnetic properties. Usually, a change in one of them can alter the other, which implies changes in other electronic or structural properties, such as, shape magnetic memory response or the magnetocaloric effect. Those properties and its dependence with external fields make these materials interesting, both from a fundamental point of view, as well as on their different possible applications. In this work, first principles and Monte Carlo simulations have been used to calculate exchange couplings and magnetic properties as a function of an applied magnetic field on Heusler alloys. As a result, we found a large dependence of the magnetic susceptibility, entropy and heat capacity, indicating that the magnetic field can be used in experiments to trigger particular magnetic properties in materials, which are necessary to develop solid-state refrigeration devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic%20materials" title="ferromagnetic materials">ferromagnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric%20effect" title=" magnetocaloric effect"> magnetocaloric effect</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20design" title=" materials design"> materials design</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20refrigeration" title=" solid state refrigeration"> solid state refrigeration</a> </p> <a href="https://publications.waset.org/abstracts/108024/design-of-advanced-materials-for-alternative-cooling-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Photon Blockade in Non-Hermitian Optomechanical Systems with Nonreciprocal Couplings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Sun">J. Y. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Z.%20Shen"> H. Z. Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the photon blockade at exceptional points for a non-Hermitian optomechanical system coupled to the driven whispering-gallery-mode microresonator with two nanoparticles under the weak optomechanical coupling approximation, where exceptional points emerge periodically by controlling the relative angle of the nanoparticles. We find that conventional photon blockade occurs at exceptional points for the eigenenergy resonance of the single-excitation subspace driven by a laser field and discuss the physical origin of conventional photon blockade. Under the weak driving condition, we analyze the influences of the different parameters on conventional photon blockade. We investigate conventional photon blockade at nonexceptional points, which exists at two optimal detunings due to the eigenstates in the single-excitation subspace splitting from one (coalescence) at exceptional points to two at nonexceptional points. Unconventional photon blockade can occur at nonexceptional points, while it does not exist at exceptional points since the destructive quantum interference cannot occur due to the two different quantum pathways to the two-photon state not being formed. The realization of photon blockade in our proposal provides a viable and flexible way for the preparation of single-photon sources in the non-Hermitian optomechanical system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optomechanical%20systems" title="optomechanical systems">optomechanical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=photon%20blockade" title=" photon blockade"> photon blockade</a>, <a href="https://publications.waset.org/abstracts/search?q=non-hermitian" title=" non-hermitian"> non-hermitian</a>, <a href="https://publications.waset.org/abstracts/search?q=exceptional%20points" title=" exceptional points"> exceptional points</a> </p> <a href="https://publications.waset.org/abstracts/178849/photon-blockade-in-non-hermitian-optomechanical-systems-with-nonreciprocal-couplings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Gold–M Heterobimetallic Complexes: Synthesis and Initial Reactivity Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Alice%20Rouget-Virbel">Caroline Alice Rouget-Virbel</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Dean%20Toste"> F. Dean Toste</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterobimetallic systems have been precedented in a wide array of bioinorganic and heterogeneous catalytic settings, in which cooperative bond-breaking and bond-forming events mediated by neighboring metal sites have been proposed but are challenging to study and characterize. Heterodinuclear transition-metal catalysis has recently emerged as a promising strategy to tackle challenging chemical transformations, including C−C and C−X couplings as well as small molecule activation. It has been shown that these reactions can traverse nontraditional mechanisms, reactivities, and selectivities when homo- and heterobimetallic systems are employed. Moreover, stoichiometric studies of transmetallation from gold complexes have demonstrated that R transfer from PPh3–Au(I)R to Cp- and Cp*-ligated group 8/9 complexes is a viable elementary step. With these considerations in mind, we hypothesized that heterobimetallic Au–M complexes could serve as a viable and tunable catalyst platform to explore mechanisms and reactivity. In this