CINXE.COM

Benjamin Gill | Virginia Tech - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Benjamin Gill | Virginia Tech - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="/gRJ2We4hyIpEiYMj4RK8fIWu1UpWgxkbqoq5gaqF+PhgVlXcDln1T9Mw6B9dKh01dpOtMSXiKivrXZNuy8XMg==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="benjamin gill" /> <meta name="description" content="Benjamin Gill, Virginia Tech: 58 Followers, 43 Following, 41 Research papers. Research interests: Geosciences, Paleoclimatology, and Paleoenvironment." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277219786,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732489601000); window.Aedu.timeDifference = new Date().getTime() - 1732489601000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://vt.academia.edu/BenjaminGill" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill","photo":"https://gravatar.com/avatar/cd4968949409e4936fb33983705a57e9?s=65","has_photo":true,"department":{"id":10540,"name":"Geosciences","url":"https://vt.academia.edu/Departments/Geosciences/Documents","university":{"id":649,"name":"Virginia Tech","url":"https://vt.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":70524,"name":"Geosciences","url":"https://www.academia.edu/Documents/in/Geosciences"},{"id":2258,"name":"Paleoclimatology","url":"https://www.academia.edu/Documents/in/Paleoclimatology"},{"id":7075,"name":"Paleoenvironment","url":"https://www.academia.edu/Documents/in/Paleoenvironment"},{"id":7959,"name":"Stable Isotope Geochemistry","url":"https://www.academia.edu/Documents/in/Stable_Isotope_Geochemistry"},{"id":8116,"name":"Trace element Geochemistry","url":"https://www.academia.edu/Documents/in/Trace_element_Geochemistry"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://vt.academia.edu/BenjaminGill&quot;,&quot;location&quot;:&quot;/BenjaminGill&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;vt.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/BenjaminGill&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-ccbac3c7-e40d-45e1-a838-c054c9c8b4ab"></div> <div id="ProfileCheckPaperUpdate-react-component-ccbac3c7-e40d-45e1-a838-c054c9c8b4ab"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Benjamin Gill" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" src="https://gravatar.com/avatar/cd4968949409e4936fb33983705a57e9?s=200" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Benjamin Gill</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://vt.academia.edu/">Virginia Tech</a>, <a class="u-tcGrayDarker" href="https://vt.academia.edu/Departments/Geosciences/Documents">Geosciences</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Benjamin" data-follow-user-id="32130763" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="32130763"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">58</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">43</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">21</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="32130763">View All (8)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32130763" href="https://www.academia.edu/Documents/in/Geosciences"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://vt.academia.edu/BenjaminGill&quot;,&quot;location&quot;:&quot;/BenjaminGill&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;vt.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/BenjaminGill&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Geosciences&quot;]}" data-trace="false" data-dom-id="Pill-react-component-22031b67-6ab4-4c2b-a056-e0f224cee3ff"></div> <div id="Pill-react-component-22031b67-6ab4-4c2b-a056-e0f224cee3ff"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32130763" href="https://www.academia.edu/Documents/in/Paleoclimatology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Paleoclimatology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-9b48c698-03df-4504-af2f-ed8f92c52a84"></div> <div id="Pill-react-component-9b48c698-03df-4504-af2f-ed8f92c52a84"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32130763" href="https://www.academia.edu/Documents/in/Paleoenvironment"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Paleoenvironment&quot;]}" data-trace="false" data-dom-id="Pill-react-component-96835a29-11a5-4957-bfd0-db5ac68509ad"></div> <div id="Pill-react-component-96835a29-11a5-4957-bfd0-db5ac68509ad"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32130763" href="https://www.academia.edu/Documents/in/Stable_Isotope_Geochemistry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Stable Isotope Geochemistry&quot;]}" data-trace="false" data-dom-id="Pill-react-component-fe38bba2-4ffa-43d3-8a37-6f8e3f10c376"></div> <div id="Pill-react-component-fe38bba2-4ffa-43d3-8a37-6f8e3f10c376"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32130763" href="https://www.academia.edu/Documents/in/Trace_element_Geochemistry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Trace element Geochemistry&quot;]}" data-trace="false" data-dom-id="Pill-react-component-f5d3cd64-ac1f-45de-8d43-a4559cf7e86d"></div> <div id="Pill-react-component-f5d3cd64-ac1f-45de-8d43-a4559cf7e86d"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Benjamin Gill</h3></div><div class="js-work-strip profile--work_container" data-work-id="22474679"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474679/High_resolution_sulfur_isotope_records_of_the_Paleozoic_and_a_detailed_geochemical_study_of_the_Late_Cambrian_SPICE_event_utilizing_sulfur_isotope_stratigraphy_metal_chemistry_and_numerical_modeling"><img alt="Research paper thumbnail of High-resolution sulfur isotope records of the Paleozoic and a detailed geochemical study of the Late Cambrian SPICE event utilizing sulfur isotope stratigraphy, metal chemistry and numerical modeling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474679/High_resolution_sulfur_isotope_records_of_the_Paleozoic_and_a_detailed_geochemical_study_of_the_Late_Cambrian_SPICE_event_utilizing_sulfur_isotope_stratigraphy_metal_chemistry_and_numerical_modeling">High-resolution sulfur isotope records of the Paleozoic and a detailed geochemical study of the Late Cambrian SPICE event utilizing sulfur isotope stratigraphy, metal chemistry and numerical modeling</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474679"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474679"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474679; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474679]").text(description); $(".js-view-count[data-work-id=22474679]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474679; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474679']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474679, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474679]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474679,"title":"High-resolution sulfur isotope records of the Paleozoic and a detailed geochemical study of the Late Cambrian SPICE event utilizing sulfur isotope stratigraphy, metal chemistry and numerical modeling","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/22474679/High_resolution_sulfur_isotope_records_of_the_Paleozoic_and_a_detailed_geochemical_study_of_the_Late_Cambrian_SPICE_event_utilizing_sulfur_isotope_stratigraphy_metal_chemistry_and_numerical_modeling","translated_internal_url":"","created_at":"2016-02-26T05:39:03.566-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"High_resolution_sulfur_isotope_records_of_the_Paleozoic_and_a_detailed_geochemical_study_of_the_Late_Cambrian_SPICE_event_utilizing_sulfur_isotope_stratigraphy_metal_chemistry_and_numerical_modeling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":6823611,"url":"http://gradworks.umi.com/33/74/3374391.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474678"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474678/Assessment_of_the_geographical_extent_of_the_Toarcian_Oceanic_Anoxic_Event_Implications_for_Early_Jurassic_hydrocarbon_source_rock_deposition"><img alt="Research paper thumbnail of Assessment of the geographical extent of the Toarcian Oceanic Anoxic Event: Implications for Early Jurassic hydrocarbon source rock deposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474678/Assessment_of_the_geographical_extent_of_the_Toarcian_Oceanic_Anoxic_Event_Implications_for_Early_Jurassic_hydrocarbon_source_rock_deposition">Assessment of the geographical extent of the Toarcian Oceanic Anoxic Event: Implications for Early Jurassic hydrocarbon source rock deposition</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474678"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474678"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474678; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474678]").text(description); $(".js-view-count[data-work-id=22474678]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474678; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474678']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474678, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474678]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474678,"title":"Assessment of the geographical extent of the Toarcian Oceanic Anoxic Event: Implications for Early Jurassic hydrocarbon source rock deposition","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/22474678/Assessment_of_the_geographical_extent_of_the_Toarcian_Oceanic_Anoxic_Event_Implications_for_Early_Jurassic_hydrocarbon_source_rock_deposition","translated_internal_url":"","created_at":"2016-02-26T05:39:03.426-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Assessment_of_the_geographical_extent_of_the_Toarcian_Oceanic_Anoxic_Event_Implications_for_Early_Jurassic_hydrocarbon_source_rock_deposition","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474677"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474677/Rapid_environmental_changes_during_the_Early_Jurassic_Pliensbachian_to_Toarcian_Stages_in_western_North_America_recorded_in_the_geochemistry_of_organic_rich_mud_rocks"><img alt="Research paper thumbnail of Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474677/Rapid_environmental_changes_during_the_Early_Jurassic_Pliensbachian_to_Toarcian_Stages_in_western_North_America_recorded_in_the_geochemistry_of_organic_rich_mud_rocks">Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://vt.academia.edu/BenjaminGill">Benjamin Gill</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/TheodoreThem">Theodore Them</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474677"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474677"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474677; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474677]").text(description); $(".js-view-count[data-work-id=22474677]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474677; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474677']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474677, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474677]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474677,"title":"Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/22474677/Rapid_environmental_changes_during_the_Early_Jurassic_Pliensbachian_to_Toarcian_Stages_in_western_North_America_recorded_in_the_geochemistry_of_organic_rich_mud_rocks","translated_internal_url":"","created_at":"2016-02-26T05:39:03.267-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":16104724,"work_id":22474677,"tagging_user_id":32130763,"tagged_user_id":43999785,"co_author_invite_id":3711452,"email":"t***5@vt.edu","display_order":0,"name":"Theodore Them","title":"Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks"},{"id":16104725,"work_id":22474677,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":3711453,"email":"e***2@vt.edu","display_order":4194304,"name":"Emma Tulsky","title":"Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks"},{"id":16104726,"work_id":22474677,"tagging_user_id":32130763,"tagged_user_id":856422,"co_author_invite_id":null,"email":"d***e@durham.ac.uk","affiliation":"Durham University","display_order":6291456,"name":"Darren Gröcke","title":"Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks"}],"downloadable_attachments":[],"slug":"Rapid_environmental_changes_during_the_Early_Jurassic_Pliensbachian_to_Toarcian_Stages_in_western_North_America_recorded_in_the_geochemistry_of_organic_rich_mud_rocks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474675"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474675/New_insight_into_the_utility_of_carbonate_associated_sulfate"><img alt="Research paper thumbnail of New insight into the utility of carbonate-associated sulfate" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474675/New_insight_into_the_utility_of_carbonate_associated_sulfate">New insight into the utility of carbonate-associated sulfate</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474675"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474675"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474675; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474675]").text(description); $(".js-view-count[data-work-id=22474675]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474675; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474675']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474675, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474675]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474675,"title":"New insight into the utility of carbonate-associated sulfate","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/22474675/New_insight_into_the_utility_of_carbonate_associated_sulfate","translated_internal_url":"","created_at":"2016-02-26T05:38:44.040-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"New_insight_into_the_utility_of_carbonate_associated_sulfate","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[{"id":6823609,"url":"http://adsabs.harvard.edu/abs/2005gecas..69..128l"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474674"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474674/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks"><img alt="Research paper thumbnail of Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474674/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks">Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474674"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474674"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474674; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474674]").text(description); $(".js-view-count[data-work-id=22474674]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474674; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474674']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474674, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474674]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474674,"title":"Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/22474674/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks","translated_internal_url":"","created_at":"2016-02-26T05:38:43.681-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"}],"urls":[{"id":6823608,"url":"http://adsabs.harvard.edu/abs/2003gecas..67r.264l"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474673"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474673/Redox_controlled_U_Cycle_in_Ancient_Oceans_Revealed_by_Black_Shale_Records"><img alt="Research paper thumbnail of Redox-controlled U Cycle in Ancient Oceans Revealed by Black Shale Records" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474673/Redox_controlled_U_Cycle_in_Ancient_Oceans_Revealed_by_Black_Shale_Records">Redox-controlled U Cycle in Ancient Oceans Revealed by Black Shale Records</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Redox-sensitive elements, such as U and Mo, are valuable proxies for oxygen availability in the a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Redox-sensitive elements, such as U and Mo, are valuable proxies for oxygen availability in the ancient atmosphere and ocean. Scott et al. (2008) inferred three stages from the secular trend of Mo concentrations in organic matter-rich shales: 1) shales older than 2.2 Ga have low but above crustal average Mo concentrations; 2) shales ca. 2.2 Ga show a dramatic increase in Mo concentrations after the rise of atmospheric oxygen; 3) shales straddling the Precambrian-Cambrian boundary show a second rise in Mo concentrations. Both Mo and U are released during oxidative continental weathering but removed via different pathways from the ocean; Mo is predominantly enriched in shales deposited under euxinic conditions, whereas U only requires anoxic conditions to be scavenged from the water column. These elements therefore can provide complementary, but independent, information about the redox state of the ocean and atmosphere. Our compilation of U concentrations from &amp;gt;2.2 Ga organic matte...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474673"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474673"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474673; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474673]").text(description); $(".js-view-count[data-work-id=22474673]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474673; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474673']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474673, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474673]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474673,"title":"Redox-controlled U Cycle in Ancient Oceans Revealed by Black Shale Records","translated_title":"","metadata":{"abstract":"Redox-sensitive elements, such as U and Mo, are valuable proxies for oxygen availability in the ancient atmosphere and ocean. Scott et al. (2008) inferred three stages from the secular trend of Mo concentrations in organic matter-rich shales: 1) shales older than 2.2 Ga have low but above crustal average Mo concentrations; 2) shales ca. 2.2 Ga show a dramatic increase in Mo concentrations after the rise of atmospheric oxygen; 3) shales straddling the Precambrian-Cambrian boundary show a second rise in Mo concentrations. Both Mo and U are released during oxidative continental weathering but removed via different pathways from the ocean; Mo is predominantly enriched in shales deposited under euxinic conditions, whereas U only requires anoxic conditions to be scavenged from the water column. These elements therefore can provide complementary, but independent, information about the redox state of the ocean and atmosphere. Our compilation of U concentrations from \u0026gt;2.2 Ga organic matte..."