CINXE.COM
Search results for: epinephrine
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: epinephrine</title> <meta name="description" content="Search results for: epinephrine"> <meta name="keywords" content="epinephrine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="epinephrine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="epinephrine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: epinephrine</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Alternative Epinephrine Injector to Combat Allergy Induced Anaphylaxis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Bost">Jeremy Bost</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Brett"> Matthew Brett</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Flynn"> Jacob Flynn</a>, <a href="https://publications.waset.org/abstracts/search?q=Weihui%20Li"> Weihui Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One response during anaphylaxis is reduced blood pressure due to blood vessels relaxing and dilating. Epinephrine causes the blood vessels to constrict, which raises blood pressure to counteract the symptoms. When going through an allergic reaction, an Epinephrine injector is used to administer a shot of epinephrine intramuscularly. Epinephrine injectors have become an integral part of day-to-day life for people with allergies. Current Epinephrine injectors (EpiPen) are completely mechanical and have no sensors to monitor the vital signs of patients or give suggestions the optimal time for the shot. The EpiPens are also large and inconvenient to carry daily. The current price of an EpiPen is roughly 600$ for a pack of two. This makes carrying an EpiPen very expensive, especially when they need to be switched out when the epinephrine expires. This new design is in the form of a bracelet, which has the ability to inject epinephrine. The bracelet will be equipped with vital signs monitors that can aid the patient to sense the allergic reaction. The vital signs that would be of interest are blood pressure, heart rate and Electrodermal activity (EDA). The heart rate of the patient will be tracked by a photoplethysmograph (PPG) that is incorporated into the sensors. The heart rate is expected to increase during anaphylaxis. Blood pressure will be monitored through a radar sensor, which monitors the phase changes in electromagnetic waves as they reflect off of the blood vessel. EDA is under autonomic control. Allergen-induced anaphylaxis is caused by a release of chemical mediators from mast cells and basophils, thus changes the autonomic activity of the patient. So by measuring EDA, it will give the wearer an alert on how their autonomic nervous system is reacting. After the vital signs are collected, they will be sent to an application on a smartphone to be analyzed, which can then alert an emergency contact if the epinephrine injector on the bracelet is activated. Overall, this design creates a safer system by aiding the user in keeping track of their epinephrine injector, while making it easier to track their vital signs. Also, our design will be more affordable and more convenient to replace. Rather than replacing the entire product, only the needle and drug will be switched out and not the entire design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allergy" title="allergy">allergy</a>, <a href="https://publications.waset.org/abstracts/search?q=anaphylaxis" title=" anaphylaxis"> anaphylaxis</a>, <a href="https://publications.waset.org/abstracts/search?q=epinephrine" title=" epinephrine"> epinephrine</a>, <a href="https://publications.waset.org/abstracts/search?q=injector" title=" injector"> injector</a>, <a href="https://publications.waset.org/abstracts/search?q=vital%20signs%20monitor" title=" vital signs monitor"> vital signs monitor</a> </p> <a href="https://publications.waset.org/abstracts/69247/alternative-epinephrine-injector-to-combat-allergy-induced-anaphylaxis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Detection of Epinephrine in Chicken Serum at Iron Oxide Screen Print Modified Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwole%20Opeyemi%20Dina">Oluwole Opeyemi Dina</a>, <a href="https://publications.waset.org/abstracts/search?q=Saheed%20E.%20Elugoke"> Saheed E. Elugoke</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Olutope%20Fayemi"> Peter Olutope Fayemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Omolola%20E.%20Fayemi"> Omolola E. Fayemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the detection of epinephrine (EP) at Fe₃O₄ modified screen printed silver electrode (SPSE). The iron oxide (Fe₃O₄) nanoparticles were characterized with UV-visible spectroscopy, Fourier-Transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) prior to the modification of the SPSE. The EP oxidation peak current (Iap) increased with an increase in the concentration of EP as well as the scan rate (from 25 - 400 mVs⁻¹). Using cyclic voltammetry (CV), the relationship between Iap and EP concentration was linear over a range of 3.8 -118.9 µM and 118.9-175 µM with a detection limit of 41.99 µM and 83.16 µM, respectively. Selective detection of EP in the presence of ascorbic acid was also achieved at this electrode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=screenprint%20electrode" title="screenprint electrode">screenprint electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticle" title=" iron oxide nanoparticle"> iron oxide nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=epinephrine" title=" epinephrine"> epinephrine</a>, <a href="https://publications.waset.org/abstracts/search?q=serum" title=" serum"> serum</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltametry" title=" cyclic voltametry"> cyclic voltametry</a> </p> <a href="https://publications.waset.org/abstracts/144358/detection-of-epinephrine-in-chicken-serum-at-iron-oxide-screen-print-modified-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Effects of Acute Exposure to WIFI Signals (2,45 GHz) on Heart Variability and Blood Pressure in Albinos Rabbit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linda%20Saili">Linda Saili</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Hanini"> Amel Hanini</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiraz%20Smirani"> Chiraz Smirani</a>, <a href="https://publications.waset.org/abstracts/search?q=Iness%20Azzouz"> Iness Azzouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Azzouz"> Amina Azzouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafedh%20Abdemelek"> Hafedh Abdemelek</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihad%20Bouslama"> Zihad Bouslama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocardiogram and arterial pressure measurements were studied under acute exposures to WIFI (2.45 GHz) during one hour in adult male rabbits. Antennas of WIFI were placed at 25 cm at the right side near the heart. Acute exposure of rabbits to WIFI increased heart frequency (+ 22%) and arterial blood