CINXE.COM

Robot Vision Research Papers - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Robot Vision Research Papers - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "by_tag", 'action': "show_one", 'controller_action': 'by_tag#show_one', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="egLyMJgB1xr7wHVn8ztNeoJh1LS8JVD8DImCYOZZ763cXQ9a5EDlcZAYUTddAGMLFssGIEmN8aGI4yJydderqg==" /> <link href="/Documents/in/Robot_Vision?after=50%2C6984608" rel="next" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="description" content="View Robot Vision Research Papers on Academia.edu for free." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'by_tag'; var $action_name = "show_one"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15275,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277143149,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732411669000); window.Aedu.timeDifference = new Date().getTime() - 1732411669000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://www.academia.edu/Documents/in/Robot_Vision" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-by_tag a-show_one logged_out u-bgColorWhite'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-by_tag a-show_one logged_out u-bgColorWhite'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav no-sm no-md"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <div class="DesignSystem" style="margin-top:-40px"><div class="PageHeader"><div class="container"><div class="row"><style type="text/css">.sor-abstract { display: -webkit-box; overflow: hidden; text-overflow: ellipsis; -webkit-line-clamp: 3; -webkit-box-orient: vertical; }</style><div class="col-xs-12 clearfix"><div class="u-floatLeft"><h1 class="PageHeader-title u-m0x u-fs30">Robot Vision</h1><div class="u-tcGrayDark">25,160&nbsp;Followers</div><div class="u-tcGrayDark u-mt2x">Recent papers in&nbsp;<b>Robot Vision</b></div></div></div></div></div></div><div class="TabbedNavigation"><div class="container"><div class="row"><div class="col-xs-12 clearfix"><ul class="nav u-m0x u-p0x list-inline u-displayFlex"><li class="active"><a href="https://www.academia.edu/Documents/in/Robot_Vision">Top Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Robot_Vision/MostCited">Most Cited Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Robot_Vision/MostDownloaded">Most Downloaded Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Robot_Vision/MostRecent">Newest Papers</a></li><li><a class="" href="https://www.academia.edu/People/Robot_Vision">People</a></li></ul></div><style type="text/css">ul.nav{flex-direction:row}@media(max-width: 567px){ul.nav{flex-direction:column}.TabbedNavigation li{max-width:100%}.TabbedNavigation li.active{background-color:var(--background-grey, #dddde2)}.TabbedNavigation li.active:before,.TabbedNavigation li.active:after{display:none}}</style></div></div></div><div class="container"><div class="row"><div class="col-xs-12"><div class="u-displayFlex"><div class="u-flexGrow1"><div class="works"><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_76406269" data-work_id="76406269" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/76406269/Graph_based_representations_and_techniques_for_image_processing_and_image_analysis">Graph-based representations and techniques for image processing and image analysis</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/76406269" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ec3913b66128ddc5a4bc2261fabf036a" rel="nofollow" data-download="{&quot;attachment_id&quot;:84124751,&quot;asset_id&quot;:76406269,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/84124751/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="208371162" href="https://independent.academia.edu/FrancescSerratosa">Francesc Serratosa</a><script data-card-contents-for-user="208371162" type="text/json">{"id":208371162,"first_name":"Francesc","last_name":"Serratosa","domain_name":"independent","page_name":"FrancescSerratosa","display_name":"Francesc Serratosa","profile_url":"https://independent.academia.edu/FrancescSerratosa?f_ri=3413","photo":"https://0.academia-photos.com/208371162/68397108/56778114/s65_francesc.serratosa.jpeg"}</script></span></span></li><li class="js-paper-rank-work_76406269 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="76406269"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 76406269, container: ".js-paper-rank-work_76406269", }); });</script></li><li class="js-percentile-work_76406269 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76406269; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_76406269"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_76406269 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="76406269"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76406269; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76406269]").text(description); $(".js-view-count-work_76406269").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_76406269").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="76406269"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">18</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5109" href="https://www.academia.edu/Documents/in/Pattern_Recognition">Pattern Recognition</a>,&nbsp;<script data-card-contents-for-ri="5109" type="text/json">{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9351" href="https://www.academia.edu/Documents/in/Image_Analysis">Image Analysis</a>,&nbsp;<script data-card-contents-for-ri="9351" type="text/json">{"id":9351,"name":"Image Analysis","url":"https://www.academia.edu/Documents/in/Image_Analysis?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26870" href="https://www.academia.edu/Documents/in/Image_segmentation">Image segmentation</a><script data-card-contents-for-ri="26870" type="text/json">{"id":26870,"name":"Image segmentation","url":"https://www.academia.edu/Documents/in/Image_segmentation?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=76406269]'), work: {"id":76406269,"title":"Graph-based representations and techniques for image processing and image analysis","created_at":"2022-04-14T02:50:30.534-07:00","url":"https://www.academia.edu/76406269/Graph_based_representations_and_techniques_for_image_processing_and_image_analysis?f_ri=3413","dom_id":"work_76406269","summary":null,"downloadable_attachments":[{"id":84124751,"asset_id":76406269,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":208371162,"first_name":"Francesc","last_name":"Serratosa","domain_name":"independent","page_name":"FrancescSerratosa","display_name":"Francesc Serratosa","profile_url":"https://independent.academia.edu/FrancescSerratosa?f_ri=3413","photo":"https://0.academia-photos.com/208371162/68397108/56778114/s65_francesc.serratosa.jpeg"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=3413","nofollow":false},{"id":9351,"name":"Image Analysis","url":"https://www.academia.edu/Documents/in/Image_Analysis?f_ri=3413","nofollow":false},{"id":26870,"name":"Image segmentation","url":"https://www.academia.edu/Documents/in/Image_segmentation?f_ri=3413","nofollow":false},{"id":30665,"name":"Image Processing and Analysis","url":"https://www.academia.edu/Documents/in/Image_Processing_and_Analysis?f_ri=3413"},{"id":102887,"name":"Object Recognition","url":"https://www.academia.edu/Documents/in/Object_Recognition?f_ri=3413"},{"id":134703,"name":"Data Fusion","url":"https://www.academia.edu/Documents/in/Data_Fusion?f_ri=3413"},{"id":155938,"name":"Color Image Segmentation","url":"https://www.academia.edu/Documents/in/Color_Image_Segmentation?f_ri=3413"},{"id":187369,"name":"Active Vision","url":"https://www.academia.edu/Documents/in/Active_Vision?f_ri=3413"},{"id":213094,"name":"Pattern","url":"https://www.academia.edu/Documents/in/Pattern?f_ri=3413"},{"id":245964,"name":"Industrial Application","url":"https://www.academia.edu/Documents/in/Industrial_Application?f_ri=3413"},{"id":332654,"name":"Graph Partitioning","url":"https://www.academia.edu/Documents/in/Graph_Partitioning?f_ri=3413"},{"id":335981,"name":"Perceptual grouping","url":"https://www.academia.edu/Documents/in/Perceptual_grouping?f_ri=3413"},{"id":893452,"name":"Greedy Algorithm","url":"https://www.academia.edu/Documents/in/Greedy_Algorithm?f_ri=3413"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=3413"},{"id":3480612,"name":"Vision system","url":"https://www.academia.edu/Documents/in/Vision_system?f_ri=3413"},{"id":3749602,"name":"Distance Measure","url":"https://www.academia.edu/Documents/in/Distance_Measure?f_ri=3413"},{"id":4036488,"name":"Autonomous mobile robot","url":"https://www.academia.edu/Documents/in/Autonomous_mobile_robot?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_75726415" data-work_id="75726415" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/75726415/An_obstacle_detection_and_avoidance_of_a_mobile_robot_with_stereo_vision_camera">An obstacle detection and avoidance of a mobile robot with stereo vision camera</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This paper presents an obstacle detection and avoidance of mobile robot using stereo camera for indoor environment. Block matching algorithm is solved the correspondence problem occurred in comparing stereo images (left and right sensors... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_75726415" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This paper presents an obstacle detection and avoidance of mobile robot using stereo camera for indoor environment. Block matching algorithm is solved the correspondence problem occurred in comparing stereo images (left and right sensors of the camera). The algorithm uses Sum of Absolute Differences (SAD). Left image works as a reference block to the right image and the output is disparity mapping or depth maps with the left coordinate system. A pair of camera or stereo vision baseline is based on horizontal configuration. The block matching technique is briefly described with the performance of its output. The curve fitting tool would determine the range of each obstacle detected in disparity mapping. The programming activities are using Matlab software starting from capturing images until navigation of mobile robot.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/75726415" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="155540181" href="https://independent.academia.edu/SyedHamid16">Syed Hamid</a><script data-card-contents-for-user="155540181" type="text/json">{"id":155540181,"first_name":"Syed","last_name":"Hamid","domain_name":"independent","page_name":"SyedHamid16","display_name":"Syed Hamid","profile_url":"https://independent.academia.edu/SyedHamid16?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_75726415 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="75726415"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 75726415, container: ".js-paper-rank-work_75726415", }); });</script></li><li class="js-percentile-work_75726415 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75726415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_75726415"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_75726415 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="75726415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75726415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75726415]").text(description); $(".js-view-count-work_75726415").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_75726415").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="75726415"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="59695" href="https://www.academia.edu/Documents/in/Navigation">Navigation</a>,&nbsp;<script data-card-contents-for-ri="59695" type="text/json">{"id":59695,"name":"Navigation","url":"https://www.academia.edu/Documents/in/Navigation?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="66823" href="https://www.academia.edu/Documents/in/Mobile_Robots">Mobile Robots</a><script data-card-contents-for-ri="66823" type="text/json">{"id":66823,"name":"Mobile Robots","url":"https://www.academia.edu/Documents/in/Mobile_Robots?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=75726415]'), work: {"id":75726415,"title":"An obstacle detection and avoidance of a mobile robot with stereo vision camera","created_at":"2022-04-07T06:49:06.207-07:00","url":"https://www.academia.edu/75726415/An_obstacle_detection_and_avoidance_of_a_mobile_robot_with_stereo_vision_camera?f_ri=3413","dom_id":"work_75726415","summary":"This paper presents an obstacle detection and avoidance of mobile robot using stereo camera for indoor environment. Block matching algorithm is solved the correspondence problem occurred in comparing stereo images (left and right sensors of the camera). The algorithm uses Sum of Absolute Differences (SAD). Left image works as a reference block to the right image and the output is disparity mapping or depth maps with the left coordinate system. A pair of camera or stereo vision baseline is based on horizontal configuration. The block matching technique is briefly described with the performance of its output. The curve fitting tool would determine the range of each obstacle detected in disparity mapping. The programming activities are using Matlab software starting from capturing images until navigation of mobile robot.","downloadable_attachments":[],"ordered_authors":[{"id":155540181,"first_name":"Syed","last_name":"Hamid","domain_name":"independent","page_name":"SyedHamid16","display_name":"Syed Hamid","profile_url":"https://independent.academia.edu/SyedHamid16?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":59695,"name":"Navigation","url":"https://www.academia.edu/Documents/in/Navigation?f_ri=3413","nofollow":false},{"id":66823,"name":"Mobile Robots","url":"https://www.academia.edu/Documents/in/Mobile_Robots?f_ri=3413","nofollow":false},{"id":148959,"name":"Stereo Vision","url":"https://www.academia.edu/Documents/in/Stereo_Vision?f_ri=3413"},{"id":168687,"name":"Obstacle Detection","url":"https://www.academia.edu/Documents/in/Obstacle_Detection?f_ri=3413"},{"id":179654,"name":"Mobile Robot","url":"https://www.academia.edu/Documents/in/Mobile_Robot?f_ri=3413"},{"id":236258,"name":"Mobile Robot Navigation","url":"https://www.academia.edu/Documents/in/Mobile_Robot_Navigation?f_ri=3413"},{"id":291387,"name":"Mathematical Model","url":"https://www.academia.edu/Documents/in/Mathematical_Model?f_ri=3413"},{"id":321194,"name":"Obstacle Avoidance","url":"https://www.academia.edu/Documents/in/Obstacle_Avoidance?f_ri=3413"},{"id":543415,"name":"Depth Map","url":"https://www.academia.edu/Documents/in/Depth_Map?f_ri=3413"},{"id":728244,"name":"Curve fitting","url":"https://www.academia.edu/Documents/in/Curve_fitting?f_ri=3413"},{"id":892171,"name":"Indoor Environment","url":"https://www.academia.edu/Documents/in/Indoor_Environment?f_ri=3413"},{"id":1112734,"name":"Block Matching","url":"https://www.academia.edu/Documents/in/Block_Matching?f_ri=3413"},{"id":1250338,"name":"Correspondence Problem","url":"https://www.academia.edu/Documents/in/Correspondence_Problem?f_ri=3413"},{"id":1707689,"name":"Pixel","url":"https://www.academia.edu/Documents/in/Pixel?f_ri=3413"},{"id":2008452,"name":"Block Matching Algorithm","url":"https://www.academia.edu/Documents/in/Block_Matching_Algorithm?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_15482325 coauthored" data-work_id="15482325" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/15482325/Door_handle_identification_a_three_stage_approach">Door handle identification: a three-stage approach</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/15482325" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e978c70949a0ef40f236293f0783d5cc" rel="nofollow" data-download="{&quot;attachment_id&quot;:43153035,&quot;asset_id&quot;:15482325,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43153035/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="39929655" href="https://independent.academia.edu/BSierra2">B. Sierra</a><script data-card-contents-for-user="39929655" type="text/json">{"id":39929655,"first_name":"B.","last_name":"Sierra","domain_name":"independent","page_name":"BSierra2","display_name":"B. Sierra","profile_url":"https://independent.academia.edu/BSierra2?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-15482325">+2</span><div class="hidden js-additional-users-15482325"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://ehu.academia.edu/EkaitzJauregi">Ekaitz Jauregi</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/ElenaLazkano">Elena Lazkano</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-15482325'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-15482325').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_15482325 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="15482325"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 15482325, container: ".js-paper-rank-work_15482325", }); });</script></li><li class="js-percentile-work_15482325 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15482325; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_15482325"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_15482325 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="15482325"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15482325; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15482325]").text(description); $(".js-view-count-work_15482325").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_15482325").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="15482325"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>,&nbsp;<script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="190847" href="https://www.academia.edu/Documents/in/Supervised_Classification">Supervised Classification</a>,&nbsp;<script data-card-contents-for-ri="190847" type="text/json">{"id":190847,"name":"Supervised Classification","url":"https://www.academia.edu/Documents/in/Supervised_Classification?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="464325" href="https://www.academia.edu/Documents/in/Hough_Transform">Hough Transform</a><script data-card-contents-for-ri="464325" type="text/json">{"id":464325,"name":"Hough Transform","url":"https://www.academia.edu/Documents/in/Hough_Transform?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=15482325]'), work: {"id":15482325,"title":"Door handle identification: a three-stage approach","created_at":"2015-09-07T08:11:15.215-07:00","url":"https://www.academia.edu/15482325/Door_handle_identification_a_three_stage_approach?f_ri=3413","dom_id":"work_15482325","summary":null,"downloadable_attachments":[{"id":43153035,"asset_id":15482325,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":39929655,"first_name":"B.","last_name":"Sierra","domain_name":"independent","page_name":"BSierra2","display_name":"B. Sierra","profile_url":"https://independent.academia.edu/BSierra2?f_ri=3413","photo":"/images/s65_no_pic.png"},{"id":34624533,"first_name":"Ekaitz","last_name":"Jauregi","domain_name":"ehu","page_name":"EkaitzJauregi","display_name":"Ekaitz Jauregi","profile_url":"https://ehu.academia.edu/EkaitzJauregi?f_ri=3413","photo":"/images/s65_no_pic.png"},{"id":40395441,"first_name":"Elena","last_name":"Lazkano","domain_name":"independent","page_name":"ElenaLazkano","display_name":"Elena Lazkano","profile_url":"https://independent.academia.edu/ElenaLazkano?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":190847,"name":"Supervised Classification","url":"https://www.academia.edu/Documents/in/Supervised_Classification?f_ri=3413","nofollow":false},{"id":464325,"name":"Hough Transform","url":"https://www.academia.edu/Documents/in/Hough_Transform?f_ri=3413","nofollow":false},{"id":892890,"name":"Point of View","url":"https://www.academia.edu/Documents/in/Point_of_View?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_18172195" data-work_id="18172195" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/18172195/Generating_Semantic_Information_from_3D_Scans_of_Crime_Scenes">Generating Semantic Information from 3D Scans of Crime Scenes</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/18172195" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="454d5db2180328e0967b9cb578508240" rel="nofollow" data-download="{&quot;attachment_id&quot;:39914178,&quot;asset_id&quot;:18172195,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/39914178/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="38146489" href="https://independent.academia.edu/AnnaTopol">Anna W Topol</a><script data-card-contents-for-user="38146489" type="text/json">{"id":38146489,"first_name":"Anna","last_name":"Topol","domain_name":"independent","page_name":"AnnaTopol","display_name":"Anna W Topol","profile_url":"https://independent.academia.edu/AnnaTopol?f_ri=3413","photo":"https://0.academia-photos.com/38146489/10656471/11896484/s65_anna.topol.jpg"}</script></span></span></li><li class="js-paper-rank-work_18172195 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="18172195"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 18172195, container: ".js-paper-rank-work_18172195", }); });</script></li><li class="js-percentile-work_18172195 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18172195; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_18172195"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_18172195 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="18172195"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18172195; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18172195]").text(description); $(".js-view-count-work_18172195").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_18172195").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="18172195"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="171013" href="https://www.academia.edu/Documents/in/Semantic_Information">Semantic Information</a>,&nbsp;<script data-card-contents-for-ri="171013" type="text/json">{"id":171013,"name":"Semantic Information","url":"https://www.academia.edu/Documents/in/Semantic_Information?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="255207" href="https://www.academia.edu/Documents/in/3-D_scanning">3-D scanning</a>,&nbsp;<script data-card-contents-for-ri="255207" type="text/json">{"id":255207,"name":"3-D scanning","url":"https://www.academia.edu/Documents/in/3-D_scanning?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="477101" href="https://www.academia.edu/Documents/in/Visible_Light">Visible Light</a><script data-card-contents-for-ri="477101" type="text/json">{"id":477101,"name":"Visible Light","url":"https://www.academia.edu/Documents/in/Visible_Light?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=18172195]'), work: {"id":18172195,"title":"Generating Semantic Information from 3D Scans of Crime Scenes","created_at":"2015-11-11T16:41:56.163-08:00","url":"https://www.academia.edu/18172195/Generating_Semantic_Information_from_3D_Scans_of_Crime_Scenes?f_ri=3413","dom_id":"work_18172195","summary":null,"downloadable_attachments":[{"id":39914178,"asset_id":18172195,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":38146489,"first_name":"Anna","last_name":"Topol","domain_name":"independent","page_name":"AnnaTopol","display_name":"Anna W Topol","profile_url":"https://independent.academia.edu/AnnaTopol?f_ri=3413","photo":"https://0.academia-photos.com/38146489/10656471/11896484/s65_anna.topol.jpg"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":171013,"name":"Semantic Information","url":"https://www.academia.edu/Documents/in/Semantic_Information?f_ri=3413","nofollow":false},{"id":255207,"name":"3-D scanning","url":"https://www.academia.edu/Documents/in/3-D_scanning?f_ri=3413","nofollow":false},{"id":477101,"name":"Visible Light","url":"https://www.academia.edu/Documents/in/Visible_Light?f_ri=3413","nofollow":false},{"id":758278,"name":"Large Scale","url":"https://www.academia.edu/Documents/in/Large_Scale?f_ri=3413"},{"id":1414901,"name":"Real-world Application","url":"https://www.academia.edu/Documents/in/Real-world_Application?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_33847879" data-work_id="33847879" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/33847879/Autonomous_3_d_positioning_of_surgical_instruments_in_robotized_laparoscopic_surgery_using_visual_servoing">Autonomous 3-d positioning of surgical instruments in robotized laparoscopic surgery using visual servoing</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/33847879" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="95246b43e8f75ec4931537c6be606b8b" rel="nofollow" data-download="{&quot;attachment_id&quot;:53828739,&quot;asset_id&quot;:33847879,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/53828739/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="66336333" href="https://inrialpes.academia.edu/AlexandreKrupa">Alexandre Krupa</a><script data-card-contents-for-user="66336333" type="text/json">{"id":66336333,"first_name":"Alexandre","last_name":"Krupa","domain_name":"inrialpes","page_name":"AlexandreKrupa","display_name":"Alexandre Krupa","profile_url":"https://inrialpes.academia.edu/AlexandreKrupa?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_33847879 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="33847879"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 33847879, container: ".js-paper-rank-work_33847879", }); });</script></li><li class="js-percentile-work_33847879 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33847879; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_33847879"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_33847879 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="33847879"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33847879; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33847879]").text(description); $(".js-view-count-work_33847879").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_33847879").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="33847879"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">13</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="60" href="https://www.academia.edu/Documents/in/Mechanical_Engineering">Mechanical Engineering</a>,&nbsp;<script data-card-contents-for-ri="60" type="text/json">{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="37861" href="https://www.academia.edu/Documents/in/Laparoscopic_Surgery">Laparoscopic Surgery</a><script data-card-contents-for-ri="37861" type="text/json">{"id":37861,"name":"Laparoscopic Surgery","url":"https://www.academia.edu/Documents/in/Laparoscopic_Surgery?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=33847879]'), work: {"id":33847879,"title":"Autonomous 3-d positioning of surgical instruments in robotized laparoscopic surgery using visual servoing","created_at":"2017-07-11T08:42:43.517-07:00","url":"https://www.academia.edu/33847879/Autonomous_3_d_positioning_of_surgical_instruments_in_robotized_laparoscopic_surgery_using_visual_servoing?f_ri=3413","dom_id":"work_33847879","summary":null,"downloadable_attachments":[{"id":53828739,"asset_id":33847879,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":66336333,"first_name":"Alexandre","last_name":"Krupa","domain_name":"inrialpes","page_name":"AlexandreKrupa","display_name":"Alexandre Krupa","profile_url":"https://inrialpes.academia.edu/AlexandreKrupa?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=3413","nofollow":false},{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":37861,"name":"Laparoscopic Surgery","url":"https://www.academia.edu/Documents/in/Laparoscopic_Surgery?f_ri=3413","nofollow":false},{"id":38180,"name":"Medical Robotics","url":"https://www.academia.edu/Documents/in/Medical_Robotics?f_ri=3413"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering?f_ri=3413"},{"id":155456,"name":"Visual Servoing","url":"https://www.academia.edu/Documents/in/Visual_Servoing?f_ri=3413"},{"id":404996,"name":"Optical fiber","url":"https://www.academia.edu/Documents/in/Optical_fiber?f_ri=3413"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional?f_ri=3413"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=3413"},{"id":1802420,"name":"Minimal Invasive Surgery","url":"https://www.academia.edu/Documents/in/Minimal_Invasive_Surgery?f_ri=3413"},{"id":2032079,"name":"Relative Position","url":"https://www.academia.edu/Documents/in/Relative_Position?f_ri=3413"},{"id":2177422,"name":"Light Emitting Diode","url":"https://www.academia.edu/Documents/in/Light_Emitting_Diode?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_8553666" data-work_id="8553666" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/8553666/Reconocimiento_de_Posturas_en_secuencias_de_video_usando_firma_Punto_Contorno">Reconocimiento de Posturas en secuencias de video usando firma Punto-Contorno</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">A research area in Computer Vision focuses on the identification of articulated objects, such as human actions and movements of the hand, which can be used in human-computer interaction, surveillance, and other tracking systems. Two... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_8553666" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">A research area in Computer Vision focuses on the identification of articulated objects, such as human actions and movements of the hand, which can be used in human-computer interaction, surveillance, and other tracking systems. Two problems arise: identify when two articulated objects in different stances are in the same class of objects, and differentiate the distinct positions of the same object. In both cases, it is necessary to know how correspond the different points or regions of such objects standing in different attitudes. This article presents the Contour-Point Signature; a point descriptor that allows to establish a method to achieve the better matching of points between two figures, and to thus obtain a transformation which relates them. With this descriptor, we can achieve more accurate shape features and implement more efficient retrieval under multi-resolution. In addition, CPS is robust to rigid translation, scaling, rotation and independent of the origin point. A measure of dissimilarity between two figures for classifying various human postures in a video sequence is also presented.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/8553666" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="9af4b65be618513cca8c7d1bdb69bd03" rel="nofollow" data-download="{&quot;attachment_id&quot;:34927014,&quot;asset_id&quot;:8553666,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/34927014/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2488929" href="https://una.academia.edu/wvenialbo">Waldemar Villamayor-Venialbo</a><script data-card-contents-for-user="2488929" type="text/json">{"id":2488929,"first_name":"Waldemar","last_name":"Villamayor-Venialbo","domain_name":"una","page_name":"wvenialbo","display_name":"Waldemar Villamayor-Venialbo","profile_url":"https://una.academia.edu/wvenialbo?f_ri=3413","photo":"https://0.academia-photos.com/2488929/3063966/135965852/s65_waldemar.villamayor-venialbo.jpg"}</script></span></span></li><li class="js-paper-rank-work_8553666 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="8553666"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 8553666, container: ".js-paper-rank-work_8553666", }); });</script></li><li class="js-percentile-work_8553666 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8553666; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_8553666"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_8553666 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="8553666"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8553666; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8553666]").text(description); $(".js-view-count-work_8553666").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_8553666").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="8553666"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">39</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="7728" href="https://www.academia.edu/Documents/in/Object_Recognition_Computer_Vision_">Object Recognition (Computer Vision)</a>,&nbsp;<script data-card-contents-for-ri="7728" type="text/json">{"id":7728,"name":"Object Recognition (Computer Vision)","url":"https://www.academia.edu/Documents/in/Object_Recognition_Computer_Vision_?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="7937" href="https://www.academia.edu/Documents/in/Image_Recognition_Computer_Vision_">Image Recognition (Computer Vision)</a><script data-card-contents-for-ri="7937" type="text/json">{"id":7937,"name":"Image Recognition (Computer Vision)","url":"https://www.academia.edu/Documents/in/Image_Recognition_Computer_Vision_?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=8553666]'), work: {"id":8553666,"title":"Reconocimiento de Posturas en secuencias de video usando firma Punto-Contorno","created_at":"2014-09-29T11:33:44.902-07:00","url":"https://www.academia.edu/8553666/Reconocimiento_de_Posturas_en_secuencias_de_video_usando_firma_Punto_Contorno?f_ri=3413","dom_id":"work_8553666","summary":"A research area in Computer Vision focuses on the identification of articulated objects, such as human actions and movements of the hand, which can be used in human-computer interaction, surveillance, and other tracking systems. Two problems arise: identify when two articulated objects in different stances are in the same class of objects, and differentiate the distinct positions of the same object. In both cases, it is necessary to know how correspond the different points or regions of such objects standing in different attitudes. This article presents the Contour-Point Signature; a point descriptor that allows to establish a method to achieve the better matching of points between two figures, and to thus obtain a transformation which relates them. With this descriptor, we can achieve more accurate shape features and implement more efficient retrieval under multi-resolution. In addition, CPS is robust to rigid translation, scaling, rotation and independent of the origin point. A measure of dissimilarity between two figures for classifying various human postures in a video sequence is also presented.","downloadable_attachments":[{"id":34927014,"asset_id":8553666,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2488929,"first_name":"Waldemar","last_name":"Villamayor-Venialbo","domain_name":"una","page_name":"wvenialbo","display_name":"Waldemar Villamayor-Venialbo","profile_url":"https://una.academia.edu/wvenialbo?f_ri=3413","photo":"https://0.academia-photos.com/2488929/3063966/135965852/s65_waldemar.villamayor-venialbo.jpg"}],"research_interests":[{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":7728,"name":"Object Recognition (Computer Vision)","url":"https://www.academia.edu/Documents/in/Object_Recognition_Computer_Vision_?f_ri=3413","nofollow":false},{"id":7937,"name":"Image Recognition (Computer Vision)","url":"https://www.academia.edu/Documents/in/Image_Recognition_Computer_Vision_?f_ri=3413","nofollow":false},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413"},{"id":15158,"name":"Object Tracking (Computer Vision)","url":"https://www.academia.edu/Documents/in/Object_Tracking_Computer_Vision_?f_ri=3413"},{"id":17701,"name":"Gesture Recognition","url":"https://www.academia.edu/Documents/in/Gesture_Recognition?f_ri=3413"},{"id":56440,"name":"OpenCv or Computer Vision","url":"https://www.academia.edu/Documents/in/OpenCv_or_Computer_Vision?f_ri=3413"},{"id":68477,"name":"Robotics, Computer Vision, Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Vision_Artificial_Intelligence?f_ri=3413"},{"id":93093,"name":"Image Processing with OpenCV","url":"https://www.academia.edu/Documents/in/Image_Processing_with_OpenCV?f_ri=3413"},{"id":101210,"name":"THESIS ON WEARABLE GESTURE RECOGNITION AND WEBCAM WORKING","url":"https://www.academia.edu/Documents/in/THESIS_ON_WEARABLE_GESTURE_RECOGNITION_AND_WEBCAM_WORKING?f_ri=3413"},{"id":106108,"name":"Swarm Robotics,Industrial Robotics, Mobile Robotics,Bionics, Assistive Robotics, Automation, Machine vision, Artificial Intelligence, PLC, Control Systems","url":"https://www.academia.edu/Documents/in/Swarm_Robotics_Industrial_Robotics_Mobile_Robotics_Bionics_Assistive_Robotics_Automation_Machine?f_ri=3413"},{"id":130123,"name":"Gesture Control","url":"https://www.academia.edu/Documents/in/Gesture_Control?f_ri=3413"},{"id":222747,"name":"Image Descriptor","url":"https://www.academia.edu/Documents/in/Image_Descriptor?f_ri=3413"},{"id":311120,"name":"OpenCV","url":"https://www.academia.edu/Documents/in/OpenCV?f_ri=3413"},{"id":317863,"name":"Hand Gesture Recognition System","url":"https://www.academia.edu/Documents/in/Hand_Gesture_Recognition_System?f_ri=3413"},{"id":340327,"name":"Image Processing, Image Scaling, OpenCV","url":"https://www.academia.edu/Documents/in/Image_Processing_Image_Scaling_OpenCV?f_ri=3413"},{"id":347162,"name":"Shape Descriptions","url":"https://www.academia.edu/Documents/in/Shape_Descriptions?f_ri=3413"},{"id":347349,"name":"Vision-based hand gesture recognition","url":"https://www.academia.edu/Documents/in/Vision-based_hand_gesture_recognition?f_ri=3413"},{"id":372199,"name":"Local Shape descriptors","url":"https://www.academia.edu/Documents/in/Local_Shape_descriptors?f_ri=3413"},{"id":490291,"name":"PhD Thesis. Vision-based gesture recognition in a robot learning by imitation framework","url":"https://www.academia.edu/Documents/in/PhD_Thesis._Vision-based_gesture_recognition_in_a_robot_learning_by_imitation_framework?f_ri=3413"},{"id":581389,"name":"Recognition of gestures, facial expressions and emotions","url":"https://www.academia.edu/Documents/in/Recognition_of_gestures_facial_expressions_and_emotions?f_ri=3413"},{"id":603644,"name":"Human posture recognition","url":"https://www.academia.edu/Documents/in/Human_posture_recognition?f_ri=3413"},{"id":724690,"name":"Hand Gesture Recognition","url":"https://www.academia.edu/Documents/in/Hand_Gesture_Recognition?f_ri=3413"},{"id":815529,"name":"Machine Vision Systems Market","url":"https://www.academia.edu/Documents/in/Machine_Vision_Systems_Market?f_ri=3413"},{"id":850840,"name":"Shape Descriptor","url":"https://www.academia.edu/Documents/in/Shape_Descriptor?f_ri=3413"},{"id":869826,"name":"Hand Posture Recognition","url":"https://www.academia.edu/Documents/in/Hand_Posture_Recognition?f_ri=3413"},{"id":878190,"name":"Deveploment, Algorith, Opencv","url":"https://www.academia.edu/Documents/in/Deveploment_Algorith_Opencv?f_ri=3413"},{"id":925615,"name":"Android With Opencv","url":"https://www.academia.edu/Documents/in/Android_With_Opencv?f_ri=3413"},{"id":960378,"name":"Descriptor Extraction","url":"https://www.academia.edu/Documents/in/Descriptor_Extraction?f_ri=3413"},{"id":980096,"name":"Shape Descriptors","url":"https://www.academia.edu/Documents/in/Shape_Descriptors?f_ri=3413"},{"id":1178418,"name":"Shape Description","url":"https://www.academia.edu/Documents/in/Shape_Description?f_ri=3413"},{"id":1216913,"name":"Contour-Point Signature","url":"https://www.academia.edu/Documents/in/Contour-Point_Signature?f_ri=3413"},{"id":1231242,"name":"Video Sequence","url":"https://www.academia.edu/Documents/in/Video_Sequence?f_ri=3413"},{"id":1279472,"name":"Descriptors","url":"https://www.academia.edu/Documents/in/Descriptors?f_ri=3413"},{"id":1282752,"name":"Local Descriptors","url":"https://www.academia.edu/Documents/in/Local_Descriptors?f_ri=3413"},{"id":1354810,"name":"Traitement D'image Sous OpenCV","url":"https://www.academia.edu/Documents/in/Traitement_Dimage_Sous_OpenCV?f_ri=3413"},{"id":1579385,"name":"Point descriptors","url":"https://www.academia.edu/Documents/in/Point_descriptors?f_ri=3413"},{"id":1579424,"name":"Point descriptor","url":"https://www.academia.edu/Documents/in/Point_descriptor?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_28845879" data-work_id="28845879" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/28845879/A_Novel_Mechanism_for_Stereo_Active_Vision">A Novel Mechanism for Stereo Active Vision</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/28845879" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a2b2bf5adcfcb5c2bfc3507a4519a8a9" rel="nofollow" data-download="{&quot;attachment_id&quot;:49266151,&quot;asset_id&quot;:28845879,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49266151/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="54302971" href="https://rhu.academia.edu/SaberAbdallah">Samer M Abdallah</a><script data-card-contents-for-user="54302971" type="text/json">{"id":54302971,"first_name":"Samer","last_name":"Abdallah","domain_name":"rhu","page_name":"SaberAbdallah","display_name":"Samer M Abdallah","profile_url":"https://rhu.academia.edu/SaberAbdallah?f_ri=3413","photo":"https://0.academia-photos.com/54302971/19618255/19502471/s65_samer.abdallah.jpeg"}</script></span></span></li><li class="js-paper-rank-work_28845879 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="28845879"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 28845879, container: ".js-paper-rank-work_28845879", }); });</script></li><li class="js-percentile-work_28845879 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28845879; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_28845879"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_28845879 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="28845879"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28845879; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28845879]").text(description); $(".js-view-count-work_28845879").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_28845879").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="28845879"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="187369" href="https://www.academia.edu/Documents/in/Active_Vision">Active Vision</a>,&nbsp;<script data-card-contents-for-ri="187369" type="text/json">{"id":187369,"name":"Active Vision","url":"https://www.academia.edu/Documents/in/Active_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="223470" href="https://www.academia.edu/Documents/in/Parallel_Mechanism">Parallel Mechanism</a>,&nbsp;<script data-card-contents-for-ri="223470" type="text/json">{"id":223470,"name":"Parallel Mechanism","url":"https://www.academia.edu/Documents/in/Parallel_Mechanism?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="297691" href="https://www.academia.edu/Documents/in/High_performance">High performance</a><script data-card-contents-for-ri="297691" type="text/json">{"id":297691,"name":"High performance","url":"https://www.academia.edu/Documents/in/High_performance?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=28845879]'), work: {"id":28845879,"title":"A Novel Mechanism for Stereo Active Vision","created_at":"2016-10-01T06:30:43.056-07:00","url":"https://www.academia.edu/28845879/A_Novel_Mechanism_for_Stereo_Active_Vision?f_ri=3413","dom_id":"work_28845879","summary":null,"downloadable_attachments":[{"id":49266151,"asset_id":28845879,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":54302971,"first_name":"Samer","last_name":"Abdallah","domain_name":"rhu","page_name":"SaberAbdallah","display_name":"Samer M Abdallah","profile_url":"https://rhu.academia.edu/SaberAbdallah?f_ri=3413","photo":"https://0.academia-photos.com/54302971/19618255/19502471/s65_samer.abdallah.jpeg"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":187369,"name":"Active Vision","url":"https://www.academia.edu/Documents/in/Active_Vision?f_ri=3413","nofollow":false},{"id":223470,"name":"Parallel Mechanism","url":"https://www.academia.edu/Documents/in/Parallel_Mechanism?f_ri=3413","nofollow":false},{"id":297691,"name":"High performance","url":"https://www.academia.edu/Documents/in/High_performance?f_ri=3413","nofollow":false},{"id":713260,"name":"Icra","url":"https://www.academia.edu/Documents/in/Icra?