work, heterobimetallic complexes containing Au(I) centers tethered to Ir(III) and Rh(III) piano stool moieties were synthesized and characterized. Preliminary application of these complexes to a catalytic allylic arylation reaction demonstrates bimetallic cooperativity relative to their monomeric metal components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterobimetallic" title="heterobimetallic">heterobimetallic</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodium" title=" rhodium"> rhodium</a> </p> <a href="https://publications.waset.org/abstracts/139787/gold-m-heterobimetallic-complexes-synthesis-and-initial-reactivity-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Synthesis of Star Compounds Bearing a Porphyrin Core and Cholic Acid Units by Using Click Chemistry: Study of the Optical Properties and Aggregation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Aguilar-Ort%C3%ADz">Edgar Aguilar-Ortíz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20L%C3%A9varay"> Nicolas Lévaray</a>, <a href="https://publications.waset.org/abstracts/search?q=Mireille%20Vonlanthen"> Mireille Vonlanthen</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20G.%20Morales-Espinoza"> Eric G. Morales-Espinoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Rivera"> Ernesto Rivera</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Xia%20Zhu"> Xiao Xia Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Four new star compounds bearing a porphyrin core and cholic acid units, (TPPh(Zn) tetra-CA, TPPh(2H) tetra-CA, TPPh(Zn) octa-CA and TPPh(2H) octa-CA), have been synthesized using the Click Chemistry approach, which consist on azide-alkyne couplings. These novel functionalized porphyrins were characterized by 1H and 13C NMR spectroscopy and their structure was confirmed by MALDI-TOF. The optical properties of these compounds were studied by absorption and fluorescence spectroscopy. On the other hand, order to evaluate the amphiphilic properties of the cholic acid units combined with the optical response of the porphyrin core, we performed absorption and fluorescence studies in function of the polarity of the environment. It was found that as soon as we increase the polarity of the solvent, the Zn-metallated porphyrins, (TPPh(Zn) tetra-CA and TPPh(Zn) octa-CA), are able to form J aggregates, whereas the free-base porphyrins, TPPh(2H) tetra-CA and TPPh(2H) octa-CA, behaved differently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregates" title="aggregates">aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic" title=" amphiphilic"> amphiphilic</a>, <a href="https://publications.waset.org/abstracts/search?q=cholic%20acid" title=" cholic acid"> cholic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=click-chemistry" title=" click-chemistry"> click-chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyrin" title=" porphyrin"> porphyrin</a> </p> <a href="https://publications.waset.org/abstracts/44614/synthesis-of-star-compounds-bearing-a-porphyrin-core-and-cholic-acid-units-by-using-click-chemistry-study-of-the-optical-properties-and-aggregation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamaguchi">T. Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Watanabe"> M. Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sasajima"> M. Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Yuan"> C. Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Maruyama"> S. Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Ibrahim"> T. B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Tomita"> H. Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title="dynamic response">dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20impact%20response" title=" nonlinear impact response"> nonlinear impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/15947/nonlinear-impact-responses-for-a-damped-frame-supported-by-nonlinear-springs-with-hysteresis-using-fast-fea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> An Analysis of Uncoupled Designs in Chicken Egg</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratap%20Sriram%20Sundar">Pratap Sriram Sundar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Chowdhury"> Chandan Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagar%20Kamarthi"> Sagar Kamarthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncoupled%20design" title="uncoupled design">uncoupled design</a>, <a href="https://publications.waset.org/abstracts/search?q=axiomatic%20design" title=" axiomatic design"> axiomatic design</a>, <a href="https://publications.waset.org/abstracts/search?q=nature%20design" title=" nature design"> nature design</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20evaluation" title=" design evaluation"> design evaluation</a> </p> <a href="https://publications.waset.org/abstracts/129725/an-analysis-of-uncoupled-designs-in-chicken-egg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Effect of Threshold Corrections on Proton Lifetime and Emergence of Topological Defects in Grand Unified Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rinku%20Maji">Rinku Maji</a>, <a href="https://publications.waset.org/abstracts/search?q=Joydeep%20Chakrabortty"> Joydeep Chakrabortty</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20F.