pressure (+14%). Moreover, analysis of ECG revealed that WIFI induced a combined increase of PR and QT intervals. By contrast, the same exposure failed to alter the maximum amplitude and P waves. After intravenously injection of dopamine (0.50 ml/kg) and epinephrine (0.50ml/kg) under acute exposure to RF we found that WIFI alter catecholamines(dopamine, epinephrine) action on heart variability and blood pressure compared to control. These results suggest for the first time, as far as we know, that exposure to WIFI affect heart rhythm, blood pressure, and catecholamines efficacy on cardiovascular system; indicating that radio frequency can act directly and/or indirectly on the cardiovascular system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20%28HR%29" title="heart rate (HR)">heart rate (HR)</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20pressure%20%28PA%29" title=" arterial pressure (PA)"> arterial pressure (PA)</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram%20%28ECG%29" title=" electrocardiogram (ECG)"> electrocardiogram (ECG)</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20efficacy%20of%0D%0Acatecholamines" title=" the efficacy of catecholamines"> the efficacy of catecholamines</a>, <a href="https://publications.waset.org/abstracts/search?q=dopamine" title=" dopamine"> dopamine</a>, <a href="https://publications.waset.org/abstracts/search?q=epinephrine" title=" epinephrine"> epinephrine</a> </p> <a href="https://publications.waset.org/abstracts/40803/effects-of-acute-exposure-to-wifi-signals-245-ghz-on-heart-variability-and-blood-pressure-in-albinos-rabbit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Effects of Epinephrine on Gene Expressions during the Metamorphosis of Pacific Oyster Crassostrea gigas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fei%20Xu">Fei Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guofan%20Zhang"> Guofan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Liu"> Xiao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many major marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic adults via settlement and metamorphosis, which has many advantages for organisms to adapt marine environment. Studying the biological process of metamorphosis is thus a key to understand the origin and evolution of indirect development. Although the mechanism of metamorphosis has been largely studied on their relationships with the marine environment, microorganisms, as well as the neurohormones, little is known on the gene regulation network (GRN) during metamorphosis. We treated competent oyster pediveligers with epinephrine, which was known to be able to effectively induce oyster metamorphosis, and analyzed the dynamics of gene and proteins with transcriptomics and proteomics methods. The result indicated significant upregulation of protein synthesis system, as well as some transcription factors including Homeobox, basic helix-loop-helix, and nuclear receptors. The result suggested the GRN complexity of the transition stage during oyster metamorphosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indirect%20development" title="indirect development">indirect development</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20regulation%20network" title=" gene regulation network"> gene regulation network</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20synthesis" title=" protein synthesis"> protein synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factors" title=" transcription factors"> transcription factors</a> </p> <a href="https://publications.waset.org/abstracts/104901/effects-of-epinephrine-on-gene-expressions-during-the-metamorphosis-of-pacific-oyster-crassostrea-gigas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Capnography in Hypoxic Pseudo-Pea May Correlate to the Amount of Required Intervention for Resuscitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiyuan%20David%20%20Hu">Yiyuan David Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Lindqwister"> Alex Lindqwister</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20B.%20%20Klein"> Samuel B. Klein</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Moodie"> Karen Moodie</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20A.%20%20Paradis"> Norman A. Paradis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) has been studied in ventricular fibrillation and true PEA but in p-PEA. We utilized an hypoxic porcine model to characterize the performance of ET-CO2 in resuscitation from p-PEA. Hypothesis: Capnography correlates to the number of required interventions for resuscitation from p-PEA. Methods: Female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic aortic (Ao) pressure less than 40 mmHg. Pigs were grouped based on the interventions required to achieve ROSC: 100%O2, 100%O2 + CPR, 100%O2 + CPR + epinephrine. Results: End tidal CO2 reliably predicted O2 therapy vs CPR-based interventions needed for resuscitation (Figure 1). Pigs who would recover with 100%O2 only had a mean ET-CO2 slope of 0.039 ± 0.013 [ R2 = 0.68], those requiring oxygen + CPR had a slope of -0.15 ± 0.016 [R2 = 0.95], and those requiring oxygen + CPR + epinephrine had a slope of -0.12 ± 0.031 [R2 = 0.79]. Conclusions: In a porcine model of hypoxic p-PEA, measured ET-CO2 appears to be strongly correlated with the required interventions needed for ROSC. If confirmed clinically, these results indicate that ET-CO2 may be useful in guiding therapy in patients suffering p-PEA cardiac arrest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudo-PEA" title="pseudo-PEA">pseudo-PEA</a>, <a href="https://publications.waset.org/abstracts/search?q=resuscitation" title=" resuscitation"> resuscitation</a>, <a href="https://publications.waset.org/abstracts/search?q=capnography" title=" capnography"> capnography</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoxic%20pseudo-PEA" title=" hypoxic pseudo-PEA"> hypoxic pseudo-PEA</a> </p> <a href="https://publications.waset.org/abstracts/134315/capnography-in-hypoxic-pseudo-pea-may-correlate-to-the-amount-of-required-intervention-for-resuscitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> The Evaluation of Superiority of Foot Local Anesthesia Method in Dairy Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Yavari">Samaneh Yavari</a>, <a href="https://publications.waset.org/abstracts/search?q=Christiane%20Pferrer"> Christiane Pferrer</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabeth%20Engelke"> Elisabeth Engelke</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Starke"> Alexander Starke</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Rehage"> Juergen Rehage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Nowadays, bovine limb interventions, especially any claw surgeries, raises selection of the most qualified and appropriate local anesthesia technique applicable for any superficial or deep interventions of the limbs. Currently, two local anesthesia methods