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_61714171" data-work_id="61714171" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/61714171/Vision_based_foothold_contact_reasoning_using_curved_surface_patches">Vision-based foothold contact reasoning using curved surface patches</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/61714171" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="461fb364abe7fe97b577f51cdb6031f3" rel="nofollow" data-download="{&quot;attachment_id&quot;:74681776,&quot;asset_id&quot;:61714171,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/74681776/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33207362" href="https://independent.academia.edu/NikolaosTsagarakis">Nikolaos Tsagarakis</a><script data-card-contents-for-user="33207362" type="text/json">{"id":33207362,"first_name":"Nikolaos","last_name":"Tsagarakis","domain_name":"independent","page_name":"NikolaosTsagarakis","display_name":"Nikolaos Tsagarakis","profile_url":"https://independent.academia.edu/NikolaosTsagarakis?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_61714171 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="61714171"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 61714171, container: ".js-paper-rank-work_61714171", }); });</script></li><li class="js-percentile-work_61714171 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61714171; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_61714171"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_61714171 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="61714171"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61714171; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61714171]").text(description); $(".js-view-count-work_61714171").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_61714171").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="61714171"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4893" href="https://www.academia.edu/Documents/in/Humanoid_Robotics">Humanoid Robotics</a>,&nbsp;<script data-card-contents-for-ri="4893" type="text/json">{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9658" href="https://www.academia.edu/Documents/in/Locomotion">Locomotion</a><script data-card-contents-for-ri="9658" type="text/json">{"id":9658,"name":"Locomotion","url":"https://www.academia.edu/Documents/in/Locomotion?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=61714171]'), work: {"id":61714171,"title":"Vision-based foothold contact reasoning using curved surface patches","created_at":"2021-11-15T08:37:10.104-08:00","url":"https://www.academia.edu/61714171/Vision_based_foothold_contact_reasoning_using_curved_surface_patches?f_ri=3413","dom_id":"work_61714171","summary":null,"downloadable_attachments":[{"id":74681776,"asset_id":61714171,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33207362,"first_name":"Nikolaos","last_name":"Tsagarakis","domain_name":"independent","page_name":"NikolaosTsagarakis","display_name":"Nikolaos Tsagarakis","profile_url":"https://independent.academia.edu/NikolaosTsagarakis?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413","nofollow":false},{"id":9658,"name":"Locomotion","url":"https://www.academia.edu/Documents/in/Locomotion?f_ri=3413","nofollow":false},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413"},{"id":188095,"name":"Legged Locomotion","url":"https://www.academia.edu/Documents/in/Legged_Locomotion?f_ri=3413"},{"id":200726,"name":"Bipedal Locomotion","url":"https://www.academia.edu/Documents/in/Bipedal_Locomotion?f_ri=3413"},{"id":550904,"name":"Robotic Vision","url":"https://www.academia.edu/Documents/in/Robotic_Vision?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_10269937" data-work_id="10269937" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/10269937/Uncalibrated_Visual_Servo_control_with_multi_constraint_satisfaction">Uncalibrated Visual Servo control with multi-constraint satisfaction</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This paper devises a new multicriteria image based controller for the control of six degrees of freedom (PUMA560) robotic arm, based upon Linear Matrix Inequality (LMI). The aim lies in developing such a method that neither involves... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_10269937" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This paper devises a new multicriteria image based controller for the control of six degrees of freedom (PUMA560) robotic arm, based upon Linear Matrix Inequality (LMI). The aim lies in developing such a method that neither involves camera calibration parameters nor inverse kinematics. The approach adopted in this paper includes transpose Jacobian control; thus, inverse of the Jacobian matrix is no longer required. The proposed controller allows stabilizing the camera despite the unknown value of the target point depth. To make sure that the features remain in the camera field of view, and to restrict the controller&#39;s input using some bounds, visibility and kinematic constraints are introduced in the form of LMIs. By invoking the Lyapunov&#39;s direct method, closed loop stability of the system is ensured. Simulation results are shown for three different cases, which exhibit the system stability and convergence even in the presence of large errors, and present the comparative analysis of both i.e., systems with and without visibility and kinematic constraints.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/10269937" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b83ee3dcd4f2430a94d27e80ea287271" rel="nofollow" data-download="{&quot;attachment_id&quot;:47461292,&quot;asset_id&quot;:10269937,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47461292/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="25148609" href="https://unversitycentralpunjablahore.academia.edu/AbrarAhmed">Abrar Ahmed</a><script data-card-contents-for-user="25148609" type="text/json">{"id":25148609,"first_name":"Abrar","last_name":"Ahmed","domain_name":"unversitycentralpunjablahore","page_name":"AbrarAhmed","display_name":"Abrar Ahmed","profile_url":"https://unversitycentralpunjablahore.academia.edu/AbrarAhmed?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_10269937 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="10269937"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 10269937, container: ".js-paper-rank-work_10269937", }); });</script></li><li class="js-percentile-work_10269937 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10269937; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_10269937"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_10269937 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="10269937"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10269937; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10269937]").text(description); $(".js-view-count-work_10269937").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_10269937").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="10269937"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="819765" href="https://www.academia.edu/Documents/in/Constraint_Satisfaction">Constraint Satisfaction</a><script data-card-contents-for-ri="819765" type="text/json">{"id":819765,"name":"Constraint Satisfaction","url":"https://www.academia.edu/Documents/in/Constraint_Satisfaction?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=10269937]'), work: {"id":10269937,"title":"Uncalibrated Visual Servo control with multi-constraint satisfaction","created_at":"2015-01-21T13:42:30.041-08:00","url":"https://www.academia.edu/10269937/Uncalibrated_Visual_Servo_control_with_multi_constraint_satisfaction?f_ri=3413","dom_id":"work_10269937","summary":"This paper devises a new multicriteria image based controller for the control of six degrees of freedom (PUMA560) robotic arm, based upon Linear Matrix Inequality (LMI). The aim lies in developing such a method that neither involves camera calibration parameters nor inverse kinematics. The approach adopted in this paper includes transpose Jacobian control; thus, inverse of the Jacobian matrix is no longer required. The proposed controller allows stabilizing the camera despite the unknown value of the target point depth. To make sure that the features remain in the camera field of view, and to restrict the controller's input using some bounds, visibility and kinematic constraints are introduced in the form of LMIs. By invoking the Lyapunov's direct method, closed loop stability of the system is ensured. Simulation results are shown for three different cases, which exhibit the system stability and convergence even in the presence of large errors, and present the comparative analysis of both i.e., systems with and without visibility and kinematic constraints.","downloadable_attachments":[{"id":47461292,"asset_id":10269937,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":25148609,"first_name":"Abrar","last_name":"Ahmed","domain_name":"unversitycentralpunjablahore","page_name":"AbrarAhmed","display_name":"Abrar Ahmed","profile_url":"https://unversitycentralpunjablahore.academia.edu/AbrarAhmed?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":819765,"name":"Constraint Satisfaction","url":"https://www.academia.edu/Documents/in/Constraint_Satisfaction?f_ri=3413","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_77985377" data-work_id="77985377" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/77985377/Footstep_Planning_in_Rough_Terrain_for_Bipedal_Robots_Using_Curved_Contact_Patches">Footstep Planning in Rough Terrain for Bipedal Robots Using Curved Contact Patches</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/77985377" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fbd71e2c32d9a08e5b84e75812b16d65" rel="nofollow" data-download="{&quot;attachment_id&quot;:85188475,&quot;asset_id&quot;:77985377,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/85188475/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2613253" href="https://ucl.academia.edu/DimitriosKanoulas">Dimitrios Kanoulas</a><script data-card-contents-for-user="2613253" type="text/json">{"id":2613253,"first_name":"Dimitrios","last_name":"Kanoulas","domain_name":"ucl","page_name":"DimitriosKanoulas","display_name":"Dimitrios Kanoulas","profile_url":"https://ucl.academia.edu/DimitriosKanoulas?f_ri=3413","photo":"https://0.academia-photos.com/2613253/826405/37226025/s65_dimitrios.kanoulas.jpg"}</script></span></span></li><li class="js-paper-rank-work_77985377 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="77985377"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 77985377, container: ".js-paper-rank-work_77985377", }); });</script></li><li class="js-percentile-work_77985377 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77985377; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_77985377"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_77985377 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="77985377"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77985377; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77985377]").text(description); $(".js-view-count-work_77985377").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_77985377").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="77985377"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4893" href="https://www.academia.edu/Documents/in/Humanoid_Robotics">Humanoid Robotics</a>,&nbsp;<script data-card-contents-for-ri="4893" type="text/json">{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="30791" href="https://www.academia.edu/Documents/in/Path_planning">Path planning</a><script data-card-contents-for-ri="30791" type="text/json">{"id":30791,"name":"Path planning","url":"https://www.academia.edu/Documents/in/Path_planning?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=77985377]'), work: {"id":77985377,"title":"Footstep Planning in Rough Terrain for Bipedal Robots Using Curved Contact Patches","created_at":"2022-04-29T11:58:41.271-07:00","url":"https://www.academia.edu/77985377/Footstep_Planning_in_Rough_Terrain_for_Bipedal_Robots_Using_Curved_Contact_Patches?f_ri=3413","dom_id":"work_77985377","summary":null,"downloadable_attachments":[{"id":85188475,"asset_id":77985377,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2613253,"first_name":"Dimitrios","last_name":"Kanoulas","domain_name":"ucl","page_name":"DimitriosKanoulas","display_name":"Dimitrios Kanoulas","profile_url":"https://ucl.academia.edu/DimitriosKanoulas?f_ri=3413","photo":"https://0.academia-photos.com/2613253/826405/37226025/s65_dimitrios.kanoulas.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413","nofollow":false},{"id":30791,"name":"Path planning","url":"https://www.academia.edu/Documents/in/Path_planning?f_ri=3413","nofollow":false},{"id":99861,"name":"ROBOT","url":"https://www.academia.edu/Documents/in/ROBOT?f_ri=3413"},{"id":164258,"name":"Robot Path Planning","url":"https://www.academia.edu/Documents/in/Robot_Path_Planning?f_ri=3413"},{"id":483615,"name":"Terrain","url":"https://www.academia.edu/Documents/in/Terrain?f_ri=3413"},{"id":619635,"name":"Path Planning","url":"https://www.academia.edu/Documents/in/Path_Planning-1?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_819835" data-work_id="819835" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/819835/Facial_expression_recognition_with_relevance_vector_machines">Facial expression recognition with relevance vector machines</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/819835" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="1ccf0ab5ec373ccfe2c9adc84db7f8cf" rel="nofollow" data-download="{&quot;attachment_id&quot;:4909350,&quot;asset_id&quot;:819835,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/4909350/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="108974" href="https://tudelft.academia.edu/DragosDatcu">Dragos Datcu</a><script data-card-contents-for-user="108974" type="text/json">{"id":108974,"first_name":"Dragos","last_name":"Datcu","domain_name":"tudelft","page_name":"DragosDatcu","display_name":"Dragos Datcu","profile_url":"https://tudelft.academia.edu/DragosDatcu?f_ri=3413","photo":"https://0.academia-photos.com/108974/29769/27382/s65_dragos.datcu.jpg"}</script></span></span></li><li class="js-paper-rank-work_819835 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="819835"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 819835, container: ".js-paper-rank-work_819835", }); });</script></li><li class="js-percentile-work_819835 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 819835; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_819835"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_819835 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="819835"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 819835; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=819835]").text(description); $(".js-view-count-work_819835").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_819835").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="819835"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">10</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5109" href="https://www.academia.edu/Documents/in/Pattern_Recognition">Pattern Recognition</a>,&nbsp;<script data-card-contents-for-ri="5109" type="text/json">{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5110" href="https://www.academia.edu/Documents/in/Face_Recognition">Face Recognition</a>,&nbsp;<script data-card-contents-for-ri="5110" type="text/json">{"id":5110,"name":"Face Recognition","url":"https://www.academia.edu/Documents/in/Face_Recognition?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10408" href="https://www.academia.edu/Documents/in/Support_Vector_Machines">Support Vector Machines</a><script data-card-contents-for-ri="10408" type="text/json">{"id":10408,"name":"Support Vector Machines","url":"https://www.academia.edu/Documents/in/Support_Vector_Machines?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=819835]'), work: {"id":819835,"title":"Facial expression recognition with relevance vector machines","created_at":"2011-08-09T19:09:49.336-07:00","url":"https://www.academia.edu/819835/Facial_expression_recognition_with_relevance_vector_machines?f_ri=3413","dom_id":"work_819835","summary":null,"downloadable_attachments":[{"id":4909350,"asset_id":819835,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":108974,"first_name":"Dragos","last_name":"Datcu","domain_name":"tudelft","page_name":"DragosDatcu","display_name":"Dragos Datcu","profile_url":"https://tudelft.academia.edu/DragosDatcu?f_ri=3413","photo":"https://0.academia-photos.com/108974/29769/27382/s65_dragos.datcu.jpg"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=3413","nofollow":false},{"id":5110,"name":"Face Recognition","url":"https://www.academia.edu/Documents/in/Face_Recognition?f_ri=3413","nofollow":false},{"id":10408,"name":"Support Vector Machines","url":"https://www.academia.edu/Documents/in/Support_Vector_Machines?f_ri=3413","nofollow":false},{"id":21269,"name":"Facial expression","url":"https://www.academia.edu/Documents/in/Facial_expression?f_ri=3413"},{"id":43971,"name":"Face Detection","url":"https://www.academia.edu/Documents/in/Face_Detection?f_ri=3413"},{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification?f_ri=3413"},{"id":191289,"name":"Support vector machine","url":"https://www.academia.edu/Documents/in/Support_vector_machine?f_ri=3413"},{"id":1179384,"name":"Facial Expression Recognition","url":"https://www.academia.edu/Documents/in/Facial_Expression_Recognition?f_ri=3413"},{"id":1240380,"name":"Relevance Vector Machine","url":"https://www.academia.edu/Documents/in/Relevance_Vector_Machine?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_5713401" data-work_id="5713401" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/5713401/Techniques_for_evaluating_optical_flow_for_visual_odometry_in_extreme_terrain">Techniques for evaluating optical flow for visual odometry in extreme terrain</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/5713401" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="387026c160c82fe025a49676329b004f" rel="nofollow" data-download="{&quot;attachment_id&quot;:32755620,&quot;asset_id&quot;:5713401,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/32755620/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="8283995" href="https://independent.academia.edu/jasoncampbell5">jason campbell</a><script data-card-contents-for-user="8283995" type="text/json">{"id":8283995,"first_name":"jason","last_name":"campbell","domain_name":"independent","page_name":"jasoncampbell5","display_name":"jason campbell","profile_url":"https://independent.academia.edu/jasoncampbell5?f_ri=3413","photo":"https://gravatar.com/avatar/b4fc433eac8eb2b5e9e7b4afc2812310?s=65"}</script></span></span></li><li class="js-paper-rank-work_5713401 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="5713401"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 5713401, container: ".js-paper-rank-work_5713401", }); });</script></li><li class="js-percentile-work_5713401 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5713401; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_5713401"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_5713401 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="5713401"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5713401; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5713401]").text(description); $(".js-view-count-work_5713401").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_5713401").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="5713401"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">13</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="56541" href="https://www.academia.edu/Documents/in/Motion_estimation">Motion estimation</a>,&nbsp;<script data-card-contents-for-ri="56541" type="text/json">{"id":56541,"name":"Motion estimation","url":"https://www.academia.edu/Documents/in/Motion_estimation?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="59378" href="https://www.academia.edu/Documents/in/Optical_Flow">Optical Flow</a>,&nbsp;<script data-card-contents-for-ri="59378" type="text/json">{"id":59378,"name":"Optical Flow","url":"https://www.academia.edu/Documents/in/Optical_Flow?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="66823" href="https://www.academia.edu/Documents/in/Mobile_Robots">Mobile Robots</a><script data-card-contents-for-ri="66823" type="text/json">{"id":66823,"name":"Mobile Robots","url":"https://www.academia.edu/Documents/in/Mobile_Robots?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=5713401]'), work: {"id":5713401,"title":"Techniques for evaluating optical flow for visual odometry in extreme terrain","created_at":"2014-01-14T06:50:03.834-08:00","url":"https://www.academia.edu/5713401/Techniques_for_evaluating_optical_flow_for_visual_odometry_in_extreme_terrain?f_ri=3413","dom_id":"work_5713401","summary":null,"downloadable_attachments":[{"id":32755620,"asset_id":5713401,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":8283995,"first_name":"jason","last_name":"campbell","domain_name":"independent","page_name":"jasoncampbell5","display_name":"jason campbell","profile_url":"https://independent.academia.edu/jasoncampbell5?f_ri=3413","photo":"https://gravatar.com/avatar/b4fc433eac8eb2b5e9e7b4afc2812310?s=65"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":56541,"name":"Motion estimation","url":"https://www.academia.edu/Documents/in/Motion_estimation?f_ri=3413","nofollow":false},{"id":59378,"name":"Optical Flow","url":"https://www.academia.edu/Documents/in/Optical_Flow?f_ri=3413","nofollow":false},{"id":66823,"name":"Mobile Robots","url":"https://www.academia.edu/Documents/in/Mobile_Robots?f_ri=3413","nofollow":false},{"id":179654,"name":"Mobile Robot","url":"https://www.academia.edu/Documents/in/Mobile_Robot?f_ri=3413"},{"id":204469,"name":"Intelligent robots","url":"https://www.academia.edu/Documents/in/Intelligent_robots?f_ri=3413"},{"id":208947,"name":"Theory and Practice","url":"https://www.academia.edu/Documents/in/Theory_and_Practice?f_ri=3413"},{"id":221756,"name":"Motion Capture","url":"https://www.academia.edu/Documents/in/Motion_Capture?f_ri=3413"},{"id":351461,"name":"Biological systems","url":"https://www.academia.edu/Documents/in/Biological_systems?f_ri=3413"},{"id":892171,"name":"Indoor Environment","url":"https://www.academia.edu/Documents/in/Indoor_Environment?f_ri=3413"},{"id":999999,"name":"Optical Tracking","url":"https://www.academia.edu/Documents/in/Optical_Tracking?f_ri=3413"},{"id":1329208,"name":"Visual Odometry","url":"https://www.academia.edu/Documents/in/Visual_Odometry?f_ri=3413"},{"id":1768971,"name":"Experimental Methodology","url":"https://www.academia.edu/Documents/in/Experimental_Methodology?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_21502862" data-work_id="21502862" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/21502862/Precise_pulsed_time_of_flight_laser_range_finder_for_industrial_distance_measurements">Precise pulsed time-of-flight laser range finder for industrial distance measurements</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/21502862" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fae062ed6053c797d16fe629cc2d49dc" rel="nofollow" data-download="{&quot;attachment_id&quot;:41945100,&quot;asset_id&quot;:21502862,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/41945100/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="25394563" href="https://oulu.academia.edu/AriKilpel%C3%A4">Ari J Kilpelä</a><script data-card-contents-for-user="25394563" type="text/json">{"id":25394563,"first_name":"Ari","last_name":"Kilpelä","domain_name":"oulu","page_name":"AriKilpelä","display_name":"Ari J Kilpelä","profile_url":"https://oulu.academia.edu/AriKilpel%C3%A4?f_ri=3413","photo":"https://0.academia-photos.com/25394563/28574559/26709381/s65_ari.kilpel_.jpg"}</script></span></span></li><li class="js-paper-rank-work_21502862 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="21502862"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 21502862, container: ".js-paper-rank-work_21502862", }); });</script></li><li class="js-percentile-work_21502862 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21502862; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_21502862"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_21502862 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="21502862"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21502862; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21502862]").text(description); $(".js-view-count-work_21502862").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_21502862").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="21502862"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">14</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1252" href="https://www.academia.edu/Documents/in/Remote_Sensing">Remote Sensing</a>,&nbsp;<script data-card-contents-for-ri="1252" type="text/json">{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a><script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=21502862]'), work: {"id":21502862,"title":"Precise pulsed time-of-flight laser range finder for industrial distance measurements","created_at":"2016-02-03T04:17:54.101-08:00","url":"https://www.academia.edu/21502862/Precise_pulsed_time_of_flight_laser_range_finder_for_industrial_distance_measurements?f_ri=3413","dom_id":"work_21502862","summary":null,"downloadable_attachments":[{"id":41945100,"asset_id":21502862,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":25394563,"first_name":"Ari","last_name":"Kilpelä","domain_name":"oulu","page_name":"AriKilpelä","display_name":"Ari J Kilpelä","profile_url":"https://oulu.academia.edu/AriKilpel%C3%A4?f_ri=3413","photo":"https://0.academia-photos.com/25394563/28574559/26709381/s65_ari.kilpel_.jpg"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=3413","nofollow":false},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false},{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":58918,"name":"Scientific Instruments","url":"https://www.academia.edu/Documents/in/Scientific_Instruments?f_ri=3413"},{"id":112619,"name":"Time of Flight","url":"https://www.academia.edu/Documents/in/Time_of_Flight?f_ri=3413"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences?f_ri=3413"},{"id":184909,"name":"Structure Analysis","url":"https://www.academia.edu/Documents/in/Structure_Analysis?f_ri=3413"},{"id":242220,"name":"Pulse Compression","url":"https://www.academia.edu/Documents/in/Pulse_Compression?f_ri=3413"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES?f_ri=3413"},{"id":296317,"name":"Frequency Synthesizer","url":"https://www.academia.edu/Documents/in/Frequency_Synthesizer?f_ri=3413"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional?f_ri=3413"},{"id":559443,"name":"Laser Range Finder","url":"https://www.academia.edu/Documents/in/Laser_Range_Finder?f_ri=3413"},{"id":1372104,"name":"Optical Pulse Generation","url":"https://www.academia.edu/Documents/in/Optical_Pulse_Generation?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_2279126" data-work_id="2279126" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/2279126/A_Simple_Method_for_Path_Generation_and_Positioning_Control_of_Robot_Manipulators">A Simple Method for Path Generation and Positioning Control of Robot Manipulators</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/2279126" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c3f0c1582a86cfebdddbed90d7d2b4f2" rel="nofollow" data-download="{&quot;attachment_id&quot;:30329236,&quot;asset_id&quot;:2279126,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/30329236/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2752760" href="https://aitthailand.academia.edu/KritsadaNakthewan">Kritsada Nakthewan</a><script data-card-contents-for-user="2752760" type="text/json">{"id":2752760,"first_name":"Kritsada","last_name":"Nakthewan","domain_name":"aitthailand","page_name":"KritsadaNakthewan","display_name":"Kritsada Nakthewan","profile_url":"https://aitthailand.academia.edu/KritsadaNakthewan?f_ri=3413","photo":"https://0.academia-photos.com/2752760/893198/1188690/s65_kritsada.nakthewan.png"}</script></span></span></li><li class="js-paper-rank-work_2279126 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="2279126"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 2279126, container: ".js-paper-rank-work_2279126", }); });</script></li><li class="js-percentile-work_2279126 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2279126; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_2279126"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_2279126 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="2279126"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2279126; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2279126]").text(description); $(".js-view-count-work_2279126").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_2279126").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="2279126"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="30329" href="https://www.academia.edu/Documents/in/Genetic_Algorithm">Genetic Algorithm</a>,&nbsp;<script data-card-contents-for-ri="30329" type="text/json">{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="93882" href="https://www.academia.edu/Documents/in/Robot_kinematics">Robot kinematics</a>,&nbsp;<script data-card-contents-for-ri="93882" type="text/json">{"id":93882,"name":"Robot kinematics","url":"https://www.academia.edu/Documents/in/Robot_kinematics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="168137" href="https://www.academia.edu/Documents/in/Kinematics_Dynamics_and_Control_of_Robot_Manipulators">Kinematics, Dynamics, and Control of Robot Manipulators</a><script data-card-contents-for-ri="168137" type="text/json">{"id":168137,"name":"Kinematics, Dynamics, and Control of Robot Manipulators","url":"https://www.academia.edu/Documents/in/Kinematics_Dynamics_and_Control_of_Robot_Manipulators?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=2279126]'), work: {"id":2279126,"title":"A Simple Method for Path Generation and Positioning Control of Robot Manipulators","created_at":"2012-12-11T15:27:07.883-08:00","url":"https://www.academia.edu/2279126/A_Simple_Method_for_Path_Generation_and_Positioning_Control_of_Robot_Manipulators?f_ri=3413","dom_id":"work_2279126","summary":null,"downloadable_attachments":[{"id":30329236,"asset_id":2279126,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2752760,"first_name":"Kritsada","last_name":"Nakthewan","domain_name":"aitthailand","page_name":"KritsadaNakthewan","display_name":"Kritsada Nakthewan","profile_url":"https://aitthailand.academia.edu/KritsadaNakthewan?f_ri=3413","photo":"https://0.academia-photos.com/2752760/893198/1188690/s65_kritsada.nakthewan.png"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm?f_ri=3413","nofollow":false},{"id":93882,"name":"Robot kinematics","url":"https://www.academia.edu/Documents/in/Robot_kinematics?f_ri=3413","nofollow":false},{"id":168137,"name":"Kinematics, Dynamics, and Control of Robot Manipulators","url":"https://www.academia.edu/Documents/in/Kinematics_Dynamics_and_Control_of_Robot_Manipulators?f_ri=3413","nofollow":false},{"id":188144,"name":"Dynamic Modeling","url":"https://www.academia.edu/Documents/in/Dynamic_Modeling?f_ri=3413"},{"id":511390,"name":"Robotics Manipulators","url":"https://www.academia.edu/Documents/in/Robotics_Manipulators?f_ri=3413"},{"id":983552,"name":"Inverse and Forward Kinematic","url":"https://www.academia.edu/Documents/in/Inverse_and_Forward_Kinematic?f_ri=3413"},{"id":983553,"name":"MATLA/ADAMS Co simulation","url":"https://www.academia.edu/Documents/in/MATLA_ADAMS_Co_simulation?f_ri=3413"},{"id":983554,"name":"Robot Manipulator","url":"https://www.academia.edu/Documents/in/Robot_Manipulator?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_79816207" data-work_id="79816207" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/79816207/Intuitive_industrial_robot_programming_through_incremental_multimodal_language_and_augmented_reality">Intuitive industrial robot programming through incremental multimodal language and augmented reality</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/79816207" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="19791dc9b53d9d324d0d091ad387e0d8" rel="nofollow" data-download="{&quot;attachment_id&quot;:86403592,&quot;asset_id&quot;:79816207,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/86403592/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="567058" href="https://mdh.academia.edu/BaranCuruklu">Baran Curuklu</a><script data-card-contents-for-user="567058" type="text/json">{"id":567058,"first_name":"Baran","last_name":"Curuklu","domain_name":"mdh","page_name":"BaranCuruklu","display_name":"Baran Curuklu","profile_url":"https://mdh.academia.edu/BaranCuruklu?f_ri=3413","photo":"https://0.academia-photos.com/567058/3164251/21023418/s65_baran.curuklu.png"}</script></span></span></li><li class="js-paper-rank-work_79816207 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="79816207"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 79816207, container: ".js-paper-rank-work_79816207", }); });</script></li><li class="js-percentile-work_79816207 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79816207; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_79816207"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_79816207 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="79816207"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79816207; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79816207]").text(description); $(".js-view-count-work_79816207").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_79816207").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="79816207"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">15</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="453" href="https://www.academia.edu/Documents/in/Object_Oriented_Programming">Object Oriented Programming</a>,&nbsp;<script data-card-contents-for-ri="453" type="text/json">{"id":453,"name":"Object Oriented Programming","url":"https://www.academia.edu/Documents/in/Object_Oriented_Programming?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="472" href="https://www.academia.edu/Documents/in/Human_Computer_Interaction">Human Computer Interaction</a>,&nbsp;<script data-card-contents-for-ri="472" type="text/json">{"id":472,"name":"Human Computer Interaction","url":"https://www.academia.edu/Documents/in/Human_Computer_Interaction?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a><script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=79816207]'), work: {"id":79816207,"title":"Intuitive industrial robot programming through incremental multimodal language and augmented reality","created_at":"2022-05-24T04:50:55.633-07:00","url":"https://www.academia.edu/79816207/Intuitive_industrial_robot_programming_through_incremental_multimodal_language_and_augmented_reality?f_ri=3413","dom_id":"work_79816207","summary":null,"downloadable_attachments":[{"id":86403592,"asset_id":79816207,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":567058,"first_name":"Baran","last_name":"Curuklu","domain_name":"mdh","page_name":"BaranCuruklu","display_name":"Baran Curuklu","profile_url":"https://mdh.academia.edu/BaranCuruklu?f_ri=3413","photo":"https://0.academia-photos.com/567058/3164251/21023418/s65_baran.curuklu.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false},{"id":453,"name":"Object Oriented Programming","url":"https://www.academia.edu/Documents/in/Object_Oriented_Programming?f_ri=3413","nofollow":false},{"id":472,"name":"Human Computer Interaction","url":"https://www.academia.edu/Documents/in/Human_Computer_Interaction?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":5673,"name":"Augmented Reality","url":"https://www.academia.edu/Documents/in/Augmented_Reality?f_ri=3413"},{"id":93882,"name":"Robot kinematics","url":"https://www.academia.edu/Documents/in/Robot_kinematics?f_ri=3413"},{"id":95162,"name":"Grammar","url":"https://www.academia.edu/Documents/in/Grammar?f_ri=3413"},{"id":97585,"name":"User interfaces","url":"https://www.academia.edu/Documents/in/User_interfaces?f_ri=3413"},{"id":99861,"name":"ROBOT","url":"https://www.academia.edu/Documents/in/ROBOT?f_ri=3413"},{"id":188197,"name":"Industrial Robots","url":"https://www.academia.edu/Documents/in/Industrial_Robots?f_ri=3413"},{"id":550905,"name":"Robot programming","url":"https://www.academia.edu/Documents/in/Robot_programming?f_ri=3413"},{"id":757194,"name":"Programming Paradigm","url":"https://www.academia.edu/Documents/in/Programming_Paradigm?f_ri=3413"},{"id":1461519,"name":"Robotics Automation","url":"https://www.academia.edu/Documents/in/Robotics_Automation?f_ri=3413"},{"id":1751583,"name":"Product Line","url":"https://www.academia.edu/Documents/in/Product_Line?f_ri=3413"},{"id":4040883,"name":"service robot","url":"https://www.academia.edu/Documents/in/service_robot?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_48796383" data-work_id="48796383" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/48796383/Stereographic_projection_for_industrial_manipulator_tasks_Theory_and_experiments">Stereographic projection for industrial manipulator tasks: Theory and experiments</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/48796383" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d684cb55f2cae9fa9039bd55858863eb" rel="nofollow" data-download="{&quot;attachment_id&quot;:67229155,&quot;asset_id&quot;:48796383,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/67229155/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="28400188" href="https://independent.academia.edu/KristinPettersen">Kristin Pettersen</a><script data-card-contents-for-user="28400188" type="text/json">{"id":28400188,"first_name":"Kristin","last_name":"Pettersen","domain_name":"independent","page_name":"KristinPettersen","display_name":"Kristin Pettersen","profile_url":"https://independent.academia.edu/KristinPettersen?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_48796383 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="48796383"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 48796383, container: ".js-paper-rank-work_48796383", }); });</script></li><li class="js-percentile-work_48796383 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 48796383; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_48796383"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_48796383 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="48796383"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 48796383; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=48796383]").text(description); $(".js-view-count-work_48796383").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_48796383").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="48796383"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">8</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="129253" href="https://www.academia.edu/Documents/in/Real_Time_Control">Real Time Control</a>,&nbsp;<script data-card-contents-for-ri="129253" type="text/json">{"id":129253,"name":"Real Time Control","url":"https://www.academia.edu/Documents/in/Real_Time_Control?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="168144" href="https://www.academia.edu/Documents/in/Redundancy">Redundancy</a>,&nbsp;<script data-card-contents-for-ri="168144" type="text/json">{"id":168144,"name":"Redundancy","url":"https://www.academia.edu/Documents/in/Redundancy?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="188197" href="https://www.academia.edu/Documents/in/Industrial_Robots">Industrial Robots</a><script data-card-contents-for-ri="188197" type="text/json">{"id":188197,"name":"Industrial Robots","url":"https://www.academia.edu/Documents/in/Industrial_Robots?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=48796383]'), work: {"id":48796383,"title":"Stereographic projection for industrial manipulator tasks: Theory and experiments","created_at":"2021-05-06T05:45:54.042-07:00","url":"https://www.academia.edu/48796383/Stereographic_projection_for_industrial_manipulator_tasks_Theory_and_experiments?f_ri=3413","dom_id":"work_48796383","summary":null,"downloadable_attachments":[{"id":67229155,"asset_id":48796383,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":28400188,"first_name":"Kristin","last_name":"Pettersen","domain_name":"independent","page_name":"KristinPettersen","display_name":"Kristin Pettersen","profile_url":"https://independent.academia.edu/KristinPettersen?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":129253,"name":"Real Time Control","url":"https://www.academia.edu/Documents/in/Real_Time_Control?f_ri=3413","nofollow":false},{"id":168144,"name":"Redundancy","url":"https://www.academia.edu/Documents/in/Redundancy?f_ri=3413","nofollow":false},{"id":188197,"name":"Industrial Robots","url":"https://www.academia.edu/Documents/in/Industrial_Robots?f_ri=3413","nofollow":false},{"id":308126,"name":"Stereographic Projection","url":"https://www.academia.edu/Documents/in/Stereographic_Projection?f_ri=3413"},{"id":778981,"name":"Experimental Validation","url":"https://www.academia.edu/Documents/in/Experimental_Validation?f_ri=3413"},{"id":983554,"name":"Robot Manipulator","url":"https://www.academia.edu/Documents/in/Robot_Manipulator?f_ri=3413"},{"id":1142923,"name":"End Effectors","url":"https://www.academia.edu/Documents/in/End_Effectors?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_29069797 coauthored" data-work_id="29069797" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/29069797/Next_Best_Stereo_Extending_Next_Best_View_Optimisation_For_Collaborative_Sensors">Next-Best Stereo: Extending Next-Best View Optimisation For Collaborative Sensors</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Most 3D reconstruction approaches passively optimise over all data, exhaustively matching pairs, rather than actively selecting data to process. This is costly both in terms of time and computer resources, and quickly becomes intractable... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_29069797" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Most 3D reconstruction approaches passively optimise over all data, exhaustively matching pairs, rather than actively selecting data to process. This is costly both in terms of time and computer resources, and quickly becomes intractable for large datasets. This work proposes an approach to intelligently filter large amounts of data for 3D reconstructions of unknown scenes using monocular cameras. Our contributions are twofold: First, we present a novel approach to efficiently optimise the Next-Best View (NBV) in terms of accuracy and coverage using partial scene geometry. Second, we extend this to intelligently selecting stereo pairs by jointly optimising the baseline and vergence to find the NBV&#39;s best stereo pair to perform reconstruction. Both contributions are extremely efficient, taking 0.8ms and 0.3ms per pose, respectively. Experimental evaluation shows that the proposed method allows efficient selection of stereo pairs for reconstruction, such that a dense model can be obtained with only a small number of images. Once a complete model has been obtained, the remaining computational budget is used to intelligently refine areas of uncertainty, achieving results comparable to state-of-the-art batch approaches on the Middlebury dataset, using as little as 3.8% of the views.