%20King"> Stephen F. King</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The grand unified theory (GUT) rationales the arbitrariness of the standard model (SM) and explains many enigmas of nature at the outset of a single gauge group. The GUTs predict the proton decay and, the spontaneous symmetry breaking (SSB) of the higher symmetry group may lead to the formation of topological defects, which are indispensable in the context of the cosmological observations. The Super-Kamiokande (Super-K) experiment sets sacrosanct bounds on the partial lifetime (τ) of the proton decay for different channels, e.g., τ(p → e+ π0) > 1.6×10³⁴ years which is the most relevant channel to test the viability of the nonsupersymmetric GUTs. The GUTs based on the gauge groups SO(10) and E(6) are broken to the SM spontaneously through one and two intermediate gauge symmetries with the manifestation of the left-right symmetry at least at a single intermediate stage and the proton lifetime for these breaking chains has been computed. The impact of the threshold corrections, as a consequence of integrating out the heavy fields at the breaking scale alter the running of the gauge couplings, which eventually, are found to keep many GUTs off the Super-K bound. The possible topological defects arising in the course of SSB at different breaking scales for all breaking chains have been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grand%20unified%20theories" title="grand unified theories">grand unified theories</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20decay" title=" proton decay"> proton decay</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20correction" title=" threshold correction"> threshold correction</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20defects" title=" topological defects"> topological defects</a> </p> <a href="https://publications.waset.org/abstracts/109130/effect-of-threshold-corrections-on-proton-lifetime-and-emergence-of-topological-defects-in-grand-unified-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elias%20Akoury">Elias Akoury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lanthanide%20tags" title="lanthanide tags">lanthanide tags</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20spectroscopy" title=" NMR spectroscopy"> NMR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20dipolar%20coupling" title=" residual dipolar coupling"> residual dipolar coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics%20of%20spin%20dynamics" title=" quantum mechanics of spin dynamics"> quantum mechanics of spin dynamics</a> </p> <a href="https://publications.waset.org/abstracts/76332/residual-dipolar-couplings-in-nmr-spectroscopy-using-lanthanide-tags" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Modeling of the Cellular Uptake of Rigid Nanoparticles: Investigating the Influence of the Adaptation of the Cell’s Mechanical Properties during Endocytosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Iaquinta">Sarah Iaquinta</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Blanquart"> Christophe Blanquart</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Ishow"> Elena Ishow</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20%20Freour"> Sylvain Freour</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederic%20Jacquemin"> Frederic Jacquemin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Khazaie"> Shahram Khazaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles have recently emerged as a possible cancer treatment tool. Several formulations have been used to enhance the uptake of these nanoparticles by cancer cells and avoid their immediate clearance when administrated in vivo. Most of the previous studies focus on the investigation of the influence of the mechanical properties of the cell membrane and the particle. However, these studies do not account for the variation of adhesion and tension during the wrapping of the nanoparticle by the membrane. These couplings should be considered since the cell adapts to the interaction with the nanoparticle by, e.g., increasing the number of interactions (consequently leading to an increase of the cell membrane/nanoparticle adhesion) and by reorganizing its cytoskeleton, leading to the releasing of the tension of the cell membrane. The main contribution of this work is the proposal of a novel model for representing the cellular uptake of rigid circular nanoparticles based on an energetic model tailored to take into account the adaptation of the nanoparticle/cell membrane adhesion and of the membrane stress during wrapping. Several coupling models using sigmoidal functions are considered and compared. The study calculations revealed that the results considering constant parameters underestimated the final wrapping degree of the particle by up to 50%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20adaptation" title=" cellular adaptation"> cellular adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20uptake" title=" cellular