of Intravenous Regional Anesthesia (IVRA), as well as Nerve Blocks, have been routine to apply. However, the lack of studies investigating the quality and duration as well as quantity and onset of full (complete) local anesthesia, is noticeable. Therefore, the aim of our study was comparing the onset and quality of both IVRA and our modified NBA at the hind limb of dairy cows. For this abstract, only the onset of full local anesthesia would be consider. Materials and Methods: For that reason, we used six healthy non pregnant non lactating Holestein Frisian cows in a cross-over study design. Those cows divided into two groups to receive IVRA and our modified four-point NBA. For IVRA, 20 ml procaine without epinephrine was injected into the vein digitalis dorsalis communis III and for our modified four-point NBA, 10-15 ml procaine without epinephrine preneurally to the nerves, superficial and deep peroneal as well as lateral and medial branches of metatarsal nerves. For pain stimulation, electrical stimulator Grass S48 was applied. Results: The results of electrical stimuli revealed the faster onset of full local anesthesia (p < 0.05) by application of our modified NBA in comparison to IVRA about 10 minutes. Conclusion and discussion: Despite of available references showing faster onset of foot local anesthesia of IVRA, our study demonstrated that our modified four point NBA not only can be well known as a standard foot local anesthesia method applicable to desensitize the hind limb of dairy cows, but also, selection of this modified validated local anesthesia method can lead to have a faster start of complete desensitization of distal hind limb that is remarkable in any bovine limb interventions under time constraint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IVRA" title="IVRA">IVRA</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20point%20NBA" title=" four point NBA"> four point NBA</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cow" title=" dairy cow"> dairy cow</a>, <a href="https://publications.waset.org/abstracts/search?q=hind%20limb" title=" hind limb"> hind limb</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20onset" title=" full onset"> full onset</a> </p> <a href="https://publications.waset.org/abstracts/88288/the-evaluation-of-superiority-of-foot-local-anesthesia-method-in-dairy-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Medical Workforce Knowledge of Adrenaline (Epinephrine) Administration in Anaphylaxis in Adults Considerably Improved with Training in an UK Hospital from 2010 to 2017</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20C.%20Droste">Jan C. Droste</a>, <a href="https://publications.waset.org/abstracts/search?q=Justine%20Burns"> Justine Burns</a>, <a href="https://publications.waset.org/abstracts/search?q=Nithin%20Narayan"> Nithin Narayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Life-threatening detrimental effects of inappropriate adrenaline (epinephrine) administration, e.g., by giving the wrong dose, in the context of anaphylaxis management is well documented in the medical literature. Half of the fatal anaphylactic reactions in the UK are iatrogenic, and the median time to a cardio-respiratory arrest can be as short as 5 minutes. It is therefore imperative that hospital doctors of all grades have active and accurate knowledge of the correct route, site, and dosage of administration of adrenaline. Given this time constraint and the potential fatal outcome with inappropriate management of anaphylaxis, it is alarming that surveys over the last 15 years have repeatedly shown only a minority of doctors to have accurate knowledge of adrenaline administration as recommended by the UK Resuscitation Council guidelines (2008 updated 2012). This comparison of survey results of the medical workforce over several years in a small NHS District General Hospital was conducted in order to establish the effect of the employment of multiple educational methods regarding adrenaline administration in anaphylaxis in adults. Methods: Between 2010 and 2017, several education methods and tools were used to repeatedly inform the medical workforce (doctors and advanced clinical practitioners) in a single district general hospital regarding the treatment of anaphylaxis in adults. Whilst the senior staff remained largely the same cohort, junior staff had changed fully in every survey. Examples included: (i) Formal teaching -in Grand Rounds; during the junior doctors’ induction process; advanced life support courses (ii) In-situ simulation training performed by the clinical skills simulation team –several ad hoc sessions and one 3-day event in 2017 visiting 16 separate clinical areas performing an acute anaphylaxis scenario using actors- around 100 individuals from multi-disciplinary teams were involved (iii) Hospital-wide distribution of the simulation event via the Trust’s Simulation Newsletter (iv) Laminated algorithms were attached to the 'crash trolleys' (v) A short email 'alert' was sent to all medical staff 3 weeks prior to the survey detailing the emergency treatment of anaphylaxis (vi) In addition, the performance of the surveys themselves represented a teaching opportunity when gaps in knowledge could be addressed. Face to face surveys were carried out in 2010 ('pre-intervention), 2015, and 2017, in the latter two occasions including advanced clinical practitioners (ACP). All surveys consisted of convenience samples. If verbal consent to conduct the survey was obtained, the medical practitioners' answers were recorded immediately on a data collection sheet. Results: There was a sustained improvement in the knowledge of the medical workforce from 2010 to 2017: Answers improved regarding correct drug by 11% (84%, 95%, and 95%); the correct route by 20% (76%, 90%, and 96%); correct site by 40% (43%, 83%, and 83%) and the correct dose by 45% (27%, 54%, and 72%). Overall, knowledge of all components -correct drug, route, site, and dose-improved from 13% in 2010 to 62% in 2017. Conclusion: This survey comparison shows knowledge of the medical workforce regarding adrenaline administration for treatment of anaphylaxis in adults can be considerably improved by employing a variety of educational methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adrenaline" title="adrenaline">adrenaline</a>, <a href="https://publications.waset.org/abstracts/search?q=anaphylaxis" title=" anaphylaxis"> anaphylaxis</a>, <a href="https://publications.waset.org/abstracts/search?q=epinephrine" title=" epinephrine"> epinephrine</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20education" title=" medical education"> medical education</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title=" patient safety"> patient safety</a> </p> <a href="https://publications.waset.org/abstracts/135717/medical-workforce-knowledge-of-adrenaline-epinephrine-administration-in-anaphylaxis-in-adults-considerably-improved-with-training-in-an-uk-hospital-from-2010-to-2017" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Neuropharmacological