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/29069797" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="af971d379f51b68078c4a7f1bd90945a" rel="nofollow" data-download="{&quot;attachment_id&quot;:49522838,&quot;asset_id&quot;:29069797,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49522838/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="54838585" href="https://surrey.academia.edu/OscarMendez">Oscar Mendez</a><script data-card-contents-for-user="54838585" type="text/json">{"id":54838585,"first_name":"Oscar","last_name":"Mendez","domain_name":"surrey","page_name":"OscarMendez","display_name":"Oscar Mendez","profile_url":"https://surrey.academia.edu/OscarMendez?f_ri=3413","photo":"https://0.academia-photos.com/54838585/14458820/19643424/s65_oscar.mendez.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-29069797">+2</span><div class="hidden js-additional-users-29069797"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://surrey.academia.edu/SimonHadfield">Simon Hadfield</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://surrey.academia.edu/RichardBowden">Richard Bowden</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-29069797'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-29069797').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_29069797 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="29069797"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 29069797, container: ".js-paper-rank-work_29069797", }); });</script></li><li class="js-percentile-work_29069797 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29069797; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_29069797"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_29069797 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="29069797"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29069797; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29069797]").text(description); $(".js-view-count-work_29069797").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_29069797").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="29069797"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="15157" href="https://www.academia.edu/Documents/in/3D_Reconstruction">3D Reconstruction</a><script data-card-contents-for-ri="15157" type="text/json">{"id":15157,"name":"3D Reconstruction","url":"https://www.academia.edu/Documents/in/3D_Reconstruction?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=29069797]'), work: {"id":29069797,"title":"Next-Best Stereo: Extending Next-Best View Optimisation For Collaborative Sensors","created_at":"2016-10-11T06:10:54.629-07:00","url":"https://www.academia.edu/29069797/Next_Best_Stereo_Extending_Next_Best_View_Optimisation_For_Collaborative_Sensors?f_ri=3413","dom_id":"work_29069797","summary":"Most 3D reconstruction approaches passively optimise over all data, exhaustively matching pairs, rather than actively selecting data to process. This is costly both in terms of time and computer resources, and quickly becomes intractable for large datasets. This work proposes an approach to intelligently filter large amounts of data for 3D reconstructions of unknown scenes using monocular cameras. Our contributions are twofold: First, we present a novel approach to efficiently optimise the Next-Best View (NBV) in terms of accuracy and coverage using partial scene geometry. Second, we extend this to intelligently selecting stereo pairs by jointly optimising the baseline and vergence to find the NBV's best stereo pair to perform reconstruction. Both contributions are extremely efficient, taking 0.8ms and 0.3ms per pose, respectively. Experimental evaluation shows that the proposed method allows efficient selection of stereo pairs for reconstruction, such that a dense model can be obtained with only a small number of images. Once a complete model has been obtained, the remaining computational budget is used to intelligently refine areas of uncertainty, achieving results comparable to state-of-the-art batch approaches on the Middlebury dataset, using as little as 3.8% of the views.","downloadable_attachments":[{"id":49522838,"asset_id":29069797,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":54838585,"first_name":"Oscar","last_name":"Mendez","domain_name":"surrey","page_name":"OscarMendez","display_name":"Oscar Mendez","profile_url":"https://surrey.academia.edu/OscarMendez?f_ri=3413","photo":"https://0.academia-photos.com/54838585/14458820/19643424/s65_oscar.mendez.jpg"},{"id":1185658,"first_name":"Simon","last_name":"Hadfield","domain_name":"surrey","page_name":"SimonHadfield","display_name":"Simon Hadfield","profile_url":"https://surrey.academia.edu/SimonHadfield?f_ri=3413","photo":"https://0.academia-photos.com/1185658/1588468/20106672/s65_simon.hadfield.jpg"},{"id":5692,"first_name":"Richard","last_name":"Bowden","domain_name":"surrey","page_name":"RichardBowden","display_name":"Richard Bowden","profile_url":"https://surrey.academia.edu/RichardBowden?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":15157,"name":"3D Reconstruction","url":"https://www.academia.edu/Documents/in/3D_Reconstruction?f_ri=3413","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_47463941" data-work_id="47463941" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/47463941/A_cooperative_agent_based_architecture_for_environmental_exploration_and_knowledge_sharing_by_vision">A cooperative agent based architecture for environmental exploration and knowledge sharing by vision</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">A comprehensive approach to the design and implementation of multi-robots cooperative systems is described. It focuses on a design process that uses the Unified Modeling Language and on a detailed ontology description with the goal of... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_47463941" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">A comprehensive approach to the design and implementation of multi-robots cooperative systems is described. It focuses on a design process that uses the Unified Modeling Language and on a detailed ontology description with the goal of sharing the knowledge on environments that robots can acquire through the use of their vision sub-system. We base the implementation of our robotics vision system on agents inserted in a generic multi-level architectures. The first objective of this work is to provide a framework ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/47463941" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="dc0aea8527bf7f1ce821f87b4ed75547" rel="nofollow" data-download="{&quot;attachment_id&quot;:66543261,&quot;asset_id&quot;:47463941,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/66543261/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="62022850" href="https://independent.academia.edu/MassimoCossentino">Massimo Cossentino</a><script data-card-contents-for-user="62022850" type="text/json">{"id":62022850,"first_name":"Massimo","last_name":"Cossentino","domain_name":"independent","page_name":"MassimoCossentino","display_name":"Massimo Cossentino","profile_url":"https://independent.academia.edu/MassimoCossentino?f_ri=3413","photo":"https://0.academia-photos.com/62022850/29485733/27437894/s65_massimo.cossentino.jpg"}</script></span></span></li><li class="js-paper-rank-work_47463941 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="47463941"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 47463941, container: ".js-paper-rank-work_47463941", }); });</script></li><li class="js-percentile-work_47463941 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47463941; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_47463941"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_47463941 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="47463941"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47463941; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47463941]").text(description); $(".js-view-count-work_47463941").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_47463941").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="47463941"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">10</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5527" href="https://www.academia.edu/Documents/in/Knowledge_sharing">Knowledge sharing</a>,&nbsp;<script data-card-contents-for-ri="5527" type="text/json">{"id":5527,"name":"Knowledge sharing","url":"https://www.academia.edu/Documents/in/Knowledge_sharing?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="7406" href="https://www.academia.edu/Documents/in/Agent_Based">Agent Based</a>,&nbsp;<script data-card-contents-for-ri="7406" type="text/json">{"id":7406,"name":"Agent Based","url":"https://www.academia.edu/Documents/in/Agent_Based?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="71358" href="https://www.academia.edu/Documents/in/Design_process">Design process</a><script data-card-contents-for-ri="71358" type="text/json">{"id":71358,"name":"Design process","url":"https://www.academia.edu/Documents/in/Design_process?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=47463941]'), work: {"id":47463941,"title":"A cooperative agent based architecture for environmental exploration and knowledge sharing by vision","created_at":"2021-04-22T09:19:36.484-07:00","url":"https://www.academia.edu/47463941/A_cooperative_agent_based_architecture_for_environmental_exploration_and_knowledge_sharing_by_vision?f_ri=3413","dom_id":"work_47463941","summary":"A comprehensive approach to the design and implementation of multi-robots cooperative systems is described. It focuses on a design process that uses the Unified Modeling Language and on a detailed ontology description with the goal of sharing the knowledge on environments that robots can acquire through the use of their vision sub-system. We base the implementation of our robotics vision system on agents inserted in a generic multi-level architectures. The first objective of this work is to provide a framework ...","downloadable_attachments":[{"id":66543261,"asset_id":47463941,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":62022850,"first_name":"Massimo","last_name":"Cossentino","domain_name":"independent","page_name":"MassimoCossentino","display_name":"Massimo Cossentino","profile_url":"https://independent.academia.edu/MassimoCossentino?f_ri=3413","photo":"https://0.academia-photos.com/62022850/29485733/27437894/s65_massimo.cossentino.jpg"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":5527,"name":"Knowledge sharing","url":"https://www.academia.edu/Documents/in/Knowledge_sharing?f_ri=3413","nofollow":false},{"id":7406,"name":"Agent Based","url":"https://www.academia.edu/Documents/in/Agent_Based?f_ri=3413","nofollow":false},{"id":71358,"name":"Design process","url":"https://www.academia.edu/Documents/in/Design_process?f_ri=3413","nofollow":false},{"id":134417,"name":"Shared Knowledge","url":"https://www.academia.edu/Documents/in/Shared_Knowledge?f_ri=3413"},{"id":499589,"name":"Unified Modeling Language","url":"https://www.academia.edu/Documents/in/Unified_Modeling_Language?f_ri=3413"},{"id":954165,"name":"Cooperative Systems","url":"https://www.academia.edu/Documents/in/Cooperative_Systems?f_ri=3413"},{"id":994520,"name":"Design and Implementation","url":"https://www.academia.edu/Documents/in/Design_and_Implementation?f_ri=3413"},{"id":1438264,"name":"Cooperative Agents","url":"https://www.academia.edu/Documents/in/Cooperative_Agents?f_ri=3413"},{"id":3308916,"name":"Difference Operator","url":"https://www.academia.edu/Documents/in/Difference_Operator?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_3347194" data-work_id="3347194" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/3347194/Vision_based_obstacles_detection_for_a_mobile_robot">Vision-based obstacles detection for a mobile robot</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Vision-based robot navigation systems allow a robot to explore and to navigate in its environment in a way that facilitates path planning and goal-oriented tasks. The vision sensor is mainly used for obstacle detection and avoidance,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_3347194" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Vision-based robot navigation systems allow a robot to explore and to navigate in its environment in a way that facilitates path planning and goal-oriented tasks. The vision sensor is mainly used for obstacle detection and avoidance, object detection and tracking, and interaction with users. Usually these systems do not depend solely on vision sensors but use other sensors like sonar and laser range finder. The paper considers an important issue for mobile robots navigation. This issue is the detection of obstacles in front of the robot within a corridor. We proposed and evaluated three algorithms for obstacle detection within a corridor environment using image processing techniques.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/3347194" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="7d4316ae95c1bdad56292d9b420215c5" rel="nofollow" data-download="{&quot;attachment_id&quot;:31433333,&quot;asset_id&quot;:3347194,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/31433333/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1461589" href="https://benha.academia.edu/BasemElHalawany">Basem M . El-Halawany</a><script data-card-contents-for-user="1461589" type="text/json">{"id":1461589,"first_name":"Basem","last_name":"El-Halawany","domain_name":"benha","page_name":"BasemElHalawany","display_name":"Basem M . El-Halawany","profile_url":"https://benha.academia.edu/BasemElHalawany?f_ri=3413","photo":"https://0.academia-photos.com/1461589/522362/2839750/s65_basem.el-halawany.jpg"}</script></span></span></li><li class="js-paper-rank-work_3347194 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="3347194"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 3347194, container: ".js-paper-rank-work_3347194", }); });</script></li><li class="js-percentile-work_3347194 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3347194; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_3347194"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_3347194 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="3347194"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3347194; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3347194]").text(description); $(".js-view-count-work_3347194").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_3347194").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="3347194"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a><script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=3347194]'), work: {"id":3347194,"title":"Vision-based obstacles detection for a mobile robot","created_at":"2013-04-21T00:37:18.520-07:00","url":"https://www.academia.edu/3347194/Vision_based_obstacles_detection_for_a_mobile_robot?f_ri=3413","dom_id":"work_3347194","summary":"Vision-based robot navigation systems allow a robot to explore and to navigate in its environment in a way that facilitates path planning and goal-oriented tasks. The vision sensor is mainly used for obstacle detection and avoidance, object detection and tracking, and interaction with users. Usually these systems do not depend solely on vision sensors but use other sensors like sonar and laser range finder. The paper considers an important issue for mobile robots navigation. This issue is the detection of obstacles in front of the robot within a corridor. We proposed and evaluated three algorithms for obstacle detection within a corridor environment using image processing techniques.","downloadable_attachments":[{"id":31433333,"asset_id":3347194,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1461589,"first_name":"Basem","last_name":"El-Halawany","domain_name":"benha","page_name":"BasemElHalawany","display_name":"Basem M . El-Halawany","profile_url":"https://benha.academia.edu/BasemElHalawany?f_ri=3413","photo":"https://0.academia-photos.com/1461589/522362/2839750/s65_basem.el-halawany.jpg"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_34879652" data-work_id="34879652" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/34879652/2nd_Call_for_Book_Chapters_Book_Title_Imaging_and_Sensing_for_Unmanned_Aerial_Vehicles">2nd Call for Book Chapters - Book Title: Imaging and Sensing for Unmanned Aerial Vehicles</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We would like to invite you to join this exciting new project as a chapter contributor. Since this is a textbook, a great deal of this chapter entails a survey on the topic under the paradigm of cyber-physical systems, what can be done... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_34879652" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We would like to invite you to join this exciting new project as a chapter contributor. Since this is a textbook, a great deal of this chapter entails a survey on the topic under the paradigm of cyber-physical systems, what can be done onboard and remotely, the distributed nature of the system and some exercises on futurology (anticipating trends can shed some light on upcoming designs). IET will bring great visibility to your work. You are welcome to suggest another topic/chapter title if you feel it would be more suitable. Each chapter should be around 20-25 pages each and can be submitted as a Word or Latex File. The IET will send you additional information (formatting, permission form, etc.) with the contributor&#39;s agreement once you have agreed to contribute to the book. Visit http:// <a href="http://www.theiet.org/resources/author-hub/books/index.cfm" rel="nofollow">www.theiet.org/resources/author-hub/books/index.cfm</a> to get all information you need as a contributor to an IET research-level book. Each book is expected to have a total number of 500 printed pages (based on approximately 550 words per page with a 20% allowance for figures and tables). We have included a tentative schedule and list of topics below. If this is something you would consider, please send me the title of your chapter, a short description/abstract of the chapter content, and your full contact details. We will expect original content and new results for this book. You can, of course, reuse published material but the percentage of material reuse for the chapter should be less than 40%. The IET will run a piracy software on the full manuscript to control that you are including original material and will reject chapters who contain a large amount of already-published material so please do take this into consideration.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/34879652" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="1c911e9262f0c23880f25860cc90b54b" rel="nofollow" data-download="{&quot;attachment_id&quot;:54739455,&quot;asset_id&quot;:34879652,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/54739455/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1569445" href="https://uff.academia.edu/VaniaEstrela">Vania V Estrela</a><script data-card-contents-for-user="1569445" type="text/json">{"id":1569445,"first_name":"Vania","last_name":"Estrela","domain_name":"uff","page_name":"VaniaEstrela","display_name":"Vania V Estrela","profile_url":"https://uff.academia.edu/VaniaEstrela?f_ri=3413","photo":"https://0.academia-photos.com/1569445/584405/780232/s65_vania_v..estrela.jpg"}</script></span></span></li><li class="js-paper-rank-work_34879652 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="34879652"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 34879652, container: ".js-paper-rank-work_34879652", }); });</script></li><li class="js-percentile-work_34879652 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34879652; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_34879652"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_34879652 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="34879652"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34879652; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34879652]").text(description); $(".js-view-count-work_34879652").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_34879652").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="34879652"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">164</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl11x"><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="445" href="https://www.academia.edu/Documents/in/Computer_Graphics">Computer Graphics</a>,&nbsp;<script data-card-contents-for-ri="445" type="text/json">{"id":445,"name":"Computer Graphics","url":"https://www.academia.edu/Documents/in/Computer_Graphics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="471" href="https://www.academia.edu/Documents/in/Robotics_Computer_Science_">Robotics (Computer Science)</a><script data-card-contents-for-ri="471" type="text/json">{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=34879652]'), work: {"id":34879652,"title":"2nd Call for Book Chapters - Book Title: Imaging and Sensing for Unmanned Aerial Vehicles","created_at":"2017-10-17T04:23:22.095-07:00","url":"https://www.academia.edu/34879652/2nd_Call_for_Book_Chapters_Book_Title_Imaging_and_Sensing_for_Unmanned_Aerial_Vehicles?f_ri=3413","dom_id":"work_34879652","summary":"We would like to invite you to join this exciting new project as a chapter contributor. Since this is a textbook, a great deal of this chapter entails a survey on the topic under the paradigm of cyber-physical systems, what can be done onboard and remotely, the distributed nature of the system and some exercises on futurology (anticipating trends can shed some light on upcoming designs). IET will bring great visibility to your work. You are welcome to suggest another topic/chapter title if you feel it would be more suitable. Each chapter should be around 20-25 pages each and can be submitted as a Word or Latex File. The IET will send you additional information (formatting, permission form, etc.) with the contributor's agreement once you have agreed to contribute to the book. Visit http:// www.theiet.org/resources/author-hub/books/index.cfm to get all information you need as a contributor to an IET research-level book. Each book is expected to have a total number of 500 printed pages (based on approximately 550 words per page with a 20% allowance for figures and tables). We have included a tentative schedule and list of topics below. If this is something you would consider, please send me the title of your chapter, a short description/abstract of the chapter content, and your full contact details. We will expect original content and new results for this book. You can, of course, reuse published material but the percentage of material reuse for the chapter should be less than 40%. The IET will run a piracy software on the full manuscript to control that you are including original material and will reject chapters who contain a large amount of already-published material so please do take this into consideration.","downloadable_attachments":[{"id":54739455,"asset_id":34879652,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1569445,"first_name":"Vania","last_name":"Estrela","domain_name":"uff","page_name":"VaniaEstrela","display_name":"Vania V Estrela","profile_url":"https://uff.academia.edu/VaniaEstrela?f_ri=3413","photo":"https://0.academia-photos.com/1569445/584405/780232/s65_vania_v..estrela.jpg"}],"research_interests":[{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false},{"id":445,"name":"Computer Graphics","url":"https://www.academia.edu/Documents/in/Computer_Graphics?f_ri=3413","nofollow":false},{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413","nofollow":false},{"id":472,"name":"Human Computer Interaction","url":"https://www.academia.edu/Documents/in/Human_Computer_Interaction?f_ri=3413"},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413"},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=3413"},{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=3413"},{"id":1282,"name":"Photogrammetry","url":"https://www.academia.edu/Documents/in/Photogrammetry?f_ri=3413"},{"id":1380,"name":"Computer Engineering","url":"https://www.academia.edu/Documents/in/Computer_Engineering?f_ri=3413"},{"id":1587,"name":"3D GIS","url":"https://www.academia.edu/Documents/in/3D_GIS?f_ri=3413"},{"id":2043,"name":"Mobile Robotics","url":"https://www.academia.edu/Documents/in/Mobile_Robotics?f_ri=3413"},{"id":2151,"name":"Virtual Reality (Computer Graphics)","url":"https://www.academia.edu/Documents/in/Virtual_Reality_Computer_Graphics_?f_ri=3413"},{"id":2477,"name":"Aerial Archaeology","url":"https://www.academia.edu/Documents/in/Aerial_Archaeology?f_ri=3413"},{"id":2612,"name":"Rendering (Computer Graphics)","url":"https://www.academia.edu/Documents/in/Rendering_Computer_Graphics_?f_ri=3413"},{"id":3170,"name":"Air Transport","url":"https://www.academia.edu/Documents/in/Air_Transport?f_ri=3413"},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":3419,"name":"Multimedia","url":"https://www.academia.edu/Documents/in/Multimedia?f_ri=3413"},{"id":4892,"name":"Autonomous Robotics","url":"https://www.academia.edu/Documents/in/Autonomous_Robotics?f_ri=3413"},{"id":5006,"name":"Computer Games Technology","url":"https://www.academia.edu/Documents/in/Computer_Games_Technology?f_ri=3413"},{"id":5476,"name":"Cyber-Physical Systems","url":"https://www.academia.edu/Documents/in/Cyber-Physical_Systems?f_ri=3413"},{"id":5767,"name":"Broadcast \u0026 Multimedia Technology","url":"https://www.academia.edu/Documents/in/Broadcast_and_Multimedia_Technology?f_ri=3413"},{"id":7728,"name":"Object Recognition (Computer Vision)","url":"https://www.academia.edu/Documents/in/Object_Recognition_Computer_Vision_?f_ri=3413"},{"id":7923,"name":"Global Navigation Satellite Systems","url":"https://www.academia.edu/Documents/in/Global_Navigation_Satellite_Systems?f_ri=3413"},{"id":7937,"name":"Image Recognition (Computer Vision)","url":"https://www.academia.edu/Documents/in/Image_Recognition_Computer_Vision_?f_ri=3413"},{"id":8740,"name":"Aerial Robotics","url":"https://www.academia.edu/Documents/in/Aerial_Robotics?f_ri=3413"},{"id":9135,"name":"The Internet of Things","url":"https://www.academia.edu/Documents/in/The_Internet_of_Things?f_ri=3413"},{"id":9136,"name":"Wireless Sensor Networks","url":"https://www.academia.edu/Documents/in/Wireless_Sensor_Networks?f_ri=3413"},{"id":9178,"name":"Multimedia Communications","url":"https://www.academia.edu/Documents/in/Multimedia_Communications?f_ri=3413"},{"id":9351,"name":"Image Analysis","url":"https://www.academia.edu/Documents/in/Image_Analysis?f_ri=3413"},{"id":9586,"name":"Unmanned Aircraft Systems","url":"https://www.academia.edu/Documents/in/Unmanned_Aircraft_Systems?f_ri=3413"},{"id":10003,"name":"Inertial navigation","url":"https://www.academia.edu/Documents/in/Inertial_navigation?f_ri=3413"},{"id":11801,"name":"Environmental Monitoring","url":"https://www.academia.edu/Documents/in/Environmental_Monitoring?f_ri=3413"},{"id":11988,"name":"Robotics Navigation","url":"https://www.academia.edu/Documents/in/Robotics_Navigation?f_ri=3413"},{"id":12059,"name":"Human-Robot Interaction","url":"https://www.academia.edu/Documents/in/Human-Robot_Interaction?f_ri=3413"},{"id":12417,"name":"Multimedia Learning","url":"https://www.academia.edu/Documents/in/Multimedia_Learning?f_ri=3413"},{"id":13071,"name":"3D Laser scanning (Architecture)","url":"https://www.academia.edu/Documents/in/3D_Laser_scanning_Architecture_?f_ri=3413"},{"id":13211,"name":"Satellite remote sensing","url":"https://www.academia.edu/Documents/in/Satellite_remote_sensing?f_ri=3413"},{"id":14081,"name":"Structural Health Monitoring","url":"https://www.academia.edu/Documents/in/Structural_Health_Monitoring?f_ri=3413"},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413"},{"id":14418,"name":"Mechatronics \u0026 Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics?f_ri=3413"},{"id":14474,"name":"Automation \u0026 COntrol","url":"https://www.academia.edu/Documents/in/Automation_and_COntrol?f_ri=3413"},{"id":14725,"name":"Internet of Things","url":"https://www.academia.edu/Documents/in/Internet_of_Things?f_ri=3413"},{"id":15157,"name":"3D Reconstruction","url":"https://www.academia.edu/Documents/in/3D_Reconstruction?f_ri=3413"},{"id":15158,"name":"Object Tracking (Computer Vision)","url":"https://www.academia.edu/Documents/in/Object_Tracking_Computer_Vision_?f_ri=3413"},{"id":15361,"name":"Environmental Remote Sensing","url":"https://www.academia.edu/Documents/in/Environmental_Remote_Sensing?f_ri=3413"},{"id":15760,"name":"Electronic Design Automation","url":"https://www.academia.edu/Documents/in/Electronic_Design_Automation?f_ri=3413"},{"id":16478,"name":"Aircraft Design","url":"https://www.academia.edu/Documents/in/Aircraft_Design?f_ri=3413"},{"id":16530,"name":"Close-range Photogrammetry","url":"https://www.academia.edu/Documents/in/Close-range_Photogrammetry?f_ri=3413"},{"id":16602,"name":"3D visualisation","url":"https://www.academia.edu/Documents/in/3D_visualisation?f_ri=3413"},{"id":16904,"name":"Hyperspectral remote sensing","url":"https://www.academia.edu/Documents/in/Hyperspectral_remote_sensing?f_ri=3413"},{"id":19522,"name":"Remote sensing and GIS applications in Landscape Research","url":"https://www.academia.edu/Documents/in/Remote_sensing_and_GIS_applications_in_Landscape_Research?f_ri=3413"},{"id":19705,"name":"High Dynamic Range Imaging","url":"https://www.academia.edu/Documents/in/High_Dynamic_Range_Imaging?f_ri=3413"},{"id":19706,"name":"Stereo Vision (Computer Vision)","url":"https://www.academia.edu/Documents/in/Stereo_Vision_Computer_Vision_?f_ri=3413"},{"id":23408,"name":"Remote sensing and GIS","url":"https://www.academia.edu/Documents/in/Remote_sensing_and_GIS?f_ri=3413"},{"id":24892,"name":"Surveillance","url":"https://www.academia.edu/Documents/in/Surveillance?f_ri=3413"},{"id":25828,"name":"Digital Photogrammetry applied to Archaeology","url":"https://www.academia.edu/Documents/in/Digital_Photogrammetry_applied_to_Archaeology?f_ri=3413"},{"id":26860,"name":"Cloud Computing","url":"https://www.academia.edu/Documents/in/Cloud_Computing?f_ri=3413"},{"id":27367,"name":"Interactive Multimedia Applications","url":"https://www.academia.edu/Documents/in/Interactive_Multimedia_Applications?f_ri=3413"},{"id":29731,"name":"Image Registration","url":"https://www.academia.edu/Documents/in/Image_Registration?f_ri=3413"},{"id":35883,"name":"Interactive Multimedia","url":"https://www.academia.edu/Documents/in/Interactive_Multimedia?f_ri=3413"},{"id":35938,"name":"Digital Image Processing","url":"https://www.academia.edu/Documents/in/Digital_Image_Processing?f_ri=3413"},{"id":39595,"name":"Mechatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2?f_ri=3413"},{"id":40677,"name":"Surveillance and Control","url":"https://www.academia.edu/Documents/in/Surveillance_and_Control?f_ri=3413"},{"id":40903,"name":"Multimedia Communication","url":"https://www.academia.edu/Documents/in/Multimedia_Communication?f_ri=3413"},{"id":44890,"name":"Unmanned Aerial Vehicles","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicles?f_ri=3413"},{"id":45373,"name":"3D/ 4D ultrasound","url":"https://www.academia.edu/Documents/in/3D_4D_ultrasound?f_ri=3413"},{"id":46923,"name":"WSN (Wireless sensor network)","url":"https://www.academia.edu/Documents/in/WSN_Wireless_sensor_network_?f_ri=3413"},{"id":46957,"name":"Indoor Navigation","url":"https://www.academia.edu/Documents/in/Indoor_Navigation?f_ri=3413"},{"id":52637,"name":"UAV and Aircraft control","url":"https://www.academia.edu/Documents/in/UAV_and_Aircraft_control?f_ri=3413"},{"id":52661,"name":"Visual Sensor Networks","url":"https://www.academia.edu/Documents/in/Visual_Sensor_Networks?f_ri=3413"},{"id":54453,"name":"Close Range Photogrammetry","url":"https://www.academia.edu/Documents/in/Close_Range_Photogrammetry?f_ri=3413"},{"id":55405,"name":"Sensors","url":"https://www.academia.edu/Documents/in/Sensors?f_ri=3413"},{"id":56440,"name":"OpenCv or Computer Vision","url":"https://www.academia.edu/Documents/in/OpenCv_or_Computer_Vision?f_ri=3413"},{"id":57956,"name":"Air Navigation","url":"https://www.academia.edu/Documents/in/Air_Navigation?f_ri=3413"},{"id":58048,"name":"Guidance, Navigation and Control","url":"https://www.academia.edu/Documents/in/Guidance_Navigation_and_Control?f_ri=3413"},{"id":59695,"name":"Navigation","url":"https://www.academia.edu/Documents/in/Navigation?f_ri=3413"},{"id":60798,"name":"Surveillance, personal data, social sorting, privacy, camera surveillance, identification systems, internet surveillance, biometrics","url":"https://www.academia.edu/Documents/in/Surveillance_personal_data_social_sorting_privacy_camera_surveillance_identification_systems_i?f_ri=3413"},{"id":65430,"name":"Cyber Physical Systems","url":"https://www.academia.edu/Documents/in/Cyber_Physical_Systems?f_ri=3413"},{"id":66379,"name":"Automation","url":"https://www.academia.edu/Documents/in/Automation?f_ri=3413"},{"id":70000,"name":"Condition monitoring and fault diagnosis of electric machinery","url":"https://www.academia.edu/Documents/in/Condition_monitoring_and_fault_diagnosis_of_electric_machinery?f_ri=3413"},{"id":73673,"name":"Video Surveillance","url":"https://www.academia.edu/Documents/in/Video_Surveillance?f_ri=3413"},{"id":78563,"name":"Aerial Photogrammetry","url":"https://www.academia.edu/Documents/in/Aerial_Photogrammetry?f_ri=3413"},{"id":79114,"name":"Vision Based Navigation","url":"https://www.academia.edu/Documents/in/Vision_Based_Navigation?f_ri=3413"},{"id":80473,"name":"Sensor networks","url":"https://www.academia.edu/Documents/in/Sensor_networks?f_ri=3413"},{"id":81846,"name":"Aerial Photography","url":"https://www.academia.edu/Documents/in/Aerial_Photography?f_ri=3413"},{"id":87601,"name":"Robotic","url":"https://www.academia.edu/Documents/in/Robotic?f_ri=3413"},{"id":89919,"name":"Robots","url":"https://www.academia.edu/Documents/in/Robots?f_ri=3413"},{"id":91713,"name":"Automation and robotics in Construction","url":"https://www.academia.edu/Documents/in/Automation_and_robotics_in_Construction?f_ri=3413"},{"id":99143,"name":"Navigation \u0026 Way Finding Systems","url":"https://www.academia.edu/Documents/in/Navigation_and_Way_Finding_Systems?f_ri=3413"},{"id":99861,"name":"ROBOT","url":"https://www.academia.edu/Documents/in/ROBOT?f_ri=3413"},{"id":101534,"name":"Mobile Cloud Computing","url":"https://www.academia.edu/Documents/in/Mobile_Cloud_Computing?f_ri=3413"},{"id":103921,"name":"Signal and Image Processing","url":"https://www.academia.edu/Documents/in/Signal_and_Image_Processing?f_ri=3413"},{"id":104745,"name":"3d Modeling","url":"https://www.academia.edu/Documents/in/3d_Modeling?f_ri=3413"},{"id":105089,"name":"Micro Aerial Vehicles","url":"https://www.academia.edu/Documents/in/Micro_Aerial_Vehicles?f_ri=3413"},{"id":106108,"name":"Swarm Robotics,Industrial Robotics, Mobile Robotics,Bionics, Assistive Robotics, Automation, Machine vision, Artificial Intelligence, PLC, Control Systems","url":"https://www.academia.edu/Documents/in/Swarm_Robotics_Industrial_Robotics_Mobile_Robotics_Bionics_Assistive_Robotics_Automation_Machine?f_ri=3413"},{"id":112534,"name":"Remote Sensing \u0026 GIS","url":"https://www.academia.edu/Documents/in/Remote_Sensing_and_GIS-2?f_ri=3413"},{"id":112619,"name":"Time of Flight","url":"https://www.academia.edu/Documents/in/Time_of_Flight?f_ri=3413"},{"id":123538,"name":"quad rotor thesis UAV robotics control","url":"https://www.academia.edu/Documents/in/quad_rotor_thesis_UAV_robotics_control?f_ri=3413"},{"id":126341,"name":"Monitoring","url":"https://www.academia.edu/Documents/in/Monitoring?f_ri=3413"},{"id":129109,"name":"GNSS/IMU Integrated Navigation","url":"https://www.academia.edu/Documents/in/GNSS_IMU_Integrated_Navigation?f_ri=3413"},{"id":130276,"name":"Visual Surveillance","url":"https://www.academia.edu/Documents/in/Visual_Surveillance?f_ri=3413"},{"id":147493,"name":"Flying robot","url":"https://www.academia.edu/Documents/in/Flying_robot?f_ri=3413"},{"id":152914,"name":"Computer Graphics and Scientific Visualization","url":"https://www.academia.edu/Documents/in/Computer_Graphics_and_Scientific_Visualization?f_ri=3413"},{"id":154978,"name":" Satellite Remote Sensing \u0026 Image Processing","url":"https://www.academia.edu/Documents/in/_Satellite_Remote_Sensing_and_Image_Processing?f_ri=3413"},{"id":165236,"name":"3D Laser scanning","url":"https://www.academia.edu/Documents/in/3D_Laser_scanning?f_ri=3413"},{"id":167206,"name":"UAV systems","url":"https://www.academia.edu/Documents/in/UAV_systems?f_ri=3413"},{"id":189027,"name":"Unmanned Aerial Vehicle (UAV)","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicle_UAV_?f_ri=3413"},{"id":195308,"name":"GIS AND REMOTE SENSING","url":"https://www.academia.edu/Documents/in/GIS_AND_REMOTE_SENSING-3?f_ri=3413"},{"id":236258,"name":"Mobile Robot Navigation","url":"https://www.academia.edu/Documents/in/Mobile_Robot_Navigation?f_ri=3413"},{"id":246874,"name":"4D Modelling","url":"https://www.academia.edu/Documents/in/4D_Modelling?f_ri=3413"},{"id":247799,"name":"Internet of Things (IoT)","url":"https://www.academia.edu/Documents/in/Internet_of_Things_IoT_?f_ri=3413"},{"id":256158,"name":"MEMS design: Sensors and Actuators","url":"https://www.academia.edu/Documents/in/MEMS_design_Sensors_and_Actuators?f_ri=3413"},{"id":256233,"name":"Satellite Navigation","url":"https://www.academia.edu/Documents/in/Satellite_Navigation?f_ri=3413"},{"id":256271,"name":"Unmanned Vehicles","url":"https://www.academia.edu/Documents/in/Unmanned_Vehicles?f_ri=3413"},{"id":265778,"name":"Uas","url":"https://www.academia.edu/Documents/in/Uas?f_ri=3413"},{"id":282936,"name":"Photogrammetry and Remote Sensing (SAR images)","url":"https://www.academia.edu/Documents/in/Photogrammetry_and_Remote_Sensing_SAR_images_?f_ri=3413"},{"id":289863,"name":"Digital Photogrammetry","url":"https://www.academia.edu/Documents/in/Digital_Photogrammetry?f_ri=3413"},{"id":310584,"name":"Sensors and Actuators","url":"https://www.academia.edu/Documents/in/Sensors_and_Actuators?f_ri=3413"},{"id":329707,"name":"Drones","url":"https://www.academia.edu/Documents/in/Drones?f_ri=3413"},{"id":337810,"name":"Mecatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mecatronics_and_Robotics?f_ri=3413"},{"id":345417,"name":"Intelligent Sensors and Actuators","url":"https://www.academia.edu/Documents/in/Intelligent_Sensors_and_Actuators?f_ri=3413"},{"id":347275,"name":"UAV for Remote Sensing","url":"https://www.academia.edu/Documents/in/UAV_for_Remote_Sensing?f_ri=3413"},{"id":347279,"name":"UAV for Photogrammetry","url":"https://www.academia.edu/Documents/in/UAV_for_Photogrammetry?f_ri=3413"},{"id":363173,"name":"Image Processing and Multimedia","url":"https://www.academia.edu/Documents/in/Image_Processing_and_Multimedia?f_ri=3413"},{"id":406105,"name":"Photogrametry","url":"https://www.academia.edu/Documents/in/Photogrametry?f_ri=3413"},{"id":418691,"name":"Multimedia Computing","url":"https://www.academia.edu/Documents/in/Multimedia_Computing?f_ri=3413"},{"id":418812,"name":"Time of Flight Camera","url":"https://www.academia.edu/Documents/in/Time_of_Flight_Camera?f_ri=3413"},{"id":431014,"name":"Unmanned Aerial Vehicles, Robotics, Electronic Warfare Systems","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicles_Robotics_Electronic_Warfare_Systems?f_ri=3413"},{"id":479635,"name":"UAV MODELING IN MATLAB SIMULINK","url":"https://www.academia.edu/Documents/in/UAV_MODELING_IN_MATLAB_SIMULINK?f_ri=3413"},{"id":485044,"name":"Robot operating system (ROS)","url":"https://www.academia.edu/Documents/in/Robot_operating_system_ROS_?f_ri=3413"},{"id":537406,"name":"Time-Of-Flight Sensors","url":"https://www.academia.edu/Documents/in/Time-Of-Flight_Sensors?f_ri=3413"},{"id":541659,"name":"Cyber-Physical Systems/Internet of Things","url":"https://www.academia.edu/Documents/in/Cyber-Physical_Systems_Internet_of_Things?f_ri=3413"},{"id":588026,"name":"Data Storage Management in Cloud","url":"https://www.academia.edu/Documents/in/Data_Storage_Management_in_Cloud?f_ri=3413"},{"id":600499,"name":"Computer Network and Cloud Computing","url":"https://www.academia.edu/Documents/in/Computer_Network_and_Cloud_Computing?f_ri=3413"},{"id":603645,"name":"Time-of-flight camera","url":"https://www.academia.edu/Documents/in/Time-of-flight_camera?f_ri=3413"},{"id":610496,"name":"Security and Surveillance","url":"https://www.academia.edu/Documents/in/Security_and_Surveillance?f_ri=3413"},{"id":619840,"name":"Time of Flight Ranging","url":"https://www.academia.edu/Documents/in/Time_of_Flight_Ranging?f_ri=3413"},{"id":670596,"name":"Automated Video Surveillance Alarm System","url":"https://www.academia.edu/Documents/in/Automated_Video_Surveillance_Alarm_System?f_ri=3413"},{"id":726102,"name":"Semiconductor Sensor Devices and Electronics, Microsensors Arrays. CMOS-MEMS Mass Sensitive Chemical Sensor. Micro-Electro-Mechanical Systems (MEMS) actuator/sensor design and fabrication based on CMOS-MEMS technologies.","url":"https://www.academia.edu/Documents/in/Semiconductor_Sensor_Devices_and_Electronics_Microsensors_Arrays._CMOS-MEMS_Mass_Sensitive_Chemical?f_ri=3413"},{"id":729454,"name":"Avionics Navigation Systems","url":"https://www.academia.edu/Documents/in/Avionics_Navigation_Systems?f_ri=3413"},{"id":824049,"name":"Web Mining and Cloud Computing","url":"https://www.academia.edu/Documents/in/Web_Mining_and_Cloud_Computing?f_ri=3413"},{"id":853685,"name":"Cloud Computing and Virtualization","url":"https://www.academia.edu/Documents/in/Cloud_Computing_and_Virtualization?f_ri=3413"},{"id":862362,"name":"4D Technology","url":"https://www.academia.edu/Documents/in/4D_Technology?f_ri=3413"},{"id":931375,"name":"Integration Technology of Automation Systems","url":"https://www.academia.edu/Documents/in/Integration_Technology_of_Automation_Systems?f_ri=3413"},{"id":931933,"name":"RFID and Sensor Networks","url":"https://www.academia.edu/Documents/in/RFID_and_Sensor_Networks?f_ri=3413"},{"id":939407,"name":"Buildings’ Monitoring","url":"https://www.academia.edu/Documents/in/Buildings_Monitoring-1?f_ri=3413"},{"id":953365,"name":"Actuators and Sensors","url":"https://www.academia.edu/Documents/in/Actuators_and_Sensors?f_ri=3413"},{"id":953612,"name":"Range Image Segmentation","url":"https://www.academia.edu/Documents/in/Range_Image_Segmentation?f_ri=3413"},{"id":955678,"name":"4D and 5D Modeling of Construction Information","url":"https://www.academia.edu/Documents/in/4D_and_5D_Modeling_of_Construction_Information?f_ri=3413"},{"id":963605,"name":"Navigation and Control of Autonomous Vehicles (E.g. Spacecraft","url":"https://www.academia.edu/Documents/in/Navigation_and_Control_of_Autonomous_Vehicles_E.g._Spacecraft?f_ri=3413"},{"id":998023,"name":"Multimedia HCI Design","url":"https://www.academia.edu/Documents/in/Multimedia_HCI_Design?f_ri=3413"},{"id":1001106,"name":"Computer Graphics and Virtual Reality","url":"https://www.academia.edu/Documents/in/Computer_Graphics_and_Virtual_Reality?f_ri=3413"},{"id":1008729,"name":"Distributed Information Systems/Cyber Physical Systems/Smart Spaces/RFID and Sensor Networks","url":"https://www.academia.edu/Documents/in/Distributed_Information_Systems_Cyber_Physical_Systems_Smart_Spaces_RFID_and_Sensor_Networks?f_ri=3413"},{"id":1009190,"name":"Sensores Remotos","url":"https://www.academia.edu/Documents/in/Sensores_Remotos?f_ri=3413"},{"id":1009778,"name":"Smart Cyber Physical Systems","url":"https://www.academia.edu/Documents/in/Smart_Cyber_Physical_Systems?f_ri=3413"},{"id":1011772,"name":"Design and Management of Large Systems for Internet based Applications : Load Balancing","url":"https://www.academia.edu/Documents/in/Design_and_Management_of_Large_Systems_for_Internet_based_Applications_Load_Balancing?f_ri=3413"},{"id":1112725,"name":"Range Imaging","url":"https://www.academia.edu/Documents/in/Range_Imaging?f_ri=3413"},{"id":1224548,"name":"Electrical and Computer Engineering (ECE)","url":"https://www.academia.edu/Documents/in/Electrical_and_Computer_Engineering_ECE_?f_ri=3413"},{"id":1226904,"name":"Computer Science and Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Engineering-1?f_ri=3413"},{"id":1254053,"name":"Light Commercial Vehicle Navigation Systems","url":"https://www.academia.edu/Documents/in/Light_Commercial_Vehicle_Navigation_Systems?f_ri=3413"},{"id":1254064,"name":"Navigation From Telematics","url":"https://www.academia.edu/Documents/in/Navigation_From_Telematics?f_ri=3413"},{"id":1303555,"name":"Unmanned Aerial Vehicle","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicle?f_ri=3413"},{"id":1836844,"name":"Electronics and Communications Engineering Computer Networks Tcp/Ip Internet of Things","url":"https://www.academia.edu/Documents/in/Electronics_and_Communications_Engineering_Computer_Networks_Tcp_Ip_Internet_of_Things?