},"translated_abstract":"Redox-sensitive elements, such as U and Mo, are valuable proxies for oxygen availability in the ancient atmosphere and ocean. Scott et al. (2008) inferred three stages from the secular trend of Mo concentrations in organic matter-rich shales: 1) shales older than 2.2 Ga have low but above crustal average Mo concentrations; 2) shales ca. 2.2 Ga show a dramatic increase in Mo concentrations after the rise of atmospheric oxygen; 3) shales straddling the Precambrian-Cambrian boundary show a second rise in Mo concentrations. Both Mo and U are released during oxidative continental weathering but removed via different pathways from the ocean; Mo is predominantly enriched in shales deposited under euxinic conditions, whereas U only requires anoxic conditions to be scavenged from the water column. These elements therefore can provide complementary, but independent, information about the redox state of the ocean and atmosphere. Our compilation of U concentrations from \u0026gt;2.2 Ga organic matte...","internal_url":"https://www.academia.edu/22474673/Redox_controlled_U_Cycle_in_Ancient_Oceans_Revealed_by_Black_Shale_Records","translated_internal_url":"","created_at":"2016-02-26T05:38:43.383-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Redox_controlled_U_Cycle_in_Ancient_Oceans_Revealed_by_Black_Shale_Records","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474672"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22474672/Changes_in_the_Precambrian_ocean_U_cycle_linked_to_the_evolution_of_surficial_redox_conditions"><img alt="Research paper thumbnail of Changes in the Precambrian ocean U cycle linked to the evolution of surficial redox conditions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22474672/Changes_in_the_Precambrian_ocean_U_cycle_linked_to_the_evolution_of_surficial_redox_conditions">Changes in the Precambrian ocean U cycle linked to the evolution of surficial redox conditions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The rise of atmospheric oxygen between 2.47 and 2.32 Ga undoubtedly had a significant impact on g...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The rise of atmospheric oxygen between 2.47 and 2.32 Ga undoubtedly had a significant impact on global biogeochemical cycles and particularly, the intensity of oxidative continental weathering. While the timing of atmospheric oxygenation is well-constrained, the redox -state of the deep ocean throughout the Proterozoic is less known. The distribution of redox-sensitive elements, such as uranium and molybdenum, in ancient sedimentary rocks provides insight into the response of the deep ocean to this dramatic geochemical change. Here we present a compilation of U concentrations in marine black shales, from the Archean to the present to track the coupled redox evolution of the atmosphere and oceans, and to decipher changes in the uranium cycle itself. Since riverine delivery represents the only significant source of uranium to the oceans, and scavenging by organic matter-rich sediments beneath suboxic to anoxic waters represents the only significant sink, uranium concentrations in blac...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474672"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474672"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474672; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474672]").text(description); $(".js-view-count[data-work-id=22474672]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474672; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474672']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474672, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474672]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474672,"title":"Changes in the Precambrian ocean U cycle linked to the evolution of surficial redox conditions","translated_title":"","metadata":{"abstract":"The rise of atmospheric oxygen between 2.47 and 2.32 Ga undoubtedly had a significant impact on global biogeochemical cycles and particularly, the intensity of oxidative continental weathering. While the timing of atmospheric oxygenation is well-constrained, the redox -state of the deep ocean throughout the Proterozoic is less known. The distribution of redox-sensitive elements, such as uranium and molybdenum, in ancient sedimentary rocks provides insight into the response of the deep ocean to this dramatic geochemical change. Here we present a compilation of U concentrations in marine black shales, from the Archean to the present to track the coupled redox evolution of the atmosphere and oceans, and to decipher changes in the uranium cycle itself. Since riverine delivery represents the only significant source of uranium to the oceans, and scavenging by organic matter-rich sediments beneath suboxic to anoxic waters represents the only significant sink, uranium concentrations in blac..."},"translated_abstract":"The rise of atmospheric oxygen between 2.47 and 2.32 Ga undoubtedly had a significant impact on global biogeochemical cycles and particularly, the intensity of oxidative continental weathering. While the timing of atmospheric oxygenation is well-constrained, the redox -state of the deep ocean throughout the Proterozoic is less known. The distribution of redox-sensitive elements, such as uranium and molybdenum, in ancient sedimentary rocks provides insight into the response of the deep ocean to this dramatic geochemical change. Here we present a compilation of U concentrations in marine black shales, from the Archean to the present to track the coupled redox evolution of the atmosphere and oceans, and to decipher changes in the uranium cycle itself. Since riverine delivery represents the only significant source of uranium to the oceans, and scavenging by organic matter-rich sediments beneath suboxic to anoxic waters represents the only significant sink, uranium concentrations in blac...","internal_url":"https://www.academia.edu/22474672/Changes_in_the_Precambrian_ocean_U_cycle_linked_to_the_evolution_of_surficial_redox_conditions","translated_internal_url":"","created_at":"2016-02-26T05:38:43.119-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":16104731,"work_id":22474672,"tagging_user_id":32130763,"tagged_user_id":32195470,"co_author_invite_id":null,"email":"a***r@ad.umanitoba.ca","affiliation":"University of California, Riverside","display_order":0,"name":"A. Bekker","title":"Changes in the Precambrian ocean U cycle linked to the evolution of surficial redox conditions"}],"downloadable_attachments":[],"slug":"Changes_in_the_Precambrian_ocean_U_cycle_linked_to_the_evolution_of_surficial_redox_conditions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474671"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474671/A_multi_geochemical_proxy_approach_to_deciphering_the_Toarcian_OAE"><img alt="Research paper thumbnail of A multi geochemical proxy approach to deciphering the Toarcian OAE" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474671/A_multi_geochemical_proxy_approach_to_deciphering_the_Toarcian_OAE">A multi geochemical proxy approach to deciphering the Toarcian OAE</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Toarcian Ocean Anoxic Event (OAE) was a time of profound perturbations in the carbon cycle an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Toarcian Ocean Anoxic Event (OAE) was a time of profound perturbations in the carbon cycle and biosphere. However, many questions surround this interval, including the global-versus-local nature of the event. Unlike Cretaceous OAEs, the Toarcian lacks an available deep ocean record. Consequently, most studies have focused on geochemical data from stratigraphic sections in the north European epicontinental seaway (NEES) where the global relevance of the geological, paleontological and geochemical records has been questioned. At the heart of this debate is the observation that black, organic-rich shales within the NEES show little to no enrichment in some redox-sensitive elements (e.g., Mo) beyond crustal concentrations. Because the nature of the connection between the NEES and the open ocean is under debate, the muted metal enrichments have been interpreted as a drawdown of either the global or local marine reservoirs. Additionally, little work has been done to access the redox c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474671"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474671"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474671; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474671]").text(description); $(".js-view-count[data-work-id=22474671]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474671; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474671']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474671, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474671]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474671,"title":"A multi geochemical proxy approach to deciphering the Toarcian OAE","translated_title":"","metadata":{"abstract":"The Toarcian Ocean Anoxic Event (OAE) was a time of profound perturbations in the carbon cycle and biosphere. However, many questions surround this interval, including the global-versus-local nature of the event. Unlike Cretaceous OAEs, the Toarcian lacks an available deep ocean record. Consequently, most studies have focused on geochemical data from stratigraphic sections in the north European epicontinental seaway (NEES) where the global relevance of the geological, paleontological and geochemical records has been questioned. At the heart of this debate is the observation that black, organic-rich shales within the NEES show little to no enrichment in some redox-sensitive elements (e.g., Mo) beyond crustal concentrations. Because the nature of the connection between the NEES and the open ocean is under debate, the muted metal enrichments have been interpreted as a drawdown of either the global or local marine reservoirs. Additionally, little work has been done to access the redox c..."},"translated_abstract":"The Toarcian Ocean Anoxic Event (OAE) was a time of profound perturbations in the carbon cycle and biosphere. However, many questions surround this interval, including the global-versus-local nature of the event. Unlike Cretaceous OAEs, the Toarcian lacks an available deep ocean record. Consequently, most studies have focused on geochemical data from stratigraphic sections in the north European epicontinental seaway (NEES) where the global relevance of the geological, paleontological and geochemical records has been questioned. At the heart of this debate is the observation that black, organic-rich shales within the NEES show little to no enrichment in some redox-sensitive elements (e.g., Mo) beyond crustal concentrations. Because the nature of the connection between the NEES and the open ocean is under debate, the muted metal enrichments have been interpreted as a drawdown of either the global or local marine reservoirs. Additionally, little work has been done to access the redox c...","internal_url":"https://www.academia.edu/22474671/A_multi_geochemical_proxy_approach_to_deciphering_the_Toarcian_OAE","translated_internal_url":"","created_at":"2016-02-26T05:38:42.924-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_multi_geochemical_proxy_approach_to_deciphering_the_Toarcian_OAE","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="18282331"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/18282331/Molybdenum_as_a_paleoredox_proxy_An_update"><img alt="Research paper thumbnail of Molybdenum as a paleoredox proxy: An update" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/18282331/Molybdenum_as_a_paleoredox_proxy_An_update">Molybdenum as a paleoredox proxy: An update</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AChappaz">A. Chappaz</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://vt.academia.edu/BenjaminGill">Benjamin Gill</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored trac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="18282331"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="18282331"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18282331; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18282331]").text(description); $(".js-view-count[data-work-id=18282331]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18282331; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='18282331']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 18282331, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=18282331]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":18282331,"title":"Molybdenum as a paleoredox proxy: An update","translated_title":"","metadata":{"abstract":"Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g..."},"translated_abstract":"Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g...","internal_url":"https://www.academia.edu/18282331/Molybdenum_as_a_paleoredox_proxy_An_update","translated_internal_url":"","created_at":"2015-11-13T06:55:27.017-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":38264616,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":9697567,"work_id":18282331,"tagging_user_id":38264616,"tagged_user_id":32172362,"co_author_invite_id":null,"email":"t***s@ucr.edu","display_order":0,"name":"Timothy Lyons","title":"Molybdenum as a paleoredox proxy: An update"},{"id":9697570,"work_id":18282331,"tagging_user_id":38264616,"tagged_user_id":null,"co_author_invite_id":780924,"email":"g***d@utep.edu","display_order":4194304,"name":"G. Arnold","title":"Molybdenum as a paleoredox proxy: An update"},{"id":9697571,"work_id":18282331,"tagging_user_id":38264616,"tagged_user_id":32130763,"co_author_invite_id":null,"email":"b***l@vt.edu","affiliation":"Virginia Tech","display_order":6291456,"name":"Benjamin Gill","title":"Molybdenum as a paleoredox proxy: An update"},{"id":9697573,"work_id":18282331,"tagging_user_id":38264616,"tagged_user_id":151850985,"co_author_invite_id":315672,"email":"n***y@yale.edu","affiliation":"Yale University","display_order":7340032,"name":"Noah Planavsky","title":"Molybdenum as a paleoredox proxy: An update"},{"id":9697574,"work_id":18282331,"tagging_user_id":38264616,"tagged_user_id":null,"co_author_invite_id":2218234,"email":"c***3@ucr.edu","display_order":7864320,"name":"Christopher Reinhard","title":"Molybdenum as a paleoredox proxy: An update"}],"downloadable_attachments":[],"slug":"Molybdenum_as_a_paleoredox_proxy_An_update","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38264616,"first_name":"A.","middle_initials":null,"last_name":"Chappaz","page_name":"AChappaz","domain_name":"independent","created_at":"2015-11-13T06:54:56.935-08:00","display_name":"A. Chappaz","url":"https://independent.academia.edu/AChappaz"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474670"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474670/Molybdenum_as_a_paleoredox_proxy_An_update_Goldschmidt_2011"><img alt="Research paper thumbnail of Molybdenum as a paleoredox proxy: An update - Goldschmidt 2011" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474670/Molybdenum_as_a_paleoredox_proxy_An_update_Goldschmidt_2011">Molybdenum as a paleoredox proxy: An update - Goldschmidt 2011</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored trac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474670"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474670"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474670; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474670]").text(description); $(".js-view-count[data-work-id=22474670]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474670; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474670']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474670, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474670]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474670,"title":"Molybdenum as a paleoredox proxy: An update - Goldschmidt 2011","translated_title":"","metadata":{"abstract":"Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g..."},"translated_abstract":"Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g...","internal_url":"https://www.academia.edu/22474670/Molybdenum_as_a_paleoredox_proxy_An_update_Goldschmidt_2011","translated_internal_url":"","created_at":"2016-02-26T05:38:42.590-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Molybdenum_as_a_paleoredox_proxy_An_update_Goldschmidt_2011","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474669"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22474669/Statistical_analysis_of_iron_geochemical_data_suggests_limited_late_Proterozoic_oxygenation"><img alt="Research paper thumbnail of Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22474669/Statistical_analysis_of_iron_geochemical_data_suggests_limited_late_Proterozoic_oxygenation">Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation</a></div><div class="wp-workCard_item"><span>Nature</span><span>, Jan 23, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (d...