and Neurochemical Evaluation of Methanolic Extract of Elaeocarpus sphaericus (Gaertn.) Stem Bark by Using Multiple Behaviour Models of Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaspreet%20Kaur">Jaspreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Parminder%20Nain"> Parminder Nain</a>, <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Saini"> Vipin Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumitra%20Dahiya"> Sumitra Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elaeocarpus sphaericus has been traditionally used in the Indian traditional medicine system for the treatment of stress, anxiety, depression, palpitation, epilepsy, migraine and lack of concentration. The study was investigated to evaluate the neurological potential such as anxiolytic, muscle relaxant and sedative activity of methanolic extract of Elaeocarpus sphaericus stem bark (MEESSB) in mice. Preliminary phytochemical screening and acute oral toxicity of MEESSB was carried out by using standard methods. The anxiety was induced by employing Elevated Plus-Maze (EPM), Light and Dark Test (LDT), Open Field Test (OFT) and Social Interaction test (SIT). The motor coordination and sedative effect was also observed by using actophotometer, rota-rod apparatus and ketamine-induced sleeping time, respectively. Animals were treated with different doses of MEESSB (i.e.100, 200, 400 and 800 mg/kg orally) and diazepam (2 mg/kg i.p) for 21 days. Brain neurotransmitters like dopamine, serotonin and nor-epinephrine level were estimated by validated methods. Preliminary phytochemical analysis of the extract revealed the presence of tannins, phytosterols, steroids and alkaloids. In the acute toxicity studies, MEESSB was found to be non-toxic and with no mortality. In anxiolytic studies, the different doses of MEESSB showed a significant (p<0.05) effect on EPM and LDT. In OFT and SIT, a significant (p<0.05) increase in ambulation, rearing and social interaction time was observed. In the case of motor coordination activity, the MEESSB does not cause any significant effect on the latency to fall off from the rotarod bar as compared to the control group. Moreover, no significant effects on ketamine-induced sleep latency and total sleeping time induced by ketamine were observed. Results of neurotransmitter estimation revealed the increased concentration of dopamine, whereas the level of serotonin and nor-epinephrine was found to be decreased in the mice brain, with MEESSB at dose 800 mg/kg only. The study has validated the folkloric use of the plant as an anxiolytic in Indian traditional medicine while also suggesting potential usefulness in the treatment of stress and anxiety without causing sedation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiolytic" title="anxiolytic">anxiolytic</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior%20experiments" title=" behavior experiments"> behavior experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20neurotransmitters" title=" brain neurotransmitters"> brain neurotransmitters</a>, <a href="https://publications.waset.org/abstracts/search?q=elaeocarpus%20sphaericus" title=" elaeocarpus sphaericus"> elaeocarpus sphaericus</a> </p> <a href="https://publications.waset.org/abstracts/140887/neuropharmacological-and-neurochemical-evaluation-of-methanolic-extract-of-elaeocarpus-sphaericus-gaertn-stem-bark-by-using-multiple-behaviour-models-of-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Capnography for Detection of Return of Spontaneous Circulation Pseudo-Pea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiyuan%20David%20Hu">Yiyuan David Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Lindqwister"> Alex Lindqwister</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20B.%20Klein"> Samuel B. Klein</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Moodie"> Karen Moodie</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20A.%20%20Paradis"> Norman A. Paradis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) is a reliable indicator of the return of spontaneous circulation (ROSC) in ventricular fibrillation and true-PEA but has not been studied p-PEA. Hypothesis: ET-CO2 can be used as an independent indicator of ROSC in p-PEA resuscitation. Methods: 30kg female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic Ao less than 40 mmHg. The statistical relationships between ET-CO2 and ROSC are reported. Results: ET-CO2 during resuscitation strongly correlated with ROSC (Figure 1). Mean ET-CO2 during p-PEA was 28.4 ± 8.4, while mean ET-CO2 in ROSC for 100% O2 cohort was 42.2 ± 12.6 (p < 0.0001), mean ET-CO2 in ROSC for 100% O2 + CPR was 33.0 ± 15.4 (p < 0.0001). Analysis of slope was limited to one minute of resuscitation data to capture local linearity; assessment began 10 seconds after resuscitation started to allow the ventilator to mix 100% O2. Pigs who would recover with 100% O2 had a slope of 0.023 ± 0.001, oxygen + CPR had a slope of 0.018 ± 0.002, and oxygen + CPR + epinephrine had a slope of 0.0050 ± 0.0009. Conclusions: During resuscitation from porcine hypoxic p-PEA, a rise in ET-CO2 is indicative of ROSC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ET-CO2" title="ET-CO2">ET-CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=resuscitation" title=" resuscitation"> resuscitation</a>, <a href="https://publications.waset.org/abstracts/search?q=capnography" title=" capnography"> capnography</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-PEA" title=" pseudo-PEA"> pseudo-PEA</a> </p> <a href="https://publications.waset.org/abstracts/134316/capnography-for-detection-of-return-of-spontaneous-circulation-pseudo-pea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sipu%20Guo">Sipu Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Silin%20Huang"> Silin Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allostatic%20load" title="allostatic load">allostatic load</a>, <a href="https://publications.waset.org/abstracts/search?q=executive%20function" title=" executive function"> executive function</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20analysis" title=" network analysis"> network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20adolescent" title=" rural adolescent"> rural adolescent</a> </p> <a href="https://publications.waset.org/abstracts/185201/allostatic-load-as-a-predictor-of-adolescents-executive-function-a-longitudinal-network-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Cabaj">Joanna Cabaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylwia%20Baluta"> Sylwia Baluta</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20Malecha"> Karol Malecha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamila%20Drzozga"> Kamila Drzozga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=FRET" title=" FRET"> FRET</a>, <a href="https://publications.waset.org/abstracts/search?q=LTCC" title=" LTCC"> LTCC</a> </p> <a