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_5726400" data-work_id="5726400" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/5726400/Matched_Filters_for_Bin_Picking">Matched Filters for Bin Picking</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Currently, a major difficulty for the widespread use of robots in assembly and material handling comes from the necessity of feeding accurately positioned workpieces to robots. ``Bin picking&#39;&#39; techniques help reduce this constraint. This... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_5726400" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Currently, a major difficulty for the widespread use of robots in assembly and material handling comes from the necessity of feeding accurately positioned workpieces to robots. ``Bin picking&#39;&#39; techniques help reduce this constraint. This paper presents the application of matched filters for enabling robots with vision to acquire workpieces randomly stored in bins. This approach complements heuristic methods already reported. The concept of matched filter is an old one. Here, however, it is redefined to take into account robot end-effector features, in terms of geometry and mechanics. In particular, the proposed filters match local workpiece structures where the robot end-effector is likely to grasp successfully and hold workpieces. The local nature of the holdsites is very important as computation costs are shown to vary with the fifth power of structure size. In addition, the proposed filters tend to have a narrow angular bandwidth. An example, which features a parallel-jaw hand is developed in detail, using both statistical and Fourier models. Both approaches concur in requiring a very small number of filters (typically four), even if a good orientation accuracy is expected (two degrees). Success rates of about 90 percent in three or fewer attempts have been experimentally obtained on a system which includes a small minicomputer, a 128 × 128 pixel solidstate camera, a prototype Cartesian robot, and a ``universal&#39;&#39; parallel-jaw hand.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/5726400" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="2216716ef87b69e2d0918aff28bc8fdc" rel="nofollow" data-download="{&quot;attachment_id&quot;:49166273,&quot;asset_id&quot;:5726400,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49166273/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="8317076" href="https://independent.academia.edu/HenriqueMartins8">Henrique Martins</a><script data-card-contents-for-user="8317076" type="text/json">{"id":8317076,"first_name":"Henrique","last_name":"Martins","domain_name":"independent","page_name":"HenriqueMartins8","display_name":"Henrique Martins","profile_url":"https://independent.academia.edu/HenriqueMartins8?f_ri=3413","photo":"https://0.academia-photos.com/8317076/2902128/3390459/s65_henrique.martins.jpg"}</script></span></span></li><li class="js-paper-rank-work_5726400 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="5726400"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 5726400, container: ".js-paper-rank-work_5726400", }); });</script></li><li class="js-percentile-work_5726400 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5726400; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_5726400"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_5726400 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="5726400"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5726400; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5726400]").text(description); $(".js-view-count-work_5726400").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_5726400").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="5726400"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="37" href="https://www.academia.edu/Documents/in/Information_Systems">Information Systems</a>,&nbsp;<script data-card-contents-for-ri="37" type="text/json">{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2424" href="https://www.academia.edu/Documents/in/Computational_Geometry">Computational Geometry</a>,&nbsp;<script data-card-contents-for-ri="2424" type="text/json">{"id":2424,"name":"Computational Geometry","url":"https://www.academia.edu/Documents/in/Computational_Geometry?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="34420" href="https://www.academia.edu/Documents/in/Crime_scene_analysis">Crime scene analysis</a><script data-card-contents-for-ri="34420" type="text/json">{"id":34420,"name":"Crime scene analysis","url":"https://www.academia.edu/Documents/in/Crime_scene_analysis?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=5726400]'), work: {"id":5726400,"title":"Matched Filters for Bin Picking","created_at":"2014-01-15T07:05:22.918-08:00","url":"https://www.academia.edu/5726400/Matched_Filters_for_Bin_Picking?f_ri=3413","dom_id":"work_5726400","summary":"Currently, a major difficulty for the widespread use of robots in assembly and material handling comes from the necessity of feeding accurately positioned workpieces to robots. ``Bin picking'' techniques help reduce this constraint. This paper presents the application of matched filters for enabling robots with vision to acquire workpieces randomly stored in bins. This approach complements heuristic methods already reported. The concept of matched filter is an old one. Here, however, it is redefined to take into account robot end-effector features, in terms of geometry and mechanics. In particular, the proposed filters match local workpiece structures where the robot end-effector is likely to grasp successfully and hold workpieces. The local nature of the holdsites is very important as computation costs are shown to vary with the fifth power of structure size. In addition, the proposed filters tend to have a narrow angular bandwidth. An example, which features a parallel-jaw hand is developed in detail, using both statistical and Fourier models. Both approaches concur in requiring a very small number of filters (typically four), even if a good orientation accuracy is expected (two degrees). Success rates of about 90 percent in three or fewer attempts have been experimentally obtained on a system which includes a small minicomputer, a 128 × 128 pixel solidstate camera, a prototype Cartesian robot, and a ``universal'' parallel-jaw hand.","downloadable_attachments":[{"id":49166273,"asset_id":5726400,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":8317076,"first_name":"Henrique","last_name":"Martins","domain_name":"independent","page_name":"HenriqueMartins8","display_name":"Henrique Martins","profile_url":"https://independent.academia.edu/HenriqueMartins8?f_ri=3413","photo":"https://0.academia-photos.com/8317076/2902128/3390459/s65_henrique.martins.jpg"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=3413","nofollow":false},{"id":2424,"name":"Computational Geometry","url":"https://www.academia.edu/Documents/in/Computational_Geometry?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":34420,"name":"Crime scene analysis","url":"https://www.academia.edu/Documents/in/Crime_scene_analysis?f_ri=3413","nofollow":false},{"id":101530,"name":"Artificial Intelligent","url":"https://www.academia.edu/Documents/in/Artificial_Intelligent?f_ri=3413"},{"id":189381,"name":"Robot Control","url":"https://www.academia.edu/Documents/in/Robot_Control?f_ri=3413"},{"id":223807,"name":"Matched Filter","url":"https://www.academia.edu/Documents/in/Matched_Filter?f_ri=3413"},{"id":247481,"name":"Microcomputers","url":"https://www.academia.edu/Documents/in/Microcomputers?f_ri=3413"},{"id":402431,"name":"Success Rate","url":"https://www.academia.edu/Documents/in/Success_Rate?f_ri=3413"},{"id":936410,"name":"Bandwidth","url":"https://www.academia.edu/Documents/in/Bandwidth?f_ri=3413"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=3413"},{"id":2500540,"name":"Pattern analysis","url":"https://www.academia.edu/Documents/in/Pattern_analysis?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_12786497" data-work_id="12786497" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/12786497/A_Kalman_Filter_Integrated_Optical_Flow_Method_for_Velocity_Sensing_of_Mobile_Robots">A Kalman Filter-Integrated Optical Flow Method for Velocity Sensing of Mobile Robots</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/12786497" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="8a499a3c1c57330961bfa7d9eb5bbbc5" rel="nofollow" data-download="{&quot;attachment_id&quot;:45934627,&quot;asset_id&quot;:12786497,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/45934627/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31854287" href="https://independent.academia.edu/LakmalDSeneviratne">Lakmal D. Seneviratne</a><script data-card-contents-for-user="31854287" type="text/json">{"id":31854287,"first_name":"Lakmal D.","last_name":"Seneviratne","domain_name":"independent","page_name":"LakmalDSeneviratne","display_name":"Lakmal D. Seneviratne","profile_url":"https://independent.academia.edu/LakmalDSeneviratne?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_12786497 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="12786497"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 12786497, container: ".js-paper-rank-work_12786497", }); });</script></li><li class="js-percentile-work_12786497 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12786497; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_12786497"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_12786497 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="12786497"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12786497; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12786497]").text(description); $(".js-view-count-work_12786497").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_12786497").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="12786497"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">13</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="60" href="https://www.academia.edu/Documents/in/Mechanical_Engineering">Mechanical Engineering</a>,&nbsp;<script data-card-contents-for-ri="60" type="text/json">{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="44150" href="https://www.academia.edu/Documents/in/Integrated_Optics">Integrated Optics</a>,&nbsp;<script data-card-contents-for-ri="44150" type="text/json">{"id":44150,"name":"Integrated Optics","url":"https://www.academia.edu/Documents/in/Integrated_Optics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="49146" href="https://www.academia.edu/Documents/in/Kalman_Filter">Kalman Filter</a><script data-card-contents-for-ri="49146" type="text/json">{"id":49146,"name":"Kalman Filter","url":"https://www.academia.edu/Documents/in/Kalman_Filter?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=12786497]'), work: {"id":12786497,"title":"A Kalman Filter-Integrated Optical Flow Method for Velocity Sensing of Mobile Robots","created_at":"2015-06-03T22:15:17.900-07:00","url":"https://www.academia.edu/12786497/A_Kalman_Filter_Integrated_Optical_Flow_Method_for_Velocity_Sensing_of_Mobile_Robots?f_ri=3413","dom_id":"work_12786497","summary":null,"downloadable_attachments":[{"id":45934627,"asset_id":12786497,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31854287,"first_name":"Lakmal D.","last_name":"Seneviratne","domain_name":"independent","page_name":"LakmalDSeneviratne","display_name":"Lakmal D. Seneviratne","profile_url":"https://independent.academia.edu/LakmalDSeneviratne?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":44150,"name":"Integrated Optics","url":"https://www.academia.edu/Documents/in/Integrated_Optics?f_ri=3413","nofollow":false},{"id":49146,"name":"Kalman Filter","url":"https://www.academia.edu/Documents/in/Kalman_Filter?f_ri=3413","nofollow":false},{"id":59378,"name":"Optical Flow","url":"https://www.academia.edu/Documents/in/Optical_Flow?f_ri=3413"},{"id":59724,"name":"Optical Sensor","url":"https://www.academia.edu/Documents/in/Optical_Sensor?f_ri=3413"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering?f_ri=3413"},{"id":179654,"name":"Mobile Robot","url":"https://www.academia.edu/Documents/in/Mobile_Robot?f_ri=3413"},{"id":189371,"name":"Velocity Estimation","url":"https://www.academia.edu/Documents/in/Velocity_Estimation?f_ri=3413"},{"id":215076,"name":"Fluid flow","url":"https://www.academia.edu/Documents/in/Fluid_flow?f_ri=3413"},{"id":728668,"name":"Image Motion Analysis","url":"https://www.academia.edu/Documents/in/Image_Motion_Analysis?f_ri=3413"},{"id":882113,"name":"Optical Filters","url":"https://www.academia.edu/Documents/in/Optical_Filters?f_ri=3413"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_2471507" data-work_id="2471507" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/2471507/Fast_plane_extraction_in_3D_range_data_based_on_line_segments">Fast plane extraction in 3D range data based on line segments</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/2471507" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="530f6d02fb1ae6fca44033833c53770e" rel="nofollow" data-download="{&quot;attachment_id&quot;:31161699,&quot;asset_id&quot;:2471507,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/31161699/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="496619" href="https://temple.academia.edu/KristiyanGeorgiev">Kristiyan Georgiev</a><script data-card-contents-for-user="496619" type="text/json">{"id":496619,"first_name":"Kristiyan","last_name":"Georgiev","domain_name":"temple","page_name":"KristiyanGeorgiev","display_name":"Kristiyan Georgiev","profile_url":"https://temple.academia.edu/KristiyanGeorgiev?f_ri=3413","photo":"https://0.academia-photos.com/496619/170474/1359703/s65_kristiyan.georgiev.jpg"}</script></span></span></li><li class="js-paper-rank-work_2471507 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="2471507"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 2471507, container: ".js-paper-rank-work_2471507", }); });</script></li><li class="js-percentile-work_2471507 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2471507; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_2471507"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_2471507 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="2471507"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2471507; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2471507]").text(description); $(".js-view-count-work_2471507").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_2471507").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="2471507"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a><script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=2471507]'), work: {"id":2471507,"title":"Fast plane extraction in 3D range data based on line segments","created_at":"2013-01-27T05:32:31.695-08:00","url":"https://www.academia.edu/2471507/Fast_plane_extraction_in_3D_range_data_based_on_line_segments?f_ri=3413","dom_id":"work_2471507","summary":null,"downloadable_attachments":[{"id":31161699,"asset_id":2471507,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":496619,"first_name":"Kristiyan","last_name":"Georgiev","domain_name":"temple","page_name":"KristiyanGeorgiev","display_name":"Kristiyan Georgiev","profile_url":"https://temple.academia.edu/KristiyanGeorgiev?f_ri=3413","photo":"https://0.academia-photos.com/496619/170474/1359703/s65_kristiyan.georgiev.jpg"}],"research_interests":[{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_15264311 coauthored" data-work_id="15264311" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/15264311/Performance_metric_for_vision_based_robot_localization">Performance metric for vision based robot localization</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Abstract—This paper aims to propose a roadmap for benchmarking vision based robot localization approaches. We discuss the need for a new series of benchmarks in the robot vision field to provide a direct quantitative measure of progress... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_15264311" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Abstract—This paper aims to propose a roadmap for benchmarking vision based robot localization approaches. We discuss the need for a new series of benchmarks in the robot vision field to provide a direct quantitative measure of progress understandable to sponsors and evaluators of research as well as a guide to practitioners in the field. A first set of benchmarks in two categories is proposed: vision based topological and metric localization. In particular we present a novel way to measure performances with respect to the ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/15264311" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="9be03924261842774c8fdb3a22105d52" rel="nofollow" data-download="{&quot;attachment_id&quot;:38606299,&quot;asset_id&quot;:15264311,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/38606299/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="34340433" href="https://univpm.academia.edu/PZingaretti">Primo Zingaretti</a><script data-card-contents-for-user="34340433" type="text/json">{"id":34340433,"first_name":"Primo","last_name":"Zingaretti","domain_name":"univpm","page_name":"PZingaretti","display_name":"Primo Zingaretti","profile_url":"https://univpm.academia.edu/PZingaretti?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-15264311">+1</span><div class="hidden js-additional-users-15264311"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://univpm.academia.edu/EmanueleFrontoni">Emanuele Frontoni</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-15264311'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-15264311').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_15264311 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="15264311"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 15264311, container: ".js-paper-rank-work_15264311", }); });</script></li><li class="js-percentile-work_15264311 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15264311; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_15264311"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_15264311 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="15264311"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15264311; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15264311]").text(description); $(".js-view-count-work_15264311").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_15264311").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="15264311"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="24777" href="https://www.academia.edu/Documents/in/Benchmarking">Benchmarking</a>,&nbsp;<script data-card-contents-for-ri="24777" type="text/json">{"id":24777,"name":"Benchmarking","url":"https://www.academia.edu/Documents/in/Benchmarking?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="55641" href="https://www.academia.edu/Documents/in/Performance_Evaluation">Performance Evaluation</a>,&nbsp;<script data-card-contents-for-ri="55641" type="text/json">{"id":55641,"name":"Performance Evaluation","url":"https://www.academia.edu/Documents/in/Performance_Evaluation?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="160144" href="https://www.academia.edu/Documents/in/Feature_Extraction">Feature Extraction</a><script data-card-contents-for-ri="160144" type="text/json">{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=15264311]'), work: {"id":15264311,"title":"Performance metric for vision based robot localization","created_at":"2015-08-29T04:05:58.739-07:00","url":"https://www.academia.edu/15264311/Performance_metric_for_vision_based_robot_localization?f_ri=3413","dom_id":"work_15264311","summary":"Abstract—This paper aims to propose a roadmap for benchmarking vision based robot localization approaches. We discuss the need for a new series of benchmarks in the robot vision field to provide a direct quantitative measure of progress understandable to sponsors and evaluators of research as well as a guide to practitioners in the field. A first set of benchmarks in two categories is proposed: vision based topological and metric localization. In particular we present a novel way to measure performances with respect to the ...","downloadable_attachments":[{"id":38606299,"asset_id":15264311,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":34340433,"first_name":"Primo","last_name":"Zingaretti","domain_name":"univpm","page_name":"PZingaretti","display_name":"Primo Zingaretti","profile_url":"https://univpm.academia.edu/PZingaretti?f_ri=3413","photo":"/images/s65_no_pic.png"},{"id":3304969,"first_name":"Emanuele","last_name":"Frontoni","domain_name":"univpm","page_name":"EmanueleFrontoni","display_name":"Emanuele Frontoni","profile_url":"https://univpm.academia.edu/EmanueleFrontoni?f_ri=3413","photo":"https://0.academia-photos.com/3304969/1100809/1372782/s65_emanuele.frontoni.jpg"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":24777,"name":"Benchmarking","url":"https://www.academia.edu/Documents/in/Benchmarking?f_ri=3413","nofollow":false},{"id":55641,"name":"Performance Evaluation","url":"https://www.academia.edu/Documents/in/Performance_Evaluation?f_ri=3413","nofollow":false},{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction?f_ri=3413","nofollow":false},{"id":1268716,"name":"Robot Localization","url":"https://www.academia.edu/Documents/in/Robot_Localization?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_63732877" data-work_id="63732877" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/63732877/Humanoid_robots_in_Waseda_university_Hadaly_2_and_WABIAN">Humanoid robots in Waseda university—Hadaly-2 and WABIAN</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This paper describes two humanoid robots developed in the Humanoid Robotics Institute, Waseda University. Hadaly-2 is intended to realize information interaction with humans by integrating environmental recognition with vision,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_63732877" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This paper describes two humanoid robots developed in the Humanoid Robotics Institute, Waseda University. Hadaly-2 is intended to realize information interaction with humans by integrating environmental recognition with vision, conversation capability (voice recognition, voice synthesis), and gesture behaviors. It also possesses physical interaction functions for direct contact with humans and behaviors that are gentle and safe for humans. WABIAN is a robot with a complete human configuration that is capable of walking on two legs and ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/63732877" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f380b5765031be5dffb9cb94dd0c97e5" rel="nofollow" data-download="{&quot;attachment_id&quot;:76061175,&quot;asset_id&quot;:63732877,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/76061175/download_file?st=MTczMjQxMTY2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="46680511" href="https://kagawa-u.academia.edu/httpwwwengkagawauacjpsawada">Hideyuki Sawada</a><script data-card-contents-for-user="46680511" type="text/json">{"id":46680511,"first_name":"Hideyuki","last_name":"Sawada","domain_name":"kagawa-u","page_name":"httpwwwengkagawauacjpsawada","display_name":"Hideyuki Sawada","profile_url":"https://kagawa-u.academia.edu/httpwwwengkagawauacjpsawada?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_63732877 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="63732877"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 63732877, container: ".js-paper-rank-work_63732877", }); });</script></li><li class="js-percentile-work_63732877 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 63732877; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_63732877"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_63732877 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="63732877"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 63732877; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=63732877]").text(description); $(".js-view-count-work_63732877").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_63732877").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="63732877"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">10</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="60" href="https://www.academia.edu/Documents/in/Mechanical_Engineering">Mechanical Engineering</a>,&nbsp;<script data-card-contents-for-ri="60" type="text/json">{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="237" href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a>,&nbsp;<script data-card-contents-for-ri="237" type="text/json">{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="49007" href="https://www.academia.edu/Documents/in/Communication_model">Communication model</a><script data-card-contents-for-ri="49007" type="text/json">{"id":49007,"name":"Communication model","url":"https://www.academia.edu/Documents/in/Communication_model?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=63732877]'), work: {"id":63732877,"title":"Humanoid robots in Waseda university—Hadaly-2 and WABIAN","created_at":"2021-12-10T02:25:23.978-08:00","url":"https://www.academia.edu/63732877/Humanoid_robots_in_Waseda_university_Hadaly_2_and_WABIAN?f_ri=3413","dom_id":"work_63732877","summary":"This paper describes two humanoid robots developed in the Humanoid Robotics Institute, Waseda University. Hadaly-2 is intended to realize information interaction with humans by integrating environmental recognition with vision, conversation capability (voice recognition, voice synthesis), and gesture behaviors. It also possesses physical interaction functions for direct contact with humans and behaviors that are gentle and safe for humans. WABIAN is a robot with a complete human configuration that is capable of walking on two legs and ...","downloadable_attachments":[{"id":76061175,"asset_id":63732877,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":46680511,"first_name":"Hideyuki","last_name":"Sawada","domain_name":"kagawa-u","page_name":"httpwwwengkagawauacjpsawada","display_name":"Hideyuki Sawada","profile_url":"https://kagawa-u.academia.edu/httpwwwengkagawauacjpsawada?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=3413","nofollow":false},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":49007,"name":"Communication model","url":"https://www.academia.edu/Documents/in/Communication_model?f_ri=3413","nofollow":false},{"id":66694,"name":"Autonomous Robots","url":"https://www.academia.edu/Documents/in/Autonomous_Robots?f_ri=3413"},{"id":150569,"name":"Voice Recognition","url":"https://www.academia.edu/Documents/in/Voice_Recognition?f_ri=3413"},{"id":243384,"name":"Physical Interaction","url":"https://www.academia.edu/Documents/in/Physical_Interaction?f_ri=3413"},{"id":428932,"name":"Humanoid robot","url":"https://www.academia.edu/Documents/in/Humanoid_robot?f_ri=3413"},{"id":547929,"name":"Walking robot","url":"https://www.academia.edu/Documents/in/Walking_robot?f_ri=3413"},{"id":3854666,"name":"Autonomous Robot","url":"https://www.academia.edu/Documents/in/Autonomous_Robot?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_2247318" data-work_id="2247318" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/2247318/Analysis_of_Inverse_Kinematics_by_Trigonometric_Method_for_a_Robot_Vision_System">Analysis of Inverse Kinematics by Trigonometric Method for a Robot Vision System </a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/2247318" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ad4749f2bbb70571982477e3e9143bff" rel="nofollow" data-download="{&quot;attachment_id&quot;:30298999,&quot;asset_id&quot;:2247318,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/30298999/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2752760" href="https://aitthailand.academia.edu/KritsadaNakthewan">Kritsada Nakthewan</a><script data-card-contents-for-user="2752760" type="text/json">{"id":2752760,"first_name":"Kritsada","last_name":"Nakthewan","domain_name":"aitthailand","page_name":"KritsadaNakthewan","display_name":"Kritsada Nakthewan","profile_url":"https://aitthailand.academia.edu/KritsadaNakthewan?f_ri=3413","photo":"https://0.academia-photos.com/2752760/893198/1188690/s65_kritsada.nakthewan.png"}</script></span></span></li><li class="js-paper-rank-work_2247318 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="2247318"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 2247318, container: ".js-paper-rank-work_2247318", }); });</script></li><li class="js-percentile-work_2247318 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2247318; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_2247318"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_2247318 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="2247318"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2247318; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2247318]").text(description); $(".js-view-count-work_2247318").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_2247318").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="2247318"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="14417" href="https://www.academia.edu/Documents/in/Machine_Vision">Machine Vision</a><script data-card-contents-for-ri="14417" type="text/json">{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=2247318]'), work: {"id":2247318,"title":"Analysis of Inverse Kinematics by Trigonometric Method for a Robot Vision System ","created_at":"2012-12-06T02:38:02.263-08:00","url":"https://www.academia.edu/2247318/Analysis_of_Inverse_Kinematics_by_Trigonometric_Method_for_a_Robot_Vision_System?f_ri=3413","dom_id":"work_2247318","summary":null,"downloadable_attachments":[{"id":30298999,"asset_id":2247318,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2752760,"first_name":"Kritsada","last_name":"Nakthewan","domain_name":"aitthailand","page_name":"KritsadaNakthewan","display_name":"Kritsada Nakthewan","profile_url":"https://aitthailand.academia.edu/KritsadaNakthewan?f_ri=3413","photo":"https://0.academia-photos.com/2752760/893198/1188690/s65_kritsada.nakthewan.png"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_651884" data-work_id="651884" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/651884/Exactly_sparse_delayed_state_filters_for_view_based_SLAM">Exactly sparse delayed-state filters for view-based SLAM</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/651884" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="095e82f1bb03833b3d9d107245500423" rel="nofollow" data-download="{&quot;attachment_id&quot;:3588898,&quot;asset_id&quot;:651884,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/3588898/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="54361" href="https://umich.academia.edu/RyanEustice">Ryan Eustice</a><script data-card-contents-for-user="54361" type="text/json">{"id":54361,"first_name":"Ryan","last_name":"Eustice","domain_name":"umich","page_name":"RyanEustice","display_name":"Ryan Eustice","profile_url":"https://umich.academia.edu/RyanEustice?f_ri=3413","photo":"https://0.academia-photos.com/54361/735498/913194/s65_ryan.eustice.jpg"}</script></span></span></li><li class="js-paper-rank-work_651884 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="651884"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 651884, container: ".js-paper-rank-work_651884", }); });</script></li><li class="js-percentile-work_651884 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 651884; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_651884"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_651884 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="651884"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 651884; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=651884]").text(description); $(".js-view-count-work_651884").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_651884").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="651884"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">13</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="60" href="https://www.academia.edu/Documents/in/Mechanical_Engineering">Mechanical Engineering</a>,&nbsp;<script data-card-contents-for-ri="60" type="text/json">{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="8124" href="https://www.academia.edu/Documents/in/Information_Filtering">Information Filtering</a>,&nbsp;<script data-card-contents-for-ri="8124" type="text/json">{"id":8124,"name":"Information Filtering","url":"https://www.academia.edu/Documents/in/Information_Filtering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="14417" href="https://www.academia.edu/Documents/in/Machine_Vision">Machine Vision</a><script data-card-contents-for-ri="14417" type="text/json">{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=651884]'), work: {"id":651884,"title":"Exactly sparse delayed-state filters for view-based SLAM","created_at":"2011-06-08T03:52:21.997-07:00","url":"https://www.academia.edu/651884/Exactly_sparse_delayed_state_filters_for_view_based_SLAM?f_ri=3413","dom_id":"work_651884","summary":null,"downloadable_attachments":[{"id":3588898,"asset_id":651884,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":54361,"first_name":"Ryan","last_name":"Eustice","domain_name":"umich","page_name":"RyanEustice","display_name":"Ryan Eustice","profile_url":"https://umich.academia.edu/RyanEustice?f_ri=3413","photo":"https://0.academia-photos.com/54361/735498/913194/s65_ryan.eustice.jpg"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":8124,"name":"Information Filtering","url":"https://www.academia.edu/Documents/in/Information_Filtering?f_ri=3413","nofollow":false},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413","nofollow":false},{"id":15119,"name":"Motion Planning","url":"https://www.academia.edu/Documents/in/Motion_Planning?f_ri=3413"},{"id":49146,"name":"Kalman Filter","url":"https://www.academia.edu/Documents/in/Kalman_Filter?f_ri=3413"},{"id":55265,"name":"Simultaneous Localization and Mapping","url":"https://www.academia.edu/Documents/in/Simultaneous_Localization_and_Mapping?f_ri=3413"},{"id":131949,"name":"Remotely Operated Vehicle","url":"https://www.academia.edu/Documents/in/Remotely_Operated_Vehicle?f_ri=3413"},{"id":134028,"name":"Information Space","url":"https://www.academia.edu/Documents/in/Information_Space?f_ri=3413"},{"id":179654,"name":"Mobile Robot","url":"https://www.academia.edu/Documents/in/Mobile_Robot?f_ri=3413"},{"id":548622,"name":"Underwater vehicles","url":"https://www.academia.edu/Documents/in/Underwater_vehicles?f_ri=3413"},{"id":822358,"name":"Ground Truth","url":"https://www.academia.edu/Documents/in/Ground_Truth?f_ri=3413"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_4066210" data-work_id="4066210" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/4066210/Visual_Servoing_Considering_Sensing_Dynamics_and_Robot_Dynamics">Visual Servoing Considering Sensing Dynamics and Robot Dynamics</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">For many desirable applications of vision guided industrial robots, real-time visual servoing is necessary but also challenging. Difficulty comes from the limited sampling rate and response time of typical machine vision systems equipped... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_4066210" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">For many desirable applications of vision guided industrial robots, real-time visual servoing is necessary but also challenging. Difficulty comes from the limited sampling rate and response time of typical machine vision systems equipped on industrial robots. These factors are addressed as the dynamics of visual sensing. In addition, robot dynamics should also be fully considered when designing the control law. Considering these aspects, this paper presents a control scheme of visual servoing. A dual-rate adaptive tracking filter is presented to compensate the visual sensing dynamics. Based on the compensated vision feedback, the techniques of multi-surface sliding control and dynamic surface control are used to formulate a two-layer control law for target tracking. System kinematics and dynamics are decoupled and dealt with by the two layers of the control law respectively. The proposed method is validated through experiments on a SCARA robot.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/4066210" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="5b8dcfce81a24341bd0d24f6fb496c47" rel="nofollow" data-download="{&quot;attachment_id&quot;:31596981,&quot;asset_id&quot;:4066210,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/31596981/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4895190" href="https://njit.academia.edu/CongWang">Cong Wang</a><script data-card-contents-for-user="4895190" type="text/json">{"id":4895190,"first_name":"Cong","last_name":"Wang","domain_name":"njit","page_name":"CongWang","display_name":"Cong Wang","profile_url":"https://njit.academia.edu/CongWang?f_ri=3413","photo":"https://0.academia-photos.com/4895190/2107889/10796424/s65_cong.wang.jpg"}</script></span></span></li><li class="js-paper-rank-work_4066210 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="4066210"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 4066210, container: ".js-paper-rank-work_4066210", }); });</script></li><li class="js-percentile-work_4066210 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 4066210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_4066210"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_4066210 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="4066210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 4066210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=4066210]").text(description); $(".js-view-count-work_4066210").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_4066210").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="4066210"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="7968" href="https://www.academia.edu/Documents/in/Prediction">Prediction</a>,&nbsp;<script data-card-contents-for-ri="7968" type="text/json">{"id":7968,"name":"Prediction","url":"https://www.academia.edu/Documents/in/Prediction?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9038" href="https://www.academia.edu/Documents/in/Digital_Signal_Processing">Digital Signal Processing</a>,&nbsp;<script data-card-contents-for-ri="9038" type="text/json">{"id":9038,"name":"Digital Signal Processing","url":"https://www.academia.edu/Documents/in/Digital_Signal_Processing?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="14417" href="https://www.academia.edu/Documents/in/Machine_Vision">Machine Vision</a><script data-card-contents-for-ri="14417" type="text/json">{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=4066210]'), work: {"id":4066210,"title":"Visual Servoing Considering Sensing Dynamics and Robot Dynamics","created_at":"2013-07-19T14:09:56.750-07:00","url":"https://www.academia.edu/4066210/Visual_Servoing_Considering_Sensing_Dynamics_and_Robot_Dynamics?f_ri=3413","dom_id":"work_4066210","summary":"For many desirable applications of vision guided industrial robots, real-time visual servoing is necessary but also challenging. Difficulty comes from the limited sampling rate and response time of typical machine vision systems equipped on industrial robots. These factors are addressed as the dynamics of visual sensing. In addition, robot dynamics should also be fully considered when designing the control law. Considering these aspects, this paper presents a control scheme of visual servoing. A dual-rate adaptive tracking filter is presented to compensate the visual sensing dynamics. Based on the compensated vision feedback, the techniques of multi-surface sliding control and dynamic surface control are used to formulate a two-layer control law for target tracking. System kinematics and dynamics are decoupled and dealt with by the two layers of the control law respectively. The proposed method is validated through experiments on a SCARA robot.","downloadable_attachments":[{"id":31596981,"asset_id":4066210,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4895190,"first_name":"Cong","last_name":"Wang","domain_name":"njit","page_name":"CongWang","display_name":"Cong Wang","profile_url":"https://njit.academia.edu/CongWang?f_ri=3413","photo":"https://0.academia-photos.com/4895190/2107889/10796424/s65_cong.wang.jpg"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":7968,"name":"Prediction","url":"https://www.academia.edu/Documents/in/Prediction?f_ri=3413","nofollow":false},{"id":9038,"name":"Digital Signal Processing","url":"https://www.academia.edu/Documents/in/Digital_Signal_Processing?f_ri=3413","nofollow":false},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413","nofollow":false},{"id":35344,"name":"Forecasting and Prediction Tools","url":"https://www.academia.edu/Documents/in/Forecasting_and_Prediction_Tools?f_ri=3413"},{"id":49146,"name":"Kalman Filter","url":"https://www.academia.edu/Documents/in/Kalman_Filter?f_ri=3413"},{"id":92332,"name":"Visual tracking","url":"https://www.academia.edu/Documents/in/Visual_tracking?f_ri=3413"},{"id":93884,"name":"Robot Dynamics and Control","url":"https://www.academia.edu/Documents/in/Robot_Dynamics_and_Control?f_ri=3413"},{"id":124797,"name":"Time Series Prediction","url":"https://www.academia.edu/Documents/in/Time_Series_Prediction?f_ri=3413"},{"id":129376,"name":"Trajectory Planning","url":"https://www.academia.edu/Documents/in/Trajectory_Planning?f_ri=3413"},{"id":139362,"name":"Sliding mode control","url":"https://www.academia.edu/Documents/in/Sliding_mode_control?f_ri=3413"},{"id":983554,"name":"Robot Manipulator","url":"https://www.academia.edu/Documents/in/Robot_Manipulator?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_36541259" data-work_id="36541259" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/36541259/SURVEY_ROBOTS_IN_TOURISM">SURVEY: ROBOTS IN TOURISM</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We kindly ask you to participate in this research devoted to the adoption of service robots by travel, tourism and hospitality companies. By completing the questionnaire, you will be eligible to participate in an opportunity for one of... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_36541259" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We kindly ask you to participate in this research devoted to the adoption of service robots by travel, tourism and hospitality companies. By completing the questionnaire, you will be eligible to participate in an opportunity for one of five electronic 100-dollar gift cards, redeemable as Amazon gift vouchers, among other options. Once you have completed the survey, a separate link will be sent to you allowing you to register for the opportunity. The researchers will not be able to identify your responses to the survey questions and the identifying information you will leave for the purposes of the opportunity for the gift vouchers. <br /><br />For questions about your rights as a research subject, please contact the Director, Office of Research Integrity, Ball State University, Muncie, IN 47306, (765) 285-5070 or at <a href="mailto:irb@bsu.edu" rel="nofollow">irb@bsu.edu</a>. IRB Protocol Number: 1194315-1<br /><br />Please complete the questionnaire if only you are at least 18 years of age.<br />Thank you in advance for your participation!<br /><br />Here is the link to the survey:<br /><br /><a href="https://bsu.qualtrics.com/jfe/form/SV_4PdOOi6ERWHw97v" rel="nofollow">https://bsu.qualtrics.com/jfe/form/SV_4PdOOi6ERWHw97v</a><br /><br />Sincerely,<br /><br />Dr. Craig Webster, Ball State University, USA, email: <a href="mailto:cwebster3@bsu.edu" rel="nofollow">cwebster3@bsu.edu</a><br />Prof. Stanislav Ivanov, Varna University Management, Bulgaria, email: <a href="mailto:stanislav.ivanov@vumk.eu" rel="nofollow">stanislav.ivanov@vumk.eu</a></div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/36541259" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c1fec2fb9e5ade5f8555cf6e7d3b751e" rel="nofollow" data-download="{&quot;attachment_id&quot;:56463693,&quot;asset_id&quot;:36541259,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/56463693/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="22133" href="https://vumk.academia.edu/StanislavIvanov">Stanislav Ivanov</a><script data-card-contents-for-user="22133" type="text/json">{"id":22133,"first_name":"Stanislav","last_name":"Ivanov","domain_name":"vumk","page_name":"StanislavIvanov","display_name":"Stanislav Ivanov","profile_url":"https://vumk.academia.edu/StanislavIvanov?f_ri=3413","photo":"https://0.academia-photos.com/22133/80607/38525499/s65_stanislav.ivanov.jpg"}</script></span></span></li><li class="js-paper-rank-work_36541259 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="36541259"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 36541259, container: ".js-paper-rank-work_36541259", }); });</script></li><li class="js-percentile-work_36541259 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36541259; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_36541259"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_36541259 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="36541259"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36541259; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36541259]").text(description); $(".js-view-count-work_36541259").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_36541259").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="36541259"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">110</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl11x"><a class="InlineList-item-text" data-has-card-for-ri="26" href="https://www.academia.edu/Documents/in/Business">Business</a>,&nbsp;<script data-card-contents-for-ri="26" type="text/json">{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="38" href="https://www.academia.edu/Documents/in/Management">Management</a>,&nbsp;<script data-card-contents-for-ri="38" type="text/json">{"id":38,"name":"Management","url":"https://www.academia.edu/Documents/in/Management?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="39" href="https://www.academia.edu/Documents/in/Marketing">Marketing</a>,&nbsp;<script data-card-contents-for-ri="39" type="text/json">{"id":39,"name":"Marketing","url":"https://www.academia.edu/Documents/in/Marketing?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="45" href="https://www.academia.edu/Documents/in/Business_Administration">Business Administration</a><script data-card-contents-for-ri="45" type="text/json">{"id":45,"name":"Business Administration","url":"https://www.academia.edu/Documents/in/Business_Administration?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=36541259]'), work: {"id":36541259,"title":"SURVEY: ROBOTS IN TOURISM","created_at":"2018-05-01T01:42:33.308-07:00","url":"https://www.academia.edu/36541259/SURVEY_ROBOTS_IN_TOURISM?f_ri=3413","dom_id":"work_36541259","summary":"We kindly ask you to participate in this research devoted to the adoption of service robots by travel, tourism and hospitality companies. By completing the questionnaire, you will be eligible to participate in an opportunity for one of five electronic 100-dollar gift cards, redeemable as Amazon gift vouchers, among other options. Once you have completed the survey, a separate link will be sent to you allowing you to register for the opportunity. The researchers will not be able to identify your responses to the survey questions and the identifying information you will leave for the purposes of the opportunity for the gift vouchers. \n\nFor questions about your rights as a research subject, please contact the Director, Office of Research Integrity, Ball State University, Muncie, IN 47306, (765) 285-5070 or at irb@bsu.edu. IRB Protocol Number: 1194315-1\n\nPlease complete the questionnaire if only you are at least 18 years of age.\nThank you in advance for your participation!\n\nHere is the link to the survey:\n\nhttps://bsu.qualtrics.com/jfe/form/SV_4PdOOi6ERWHw97v\n\nSincerely,\n\nDr. Craig Webster, Ball State University, USA, email: cwebster3@bsu.edu\nProf. Stanislav Ivanov, Varna University Management, Bulgaria, email: stanislav.ivanov@vumk.eu","downloadable_attachments":[{"id":56463693,"asset_id":36541259,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":22133,"first_name":"Stanislav","last_name":"Ivanov","domain_name":"vumk","page_name":"StanislavIvanov","display_name":"Stanislav Ivanov","profile_url":"https://vumk.academia.edu/StanislavIvanov?f_ri=3413","photo":"https://0.academia-photos.com/22133/80607/38525499/s65_stanislav.ivanov.jpg"}],"research_interests":[{"id":26,"name":"Business","url":"https://www.academia.edu/Documents/in/Business?f_ri=3413","nofollow":false},{"id":38,"name":"Management","url":"https://www.academia.edu/Documents/in/Management?f_ri=3413","nofollow":false},{"id":39,"name":"Marketing","url":"https://www.academia.edu/Documents/in/Marketing?f_ri=3413","nofollow":false},{"id":45,"name":"Business Administration","url":"https://www.academia.edu/Documents/in/Business_Administration?f_ri=3413","nofollow":false},{"id":46,"name":"Business Ethics","url":"https://www.academia.edu/Documents/in/Business_Ethics?f_ri=3413"},{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=3413"},{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413"},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology?f_ri=3413"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics?f_ri=3413"},{"id":727,"name":"Development Economics","url":"https://www.academia.edu/Documents/in/Development_Economics?f_ri=3413"},{"id":748,"name":"Financial Economics","url":"https://www.academia.edu/Documents/in/Financial_Economics?f_ri=3413"},{"id":802,"name":"Political Economy","url":"https://www.academia.edu/Documents/in/Political_Economy?f_ri=3413"},{"id":909,"name":"Tourism Studies","url":"https://www.academia.edu/Documents/in/Tourism_Studies?f_ri=3413"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology?f_ri=3413"},{"id":942,"name":"Tourism Marketing","url":"https://www.academia.edu/Documents/in/Tourism_Marketing?f_ri=3413"},{"id":943,"name":"Tourism Management","url":"https://www.academia.edu/Documents/in/Tourism_Management?f_ri=3413"},{"id":1082,"name":"Travel Writing","url":"https://www.academia.edu/Documents/in/Travel_Writing?f_ri=3413"},{"id":1241,"name":"Knowledge Management","url":"https://www.academia.edu/Documents/in/Knowledge_Management?f_ri=3413"},{"id":1932,"name":"Business \u0026 Society","url":"https://www.academia.edu/Documents/in/Business_and_Society?f_ri=3413"},{"id":2043,"name":"Mobile Robotics","url":"https://www.academia.edu/Documents/in/Mobile_Robotics?f_ri=3413"},{"id":2074,"name":"International Business","url":"https://www.academia.edu/Documents/in/International_Business?f_ri=3413"},{"id":2401,"name":"Tourism Planning and Policy","url":"https://www.academia.edu/Documents/in/Tourism_Planning_and_Policy?f_ri=3413"},{"id":2436,"name":"Operations Management","url":"https://www.academia.edu/Documents/in/Operations_Management?f_ri=3413"},{"id":2729,"name":"Hospitality Studies","url":"https://www.academia.edu/Documents/in/Hospitality_Studies?f_ri=3413"},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":3461,"name":"Services Marketing and Management","url":"https://www.academia.edu/Documents/in/Services_Marketing_and_Management?f_ri=3413"},{"id":3609,"name":"Event Management","url":"https://www.academia.edu/Documents/in/Event_Management?f_ri=3413"},{"id":3803,"name":"Underwater Robotics","url":"https://www.academia.edu/Documents/in/Underwater_Robotics?f_ri=3413"},{"id":3956,"name":"Hospitality Management","url":"https://www.academia.edu/Documents/in/Hospitality_Management?f_ri=3413"},{"id":4017,"name":"Recreation \u0026 Leisure Studies","url":"https://www.academia.edu/Documents/in/Recreation_and_Leisure_Studies?f_ri=3413"},{"id":4019,"name":"Outdoor Recreation","url":"https://www.academia.edu/Documents/in/Outdoor_Recreation?f_ri=3413"},{"id":4051,"name":"Business Process Management","url":"https://www.academia.edu/Documents/in/Business_Process_Management?f_ri=3413"},{"id":4071,"name":"Heritage Tourism","url":"https://www.academia.edu/Documents/in/Heritage_Tourism?f_ri=3413"},{"id":4892,"name":"Autonomous Robotics","url":"https://www.academia.edu/Documents/in/Autonomous_Robotics?f_ri=3413"},{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413"},{"id":5628,"name":"Service Quality","url":"https://www.academia.edu/Documents/in/Service_Quality?f_ri=3413"},{"id":6276,"name":"International Political Economy","url":"https://www.academia.edu/Documents/in/International_Political_Economy?f_ri=3413"},{"id":6416,"name":"Human Resource Management","url":"https://www.academia.edu/Documents/in/Human_Resource_Management?f_ri=3413"},{"id":7860,"name":"Cultural Tourism","url":"https://www.academia.edu/Documents/in/Cultural_Tourism?f_ri=3413"},{"id":9932,"name":"Travel \u0026 Tourism","url":"https://www.academia.edu/Documents/in/Travel_and_Tourism?f_ri=3413"},{"id":11136,"name":"Cognitive Robotics","url":"https://www.academia.edu/Documents/in/Cognitive_Robotics?f_ri=3413"},{"id":11395,"name":"Economic Development","url":"https://www.academia.edu/Documents/in/Economic_Development?f_ri=3413"},{"id":11525,"name":"Events management","url":"https://www.academia.edu/Documents/in/Events_management?f_ri=3413"},{"id":11988,"name":"Robotics Navigation","url":"https://www.academia.edu/Documents/in/Robotics_Navigation?f_ri=3413"},{"id":12009,"name":"Educational Robotics","url":"https://www.academia.edu/Documents/in/Educational_Robotics?f_ri=3413"},{"id":12059,"name":"Human-Robot Interaction","url":"https://www.academia.edu/Documents/in/Human-Robot_Interaction?f_ri=3413"},{"id":13258,"name":"Marketing Research","url":"https://www.academia.edu/Documents/in/Marketing_Research?f_ri=3413"},{"id":13550,"name":"Industrial Automation","url":"https://www.academia.edu/Documents/in/Industrial_Automation?f_ri=3413"},{"id":13805,"name":"Behavioral Economics","url":"https://www.academia.edu/Documents/in/Behavioral_Economics?f_ri=3413"},{"id":14302,"name":"Leisure Studies","url":"https://www.academia.edu/Documents/in/Leisure_Studies?f_ri=3413"},{"id":14396,"name":"Sustainable Tourism","url":"https://www.academia.edu/Documents/in/Sustainable_Tourism?f_ri=3413"},{"id":14418,"name":"Mechatronics \u0026 Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics?f_ri=3413"},{"id":15254,"name":"Home automation","url":"https://www.academia.edu/Documents/in/Home_automation?f_ri=3413"},{"id":15604,"name":"Hotel Operations","url":"https://www.academia.edu/Documents/in/Hotel_Operations?f_ri=3413"},{"id":15970,"name":"Artifial Intellegence","url":"https://www.academia.edu/Documents/in/Artifial_Intellegence?f_ri=3413"},{"id":17250,"name":"Social Robotics","url":"https://www.academia.edu/Documents/in/Social_Robotics?f_ri=3413"},{"id":18555,"name":"Leisure","url":"https://www.academia.edu/Documents/in/Leisure?f_ri=3413"},{"id":21168,"name":"Strategy (Business)","url":"https://www.academia.edu/Documents/in/Strategy_Business_?f_ri=3413"},{"id":22656,"name":"Hospitality","url":"https://www.academia.edu/Documents/in/Hospitality?f_ri=3413"},{"id":24865,"name":"Robotic Surgery","url":"https://www.academia.edu/Documents/in/Robotic_Surgery?f_ri=3413"},{"id":31307,"name":"Marketing Management","url":"https://www.academia.edu/Documents/in/Marketing_Management?f_ri=3413"},{"id":32278,"name":"Rehabilitation robotics","url":"https://www.academia.edu/Documents/in/Rehabilitation_robotics?f_ri=3413"},{"id":34086,"name":"Travel Management and Tour Operations","url":"https://www.academia.edu/Documents/in/Travel_Management_and_Tour_Operations?f_ri=3413"},{"id":35069,"name":"Tourism and Hospitality Education","url":"https://www.academia.edu/Documents/in/Tourism_and_Hospitality_Education?f_ri=3413"},{"id":35070,"name":"Tourism and Hospitality Marketing","url":"https://www.academia.edu/Documents/in/Tourism_and_Hospitality_Marketing?f_ri=3413"},{"id":39595,"name":"Mechatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2?f_ri=3413"},{"id":40775,"name":"Parallel Robots","url":"https://www.academia.edu/Documents/in/Parallel_Robots?f_ri=3413"},{"id":42558,"name":"Artifical Intelligence","url":"https://www.academia.edu/Documents/in/Artifical_Intelligence?f_ri=3413"},{"id":43883,"name":"Tourism","url":"https://www.academia.edu/Documents/in/Tourism?f_ri=3413"},{"id":46429,"name":"Economy","url":"https://www.academia.edu/Documents/in/Economy?f_ri=3413"},{"id":51360,"name":"Economia","url":"https://www.academia.edu/Documents/in/Economia?f_ri=3413"},{"id":52325,"name":"Travel and Tourism Industry","url":"https://www.academia.edu/Documents/in/Travel_and_Tourism_Industry?f_ri=3413"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=3413"},{"id":55840,"name":"Business Management","url":"https://www.academia.edu/Documents/in/Business_Management?f_ri=3413"},{"id":56667,"name":"Economía","url":"https://www.academia.edu/Documents/in/Econom%C3%ADa?f_ri=3413"},{"id":66379,"name":"Automation","url":"https://www.academia.edu/Documents/in/Automation?f_ri=3413"},{"id":73149,"name":"Business and Management","url":"https://www.academia.edu/Documents/in/Business_and_Management?f_ri=3413"},{"id":74262,"name":"Philosophy of Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Philosophy_of_Artificial_Intelligence?f_ri=3413"},{"id":80953,"name":"Service Operations Management","url":"https://www.academia.edu/Documents/in/Service_Operations_Management?f_ri=3413"},{"id":81104,"name":"Tourism and Hotel Management","url":"https://www.academia.edu/Documents/in/Tourism_and_Hotel_Management?f_ri=3413"},{"id":87601,"name":"Robotic","url":"https://www.academia.edu/Documents/in/Robotic?f_ri=3413"},{"id":89455,"name":"Services Marketing","url":"https://www.academia.edu/Documents/in/Services_Marketing-5?f_ri=3413"},{"id":89919,"name":"Robots","url":"https://www.academia.edu/Documents/in/Robots?f_ri=3413"},{"id":91377,"name":"Human Resources in Tourism and Hospitality","url":"https://www.academia.edu/Documents/in/Human_Resources_in_Tourism_and_Hospitality?f_ri=3413"},{"id":91380,"name":"Hotel Management","url":"https://www.academia.edu/Documents/in/Hotel_Management?f_ri=3413"},{"id":95108,"name":"RECREATION","url":"https://www.academia.edu/Documents/in/RECREATION?f_ri=3413"},{"id":99861,"name":"ROBOT","url":"https://www.academia.edu/Documents/in/ROBOT?f_ri=3413"},{"id":100578,"name":"Hospitality and Tourism","url":"https://www.academia.edu/Documents/in/Hospitality_and_Tourism?f_ri=3413"},{"id":113706,"name":"Autonomous Mobile Robots","url":"https://www.academia.edu/Documents/in/Autonomous_Mobile_Robots?f_ri=3413"},{"id":126213,"name":"Hotels","url":"https://www.academia.edu/Documents/in/Hotels?f_ri=3413"},{"id":141502,"name":"Inteligencia artificial","url":"https://www.academia.edu/Documents/in/Inteligencia_artificial-1?f_ri=3413"},{"id":147493,"name":"Flying robot","url":"https://www.academia.edu/Documents/in/Flying_robot?f_ri=3413"},{"id":153054,"name":"Hotel","url":"https://www.academia.edu/Documents/in/Hotel?f_ri=3413"},{"id":188138,"name":"Biped Robot","url":"https://www.academia.edu/Documents/in/Biped_Robot?f_ri=3413"},{"id":190933,"name":"Tourism Sector","url":"https://www.academia.edu/Documents/in/Tourism_Sector?f_ri=3413"},{"id":194255,"name":"Hotelaria","url":"https://www.academia.edu/Documents/in/Hotelaria?f_ri=3413"},{"id":195978,"name":"Hospitality Industry Research (Hotel)","url":"https://www.academia.edu/Documents/in/Hospitality_Industry_Research_Hotel_?f_ri=3413"},{"id":214984,"name":"Service Quality in the Hospitality Industry","url":"https://www.academia.edu/Documents/in/Service_Quality_in_the_Hospitality_Industry?f_ri=3413"},{"id":267151,"name":"Hotel and Restaurant Management","url":"https://www.academia.edu/Documents/in/Hotel_and_Restaurant_Management?f_ri=3413"},{"id":270888,"name":"Tourism and Hospitality Management","url":"https://www.academia.edu/Documents/in/Tourism_and_Hospitality_Management?f_ri=3413"},{"id":337810,"name":"Mecatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mecatronics_and_Robotics?f_ri=3413"},{"id":338302,"name":"ROBOTICA","url":"https://www.academia.edu/Documents/in/ROBOTICA?f_ri=3413"},{"id":367314,"name":"Hospitality and Tourism Management","url":"https://www.academia.edu/Documents/in/Hospitality_and_Tourism_Management?f_ri=3413"},{"id":457764,"name":"HOTELERIA Y TURISMO","url":"https://www.academia.edu/Documents/in/HOTELERIA_Y_TURISMO?f_ri=3413"},{"id":872159,"name":"Employment of Hospitality and Tourism Management","url":"https://www.academia.edu/Documents/in/Employment_of_Hospitality_and_Tourism_Management?f_ri=3413"},{"id":931375,"name":"Integration Technology of Automation Systems","url":"https://www.academia.edu/Documents/in/Integration_Technology_of_Automation_Systems?f_ri=3413"},{"id":931839,"name":"Tourism Planning \u0026 Development","url":"https://www.academia.edu/Documents/in/Tourism_Planning_and_Development-1?f_ri=3413"},{"id":1005984,"name":"Travel Agency Management","url":"https://www.academia.edu/Documents/in/Travel_Agency_Management?f_ri=3413"},{"id":1117206,"name":"Economic","url":"https://www.academia.edu/Documents/in/Economic?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_24309125" data-work_id="24309125" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/24309125/Abstract_and_Conclusion_for_a_Robot_Vision_Project">Abstract and Conclusion for a Robot Vision Project</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">One of the major issues humans deal with on a regular basis is their own (at times, of their possessions) safety from various external agencies like car crashes, or homicide threats due to concealed weapons. To tackle this issue, a... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_24309125" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">One of the major issues humans deal with on a regular basis is their own (at times, of their possessions) safety from various external agencies like car crashes, or homicide threats due to concealed weapons. To tackle this issue, a robotic vision and image processing application could be developed and trained to recognize situations where human lives could be at hazard. For this proposal, a portable robot equipped with a set of cameras (infrared + normal vision as well as a LIDAR) is being considered, to be able to detect imminent crashes in moving vehicles or detect if there are concealed weapons on a personnel, all in real-time. The robot would survey human surroundings 24*7 and give appropriate warnings/ signals in case of danger. This robot could further be developed to perform preventive actions if a situation of alert is detected thus, acting as a trained bodyguard. With the present advances in technology, it is possible to develop such robotic applications that will make our lives much safer and easier.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/24309125" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b844a62f9868ee7c8f0ef3e9ebe578b5" rel="nofollow" data-download="{&quot;attachment_id&quot;:44645301,&quot;asset_id&quot;:24309125,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/44645301/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="46867075" href="https://independent.academia.edu/APapriwal">Anuja Papriwal</a><script data-card-contents-for-user="46867075" type="text/json">{"id":46867075,"first_name":"Anuja","last_name":"Papriwal","domain_name":"independent","page_name":"APapriwal","display_name":"Anuja Papriwal","profile_url":"https://independent.academia.edu/APapriwal?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_24309125 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="24309125"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 24309125, container: ".js-paper-rank-work_24309125", }); });</script></li><li class="js-percentile-work_24309125 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24309125; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_24309125"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_24309125 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="24309125"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24309125; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24309125]").text(description); $(".js-view-count-work_24309125").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_24309125").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="24309125"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a><script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=24309125]'), work: {"id":24309125,"title":"Abstract and Conclusion for a Robot Vision Project","created_at":"2016-04-11T21:28:19.903-07:00","url":"https://www.academia.edu/24309125/Abstract_and_Conclusion_for_a_Robot_Vision_Project?f_ri=3413","dom_id":"work_24309125","summary":"One of the major issues humans deal with on a regular basis is their own (at times, of their possessions) safety from various external agencies like car crashes, or homicide threats due to concealed weapons. To tackle this issue, a robotic vision and image processing application could be developed and trained to recognize situations where human lives could be at hazard. For this proposal, a portable robot equipped with a set of cameras (infrared + normal vision as well as a LIDAR) is being considered, to be able to detect imminent crashes in moving vehicles or detect if there are concealed weapons on a personnel, all in real-time. The robot would survey human surroundings 24*7 and give appropriate warnings/ signals in case of danger. This robot could further be developed to perform preventive actions if a situation of alert is detected thus, acting as a trained bodyguard. With the present advances in technology, it is possible to develop such robotic applications that will make our lives much safer and easier.","downloadable_attachments":[{"id":44645301,"asset_id":24309125,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":46867075,"first_name":"Anuja","last_name":"Papriwal","domain_name":"independent","page_name":"APapriwal","display_name":"Anuja Papriwal","profile_url":"https://independent.academia.edu/APapriwal?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_35310787" data-work_id="35310787" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/35310787/Deep_Learning_for_Image_Processing_Applications">Deep Learning for Image Processing Applications</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Deep learning and image processing are two areas of great interest to academics and industry professionals alike. The areas of application of these two disciplines range widely, encompassing fields such as medicine, robotics, and security... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_35310787" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Deep learning and image processing are two areas of great interest to academics and industry professionals alike. The areas of application of these two disciplines range widely, encompassing fields such as medicine, robotics, and security and surveillance. The aim of this book, &#39;Deep Learning for Image Processing Applications&#39;, is to offer concepts from these two areas in the same platform, and the book brings together the shared ideas of professionals from academia and research about problems and solutions relating to the multifaceted aspects of the two disciplines. The first chapter provides an introduction to deep learning, and serves as the basis for much of what follows in the subsequent chapters, which cover subjects including: the application of deep neural networks for image classification; hand gesture recognition in robotics; deep learning techniques for image retrieval; disease detection using deep learning techniques; and the comparative analysis of deep data and big data. The book will be of interest to all those whose work involves the use of deep learning and image processing techniques</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/35310787" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fbfaf8980224957a0b53929b144dea31" rel="nofollow" data-download="{&quot;attachment_id&quot;:55171167,&quot;asset_id&quot;:35310787,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/55171167/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1569445" href="https://uff.academia.edu/VaniaEstrela">Vania V Estrela</a><script data-card-contents-for-user="1569445" type="text/json">{"id":1569445,"first_name":"Vania","last_name":"Estrela","domain_name":"uff","page_name":"VaniaEstrela","display_name":"Vania V Estrela","profile_url":"https://uff.academia.edu/VaniaEstrela?f_ri=3413","photo":"https://0.academia-photos.com/1569445/584405/780232/s65_vania_v..estrela.jpg"}</script></span></span></li><li class="js-paper-rank-work_35310787 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="35310787"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 35310787, container: ".js-paper-rank-work_35310787", }); });</script></li><li class="js-percentile-work_35310787 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 35310787; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_35310787"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_35310787 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="35310787"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 35310787; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=35310787]").text(description); $(".js-view-count-work_35310787").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_35310787").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="35310787"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">75</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="447" href="https://www.academia.edu/Documents/in/Scientific_Visualization">Scientific Visualization</a>,&nbsp;<script data-card-contents-for-ri="447" type="text/json">{"id":447,"name":"Scientific Visualization","url":"https://www.academia.edu/Documents/in/Scientific_Visualization?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>,&nbsp;<script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a><script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=35310787]'), work: {"id":35310787,"title":"Deep Learning for Image Processing Applications","created_at":"2017-12-01T08:58:30.117-08:00","url":"https://www.academia.edu/35310787/Deep_Learning_for_Image_Processing_Applications?f_ri=3413","dom_id":"work_35310787","summary":"Deep learning and image processing are two areas of great interest to academics and industry professionals alike. The areas of application of these two disciplines range widely, encompassing fields such as medicine, robotics, and security and surveillance. The aim of this book, 'Deep Learning for Image Processing Applications', is to offer concepts from these two areas in the same platform, and the book brings together the shared ideas of professionals from academia and research about problems and solutions relating to the multifaceted aspects of the two disciplines. The first chapter provides an introduction to deep learning, and serves as the basis for much of what follows in the subsequent chapters, which cover subjects including: the application of deep neural networks for image classification; hand gesture recognition in robotics; deep learning techniques for image retrieval; disease detection using deep learning techniques; and the comparative analysis of deep data and big data. The book will be of interest to all those whose work involves the use of deep learning and image processing techniques","downloadable_attachments":[{"id":55171167,"asset_id":35310787,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1569445,"first_name":"Vania","last_name":"Estrela","domain_name":"uff","page_name":"VaniaEstrela","display_name":"Vania V Estrela","profile_url":"https://uff.academia.edu/VaniaEstrela?f_ri=3413","photo":"https://0.academia-photos.com/1569445/584405/780232/s65_vania_v..estrela.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false},{"id":447,"name":"Scientific Visualization","url":"https://www.academia.edu/Documents/in/Scientific_Visualization?f_ri=3413","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=3413","nofollow":false},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=3413"},{"id":1249,"name":"Medical Imaging","url":"https://www.academia.edu/Documents/in/Medical_Imaging?f_ri=3413"},{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=3413"},{"id":1380,"name":"Computer Engineering","url":"https://www.academia.edu/Documents/in/Computer_Engineering?f_ri=3413"},{"id":1440,"name":"Visualization","url":"https://www.academia.edu/Documents/in/Visualization?f_ri=3413"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=3413"},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":3415,"name":"Cognitive Vision","url":"https://www.academia.edu/Documents/in/Cognitive_Vision?f_ri=3413"},{"id":3424,"name":"Information Visualization","url":"https://www.academia.edu/Documents/in/Information_Visualization?f_ri=3413"},{"id":4098,"name":"Content-Based Information Retrieval (CBIR)","url":"https://www.academia.edu/Documents/in/Content-Based_Information_Retrieval_CBIR_?f_ri=3413"},{"id":4423,"name":"Monitoring And Evaluation","url":"https://www.academia.edu/Documents/in/Monitoring_And_Evaluation?f_ri=3413"},{"id":4998,"name":"Medical Image Processing","url":"https://www.academia.edu/Documents/in/Medical_Image_Processing?f_ri=3413"},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=3413"},{"id":5112,"name":"Object Recognition (Pattern Recognition)","url":"https://www.academia.edu/Documents/in/Object_Recognition_Pattern_Recognition_?f_ri=3413"},{"id":6132,"name":"Soft Computing","url":"https://www.academia.edu/Documents/in/Soft_Computing?f_ri=3413"},{"id":7728,"name":"Object Recognition (Computer Vision)","url":"https://www.academia.edu/Documents/in/Object_Recognition_Computer_Vision_?f_ri=3413"},{"id":7937,"name":"Image Recognition (Computer Vision)","url":"https://www.academia.edu/Documents/in/Image_Recognition_Computer_Vision_?f_ri=3413"},{"id":9351,"name":"Image Analysis","url":"https://www.academia.edu/Documents/in/Image_Analysis?f_ri=3413"},{"id":9600,"name":"Soft Computing Techniques","url":"https://www.academia.edu/Documents/in/Soft_Computing_Techniques?f_ri=3413"},{"id":9898,"name":"Soft Computing, Image Processing and Robotics","url":"https://www.academia.edu/Documents/in/Soft_Computing_Image_Processing_and_Robotics?f_ri=3413"},{"id":13211,"name":"Satellite remote sensing","url":"https://www.academia.edu/Documents/in/Satellite_remote_sensing?f_ri=3413"},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413"},{"id":15158,"name":"Object Tracking (Computer Vision)","url":"https://www.academia.edu/Documents/in/Object_Tracking_Computer_Vision_?f_ri=3413"},{"id":19706,"name":"Stereo Vision (Computer Vision)","url":"https://www.academia.edu/Documents/in/Stereo_Vision_Computer_Vision_?f_ri=3413"},{"id":20641,"name":"Future of artificial intelligence","url":"https://www.academia.edu/Documents/in/Future_of_artificial_intelligence?f_ri=3413"},{"id":23408,"name":"Remote sensing and GIS","url":"https://www.academia.edu/Documents/in/Remote_sensing_and_GIS?f_ri=3413"},{"id":24892,"name":"Surveillance","url":"https://www.academia.edu/Documents/in/Surveillance?f_ri=3413"},{"id":35938,"name":"Digital Image Processing","url":"https://www.academia.edu/Documents/in/Digital_Image_Processing?f_ri=3413"},{"id":47980,"name":"Data Visualization","url":"https://www.academia.edu/Documents/in/Data_Visualization?f_ri=3413"},{"id":51011,"name":"Super resolution","url":"https://www.academia.edu/Documents/in/Super_resolution?f_ri=3413"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=3413"},{"id":56267,"name":"CBIR","url":"https://www.academia.edu/Documents/in/CBIR?f_ri=3413"},{"id":56440,"name":"OpenCv or Computer Vision","url":"https://www.academia.edu/Documents/in/OpenCv_or_Computer_Vision?f_ri=3413"},{"id":73673,"name":"Video Surveillance","url":"https://www.academia.edu/Documents/in/Video_Surveillance?f_ri=3413"},{"id":77351,"name":"Medical devices","url":"https://www.academia.edu/Documents/in/Medical_devices?f_ri=3413"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=3413"},{"id":124273,"name":"3D GIS, 3D Visualization, 3D modeling","url":"https://www.academia.edu/Documents/in/3D_GIS_3D_Visualization_3D_modeling?f_ri=3413"},{"id":126341,"name":"Monitoring","url":"https://www.academia.edu/Documents/in/Monitoring?f_ri=3413"},{"id":127370,"name":"Bio-Medical Engineering","url":"https://www.academia.edu/Documents/in/Bio-Medical_Engineering?f_ri=3413"},{"id":131215,"name":"Super-Resolution","url":"https://www.academia.edu/Documents/in/Super-Resolution?f_ri=3413"},{"id":141502,"name":"Inteligencia artificial","url":"https://www.academia.edu/Documents/in/Inteligencia_artificial-1?f_ri=3413"},{"id":143038,"name":"Machine Learning and Pattern Recognition","url":"https://www.academia.edu/Documents/in/Machine_Learning_and_Pattern_Recognition?f_ri=3413"},{"id":154978,"name":" Satellite Remote Sensing \u0026 Image Processing","url":"https://www.academia.edu/Documents/in/_Satellite_Remote_Sensing_and_Image_Processing?f_ri=3413"},{"id":213182,"name":"Soft Computing and optimization","url":"https://www.academia.edu/Documents/in/Soft_Computing_and_optimization?f_ri=3413"},{"id":250581,"name":"Optometry and Vision Science","url":"https://www.academia.edu/Documents/in/Optometry_and_Vision_Science?f_ri=3413"},{"id":251903,"name":"Artificial Intelligence And Techniques","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence_And_Techniques?f_ri=3413"},{"id":327599,"name":"Computer Vision, Behaviour Modelling, Deep Learning","url":"https://www.academia.edu/Documents/in/Computer_Vision_Behaviour_Modelling_Deep_Learning?f_ri=3413"},{"id":517227,"name":"Face detection using Haar-like features cascade and convolutional neural network","url":"https://www.academia.edu/Documents/in/Face_detection_using_Haar-like_features_cascade_and_convolutional_neural_network?f_ri=3413"},{"id":677506,"name":"Redes Neuronales Artificiales","url":"https://www.academia.edu/Documents/in/Redes_Neuronales_Artificiales?f_ri=3413"},{"id":890015,"name":"Deep Neural Networks","url":"https://www.academia.edu/Documents/in/Deep_Neural_Networks?f_ri=3413"},{"id":1019473,"name":"Signal Analysis and Pattern Identification","url":"https://www.academia.edu/Documents/in/Signal_Analysis_and_Pattern_Identification?f_ri=3413"},{"id":1047571,"name":"Super Resolucion","url":"https://www.academia.edu/Documents/in/Super_Resolucion?f_ri=3413"},{"id":1113326,"name":"Deep Belief Networks","url":"https://www.academia.edu/Documents/in/Deep_Belief_Networks?f_ri=3413"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=3413"},{"id":1223686,"name":"Artificial Intelligent and Soft Computing Methodologies","url":"https://www.academia.edu/Documents/in/Artificial_Intelligent_and_Soft_Computing_Methodologies?f_ri=3413"},{"id":1224548,"name":"Electrical and Computer Engineering (ECE)","url":"https://www.academia.edu/Documents/in/Electrical_and_Computer_Engineering_ECE_?f_ri=3413"},{"id":1226904,"name":"Computer Science and Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Engineering-1?f_ri=3413"},{"id":1277729,"name":"Convolutional Encoder\u0026Viterbi Decoder","url":"https://www.academia.edu/Documents/in/Convolutional_Encoder_and_Viterbi_Decoder?f_ri=3413"},{"id":1421844,"name":"Convolution Encoder","url":"https://www.academia.edu/Documents/in/Convolution_Encoder?f_ri=3413"},{"id":1433808,"name":"Convolutional Neural Networks","url":"https://www.academia.edu/Documents/in/Convolutional_Neural_Networks?f_ri=3413"},{"id":1474629,"name":"DNN-HMM","url":"https://www.academia.edu/Documents/in/DNN-HMM?f_ri=3413"},{"id":1568111,"name":"Convolutional Neural Network","url":"https://www.academia.edu/Documents/in/Convolutional_Neural_Network?f_ri=3413"},{"id":1570818,"name":"CBIR using MATLAB","url":"https://www.academia.edu/Documents/in/CBIR_using_MATLAB?f_ri=3413"},{"id":1613649,"name":"Hybrid Method for Cbir","url":"https://www.academia.edu/Documents/in/Hybrid_Method_for_Cbir?f_ri=3413"},{"id":1766246,"name":"DNND SPDPS","url":"https://www.academia.edu/Documents/in/DNND_SPDPS?f_ri=3413"},{"id":2003370,"name":"Content Based Image Retrieval (cbir)","url":"https://www.academia.edu/Documents/in/Content_Based_Image_Retrieval_cbir_?f_ri=3413"},{"id":2058533,"name":"Convolutional Deep Belief Network [CDBN]","url":"https://www.academia.edu/Documents/in/Convolutional_Deep_Belief_Network_CDBN_?f_ri=3413"},{"id":2086781,"name":"Content-based Image Retrieval (cbir)","url":"https://www.academia.edu/Documents/in/Content-based_Image_Retrieval_cbir_?f_ri=3413"},{"id":2443506,"name":"CBIR, Image Features","url":"https://www.academia.edu/Documents/in/CBIR_Image_Features?f_ri=3413"},{"id":2520933,"name":"Deep Neural Networks (DNN)","url":"https://www.academia.edu/Documents/in/Deep_Neural_Networks_DNN_?f_ri=3413"},{"id":2814113,"name":"DNN","url":"https://www.academia.edu/Documents/in/DNN?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_22633328" data-work_id="22633328" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/22633328/Convolutional_Neural_Networks_for_Image_Processing_An_Application_in_Robot_Vision">Convolutional Neural Networks for Image Processing: An Application in Robot Vision</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/22633328" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="cef9493993f41d67478b477bee3a27ee" rel="nofollow" data-download="{&quot;attachment_id&quot;:43229331,&quot;asset_id&quot;:22633328,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43229331/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="44209761" href="https://independent.academia.edu/MayerNorbert">Norbert Mayer</a><script data-card-contents-for-user="44209761" type="text/json">{"id":44209761,"first_name":"Norbert","last_name":"Mayer","domain_name":"independent","page_name":"MayerNorbert","display_name":"Norbert Mayer","profile_url":"https://independent.academia.edu/MayerNorbert?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_22633328 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="22633328"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 22633328, container: ".js-paper-rank-work_22633328", }); });</script></li><li class="js-percentile-work_22633328 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22633328; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_22633328"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_22633328 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="22633328"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22633328; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22633328]").text(description); $(".js-view-count-work_22633328").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_22633328").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="22633328"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">10</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1185" href="https://www.academia.edu/Documents/in/Image_Processing">Image Processing</a>,&nbsp;<script data-card-contents-for-ri="1185" type="text/json">{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3480" href="https://www.academia.edu/Documents/in/AI_Planning_Artificial_Intelligence_">AI Planning (Artificial Intelligence)</a><script data-card-contents-for-ri="3480" type="text/json">{"id":3480,"name":"AI Planning (Artificial Intelligence)","url":"https://www.academia.edu/Documents/in/AI_Planning_Artificial_Intelligence_?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=22633328]'), work: {"id":22633328,"title":"Convolutional Neural Networks for Image Processing: An Application in Robot Vision","created_at":"2016-03-01T00:36:32.693-08:00","url":"https://www.academia.edu/22633328/Convolutional_Neural_Networks_for_Image_Processing_An_Application_in_Robot_Vision?f_ri=3413","dom_id":"work_22633328","summary":null,"downloadable_attachments":[{"id":43229331,"asset_id":22633328,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":44209761,"first_name":"Norbert","last_name":"Mayer","domain_name":"independent","page_name":"MayerNorbert","display_name":"Norbert Mayer","profile_url":"https://independent.academia.edu/MayerNorbert?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":3480,"name":"AI Planning (Artificial Intelligence)","url":"https://www.academia.edu/Documents/in/AI_Planning_Artificial_Intelligence_?f_ri=3413","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=3413"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network?f_ri=3413"},{"id":33291,"name":"Applications","url":"https://www.academia.edu/Documents/in/Applications?f_ri=3413"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field?f_ri=3413"},{"id":179654,"name":"Mobile Robot","url":"https://www.academia.edu/Documents/in/Mobile_Robot?f_ri=3413"},{"id":179763,"name":"Adaptive Filter","url":"https://www.academia.edu/Documents/in/Adaptive_Filter?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_75205389" data-work_id="75205389" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/75205389/Automatic_harvesting_of_asparagus_an_application_of_robot_vision_to_agriculture">Automatic harvesting of asparagus: an application of robot vision to agriculture</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">ABSTRACT This work presents a system for the automatic selective harvesting of asparagus in open field being developed in the framework of the Italian National Project on Robotics. It is composed of a mobile robot, equipped with a... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_75205389" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">ABSTRACT This work presents a system for the automatic selective harvesting of asparagus in open field being developed in the framework of the Italian National Project on Robotics. It is composed of a mobile robot, equipped with a suitable manipulator, and driven by a stereo-vision module. In this paper we discuss in detail the problems related to the vision module.