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474669"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474669"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474669; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474669]").text(description); $(".js-view-count[data-work-id=22474669]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474669; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474669']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474669, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474669]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474669,"title":"Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation","translated_title":"","metadata":{"abstract":"Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (d...","publication_date":{"day":23,"month":1,"year":2015,"errors":{}},"publication_name":"Nature"},"translated_abstract":"Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (d...","internal_url":"https://www.academia.edu/22474669/Statistical_analysis_of_iron_geochemical_data_suggests_limited_late_Proterozoic_oxygenation","translated_internal_url":"","created_at":"2016-02-26T05:38:42.428-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Statistical_analysis_of_iron_geochemical_data_suggests_limited_late_Proterozoic_oxygenation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":130,"name":"Ancient History","url":"https://www.academia.edu/Documents/in/Ancient_History"},{"id":17825,"name":"Biodiversity","url":"https://www.academia.edu/Documents/in/Biodiversity"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":75942,"name":"Atmosphere","url":"https://www.academia.edu/Documents/in/Atmosphere"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":112330,"name":"Sulfides","url":"https://www.academia.edu/Documents/in/Sulfides"},{"id":158597,"name":"Iron","url":"https://www.academia.edu/Documents/in/Iron"},{"id":184467,"name":"Seawater","url":"https://www.academia.edu/Documents/in/Seawater"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":1256666,"name":"Geologic Sediments","url":"https://www.academia.edu/Documents/in/Geologic_Sediments"},{"id":1256747,"name":"Oxidation-Reduction","url":"https://www.academia.edu/Documents/in/Oxidation-Reduction"},{"id":1795281,"name":"Oceans and Seas","url":"https://www.academia.edu/Documents/in/Oceans_and_Seas"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474668"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474668/Multiple_geochemical_proxies_reveal_a_Late_Cambrian_ocean_anoxic_event"><img alt="Research paper thumbnail of Multiple geochemical proxies reveal a Late Cambrian ocean anoxic event" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474668/Multiple_geochemical_proxies_reveal_a_Late_Cambrian_ocean_anoxic_event">Multiple geochemical proxies reveal a Late Cambrian ocean anoxic event</a></div><div class="wp-workCard_item"><span>Geochmica et Cosmochimica Acta</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474668"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474668"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474668; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474668]").text(description); $(".js-view-count[data-work-id=22474668]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474668; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474668']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474668, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474668]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474668,"title":"Multiple geochemical proxies reveal a Late Cambrian ocean anoxic event","translated_title":"","metadata":{"publication_name":"Geochmica et Cosmochimica Acta"},"translated_abstract":null,"internal_url":"https://www.academia.edu/22474668/Multiple_geochemical_proxies_reveal_a_Late_Cambrian_ocean_anoxic_event","translated_internal_url":"","created_at":"2016-02-26T05:38:42.247-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multiple_geochemical_proxies_reveal_a_Late_Cambrian_ocean_anoxic_event","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":142958,"name":"Oceanic Anoxic Event","url":"https://www.academia.edu/Documents/in/Oceanic_Anoxic_Event"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474667"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474667/The_global_anoxic_SPICE_event_500_Myrs_ago_Trace_metal_depletion_observed_from_Molybdenum_stable_isotope_compositions"><img alt="Research paper thumbnail of The global anoxic &#39;SPICE&#39; event ∼500 Myrs ago. Trace metal depletion observed from Molybdenum stable isotope compositions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474667/The_global_anoxic_SPICE_event_500_Myrs_ago_Trace_metal_depletion_observed_from_Molybdenum_stable_isotope_compositions">The global anoxic &#39;SPICE&#39; event ∼500 Myrs ago. Trace metal depletion observed from Molybdenum stable isotope compositions</a></div><div class="wp-workCard_item"><span>IOP Conference Series: Earth and Environmental Science</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article was submitted without an abstract, please refer to the full-text PDF file.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474667"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474667"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474667; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474667]").text(description); $(".js-view-count[data-work-id=22474667]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474667; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474667']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474667, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474667]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474667,"title":"The global anoxic 'SPICE' event ∼500 Myrs ago. Trace metal depletion observed from Molybdenum stable isotope compositions","translated_title":"","metadata":{"abstract":"This article was submitted without an abstract, please refer to the full-text PDF file.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"IOP Conference Series: Earth and Environmental Science"},"translated_abstract":"This article was submitted without an abstract, please refer to the full-text PDF file.","internal_url":"https://www.academia.edu/22474667/The_global_anoxic_SPICE_event_500_Myrs_ago_Trace_metal_depletion_observed_from_Molybdenum_stable_isotope_compositions","translated_internal_url":"","created_at":"2016-02-26T05:38:42.062-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_global_anoxic_SPICE_event_500_Myrs_ago_Trace_metal_depletion_observed_from_Molybdenum_stable_isotope_compositions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":9095,"name":"Trace Metals","url":"https://www.academia.edu/Documents/in/Trace_Metals"},{"id":91257,"name":"Stable Isotope","url":"https://www.academia.edu/Documents/in/Stable_Isotope"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474666"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474666/The_Late_Cambrian_SPICE_Event_A_Global_Carbon_Cycle_Perturbation"><img alt="Research paper thumbnail of The Late Cambrian SPICE Event: A Global Carbon Cycle Perturbation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474666/The_Late_Cambrian_SPICE_Event_A_Global_Carbon_Cycle_Perturbation">The Late Cambrian SPICE Event: A Global Carbon Cycle Perturbation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Late Cambrian SPICE event is an inorganic carbon isotope excursion that is documented in carb...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Late Cambrian SPICE event is an inorganic carbon isotope excursion that is documented in carbonate rocks around the world. At most localities, the excursion begins near 0 per mil and rises to between + 4 and +5 per mil. These localities include China, Siberia, Kazakhstan, Australia, and North America (Great Basin, US midcontinent, and Applachian regions). There is only</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474666"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474666"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474666; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474666]").text(description); $(".js-view-count[data-work-id=22474666]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474666; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474666']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474666, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474666]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474666,"title":"The Late Cambrian SPICE Event: A Global Carbon Cycle Perturbation","translated_title":"","metadata":{"abstract":"The Late Cambrian SPICE event is an inorganic carbon isotope excursion that is documented in carbonate rocks around the world. At most localities, the excursion begins near 0 per mil and rises to between + 4 and +5 per mil. These localities include China, Siberia, Kazakhstan, Australia, and North America (Great Basin, US midcontinent, and Applachian regions). There is only","publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":"The Late Cambrian SPICE event is an inorganic carbon isotope excursion that is documented in carbonate rocks around the world. At most localities, the excursion begins near 0 per mil and rises to between + 4 and +5 per mil. These localities include China, Siberia, Kazakhstan, Australia, and North America (Great Basin, US midcontinent, and Applachian regions). There is only","internal_url":"https://www.academia.edu/22474666/The_Late_Cambrian_SPICE_Event_A_Global_Carbon_Cycle_Perturbation","translated_internal_url":"","created_at":"2016-02-26T05:38:41.887-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Late_Cambrian_SPICE_Event_A_Global_Carbon_Cycle_Perturbation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":82100,"name":"Global Carbon Cycle","url":"https://www.academia.edu/Documents/in/Global_Carbon_Cycle"},{"id":253469,"name":"North America","url":"https://www.academia.edu/Documents/in/North_America"},{"id":300882,"name":"Carbon Isotope Excursion","url":"https://www.academia.edu/Documents/in/Carbon_Isotope_Excursion"},{"id":444138,"name":"Great Basin","url":"https://www.academia.edu/Documents/in/Great_Basin"},{"id":497452,"name":"Numerical Model","url":"https://www.academia.edu/Documents/in/Numerical_Model"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":970387,"name":"Organic Matter","url":"https://www.academia.edu/Documents/in/Organic_Matter"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474665"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474665/Tracking_Zn_bioavailabilty_through_time_New_insights_from_sulfidic_black_shales"><img alt="Research paper thumbnail of Tracking Zn bioavailabilty through time: New insights from sulfidic black shales" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474665/Tracking_Zn_bioavailabilty_through_time_New_insights_from_sulfidic_black_shales">Tracking Zn bioavailabilty through time: New insights from sulfidic black shales</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Time-varying abundances of trace elements in the oceans have been argued to play a major role in ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Time-varying abundances of trace elements in the oceans have been argued to play a major role in shaping the path of eukaryotic evolution. The dissolved marine concentrations of many bio-essential trace metals are controlled by the redox-state of the ocean-atmosphere system. For example, chalcophillic elements may become bio-limiting on geological timescales under widespread sulfidic conditions. Zn-binding proteins are fundamental to</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474665"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474665"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474665; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474665]").text(description); $(".js-view-count[data-work-id=22474665]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474665; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474665']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474665, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474665]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474665,"title":"Tracking Zn bioavailabilty through time: New insights from sulfidic black shales","translated_title":"","metadata":{"abstract":"Time-varying abundances of trace elements in the oceans have been argued to play a major role in shaping the path of eukaryotic evolution. The dissolved marine concentrations of many bio-essential trace metals are controlled by the redox-state of the ocean-atmosphere system. For example, chalcophillic elements may become bio-limiting on geological timescales under widespread sulfidic conditions. Zn-binding proteins are fundamental to","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"Time-varying abundances of trace elements in the oceans have been argued to play a major role in shaping the path of eukaryotic evolution. The dissolved marine concentrations of many bio-essential trace metals are controlled by the redox-state of the ocean-atmosphere system. For example, chalcophillic elements may become bio-limiting on geological timescales under widespread sulfidic conditions. Zn-binding proteins are fundamental to","internal_url":"https://www.academia.edu/22474665/Tracking_Zn_bioavailabilty_through_time_New_insights_from_sulfidic_black_shales","translated_internal_url":"","created_at":"2016-02-26T05:38:41.725-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tracking_Zn_bioavailabilty_through_time_New_insights_from_sulfidic_black_shales","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":9095,"name":"Trace Metals","url":"https://www.academia.edu/Documents/in/Trace_Metals"},{"id":34117,"name":"Chemical and Biological Engineering","url":"https://www.academia.edu/Documents/in/Chemical_and_Biological_Engineering"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"},{"id":405178,"name":"First Order Logic","url":"https://www.academia.edu/Documents/in/First_Order_Logic"},{"id":709300,"name":"Trace element","url":"https://www.academia.edu/Documents/in/Trace_element"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1480215,"name":"Time varying","url":"https://www.academia.edu/Documents/in/Time_varying"},{"id":1943986,"name":"Black Shale","url":"https://www.academia.edu/Documents/in/Black_Shale"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474664/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks"><img alt="Research paper thumbnail of Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474664/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks">Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474664]").text(description); $(".js-view-count[data-work-id=22474664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474664,"title":"Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/22474664/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks","translated_internal_url":"","created_at":"2016-02-26T05:38:41.528-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12945790"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12945790/Geochemical_evidence_for_euxinia_during_the_Late_Devonian_extinction_events_in_the_Michigan_Basin_U_S_A_"><img alt="Research paper thumbnail of Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12945790/Geochemical_evidence_for_euxinia_during_the_Late_Devonian_extinction_events_in_the_Michigan_Basin_U_S_A_">Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.)</a></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Several mass extinction events occurred in the Late Devonian, but the trigger for these ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Several mass extinction events occurred in the Late Devonian, but the trigger for these events remains elusive. In this study, geochemical evidence in the Late Devonian Antrim Shale, Michigan Basin, U.S.A., records episodic euxinia contemporaneous with these extinction events. Diagnostic changes in iron proxy data and elevated trace metal enrichments correspond to the Kellwasser Crisis. In this study, carbon, sulfur, iron and trace metal geochemistry preserved in the Antrim Formation validates the establishment and expansion of euxinic conditions associated with the Kellwasser Crisis and the Frasnian–Famennian boundary. The strength of the sequential extraction iron mineral data presented here, in concert with trace metal and sulfur isotope proxies, provides definitive signatures of euxinia when other data may be more ambiguous in regard to paleoredox conditions. During the time of the Frasnian–Famennian boundary extensive sulfide oxidation at the chemocline, the result of Fe-limiting conditions within the basin, provides an alternative explanation for the oceanic decline in δ34SSO4 during, and following, the Frasnian–Famennian event. Our geochemical evidence, indicating the presence of anoxia in the Michigan Basin, is consistent with data from other globally distributed locations. Euxinia should be considered a key driver for these global extinction events, and possibly others such as the Hangenberg Event in the Late Devonian.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12945790"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12945790"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12945790; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12945790]").text(description); $(".js-view-count[data-work-id=12945790]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12945790; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12945790']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 12945790, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=12945790]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12945790,"title":"Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.)","translated_title":"","metadata":{"abstract":"ABSTRACT Several mass extinction events occurred in the Late Devonian, but the trigger for these events remains elusive. In this study, geochemical evidence in the Late Devonian Antrim Shale, Michigan Basin, U.S.A., records episodic euxinia contemporaneous with these extinction events. Diagnostic changes in iron proxy data and elevated trace metal enrichments correspond to the Kellwasser Crisis. In this study, carbon, sulfur, iron and trace metal geochemistry preserved in the Antrim Formation validates the establishment and expansion of euxinic conditions associated with the Kellwasser Crisis and the Frasnian–Famennian boundary. The strength of the sequential extraction iron mineral data presented here, in concert with trace metal and sulfur isotope proxies, provides definitive signatures of euxinia when other data may be more ambiguous in regard to paleoredox conditions. During the time of the Frasnian–Famennian boundary extensive sulfide oxidation at the chemocline, the result of Fe-limiting conditions within the basin, provides an alternative explanation for the oceanic decline in δ34SSO4 during, and following, the Frasnian–Famennian event. Our geochemical evidence, indicating the presence of anoxia in the Michigan Basin, is consistent with data from other globally distributed locations. Euxinia should be considered a key driver for these global extinction events, and possibly others such as the Hangenberg Event in the Late Devonian.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Palaeogeography, Palaeoclimatology, Palaeoecology"},"translated_abstract":"ABSTRACT Several mass extinction events occurred in the Late Devonian, but the trigger for these events remains elusive. In this study, geochemical evidence in the Late Devonian Antrim Shale, Michigan Basin, U.S.A., records episodic euxinia contemporaneous with these extinction events. Diagnostic changes in iron proxy data and elevated trace metal enrichments correspond to the Kellwasser Crisis. In this study, carbon, sulfur, iron and trace metal geochemistry preserved in the Antrim Formation validates the establishment and expansion of euxinic conditions associated with the Kellwasser Crisis and the Frasnian–Famennian boundary. The strength of the sequential extraction iron mineral data presented here, in concert with trace metal and sulfur isotope proxies, provides definitive signatures of euxinia when other data may be more ambiguous in regard to paleoredox conditions. During the time of the Frasnian–Famennian boundary extensive sulfide oxidation at the chemocline, the result of Fe-limiting conditions within the basin, provides an alternative explanation for the oceanic decline in δ34SSO4 during, and following, the Frasnian–Famennian event. Our geochemical evidence, indicating the presence of anoxia in the Michigan Basin, is consistent with data from other globally distributed locations. Euxinia should be considered a key driver for these global extinction events, and possibly others such as the Hangenberg Event in the Late Devonian.","internal_url":"https://www.academia.edu/12945790/Geochemical_evidence_for_euxinia_during_the_Late_Devonian_extinction_events_in_the_Michigan_Basin_U_S_A_","translated_internal_url":"","created_at":"2015-06-12T07:23:57.862-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":894417,"work_id":12945790,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315684,"email":"m***f@ansto.gov.au","display_order":null,"name":"Michael Formolo","title":"Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.)"