href="https://publications.waset.org/abstracts/80992/the-strategy-for-detection-of-catecholamines-in-body-fluids-optical-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Effect of Nigella sativa on Blood Pressure, Vascular Reactivity, Inflammatory Biomarkers and Nitric Oxide in L-Name-Induced Hypertensive Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamsiah%20Jaarin">Kamsiah Jaarin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusof%20Kamisah"> Yusof Kamisah</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizah%20Othman%20Nurul%20Akmal%20Muhammad"> Faizah Othman Nurul Akmal Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakiah%20Jubri"> Zakiah Jubri</a>, <a href="https://publications.waset.org/abstracts/search?q=Qodriyah%20Mohd%20Saad"> Qodriyah Mohd Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Srijit%20Das"> Srijit Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forty (40) normotensive adult male Sprague-Dawley rats aged three months weighing 180-200 g were divided into 4 groups with 10 rats per group: (1) normotensive control; (2) hypertensive rats; (3) hypertensive rats treated with Nigella sativa (2.5 ml/kg/day); and (4) hypertensive rats treated with nicardipine (5 mg/kg/day). After acclimatization, the hypertensive rats of the group 2, 3 and 4 were induced to be hypertensive by giving NW–nitro-L-arginine methyl ester (L-NAME; 30 mg/kg/day) in their drinking water for consecutive 7 days. After one week, rats in the group 3 were given a daily oral dose of 2.5 ml/kg/day of Nigella sativa (NS) by oral gavage. Rats in the group 4 were given nicardipine (5 mg/kg/day) via oral gavages. All rats in this study received L-NAME continuously throughout the treatment duration. The blood pressure will be measured pre-treatment and weekly for 8 weeks using power lab. Blood was taken before and at the end of study for measurement of nitric oxide. At the end of 8 weeks, the rats are sacrificed and descending thoracic aorta was disserted for measurement of vascular reactivity, and intracellular adhesion molecules (ICAM-1) and vascular cell adhesion molecules (VCAM-1). Nigella sativa reduced both systolic and diastolic BP compared to control and L-name group. The BP lowering effect of NS was comparable to nicardipine a calcium antagonist. The blood pressure lowering effect of NS was accompanied with an increasing relaxation response to nitroprusside and acetylcholine and reducing vasoconstriction response to epinephrine. L-NAME and nicardipine on the other hand, reduced plasma nitric oxide concentration. In contrast, NS increased NO concentration. However, Nigella sativa had no significant effect on aortic VCAM- 1 and ICAM-1 expression. In conclusion; Nigella sativa oil reduces both systolic and diastolic blood pressure in L-NAME treated rats. The antihypertensive effect of NS was comparable to nicardipine. The BP lowering effect may be mediated via stimulating nitric oxide release from vascular endothelium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title="Nigella sativa">Nigella sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=ICAM" title=" ICAM"> ICAM</a>, <a href="https://publications.waset.org/abstracts/search?q=VCAM" title=" VCAM"> VCAM</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title=" blood pressure"> blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20reactivity" title=" vascular reactivity"> vascular reactivity</a> </p> <a href="https://publications.waset.org/abstracts/8889/effect-of-nigella-sativa-on-blood-pressure-vascular-reactivity-inflammatory-biomarkers-and-nitric-oxide-in-l-name-induced-hypertensive-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Therapeutic Efficacy of Clompanus Pubescens Leaves Fractions via Downregulation of Neuronal Cholinesterases/NA⁺-K⁺ ATPase/IL-1 β and Improving the Neurocognitive and Antioxidants Status of Streptozotocin-Induced Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amos%20Sunday%20Onikanni">Amos Sunday Onikanni</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Lawal"> Bashir Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Babatunji%20Emmanuel%20Oyinloye"> Babatunji Emmanuel Oyinloye</a>, <a href="https://publications.waset.org/abstracts/search?q=Gomaa%20Mostafa-Hedeab"> Gomaa Mostafa-Hedeab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alorabi"> Mohammed Alorabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Cavalu"> Simona Cavalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustine%20O.%20Olusola"> Augustine O. Olusola</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Hao%20Wang"> Chih-Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaber%20El-Saber%20Batiha"> Gaber El-Saber Batiha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing global burden of diabetes mellitus has called for the search for a therapeutic alternative that offers better activities and safety than conventional chemotherapy. Herein, we evaluated the neuroprotective and antioxidant properties of different fractions (ethyl acetate, N-butanol and residual aqueous) of Clompanus pubescens leaves in streptozotocin (STZ)-induced diabetic rats. Our results revealed a significant elevation in the levels of blood glucose, pro-inflammatory cytokines, lipid peroxidation, neuronal activities of acetylcholinesterase, butyrylcholinesterase, nitric oxide, epinephrine, norepinephrine, and Na+/K+-ATPase in diabetic non treated rats. In addition, decreased levels of enzymatic and non-enzymatic antioxidants were observed. Treatment with different fractions of C. pubescens leaves resulted in a significant reversal of the biochemical alteration and improved the neurocognitive deficit in STZ-induced diabetic rats. However, the ethyl-acetate fraction demonstrated higher activities than the other fractions and was characterized for its phytoconstituents, revealing the presence of Gallic acid (713.00 ppm), catechin (0.91 ppm), ferulic acid (0.98 ppm), rutin (59.82 ppm), quercetin (3.22 ppm) and kaempferol (4.07 ppm). Our molecular docking analysis revealed that these compounds exhibited different binding affinities and potentials for targeting BChE/AChE/ IL-1 β/Na+-K+-ATPase. However, only Kampferol and ferulic exhibited good drug-like, ADMET, and permeability properties suitable for use as a neuronal drug target agent. Hence, the ethyl-acetate fraction of C. pubescent leaves could be considered a source of promising bioactive metabolite for the treatment and management of cognitive impairments related to type II diabetes mellitus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title="diabetes mellitus">diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprotective" title=" neuroprotective"> neuroprotective</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=pro-inflammatory%20cytokines" title=" pro-inflammatory cytokines"> pro-inflammatory cytokines</a> </p> <a