uptake"> cellular uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=tension" title=" tension"> tension</a> </p> <a href="https://publications.waset.org/abstracts/138624/modeling-of-the-cellular-uptake-of-rigid-nanoparticles-investigating-the-influence-of-the-adaptation-of-the-cells-mechanical-properties-during-endocytosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Synthesis and Characterization of New Thermotropic Monomers – Containing Phosphorus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20Serbezeanu">Diana Serbezeanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionela-Daniela%20Carja"> Ionela-Daniela Carja</a>, <a href="https://publications.waset.org/abstracts/search?q=Tachita%20Vlad-Bubulac"> Tachita Vlad-Bubulac</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergiu%20Sova"> Sergiu Sova </a> </p> <p class="card-text"><strong>Abstract:</strong></p> New phosphorus-containing monomers having methoxy end functional groups were prepared from methyl 4-hydroxybenzoate and two different dichlorides with phosphorus, namely phenyl phosphonic dichloride and phenyl dichlorophosphate. The structures of the monomers were confirmed by FTIR and NMR spectroscopy. The assignments for the 1H, 13C and 31P chemical shifts are based on 1D and 2D NMR homo- and heteronuclear correlations (H,H-COSY (Correlation Spectroscopy), H,C-HMQC (Heteronuclear Multiple Quantum Correlation and H,C-HMBC (Heteronuclear Multiple Bond Correlation)) and 31P-13C couplings. The monomers exhibited good solubility in common organic solvents. Dimethyl sulfoxide was to be a good solvent to grow crystals of considerable size which were investigated by X-ray analysis. One of these two new monomers presented thermotropic liquid crystalline behaviour, as revealed by differential scanning calorimetry (DSC), polarized light microscopy (PLM) and X-ray diffraction (XRD). The transition temperature from crystal to liquid crystalline state (K→LC) was 143°C and from the LC to isotropic state (LC→I) was 167°C. Upon heating, bis(4-(methoxycarbonyl)phenyl formed fine textures, difficult to be ascribed to smectic or nematic phases. Upon cooling from the isotropic state, bis(4-(methoxycarbonyl)phenyl exhibited a mosaic-type texture. X-ray diffraction measurements at small angles (SAXS) of bis(4-(methoxycarbonyl)phenyl showed two peaks at 1.8 Å and 3.5 Å, respectively suggesting organization at supramolecular level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphorus-containing%20monomers" title="phosphorus-containing monomers">phosphorus-containing monomers</a>, <a href="https://publications.waset.org/abstracts/search?q=polarized%20light%20microscopy" title=" polarized light microscopy"> polarized light microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20investigation" title=" structure investigation"> structure investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermotropic%20liquid%20crystalline%20properties" title=" thermotropic liquid crystalline properties"> thermotropic liquid crystalline properties</a> </p> <a href="https://publications.waset.org/abstracts/31065/synthesis-and-characterization-of-new-thermotropic-monomers-containing-phosphorus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Model Predictive Control Applied to Thermal Regulation of Thermoforming Process Based on the Armax Linear Model and a Quadratic Criterion Formulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moaine%20Jebara">Moaine Jebara</a>, <a href="https://publications.waset.org/abstracts/search?q=Lionel%20Boillereaux"> Lionel Boillereaux</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20%20Belhabib"> Sofiane Belhabib</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Havet"> Michel Havet</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Sarda"> Alain Sarda</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20%20Mousseau"> Pierre Mousseau</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%A9mi%20Deterre"> Rémi Deterre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy consumption efficiency is a major concern for the material processing industry such as thermoforming process and molding. Indeed, these systems should deliver the right amount of energy at the right time to the processed material. Recent technical development, as well as the particularities of the heating system dynamics, made the Model Predictive Control (MPC) one of the best candidates for thermal control of several production processes like molding and composite thermoforming to name a few. The main principle of this technique is to use a dynamic model of the process inside the controller in real time in order to anticipate the future behavior of the process which allows the current timeslot to be optimized while taking future timeslots into account. This study presents a procedure based on a predictive control that brings balance between optimality, simplicity, and flexibility of its implementation. The development of this approach is progressive starting from the case of a single zone before its extension to the multizone and/or multisource case, taking thus into account the thermal