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/75205389" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="139607358" href="https://independent.academia.edu/GuiducciAntonio">Antonio Guiducci</a><script data-card-contents-for-user="139607358" type="text/json">{"id":139607358,"first_name":"Antonio","last_name":"Guiducci","domain_name":"independent","page_name":"GuiducciAntonio","display_name":"Antonio Guiducci","profile_url":"https://independent.academia.edu/GuiducciAntonio?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_75205389 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="75205389"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 75205389, container: ".js-paper-rank-work_75205389", }); });</script></li><li class="js-percentile-work_75205389 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75205389; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_75205389"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_75205389 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="75205389"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75205389; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75205389]").text(description); $(".js-view-count-work_75205389").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_75205389").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="75205389"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10225" href="https://www.academia.edu/Documents/in/Agriculture">Agriculture</a><script data-card-contents-for-ri="10225" type="text/json">{"id":10225,"name":"Agriculture","url":"https://www.academia.edu/Documents/in/Agriculture?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=75205389]'), work: {"id":75205389,"title":"Automatic harvesting of asparagus: an application of robot vision to agriculture","created_at":"2022-04-02T00:14:06.233-07:00","url":"https://www.academia.edu/75205389/Automatic_harvesting_of_asparagus_an_application_of_robot_vision_to_agriculture?f_ri=3413","dom_id":"work_75205389","summary":"ABSTRACT This work presents a system for the automatic selective harvesting of asparagus in open field being developed in the framework of the Italian National Project on Robotics. It is composed of a mobile robot, equipped with a suitable manipulator, and driven by a stereo-vision module. In this paper we discuss in detail the problems related to the vision module.","downloadable_attachments":[],"ordered_authors":[{"id":139607358,"first_name":"Antonio","last_name":"Guiducci","domain_name":"independent","page_name":"GuiducciAntonio","display_name":"Antonio Guiducci","profile_url":"https://independent.academia.edu/GuiducciAntonio?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=3413","nofollow":false},{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":10225,"name":"Agriculture","url":"https://www.academia.edu/Documents/in/Agriculture?f_ri=3413","nofollow":false},{"id":59692,"name":"Vision","url":"https://www.academia.edu/Documents/in/Vision?f_ri=3413"},{"id":66823,"name":"Mobile Robots","url":"https://www.academia.edu/Documents/in/Mobile_Robots?f_ri=3413"},{"id":121707,"name":"Open Field","url":"https://www.academia.edu/Documents/in/Open_Field?f_ri=3413"},{"id":148959,"name":"Stereo Vision","url":"https://www.academia.edu/Documents/in/Stereo_Vision?f_ri=3413"},{"id":179654,"name":"Mobile Robot","url":"https://www.academia.edu/Documents/in/Mobile_Robot?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1937691" data-work_id="1937691" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1937691/Can_film_show_the_invisible_the_work_of_montage_in_ethnographic_filmmaking">Can film show the invisible: the work of montage in ethnographic filmmaking</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1937691" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="8bd55a7bbae144c4775097d943db2d79" rel="nofollow" data-download="{&quot;attachment_id&quot;:27902392,&quot;asset_id&quot;:1937691,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/27902392/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1824818" href="https://au.academia.edu/RaneWillerslev">Rane Willerslev</a><script data-card-contents-for-user="1824818" type="text/json">{"id":1824818,"first_name":"Rane","last_name":"Willerslev","domain_name":"au","page_name":"RaneWillerslev","display_name":"Rane Willerslev","profile_url":"https://au.academia.edu/RaneWillerslev?f_ri=3413","photo":"https://0.academia-photos.com/1824818/621955/771825/s65_rane.willerslev.jpg"}</script></span></span></li><li class="js-paper-rank-work_1937691 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1937691"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1937691, container: ".js-paper-rank-work_1937691", }); });</script></li><li class="js-percentile-work_1937691 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1937691; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1937691"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1937691 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1937691"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1937691; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1937691]").text(description); $(".js-view-count-work_1937691").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1937691").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1937691"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">17</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="188" href="https://www.academia.edu/Documents/in/Cultural_Studies">Cultural Studies</a>,&nbsp;<script data-card-contents-for-ri="188" type="text/json">{"id":188,"name":"Cultural Studies","url":"https://www.academia.edu/Documents/in/Cultural_Studies?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="915" href="https://www.academia.edu/Documents/in/Art_History">Art History</a>,&nbsp;<script data-card-contents-for-ri="915" type="text/json">{"id":915,"name":"Art History","url":"https://www.academia.edu/Documents/in/Art_History?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="925" href="https://www.academia.edu/Documents/in/Visual_Anthropology">Visual Anthropology</a>,&nbsp;<script data-card-contents-for-ri="925" type="text/json">{"id":925,"name":"Visual Anthropology","url":"https://www.academia.edu/Documents/in/Visual_Anthropology?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="934" href="https://www.academia.edu/Documents/in/Media_and_Cultural_Studies">Media and Cultural Studies</a><script data-card-contents-for-ri="934" type="text/json">{"id":934,"name":"Media and Cultural Studies","url":"https://www.academia.edu/Documents/in/Media_and_Cultural_Studies?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1937691]'), work: {"id":1937691,"title":"Can film show the invisible: the work of montage in ethnographic filmmaking","created_at":"2012-09-15T01:58:16.173-07:00","url":"https://www.academia.edu/1937691/Can_film_show_the_invisible_the_work_of_montage_in_ethnographic_filmmaking?f_ri=3413","dom_id":"work_1937691","summary":null,"downloadable_attachments":[{"id":27902392,"asset_id":1937691,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1824818,"first_name":"Rane","last_name":"Willerslev","domain_name":"au","page_name":"RaneWillerslev","display_name":"Rane Willerslev","profile_url":"https://au.academia.edu/RaneWillerslev?f_ri=3413","photo":"https://0.academia-photos.com/1824818/621955/771825/s65_rane.willerslev.jpg"}],"research_interests":[{"id":188,"name":"Cultural Studies","url":"https://www.academia.edu/Documents/in/Cultural_Studies?f_ri=3413","nofollow":false},{"id":915,"name":"Art History","url":"https://www.academia.edu/Documents/in/Art_History?f_ri=3413","nofollow":false},{"id":925,"name":"Visual Anthropology","url":"https://www.academia.edu/Documents/in/Visual_Anthropology?f_ri=3413","nofollow":false},{"id":934,"name":"Media and Cultural Studies","url":"https://www.academia.edu/Documents/in/Media_and_Cultural_Studies?f_ri=3413","nofollow":false},{"id":957,"name":"Cultural Sociology","url":"https://www.academia.edu/Documents/in/Cultural_Sociology?f_ri=3413"},{"id":1555,"name":"Film Studies","url":"https://www.academia.edu/Documents/in/Film_Studies?f_ri=3413"},{"id":1589,"name":"Photography","url":"https://www.academia.edu/Documents/in/Photography?f_ri=3413"},{"id":2418,"name":"Literature","url":"https://www.academia.edu/Documents/in/Literature?f_ri=3413"},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":8232,"name":"Anthropology Of Art","url":"https://www.academia.edu/Documents/in/Anthropology_Of_Art?f_ri=3413"},{"id":20169,"name":"Montage","url":"https://www.academia.edu/Documents/in/Montage?f_ri=3413"},{"id":23214,"name":"Documentary Film","url":"https://www.academia.edu/Documents/in/Documentary_Film?f_ri=3413"},{"id":26558,"name":"Visual Arts","url":"https://www.academia.edu/Documents/in/Visual_Arts?f_ri=3413"},{"id":101374,"name":"Collage, Montage, \u0026 Assemblage","url":"https://www.academia.edu/Documents/in/Collage_Montage_and_Assemblage?f_ri=3413"},{"id":971467,"name":"Theories of Montage Between Cinema","url":"https://www.academia.edu/Documents/in/Theories_of_Montage_Between_Cinema?f_ri=3413"},{"id":971472,"name":"Cultural History and Criticism","url":"https://www.academia.edu/Documents/in/Cultural_History_and_Criticism?f_ri=3413"},{"id":1019146,"name":"Visual Anthropology and Sociology","url":"https://www.academia.edu/Documents/in/Visual_Anthropology_and_Sociology?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_78540857" data-work_id="78540857" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/78540857/Color_Sorting_Robotic_Arm_Using_Arduino">Color Sorting Robotic Arm Using Arduino</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In the robotic community Robotic Arm is one of the popular ideas. Robotic arms are very usual in industries where they are mainly used in assembly lines in manufacturing plants. Building a Robotic Arm is a difficult process and involves... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_78540857" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In the robotic community Robotic Arm is one of the popular ideas. Robotic arms are very usual in industries where they are mainly used in assembly lines in manufacturing plants. Building a Robotic Arm is a difficult process and involves complex programming for beginners. Once we put our full focus on the thing and even if our thoughts were the same in the at start , we found it rather easy as all it takes was some time and tinkering. The robotic arm we have built in this project is fully automated to do tasks. Apart from the Microcontroller we have used Arduino Nano and servo motors, all other components. This robotic arm can color sort and for that we have used sensors.The main motto of this project is to design an efficient system that pick up right color of objects and put it down at right place to the minimizing the cost of the products, optimizes productivity and decreasing human mistakes. This paper presents an application to differentiate colored objects with a robotic arm. This robotic arm can pick different colored objects and sorts them in specified cups. It contacts with color sensor TCS 3200 and various motor modules in real time to detect the correct color object and to control the movement of arm.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/78540857" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b7997b14952717420e49b0a5153c0abe" rel="nofollow" data-download="{&quot;attachment_id&quot;:85553262,&quot;asset_id&quot;:78540857,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/85553262/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="222736109" href="https://independent.academia.edu/priyankashetty50">priyanka shetty</a><script data-card-contents-for-user="222736109" type="text/json">{"id":222736109,"first_name":"priyanka","last_name":"shetty","domain_name":"independent","page_name":"priyankashetty50","display_name":"priyanka shetty","profile_url":"https://independent.academia.edu/priyankashetty50?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_78540857 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="78540857"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 78540857, container: ".js-paper-rank-work_78540857", }); });</script></li><li class="js-percentile-work_78540857 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78540857; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_78540857"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_78540857 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="78540857"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78540857; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78540857]").text(description); $(".js-view-count-work_78540857").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_78540857").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="78540857"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4893" href="https://www.academia.edu/Documents/in/Humanoid_Robotics">Humanoid Robotics</a>,&nbsp;<script data-card-contents-for-ri="4893" type="text/json">{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="39595" href="https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2">Mechatronics and Robotics</a><script data-card-contents-for-ri="39595" type="text/json">{"id":39595,"name":"Mechatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=78540857]'), work: {"id":78540857,"title":"Color Sorting Robotic Arm Using Arduino","created_at":"2022-05-05T12:06:41.228-07:00","url":"https://www.academia.edu/78540857/Color_Sorting_Robotic_Arm_Using_Arduino?f_ri=3413","dom_id":"work_78540857","summary":"In the robotic community Robotic Arm is one of the popular ideas. Robotic arms are very usual in industries where they are mainly used in assembly lines in manufacturing plants. Building a Robotic Arm is a difficult process and involves complex programming for beginners. Once we put our full focus on the thing and even if our thoughts were the same in the at start , we found it rather easy as all it takes was some time and tinkering. The robotic arm we have built in this project is fully automated to do tasks. Apart from the Microcontroller we have used Arduino Nano and servo motors, all other components. This robotic arm can color sort and for that we have used sensors.The main motto of this project is to design an efficient system that pick up right color of objects and put it down at right place to the minimizing the cost of the products, optimizes productivity and decreasing human mistakes. This paper presents an application to differentiate colored objects with a robotic arm. This robotic arm can pick different colored objects and sorts them in specified cups. It contacts with color sensor TCS 3200 and various motor modules in real time to detect the correct color object and to control the movement of arm.","downloadable_attachments":[{"id":85553262,"asset_id":78540857,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":222736109,"first_name":"priyanka","last_name":"shetty","domain_name":"independent","page_name":"priyankashetty50","display_name":"priyanka shetty","profile_url":"https://independent.academia.edu/priyankashetty50?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413","nofollow":false},{"id":39595,"name":"Mechatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2?f_ri=3413","nofollow":false},{"id":77479,"name":"Human Augmentation","url":"https://www.academia.edu/Documents/in/Human_Augmentation?f_ri=3413"},{"id":247799,"name":"Internet of Things (IoT)","url":"https://www.academia.edu/Documents/in/Internet_of_Things_IoT_?f_ri=3413"},{"id":327654,"name":"Robotic Arm","url":"https://www.academia.edu/Documents/in/Robotic_Arm?f_ri=3413"},{"id":1253169,"name":"Arduino Project","url":"https://www.academia.edu/Documents/in/Arduino_Project?f_ri=3413"},{"id":1681036,"name":"Color Sorting","url":"https://www.academia.edu/Documents/in/Color_Sorting?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_32204259 coauthored" data-work_id="32204259" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/32204259/Artificial_Intelligence_and_the_Good_Society_the_US_EU_and_UK_approach">Artificial Intelligence and the &#39;Good Society&#39;: the US, EU, and UK approach</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In October 2016, the White House, the European Parliament, and the UK House of Commons each issued a report outlining their visions on how to prepare society for the widespread use of artificial intelligence (AI). In this article, we... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_32204259" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In October 2016, the White House, the European Parliament, and the UK House of Commons each issued a report outlining their visions on how to prepare society for the widespread use of artificial intelligence (AI). In this article, we provide a comparative assessment of these three reports in order to facilitate the design of policies favourable to the development of a &#39;good AI society&#39;. To do so, we examine how each report addresses the following three topics: (a) the development of a &#39;good AI society&#39;; (b) the role and responsibility of the government, the private sector, and the research community (including academia) in pursuing such a development; and (c) where the recommendations to support such a development may be in need of improvement. Our analysis concludes that the reports address adequately various ethical, social, and economic topics, but come short of providing an overarching political vision and long-term strategy for the development of a &#39;good AI society&#39;. In order to contribute to fill this gap, in the conclusion we suggest a two-pronged approach.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/32204259" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="72eb30f93003086d3a48ccb6e3084e2b" rel="nofollow" data-download="{&quot;attachment_id&quot;:52434610,&quot;asset_id&quot;:32204259,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/52434610/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="16582545" href="https://oxford.academia.edu/CorinneCath">Corinne Cath</a><script data-card-contents-for-user="16582545" type="text/json">{"id":16582545,"first_name":"Corinne","last_name":"Cath","domain_name":"oxford","page_name":"CorinneCath","display_name":"Corinne Cath","profile_url":"https://oxford.academia.edu/CorinneCath?f_ri=3413","photo":"https://0.academia-photos.com/16582545/11046051/18056580/s65_corinne.cath.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-32204259">+3</span><div class="hidden js-additional-users-32204259"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://oxford.academia.edu/SandraWachter">Sandra Wachter</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://oxford.academia.edu/BrentMittelstadt">Brent Mittelstadt</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://yale.academia.edu/LucianoFloridi">Luciano Floridi</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-32204259'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-32204259').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_32204259 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="32204259"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 32204259, container: ".js-paper-rank-work_32204259", }); });</script></li><li class="js-percentile-work_32204259 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 32204259; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_32204259"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_32204259 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="32204259"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 32204259; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=32204259]").text(description); $(".js-view-count-work_32204259").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_32204259").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="32204259"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">80</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="37" href="https://www.academia.edu/Documents/in/Information_Systems">Information Systems</a>,&nbsp;<script data-card-contents-for-ri="37" type="text/json">{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="428" href="https://www.academia.edu/Documents/in/Algorithms">Algorithms</a><script data-card-contents-for-ri="428" type="text/json">{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=32204259]'), work: {"id":32204259,"title":"Artificial Intelligence and the 'Good Society': the US, EU, and UK approach","created_at":"2017-04-02T11:07:01.015-07:00","url":"https://www.academia.edu/32204259/Artificial_Intelligence_and_the_Good_Society_the_US_EU_and_UK_approach?f_ri=3413","dom_id":"work_32204259","summary":"In October 2016, the White House, the European Parliament, and the UK House of Commons each issued a report outlining their visions on how to prepare society for the widespread use of artificial intelligence (AI). In this article, we provide a comparative assessment of these three reports in order to facilitate the design of policies favourable to the development of a 'good AI society'. To do so, we examine how each report addresses the following three topics: (a) the development of a 'good AI society'; (b) the role and responsibility of the government, the private sector, and the research community (including academia) in pursuing such a development; and (c) where the recommendations to support such a development may be in need of improvement. Our analysis concludes that the reports address adequately various ethical, social, and economic topics, but come short of providing an overarching political vision and long-term strategy for the development of a 'good AI society'. In order to contribute to fill this gap, in the conclusion we suggest a two-pronged approach. ","downloadable_attachments":[{"id":52434610,"asset_id":32204259,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":16582545,"first_name":"Corinne","last_name":"Cath","domain_name":"oxford","page_name":"CorinneCath","display_name":"Corinne Cath","profile_url":"https://oxford.academia.edu/CorinneCath?f_ri=3413","photo":"https://0.academia-photos.com/16582545/11046051/18056580/s65_corinne.cath.jpg"},{"id":55640176,"first_name":"Sandra","last_name":"Wachter","domain_name":"oxford","page_name":"SandraWachter","display_name":"Sandra Wachter","profile_url":"https://oxford.academia.edu/SandraWachter?f_ri=3413","photo":"https://0.academia-photos.com/55640176/15009734/15747283/s65_sandra.wachter.jpg"},{"id":2050164,"first_name":"Brent","last_name":"Mittelstadt","domain_name":"oxford","page_name":"BrentMittelstadt","display_name":"Brent Mittelstadt","profile_url":"https://oxford.academia.edu/BrentMittelstadt?f_ri=3413","photo":"https://0.academia-photos.com/2050164/674220/4372339/s65_brent.mittelstadt.jpg"},{"id":6616,"first_name":"Luciano","last_name":"Floridi","domain_name":"yale","page_name":"LucianoFloridi","display_name":"Luciano Floridi","profile_url":"https://yale.academia.edu/LucianoFloridi?f_ri=3413","photo":"https://0.academia-photos.com/6616/2546/117746817/s65_luciano.floridi.jpg"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=3413","nofollow":false},{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=3413","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=3413"},{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413"},{"id":472,"name":"Human Computer Interaction","url":"https://www.academia.edu/Documents/in/Human_Computer_Interaction?f_ri=3413"},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology?f_ri=3413"},{"id":534,"name":"Law","url":"https://www.academia.edu/Documents/in/Law?f_ri=3413"},{"id":546,"name":"Comparative Law","url":"https://www.academia.edu/Documents/in/Comparative_Law?f_ri=3413"},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology?f_ri=3413"},{"id":1283,"name":"Information Security","url":"https://www.academia.edu/Documents/in/Information_Security?f_ri=3413"},{"id":1306,"name":"European Law","url":"https://www.academia.edu/Documents/in/European_Law?f_ri=3413"},{"id":1380,"name":"Computer Engineering","url":"https://www.academia.edu/Documents/in/Computer_Engineering?f_ri=3413"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=3413"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=3413"},{"id":2043,"name":"Mobile Robotics","url":"https://www.academia.edu/Documents/in/Mobile_Robotics?f_ri=3413"},{"id":2169,"name":"Human Rights Law","url":"https://www.academia.edu/Documents/in/Human_Rights_Law?f_ri=3413"},{"id":2869,"name":"Digital Media","url":"https://www.academia.edu/Documents/in/Digital_Media?f_ri=3413"},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks?f_ri=3413"},{"id":4636,"name":"Information Ethics","url":"https://www.academia.edu/Documents/in/Information_Ethics?f_ri=3413"},{"id":4759,"name":"Computer Ethics","url":"https://www.academia.edu/Documents/in/Computer_Ethics?f_ri=3413"},{"id":4892,"name":"Autonomous Robotics","url":"https://www.academia.edu/Documents/in/Autonomous_Robotics?f_ri=3413"},{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413"},{"id":5006,"name":"Computer Games Technology","url":"https://www.academia.edu/Documents/in/Computer_Games_Technology?f_ri=3413"},{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms?f_ri=3413"},{"id":5457,"name":"Artificial Life","url":"https://www.academia.edu/Documents/in/Artificial_Life?f_ri=3413"},{"id":5978,"name":"Web Technologies","url":"https://www.academia.edu/Documents/in/Web_Technologies?f_ri=3413"},{"id":6728,"name":"Philosophy Of Law","url":"https://www.academia.edu/Documents/in/Philosophy_Of_Law?f_ri=3413"},{"id":7454,"name":"Information Communication Technology","url":"https://www.academia.edu/Documents/in/Information_Communication_Technology?f_ri=3413"},{"id":11136,"name":"Cognitive Robotics","url":"https://www.academia.edu/Documents/in/Cognitive_Robotics?f_ri=3413"},{"id":11988,"name":"Robotics Navigation","url":"https://www.academia.edu/Documents/in/Robotics_Navigation?f_ri=3413"},{"id":12009,"name":"Educational Robotics","url":"https://www.academia.edu/Documents/in/Educational_Robotics?f_ri=3413"},{"id":12059,"name":"Human-Robot Interaction","url":"https://www.academia.edu/Documents/in/Human-Robot_Interaction?f_ri=3413"},{"id":13923,"name":"Computer Security","url":"https://www.academia.edu/Documents/in/Computer_Security?f_ri=3413"},{"id":14418,"name":"Mechatronics \u0026 Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics?f_ri=3413"},{"id":17250,"name":"Social Robotics","url":"https://www.academia.edu/Documents/in/Social_Robotics?f_ri=3413"},{"id":20641,"name":"Future of artificial intelligence","url":"https://www.academia.edu/Documents/in/Future_of_artificial_intelligence?f_ri=3413"},{"id":21593,"name":"Artificial Inteligence","url":"https://www.academia.edu/Documents/in/Artificial_Inteligence?f_ri=3413"},{"id":24865,"name":"Robotic Surgery","url":"https://www.academia.edu/Documents/in/Robotic_Surgery?f_ri=3413"},{"id":25271,"name":"Artificial General Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_General_Intelligence?f_ri=3413"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm?f_ri=3413"},{"id":32278,"name":"Rehabilitation robotics","url":"https://www.academia.edu/Documents/in/Rehabilitation_robotics?f_ri=3413"},{"id":38180,"name":"Medical Robotics","url":"https://www.academia.edu/Documents/in/Medical_Robotics?f_ri=3413"},{"id":39595,"name":"Mechatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2?f_ri=3413"},{"id":40775,"name":"Parallel Robots","url":"https://www.academia.edu/Documents/in/Parallel_Robots?f_ri=3413"},{"id":44389,"name":"Artificial Neural Networks for modeling purposes","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks_for_modeling_purposes?f_ri=3413"},{"id":51189,"name":"Computer Hacking","url":"https://www.academia.edu/Documents/in/Computer_Hacking?f_ri=3413"},{"id":51264,"name":"Computer Programming","url":"https://www.academia.edu/Documents/in/Computer_Programming?f_ri=3413"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=3413"},{"id":62007,"name":"Artificial Intelligence in Education","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence_in_Education?f_ri=3413"},{"id":74262,"name":"Philosophy of Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Philosophy_of_Artificial_Intelligence?f_ri=3413"},{"id":76958,"name":"Artificial Inteligent","url":"https://www.academia.edu/Documents/in/Artificial_Inteligent?f_ri=3413"},{"id":87601,"name":"Robotic","url":"https://www.academia.edu/Documents/in/Robotic?f_ri=3413"},{"id":89919,"name":"Robots","url":"https://www.academia.edu/Documents/in/Robots?f_ri=3413"},{"id":99861,"name":"ROBOT","url":"https://www.academia.edu/Documents/in/ROBOT?f_ri=3413"},{"id":136263,"name":"Robot ethics Arkin Governor","url":"https://www.academia.edu/Documents/in/Robot_ethics_Arkin_Governor?f_ri=3413"},{"id":136271,"name":"Robot ethics","url":"https://www.academia.edu/Documents/in/Robot_ethics?f_ri=3413"},{"id":141502,"name":"Inteligencia artificial","url":"https://www.academia.edu/Documents/in/Inteligencia_artificial-1?f_ri=3413"},{"id":161276,"name":"Computer Ethics Awareness","url":"https://www.academia.edu/Documents/in/Computer_Ethics_Awareness?f_ri=3413"},{"id":251903,"name":"Artificial Intelligence And Techniques","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence_And_Techniques?f_ri=3413"},{"id":295037,"name":"Information Techology","url":"https://www.academia.edu/Documents/in/Information_Techology?f_ri=3413"},{"id":338302,"name":"ROBOTICA","url":"https://www.academia.edu/Documents/in/ROBOTICA?f_ri=3413"},{"id":455058,"name":"Information and Computer Ethics","url":"https://www.academia.edu/Documents/in/Information_and_Computer_Ethics?f_ri=3413"},{"id":457037,"name":"Ethical Hacking and Information Security","url":"https://www.academia.edu/Documents/in/Ethical_Hacking_and_Information_Security?f_ri=3413"},{"id":528547,"name":"Ethics of Robotics","url":"https://www.academia.edu/Documents/in/Ethics_of_Robotics?f_ri=3413"},{"id":528567,"name":"Ethics and robotics","url":"https://www.academia.edu/Documents/in/Ethics_and_robotics?f_ri=3413"},{"id":678892,"name":"Information Et Communication","url":"https://www.academia.edu/Documents/in/Information_Et_Communication?f_ri=3413"},{"id":734097,"name":"Logika Dan Algoritma","url":"https://www.academia.edu/Documents/in/Logika_Dan_Algoritma?f_ri=3413"},{"id":741495,"name":"Robotic Ethics","url":"https://www.academia.edu/Documents/in/Robotic_Ethics?f_ri=3413"},{"id":741496,"name":"Information Technology Ethics","url":"https://www.academia.edu/Documents/in/Information_Technology_Ethics?f_ri=3413"},{"id":882991,"name":"Digital Ethics","url":"https://www.academia.edu/Documents/in/Digital_Ethics?f_ri=3413"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=3413"},{"id":1223686,"name":"Artificial Intelligent and Soft Computing Methodologies","url":"https://www.academia.edu/Documents/in/Artificial_Intelligent_and_Soft_Computing_Methodologies?f_ri=3413"},{"id":1224548,"name":"Electrical and Computer Engineering (ECE)","url":"https://www.academia.edu/Documents/in/Electrical_and_Computer_Engineering_ECE_?f_ri=3413"},{"id":1331890,"name":"Robots and Ethics","url":"https://www.academia.edu/Documents/in/Robots_and_Ethics?f_ri=3413"},{"id":1712058,"name":"Big Data Ethics","url":"https://www.academia.edu/Documents/in/Big_Data_Ethics?f_ri=3413"},{"id":1744493,"name":"Science and Technology Studies","url":"https://www.academia.edu/Documents/in/Science_and_Technology_Studies?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_26460487 coauthored" data-work_id="26460487" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/26460487/Cooperative_and_Non_Cooperative_Sense_and_Avoid_in_the_CNS_A_Context_A_Unified_Methodology">Cooperative and Non-Cooperative Sense-and-Avoid in the CNS+A Context: A Unified Methodology</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">A unified approach to cooperative and non-cooperative Sense-and-Avoid (SAA) is presented that addresses the technical and regulatory challenges of Unmanned Aircraft Systems (UAS) integration into non-segregated airspace. In this paper,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_26460487" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">A unified approach to cooperative and non-cooperative Sense-and-Avoid (SAA) is presented that addresses the technical and regulatory challenges of Unmanned Aircraft Systems (UAS) integration into non-segregated airspace. In this paper, state-of-the-art sensor/system technologies for cooperative and non-cooperative SAA are reviewed and a reference system architecture is presented. Automated selection of sensors/systems including passive and active Forward Looking Sensors (FLS), Traffic Collision Avoidance System (TCAS) and Automatic Dependent Surveillance – Broadcast (ADS-B) system is performed based on Boolean Decision Logics (BDL) to support trusted autonomous operations during all flight phases. The BDL adoption allows for a dynamic reconfiguration of the SAA architecture, based on the current error estimates of navigation and tracking sensors/systems. The significance of this approach is discussed in the Communication, Navigation and Surveillance/Air Traffic Management and Avionics (CNS+A) context, with a focus on avionics and ATM certification requirements. Additionally, the mathematical models employed in the SAA Unified Method (SUM) to compute the overall uncertainty volume in the airspace surrounding an intruder/obstacle are described. In the presented methodology, navigation and tracking errors affecting the host UAS platform and intruder sensor measurements are translated to unified range and bearing uncertainty descriptors. Simulation case studies are presented to evaluate the performance of the unified approach on a representative UAS host platform and a number of intruder platforms. The results confirm the validity of the proposed unified methodology providing a pathway for certification of SAA systems that typically employ a suite of non-cooperative sensors and/or cooperative systems.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/26460487" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f87c4b89278b097b64a99c836353acd1" rel="nofollow" data-download="{&quot;attachment_id&quot;:46755736,&quot;asset_id&quot;:26460487,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/46755736/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="9093041" href="https://khalifa.academia.edu/RobertoSabatini">Roberto Sabatini</a><script data-card-contents-for-user="9093041" type="text/json">{"id":9093041,"first_name":"Roberto","last_name":"Sabatini","domain_name":"khalifa","page_name":"RobertoSabatini","display_name":"Roberto Sabatini","profile_url":"https://khalifa.academia.edu/RobertoSabatini?f_ri=3413","photo":"https://0.academia-photos.com/9093041/4660850/17407129/s65_roberto.sabatini.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-26460487">+2</span><div class="hidden js-additional-users-26460487"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://rmit.academia.edu/SubramanianRamasamy">Subramanian Ramasamy</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://khalifa.academia.edu/AlessandroGardi">Alessandro Gardi</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-26460487'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-26460487').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_26460487 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="26460487"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 26460487, container: ".js-paper-rank-work_26460487", }); });</script></li><li class="js-percentile-work_26460487 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26460487; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_26460487"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_26460487 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="26460487"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26460487; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26460487]").text(description); $(".js-view-count-work_26460487").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_26460487").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="26460487"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">44</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="88" href="https://www.academia.edu/Documents/in/Aerospace_Engineering">Aerospace Engineering</a>,&nbsp;<script data-card-contents-for-ri="88" type="text/json">{"id":88,"name":"Aerospace Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="471" href="https://www.academia.edu/Documents/in/Robotics_Computer_Science_">Robotics (Computer Science)</a>,&nbsp;<script data-card-contents-for-ri="471" type="text/json">{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1526" href="https://www.academia.edu/Documents/in/Sensors_and_Sensing">Sensors and Sensing</a><script data-card-contents-for-ri="1526" type="text/json">{"id":1526,"name":"Sensors and Sensing","url":"https://www.academia.edu/Documents/in/Sensors_and_Sensing?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=26460487]'), work: {"id":26460487,"title":"Cooperative and Non-Cooperative Sense-and-Avoid in the CNS+A Context: A Unified Methodology","created_at":"2016-06-24T04:41:33.062-07:00","url":"https://www.academia.edu/26460487/Cooperative_and_Non_Cooperative_Sense_and_Avoid_in_the_CNS_A_Context_A_Unified_Methodology?f_ri=3413","dom_id":"work_26460487","summary":"A unified approach to cooperative and non-cooperative Sense-and-Avoid (SAA) is presented that addresses the technical and regulatory challenges of Unmanned Aircraft Systems (UAS) integration into non-segregated airspace. In this paper, state-of-the-art sensor/system technologies for cooperative and non-cooperative SAA are reviewed and a reference system architecture is presented. Automated selection of sensors/systems including passive and active Forward Looking Sensors (FLS), Traffic Collision Avoidance System (TCAS) and Automatic Dependent Surveillance – Broadcast (ADS-B) system is performed based on Boolean Decision Logics (BDL) to support trusted autonomous operations during all flight phases. The BDL adoption allows for a dynamic reconfiguration of the SAA architecture, based on the current error estimates of navigation and tracking sensors/systems. The significance of this approach is discussed in the Communication, Navigation and Surveillance/Air Traffic Management and Avionics (CNS+A) context, with a focus on avionics and ATM certification requirements. Additionally, the mathematical models employed in the SAA Unified Method (SUM) to compute the overall uncertainty volume in the airspace surrounding an intruder/obstacle are described. In the presented methodology, navigation and tracking errors affecting the host UAS platform and intruder sensor measurements are translated to unified range and bearing uncertainty descriptors. Simulation case studies are presented to evaluate the performance of the unified approach on a representative UAS host platform and a number of intruder platforms. The results confirm the validity of the proposed unified methodology providing a pathway for certification of SAA systems that typically employ a suite of non-cooperative sensors and/or cooperative systems.","downloadable_attachments":[{"id":46755736,"asset_id":26460487,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":9093041,"first_name":"Roberto","last_name":"Sabatini","domain_name":"khalifa","page_name":"RobertoSabatini","display_name":"Roberto Sabatini","profile_url":"https://khalifa.academia.edu/RobertoSabatini?f_ri=3413","photo":"https://0.academia-photos.com/9093041/4660850/17407129/s65_roberto.sabatini.jpg"},{"id":25106050,"first_name":"Subramanian","last_name":"Ramasamy","domain_name":"rmit","page_name":"SubramanianRamasamy","display_name":"Subramanian Ramasamy","profile_url":"https://rmit.academia.edu/SubramanianRamasamy?f_ri=3413","photo":"https://0.academia-photos.com/25106050/9794378/10912904/s65_subramanian.ramasamy.jpg"},{"id":32392907,"first_name":"Alessandro","last_name":"Gardi","domain_name":"khalifa","page_name":"AlessandroGardi","display_name":"Alessandro Gardi","profile_url":"https://khalifa.academia.edu/AlessandroGardi?f_ri=3413","photo":"https://0.academia-photos.com/32392907/40923811/33345526/s65_alessandro.gardi.jpg"}],"research_interests":[{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":88,"name":"Aerospace Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_Engineering?f_ri=3413","nofollow":false},{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413","nofollow":false},{"id":1526,"name":"Sensors and Sensing","url":"https://www.academia.edu/Documents/in/Sensors_and_Sensing?f_ri=3413","nofollow":false},{"id":2043,"name":"Mobile Robotics","url":"https://www.academia.edu/Documents/in/Mobile_Robotics?f_ri=3413"},{"id":3170,"name":"Air Transport","url":"https://www.academia.edu/Documents/in/Air_Transport?f_ri=3413"},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":3641,"name":"Aeronautical Engineering","url":"https://www.academia.edu/Documents/in/Aeronautical_Engineering?f_ri=3413"},{"id":4735,"name":"Sensor","url":"https://www.academia.edu/Documents/in/Sensor?f_ri=3413"},{"id":4892,"name":"Autonomous Robotics","url":"https://www.academia.edu/Documents/in/Autonomous_Robotics?f_ri=3413"},{"id":8106,"name":"Uav","url":"https://www.academia.edu/Documents/in/Uav?f_ri=3413"},{"id":9586,"name":"Unmanned Aircraft Systems","url":"https://www.academia.edu/Documents/in/Unmanned_Aircraft_Systems?f_ri=3413"},{"id":11268,"name":"General Aviation","url":"https://www.academia.edu/Documents/in/General_Aviation?f_ri=3413"},{"id":11988,"name":"Robotics Navigation","url":"https://www.academia.edu/Documents/in/Robotics_Navigation?f_ri=3413"},{"id":12100,"name":"Aviation","url":"https://www.academia.edu/Documents/in/Aviation?f_ri=3413"},{"id":12103,"name":"Aviation Safety","url":"https://www.academia.edu/Documents/in/Aviation_Safety?f_ri=3413"},{"id":12105,"name":"Aeronautics and Aerospace Operations","url":"https://www.academia.edu/Documents/in/Aeronautics_and_Aerospace_Operations?f_ri=3413"},{"id":14303,"name":"Human Factors in Aviation","url":"https://www.academia.edu/Documents/in/Human_Factors_in_Aviation?f_ri=3413"},{"id":14418,"name":"Mechatronics \u0026 Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics?f_ri=3413"},{"id":14668,"name":"Aerospace","url":"https://www.academia.edu/Documents/in/Aerospace?f_ri=3413"},{"id":28413,"name":"Air Traffic Management","url":"https://www.academia.edu/Documents/in/Air_Traffic_Management?f_ri=3413"},{"id":39595,"name":"Mechatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2?f_ri=3413"},{"id":44890,"name":"Unmanned Aerial Vehicles","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicles?f_ri=3413"},{"id":52637,"name":"UAV and Aircraft control","url":"https://www.academia.edu/Documents/in/UAV_and_Aircraft_control?f_ri=3413"},{"id":55293,"name":"Air traffic control","url":"https://www.academia.edu/Documents/in/Air_traffic_control?f_ri=3413"},{"id":62386,"name":"Avionics","url":"https://www.academia.edu/Documents/in/Avionics?f_ri=3413"},{"id":80455,"name":"Avionics (Control and Communication)","url":"https://www.academia.edu/Documents/in/Avionics_Control_and_Communication_?f_ri=3413"},{"id":89919,"name":"Robots","url":"https://www.academia.edu/Documents/in/Robots?f_ri=3413"},{"id":133350,"name":"Avionics Engineering","url":"https://www.academia.edu/Documents/in/Avionics_Engineering?f_ri=3413"},{"id":167206,"name":"UAV systems","url":"https://www.academia.edu/Documents/in/UAV_systems?f_ri=3413"},{"id":181995,"name":"Aeronautics","url":"https://www.academia.edu/Documents/in/Aeronautics?f_ri=3413"},{"id":189027,"name":"Unmanned Aerial Vehicle (UAV)","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicle_UAV_?f_ri=3413"},{"id":216281,"name":"Aeronautics and aerospace","url":"https://www.academia.edu/Documents/in/Aeronautics_and_aerospace?f_ri=3413"},{"id":265778,"name":"Uas","url":"https://www.academia.edu/Documents/in/Uas?f_ri=3413"},{"id":271648,"name":"Aeronautical","url":"https://www.academia.edu/Documents/in/Aeronautical?f_ri=3413"},{"id":282007,"name":"Avionics, UAV, Electronics","url":"https://www.academia.edu/Documents/in/Avionics_UAV_Electronics?f_ri=3413"},{"id":479632,"name":"UAV STABILITY AND CONTROL","url":"https://www.academia.edu/Documents/in/UAV_STABILITY_AND_CONTROL?f_ri=3413"},{"id":479633,"name":"UAV MODELLING AND SIMULATION","url":"https://www.academia.edu/Documents/in/UAV_MODELLING_AND_SIMULATION?f_ri=3413"},{"id":479635,"name":"UAV MODELING IN MATLAB SIMULINK","url":"https://www.academia.edu/Documents/in/UAV_MODELING_IN_MATLAB_SIMULINK?f_ri=3413"},{"id":614521,"name":"Engenharia Aeroespacial","url":"https://www.academia.edu/Documents/in/Engenharia_Aeroespacial?f_ri=3413"},{"id":655235,"name":"Aerospace And Avionics Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_And_Avionics_Engineering?f_ri=3413"},{"id":729454,"name":"Avionics Navigation Systems","url":"https://www.academia.edu/Documents/in/Avionics_Navigation_Systems?f_ri=3413"},{"id":1151066,"name":"RPAS","url":"https://www.academia.edu/Documents/in/RPAS?f_ri=3413"},{"id":1540347,"name":"Sense and Avoid","url":"https://www.academia.edu/Documents/in/Sense_and_Avoid?