}],"downloadable_attachments":[],"slug":"Geochemical_evidence_for_euxinia_during_the_Late_Devonian_extinction_events_in_the_Michigan_Basin_U_S_A_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12945789"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12945789/Interactions_between_Ediacaran_animals_and_microbial_mats_Insights_from_Lamonte_trevallis_a_new_trace_fossil_from_the_Dengying_Formation_of_South_China"><img alt="Research paper thumbnail of Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China" class="work-thumbnail" src="https://attachments.academia-assets.com/45832273/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12945789/Interactions_between_Ediacaran_animals_and_microbial_mats_Insights_from_Lamonte_trevallis_a_new_trace_fossil_from_the_Dengying_Formation_of_South_China">Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/XunlaiYuan">Xunlai Yuan</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://callibreil.academia.edu/JamesSchiffbauer">James Schiffbauer</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://vt.academia.edu/BenjaminGill">Benjamin Gill</a></span></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aea4e63feaa9bb44b66fcfac8c83d61c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45832273,&quot;asset_id&quot;:12945789,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45832273/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12945789"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12945789"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12945789; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12945789]").text(description); $(".js-view-count[data-work-id=12945789]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12945789; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12945789']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 12945789, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aea4e63feaa9bb44b66fcfac8c83d61c" } } $('.js-work-strip[data-work-id=12945789]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12945789,"title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China","translated_title":"","metadata":{"grobid_abstract":"A new ichnogenus and ichnospecies, Lamonte trevallis, is formally described from the Shibantan Member limestone of the upper Ediacaran Dengying Formation, Yangtze Gorges area, South China. It is characterized by horizontal tunnels connected with short vertical burrows and surface trails. The horizontal burrows are elliptical or bilobed in transverse cross-section, preserved in full relief, and filled with carbonate intraclasts, micrites, as well as calcite and silica cements. They occur exclusively in silty, crinkled, and microlaminated layers that are interpreted as amalgamated cyanobacterial microbial mats; no burrows have been found in intraclastic layers adjacent to the microlaminated layers. The vertical traces are filled with the same material as the burrows, but they typically project through the crinkled microlaminae and are exposed on the bedding surface. The surface tracks are always preserved in negative epirelief or positive hyporelief and consist of two parallel series of either sharp scratch marks or small knobs. The burrow infill has δ 18 O carb and δ 13 C carb values distinct from, but intermediate between, microlaminated and intraclastic layers, consistent with petrographic observation that burrow infill consists of a mixture of early carbonate cements, intraclasts, and micrites. Bedding plane bioturbation intensity (20-40%)-measured as percentage of bedding plane area covered by L. trevallis traces-is comparable to similar measurements in pre-trilobite Cambrian carbonates. The exclusive occurrence of L. trevallis within microbial mats may have both taphonomic and ecological significance. These mats may have provided firm substrates and localized geochemical conditions that contributed to the structural integrity of the burrows, and they may have also facilitated early diagenetic cementation of burrow infill, thus facilitating burrow preservation. The close association of these burrows with microbial mats implies that the trace producers actively mined cyanobacterial mats to exploit oxygen or nutrient resources. The trace makers of L. trevallis were better able to utilize the resources around them than many other Ediacaran trace makers and provide an ichnological record of a flourishing benthic ecology in late Ediacaran oceans at the dawn of the agronomic revolution.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Palaeogeography, Palaeoclimatology, Palaeoecology","grobid_abstract_attachment_id":45832273},"translated_abstract":null,"internal_url":"https://www.academia.edu/12945789/Interactions_between_Ediacaran_animals_and_microbial_mats_Insights_from_Lamonte_trevallis_a_new_trace_fossil_from_the_Dengying_Formation_of_South_China","translated_internal_url":"","created_at":"2015-06-12T07:23:57.778-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":894416,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":32947553,"co_author_invite_id":315683,"email":"x***n@nigpas.ac.cn","display_order":-5991862,"name":"Xunlai Yuan","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"},{"id":894366,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":32885923,"co_author_invite_id":315660,"email":"s***j@missouri.edu","affiliation":"University of Missouri","display_order":-3595117,"name":"James Schiffbauer","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"},{"id":894415,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315682,"email":"c***u@nigpas.ac.cn","display_order":-1198372,"name":"Chuanming Zhou","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"},{"id":894414,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315681,"email":"c***u@cags.ac.cn","display_order":1198373,"name":"Zhe Chen","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"},{"id":894413,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":8868576,"co_author_invite_id":null,"email":"x***o@vt.edu","display_order":3595118,"name":"Shuhai Xiao","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"},{"id":894367,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":569747,"co_author_invite_id":null,"email":"m***o@gmail.com","affiliation":"Harrisburg University of Science and Technology","display_order":5991863,"name":"Mike Meyer","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"}],"downloadable_attachments":[{"id":45832273,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45832273/thumbnails/1.jpg","file_name":"Interactions_between_Ediacaran_animals_a20160521-11194-smhx4p.pdf","download_url":"https://www.academia.edu/attachments/45832273/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interactions_between_Ediacaran_animals_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45832273/Interactions_between_Ediacaran_animals_a20160521-11194-smhx4p-libre.pdf?1463839718=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_between_Ediacaran_animals_a.pdf\u0026Expires=1732464692\u0026Signature=Nzo6Iax1wIo1YE~tyrANU8Aq8qJVqni4uTk9CBHeQIS0zdJQvqjh0NdWU-QSjq10hRc2kjuIQHazNPSfBp0zBZMkzHqUcge70sBQLmu~~pW0DtnybEBI~5RVs5JfHqR1nsFsQw-0d90sJ~Qdm9zrhEXV8rCdy12pSeEqsUPVdqk4jk6Nmu5uaQg0XBwuTTgoMgR5l2-FAjHYndfmdxfNQOcl1ZpjtUyMHF3Qr5440Qy~KhvusAxCG5iwjApLs6qyy625jYWIFM~aPlqyYqkLvhljGUK4HG~TsGgSaEzUcLLi0xfjGzHy96qutNzEBSBDSxJprWb3~uS0SH1D6KGdSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interactions_between_Ediacaran_animals_and_microbial_mats_Insights_from_Lamonte_trevallis_a_new_trace_fossil_from_the_Dengying_Formation_of_South_China","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[{"id":45832273,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45832273/thumbnails/1.jpg","file_name":"Interactions_between_Ediacaran_animals_a20160521-11194-smhx4p.pdf","download_url":"https://www.academia.edu/attachments/45832273/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interactions_between_Ediacaran_animals_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45832273/Interactions_between_Ediacaran_animals_a20160521-11194-smhx4p-libre.pdf?1463839718=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_between_Ediacaran_animals_a.pdf\u0026Expires=1732464692\u0026Signature=Nzo6Iax1wIo1YE~tyrANU8Aq8qJVqni4uTk9CBHeQIS0zdJQvqjh0NdWU-QSjq10hRc2kjuIQHazNPSfBp0zBZMkzHqUcge70sBQLmu~~pW0DtnybEBI~5RVs5JfHqR1nsFsQw-0d90sJ~Qdm9zrhEXV8rCdy12pSeEqsUPVdqk4jk6Nmu5uaQg0XBwuTTgoMgR5l2-FAjHYndfmdxfNQOcl1ZpjtUyMHF3Qr5440Qy~KhvusAxCG5iwjApLs6qyy625jYWIFM~aPlqyYqkLvhljGUK4HG~TsGgSaEzUcLLi0xfjGzHy96qutNzEBSBDSxJprWb3~uS0SH1D6KGdSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":15780,"name":"Taphonomy","url":"https://www.academia.edu/Documents/in/Taphonomy"},{"id":61989,"name":"Ediacaran","url":"https://www.academia.edu/Documents/in/Ediacaran"},{"id":70233,"name":"Trace Fossils","url":"https://www.academia.edu/Documents/in/Trace_Fossils"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12945788"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/12945788/Placing_an_upper_limit_on_cryptic_marine_sulphur_cycling"><img alt="Research paper thumbnail of Placing an upper limit on cryptic marine sulphur cycling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/12945788/Placing_an_upper_limit_on_cryptic_marine_sulphur_cycling">Placing an upper limit on cryptic marine sulphur cycling</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://vt.academia.edu/BenjaminGill">Benjamin Gill</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://harvard.academia.edu/AMasterson">A. Masterson</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DJohnston2">D. Johnston</a></span></div><div class="wp-workCard_item"><span>Nature</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is requi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, &amp;amp;#39;cryptic&amp;amp;#39; sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12945788"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12945788"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12945788; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12945788]").text(description); $(".js-view-count[data-work-id=12945788]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12945788; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12945788']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 12945788, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=12945788]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12945788,"title":"Placing an upper limit on cryptic marine sulphur cycling","translated_title":"","metadata":{"abstract":"A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, \u0026amp;#39;cryptic\u0026amp;#39; sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Nature"},"translated_abstract":"A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, \u0026amp;#39;cryptic\u0026amp;#39; sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.","internal_url":"https://www.academia.edu/12945788/Placing_an_upper_limit_on_cryptic_marine_sulphur_cycling","translated_internal_url":"","created_at":"2015-06-12T07:23:57.685-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":894369,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315662,"email":"a***p@fsu.edu","display_order":null,"name":"Angela Knapp","title":"Placing an upper limit on cryptic marine sulphur cycling"},{"id":894368,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315661,"email":"k***i@whoi.edu","display_order":null,"name":"Karen Casciotti","title":"Placing an upper limit on cryptic marine sulphur cycling"},{"id":894419,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315686,"email":"e***e@fas.harvard.edu","display_order":null,"name":"E. Beirne","title":"Placing an upper limit on cryptic marine sulphur cycling"},{"id":894418,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":32163574,"co_author_invite_id":315685,"email":"a***s@fas.harvard.edu","affiliation":"Harvard University","display_order":null,"name":"A. Masterson","title":"Placing an upper limit on cryptic marine sulphur cycling"},{"id":894357,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":32165523,"co_author_invite_id":315657,"email":"j***n@eps.harvard.edu","display_order":null,"name":"D. Johnston","title":"Placing an upper limit on cryptic marine sulphur cycling"},{"id":894420,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":267547482,"co_author_invite_id":315687,"email":"b***n@usc.edu","display_order":null,"name":"William Berelson","title":"Placing an upper limit on cryptic marine sulphur cycling"}],"downloadable_attachments":[],"slug":"Placing_an_upper_limit_on_cryptic_marine_sulphur_cycling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":63551,"name":"Nitrogen Fixation","url":"https://www.academia.edu/Documents/in/Nitrogen_Fixation"},{"id":151091,"name":"Nitrogen","url":"https://www.academia.edu/Documents/in/Nitrogen"},{"id":184467,"name":"Seawater","url":"https://www.academia.edu/Documents/in/Seawater"},{"id":219724,"name":"Ammonia","url":"https://www.academia.edu/Documents/in/Ammonia"},{"id":230701,"name":"Oxygen Isotopes","url":"https://www.academia.edu/Documents/in/Oxygen_Isotopes"},{"id":285012,"name":"Sulfur","url":"https://www.academia.edu/Documents/in/Sulfur"},{"id":377566,"name":"Aquatic organisms","url":"https://www.academia.edu/Documents/in/Aquatic_organisms"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":1256747,"name":"Oxidation-Reduction","url":"https://www.academia.edu/Documents/in/Oxidation-Reduction"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12945787"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12945787/Scarcity_of_the_C_30_sterane_biomarker_24_n_propylcholestane_in_Lower_Paleozoic_marine_paleoenvironments"><img alt="Research paper thumbnail of Scarcity of the C 30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments" class="work-thumbnail" src="https://attachments.academia-assets.com/45832116/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12945787/Scarcity_of_the_C_30_sterane_biomarker_24_n_propylcholestane_in_Lower_Paleozoic_marine_paleoenvironments">Scarcity of the C 30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://vt.academia.edu/BenjaminGill">Benjamin Gill</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://ucriverside.academia.edu/GordonLove">Gordon Love</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/MRohrssen">M. Rohrssen</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0f8dee9b71a77a6d0b8dfcf6030e3e95" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45832116,&quot;asset_id&quot;:12945787,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45832116/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12945787"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12945787"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12945787; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12945787]").text(description); $(".js-view-count[data-work-id=12945787]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12945787; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12945787']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 12945787, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0f8dee9b71a77a6d0b8dfcf6030e3e95" } } $('.js-work-strip[data-work-id=12945787]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12945787,"title":"Scarcity of the C 30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments","translated_title":"","metadata":{"grobid_abstract":"a b s t r a c t 24-n-Propylcholestane (24-npc), a C 30 sterane compound derived from sterol precursors which are the major sterol constituents of modern pelagophyte microalgae, occurs in certain Neoproterozoic rocks and oils and throughout the Phanerozoic rock record. This broad distribution leads 24-npc to be widely considered a reliable indicator of open to partially restricted marine depositional conditions for source rocks and oils. Here we report two significant hiatuses in the occurrences of 24-npc in the Lower Paleozoic marine rock record: the first in the Middle-Late Cambrian and the second in the Late Ordovicianearly Silurian transition for a range of lithofacies (carbonates and siliciclastic rocks), organic carbon contents (both organic-lean and organic-rich), and paleoceanographic environments (shelf and deeper water marine settings) and observed offshore of two paleocontinents, Laurentia and Baltica. The Ordovician-Silurian gap is at least 9 million years, and possibly up to 20 million years, in duration. Robust older occurrences of 24-npc steranes in some Neoproterozoic rocks and oils suggest that oceanographic conditions in our intervals of Lower Paleozoic time were unfavorable for the proliferation of pelagophyte algae as phytoplankton. Caution should therefore be applied when interpreting a lacustrine versus marine depositional environmental setting for source rocks and oils in these intervals of Early Paleozoic time using lipid biomarker assemblages.","grobid_abstract_attachment_id":45832116},"translated_abstract":null,"internal_url":"https://www.academia.edu/12945787/Scarcity_of_the_C_30_sterane_biomarker_24_n_propylcholestane_in_Lower_Paleozoic_marine_paleoenvironments","translated_internal_url":"","created_at":"2015-06-12T07:23:57.583-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":894424,"work_id":12945787,"tagging_user_id":32130763,"tagged_user_id":32185950,"co_author_invite_id":315690,"email":"m***1@ucr.edu","display_order":null,"name":"M. Rohrssen","title":"Scarcity of the C 30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments"},{"id":894412,"work_id":12945787,"tagging_user_id":32130763,"tagged_user_id":32163474,"co_author_invite_id":73696,"email":"g***e@ucr.edu","affiliation":"University of California, Riverside","display_order":null,"name":"Gordon Love","title":"Scarcity of the C 30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments"}],"downloadable_attachments":[{"id":45832116,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45832116/thumbnails/1.jpg","file_name":"Scarcity_of_the_C30_sterane_biomarker_2420160521-18796-1dor8nd.pdf","download_url":"https://www.academia.edu/attachments/45832116/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scarcity_of_the_C_30_sterane_biomarker_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45832116/Scarcity_of_the_C30_sterane_biomarker_2420160521-18796-1dor8nd-libre.pdf?1463839722=\u0026response-content-disposition=attachment%3B+filename%3DScarcity_of_the_C_30_sterane_biomarker_2.pdf\u0026Expires=1732464693\u0026Signature=FbsFV2O03~V3PGv3cGG2bA7TAKPI1qrvsGThUIJ7Y-fUJg-kfiuRxOlqVIbOiDproOW7sQnow3AZUNLloG6QCImlWKqTlhj9xclOyjWBlfymLKCh0pdItfq5xdZT030X-iihXSYCXYqOPVFYl1Vv9zCv99PsmE6IEUv5K42yhUtpfluKldw3MyUcC0MDg-6aE7LVgKNS1jEdd-eC5ABpeSpeomRC6y7AFVdJeu-FdwQeOyjYlJvRPqb9gDaPrU0PMM32mk39bBmvl2a8E00N1QuCCgzgqgNtjrOlglRToy66DJx-fLs9beMozqDqLPmr6Cc9TmWsTntmjSguSJsdrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Scarcity_of_the_C_30_sterane_biomarker_24_n_propylcholestane_in_Lower_Paleozoic_marine_paleoenvironments","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[{"id":45832116,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45832116/thumbnails/1.jpg","file_name":"Scarcity_of_the_C30_sterane_biomarker_2420160521-18796-1dor8nd.pdf","download_url":"https://www.academia.edu/attachments/45832116/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scarcity_of_the_C_30_sterane_biomarker_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45832116/Scarcity_of_the_C30_sterane_biomarker_2420160521-18796-1dor8nd-libre.pdf?1463839722=\u0026response-content-disposition=attachment%3B+filename%3DScarcity_of_the_C_30_sterane_biomarker_2.pdf\u0026Expires=1732464693\u0026Signature=FbsFV2O03~V3PGv3cGG2bA7TAKPI1qrvsGThUIJ7Y-fUJg-kfiuRxOlqVIbOiDproOW7sQnow3AZUNLloG6QCImlWKqTlhj9xclOyjWBlfymLKCh0pdItfq5xdZT030X-iihXSYCXYqOPVFYl1Vv9zCv99PsmE6IEUv5K42yhUtpfluKldw3MyUcC0MDg-6aE7LVgKNS1jEdd-eC5ABpeSpeomRC6y7AFVdJeu-FdwQeOyjYlJvRPqb9gDaPrU0PMM32mk39bBmvl2a8E00N1QuCCgzgqgNtjrOlglRToy66DJx-fLs9beMozqDqLPmr6Cc9TmWsTntmjSguSJsdrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":4580,"name":"Organic