couplings between the adjacent zones. After a quadratic formulation of the MPC criterion to ensure the thermal control, the linear expression is retained in order to reduce calculation time thanks to the use of the ARMAX linear decomposition methods. The effectiveness of this approach is illustrated by experiment and simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20decomposition%20methods" title=" linear decomposition methods"> linear decomposition methods</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20heating%20systems" title=" mold heating systems"> mold heating systems</a> </p> <a href="https://publications.waset.org/abstracts/63419/model-predictive-control-applied-to-thermal-regulation-of-thermoforming-process-based-on-the-armax-linear-model-and-a-quadratic-criterion-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Enhanced Exchange Bias in Poly-crystalline Compounds through Oxygen Vacancy and B-site Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koustav%20Pal">Koustav Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Indranil%20Das"> Indranil Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times, perovskite and double perovskite (DP) systems attracts lot of interest as they provide a rich material platform for studying emergent functionalities like near-room-temperature ferromagnetic (FM) insulators, exchange bias (EB), magnetocaloric effects, colossal magnetoresistance, anisotropy, etc. These interesting phenomena emerge because of complex couplings between spin, charge, orbital, and lattice degrees of freedom in these systems. Various magnetic phenomena such as exchange bias, spin glass, memory effect, colossal magneto-resistance, etc. can be modified and controlled through antisite (B-site) disorder or controlling oxygen concentration of the material. By controlling oxygen concentration in SrFe0.5Co0.5O3 – δ (SFCO) (δ ∼ 0.3), we achieve intrinsic exchange bias effect with a large exchange bias field (∼1.482 Tesla) and giant coercive field (∼1.454 Tesla). Now we modified the B-site by introducing 10% iridium in the system. This modification give rise to the exchange bias field as high as 1.865 tesla and coercive field 1.863 tesla. Our work aims to investigate the effect of oxygen deficiency and B-site effect on exchange bias in oxide materials for potential technological applications. Structural characterization techniques including X-ray diffraction, scanning tunneling microscopy, and transmission electron microscopy were utilized to determine crystal structure and particle size. X-ray photoelectron spectroscopy was used to identify valence states of the ions. Magnetic analysis revealed that oxygen deficiency resulted in a large exchange bias due to a significant number of ionic mixtures. Iridium doping was found to break interaction paths, resulting in various antiferromagnetic and ferromagnetic surfaces that enhance exchange bias. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coercive%20field" title="coercive field">coercive field</a>, <a href="https://publications.waset.org/abstracts/search?q=disorder" title=" disorder"> disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20bias" title=" exchange bias"> exchange bias</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20glass" title=" spin glass"> spin glass</a> </p> <a href="https://publications.waset.org/abstracts/167083/enhanced-exchange-bias-in-poly-crystalline-compounds-through-oxygen-vacancy-and-b-site-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Experimental and Numerical Analysis of Wood Pellet Breakage during Pneumatic Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julian%20Jaegers">Julian Jaegers</a>, <a href="https://publications.waset.org/abstracts/search?q=Siegmar%20Wirtz"> Siegmar Wirtz</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Scherer"> Viktor Scherer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood pellets belong to the most established trade formats of wood-based fuels. Especially, because of the transportability and the storage properties, but also due to low moisture content, high energy density, and the homogeneous particle size and shape, wood pellets are well suited for power generation in power plants and for the use in automated domestic firing systems. Before they are thermally converted, wood pellets pass various transport and storage procedures. There they undergo different mechanical impacts, which leads to pellet breakage and abrasion and to an increase in fines. The fines lead to operational problems during storage, charging, and discharging of pellets, they can increase the risk of dust explosions and can lead to pollutant emissions during combustion. In the current work, the dependence of the formation of fines caused by breakage during pneumatic transport is analyzed experimentally and numerically. The focus lies on the influence of conveying velocity, pellet loading, pipe diameter, and the shape of pipe components like bends or couplings. A test rig has been built, which allows the experimental evaluation of the pneumatic transport varying the above-mentioned parameters. Two high-speed cameras