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_28909475 coauthored" data-work_id="28909475" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/28909475/A_Low_Cost_and_High_Performance_Navigation_System_for_Small_RPAS_Applications">A Low-Cost and High Performance Navigation System for Small RPAS Applications</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Modern Remotely Piloted Aircraft Systems (RPAS) employ a variety of sensors and multi-sensor data fusion techniques to provide advanced functionalities and trusted autonomy in a wide range of mission-essential and safety-critical tasks.... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_28909475" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Modern Remotely Piloted Aircraft Systems (RPAS) employ a variety of sensors and multi-sensor data fusion techniques to provide advanced functionalities and trusted autonomy in a wide range of mission-essential and safety-critical tasks. In particular, Navigation and Guidance Systems (NGS) for small RPAS require a typical combination of lightweight, compact and inexpensive sensors to satisfy the Required Navigation Performance (RNP) in all flight phases. In this paper, the synergies attainable by the combination of Global Navigation Satellite System (GNSS), Micro-Electromechanical System based Inertial Measurement Unit (MEMS-IMU) and Vision-Based Navigation (VBN) sensors are explored. In case of VBN, an appearance-based navigation technique is adopted and feature extraction/optical flow methods are employed to estimate the navigation parameters during precision approach and landing phases. A key novelty of the proposed approach is the employment of Aircraft Dynamics Models (ADM) augmentation to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. To obtain the best estimates of Position, Velocity and Attitude (PVA), different sensor combinations are analysed and dynamic Boolean Decision Logics (BDL) are implemented for data selection before the centralised data fusion is accomplished. Various alternatives for data fusion are investigated including a traditional Extended Kalman Filter (EKF) and a more advanced Unscented Kalman Filter (UKF). A novel hybrid controller employing fuzzy logic and Proportional-Integral-Derivative (PID) techniques is implemented to provide effective stabilization and control of pitch and roll angles. After introducing the key mathematical models describing the three NGS architectures: EKF based VBN-IMU-GNSS (VIG) and VBN-IMU-GNSS-ADM (VIGA) and UKF based Enhanced VIGA (EVIGA), the system performances are compared in a small RPAS integration scheme (i.e., AEROSONDE RPAS platform) exploring a representative cross-section of the aircraft operational flight envelope. A dedicated ADM processor (i.e., a local pre-filter) is adopted in the EVIGA architecture to account for the RPAS maneuvering envelope in different flight phases (assisted by a maneuver identification algorithm), in order to extend the ADM validity time across all segments of the RPAS trajectory. Simulation results show that the VIG, VIGA and EVIGA systems are compliant with ICAO requirements for precision approach down to CAT-II. In all other flight phases, the VIGA system shows improvement in PVA data output with respect to the VIG system. The EVIGA system shows the best performance in terms of attitude data accuracy and a significant extension of the ADM validity time is achieved in this configuration.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/28909475" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d248ff38c62bf2898a3d98c55e379dab" rel="nofollow" data-download="{&quot;attachment_id&quot;:49343529,&quot;asset_id&quot;:28909475,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49343529/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="9093041" href="https://khalifa.academia.edu/RobertoSabatini">Roberto Sabatini</a><script data-card-contents-for-user="9093041" type="text/json">{"id":9093041,"first_name":"Roberto","last_name":"Sabatini","domain_name":"khalifa","page_name":"RobertoSabatini","display_name":"Roberto Sabatini","profile_url":"https://khalifa.academia.edu/RobertoSabatini?f_ri=3413","photo":"https://0.academia-photos.com/9093041/4660850/17407129/s65_roberto.sabatini.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-28909475">+1</span><div class="hidden js-additional-users-28909475"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://rmit.academia.edu/SubramanianRamasamy">Subramanian Ramasamy</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-28909475'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-28909475').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_28909475 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="28909475"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 28909475, container: ".js-paper-rank-work_28909475", }); });</script></li><li class="js-percentile-work_28909475 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28909475; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_28909475"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_28909475 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="28909475"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28909475; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28909475]").text(description); $(".js-view-count-work_28909475").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_28909475").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="28909475"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">80</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="88" href="https://www.academia.edu/Documents/in/Aerospace_Engineering">Aerospace Engineering</a>,&nbsp;<script data-card-contents-for-ri="88" type="text/json">{"id":88,"name":"Aerospace Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2229" href="https://www.academia.edu/Documents/in/Vision_Science">Vision Science</a>,&nbsp;<script data-card-contents-for-ri="2229" type="text/json">{"id":2229,"name":"Vision Science","url":"https://www.academia.edu/Documents/in/Vision_Science?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a><script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=28909475]'), work: {"id":28909475,"title":"A Low-Cost and High Performance Navigation System for Small RPAS Applications","created_at":"2016-10-04T06:04:03.701-07:00","url":"https://www.academia.edu/28909475/A_Low_Cost_and_High_Performance_Navigation_System_for_Small_RPAS_Applications?f_ri=3413","dom_id":"work_28909475","summary":"Modern Remotely Piloted Aircraft Systems (RPAS) employ a variety of sensors and multi-sensor data fusion techniques to provide advanced functionalities and trusted autonomy in a wide range of mission-essential and safety-critical tasks. In particular, Navigation and Guidance Systems (NGS) for small RPAS require a typical combination of lightweight, compact and inexpensive sensors to satisfy the Required Navigation Performance (RNP) in all flight phases. In this paper, the synergies attainable by the combination of Global Navigation Satellite System (GNSS), Micro-Electromechanical System based Inertial Measurement Unit (MEMS-IMU) and Vision-Based Navigation (VBN) sensors are explored. In case of VBN, an appearance-based navigation technique is adopted and feature extraction/optical flow methods are employed to estimate the navigation parameters during precision approach and landing phases. A key novelty of the proposed approach is the employment of Aircraft Dynamics Models (ADM) augmentation to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. To obtain the best estimates of Position, Velocity and Attitude (PVA), different sensor combinations are analysed and dynamic Boolean Decision Logics (BDL) are implemented for data selection before the centralised data fusion is accomplished. Various alternatives for data fusion are investigated including a traditional Extended Kalman Filter (EKF) and a more advanced Unscented Kalman Filter (UKF). A novel hybrid controller employing fuzzy logic and Proportional-Integral-Derivative (PID) techniques is implemented to provide effective stabilization and control of pitch and roll angles. After introducing the key mathematical models describing the three NGS architectures: EKF based VBN-IMU-GNSS (VIG) and VBN-IMU-GNSS-ADM (VIGA) and UKF based Enhanced VIGA (EVIGA), the system performances are compared in a small RPAS integration scheme (i.e., AEROSONDE RPAS platform) exploring a representative cross-section of the aircraft operational flight envelope. A dedicated ADM processor (i.e., a local pre-filter) is adopted in the EVIGA architecture to account for the RPAS maneuvering envelope in different flight phases (assisted by a maneuver identification algorithm), in order to extend the ADM validity time across all segments of the RPAS trajectory. Simulation results show that the VIG, VIGA and EVIGA systems are compliant with ICAO requirements for precision approach down to CAT-II. In all other flight phases, the VIGA system shows improvement in PVA data output with respect to the VIG system. The EVIGA system shows the best performance in terms of attitude data accuracy and a significant extension of the ADM validity time is achieved in this configuration.","downloadable_attachments":[{"id":49343529,"asset_id":28909475,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":9093041,"first_name":"Roberto","last_name":"Sabatini","domain_name":"khalifa","page_name":"RobertoSabatini","display_name":"Roberto Sabatini","profile_url":"https://khalifa.academia.edu/RobertoSabatini?f_ri=3413","photo":"https://0.academia-photos.com/9093041/4660850/17407129/s65_roberto.sabatini.jpg"},{"id":25106050,"first_name":"Subramanian","last_name":"Ramasamy","domain_name":"rmit","page_name":"SubramanianRamasamy","display_name":"Subramanian Ramasamy","profile_url":"https://rmit.academia.edu/SubramanianRamasamy?f_ri=3413","photo":"https://0.academia-photos.com/25106050/9794378/10912904/s65_subramanian.ramasamy.jpg"}],"research_interests":[{"id":88,"name":"Aerospace Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_Engineering?f_ri=3413","nofollow":false},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false},{"id":2229,"name":"Vision Science","url":"https://www.academia.edu/Documents/in/Vision_Science?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":3641,"name":"Aeronautical Engineering","url":"https://www.academia.edu/Documents/in/Aeronautical_Engineering?f_ri=3413"},{"id":5493,"name":"Nonlinear dynamics","url":"https://www.academia.edu/Documents/in/Nonlinear_dynamics?f_ri=3413"},{"id":7923,"name":"Global Navigation Satellite Systems","url":"https://www.academia.edu/Documents/in/Global_Navigation_Satellite_Systems?f_ri=3413"},{"id":8050,"name":"Vehicle Dynamics","url":"https://www.academia.edu/Documents/in/Vehicle_Dynamics?f_ri=3413"},{"id":9586,"name":"Unmanned Aircraft Systems","url":"https://www.academia.edu/Documents/in/Unmanned_Aircraft_Systems?f_ri=3413"},{"id":9708,"name":"System Dynamics Modeling","url":"https://www.academia.edu/Documents/in/System_Dynamics_Modeling?f_ri=3413"},{"id":10003,"name":"Inertial navigation","url":"https://www.academia.edu/Documents/in/Inertial_navigation?f_ri=3413"},{"id":10308,"name":"Integrated Navigation (Marine Simulation)","url":"https://www.academia.edu/Documents/in/Integrated_Navigation_Marine_Simulation_?f_ri=3413"},{"id":10875,"name":"Aerodynamics","url":"https://www.academia.edu/Documents/in/Aerodynamics?f_ri=3413"},{"id":11677,"name":"Unmanned Air Vechicles","url":"https://www.academia.edu/Documents/in/Unmanned_Air_Vechicles?f_ri=3413"},{"id":11988,"name":"Robotics Navigation","url":"https://www.academia.edu/Documents/in/Robotics_Navigation?f_ri=3413"},{"id":12100,"name":"Aviation","url":"https://www.academia.edu/Documents/in/Aviation?f_ri=3413"},{"id":12105,"name":"Aeronautics and Aerospace Operations","url":"https://www.academia.edu/Documents/in/Aeronautics_and_Aerospace_Operations?f_ri=3413"},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413"},{"id":14668,"name":"Aerospace","url":"https://www.academia.edu/Documents/in/Aerospace?f_ri=3413"},{"id":31340,"name":"MEMS sensor","url":"https://www.academia.edu/Documents/in/MEMS_sensor?f_ri=3413"},{"id":44890,"name":"Unmanned Aerial Vehicles","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicles?f_ri=3413"},{"id":45039,"name":"Aerospace Engineering and Control System Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_Engineering_and_Control_System_Engineering?f_ri=3413"},{"id":49146,"name":"Kalman Filter","url":"https://www.academia.edu/Documents/in/Kalman_Filter?f_ri=3413"},{"id":52637,"name":"UAV and Aircraft control","url":"https://www.academia.edu/Documents/in/UAV_and_Aircraft_control?f_ri=3413"},{"id":56246,"name":"GNSS","url":"https://www.academia.edu/Documents/in/GNSS?f_ri=3413"},{"id":58048,"name":"Guidance, Navigation and Control","url":"https://www.academia.edu/Documents/in/Guidance_Navigation_and_Control?f_ri=3413"},{"id":59692,"name":"Vision","url":"https://www.academia.edu/Documents/in/Vision?f_ri=3413"},{"id":59695,"name":"Navigation","url":"https://www.academia.edu/Documents/in/Navigation?f_ri=3413"},{"id":62386,"name":"Avionics","url":"https://www.academia.edu/Documents/in/Avionics?f_ri=3413"},{"id":67380,"name":"Kalman Filtering","url":"https://www.academia.edu/Documents/in/Kalman_Filtering?f_ri=3413"},{"id":79114,"name":"Vision Based Navigation","url":"https://www.academia.edu/Documents/in/Vision_Based_Navigation?f_ri=3413"},{"id":80455,"name":"Avionics (Control and Communication)","url":"https://www.academia.edu/Documents/in/Avionics_Control_and_Communication_?f_ri=3413"},{"id":129109,"name":"GNSS/IMU Integrated Navigation","url":"https://www.academia.edu/Documents/in/GNSS_IMU_Integrated_Navigation?f_ri=3413"},{"id":133350,"name":"Avionics Engineering","url":"https://www.academia.edu/Documents/in/Avionics_Engineering?f_ri=3413"},{"id":167206,"name":"UAV systems","url":"https://www.academia.edu/Documents/in/UAV_systems?f_ri=3413"},{"id":175659,"name":"GNSS precise positioning","url":"https://www.academia.edu/Documents/in/GNSS_precise_positioning?f_ri=3413"},{"id":175926,"name":"GNSS applications","url":"https://www.academia.edu/Documents/in/GNSS_applications?f_ri=3413"},{"id":175928,"name":"GNSS error mitigation","url":"https://www.academia.edu/Documents/in/GNSS_error_mitigation?f_ri=3413"},{"id":181995,"name":"Aeronautics","url":"https://www.academia.edu/Documents/in/Aeronautics?f_ri=3413"},{"id":189027,"name":"Unmanned Aerial Vehicle (UAV)","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicle_UAV_?f_ri=3413"},{"id":189269,"name":"Vision based robot control","url":"https://www.academia.edu/Documents/in/Vision_based_robot_control?f_ri=3413"},{"id":215744,"name":"Nonlinear Kalman Filter","url":"https://www.academia.edu/Documents/in/Nonlinear_Kalman_Filter?f_ri=3413"},{"id":216281,"name":"Aeronautics and aerospace","url":"https://www.academia.edu/Documents/in/Aeronautics_and_aerospace?f_ri=3413"},{"id":236258,"name":"Mobile Robot Navigation","url":"https://www.academia.edu/Documents/in/Mobile_Robot_Navigation?f_ri=3413"},{"id":238499,"name":"Aeronautics and Astronautics","url":"https://www.academia.edu/Documents/in/Aeronautics_and_Astronautics?f_ri=3413"},{"id":256158,"name":"MEMS design: Sensors and Actuators","url":"https://www.academia.edu/Documents/in/MEMS_design_Sensors_and_Actuators?f_ri=3413"},{"id":256271,"name":"Unmanned Vehicles","url":"https://www.academia.edu/Documents/in/Unmanned_Vehicles?f_ri=3413"},{"id":282007,"name":"Avionics, UAV, Electronics","url":"https://www.academia.edu/Documents/in/Avionics_UAV_Electronics?f_ri=3413"},{"id":322735,"name":"GNSS receivers","url":"https://www.academia.edu/Documents/in/GNSS_receivers?f_ri=3413"},{"id":325034,"name":"Unscented Kalman Filter","url":"https://www.academia.edu/Documents/in/Unscented_Kalman_Filter?f_ri=3413"},{"id":331575,"name":"Parameter Estimation Using Unscented Kalman Filter","url":"https://www.academia.edu/Documents/in/Parameter_Estimation_Using_Unscented_Kalman_Filter?f_ri=3413"},{"id":343577,"name":"GNSS/INS Integration Navigation","url":"https://www.academia.edu/Documents/in/GNSS_INS_Integration_Navigation?f_ri=3413"},{"id":354417,"name":"Dynamic Systems and Control","url":"https://www.academia.edu/Documents/in/Dynamic_Systems_and_Control?f_ri=3413"},{"id":359393,"name":"Guidance Navigation and Control","url":"https://www.academia.edu/Documents/in/Guidance_Navigation_and_Control-2?f_ri=3413"},{"id":369308,"name":"GNSS and GPS","url":"https://www.academia.edu/Documents/in/GNSS_and_GPS?f_ri=3413"},{"id":431014,"name":"Unmanned Aerial Vehicles, Robotics, Electronic Warfare Systems","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicles_Robotics_Electronic_Warfare_Systems?f_ri=3413"},{"id":460342,"name":"Vision-Based Mobile Robot Navigation Using Image Processing and Cell Decomposition","url":"https://www.academia.edu/Documents/in/Vision-Based_Mobile_Robot_Navigation_Using_Image_Processing_and_Cell_Decomposition?f_ri=3413"},{"id":479632,"name":"UAV STABILITY AND CONTROL","url":"https://www.academia.edu/Documents/in/UAV_STABILITY_AND_CONTROL?f_ri=3413"},{"id":479633,"name":"UAV MODELLING AND SIMULATION","url":"https://www.academia.edu/Documents/in/UAV_MODELLING_AND_SIMULATION?f_ri=3413"},{"id":479634,"name":"UAV DYNAMICS","url":"https://www.academia.edu/Documents/in/UAV_DYNAMICS?f_ri=3413"},{"id":479635,"name":"UAV MODELING IN MATLAB SIMULINK","url":"https://www.academia.edu/Documents/in/UAV_MODELING_IN_MATLAB_SIMULINK?f_ri=3413"},{"id":586721,"name":"Avionics Systems","url":"https://www.academia.edu/Documents/in/Avionics_Systems?f_ri=3413"},{"id":614521,"name":"Engenharia Aeroespacial","url":"https://www.academia.edu/Documents/in/Engenharia_Aeroespacial?f_ri=3413"},{"id":655235,"name":"Aerospace And Avionics Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_And_Avionics_Engineering?f_ri=3413"},{"id":729454,"name":"Avionics Navigation Systems","url":"https://www.academia.edu/Documents/in/Avionics_Navigation_Systems?f_ri=3413"},{"id":763924,"name":"Unmanned Systems Engineering","url":"https://www.academia.edu/Documents/in/Unmanned_Systems_Engineering?f_ri=3413"},{"id":763928,"name":"Unmanned Systems","url":"https://www.academia.edu/Documents/in/Unmanned_Systems?f_ri=3413"},{"id":779642,"name":"UNMANNED AIRCRAFT VEHICLE","url":"https://www.academia.edu/Documents/in/UNMANNED_AIRCRAFT_VEHICLE?f_ri=3413"},{"id":834710,"name":"Guidance and Control of Aerospace Vehicles","url":"https://www.academia.edu/Documents/in/Guidance_and_Control_of_Aerospace_Vehicles?f_ri=3413"},{"id":847570,"name":"Kalman Filtering Algorithm","url":"https://www.academia.edu/Documents/in/Kalman_Filtering_Algorithm?f_ri=3413"},{"id":872410,"name":"Extended Kalman Filter","url":"https://www.academia.edu/Documents/in/Extended_Kalman_Filter?f_ri=3413"},{"id":963605,"name":"Navigation and Control of Autonomous Vehicles (E.g. Spacecraft","url":"https://www.academia.edu/Documents/in/Navigation_and_Control_of_Autonomous_Vehicles_E.g._Spacecraft?f_ri=3413"},{"id":981997,"name":"Inertial Sensors","url":"https://www.academia.edu/Documents/in/Inertial_Sensors?f_ri=3413"},{"id":1116218,"name":"Inertial","url":"https://www.academia.edu/Documents/in/Inertial?f_ri=3413"},{"id":1136870,"name":"Aircraft Dynamics","url":"https://www.academia.edu/Documents/in/Aircraft_Dynamics?f_ri=3413"},{"id":1151066,"name":"RPAS","url":"https://www.academia.edu/Documents/in/RPAS?f_ri=3413"},{"id":1303555,"name":"Unmanned Aerial Vehicle","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicle?f_ri=3413"},{"id":1324783,"name":"Aircraft control and dynamics","url":"https://www.academia.edu/Documents/in/Aircraft_control_and_dynamics?f_ri=3413"},{"id":1654269,"name":"Aircraft Dynamics Model","url":"https://www.academia.edu/Documents/in/Aircraft_Dynamics_Model?f_ri=3413"},{"id":1917535,"name":"Unamanned Aerial Vehicles","url":"https://www.academia.edu/Documents/in/Unamanned_Aerial_Vehicles?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_44386769" data-work_id="44386769" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/44386769/Delivery_Robot">Delivery Robot</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The autonomous delivery robot is meant to be a substitute for a goods delivery person. The delivery robot is capable of navigating through a cluttered space environment from a home location to a destination point while avoiding obstacles... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_44386769" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The autonomous delivery robot is meant to be a substitute for a goods delivery person. The delivery robot is capable of navigating through a cluttered space environment from a home location to a destination point while avoiding obstacles in the process. It uses an ultrasonic sensor to detect if anything has been placed inside the bin and only once when something is placed inside, the robot starts moving from a position to another. Bluetooth beacons are used to represent the start, end and mid-point which will be used by the robot to differentiate the specified locations. Bluetooth beacons will act as a terminal for the robot to detect. The autonomous robot will move on an undesignated path i.e. an unmarked route unlike the archaic robots only capable of moving inside a marked black lane. The robot will be trained and multiple simulations are run on it with the help of the DonkeyCar library so it can successfully avoid obstacles and relay the path with efficacy, making the delivery fast and efficient. A Pi camera is used which will help rectify the unmarked desired path over which the robot has to move.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/44386769" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c9d9c3cbc6c2fcd96494d579e15f4080" rel="nofollow" data-download="{&quot;attachment_id&quot;:64790892,&quot;asset_id&quot;:44386769,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/64790892/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="118747740" href="https://mpstme.academia.edu/DevangDave">Devang Dave</a><script data-card-contents-for-user="118747740" type="text/json">{"id":118747740,"first_name":"Devang","last_name":"Dave","domain_name":"mpstme","page_name":"DevangDave","display_name":"Devang Dave","profile_url":"https://mpstme.academia.edu/DevangDave?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_44386769 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="44386769"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 44386769, container: ".js-paper-rank-work_44386769", }); });</script></li><li class="js-percentile-work_44386769 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 44386769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_44386769"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_44386769 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="44386769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 44386769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=44386769]").text(description); $(".js-view-count-work_44386769").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_44386769").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="44386769"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">16</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="471" href="https://www.academia.edu/Documents/in/Robotics_Computer_Science_">Robotics (Computer Science)</a>,&nbsp;<script data-card-contents-for-ri="471" type="text/json">{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>,&nbsp;<script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2043" href="https://www.academia.edu/Documents/in/Mobile_Robotics">Mobile Robotics</a><script data-card-contents-for-ri="2043" type="text/json">{"id":2043,"name":"Mobile Robotics","url":"https://www.academia.edu/Documents/in/Mobile_Robotics?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=44386769]'), work: {"id":44386769,"title":"Delivery Robot","created_at":"2020-10-28T05:30:51.226-07:00","url":"https://www.academia.edu/44386769/Delivery_Robot?f_ri=3413","dom_id":"work_44386769","summary":"The autonomous delivery robot is meant to be a substitute for a goods delivery person. The delivery robot is capable of navigating through a cluttered space environment from a home location to a destination point while avoiding obstacles in the process. It uses an ultrasonic sensor to detect if anything has been placed inside the bin and only once when something is placed inside, the robot starts moving from a position to another. Bluetooth beacons are used to represent the start, end and mid-point which will be used by the robot to differentiate the specified locations. Bluetooth beacons will act as a terminal for the robot to detect. The autonomous robot will move on an undesignated path i.e. an unmarked route unlike the archaic robots only capable of moving inside a marked black lane. The robot will be trained and multiple simulations are run on it with the help of the DonkeyCar library so it can successfully avoid obstacles and relay the path with efficacy, making the delivery fast and efficient. A Pi camera is used which will help rectify the unmarked desired path over which the robot has to move.","downloadable_attachments":[{"id":64790892,"asset_id":44386769,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":118747740,"first_name":"Devang","last_name":"Dave","domain_name":"mpstme","page_name":"DevangDave","display_name":"Devang Dave","profile_url":"https://mpstme.academia.edu/DevangDave?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413","nofollow":false},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=3413","nofollow":false},{"id":2043,"name":"Mobile Robotics","url":"https://www.academia.edu/Documents/in/Mobile_Robotics?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":4892,"name":"Autonomous Robotics","url":"https://www.academia.edu/Documents/in/Autonomous_Robotics?f_ri=3413"},{"id":11136,"name":"Cognitive Robotics","url":"https://www.academia.edu/Documents/in/Cognitive_Robotics?f_ri=3413"},{"id":47980,"name":"Data Visualization","url":"https://www.academia.edu/Documents/in/Data_Visualization?f_ri=3413"},{"id":56440,"name":"OpenCv or Computer Vision","url":"https://www.academia.edu/Documents/in/OpenCv_or_Computer_Vision?f_ri=3413"},{"id":59695,"name":"Navigation","url":"https://www.academia.edu/Documents/in/Navigation?f_ri=3413"},{"id":66694,"name":"Autonomous Robots","url":"https://www.academia.edu/Documents/in/Autonomous_Robots?f_ri=3413"},{"id":84688,"name":"Autonomous Vehicles","url":"https://www.academia.edu/Documents/in/Autonomous_Vehicles?f_ri=3413"},{"id":159187,"name":"Drug Delivery Systems","url":"https://www.academia.edu/Documents/in/Drug_Delivery_Systems?f_ri=3413"},{"id":159894,"name":"Autonomous Systems","url":"https://www.academia.edu/Documents/in/Autonomous_Systems?f_ri=3413"},{"id":189455,"name":"Robtics","url":"https://www.academia.edu/Documents/in/Robtics?f_ri=3413"},{"id":2804954,"name":"Tensorflow","url":"https://www.academia.edu/Documents/in/Tensorflow?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_19520711 coauthored" data-work_id="19520711" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/19520711/The_Law_of_Service_Robots">The Law of Service Robots</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Legal issues of service robotics and drones from an Italian perspective. Civil and criminal liability, privacy and data protection, digital forensicsand cybersecurity, intellectual property. Editors: Claudio Artusio, Monica A. Senor.... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_19520711" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Legal issues of service robotics and drones from an Italian perspective. Civil and criminal liability, privacy and data protection, digital forensicsand cybersecurity, intellectual property.<br />Editors: Claudio Artusio, Monica A. Senor.<br />Authors: Mauro Alovisio, Carlo Blengino, Marco Ciurcina, Giovanni B. Gallus, Guido Noto La Diega, Ugo Pagallo,<br />Massimo Travostino, Giuseppe Vaciago, Paolo Zampella.<br />Thanks for their contribution to Gian Piero Fici, Alessandro Mantelero, Federico Morando.<br /><br />Ricognizione dell&#39;assetto normativo rilevante nell&#39;ambito della robotica di servizio: stato dell&#39;arte e prime raccomandazioni di policy in una prospettiva multidisciplinare.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/19520711" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="676774336993785858018f9e2eea0ce0" rel="nofollow" data-download="{&quot;attachment_id&quot;:40668290,&quot;asset_id&quot;:19520711,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/40668290/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="736533" href="https://strathclyde.academia.edu/GuidoNotoLaDiega">Guido Noto La Diega</a><script data-card-contents-for-user="736533" type="text/json">{"id":736533,"first_name":"Guido","last_name":"Noto La Diega","domain_name":"strathclyde","page_name":"GuidoNotoLaDiega","display_name":"Guido Noto La Diega","profile_url":"https://strathclyde.academia.edu/GuidoNotoLaDiega?f_ri=3413","photo":"https://0.academia-photos.com/736533/251443/111612223/s65_guido.noto_la_diega.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-19520711">+3</span><div class="hidden js-additional-users-19520711"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/MAlovisio">Mauro Alovisio</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/GiovanniBattistaGallus">Giovanni Battista Gallus</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/MassimoTravostino">Massimo Travostino</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-19520711'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-19520711').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_19520711 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="19520711"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 19520711, container: ".js-paper-rank-work_19520711", }); });</script></li><li class="js-percentile-work_19520711 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 19520711; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_19520711"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_19520711 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="19520711"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 19520711; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=19520711]").text(description); $(".js-view-count-work_19520711").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_19520711").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="19520711"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">32</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="471" href="https://www.academia.edu/Documents/in/Robotics_Computer_Science_">Robotics (Computer Science)</a>,&nbsp;<script data-card-contents-for-ri="471" type="text/json">{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="546" href="https://www.academia.edu/Documents/in/Comparative_Law">Comparative Law</a><script data-card-contents-for-ri="546" type="text/json">{"id":546,"name":"Comparative Law","url":"https://www.academia.edu/Documents/in/Comparative_Law?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=19520711]'), work: {"id":19520711,"title":"The Law of Service Robots","created_at":"2015-12-06T07:14:51.461-08:00","url":"https://www.academia.edu/19520711/The_Law_of_Service_Robots?f_ri=3413","dom_id":"work_19520711","summary":"Legal issues of service robotics and drones from an Italian perspective. Civil and criminal liability, privacy and data protection, digital forensicsand cybersecurity, intellectual property.\nEditors: Claudio Artusio, Monica A. Senor.\nAuthors: Mauro Alovisio, Carlo Blengino, Marco Ciurcina, Giovanni B. Gallus, Guido Noto La Diega, Ugo Pagallo,\nMassimo Travostino, Giuseppe Vaciago, Paolo Zampella.\nThanks for their contribution to Gian Piero Fici, Alessandro Mantelero, Federico Morando.\n\nRicognizione dell'assetto normativo rilevante nell'ambito della robotica di servizio: stato dell'arte e prime raccomandazioni di policy in una prospettiva multidisciplinare.\n","downloadable_attachments":[{"id":40668290,"asset_id":19520711,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":736533,"first_name":"Guido","last_name":"Noto La Diega","domain_name":"strathclyde","page_name":"GuidoNotoLaDiega","display_name":"Guido Noto La Diega","profile_url":"https://strathclyde.academia.edu/GuidoNotoLaDiega?f_ri=3413","photo":"https://0.academia-photos.com/736533/251443/111612223/s65_guido.noto_la_diega.jpg"},{"id":31484436,"first_name":"Mauro","last_name":"Alovisio","domain_name":"independent","page_name":"MAlovisio","display_name":"Mauro Alovisio","profile_url":"https://independent.academia.edu/MAlovisio?f_ri=3413","photo":"https://0.academia-photos.com/31484436/9299270/10365572/s65_mauro.alovisio.jpg"},{"id":8441578,"first_name":"Giovanni Battista","last_name":"Gallus","domain_name":"independent","page_name":"GiovanniBattistaGallus","display_name":"Giovanni Battista Gallus","profile_url":"https://independent.academia.edu/GiovanniBattistaGallus?f_ri=3413","photo":"https://0.academia-photos.com/8441578/2850812/3328955/s65_giovanni_battista.gallus.jpg"},{"id":40564554,"first_name":"Massimo","last_name":"Travostino","domain_name":"independent","page_name":"MassimoTravostino","display_name":"Massimo Travostino","profile_url":"https://independent.academia.edu/MassimoTravostino?f_ri=3413","photo":"https://0.academia-photos.com/40564554/49666837/37649695/s65_massimo.travostino.png"}],"research_interests":[{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=3413","nofollow":false},{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413","nofollow":false},{"id":546,"name":"Comparative Law","url":"https://www.academia.edu/Documents/in/Comparative_Law?f_ri=3413","nofollow":false},{"id":982,"name":"Cyberlaw","url":"https://www.academia.edu/Documents/in/Cyberlaw?f_ri=3413"},{"id":2043,"name":"Mobile Robotics","url":"https://www.academia.edu/Documents/in/Mobile_Robotics?f_ri=3413"},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":3461,"name":"Services Marketing and Management","url":"https://www.academia.edu/Documents/in/Services_Marketing_and_Management?f_ri=3413"},{"id":4892,"name":"Autonomous Robotics","url":"https://www.academia.edu/Documents/in/Autonomous_Robotics?f_ri=3413"},{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413"},{"id":7074,"name":"Internet Law","url":"https://www.academia.edu/Documents/in/Internet_Law?f_ri=3413"},{"id":9135,"name":"The Internet of Things","url":"https://www.academia.edu/Documents/in/The_Internet_of_Things?f_ri=3413"},{"id":11730,"name":"IT law","url":"https://www.academia.edu/Documents/in/IT_law?f_ri=3413"},{"id":11988,"name":"Robotics Navigation","url":"https://www.academia.edu/Documents/in/Robotics_Navigation?f_ri=3413"},{"id":12059,"name":"Human-Robot Interaction","url":"https://www.academia.edu/Documents/in/Human-Robot_Interaction?f_ri=3413"},{"id":13495,"name":"Information Technology Law","url":"https://www.academia.edu/Documents/in/Information_Technology_Law?f_ri=3413"},{"id":14418,"name":"Mechatronics \u0026 Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics?f_ri=3413"},{"id":14725,"name":"Internet of Things","url":"https://www.academia.edu/Documents/in/Internet_of_Things?f_ri=3413"},{"id":15254,"name":"Home automation","url":"https://www.academia.edu/Documents/in/Home_automation?f_ri=3413"},{"id":25682,"name":"Italian Law","url":"https://www.academia.edu/Documents/in/Italian_Law?f_ri=3413"},{"id":27885,"name":"ICT innovation","url":"https://www.academia.edu/Documents/in/ICT_innovation?f_ri=3413"},{"id":30947,"name":"The Internet","url":"https://www.academia.edu/Documents/in/The_Internet?f_ri=3413"},{"id":32278,"name":"Rehabilitation robotics","url":"https://www.academia.edu/Documents/in/Rehabilitation_robotics?f_ri=3413"},{"id":39595,"name":"Mechatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2?f_ri=3413"},{"id":40775,"name":"Parallel Robots","url":"https://www.academia.edu/Documents/in/Parallel_Robots?f_ri=3413"},{"id":61968,"name":"IT Governance","url":"https://www.academia.edu/Documents/in/IT_Governance?f_ri=3413"},{"id":66379,"name":"Automation","url":"https://www.academia.edu/Documents/in/Automation?f_ri=3413"},{"id":89919,"name":"Robots","url":"https://www.academia.edu/Documents/in/Robots?f_ri=3413"},{"id":97184,"name":"Smart Home","url":"https://www.academia.edu/Documents/in/Smart_Home?f_ri=3413"},{"id":99861,"name":"ROBOT","url":"https://www.academia.edu/Documents/in/ROBOT?f_ri=3413"},{"id":115676,"name":"Cyber Security","url":"https://www.academia.edu/Documents/in/Cyber_Security?f_ri=3413"},{"id":247799,"name":"Internet of Things (IoT)","url":"https://www.academia.edu/Documents/in/Internet_of_Things_IoT_?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_31096854 coauthored" data-work_id="31096854" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/31096854/Artificial_Intelligence_and_the_Good_Society_the_US_EU_and_UK_approach">Artificial Intelligence and the &#39;Good Society&#39;: the US, EU, and UK approach</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In October 2016, the White House, the European Parliament, and the UK House of Commons each issued a report outlining their visions on how to prepare society for the widespread use of AI. In this article, we provide a comparative... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_31096854" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In October 2016, the White House, the European Parliament, and the UK House of Commons each issued a report outlining their visions on how to prepare society for the widespread use of AI. In this article, we provide a comparative assessment of these three reports in order to facilitate the design of policies favourable to the development of a &#39;good AI society&#39;. To do so, we examine how each report addresses the following three topics: (a) the development of a &#39;good AI society&#39;; (b) the role and responsibility of the government, the private sector, and the research community (including academia) in pursuing such a development; and (c) where the recommendations to support such a development may be in need of improvement. Our analysis concludes that the reports address adequately various ethical, social, and economic topics, but come short of providing an overarching political vision and long-term strategy for the development of a &#39;good AI society&#39;. In order to contribute to fill this gap, in the conclusion we suggest a two-pronged approach.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/31096854" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="da809726ec3888bcfdab9840096a74e4" rel="nofollow" data-download="{&quot;attachment_id&quot;:51531766,&quot;asset_id&quot;:31096854,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/51531766/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="16582545" href="https://oxford.academia.edu/CorinneCath">Corinne Cath</a><script data-card-contents-for-user="16582545" type="text/json">{"id":16582545,"first_name":"Corinne","last_name":"Cath","domain_name":"oxford","page_name":"CorinneCath","display_name":"Corinne Cath","profile_url":"https://oxford.academia.edu/CorinneCath?f_ri=3413","photo":"https://0.academia-photos.com/16582545/11046051/18056580/s65_corinne.cath.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-31096854">+4</span><div class="hidden js-additional-users-31096854"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://oxford.academia.edu/SandraWachter">Sandra Wachter</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://oxford.academia.edu/BrentMittelstadt">Brent Mittelstadt</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://oxford.academia.edu/MariaTadeo">Mariarosaria Taddeo</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://yale.academia.edu/LucianoFloridi">Luciano Floridi</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-31096854'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-31096854').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_31096854 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="31096854"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 31096854, container: ".js-paper-rank-work_31096854", }); });</script></li><li class="js-percentile-work_31096854 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 31096854; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_31096854"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_31096854 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="31096854"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 31096854; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=31096854]").text(description); $(".js-view-count-work_31096854").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_31096854").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="31096854"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">124</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl11x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="428" href="https://www.academia.edu/Documents/in/Algorithms">Algorithms</a>,&nbsp;<script data-card-contents-for-ri="428" type="text/json">{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="431" href="https://www.academia.edu/Documents/in/Parallel_Algorithms">Parallel Algorithms</a><script data-card-contents-for-ri="431" type="text/json">{"id":431,"name":"Parallel Algorithms","url":"https://www.academia.edu/Documents/in/Parallel_Algorithms?