Geochemistry","url":"https://www.academia.edu/Documents/in/Organic_Geochemistry"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":171492,"name":"Paleozoic","url":"https://www.academia.edu/Documents/in/Paleozoic"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3030475" id="papers"><div class="js-work-strip profile--work_container" data-work-id="22474679"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474679/High_resolution_sulfur_isotope_records_of_the_Paleozoic_and_a_detailed_geochemical_study_of_the_Late_Cambrian_SPICE_event_utilizing_sulfur_isotope_stratigraphy_metal_chemistry_and_numerical_modeling"><img alt="Research paper thumbnail of High-resolution sulfur isotope records of the Paleozoic and a detailed geochemical study of the Late Cambrian SPICE event utilizing sulfur isotope stratigraphy, metal chemistry and numerical modeling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474679/High_resolution_sulfur_isotope_records_of_the_Paleozoic_and_a_detailed_geochemical_study_of_the_Late_Cambrian_SPICE_event_utilizing_sulfur_isotope_stratigraphy_metal_chemistry_and_numerical_modeling">High-resolution sulfur isotope records of the Paleozoic and a detailed geochemical study of the Late Cambrian SPICE event utilizing sulfur isotope stratigraphy, metal chemistry and numerical modeling</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474679"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474679"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474679; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474679]").text(description); $(".js-view-count[data-work-id=22474679]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474679; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474679']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474679, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474679]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474679,"title":"High-resolution sulfur isotope records of the Paleozoic and a detailed geochemical study of the Late Cambrian SPICE event utilizing sulfur isotope stratigraphy, metal chemistry and numerical modeling","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/22474679/High_resolution_sulfur_isotope_records_of_the_Paleozoic_and_a_detailed_geochemical_study_of_the_Late_Cambrian_SPICE_event_utilizing_sulfur_isotope_stratigraphy_metal_chemistry_and_numerical_modeling","translated_internal_url":"","created_at":"2016-02-26T05:39:03.566-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"High_resolution_sulfur_isotope_records_of_the_Paleozoic_and_a_detailed_geochemical_study_of_the_Late_Cambrian_SPICE_event_utilizing_sulfur_isotope_stratigraphy_metal_chemistry_and_numerical_modeling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":6823611,"url":"http://gradworks.umi.com/33/74/3374391.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474678"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474678/Assessment_of_the_geographical_extent_of_the_Toarcian_Oceanic_Anoxic_Event_Implications_for_Early_Jurassic_hydrocarbon_source_rock_deposition"><img alt="Research paper thumbnail of Assessment of the geographical extent of the Toarcian Oceanic Anoxic Event: Implications for Early Jurassic hydrocarbon source rock deposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474678/Assessment_of_the_geographical_extent_of_the_Toarcian_Oceanic_Anoxic_Event_Implications_for_Early_Jurassic_hydrocarbon_source_rock_deposition">Assessment of the geographical extent of the Toarcian Oceanic Anoxic Event: Implications for Early Jurassic hydrocarbon source rock deposition</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474678"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474678"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474678; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474678]").text(description); $(".js-view-count[data-work-id=22474678]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474678; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474678']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474678, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474678]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474678,"title":"Assessment of the geographical extent of the Toarcian Oceanic Anoxic Event: Implications for Early Jurassic hydrocarbon source rock deposition","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/22474678/Assessment_of_the_geographical_extent_of_the_Toarcian_Oceanic_Anoxic_Event_Implications_for_Early_Jurassic_hydrocarbon_source_rock_deposition","translated_internal_url":"","created_at":"2016-02-26T05:39:03.426-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Assessment_of_the_geographical_extent_of_the_Toarcian_Oceanic_Anoxic_Event_Implications_for_Early_Jurassic_hydrocarbon_source_rock_deposition","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474677"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474677/Rapid_environmental_changes_during_the_Early_Jurassic_Pliensbachian_to_Toarcian_Stages_in_western_North_America_recorded_in_the_geochemistry_of_organic_rich_mud_rocks"><img alt="Research paper thumbnail of Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474677/Rapid_environmental_changes_during_the_Early_Jurassic_Pliensbachian_to_Toarcian_Stages_in_western_North_America_recorded_in_the_geochemistry_of_organic_rich_mud_rocks">Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://vt.academia.edu/BenjaminGill">Benjamin Gill</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/TheodoreThem">Theodore Them</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474677"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474677"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474677; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474677]").text(description); $(".js-view-count[data-work-id=22474677]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474677; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474677']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474677, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474677]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474677,"title":"Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/22474677/Rapid_environmental_changes_during_the_Early_Jurassic_Pliensbachian_to_Toarcian_Stages_in_western_North_America_recorded_in_the_geochemistry_of_organic_rich_mud_rocks","translated_internal_url":"","created_at":"2016-02-26T05:39:03.267-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":16104724,"work_id":22474677,"tagging_user_id":32130763,"tagged_user_id":43999785,"co_author_invite_id":3711452,"email":"t***5@vt.edu","display_order":0,"name":"Theodore Them","title":"Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks"},{"id":16104725,"work_id":22474677,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":3711453,"email":"e***2@vt.edu","display_order":4194304,"name":"Emma Tulsky","title":"Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks"},{"id":16104726,"work_id":22474677,"tagging_user_id":32130763,"tagged_user_id":856422,"co_author_invite_id":null,"email":"d***e@durham.ac.uk","affiliation":"Durham University","display_order":6291456,"name":"Darren Gröcke","title":"Rapid environmental changes during the Early Jurassic (Pliensbachian to Toarcian Stages) in western North America recorded in the geochemistry of organic-rich mud rocks"}],"downloadable_attachments":[],"slug":"Rapid_environmental_changes_during_the_Early_Jurassic_Pliensbachian_to_Toarcian_Stages_in_western_North_America_recorded_in_the_geochemistry_of_organic_rich_mud_rocks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474675"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474675/New_insight_into_the_utility_of_carbonate_associated_sulfate"><img alt="Research paper thumbnail of New insight into the utility of carbonate-associated sulfate" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474675/New_insight_into_the_utility_of_carbonate_associated_sulfate">New insight into the utility of carbonate-associated sulfate</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474675"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474675"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474675; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474675]").text(description); $(".js-view-count[data-work-id=22474675]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474675; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474675']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474675, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474675]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474675,"title":"New insight into the utility of carbonate-associated sulfate","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/22474675/New_insight_into_the_utility_of_carbonate_associated_sulfate","translated_internal_url":"","created_at":"2016-02-26T05:38:44.040-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"New_insight_into_the_utility_of_carbonate_associated_sulfate","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[{"id":6823609,"url":"http://adsabs.harvard.edu/abs/2005gecas..69..128l"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474674"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474674/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks"><img alt="Research paper thumbnail of Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474674/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks">Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474674"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474674"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474674; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474674]").text(description); $(".js-view-count[data-work-id=22474674]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474674; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474674']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474674, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474674]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474674,"title":"Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/22474674/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks","translated_internal_url":"","created_at":"2016-02-26T05:38:43.681-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"}],"urls":[{"id":6823608,"url":"http://adsabs.harvard.edu/abs/2003gecas..67r.264l"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474673"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474673/Redox_controlled_U_Cycle_in_Ancient_Oceans_Revealed_by_Black_Shale_Records"><img alt="Research paper thumbnail of Redox-controlled U Cycle in Ancient Oceans Revealed by Black Shale Records" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474673/Redox_controlled_U_Cycle_in_Ancient_Oceans_Revealed_by_Black_Shale_Records">Redox-controlled U Cycle in Ancient Oceans Revealed by Black Shale Records</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Redox-sensitive elements, such as U and Mo, are valuable proxies for oxygen availability in the a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Redox-sensitive elements, such as U and Mo, are valuable proxies for oxygen availability in the ancient atmosphere and ocean. Scott et al. (2008) inferred three stages from the secular trend of Mo concentrations in organic matter-rich shales: 1) shales older than 2.2 Ga have low but above crustal average Mo concentrations; 2) shales ca. 2.2 Ga show a dramatic increase in Mo concentrations after the rise of atmospheric oxygen; 3) shales straddling the Precambrian-Cambrian boundary show a second rise in Mo concentrations. Both Mo and U are released during oxidative continental weathering but removed via different pathways from the ocean; Mo is predominantly enriched in shales deposited under euxinic conditions, whereas U only requires anoxic conditions to be scavenged from the water column. These elements therefore can provide complementary, but independent, information about the redox state of the ocean and atmosphere. Our compilation of U concentrations from &amp;gt;2.2 Ga organic matte...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474673"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474673"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474673; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474673]").text(description); $(".js-view-count[data-work-id=22474673]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474673; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474673']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474673, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474673]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474673,"title":"Redox-controlled U Cycle in Ancient Oceans Revealed by Black Shale Records","translated_title":"","metadata":{"abstract":"Redox-sensitive elements, such as U and Mo, are valuable proxies for oxygen availability in the ancient atmosphere and ocean. Scott et al. (2008) inferred three stages from the secular trend of Mo concentrations in organic matter-rich shales: 1) shales older than 2.2 Ga have low but above crustal average Mo concentrations; 2) shales ca. 2.2 Ga show a dramatic increase in Mo concentrations after the rise of atmospheric oxygen; 3) shales straddling the Precambrian-Cambrian boundary show a second rise in Mo concentrations. Both Mo and U are released during oxidative continental weathering but removed via different pathways from the ocean; Mo is predominantly enriched in shales deposited under euxinic conditions, whereas U only requires anoxic conditions to be scavenged from the water column. These elements therefore can provide complementary, but independent, information about the redox state of the ocean and atmosphere. Our compilation of U concentrations from \u0026gt;2.2 Ga organic matte..."},"translated_abstract":"Redox-sensitive elements, such as U and Mo, are valuable proxies for oxygen availability in the ancient atmosphere and ocean. Scott et al. (2008) inferred three stages from the secular trend of Mo concentrations in organic matter-rich shales: 1) shales older than 2.2 Ga have low but above crustal average Mo concentrations; 2) shales ca. 2.2 Ga show a dramatic increase in Mo concentrations after the rise of atmospheric oxygen; 3) shales straddling the Precambrian-Cambrian boundary show a second rise in Mo concentrations. Both Mo and U are released during oxidative continental weathering but removed via different pathways from the ocean; Mo is predominantly enriched in shales deposited under euxinic conditions, whereas U only requires anoxic conditions to be scavenged from the water column. These elements therefore can provide complementary, but independent, information about the redox state of the ocean and atmosphere. Our compilation of U concentrations from \u0026gt;2.2 Ga organic matte...","internal_url":"https://www.academia.edu/22474673/Redox_controlled_U_Cycle_in_Ancient_Oceans_Revealed_by_Black_Shale_Records","translated_internal_url":"","created_at":"2016-02-26T05:38:43.383-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Redox_controlled_U_Cycle_in_Ancient_Oceans_Revealed_by_Black_Shale_Records","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474672"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22474672/Changes_in_the_Precambrian_ocean_U_cycle_linked_to_the_evolution_of_surficial_redox_conditions"><img alt="Research paper thumbnail of Changes in the Precambrian ocean U cycle linked to the evolution of surficial redox conditions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22474672/Changes_in_the_Precambrian_ocean_U_cycle_linked_to_the_evolution_of_surficial_redox_conditions">Changes in the Precambrian ocean U cycle linked to the evolution of surficial redox conditions</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The rise of atmospheric oxygen between 2.47 and 2.32 Ga undoubtedly had a significant impact on g...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The rise of atmospheric oxygen between 2.47 and 2.32 Ga undoubtedly had a significant impact on global biogeochemical cycles and particularly, the intensity of oxidative continental weathering. While the timing of atmospheric oxygenation is well-constrained, the redox -state of the deep ocean throughout the Proterozoic is less known. The distribution of redox-sensitive elements, such as uranium and molybdenum, in ancient sedimentary rocks provides insight into the response of the deep ocean to this dramatic geochemical change. Here we present a compilation of U concentrations in marine black shales, from the Archean to the present to track the coupled redox evolution of the atmosphere and oceans, and to decipher changes in the uranium cycle itself. Since riverine delivery represents the only significant source of uranium to the oceans, and scavenging by organic matter-rich sediments beneath suboxic to anoxic waters represents the only significant sink, uranium concentrations in blac...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474672"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474672"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474672; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474672]").text(description); $(".js-view-count[data-work-id=22474672]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474672; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474672']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474672, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474672]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474672,"title":"Changes in the Precambrian ocean U cycle linked to the evolution of surficial redox conditions","translated_title":"","metadata":{"abstract":"The rise of atmospheric oxygen between 2.47 and 2.32 Ga undoubtedly had a significant impact on global biogeochemical cycles and particularly, the intensity of oxidative continental weathering. While the timing of atmospheric oxygenation is well-constrained, the redox -state of the deep ocean throughout the Proterozoic is less known. The distribution of redox-sensitive elements, such as uranium and molybdenum, in ancient sedimentary rocks provides insight into the response of the deep ocean to this dramatic geochemical change. Here we present a compilation of U concentrations in marine black shales, from the Archean to the present to track the coupled redox evolution of the atmosphere and oceans, and to decipher changes in the uranium cycle itself. Since riverine delivery represents the only significant source of uranium to the oceans, and scavenging by organic matter-rich sediments beneath suboxic to anoxic waters represents the only significant sink, uranium concentrations in blac..."