are installed for the quantitative optical access to the particle-particle and particle-wall contacts. The particle size distribution of the bulk before and after a transport process is measured as well as the amount of fines produced. The experiments will be compared with results of corresponding DEM/CFD simulations to provide information on contact frequencies and forces. The contribution proposed will present experimental results and report on the status of the DEM/CFD simulations. The final goal of the project is to provide a better insight into pellet breakage during pneumatic transport and to develop guidelines ensuring a more gentle transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM%2FCFD-simulation%20of%20pneumatic%20conveying" title="DEM/CFD-simulation of pneumatic conveying">DEM/CFD-simulation of pneumatic conveying</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20impact%20on%20wood%20pellets%20during%20transportation" title=" mechanical impact on wood pellets during transportation"> mechanical impact on wood pellets during transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=pellet%20breakage" title=" pellet breakage"> pellet breakage</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20transport%20of%20wood%20pellets" title=" pneumatic transport of wood pellets"> pneumatic transport of wood pellets</a> </p> <a href="https://publications.waset.org/abstracts/88559/experimental-and-numerical-analysis-of-wood-pellet-breakage-during-pneumatic-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Influence of Flexible Plate's Contour on Dynamic Behavior of High Speed Flexible Coupling of Combat Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dineshsingh%20Thakur">Dineshsingh Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nagesh"> S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Basha"> J. Basha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lightweight High Speed Flexible Coupling (HSFC) is used to connect the Engine Gear Box (EGB) with an Accessory Gear Box (AGB) of the combat aircraft. The HSFC transmits the power at high speeds ranging from 10000 to 18000 rpm from the EGB to AGB. The HSFC is also accommodates larger misalignments resulting from thermal expansion of the aircraft engine and mounting arrangement. The HSFC has the series of metallic contoured annular thin cross-sectioned flexible plates to accommodate the misalignments. The flexible plates are accommodating the misalignment by the elastic material flexure. As the HSFC operates at higher speed, the flexural and axial resonance frequencies are to be kept away from the operating speed and proper prediction is required to prevent failure in the transmission line of a single engine fighter aircraft. To study the influence of flexible plate’s contour on the lateral critical speed (LCS) of HSFC, a mathematical model of HSFC as a elven rotor system is developed. The flexible plate being the bending member of the system, its bending stiffness which results from the contoured governs the LCS. Using transfer matrix method, Influence of various flexible plate contours on critical speed is analyzed. In the above analysis, the support bearing flexibility on critical speed prediction is also considered. Based on the study, a model is built with the optimum contour of flexible plate, for validation by experimental modal analysis. A good correlation between the theoretical prediction and model behavior is observed. From the study, it is found that the flexible plate’s contour is playing vital role in modification of system’s dynamic behavior and the present model can be extended for the development of similar type of flexible couplings for its computational simplicity and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20rotor" title="flexible rotor">flexible rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20speed" title=" critical speed"> critical speed</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20modal%20analysis" title=" experimental modal analysis"> experimental modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20flexible%20coupling%20%28HSFC%29" title=" high speed flexible coupling (HSFC)"> high speed flexible coupling (HSFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=misalignment" title=" misalignment "> misalignment </a> </p> <a href="https://publications.waset.org/abstracts/42547/influence-of-flexible-plates-contour-on-dynamic-behavior-of-high-speed-flexible-coupling-of-combat-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Understanding Magnetic Properties of Cd1-xSnxCr2Se4 Using Local Structure Probes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Suchismita%20Behera">P. Suchismita Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20G.