href="https://publications.waset.org/abstracts/148959/therapeutic-efficacy-of-clompanus-pubescens-leaves-fractions-via-downregulation-of-neuronal-cholinesterasesna-k-atpaseil-1-v-and-improving-the-neurocognitive-and-antioxidants-status-of-streptozotocin-induced-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Management Tools for Assessment of Adverse Reactions Caused by Contrast Media at the Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranee%20Suecharoen">Pranee Suecharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratchadaporn%20Soontornpas"> Ratchadaporn Soontornpas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaturat%20Kanpittaya"> Jaturat Kanpittaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Contrast media has an important role for disease diagnosis through detection of pathologies. Contrast media can, however, cause adverse reactions after administration of its agents. Although non-ionic contrast media are commonly used, the incidence of adverse events is relatively low. The most common reactions found (10.5%) were mild and manageable and/or preventable. Pharmacists can play an important role in evaluating adverse reactions, including awareness of the specific preparation and the type of adverse reaction. As most common types of adverse reactions are idiosyncratic or pseudo-allergic reactions, common standards need to be established to prevent and control adverse reactions promptly and effectively. Objective: To measure the effect of using tools for symptom evaluation in order to reduce the severity, or prevent the occurrence, of adverse reactions from contrast media. Methods: Retrospective review descriptive research with data collected on adverse reactions assessment and Naranjo’s algorithm between June 2015 and May 2016. Results: 158 patients (10.53%) had adverse reactions. Of the 1,500 participants with an adverse event evaluation, 137 (9.13%) had a mild adverse reaction, including hives, nausea, vomiting, dizziness, and headache. These types of symptoms can be treated (i.e., with antihistamines, anti-emetics) and the patient recovers completely within one day. The group with moderate adverse reactions, numbering 18 cases (1.2%), had hypertension or hypotension, and shortness of breath. Severe adverse reactions numbered 3 cases (0.2%) and included swelling of the larynx, cardiac arrest, and loss of consciousness, requiring immediate treatment. No other complications under close medical supervision were recorded (i.e., corticosteroids use, epinephrine, dopamine, atropine, or life-saving devices). Using the guideline, therapies are divided into general and specific and are performed according to the severity, risk factors and ingestion of contrast media agents. Patients who have high-risk factors were screened and treated (i.e., prophylactic premedication) for prevention of severe adverse reactions, especially those with renal failure. Thus, awareness for the need for prescreening of different risk factors is necessary for early recognition and prompt treatment. Conclusion: Studying adverse reactions can be used to develop a model for reducing the level of severity and setting a guideline for a standardized, multidisciplinary approach to adverse reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=role%20of%20pharmacist" title="role of pharmacist">role of pharmacist</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20of%20adverse%20reactions" title=" management of adverse reactions"> management of adverse reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=guideline%20for%20contrast%20media" title=" guideline for contrast media"> guideline for contrast media</a>, <a href="https://publications.waset.org/abstracts/search?q=non-ionic%20contrast%20media" title=" non-ionic contrast media"> non-ionic contrast media</a> </p> <a href="https://publications.waset.org/abstracts/76622/management-tools-for-assessment-of-adverse-reactions-caused-by-contrast-media-at-the-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Getting It Right Before Implementation: Using Simulation to Optimize Recommendations and Interventions After Adverse Event Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Langevin">Melissa Langevin</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalie%20Ward"> Natalie Ward</a>, <a href="https://publications.waset.org/abstracts/search?q=Colleen%20Fitzgibbons"> Colleen Fitzgibbons</a>, <a href="https://publications.waset.org/abstracts/search?q=Christa%20Ramsey"> Christa Ramsey</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Hogue"> Melanie Hogue</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Theresa%20Lobos"> Anna Theresa Lobos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Description: Root Cause Analysis (RCA) is used by health care teams to examine adverse events (AEs) to identify causes which then leads to recommendations for prevention Despite widespread use, RCA has limitations. Best practices have not been established for implementing recommendations or tracking the impact of interventions after AEs. During phase 1 of this study, we used simulation to analyze two fictionalized AEs that occurred in hospitalized paediatric patients to identify and understand how the errors occurred and generated recommendations to mitigate and prevent recurrences. Scenario A involved an error of commission (inpatient drug error), and Scenario B involved detecting an error that already occurred (critical care drug infusion error). Recommendations generated were: improved drug labeling, specialized drug kids, alert signs and clinical checklists. Aim: Use simulation to optimize interventions recommended post critical event analysis prior to implementation in the clinical environment. Methods: Suggested interventions from Phase 1 were designed and tested through scenario simulation in the clinical environment (medicine ward or pediatric intensive care unit). Each scenario was simulated 8 times. Recommendations were tested using different, voluntary teams and each scenario was debriefed to understand why the error was repeated despite interventions and how interventions could be improved. Interventions were modified with subsequent simulations until recommendations were felt to have an optimal effect and data saturation was achieved. Along with concrete suggestions for design and process change, qualitative data pertaining to employee communication and hospital standard work was collected and analyzed. Results: Each scenario had a total of three interventions to test. In, scenario 1, the error was reproduced in the initial two iterations and mitigated following key intervention changes. In scenario 2, the error was identified immediately in all cases where the intervention checklist was utilized properly. Independently of intervention changes and improvements, the simulation was beneficial to identify which of these should be prioritized for implementation and highlighted that even the potential solutions most frequently suggested by participants did not always translate into error prevention in the clinical environment. Conclusion: We conclude that interventions that help to change process (epinephrine kit or mandatory checklist) were more successful at preventing errors than passive interventions (signage, change in memory aids). Given that even the most successful interventions needed modifications and subsequent re-testing, simulation is key to optimizing suggested changes. Simulation is a safe, practice changing modality for institutions to use prior to implementing recommendations from RCA following AE reviews. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20events" title="adverse events">adverse events</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title=" patient safety"> patient safety</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatrics" title=" pediatrics"> pediatrics</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20cause%20analysis" title=" root cause analysis"> root cause analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/101712/getting-it-right-before-implementation-using-simulation-to-optimize-recommendations-and-interventions-after-adverse-event-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Solid-Phase Sensor Systems for Fluorescent and SERS-Recognition of Neurotransmitters for Their Visualization and Determination in Biomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20Veselova">Irina Veselova</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Makedonskaya"> Maria Makedonskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Eremina"> Olga Eremina</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Sidorov"> Alexandr Sidorov</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Goodilin"> Eugene Goodilin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Shekhovtsova"> Tatyana Shekhovtsova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Such catecholamines as dopamine, norepinephrine, and epinephrine are the principal neurotransmitters in the sympathetic nervous system. Catecholamines and their metabolites are considered to be important markers of socially significant diseases such as atherosclerosis, diabetes, coronary heart disease, carcinogenesis, Alzheimer's and Parkinson's diseases. Currently, neurotransmitters can be studied via electrochemical and chromatographic techniques that allow their characterizing and quantification, although these techniques can only provide crude spatial information. Besides, the difficulty of catecholamine determination in biological materials is associated with their low normal concentrations (~ 1 nM) in biomaterials, which may become even one more order lower because of some disorders. In addition, in blood they are rapidly oxidized by monoaminooxidases from thrombocytes and, for this reason, the determination of neurotransmitter metabolism indicators in an organism should be very rapid (15—30 min), especially in critical states. Unfortunately, modern instrumental analysis does not offer a complex solution of this problem: despite its high sensitivity and selectivity, HPLC-MS cannot provide sufficiently rapid analysis, while enzymatic biosensors and immunoassays for the determination of the considered analytes lack sufficient sensitivity and reproducibility. Fluorescent and SERS-sensors remain a compelling technology for approaching the general problem of selective neurotransmitter detection. In recent years, a number of catecholamine sensors have been reported including RNA aptamers, fluorescent ribonucleopeptide (RNP) complexes, and boronic acid based synthetic receptors and the sensor operated in a turn-off mode. In this work we present the fluorescent and SERS turn-on sensor systems based on the bio- or chemorecognizing nanostructured films {chitosan/collagen-Tb/Eu/Cu-nanoparticles-indicator reagents} that provide the selective recognition, visualization, and sensing of the above mentioned catecholamines on the level of nanomolar concentrations in biomaterials (cell cultures, tissue etc.). We have (1) developed optically transparent porous films and gels of chitosan/collagen; (2) ensured functionalization of the surface by molecules-'recognizers' (by impregnation and immobilization of components of the indicator systems: biorecognizing and auxiliary reagents); (3) performed computer simulation for theoretical prediction and interpretation of some properties of the developed materials and obtained analytical signals in biomaterials. We are grateful for the financial support of this research from Russian Foundation for Basic Research (grants no. 15-03-05064 a, and 15-29-01330 ofi_m). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20and%20SERS-recognition" title=" fluorescent and SERS-recognition"> fluorescent and SERS-recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotransmitters" title=" neurotransmitters"> neurotransmitters</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-phase%20turn-on%20sensor%20system" title=" solid-phase turn-on sensor system"> solid-phase turn-on sensor system</a> </p> <a href="https://publications.waset.org/abstracts/57077/the-solid-phase-sensor-systems-for-fluorescent-and-sers-recognition-of-neurotransmitters-for-their-visualization-and-determination-in-biomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> A Second Chance to Live and Move: Lumbosacral Spinal Cord Ischemia-Infarction after Cardiac Arrest and the Artery of Adamkiewicz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Demian">Anna Demian</a>, <a href="https://publications.waset.org/abstracts/search?q=Levi%20Howard"> Levi Howard</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ng"> L. Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Leslie%20Simon"> Leslie Simon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Dragon"> Mark Dragon</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Desai"> A. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Devlantes"> Timothy Devlantes</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20David%20Freeman"> W. David Freeman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Out-of-hospital cardiac arrest (OHCA) can carry a high mortality. For survivors, the most common complication is hypoxic-ischemic brain injury (HIBI). Rarely, lumbosacral spinal cord and/or other spinal cord artery ischemia can occur due to anatomic variation and variable mean arterial pressure after the return of spontaneous circulation. We present a case of an OHCA survivor who later woke up with bilateral leg weakness with preserved sensation (ASIA grade B, L2 level). Methods: We describe a clinical, radiographic, and laboratory presentation, as well as a National Library of Medicine (NLM) search engine methodology, characterizing incidence/prevalence of this entity is discussed. A 70-year-old male, a longtime smoker, and alcohol user, suddenly collapsed at a bar surrounded by friends. He had complained of chest pain before collapsing. 