},"translated_abstract":"The rise of atmospheric oxygen between 2.47 and 2.32 Ga undoubtedly had a significant impact on global biogeochemical cycles and particularly, the intensity of oxidative continental weathering. While the timing of atmospheric oxygenation is well-constrained, the redox -state of the deep ocean throughout the Proterozoic is less known. The distribution of redox-sensitive elements, such as uranium and molybdenum, in ancient sedimentary rocks provides insight into the response of the deep ocean to this dramatic geochemical change. Here we present a compilation of U concentrations in marine black shales, from the Archean to the present to track the coupled redox evolution of the atmosphere and oceans, and to decipher changes in the uranium cycle itself. Since riverine delivery represents the only significant source of uranium to the oceans, and scavenging by organic matter-rich sediments beneath suboxic to anoxic waters represents the only significant sink, uranium concentrations in blac...","internal_url":"https://www.academia.edu/22474672/Changes_in_the_Precambrian_ocean_U_cycle_linked_to_the_evolution_of_surficial_redox_conditions","translated_internal_url":"","created_at":"2016-02-26T05:38:43.119-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":16104731,"work_id":22474672,"tagging_user_id":32130763,"tagged_user_id":32195470,"co_author_invite_id":null,"email":"a***r@ad.umanitoba.ca","affiliation":"University of California, Riverside","display_order":0,"name":"A. Bekker","title":"Changes in the Precambrian ocean U cycle linked to the evolution of surficial redox conditions"}],"downloadable_attachments":[],"slug":"Changes_in_the_Precambrian_ocean_U_cycle_linked_to_the_evolution_of_surficial_redox_conditions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474671"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474671/A_multi_geochemical_proxy_approach_to_deciphering_the_Toarcian_OAE"><img alt="Research paper thumbnail of A multi geochemical proxy approach to deciphering the Toarcian OAE" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474671/A_multi_geochemical_proxy_approach_to_deciphering_the_Toarcian_OAE">A multi geochemical proxy approach to deciphering the Toarcian OAE</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Toarcian Ocean Anoxic Event (OAE) was a time of profound perturbations in the carbon cycle an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Toarcian Ocean Anoxic Event (OAE) was a time of profound perturbations in the carbon cycle and biosphere. However, many questions surround this interval, including the global-versus-local nature of the event. Unlike Cretaceous OAEs, the Toarcian lacks an available deep ocean record. Consequently, most studies have focused on geochemical data from stratigraphic sections in the north European epicontinental seaway (NEES) where the global relevance of the geological, paleontological and geochemical records has been questioned. At the heart of this debate is the observation that black, organic-rich shales within the NEES show little to no enrichment in some redox-sensitive elements (e.g., Mo) beyond crustal concentrations. Because the nature of the connection between the NEES and the open ocean is under debate, the muted metal enrichments have been interpreted as a drawdown of either the global or local marine reservoirs. Additionally, little work has been done to access the redox c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474671"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474671"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474671; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474671]").text(description); $(".js-view-count[data-work-id=22474671]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474671; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474671']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474671, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474671]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474671,"title":"A multi geochemical proxy approach to deciphering the Toarcian OAE","translated_title":"","metadata":{"abstract":"The Toarcian Ocean Anoxic Event (OAE) was a time of profound perturbations in the carbon cycle and biosphere. However, many questions surround this interval, including the global-versus-local nature of the event. Unlike Cretaceous OAEs, the Toarcian lacks an available deep ocean record. Consequently, most studies have focused on geochemical data from stratigraphic sections in the north European epicontinental seaway (NEES) where the global relevance of the geological, paleontological and geochemical records has been questioned. At the heart of this debate is the observation that black, organic-rich shales within the NEES show little to no enrichment in some redox-sensitive elements (e.g., Mo) beyond crustal concentrations. Because the nature of the connection between the NEES and the open ocean is under debate, the muted metal enrichments have been interpreted as a drawdown of either the global or local marine reservoirs. Additionally, little work has been done to access the redox c..."},"translated_abstract":"The Toarcian Ocean Anoxic Event (OAE) was a time of profound perturbations in the carbon cycle and biosphere. However, many questions surround this interval, including the global-versus-local nature of the event. Unlike Cretaceous OAEs, the Toarcian lacks an available deep ocean record. Consequently, most studies have focused on geochemical data from stratigraphic sections in the north European epicontinental seaway (NEES) where the global relevance of the geological, paleontological and geochemical records has been questioned. At the heart of this debate is the observation that black, organic-rich shales within the NEES show little to no enrichment in some redox-sensitive elements (e.g., Mo) beyond crustal concentrations. Because the nature of the connection between the NEES and the open ocean is under debate, the muted metal enrichments have been interpreted as a drawdown of either the global or local marine reservoirs. Additionally, little work has been done to access the redox c...","internal_url":"https://www.academia.edu/22474671/A_multi_geochemical_proxy_approach_to_deciphering_the_Toarcian_OAE","translated_internal_url":"","created_at":"2016-02-26T05:38:42.924-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_multi_geochemical_proxy_approach_to_deciphering_the_Toarcian_OAE","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="18282331"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/18282331/Molybdenum_as_a_paleoredox_proxy_An_update"><img alt="Research paper thumbnail of Molybdenum as a paleoredox proxy: An update" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/18282331/Molybdenum_as_a_paleoredox_proxy_An_update">Molybdenum as a paleoredox proxy: An update</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AChappaz">A. Chappaz</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://vt.academia.edu/BenjaminGill">Benjamin Gill</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored trac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="18282331"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="18282331"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18282331; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18282331]").text(description); $(".js-view-count[data-work-id=18282331]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18282331; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='18282331']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 18282331, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=18282331]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":18282331,"title":"Molybdenum as a paleoredox proxy: An update","translated_title":"","metadata":{"abstract":"Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g..."},"translated_abstract":"Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g...","internal_url":"https://www.academia.edu/18282331/Molybdenum_as_a_paleoredox_proxy_An_update","translated_internal_url":"","created_at":"2015-11-13T06:55:27.017-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":38264616,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":9697567,"work_id":18282331,"tagging_user_id":38264616,"tagged_user_id":32172362,"co_author_invite_id":null,"email":"t***s@ucr.edu","display_order":0,"name":"Timothy Lyons","title":"Molybdenum as a paleoredox proxy: An update"},{"id":9697570,"work_id":18282331,"tagging_user_id":38264616,"tagged_user_id":null,"co_author_invite_id":780924,"email":"g***d@utep.edu","display_order":4194304,"name":"G. Arnold","title":"Molybdenum as a paleoredox proxy: An update"},{"id":9697571,"work_id":18282331,"tagging_user_id":38264616,"tagged_user_id":32130763,"co_author_invite_id":null,"email":"b***l@vt.edu","affiliation":"Virginia Tech","display_order":6291456,"name":"Benjamin Gill","title":"Molybdenum as a paleoredox proxy: An update"},{"id":9697573,"work_id":18282331,"tagging_user_id":38264616,"tagged_user_id":151850985,"co_author_invite_id":315672,"email":"n***y@yale.edu","affiliation":"Yale University","display_order":7340032,"name":"Noah Planavsky","title":"Molybdenum as a paleoredox proxy: An update"},{"id":9697574,"work_id":18282331,"tagging_user_id":38264616,"tagged_user_id":null,"co_author_invite_id":2218234,"email":"c***3@ucr.edu","display_order":7864320,"name":"Christopher Reinhard","title":"Molybdenum as a paleoredox proxy: An update"}],"downloadable_attachments":[],"slug":"Molybdenum_as_a_paleoredox_proxy_An_update","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":38264616,"first_name":"A.","middle_initials":null,"last_name":"Chappaz","page_name":"AChappaz","domain_name":"independent","created_at":"2015-11-13T06:54:56.935-08:00","display_name":"A. Chappaz","url":"https://independent.academia.edu/AChappaz"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474670"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474670/Molybdenum_as_a_paleoredox_proxy_An_update_Goldschmidt_2011"><img alt="Research paper thumbnail of Molybdenum as a paleoredox proxy: An update - Goldschmidt 2011" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474670/Molybdenum_as_a_paleoredox_proxy_An_update_Goldschmidt_2011">Molybdenum as a paleoredox proxy: An update - Goldschmidt 2011</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored trac...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474670"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474670"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474670; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474670]").text(description); $(".js-view-count[data-work-id=22474670]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474670; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474670']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474670, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474670]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474670,"title":"Molybdenum as a paleoredox proxy: An update - Goldschmidt 2011","translated_title":"","metadata":{"abstract":"Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g..."},"translated_abstract":"Concentrations and isotope trends of molybdenum in organic-rich shales are among the favored tracers for euxinia in the ancient ocean on local and global scales. With the successes, however, has also come increasing awareness of the complexity. The purpose of this talk is to synthesize the broad range of refining and defining proxy developments and applications over the past several years, as a progress report and roadmap for future applications. Among the key topics are (1) our new and refined models for Mo uptake and burial under euxinic conditions, including a rigorous mechanistic understanding of the apparent coupling between Mo and organic matter sinks; (2) our comprehensive view of how Mo is taken up, fractionated isotopically, and buried [or recycled] beneath oxic bottom waters, particularly as coupled to Mn and Fe cycles; (3) our improved perspective on how and when Mo isotopes can be fractionated under permanent or transient euxinia, leading to a more effective use of the g...","internal_url":"https://www.academia.edu/22474670/Molybdenum_as_a_paleoredox_proxy_An_update_Goldschmidt_2011","translated_internal_url":"","created_at":"2016-02-26T05:38:42.590-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Molybdenum_as_a_paleoredox_proxy_An_update_Goldschmidt_2011","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474669"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22474669/Statistical_analysis_of_iron_geochemical_data_suggests_limited_late_Proterozoic_oxygenation"><img alt="Research paper thumbnail of Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22474669/Statistical_analysis_of_iron_geochemical_data_suggests_limited_late_Proterozoic_oxygenation">Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation</a></div><div class="wp-workCard_item"><span>Nature</span><span>, Jan 23, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (d...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474669"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474669"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474669; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474669]").text(description); $(".js-view-count[data-work-id=22474669]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474669; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474669']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474669, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474669]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474669,"title":"Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation","translated_title":"","metadata":{"abstract":"Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (d...","publication_date":{"day":23,"month":1,"year":2015,"errors":{}},"publication_name":"Nature"},"translated_abstract":"Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (d...","internal_url":"https://www.academia.edu/22474669/Statistical_analysis_of_iron_geochemical_data_suggests_limited_late_Proterozoic_oxygenation","translated_internal_url":"","created_at":"2016-02-26T05:38:42.428-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Statistical_analysis_of_iron_geochemical_data_suggests_limited_late_Proterozoic_oxygenation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":130,"name":"Ancient History","url":"https://www.academia.edu/Documents/in/Ancient_History"},{"id":17825,"name":"Biodiversity","url":"https://www.academia.edu/Documents/in/Biodiversity"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":75942,"name":"Atmosphere","url":"https://www.academia.edu/Documents/in/Atmosphere"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":112330,"name":"Sulfides","url":"https://www.academia.edu/Documents/in/Sulfides"},{"id":158597,"name":"Iron","url":"https://www.academia.edu/Documents/in/Iron"},{"id":184467,"name":"Seawater","url":"https://www.academia.edu/Documents/in/Seawater"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":1256666,"name":"Geologic Sediments","url":"https://www.academia.edu/Documents/in/Geologic_Sediments"},{"id":1256747,"name":"Oxidation-Reduction","url":"https://www.academia.edu/Documents/in/Oxidation-Reduction"},{"id":1795281,"name":"Oceans and Seas","url":"https://www.academia.edu/Documents/in/Oceans_and_Seas"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474668"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474668/Multiple_geochemical_proxies_reveal_a_Late_Cambrian_ocean_anoxic_event"><img alt="Research paper thumbnail of Multiple geochemical proxies reveal a Late Cambrian ocean anoxic event" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474668/Multiple_geochemical_proxies_reveal_a_Late_Cambrian_ocean_anoxic_event">Multiple geochemical proxies reveal a Late Cambrian ocean anoxic event</a></div><div class="wp-workCard_item"><span>Geochmica et Cosmochimica Acta</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474668"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474668"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474668; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474668]").text(description); $(".js-view-count[data-work-id=22474668]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474668; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474668']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474668, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474668]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474668,"title":"Multiple geochemical proxies reveal a Late Cambrian ocean anoxic event","translated_title":"","metadata":{"publication_name":"Geochmica et Cosmochimica Acta"},"translated_abstract":null,"internal_url":"https://www.academia.edu/22474668/Multiple_geochemical_proxies_reveal_a_Late_Cambrian_ocean_anoxic_event","translated_internal_url":"","created_at":"2016-02-26T05:38:42.247-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multiple_geochemical_proxies_reveal_a_Late_Cambrian_ocean_anoxic_event","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":142958,"name":"Oceanic Anoxic Event","url":"https://www.academia.edu/Documents/in/Oceanic_Anoxic_Event"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474667"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474667/The_global_anoxic_SPICE_event_500_Myrs_ago_Trace_metal_depletion_observed_from_Molybdenum_stable_isotope_compositions"><img alt="Research paper thumbnail of The global anoxic &#39;SPICE&#39; event ∼500 Myrs ago. Trace metal depletion observed from Molybdenum stable isotope compositions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474667/The_global_anoxic_SPICE_event_500_Myrs_ago_Trace_metal_depletion_observed_from_Molybdenum_stable_isotope_compositions">The global anoxic &#39;SPICE&#39; event ∼500 Myrs ago. Trace metal depletion observed from Molybdenum stable isotope compositions</a></div><div class="wp-workCard_item"><span>IOP Conference Series: Earth and Environmental Science</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article was submitted without an abstract, please refer to the full-text PDF file.