%20Sathe"> V. G. Sathe</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Nigam"> A. K. Nigam</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Bhobe"> P. A. Bhobe </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Co-existence of long-range ferromagnetism and semi-conductivity with correlated behavior of structural, magnetic, optical and electrical properties in various sites doping at CdCr2Se4 makes it a most promising candidate for spin-based electronic applications and magnetic devices. It orders ferromagnetically below TC = 130 K with a direct band gap of ~ 1.5 eV. The magnetic ordering is believed to result from strong competition between the direct antiferromagnetic Cr-Cr spin couplings and the ferromagnetic Cr-Se-Cr exchange interactions. With an aim of understanding the influence of crystal structure on its magnetic properties without disturbing the magnetic site, we investigated four compositions with 3%, 5%, 7% and 10% of Sn-substitution at Cd-site. Partial substitution of Cd2+ (0.78Å) by small sized nonmagnetic ion, Sn4+ (0.55Å), is expected to bring about local lattice distortion as well as a change in electronic charge distribution. The structural disorder would affect the Cd/Sn – Se bonds thus affecting the Cr-Cr and Cr-Se-Cr bonds. Whereas, the charge imbalance created due to Sn4+ substitution at Cd2+ leads to the possibility of Cr mixed valence state. Our investigation of the local crystal structure using the EXAFS, Raman spectroscopy and magnetic properties using SQUID magnetometry of the Cd1-xSnxCr2Se4 series reflects this premise. All compositions maintain the Fd3m cubic symmetry with tetrahedral distribution of Sn at Cd-site, as confirmed by XRD analysis. Lattice parameters were determined from the Rietveld refinement technique of the XRD data and further confirmed from the EXAFS spectra recorded at Cr K-edge. Presence of five Raman-active phonon vibrational modes viz. (T2g (1), T2g (2), T2g (3), Eg, A1g) in the Raman spectra further confirms the crystal symmetry. Temperature dependence of the Raman data provides interesting insight to the spin– phonon coupling, known to dominate the magneto-capacitive properties in the parent compound. Below the magnetic ordering temperature, the longitudinal damping of Eg mode associated with Se-Cd/Sn-Se bending and T2g (2) mode associated to Cr-Se-Cr interaction, show interesting deviations with respect to increase in Sn substitution. Besides providing the estimate of TC, the magnetic measurements recorded as a function of field provide the values of total magnetic moment for all the studied compositions indicative of formation of multiple Cr valences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exchange%20interactions" title="exchange interactions">exchange interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=EXAFS" title=" EXAFS"> EXAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetism" title=" ferromagnetism"> ferromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=spinel%20chalcogenides" title=" spinel chalcogenides"> spinel chalcogenides</a> </p> <a href="https://publications.waset.org/abstracts/47969/understanding-magnetic-properties-of-cd1-xsnxcr2se4-using-local-structure-probes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Hydration of Three-Piece K Peptide Fragments Studied by Means of Fourier Transform Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Stasiulewicz">Marcin Stasiulewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Filipkowski"> Sebastian Filipkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Panuszko"> Aneta Panuszko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The hallmark of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases, is an aggregation of the abnormal forms of peptides and proteins. Water is essential to functioning biomolecules, and it is one of the key factors influencing protein folding and misfolding. However, the hydration studies of proteins are complicated due to the complexity of protein systems. The use of model compounds can facilitate the interpretation of results involving larger systems. Objectives: The goal of the research was to characterize the properties of the hydration water surrounding the two three-residue K peptide fragments INS (Isoleucine - Asparagine - Serine) and NSR (Asparagine - Serine - Arginine). Methods: Fourier-transform infrared spectra of aqueous solutions of the tripeptides were recorded on Nicolet 8700 spectrometer (Thermo Electron Co.) Measurements were carried out at 25°C for varying molality of solute. To remove oscillation couplings from water spectra and, consequently, obtain narrow O-D semi-heavy water bands (HDO), the isotopic dilution method of HDO in H₂O was used. The difference spectra method allowed us to isolate the tripeptide-affected HDO spectrum. Results: The structural and energetic properties of water affected by the tripeptides were compared to the properties of pure water. The shift of the values of the gravity center of bands (related to the mean energy of water hydrogen bonds) towards lower values with respect to the ones corresponding to pure water suggests that the energy of hydrogen bonds between water molecules surrounding tripeptides is higher than in pure water. A comparison of the values of the mean oxygen-oxygen distances in water affected by tripeptides and pure water indicates that water-water hydrogen bonds are shorter in the presence of these tripeptides. The analysis of differences in oxygen-oxygen distance