911 was called. EMS arrived, and the patient was in pulseless electrical activity (PEA), cardiopulmonary resuscitation (CPR) was initiated, and the patient was intubated, and a LUCAS device was applied for continuous, high-quality CPR in the field by EMS. In the ED, central lines were placed, and thrombolysis was administered for a suspected Pulmonary Embolism (PE). It was a prolonged code that lasted 90 minutes. The code continued with the eventual return of spontaneous circulation. The patient was placed on an epinephrine and norepinephrine drip to maintain blood pressure. ECHO was performed and showed a “D-shaped” ventricle worrisome for PE as well as an ejection fraction around 30%. A CT with PE protocol was performed and confirmed bilateral PE. Results: The patient woke up 24 hours later, following commands, and was extubated. He was found paraplegic below L2 with preserved sensation, with hypotonia and areflexia consistent with “spinal shock” or anterior spinal cord syndrome. MRI thoracic and lumbar spine showed a conus medullaris level spinal cord infarction. The patient was given IV steroids upon initial discovery of cord infarct. NLM search using “cardiac arrest” and “spinal cord infarction” revealed 57 results, with only 8 review articles. Risk factors include age, atherosclerotic disease, and intraaortic balloon pump placement. AoA (Artery of Adamkiewicz) anatomic variation along with existing atherosclerotic factors and low perfusion were also known risk factors. Conclusion: Acute paraplegia from anterior spinal cord infarction of the AoA territory after cardiac arrest is rare. Larger prospective, multicenter trials are needed to examine potential interventions of hypothermia, lumbar drains, which are sometimes used in aortic surgery to reduce ischemia and/or other neuroprotectants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20arrest" title="cardiac arrest">cardiac arrest</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20cord%20infarction" title=" spinal cord infarction"> spinal cord infarction</a>, <a href="https://publications.waset.org/abstracts/search?q=artery%20of%20Adamkiewicz" title=" artery of Adamkiewicz"> artery of Adamkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=paraplegia" title=" paraplegia"> paraplegia</a> </p> <a href="https://publications.waset.org/abstracts/141427/a-second-chance-to-live-and-move-lumbosacral-spinal-cord-ischemia-infarction-after-cardiac-arrest-and-the-artery-of-adamkiewicz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Neonatology Clinical Routine in Cats and Dogs: Cases, Main Conditions and Mortality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20L.%20G.%20Louren%C3%A7o">Maria L. G. Lourenço</a>, <a href="https://publications.waset.org/abstracts/search?q=Keylla%20H.%20N.%20P.%20Pereira"> Keylla H. N. P. Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviane%20Y.%20Hibaru"> Viviane Y. Hibaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabiana%20F.%20Souza"> Fabiana F. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20C.%20P.%20Ferreira"> João C. P. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Simone%20B.%20Chiacchio"> Simone B. Chiacchio</a>, <a href="https://publications.waset.org/abstracts/search?q=Luiz%20H.%20A.%20Machado"> Luiz H. A. Machado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The neonatal care of cats and dogs represents a challenge to veterinarians due to the small size of the newborns and their physiological particularities. In addition, many Veterinary Medicine colleges around the world do not include neonatology in the curriculum, which makes it less likely for the veterinarian to have basic knowledge regarding neonatal care and worsens the clinical care these patients receive. Therefore, lack of assistance and negligence have become frequent in the field, which contributes towards the high mortality rates. This study aims at describing cases and the main conditions pertaining to the neonatology clinical routine in cats and dogs, highlighting the importance of specialized care in this field of Veterinary Medicine. The study included 808 neonates admitted to the São Paulo State University (UNESP) Veterinary Hospital, Botucatu, São Paulo, Brazil, between January 2018 and November 2019. Of these, 87.3% (705/808) were dogs and 12.7% (103/808) were cats. Among the neonates admitted, 57.3% (463/808) came from emergency c-sections due to dystocia, 8.7% (71/808) cane from vaginal deliveries with obstetric maneuvers due to dystocia, and 34% (274/808) were admitted for clinical care due to neonatal conditions. Among the neonates that came from emergency c-sections and vaginal deliveries, 47.3% (253/534) was born in respiratory distress due to severe hypoxia or persistent apnea and required resuscitation procedure, such as the Jen Chung acupuncture point (VG26), oxygen therapy with mask, pulmonary expansion with resuscitator, heart massages and administration of emergency medication, such as epinephrine. On the other hand, in the neonatal clinical care, the main conditions and alterations observed in the newborns were omphalophlebitis, toxic milk syndrome, neonatal conjunctivitis, swimmer puppy syndrome, neonatal hemorrhagic syndrome, pneumonia, trauma, low weight at birth, prematurity, congenital malformations (cleft palate, cleft lip, hydrocephaly, anasarca, vascular anomalies in the heart, anal atresia, gastroschisis, omphalocele, among others), neonatal sepsis and other local and systemic bacterial infections, viral infections (feline respiratory complex, parvovirus, canine distemper, canine infectious traqueobronchitis), parasitical infections (Toxocara spp., Ancylostoma spp., Strongyloides spp., Cystoisospora spp., Babesia spp. and Giardia spp.) and fungal infections (dermatophytosis by Microsporum canis). The most common clinical presentation observed was the neonatal triad (hypothermia, hypoglycemia and dehydration), affecting 74.6% (603/808) of the patients. The mortality rate among the neonates was 10.5% (85/808). Being knowledgeable about neonatology is essential for veterinarians to provide adequate care for these patients in the clinical routine. Adding neonatology to college curriculums, improving the dissemination of information on the subject, and providing annual training in neonatology for veterinarians and employees are important to improve immediate care and reduce the mortality rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neonatal%20care" title="neonatal care">neonatal care</a>, <a href="https://publications.waset.org/abstracts/search?q=puppies" title=" puppies"> puppies</a>, <a href="https://publications.waset.org/abstracts/search?q=neonatal" title=" neonatal"> neonatal</a>, <a href="https://publications.waset.org/abstracts/search?q=conditions" title=" conditions"> conditions</a> </p> <a href="https://publications.waset.org/abstracts/117949/neonatology-clinical-routine-in-cats-and-dogs-cases-main-conditions-and-mortality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>