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474667"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474667"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474667; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474667]").text(description); $(".js-view-count[data-work-id=22474667]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474667; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474667']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474667, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474667]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474667,"title":"The global anoxic 'SPICE' event ∼500 Myrs ago. Trace metal depletion observed from Molybdenum stable isotope compositions","translated_title":"","metadata":{"abstract":"This article was submitted without an abstract, please refer to the full-text PDF file.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"IOP Conference Series: Earth and Environmental Science"},"translated_abstract":"This article was submitted without an abstract, please refer to the full-text PDF file.","internal_url":"https://www.academia.edu/22474667/The_global_anoxic_SPICE_event_500_Myrs_ago_Trace_metal_depletion_observed_from_Molybdenum_stable_isotope_compositions","translated_internal_url":"","created_at":"2016-02-26T05:38:42.062-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_global_anoxic_SPICE_event_500_Myrs_ago_Trace_metal_depletion_observed_from_Molybdenum_stable_isotope_compositions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":9095,"name":"Trace Metals","url":"https://www.academia.edu/Documents/in/Trace_Metals"},{"id":91257,"name":"Stable Isotope","url":"https://www.academia.edu/Documents/in/Stable_Isotope"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474666"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474666/The_Late_Cambrian_SPICE_Event_A_Global_Carbon_Cycle_Perturbation"><img alt="Research paper thumbnail of The Late Cambrian SPICE Event: A Global Carbon Cycle Perturbation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474666/The_Late_Cambrian_SPICE_Event_A_Global_Carbon_Cycle_Perturbation">The Late Cambrian SPICE Event: A Global Carbon Cycle Perturbation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Late Cambrian SPICE event is an inorganic carbon isotope excursion that is documented in carb...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Late Cambrian SPICE event is an inorganic carbon isotope excursion that is documented in carbonate rocks around the world. At most localities, the excursion begins near 0 per mil and rises to between + 4 and +5 per mil. These localities include China, Siberia, Kazakhstan, Australia, and North America (Great Basin, US midcontinent, and Applachian regions). There is only</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474666"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474666"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474666; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474666]").text(description); $(".js-view-count[data-work-id=22474666]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474666; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474666']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474666, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474666]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474666,"title":"The Late Cambrian SPICE Event: A Global Carbon Cycle Perturbation","translated_title":"","metadata":{"abstract":"The Late Cambrian SPICE event is an inorganic carbon isotope excursion that is documented in carbonate rocks around the world. At most localities, the excursion begins near 0 per mil and rises to between + 4 and +5 per mil. These localities include China, Siberia, Kazakhstan, Australia, and North America (Great Basin, US midcontinent, and Applachian regions). There is only","publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":"The Late Cambrian SPICE event is an inorganic carbon isotope excursion that is documented in carbonate rocks around the world. At most localities, the excursion begins near 0 per mil and rises to between + 4 and +5 per mil. These localities include China, Siberia, Kazakhstan, Australia, and North America (Great Basin, US midcontinent, and Applachian regions). There is only","internal_url":"https://www.academia.edu/22474666/The_Late_Cambrian_SPICE_Event_A_Global_Carbon_Cycle_Perturbation","translated_internal_url":"","created_at":"2016-02-26T05:38:41.887-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Late_Cambrian_SPICE_Event_A_Global_Carbon_Cycle_Perturbation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":82100,"name":"Global Carbon Cycle","url":"https://www.academia.edu/Documents/in/Global_Carbon_Cycle"},{"id":253469,"name":"North America","url":"https://www.academia.edu/Documents/in/North_America"},{"id":300882,"name":"Carbon Isotope Excursion","url":"https://www.academia.edu/Documents/in/Carbon_Isotope_Excursion"},{"id":444138,"name":"Great Basin","url":"https://www.academia.edu/Documents/in/Great_Basin"},{"id":497452,"name":"Numerical Model","url":"https://www.academia.edu/Documents/in/Numerical_Model"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":970387,"name":"Organic Matter","url":"https://www.academia.edu/Documents/in/Organic_Matter"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474665"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474665/Tracking_Zn_bioavailabilty_through_time_New_insights_from_sulfidic_black_shales"><img alt="Research paper thumbnail of Tracking Zn bioavailabilty through time: New insights from sulfidic black shales" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474665/Tracking_Zn_bioavailabilty_through_time_New_insights_from_sulfidic_black_shales">Tracking Zn bioavailabilty through time: New insights from sulfidic black shales</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Time-varying abundances of trace elements in the oceans have been argued to play a major role in ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Time-varying abundances of trace elements in the oceans have been argued to play a major role in shaping the path of eukaryotic evolution. The dissolved marine concentrations of many bio-essential trace metals are controlled by the redox-state of the ocean-atmosphere system. For example, chalcophillic elements may become bio-limiting on geological timescales under widespread sulfidic conditions. Zn-binding proteins are fundamental to</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474665"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474665"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474665; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474665]").text(description); $(".js-view-count[data-work-id=22474665]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474665; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474665']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474665, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474665]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474665,"title":"Tracking Zn bioavailabilty through time: New insights from sulfidic black shales","translated_title":"","metadata":{"abstract":"Time-varying abundances of trace elements in the oceans have been argued to play a major role in shaping the path of eukaryotic evolution. The dissolved marine concentrations of many bio-essential trace metals are controlled by the redox-state of the ocean-atmosphere system. For example, chalcophillic elements may become bio-limiting on geological timescales under widespread sulfidic conditions. Zn-binding proteins are fundamental to","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"Time-varying abundances of trace elements in the oceans have been argued to play a major role in shaping the path of eukaryotic evolution. The dissolved marine concentrations of many bio-essential trace metals are controlled by the redox-state of the ocean-atmosphere system. For example, chalcophillic elements may become bio-limiting on geological timescales under widespread sulfidic conditions. Zn-binding proteins are fundamental to","internal_url":"https://www.academia.edu/22474665/Tracking_Zn_bioavailabilty_through_time_New_insights_from_sulfidic_black_shales","translated_internal_url":"","created_at":"2016-02-26T05:38:41.725-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tracking_Zn_bioavailabilty_through_time_New_insights_from_sulfidic_black_shales","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":9095,"name":"Trace Metals","url":"https://www.academia.edu/Documents/in/Trace_Metals"},{"id":34117,"name":"Chemical and Biological Engineering","url":"https://www.academia.edu/Documents/in/Chemical_and_Biological_Engineering"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"},{"id":405178,"name":"First Order Logic","url":"https://www.academia.edu/Documents/in/First_Order_Logic"},{"id":709300,"name":"Trace element","url":"https://www.academia.edu/Documents/in/Trace_element"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1480215,"name":"Time varying","url":"https://www.academia.edu/Documents/in/Time_varying"},{"id":1943986,"name":"Black Shale","url":"https://www.academia.edu/Documents/in/Black_Shale"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22474664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22474664/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks"><img alt="Research paper thumbnail of Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22474664/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks">Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22474664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22474664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22474664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22474664]").text(description); $(".js-view-count[data-work-id=22474664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22474664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22474664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22474664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22474664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22474664,"title":"Covarying molybdenum and organic carbon distributions in organic-rich sediments and sedimentary rocks","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/22474664/Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks","translated_internal_url":"","created_at":"2016-02-26T05:38:41.528-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Covarying_molybdenum_and_organic_carbon_distributions_in_organic_rich_sediments_and_sedimentary_rocks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12945790"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12945790/Geochemical_evidence_for_euxinia_during_the_Late_Devonian_extinction_events_in_the_Michigan_Basin_U_S_A_"><img alt="Research paper thumbnail of Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12945790/Geochemical_evidence_for_euxinia_during_the_Late_Devonian_extinction_events_in_the_Michigan_Basin_U_S_A_">Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.)</a></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Several mass extinction events occurred in the Late Devonian, but the trigger for these ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Several mass extinction events occurred in the Late Devonian, but the trigger for these events remains elusive. In this study, geochemical evidence in the Late Devonian Antrim Shale, Michigan Basin, U.S.A., records episodic euxinia contemporaneous with these extinction events. Diagnostic changes in iron proxy data and elevated trace metal enrichments correspond to the Kellwasser Crisis. In this study, carbon, sulfur, iron and trace metal geochemistry preserved in the Antrim Formation validates the establishment and expansion of euxinic conditions associated with the Kellwasser Crisis and the Frasnian–Famennian boundary. The strength of the sequential extraction iron mineral data presented here, in concert with trace metal and sulfur isotope proxies, provides definitive signatures of euxinia when other data may be more ambiguous in regard to paleoredox conditions. During the time of the Frasnian–Famennian boundary extensive sulfide oxidation at the chemocline, the result of Fe-limiting conditions within the basin, provides an alternative explanation for the oceanic decline in δ34SSO4 during, and following, the Frasnian–Famennian event. Our geochemical evidence, indicating the presence of anoxia in the Michigan Basin, is consistent with data from other globally distributed locations. Euxinia should be considered a key driver for these global extinction events, and possibly others such as the Hangenberg Event in the Late Devonian.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12945790"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12945790"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12945790; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12945790]").text(description); $(".js-view-count[data-work-id=12945790]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12945790; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12945790']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 12945790, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=12945790]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12945790,"title":"Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.)","translated_title":"","metadata":{"abstract":"ABSTRACT Several mass extinction events occurred in the Late Devonian, but the trigger for these events remains elusive. In this study, geochemical evidence in the Late Devonian Antrim Shale, Michigan Basin, U.S.A., records episodic euxinia contemporaneous with these extinction events. Diagnostic changes in iron proxy data and elevated trace metal enrichments correspond to the Kellwasser Crisis. In this study, carbon, sulfur, iron and trace metal geochemistry preserved in the Antrim Formation validates the establishment and expansion of euxinic conditions associated with the Kellwasser Crisis and the Frasnian–Famennian boundary. The strength of the sequential extraction iron mineral data presented here, in concert with trace metal and sulfur isotope proxies, provides definitive signatures of euxinia when other data may be more ambiguous in regard to paleoredox conditions. During the time of the Frasnian–Famennian boundary extensive sulfide oxidation at the chemocline, the result of Fe-limiting conditions within the basin, provides an alternative explanation for the oceanic decline in δ34SSO4 during, and following, the Frasnian–Famennian event. Our geochemical evidence, indicating the presence of anoxia in the Michigan Basin, is consistent with data from other globally distributed locations. Euxinia should be considered a key driver for these global extinction events, and possibly others such as the Hangenberg Event in the Late Devonian.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Palaeogeography, Palaeoclimatology, Palaeoecology"},"translated_abstract":"ABSTRACT Several mass extinction events occurred in the Late Devonian, but the trigger for these events remains elusive. In this study, geochemical evidence in the Late Devonian Antrim Shale, Michigan Basin, U.S.A., records episodic euxinia contemporaneous with these extinction events. Diagnostic changes in iron proxy data and elevated trace metal enrichments correspond to the Kellwasser Crisis. In this study, carbon, sulfur, iron and trace metal geochemistry preserved in the Antrim Formation validates the establishment and expansion of euxinic conditions associated with the Kellwasser Crisis and the Frasnian–Famennian boundary. The strength of the sequential extraction iron mineral data presented here, in concert with trace metal and sulfur isotope proxies, provides definitive signatures of euxinia when other data may be more ambiguous in regard to paleoredox conditions. During the time of the Frasnian–Famennian boundary extensive sulfide oxidation at the chemocline, the result of Fe-limiting conditions within the basin, provides an alternative explanation for the oceanic decline in δ34SSO4 during, and following, the Frasnian–Famennian event. Our geochemical evidence, indicating the presence of anoxia in the Michigan Basin, is consistent with data from other globally distributed locations. Euxinia should be considered a key driver for these global extinction events, and possibly others such as the Hangenberg Event in the Late Devonian.","internal_url":"https://www.academia.edu/12945790/Geochemical_evidence_for_euxinia_during_the_Late_Devonian_extinction_events_in_the_Michigan_Basin_U_S_A_","translated_internal_url":"","created_at":"2015-06-12T07:23:57.862-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":894417,"work_id":12945790,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315684,"email":"m***f@ansto.gov.au","display_order":null,"name":"Michael Formolo","title":"Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.)"}],"downloadable_attachments":[],"slug":"Geochemical_evidence_for_euxinia_during_the_Late_Devonian_extinction_events_in_the_Michigan_Basin_U_S_A_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12945789"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12945789/Interactions_between_Ediacaran_animals_and_microbial_mats_Insights_from_Lamonte_trevallis_a_new_trace_fossil_from_the_Dengying_Formation_of_South_China"><img alt="Research paper thumbnail of Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China" class="work-thumbnail" src="https://attachments.academia-assets.com/45832273/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12945789/Interactions_between_Ediacaran_animals_and_microbial_mats_Insights_from_Lamonte_trevallis_a_new_trace_fossil_from_the_Dengying_Formation_of_South_China">Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/XunlaiYuan">Xunlai Yuan</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://callibreil.academia.edu/JamesSchiffbauer">James Schiffbauer</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://vt.academia.edu/BenjaminGill">Benjamin Gill</a></span></div><div class="wp-workCard_item"><span>Palaeogeography, Palaeoclimatology, Palaeoecology</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aea4e63feaa9bb44b66fcfac8c83d61c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45832273,&quot;asset_id&quot;:12945789,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45832273/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12945789"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12945789"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12945789; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12945789]").text(description); $(".js-view-count[data-work-id=12945789]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12945789; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12945789']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 12945789, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aea4e63feaa9bb44b66fcfac8c83d61c" } } $('.js-work-strip[data-work-id=12945789]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12945789,"title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China","translated_title":"","metadata":{"grobid_abstract":"A new ichnogenus and ichnospecies, Lamonte trevallis, is formally described from the Shibantan Member limestone of the upper Ediacaran Dengying Formation, Yangtze Gorges area, South China. It is characterized by horizontal tunnels connected with short vertical burrows and surface trails. The horizontal burrows are elliptical or bilobed in transverse cross-section, preserved in full relief, and filled with carbonate intraclasts, micrites, as well as calcite and silica cements. They occur exclusively in silty, crinkled, and microlaminated layers that are interpreted as amalgamated cyanobacterial microbial mats; no burrows have been found in intraclastic layers adjacent to the microlaminated layers. The vertical traces are filled with the same material as the burrows, but they typically project through the crinkled microlaminae and are exposed on the bedding surface. The surface tracks are always preserved in negative epirelief or positive hyporelief and consist of two parallel series of either sharp scratch marks or small knobs. The burrow infill has δ 18 O carb and δ 13 C carb values distinct from, but intermediate between, microlaminated and intraclastic layers, consistent with petrographic observation that burrow infill consists of a mixture of early carbonate cements, intraclasts, and micrites. Bedding plane bioturbation intensity (20-40%)-measured as percentage of bedding plane area covered by L. trevallis traces-is comparable to similar measurements in pre-trilobite Cambrian carbonates. The exclusive occurrence of L. trevallis within microbial mats may have both taphonomic and ecological significance. These mats may have provided firm substrates and localized geochemical conditions that contributed to the structural integrity of the burrows, and they may have also facilitated early diagenetic cementation of burrow infill, thus facilitating burrow preservation. The close association of these burrows with microbial mats implies that the trace producers actively mined cyanobacterial mats to exploit oxygen or nutrient resources. The trace makers of L. trevallis were better able to utilize the resources around them than many other Ediacaran trace makers and provide an ichnological record of a flourishing benthic ecology in late Ediacaran oceans at the dawn of the agronomic revolution.