distributions between the tripeptide-affected water and pure water indicates that around the tripeptides, the contribution of water molecules with the mean energy of hydrogen bonds decreases, and simultaneously the contribution of strong hydrogen bonds increases. Conclusions: It was found that hydrogen bonds between water molecules in the hydration sphere of tripeptides are shorter and stronger than in pure water. It means that in the presence of the tested tripeptides, the structure of water is strengthened compared to pure water. Moreover, it has been shown that in the vicinity of the Asparagine - Serine - Arginine, water forms stronger and shorter hydrogen bonds. Acknowledgments: This work was funded by the National Science Centre, Poland (grant 2017/26/D/NZ1/00497). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloids" title="amyloids">amyloids</a>, <a href="https://publications.waset.org/abstracts/search?q=K-peptide" title=" K-peptide"> K-peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydration" title=" hydration"> hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR%20spectroscopy" title=" FTIR spectroscopy"> FTIR spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/137938/hydration-of-three-piece-k-peptide-fragments-studied-by-means-of-fourier-transform-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Features of Composites Application in Shipbuilding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valerii%20Levshakov">Valerii Levshakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Fedorova"> Olga Fedorova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Specific features of ship structures, made from composites, i.e. simultaneous shaping of material and structure, large sizes, complicated outlines and tapered thickness have defined leading role of technology, integrating test results from material science, designing and structural analysis. Main procedures of composite shipbuilding are contact molding, vacuum molding and winding. Now, the most demanded composite shipbuilding technology is the manufacture of structures from fiberglass and multilayer hybrid composites by means of vacuum molding. This technology enables the manufacture of products with improved strength properties (in comparison with contact molding), reduction of production duration, weight and secures better environmental conditions in production area. Mechanized winding is applied for the manufacture of parts, shaped as rotary bodies – i.e. parts of ship, oil and other pipelines, deep-submergence vehicles hulls, bottles, reservoirs and other structures. This procedure involves processing of reinforcing fiberglass, carbon and polyaramide fibers. Polyaramide fibers have tensile strength of 5000 MPa, elastic modulus value of 130 MPa and rigidity of the same can be compared with rigidity of fiberglass, however, the weight of polyaramide fiber is 30% less than weight of fiberglass. The same enables to the manufacture different structures, including that, using both – fiberglass and organic composites. Organic composites are widely used for the manufacture of parts with size and weight limitations. High price of polyaramide fiber restricts the use of organic composites. Perspective area of winding technology development is the manufacture of carbon fiber shafts and couplings for ships. JSC ‘Shipbuilding & Shiprepair Technology Center’ (JSC SSTC) developed technology of dielectric uncouplers for cryogenic lines, cooled by gaseous or liquid cryogenic agents (helium, nitrogen, etc.) for temperature range 4.2-300 K and pressure up to 30 MPa – the same is used for separating components of electro physical equipment with different electrical potentials. Dielectric uncouplers were developed, the manufactured and tested in accordance with International Thermonuclear Experimental Reactor (ITER) Technical specification. Spiral uncouplers withstand operating voltage of 30 kV, direct-flow uncoupler – 4 kV. Application of spiral channel instead of rectilinear enables increasing of breakdown potential and reduction of uncouplers sizes. 95 uncouplers were successfully the manufactured and tested. At the present time, Russian the manufacturers of ship composite structures have started absorption of technology of manufacturing the same using automated prepreg laminating; this technology enables the manufacture of structures with improved operational specifications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiberglass" title="fiberglass">fiberglass</a>, <a href="https://publications.waset.org/abstracts/search?q=infusion" title=" infusion"> infusion</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20composites" title=" polymeric composites"> polymeric composites</a>, <a href="https://publications.waset.org/abstracts/search?q=winding" title=" winding"> winding</a> </p> <a href="https://publications.waset.org/abstracts/73990/features-of-composites-application-in-shipbuilding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=anomalos%20couplings&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=anomalos%20couplings&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>