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Palaeogeography, Palaeoclimatology, Palaeoecology","grobid_abstract_attachment_id":45832273},"translated_abstract":null,"internal_url":"https://www.academia.edu/12945789/Interactions_between_Ediacaran_animals_and_microbial_mats_Insights_from_Lamonte_trevallis_a_new_trace_fossil_from_the_Dengying_Formation_of_South_China","translated_internal_url":"","created_at":"2015-06-12T07:23:57.778-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":894416,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":32947553,"co_author_invite_id":315683,"email":"x***n@nigpas.ac.cn","display_order":-5991862,"name":"Xunlai Yuan","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"},{"id":894366,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":32885923,"co_author_invite_id":315660,"email":"s***j@missouri.edu","affiliation":"University of Missouri","display_order":-3595117,"name":"James Schiffbauer","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"},{"id":894415,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315682,"email":"c***u@nigpas.ac.cn","display_order":-1198372,"name":"Chuanming Zhou","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"},{"id":894414,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315681,"email":"c***u@cags.ac.cn","display_order":1198373,"name":"Zhe Chen","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"},{"id":894413,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":8868576,"co_author_invite_id":null,"email":"x***o@vt.edu","display_order":3595118,"name":"Shuhai Xiao","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"},{"id":894367,"work_id":12945789,"tagging_user_id":32130763,"tagged_user_id":569747,"co_author_invite_id":null,"email":"m***o@gmail.com","affiliation":"Harrisburg University of Science and Technology","display_order":5991863,"name":"Mike Meyer","title":"Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China"}],"downloadable_attachments":[{"id":45832273,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45832273/thumbnails/1.jpg","file_name":"Interactions_between_Ediacaran_animals_a20160521-11194-smhx4p.pdf","download_url":"https://www.academia.edu/attachments/45832273/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interactions_between_Ediacaran_animals_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45832273/Interactions_between_Ediacaran_animals_a20160521-11194-smhx4p-libre.pdf?1463839718=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_between_Ediacaran_animals_a.pdf\u0026Expires=1732464692\u0026Signature=Nzo6Iax1wIo1YE~tyrANU8Aq8qJVqni4uTk9CBHeQIS0zdJQvqjh0NdWU-QSjq10hRc2kjuIQHazNPSfBp0zBZMkzHqUcge70sBQLmu~~pW0DtnybEBI~5RVs5JfHqR1nsFsQw-0d90sJ~Qdm9zrhEXV8rCdy12pSeEqsUPVdqk4jk6Nmu5uaQg0XBwuTTgoMgR5l2-FAjHYndfmdxfNQOcl1ZpjtUyMHF3Qr5440Qy~KhvusAxCG5iwjApLs6qyy625jYWIFM~aPlqyYqkLvhljGUK4HG~TsGgSaEzUcLLi0xfjGzHy96qutNzEBSBDSxJprWb3~uS0SH1D6KGdSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interactions_between_Ediacaran_animals_and_microbial_mats_Insights_from_Lamonte_trevallis_a_new_trace_fossil_from_the_Dengying_Formation_of_South_China","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[{"id":45832273,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45832273/thumbnails/1.jpg","file_name":"Interactions_between_Ediacaran_animals_a20160521-11194-smhx4p.pdf","download_url":"https://www.academia.edu/attachments/45832273/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interactions_between_Ediacaran_animals_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45832273/Interactions_between_Ediacaran_animals_a20160521-11194-smhx4p-libre.pdf?1463839718=\u0026response-content-disposition=attachment%3B+filename%3DInteractions_between_Ediacaran_animals_a.pdf\u0026Expires=1732464692\u0026Signature=Nzo6Iax1wIo1YE~tyrANU8Aq8qJVqni4uTk9CBHeQIS0zdJQvqjh0NdWU-QSjq10hRc2kjuIQHazNPSfBp0zBZMkzHqUcge70sBQLmu~~pW0DtnybEBI~5RVs5JfHqR1nsFsQw-0d90sJ~Qdm9zrhEXV8rCdy12pSeEqsUPVdqk4jk6Nmu5uaQg0XBwuTTgoMgR5l2-FAjHYndfmdxfNQOcl1ZpjtUyMHF3Qr5440Qy~KhvusAxCG5iwjApLs6qyy625jYWIFM~aPlqyYqkLvhljGUK4HG~TsGgSaEzUcLLi0xfjGzHy96qutNzEBSBDSxJprWb3~uS0SH1D6KGdSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":15780,"name":"Taphonomy","url":"https://www.academia.edu/Documents/in/Taphonomy"},{"id":61989,"name":"Ediacaran","url":"https://www.academia.edu/Documents/in/Ediacaran"},{"id":70233,"name":"Trace Fossils","url":"https://www.academia.edu/Documents/in/Trace_Fossils"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12945788"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/12945788/Placing_an_upper_limit_on_cryptic_marine_sulphur_cycling"><img alt="Research paper thumbnail of Placing an upper limit on cryptic marine sulphur cycling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/12945788/Placing_an_upper_limit_on_cryptic_marine_sulphur_cycling">Placing an upper limit on cryptic marine sulphur cycling</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://vt.academia.edu/BenjaminGill">Benjamin Gill</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://harvard.academia.edu/AMasterson">A. Masterson</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DJohnston2">D. Johnston</a></span></div><div class="wp-workCard_item"><span>Nature</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is requi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, &amp;amp;#39;cryptic&amp;amp;#39; sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12945788"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12945788"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12945788; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12945788]").text(description); $(".js-view-count[data-work-id=12945788]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12945788; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12945788']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 12945788, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=12945788]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12945788,"title":"Placing an upper limit on cryptic marine sulphur cycling","translated_title":"","metadata":{"abstract":"A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, \u0026amp;#39;cryptic\u0026amp;#39; sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Nature"},"translated_abstract":"A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, \u0026amp;#39;cryptic\u0026amp;#39; sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.","internal_url":"https://www.academia.edu/12945788/Placing_an_upper_limit_on_cryptic_marine_sulphur_cycling","translated_internal_url":"","created_at":"2015-06-12T07:23:57.685-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":894369,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315662,"email":"a***p@fsu.edu","display_order":null,"name":"Angela Knapp","title":"Placing an upper limit on cryptic marine sulphur cycling"},{"id":894368,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315661,"email":"k***i@whoi.edu","display_order":null,"name":"Karen Casciotti","title":"Placing an upper limit on cryptic marine sulphur cycling"},{"id":894419,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":null,"co_author_invite_id":315686,"email":"e***e@fas.harvard.edu","display_order":null,"name":"E. Beirne","title":"Placing an upper limit on cryptic marine sulphur cycling"},{"id":894418,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":32163574,"co_author_invite_id":315685,"email":"a***s@fas.harvard.edu","affiliation":"Harvard University","display_order":null,"name":"A. Masterson","title":"Placing an upper limit on cryptic marine sulphur cycling"},{"id":894357,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":32165523,"co_author_invite_id":315657,"email":"j***n@eps.harvard.edu","display_order":null,"name":"D. Johnston","title":"Placing an upper limit on cryptic marine sulphur cycling"},{"id":894420,"work_id":12945788,"tagging_user_id":32130763,"tagged_user_id":267547482,"co_author_invite_id":315687,"email":"b***n@usc.edu","display_order":null,"name":"William Berelson","title":"Placing an upper limit on cryptic marine sulphur cycling"}],"downloadable_attachments":[],"slug":"Placing_an_upper_limit_on_cryptic_marine_sulphur_cycling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature"},{"id":63551,"name":"Nitrogen Fixation","url":"https://www.academia.edu/Documents/in/Nitrogen_Fixation"},{"id":151091,"name":"Nitrogen","url":"https://www.academia.edu/Documents/in/Nitrogen"},{"id":184467,"name":"Seawater","url":"https://www.academia.edu/Documents/in/Seawater"},{"id":219724,"name":"Ammonia","url":"https://www.academia.edu/Documents/in/Ammonia"},{"id":230701,"name":"Oxygen Isotopes","url":"https://www.academia.edu/Documents/in/Oxygen_Isotopes"},{"id":285012,"name":"Sulfur","url":"https://www.academia.edu/Documents/in/Sulfur"},{"id":377566,"name":"Aquatic organisms","url":"https://www.academia.edu/Documents/in/Aquatic_organisms"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":1256747,"name":"Oxidation-Reduction","url":"https://www.academia.edu/Documents/in/Oxidation-Reduction"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="12945787"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/12945787/Scarcity_of_the_C_30_sterane_biomarker_24_n_propylcholestane_in_Lower_Paleozoic_marine_paleoenvironments"><img alt="Research paper thumbnail of Scarcity of the C 30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments" class="work-thumbnail" src="https://attachments.academia-assets.com/45832116/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/12945787/Scarcity_of_the_C_30_sterane_biomarker_24_n_propylcholestane_in_Lower_Paleozoic_marine_paleoenvironments">Scarcity of the C 30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://vt.academia.edu/BenjaminGill">Benjamin Gill</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://ucriverside.academia.edu/GordonLove">Gordon Love</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/MRohrssen">M. Rohrssen</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0f8dee9b71a77a6d0b8dfcf6030e3e95" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:45832116,&quot;asset_id&quot;:12945787,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/45832116/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="12945787"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="12945787"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12945787; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12945787]").text(description); $(".js-view-count[data-work-id=12945787]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12945787; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='12945787']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 12945787, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0f8dee9b71a77a6d0b8dfcf6030e3e95" } } $('.js-work-strip[data-work-id=12945787]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":12945787,"title":"Scarcity of the C 30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments","translated_title":"","metadata":{"grobid_abstract":"a b s t r a c t 24-n-Propylcholestane (24-npc), a C 30 sterane compound derived from sterol precursors which are the major sterol constituents of modern pelagophyte microalgae, occurs in certain Neoproterozoic rocks and oils and throughout the Phanerozoic rock record. This broad distribution leads 24-npc to be widely considered a reliable indicator of open to partially restricted marine depositional conditions for source rocks and oils. Here we report two significant hiatuses in the occurrences of 24-npc in the Lower Paleozoic marine rock record: the first in the Middle-Late Cambrian and the second in the Late Ordovicianearly Silurian transition for a range of lithofacies (carbonates and siliciclastic rocks), organic carbon contents (both organic-lean and organic-rich), and paleoceanographic environments (shelf and deeper water marine settings) and observed offshore of two paleocontinents, Laurentia and Baltica. The Ordovician-Silurian gap is at least 9 million years, and possibly up to 20 million years, in duration. Robust older occurrences of 24-npc steranes in some Neoproterozoic rocks and oils suggest that oceanographic conditions in our intervals of Lower Paleozoic time were unfavorable for the proliferation of pelagophyte algae as phytoplankton. Caution should therefore be applied when interpreting a lacustrine versus marine depositional environmental setting for source rocks and oils in these intervals of Early Paleozoic time using lipid biomarker assemblages.","grobid_abstract_attachment_id":45832116},"translated_abstract":null,"internal_url":"https://www.academia.edu/12945787/Scarcity_of_the_C_30_sterane_biomarker_24_n_propylcholestane_in_Lower_Paleozoic_marine_paleoenvironments","translated_internal_url":"","created_at":"2015-06-12T07:23:57.583-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32130763,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":894424,"work_id":12945787,"tagging_user_id":32130763,"tagged_user_id":32185950,"co_author_invite_id":315690,"email":"m***1@ucr.edu","display_order":null,"name":"M. Rohrssen","title":"Scarcity of the C 30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments"},{"id":894412,"work_id":12945787,"tagging_user_id":32130763,"tagged_user_id":32163474,"co_author_invite_id":73696,"email":"g***e@ucr.edu","affiliation":"University of California, Riverside","display_order":null,"name":"Gordon Love","title":"Scarcity of the C 30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments"}],"downloadable_attachments":[{"id":45832116,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45832116/thumbnails/1.jpg","file_name":"Scarcity_of_the_C30_sterane_biomarker_2420160521-18796-1dor8nd.pdf","download_url":"https://www.academia.edu/attachments/45832116/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scarcity_of_the_C_30_sterane_biomarker_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45832116/Scarcity_of_the_C30_sterane_biomarker_2420160521-18796-1dor8nd-libre.pdf?1463839722=\u0026response-content-disposition=attachment%3B+filename%3DScarcity_of_the_C_30_sterane_biomarker_2.pdf\u0026Expires=1732464693\u0026Signature=FbsFV2O03~V3PGv3cGG2bA7TAKPI1qrvsGThUIJ7Y-fUJg-kfiuRxOlqVIbOiDproOW7sQnow3AZUNLloG6QCImlWKqTlhj9xclOyjWBlfymLKCh0pdItfq5xdZT030X-iihXSYCXYqOPVFYl1Vv9zCv99PsmE6IEUv5K42yhUtpfluKldw3MyUcC0MDg-6aE7LVgKNS1jEdd-eC5ABpeSpeomRC6y7AFVdJeu-FdwQeOyjYlJvRPqb9gDaPrU0PMM32mk39bBmvl2a8E00N1QuCCgzgqgNtjrOlglRToy66DJx-fLs9beMozqDqLPmr6Cc9TmWsTntmjSguSJsdrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Scarcity_of_the_C_30_sterane_biomarker_24_n_propylcholestane_in_Lower_Paleozoic_marine_paleoenvironments","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":32130763,"first_name":"Benjamin","middle_initials":null,"last_name":"Gill","page_name":"BenjaminGill","domain_name":"vt","created_at":"2015-06-12T07:23:39.224-07:00","display_name":"Benjamin Gill","url":"https://vt.academia.edu/BenjaminGill"},"attachments":[{"id":45832116,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45832116/thumbnails/1.jpg","file_name":"Scarcity_of_the_C30_sterane_biomarker_2420160521-18796-1dor8nd.pdf","download_url":"https://www.academia.edu/attachments/45832116/download_file?st=MTczMjQ4OTYwMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scarcity_of_the_C_30_sterane_biomarker_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45832116/Scarcity_of_the_C30_sterane_biomarker_2420160521-18796-1dor8nd-libre.pdf?1463839722=\u0026response-content-disposition=attachment%3B+filename%3DScarcity_of_the_C_30_sterane_biomarker_2.pdf\u0026Expires=1732464693\u0026Signature=FbsFV2O03~V3PGv3cGG2bA7TAKPI1qrvsGThUIJ7Y-fUJg-kfiuRxOlqVIbOiDproOW7sQnow3AZUNLloG6QCImlWKqTlhj9xclOyjWBlfymLKCh0pdItfq5xdZT030X-iihXSYCXYqOPVFYl1Vv9zCv99PsmE6IEUv5K42yhUtpfluKldw3MyUcC0MDg-6aE7LVgKNS1jEdd-eC5ABpeSpeomRC6y7AFVdJeu-FdwQeOyjYlJvRPqb9gDaPrU0PMM32mk39bBmvl2a8E00N1QuCCgzgqgNtjrOlglRToy66DJx-fLs9beMozqDqLPmr6Cc9TmWsTntmjSguSJsdrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":4580,"name":"Organic Geochemistry","url":"https://www.academia.edu/Documents/in/Organic_Geochemistry"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":171492,"name":"Paleozoic","url":"https://www.academia.edu/Documents/in/Paleozoic"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "80c8a17f92b1b863981e4404a3703951701f4acfddc32d37a729d593ec55111c", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="C/32HqOVtyA24oVj1inyippkiOda/3XSqnUMDHoVkZcUeOaQtBRX1yC8YM8k2RAPvah9Brcy8R5rclCnx5CRRg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://vt.academia.edu/BenjaminGill" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="hu42KJFRk99NyBUWqGo+qyHajIjMS3M/2MykhKt3tGqZayamhtBzKFuW8LpamtwuBhZ5aSGG9/MZy/gvFvK0uw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10