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=31096854]'), work: {"id":31096854,"title":"Artificial Intelligence and the 'Good Society': the US, EU, and UK approach","created_at":"2017-01-27T11:28:12.982-08:00","url":"https://www.academia.edu/31096854/Artificial_Intelligence_and_the_Good_Society_the_US_EU_and_UK_approach?f_ri=3413","dom_id":"work_31096854","summary":"In October 2016, the White House, the European Parliament, and the UK House of Commons each issued a report outlining their visions on how to prepare society for the widespread use of AI. In this article, we provide a comparative assessment of these three reports in order to facilitate the design of policies favourable to the development of a 'good AI society'. To do so, we examine how each report addresses the following three topics: (a) the development of a 'good AI society'; (b) the role and responsibility of the government, the private sector, and the research community (including academia) in pursuing such a development; and (c) where the recommendations to support such a development may be in need of improvement. Our analysis concludes that the reports address adequately various ethical, social, and economic topics, but come short of providing an overarching political vision and long-term strategy for the development of a 'good AI society'. In order to contribute to fill this gap, in the conclusion we suggest a two-pronged approach.","downloadable_attachments":[{"id":51531766,"asset_id":31096854,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":16582545,"first_name":"Corinne","last_name":"Cath","domain_name":"oxford","page_name":"CorinneCath","display_name":"Corinne Cath","profile_url":"https://oxford.academia.edu/CorinneCath?f_ri=3413","photo":"https://0.academia-photos.com/16582545/11046051/18056580/s65_corinne.cath.jpg"},{"id":55640176,"first_name":"Sandra","last_name":"Wachter","domain_name":"oxford","page_name":"SandraWachter","display_name":"Sandra Wachter","profile_url":"https://oxford.academia.edu/SandraWachter?f_ri=3413","photo":"https://0.academia-photos.com/55640176/15009734/15747283/s65_sandra.wachter.jpg"},{"id":2050164,"first_name":"Brent","last_name":"Mittelstadt","domain_name":"oxford","page_name":"BrentMittelstadt","display_name":"Brent Mittelstadt","profile_url":"https://oxford.academia.edu/BrentMittelstadt?f_ri=3413","photo":"https://0.academia-photos.com/2050164/674220/4372339/s65_brent.mittelstadt.jpg"},{"id":268636,"first_name":"Mariarosaria","last_name":"Taddeo","domain_name":"oxford","page_name":"MariaTadeo","display_name":"Mariarosaria Taddeo","profile_url":"https://oxford.academia.edu/MariaTadeo?f_ri=3413","photo":"https://0.academia-photos.com/268636/531077/17072682/s65_mariarosaria.taddeo.jpg"},{"id":6616,"first_name":"Luciano","last_name":"Floridi","domain_name":"yale","page_name":"LucianoFloridi","display_name":"Luciano Floridi","profile_url":"https://yale.academia.edu/LucianoFloridi?f_ri=3413","photo":"https://0.academia-photos.com/6616/2546/117746817/s65_luciano.floridi.jpg"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=3413","nofollow":false},{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms?f_ri=3413","nofollow":false},{"id":431,"name":"Parallel Algorithms","url":"https://www.academia.edu/Documents/in/Parallel_Algorithms?f_ri=3413","nofollow":false},{"id":449,"name":"Software Engineering","url":"https://www.academia.edu/Documents/in/Software_Engineering?f_ri=3413"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=3413"},{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413"},{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy?f_ri=3413"},{"id":1237,"name":"Social Sciences","url":"https://www.academia.edu/Documents/in/Social_Sciences?f_ri=3413"},{"id":1701,"name":"Evolutionary algorithms","url":"https://www.academia.edu/Documents/in/Evolutionary_algorithms?f_ri=3413"},{"id":2043,"name":"Mobile Robotics","url":"https://www.academia.edu/Documents/in/Mobile_Robotics?f_ri=3413"},{"id":2044,"name":"Multiagent Robotics","url":"https://www.academia.edu/Documents/in/Multiagent_Robotics?f_ri=3413"},{"id":2169,"name":"Human Rights Law","url":"https://www.academia.edu/Documents/in/Human_Rights_Law?f_ri=3413"},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":3480,"name":"AI Planning (Artificial Intelligence)","url":"https://www.academia.edu/Documents/in/AI_Planning_Artificial_Intelligence_?f_ri=3413"},{"id":3803,"name":"Underwater Robotics","url":"https://www.academia.edu/Documents/in/Underwater_Robotics?f_ri=3413"},{"id":4486,"name":"Political Science","url":"https://www.academia.edu/Documents/in/Political_Science?f_ri=3413"},{"id":4672,"name":"Open Source Software","url":"https://www.academia.edu/Documents/in/Open_Source_Software?f_ri=3413"},{"id":4761,"name":"Software Testing","url":"https://www.academia.edu/Documents/in/Software_Testing?f_ri=3413"},{"id":4892,"name":"Autonomous Robotics","url":"https://www.academia.edu/Documents/in/Autonomous_Robotics?f_ri=3413"},{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413"},{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms?f_ri=3413"},{"id":5457,"name":"Artificial Life","url":"https://www.academia.edu/Documents/in/Artificial_Life?f_ri=3413"},{"id":5670,"name":"Robot Learning","url":"https://www.academia.edu/Documents/in/Robot_Learning?f_ri=3413"},{"id":6728,"name":"Philosophy Of Law","url":"https://www.academia.edu/Documents/in/Philosophy_Of_Law?f_ri=3413"},{"id":7334,"name":"Software Studies","url":"https://www.academia.edu/Documents/in/Software_Studies?f_ri=3413"},{"id":7973,"name":"Approximation Algorithms","url":"https://www.academia.edu/Documents/in/Approximation_Algorithms?f_ri=3413"},{"id":8129,"name":"Software Development","url":"https://www.academia.edu/Documents/in/Software_Development?f_ri=3413"},{"id":8591,"name":"Applications of Artificial Intelligence in Manufacturing","url":"https://www.academia.edu/Documents/in/Applications_of_Artificial_Intelligence_in_Manufacturing?f_ri=3413"},{"id":8740,"name":"Aerial Robotics","url":"https://www.academia.edu/Documents/in/Aerial_Robotics?f_ri=3413"},{"id":9246,"name":"Social Media","url":"https://www.academia.edu/Documents/in/Social_Media?f_ri=3413"},{"id":9270,"name":"Software Architecture","url":"https://www.academia.edu/Documents/in/Software_Architecture?f_ri=3413"},{"id":9312,"name":"Software Reuse","url":"https://www.academia.edu/Documents/in/Software_Reuse?f_ri=3413"},{"id":9322,"name":"Software Product Lines","url":"https://www.academia.edu/Documents/in/Software_Product_Lines?f_ri=3413"},{"id":9898,"name":"Soft Computing, Image Processing and Robotics","url":"https://www.academia.edu/Documents/in/Soft_Computing_Image_Processing_and_Robotics?f_ri=3413"},{"id":9967,"name":"Software Engineering education","url":"https://www.academia.edu/Documents/in/Software_Engineering_education?f_ri=3413"},{"id":11136,"name":"Cognitive Robotics","url":"https://www.academia.edu/Documents/in/Cognitive_Robotics?f_ri=3413"},{"id":11988,"name":"Robotics Navigation","url":"https://www.academia.edu/Documents/in/Robotics_Navigation?f_ri=3413"},{"id":12009,"name":"Educational Robotics","url":"https://www.academia.edu/Documents/in/Educational_Robotics?f_ri=3413"},{"id":12059,"name":"Human-Robot Interaction","url":"https://www.academia.edu/Documents/in/Human-Robot_Interaction?f_ri=3413"},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=3413"},{"id":14418,"name":"Mechatronics \u0026 Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics?f_ri=3413"},{"id":15117,"name":"Empirical Software Engineering","url":"https://www.academia.edu/Documents/in/Empirical_Software_Engineering?f_ri=3413"},{"id":15970,"name":"Artifial Intellegence","url":"https://www.academia.edu/Documents/in/Artifial_Intellegence?f_ri=3413"},{"id":17250,"name":"Social Robotics","url":"https://www.academia.edu/Documents/in/Social_Robotics?f_ri=3413"},{"id":19953,"name":"Robotic Hands","url":"https://www.academia.edu/Documents/in/Robotic_Hands?f_ri=3413"},{"id":20641,"name":"Future of artificial intelligence","url":"https://www.academia.edu/Documents/in/Future_of_artificial_intelligence?f_ri=3413"},{"id":21347,"name":"Social Software","url":"https://www.academia.edu/Documents/in/Social_Software?f_ri=3413"},{"id":21593,"name":"Artificial Inteligence","url":"https://www.academia.edu/Documents/in/Artificial_Inteligence?f_ri=3413"},{"id":24865,"name":"Robotic Surgery","url":"https://www.academia.edu/Documents/in/Robotic_Surgery?f_ri=3413"},{"id":25271,"name":"Artificial General Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_General_Intelligence?f_ri=3413"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm?f_ri=3413"},{"id":28306,"name":"Open Source and Free Software Studies","url":"https://www.academia.edu/Documents/in/Open_Source_and_Free_Software_Studies?f_ri=3413"},{"id":28530,"name":"Software Quality Engineering","url":"https://www.academia.edu/Documents/in/Software_Quality_Engineering?f_ri=3413"},{"id":30075,"name":"Biologically Inspired Robotics","url":"https://www.academia.edu/Documents/in/Biologically_Inspired_Robotics?f_ri=3413"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm?f_ri=3413"},{"id":30675,"name":"Industrial Robotic Programming","url":"https://www.academia.edu/Documents/in/Industrial_Robotic_Programming?f_ri=3413"},{"id":31408,"name":"Free Software","url":"https://www.academia.edu/Documents/in/Free_Software?f_ri=3413"},{"id":32243,"name":"Software Developer","url":"https://www.academia.edu/Documents/in/Software_Developer?f_ri=3413"},{"id":32278,"name":"Rehabilitation robotics","url":"https://www.academia.edu/Documents/in/Rehabilitation_robotics?f_ri=3413"},{"id":32703,"name":"Graph/Network Algorithms","url":"https://www.academia.edu/Documents/in/Graph_Network_Algorithms?f_ri=3413"},{"id":33705,"name":"Software Project Management","url":"https://www.academia.edu/Documents/in/Software_Project_Management?f_ri=3413"},{"id":35486,"name":"Agile Methods (Software Engineering)","url":"https://www.academia.edu/Documents/in/Agile_Methods_Software_Engineering_?f_ri=3413"},{"id":38180,"name":"Medical Robotics","url":"https://www.academia.edu/Documents/in/Medical_Robotics?f_ri=3413"},{"id":39595,"name":"Mechatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2?f_ri=3413"},{"id":39822,"name":"Software Testing (Computer Science)","url":"https://www.academia.edu/Documents/in/Software_Testing_Computer_Science_?f_ri=3413"},{"id":39848,"name":"Mechatronics \u0026 Robotic Engineering","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotic_Engineering?f_ri=3413"},{"id":40775,"name":"Parallel Robots","url":"https://www.academia.edu/Documents/in/Parallel_Robots?f_ri=3413"},{"id":40796,"name":"Artificial Intelligence and Law","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence_and_Law?f_ri=3413"},{"id":42558,"name":"Artifical Intelligence","url":"https://www.academia.edu/Documents/in/Artifical_Intelligence?f_ri=3413"},{"id":44389,"name":"Artificial Neural Networks for modeling purposes","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks_for_modeling_purposes?f_ri=3413"},{"id":45088,"name":"Data Structures and Algorithms","url":"https://www.academia.edu/Documents/in/Data_Structures_and_Algorithms?f_ri=3413"},{"id":50895,"name":"Software Agents","url":"https://www.academia.edu/Documents/in/Software_Agents?f_ri=3413"},{"id":53293,"name":"Software","url":"https://www.academia.edu/Documents/in/Software?f_ri=3413"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=3413"},{"id":55826,"name":"Software Requirement Engineering","url":"https://www.academia.edu/Documents/in/Software_Requirement_Engineering?f_ri=3413"},{"id":57939,"name":"Software Design","url":"https://www.academia.edu/Documents/in/Software_Design?f_ri=3413"},{"id":62007,"name":"Artificial Intelligence in Education","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence_in_Education?f_ri=3413"},{"id":64561,"name":"Computer Software","url":"https://www.academia.edu/Documents/in/Computer_Software?f_ri=3413"},{"id":65766,"name":"Robotics and automation","url":"https://www.academia.edu/Documents/in/Robotics_and_automation?f_ri=3413"},{"id":66279,"name":"Software Business","url":"https://www.academia.edu/Documents/in/Software_Business?f_ri=3413"},{"id":66694,"name":"Autonomous Robots","url":"https://www.academia.edu/Documents/in/Autonomous_Robots?f_ri=3413"},{"id":68380,"name":"Software Metrics","url":"https://www.academia.edu/Documents/in/Software_Metrics?f_ri=3413"},{"id":68477,"name":"Robotics, Computer Vision, Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Vision_Artificial_Intelligence?f_ri=3413"},{"id":74262,"name":"Philosophy of Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Philosophy_of_Artificial_Intelligence?f_ri=3413"},{"id":76958,"name":"Artificial Inteligent","url":"https://www.academia.edu/Documents/in/Artificial_Inteligent?f_ri=3413"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=3413"},{"id":86588,"name":"Metaheuristic Algorithms","url":"https://www.academia.edu/Documents/in/Metaheuristic_Algorithms?f_ri=3413"},{"id":87601,"name":"Robotic","url":"https://www.academia.edu/Documents/in/Robotic?f_ri=3413"},{"id":89919,"name":"Robots","url":"https://www.academia.edu/Documents/in/Robots?f_ri=3413"},{"id":91713,"name":"Automation and robotics in Construction","url":"https://www.academia.edu/Documents/in/Automation_and_robotics_in_Construction?f_ri=3413"},{"id":95785,"name":"Inteligência Artificial","url":"https://www.academia.edu/Documents/in/Intelig%C3%AAncia_Artificial?f_ri=3413"},{"id":99861,"name":"ROBOT","url":"https://www.academia.edu/Documents/in/ROBOT?f_ri=3413"},{"id":101530,"name":"Artificial Intelligent","url":"https://www.academia.edu/Documents/in/Artificial_Intelligent?f_ri=3413"},{"id":106108,"name":"Swarm Robotics,Industrial Robotics, Mobile Robotics,Bionics, Assistive Robotics, Automation, Machine vision, Artificial Intelligence, PLC, Control Systems","url":"https://www.academia.edu/Documents/in/Swarm_Robotics_Industrial_Robotics_Mobile_Robotics_Bionics_Assistive_Robotics_Automation_Machine?f_ri=3413"},{"id":112790,"name":"Software Libre","url":"https://www.academia.edu/Documents/in/Software_Libre?f_ri=3413"},{"id":113706,"name":"Autonomous Mobile Robots","url":"https://www.academia.edu/Documents/in/Autonomous_Mobile_Robots?f_ri=3413"},{"id":123538,"name":"quad rotor thesis UAV robotics control","url":"https://www.academia.edu/Documents/in/quad_rotor_thesis_UAV_robotics_control?f_ri=3413"},{"id":141502,"name":"Inteligencia artificial","url":"https://www.academia.edu/Documents/in/Inteligencia_artificial-1?f_ri=3413"},{"id":147493,"name":"Flying robot","url":"https://www.academia.edu/Documents/in/Flying_robot?f_ri=3413"},{"id":164258,"name":"Robot Path Planning","url":"https://www.academia.edu/Documents/in/Robot_Path_Planning?f_ri=3413"},{"id":179654,"name":"Mobile Robot","url":"https://www.academia.edu/Documents/in/Mobile_Robot?f_ri=3413"},{"id":188138,"name":"Biped Robot","url":"https://www.academia.edu/Documents/in/Biped_Robot?f_ri=3413"},{"id":190001,"name":"Agile software development","url":"https://www.academia.edu/Documents/in/Agile_software_development?f_ri=3413"},{"id":236258,"name":"Mobile Robot Navigation","url":"https://www.academia.edu/Documents/in/Mobile_Robot_Navigation?f_ri=3413"},{"id":251903,"name":"Artificial Intelligence And Techniques","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence_And_Techniques?f_ri=3413"},{"id":254606,"name":"Determination of artificial sugar","url":"https://www.academia.edu/Documents/in/Determination_of_artificial_sugar?f_ri=3413"},{"id":254694,"name":"Robótica Educativa","url":"https://www.academia.edu/Documents/in/Robotica_Educativa?f_ri=3413"},{"id":255160,"name":"(nano \u0026 Micro Electronics) \u0026(software Programing)","url":"https://www.academia.edu/Documents/in/_nano_and_Micro_Electronics_and_software_Programing_?f_ri=3413"},{"id":337810,"name":"Mecatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mecatronics_and_Robotics?f_ri=3413"},{"id":338302,"name":"ROBOTICA","url":"https://www.academia.edu/Documents/in/ROBOTICA?f_ri=3413"},{"id":342230,"name":"Artifical Neural Networks","url":"https://www.academia.edu/Documents/in/Artifical_Neural_Networks?f_ri=3413"},{"id":383074,"name":"Robotica Industrial","url":"https://www.academia.edu/Documents/in/Robotica_Industrial?f_ri=3413"},{"id":423243,"name":"Bio and Nature Inspired Algorithms","url":"https://www.academia.edu/Documents/in/Bio_and_Nature_Inspired_Algorithms?f_ri=3413"},{"id":424898,"name":"Scara Robot","url":"https://www.academia.edu/Documents/in/Scara_Robot?f_ri=3413"},{"id":434657,"name":"Artifical Neural Network(ANN)","url":"https://www.academia.edu/Documents/in/Artifical_Neural_Network_ANN_?f_ri=3413"},{"id":464601,"name":"Datastructures and Algorithms","url":"https://www.academia.edu/Documents/in/Datastructures_and_Algorithms?f_ri=3413"},{"id":601818,"name":"Implementing Artificial Intelligence for Simulating and Optimizing","url":"https://www.academia.edu/Documents/in/Implementing_Artificial_Intelligence_for_Simulating_and_Optimizing?f_ri=3413"},{"id":677506,"name":"Redes Neuronales Artificiales","url":"https://www.academia.edu/Documents/in/Redes_Neuronales_Artificiales?f_ri=3413"},{"id":682316,"name":"ALGORITMA DAN FLOWCHART.pdf","url":"https://www.academia.edu/Documents/in/ALGORITMA_DAN_FLOWCHART.pdf?f_ri=3413"},{"id":734097,"name":"Logika Dan Algoritma","url":"https://www.academia.edu/Documents/in/Logika_Dan_Algoritma?f_ri=3413"},{"id":983429,"name":"Philosophy of Mind and Artificial Intelligence \u0026 AI","url":"https://www.academia.edu/Documents/in/Philosophy_of_Mind_and_Artificial_Intelligence_and_AI?f_ri=3413"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=3413"},{"id":1223686,"name":"Artificial Intelligent and Soft Computing Methodologies","url":"https://www.academia.edu/Documents/in/Artificial_Intelligent_and_Soft_Computing_Methodologies?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_25063138 coauthored" data-work_id="25063138" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/25063138/Should_we_campaign_against_sex_robots">Should we campaign against sex robots?</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In September 2015 a well-publicised Campaign Against Sex Robots (CASR) was launched. Modelled on the longer-standing Campaign to Stop Killer Robots, the CASR opposes the development of sex robots on the grounds that the technology is... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_25063138" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In September 2015 a well-publicised Campaign Against Sex Robots&nbsp; (CASR) was launched. Modelled on the longer-standing Campaign to Stop Killer Robots, the CASR opposes the development of sex robots on the grounds that the technology is being developed with a particular model of female-male relations (the prostitute-john model) in mind, and that this will prove harmful in various ways. In this chapter, we consider carefully the merits of campaigning against such a technology. We make three main arguments. First, we argue that the particular claims advanced by the CASR are unpersuasive, partly due to a lack of clarity about the campaign’s aims and partly due to substantive defects in the main ethical objections put forward by campaign’s founder(s). Second, broadening our inquiry beyond the arguments proferred by the campaign itself, we argue that it would be very difficult to endorse a general campaign against sex robots unless one embraced a highly conservative attitude towards the ethics of sex, which is likely to be unpalatable to those who are active in the campaign. In making this argument we draw upon lessons from the campaign against killer robots. Finally, we conclude by suggesting that although a generalised campaign against sex robots is unwarranted, there are legitimate concerns that one can raise about the development of sex robots.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/25063138" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="91e1bb2e26af67b88016e5c73b816825" rel="nofollow" data-download="{&quot;attachment_id&quot;:50127659,&quot;asset_id&quot;:25063138,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/50127659/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="711609" href="https://universityofgalway.academia.edu/JohnDanaher">John Danaher</a><script data-card-contents-for-user="711609" type="text/json">{"id":711609,"first_name":"John","last_name":"Danaher","domain_name":"universityofgalway","page_name":"JohnDanaher","display_name":"John Danaher","profile_url":"https://universityofgalway.academia.edu/JohnDanaher?f_ri=3413","photo":"https://0.academia-photos.com/711609/241092/17297863/s65_john.danaher.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-25063138">+1</span><div class="hidden js-additional-users-25063138"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://oxford.academia.edu/BrianDEarp">Brian D . Earp</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-25063138'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-25063138').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_25063138 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="25063138"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 25063138, container: ".js-paper-rank-work_25063138", }); });</script></li><li class="js-percentile-work_25063138 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25063138; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_25063138"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_25063138 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="25063138"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25063138; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25063138]").text(description); $(".js-view-count-work_25063138").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_25063138").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="25063138"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">173</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl11x"><a class="InlineList-item-text" data-has-card-for-ri="46" href="https://www.academia.edu/Documents/in/Business_Ethics">Business Ethics</a>,&nbsp;<script data-card-contents-for-ri="46" type="text/json">{"id":46,"name":"Business Ethics","url":"https://www.academia.edu/Documents/in/Business_Ethics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="136" href="https://www.academia.edu/Documents/in/Cultural_History">Cultural History</a>,&nbsp;<script data-card-contents-for-ri="136" type="text/json">{"id":136,"name":"Cultural History","url":"https://www.academia.edu/Documents/in/Cultural_History?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="137" href="https://www.academia.edu/Documents/in/Economic_History">Economic History</a><script data-card-contents-for-ri="137" type="text/json">{"id":137,"name":"Economic History","url":"https://www.academia.edu/Documents/in/Economic_History?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=25063138]'), work: {"id":25063138,"title":"Should we campaign against sex robots?","created_at":"2016-05-05T12:48:42.006-07:00","url":"https://www.academia.edu/25063138/Should_we_campaign_against_sex_robots?f_ri=3413","dom_id":"work_25063138","summary":"In September 2015 a well-publicised Campaign Against Sex Robots (CASR) was launched. Modelled on the longer-standing Campaign to Stop Killer Robots, the CASR opposes the development of sex robots on the grounds that the technology is being developed with a particular model of female-male relations (the prostitute-john model) in mind, and that this will prove harmful in various ways. In this chapter, we consider carefully the merits of campaigning against such a technology. We make three main arguments. First, we argue that the particular claims advanced by the CASR are unpersuasive, partly due to a lack of clarity about the campaign’s aims and partly due to substantive defects in the main ethical objections put forward by campaign’s founder(s). Second, broadening our inquiry beyond the arguments proferred by the campaign itself, we argue that it would be very difficult to endorse a general campaign against sex robots unless one embraced a highly conservative attitude towards the ethics of sex, which is likely to be unpalatable to those who are active in the campaign. In making this argument we draw upon lessons from the campaign against killer robots. Finally, we conclude by suggesting that although a generalised campaign against sex robots is unwarranted, there are legitimate concerns that one can raise about the development of sex robots.","downloadable_attachments":[{"id":50127659,"asset_id":25063138,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":711609,"first_name":"John","last_name":"Danaher","domain_name":"universityofgalway","page_name":"JohnDanaher","display_name":"John Danaher","profile_url":"https://universityofgalway.academia.edu/JohnDanaher?f_ri=3413","photo":"https://0.academia-photos.com/711609/241092/17297863/s65_john.danaher.jpg"},{"id":377433,"first_name":"Brian","last_name":"Earp","domain_name":"oxford","page_name":"BrianDEarp","display_name":"Brian D . Earp","profile_url":"https://oxford.academia.edu/BrianDEarp?f_ri=3413","photo":"https://0.academia-photos.com/377433/97125/157103608/s65_brian_d..earp.jpg"}],"research_interests":[{"id":46,"name":"Business Ethics","url":"https://www.academia.edu/Documents/in/Business_Ethics?f_ri=3413","nofollow":false},{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":136,"name":"Cultural History","url":"https://www.academia.edu/Documents/in/Cultural_History?f_ri=3413","nofollow":false},{"id":137,"name":"Economic History","url":"https://www.academia.edu/Documents/in/Economic_History?f_ri=3413","nofollow":false},{"id":184,"name":"Sociology","url":"https://www.academia.edu/Documents/in/Sociology?f_ri=3413"},{"id":188,"name":"Cultural Studies","url":"https://www.academia.edu/Documents/in/Cultural_Studies?f_ri=3413"},{"id":189,"name":"Criminology","url":"https://www.academia.edu/Documents/in/Criminology?f_ri=3413"},{"id":194,"name":"Feminist Sociology","url":"https://www.academia.edu/Documents/in/Feminist_Sociology?f_ri=3413"},{"id":201,"name":"Political Sociology","url":"https://www.academia.edu/Documents/in/Political_Sociology?f_ri=3413"},{"id":217,"name":"Sociology of Religion","url":"https://www.academia.edu/Documents/in/Sociology_of_Religion?f_ri=3413"},{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology?f_ri=3413"},{"id":226,"name":"Clinical Psychology","url":"https://www.academia.edu/Documents/in/Clinical_Psychology?f_ri=3413"},{"id":236,"name":"Cognitive Psychology","url":"https://www.academia.edu/Documents/in/Cognitive_Psychology?f_ri=3413"},{"id":248,"name":"Social Psychology","url":"https://www.academia.edu/Documents/in/Social_Psychology?f_ri=3413"},{"id":252,"name":"Developmental Psychology","url":"https://www.academia.edu/Documents/in/Developmental_Psychology?f_ri=3413"},{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413"},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology?f_ri=3413"},{"id":534,"name":"Law","url":"https://www.academia.edu/Documents/in/Law?f_ri=3413"},{"id":535,"name":"Criminal Law","url":"https://www.academia.edu/Documents/in/Criminal_Law-1?f_ri=3413"},{"id":537,"name":"Criminal Justice","url":"https://www.academia.edu/Documents/in/Criminal_Justice?f_ri=3413"},{"id":540,"name":"Islamic Law","url":"https://www.academia.edu/Documents/in/Islamic_Law?f_ri=3413"},{"id":546,"name":"Comparative Law","url":"https://www.academia.edu/Documents/in/Comparative_Law?f_ri=3413"},{"id":547,"name":"Constitutional Law","url":"https://www.academia.edu/Documents/in/Constitutional_Law?f_ri=3413"},{"id":548,"name":"Civil Law","url":"https://www.academia.edu/Documents/in/Civil_Law?f_ri=3413"},{"id":635,"name":"Psychiatry","url":"https://www.academia.edu/Documents/in/Psychiatry?f_ri=3413"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics?f_ri=3413"},{"id":727,"name":"Development Economics","url":"https://www.academia.edu/Documents/in/Development_Economics?f_ri=3413"},{"id":748,"name":"Financial Economics","url":"https://www.academia.edu/Documents/in/Financial_Economics?f_ri=3413"},{"id":767,"name":"Anthropology","url":"https://www.academia.edu/Documents/in/Anthropology?f_ri=3413"},{"id":768,"name":"Biological Anthropology","url":"https://www.academia.edu/Documents/in/Biological_Anthropology?f_ri=3413"},{"id":793,"name":"Medical Anthropology","url":"https://www.academia.edu/Documents/in/Medical_Anthropology?f_ri=3413"},{"id":796,"name":"Comparative Politics","url":"https://www.academia.edu/Documents/in/Comparative_Politics?f_ri=3413"},{"id":802,"name":"Political Economy","url":"https://www.academia.edu/Documents/in/Political_Economy?f_ri=3413"},{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy?f_ri=3413"},{"id":806,"name":"Philosophy of Mind","url":"https://www.academia.edu/Documents/in/Philosophy_of_Mind?f_ri=3413"},{"id":807,"name":"Philosophy Of Language","url":"https://www.academia.edu/Documents/in/Philosophy_Of_Language?f_ri=3413"},{"id":813,"name":"Political Philosophy","url":"https://www.academia.edu/Documents/in/Political_Philosophy?f_ri=3413"},{"id":814,"name":"Ethics","url":"https://www.academia.edu/Documents/in/Ethics?f_ri=3413"},{"id":821,"name":"Philosophy of Science","url":"https://www.academia.edu/Documents/in/Philosophy_of_Science?f_ri=3413"},{"id":906,"name":"Applied Ethics","url":"https://www.academia.edu/Documents/in/Applied_Ethics?f_ri=3413"},{"id":907,"name":"Moral Psychology","url":"https://www.academia.edu/Documents/in/Moral_Psychology?f_ri=3413"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology?f_ri=3413"},{"id":928,"name":"Media Studies","url":"https://www.academia.edu/Documents/in/Media_Studies?f_ri=3413"},{"id":933,"name":"New Media","url":"https://www.academia.edu/Documents/in/New_Media?f_ri=3413"},{"id":934,"name":"Media and Cultural Studies","url":"https://www.academia.edu/Documents/in/Media_and_Cultural_Studies?f_ri=3413"},{"id":941,"name":"Social Policy","url":"https://www.academia.edu/Documents/in/Social_Policy?f_ri=3413"},{"id":954,"name":"Social Anthropology","url":"https://www.academia.edu/Documents/in/Social_Anthropology?f_ri=3413"},{"id":957,"name":"Cultural Sociology","url":"https://www.academia.edu/Documents/in/Cultural_Sociology?f_ri=3413"},{"id":974,"name":"Sociology of Education","url":"https://www.academia.edu/Documents/in/Sociology_of_Education?f_ri=3413"},{"id":975,"name":"Sex and Gender","url":"https://www.academia.edu/Documents/in/Sex_and_Gender?f_ri=3413"},{"id":1003,"name":"Educational Technology","url":"https://www.academia.edu/Documents/in/Educational_Technology?f_ri=3413"},{"id":1060,"name":"Legal Education","url":"https://www.academia.edu/Documents/in/Legal_Education?f_ri=3413"},{"id":1192,"name":"Feminist Theory","url":"https://www.academia.edu/Documents/in/Feminist_Theory?f_ri=3413"},{"id":1441,"name":"Philosophical Anthropology","url":"https://www.academia.edu/Documents/in/Philosophical_Anthropology?f_ri=3413"},{"id":1483,"name":"Foreign Policy Analysis","url":"https://www.academia.edu/Documents/in/Foreign_Policy_Analysis?f_ri=3413"},{"id":1696,"name":"Political Theory","url":"https://www.academia.edu/Documents/in/Political_Theory?f_ri=3413"},{"id":1737,"name":"Sexual Abuse","url":"https://www.academia.edu/Documents/in/Sexual_Abuse?f_ri=3413"},{"id":2043,"name":"Mobile Robotics","url":"https://www.academia.edu/Documents/in/Mobile_Robotics?f_ri=3413"},{"id":2098,"name":"Contract Law","url":"https://www.academia.edu/Documents/in/Contract_Law?f_ri=3413"},{"id":2132,"name":"Cultural Heritage","url":"https://www.academia.edu/Documents/in/Cultural_Heritage?f_ri=3413"},{"id":2145,"name":"Sexual and Reproductive Health","url":"https://www.academia.edu/Documents/in/Sexual_and_Reproductive_Health?f_ri=3413"},{"id":2169,"name":"Human Rights Law","url":"https://www.academia.edu/Documents/in/Human_Rights_Law?f_ri=3413"},{"id":2504,"name":"Research Ethics","url":"https://www.academia.edu/Documents/in/Research_Ethics?f_ri=3413"},{"id":2524,"name":"Sociolinguistics","url":"https://www.academia.edu/Documents/in/Sociolinguistics?f_ri=3413"},{"id":2575,"name":"International Law","url":"https://www.academia.edu/Documents/in/International_Law?f_ri=3413"},{"id":2718,"name":"Linguistic Anthropology","url":"https://www.academia.edu/Documents/in/Linguistic_Anthropology?f_ri=3413"},{"id":2858,"name":"Popular Culture","url":"https://www.academia.edu/Documents/in/Popular_Culture?f_ri=3413"},{"id":3059,"name":"Religion and Politics","url":"https://www.academia.edu/Documents/in/Religion_and_Politics?f_ri=3413"},{"id":3130,"name":"Sexual Behaviour","url":"https://www.academia.edu/Documents/in/Sexual_Behaviour?f_ri=3413"},{"id":3287,"name":"Regulation And Governance","url":"https://www.academia.edu/Documents/in/Regulation_And_Governance?f_ri=3413"},{"id":3369,"name":"Religion and Sexuality","url":"https://www.academia.edu/Documents/in/Religion_and_Sexuality?f_ri=3413"},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":3468,"name":"Virtue Ethics","url":"https://www.academia.edu/Documents/in/Virtue_Ethics?f_ri=3413"},{"id":3499,"name":"Social and Cultural Anthropology","url":"https://www.academia.edu/Documents/in/Social_and_Cultural_Anthropology?f_ri=3413"},{"id":3563,"name":"Sexology","url":"https://www.academia.edu/Documents/in/Sexology?f_ri=3413"},{"id":3692,"name":"International Criminal Law","url":"https://www.academia.edu/Documents/in/International_Criminal_Law?f_ri=3413"},{"id":3772,"name":"Legal History","url":"https://www.academia.edu/Documents/in/Legal_History?f_ri=3413"},{"id":3872,"name":"War Studies","url":"https://www.academia.edu/Documents/in/War_Studies?f_ri=3413"},{"id":4005,"name":"Feminist Epistemology","url":"https://www.academia.edu/Documents/in/Feminist_Epistemology?f_ri=3413"},{"id":4124,"name":"Feminist Philosophy","url":"https://www.academia.edu/Documents/in/Feminist_Philosophy?f_ri=3413"},{"id":4167,"name":"Corporate Governance","url":"https://www.academia.edu/Documents/in/Corporate_Governance?f_ri=3413"},{"id":4198,"name":"Mobile Technology","url":"https://www.academia.edu/Documents/in/Mobile_Technology?f_ri=3413"},{"id":4486,"name":"Political Science","url":"https://www.academia.edu/Documents/in/Political_Science?f_ri=3413"},{"id":4608,"name":"Feminist Disability Studies","url":"https://www.academia.edu/Documents/in/Feminist_Disability_Studies?f_ri=3413"},{"id":4714,"name":"Sexuality","url":"https://www.academia.edu/Documents/in/Sexuality?f_ri=3413"},{"id":4787,"name":"Sexualities education","url":"https://www.academia.edu/Documents/in/Sexualities_education?f_ri=3413"},{"id":4801,"name":"Sexual Violence","url":"https://www.academia.edu/Documents/in/Sexual_Violence?f_ri=3413"},{"id":4892,"name":"Autonomous Robotics","url":"https://www.academia.edu/Documents/in/Autonomous_Robotics?f_ri=3413"},{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413"},{"id":4917,"name":"Gender and Sexuality","url":"https://www.academia.edu/Documents/in/Gender_and_Sexuality?f_ri=3413"},{"id":5006,"name":"Computer Games Technology","url":"https://www.academia.edu/Documents/in/Computer_Games_Technology?f_ri=3413"},{"id":5167,"name":"Governance","url":"https://www.academia.edu/Documents/in/Governance?f_ri=3413"},{"id":5248,"name":"Legal Theory","url":"https://www.academia.edu/Documents/in/Legal_Theory?f_ri=3413"},{"id":5321,"name":"International Human Rights Law","url":"https://www.academia.edu/Documents/in/International_Human_Rights_Law?f_ri=3413"},{"id":5686,"name":"Political Violence and Terrorism","url":"https://www.academia.edu/Documents/in/Political_Violence_and_Terrorism?f_ri=3413"},{"id":5709,"name":"Politics","url":"https://www.academia.edu/Documents/in/Politics?f_ri=3413"},{"id":5947,"name":"Anthropology and Sexuality","url":"https://www.academia.edu/Documents/in/Anthropology_and_Sexuality?f_ri=3413"},{"id":5960,"name":"Continental Philosophy","url":"https://www.academia.edu/Documents/in/Continental_Philosophy?f_ri=3413"},{"id":6276,"name":"International Political Economy","url":"https://www.academia.edu/Documents/in/International_Political_Economy?f_ri=3413"},{"id":6463,"name":"History of Sexuality","url":"https://www.academia.edu/Documents/in/History_of_Sexuality?f_ri=3413"},{"id":6539,"name":"Men's Sexuality","url":"https://www.academia.edu/Documents/in/Mens_Sexuality?f_ri=3413"},{"id":6728,"name":"Philosophy Of Law","url":"https://www.academia.edu/Documents/in/Philosophy_Of_Law?f_ri=3413"},{"id":7044,"name":"Sexual Selection","url":"https://www.academia.edu/Documents/in/Sexual_Selection?f_ri=3413"},{"id":7125,"name":"Culture","url":"https://www.academia.edu/Documents/in/Culture?f_ri=3413"},{"id":7369,"name":"Political communication","url":"https://www.academia.edu/Documents/in/Political_communication?f_ri=3413"},{"id":7560,"name":"Public International Law","url":"https://www.academia.edu/Documents/in/Public_International_Law?f_ri=3413"},{"id":7695,"name":"Environmental Ethics","url":"https://www.academia.edu/Documents/in/Environmental_Ethics?f_ri=3413"},{"id":8230,"name":"Socio-legal studies","url":"https://www.academia.edu/Documents/in/Socio-legal_studies?f_ri=3413"},{"id":9243,"name":"Communication Ethics","url":"https://www.academia.edu/Documents/in/Communication_Ethics?f_ri=3413"},{"id":9246,"name":"Social Media","url":"https://www.academia.edu/Documents/in/Social_Media?f_ri=3413"},{"id":9435,"name":"Medical Ethics","url":"https://www.academia.edu/Documents/in/Medical_Ethics?f_ri=3413"},{"id":9822,"name":"Education Policy","url":"https://www.academia.edu/Documents/in/Education_Policy?f_ri=3413"},{"id":10453,"name":"Feminism","url":"https://www.academia.edu/Documents/in/Feminism?f_ri=3413"},{"id":11136,"name":"Cognitive Robotics","url":"https://www.academia.edu/Documents/in/Cognitive_Robotics?f_ri=3413"},{"id":12059,"name":"Human-Robot Interaction","url":"https://www.academia.edu/Documents/in/Human-Robot_Interaction?f_ri=3413"},{"id":12383,"name":"Moral Theology","url":"https://www.academia.edu/Documents/in/Moral_Theology?f_ri=3413"},{"id":12760,"name":"Postcolonial Feminism","url":"https://www.academia.edu/Documents/in/Postcolonial_Feminism?f_ri=3413"},{"id":13693,"name":"Sociology of Ethics and Morality","url":"https://www.academia.edu/Documents/in/Sociology_of_Ethics_and_Morality?f_ri=3413"},{"id":14412,"name":"Black feminism","url":"https://www.academia.edu/Documents/in/Black_feminism?f_ri=3413"},{"id":14418,"name":"Mechatronics \u0026 Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics?f_ri=3413"},{"id":14998,"name":"Gender and Sexuality Studies","url":"https://www.academia.edu/Documents/in/Gender_and_Sexuality_Studies?f_ri=3413"},{"id":15011,"name":"Sex Work","url":"https://www.academia.edu/Documents/in/Sex_Work?f_ri=3413"},{"id":16419,"name":"Sexual Health","url":"https://www.academia.edu/Documents/in/Sexual_Health?f_ri=3413"},{"id":16742,"name":"Urban Sociology","url":"https://www.academia.edu/Documents/in/Urban_Sociology?f_ri=3413"},{"id":16802,"name":"Islamic feminism","url":"https://www.academia.edu/Documents/in/Islamic_feminism?f_ri=3413"},{"id":18373,"name":"Moral Philosophy","url":"https://www.academia.edu/Documents/in/Moral_Philosophy?f_ri=3413"},{"id":19130,"name":"Constructions of femininity","url":"https://www.academia.edu/Documents/in/Constructions_of_femininity?f_ri=3413"},{"id":19135,"name":"Feminist activism","url":"https://www.academia.edu/Documents/in/Feminist_activism?f_ri=3413"},{"id":19138,"name":"Sexual Identity","url":"https://www.academia.edu/Documents/in/Sexual_Identity?f_ri=3413"},{"id":20715,"name":"Legal Philosophy","url":"https://www.academia.edu/Documents/in/Legal_Philosophy?f_ri=3413"},{"id":21003,"name":"Sexuality And Culture","url":"https://www.academia.edu/Documents/in/Sexuality_And_Culture?f_ri=3413"},{"id":22739,"name":"Sex Industry and Workers","url":"https://www.academia.edu/Documents/in/Sex_Industry_and_Workers?f_ri=3413"},{"id":23305,"name":"Transnational Feminism","url":"https://www.academia.edu/Documents/in/Transnational_Feminism?f_ri=3413"},{"id":23342,"name":"Cultural Anthropology","url":"https://www.academia.edu/Documents/in/Cultural_Anthropology?f_ri=3413"},{"id":27099,"name":"Philosophy of Law, Political Philospohy, Ethics","url":"https://www.academia.edu/Documents/in/Philosophy_of_Law_Political_Philospohy_Ethics?f_ri=3413"},{"id":28981,"name":"Ethnic Conflict and Civil War","url":"https://www.academia.edu/Documents/in/Ethnic_Conflict_and_Civil_War?f_ri=3413"},{"id":29108,"name":"Feminist Literary Theory and Gender Studies","url":"https://www.academia.edu/Documents/in/Feminist_Literary_Theory_and_Gender_Studies?f_ri=3413"},{"id":32278,"name":"Rehabilitation robotics","url":"https://www.academia.edu/Documents/in/Rehabilitation_robotics?f_ri=3413"},{"id":33553,"name":"Rape and Sexual Assault Law","url":"https://www.academia.edu/Documents/in/Rape_and_Sexual_Assault_Law?f_ri=3413"},{"id":33855,"name":"Moral and Political Philosophy","url":"https://www.academia.edu/Documents/in/Moral_and_Political_Philosophy?f_ri=3413"},{"id":34322,"name":"Sexual Orientation","url":"https://www.academia.edu/Documents/in/Sexual_Orientation?f_ri=3413"},{"id":36677,"name":"Rape Culture","url":"https://www.academia.edu/Documents/in/Rape_Culture?f_ri=3413"},{"id":39595,"name":"Mechatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2?f_ri=3413"},{"id":39673,"name":"Feminism and Social Justice","url":"https://www.academia.edu/Documents/in/Feminism_and_Social_Justice?f_ri=3413"},{"id":40775,"name":"Parallel Robots","url":"https://www.academia.edu/Documents/in/Parallel_Robots?f_ri=3413"},{"id":42814,"name":"Ethics and economics","url":"https://www.academia.edu/Documents/in/Ethics_and_economics?f_ri=3413"},{"id":46429,"name":"Economy","url":"https://www.academia.edu/Documents/in/Economy?f_ri=3413"},{"id":53732,"name":"Human Sexuality","url":"https://www.academia.edu/Documents/in/Human_Sexuality?f_ri=3413"},{"id":55516,"name":"Sexual and Gender-Based Violence","url":"https://www.academia.edu/Documents/in/Sexual_and_Gender-Based_Violence?f_ri=3413"},{"id":56050,"name":"Ethical Hacking","url":"https://www.academia.edu/Documents/in/Ethical_Hacking?f_ri=3413"},{"id":57478,"name":"Feminismo","url":"https://www.academia.edu/Documents/in/Feminismo?f_ri=3413"},{"id":59532,"name":"Moral","url":"https://www.academia.edu/Documents/in/Moral?f_ri=3413"},{"id":63231,"name":"Rape as a Weapon of War","url":"https://www.academia.edu/Documents/in/Rape_as_a_Weapon_of_War?f_ri=3413"},{"id":66296,"name":"Sex Addiction","url":"https://www.academia.edu/Documents/in/Sex_Addiction?f_ri=3413"},{"id":73740,"name":"Child Sexual Abuse","url":"https://www.academia.edu/Documents/in/Child_Sexual_Abuse?f_ri=3413"},{"id":75858,"name":"Sex Education","url":"https://www.academia.edu/Documents/in/Sex_Education?f_ri=3413"},{"id":83106,"name":"Feminist Political Theory","url":"https://www.academia.edu/Documents/in/Feminist_Political_Theory?f_ri=3413"},{"id":83952,"name":"Morality","url":"https://www.academia.edu/Documents/in/Morality?f_ri=3413"},{"id":89919,"name":"Robots","url":"https://www.academia.edu/Documents/in/Robots?f_ri=3413"},{"id":90090,"name":"Sexism","url":"https://www.academia.edu/Documents/in/Sexism?f_ri=3413"},{"id":98925,"name":"Female","url":"https://www.academia.edu/Documents/in/Female?f_ri=3413"},{"id":111921,"name":"Sexual Behavior","url":"https://www.academia.edu/Documents/in/Sexual_Behavior?f_ri=3413"},{"id":112634,"name":"Sexual Deviant Behaviour","url":"https://www.academia.edu/Documents/in/Sexual_Deviant_Behaviour?f_ri=3413"},{"id":121845,"name":"Sex Trafficking","url":"https://www.academia.edu/Documents/in/Sex_Trafficking?f_ri=3413"},{"id":147142,"name":"Business \u0026 Ethics","url":"https://www.academia.edu/Documents/in/Business_and_Ethics?f_ri=3413"},{"id":200870,"name":"NORA: Nordic Journal of Feminist and Gender Research","url":"https://www.academia.edu/Documents/in/NORA_Nordic_Journal_of_Feminist_and_Gender_Research?f_ri=3413"},{"id":380315,"name":"Public Administration and Policy","url":"https://www.academia.edu/Documents/in/Public_Administration_and_Policy?f_ri=3413"},{"id":385234,"name":"Political Economy and History","url":"https://www.academia.edu/Documents/in/Political_Economy_and_History?f_ri=3413"},{"id":405163,"name":"Feminine Studies","url":"https://www.academia.edu/Documents/in/Feminine_Studies?f_ri=3413"},{"id":619396,"name":"Anthropology of Religion","url":"https://www.academia.edu/Documents/in/Anthropology_of_Religion?f_ri=3413"},{"id":1223610,"name":"Latin American feminisms","url":"https://www.academia.edu/Documents/in/Latin_American_feminisms?f_ri=3413"},{"id":1723635,"name":"Public Policy","url":"https://www.academia.edu/Documents/in/Public_Policy?f_ri=3413"},{"id":1744493,"name":"Science and Technology Studies","url":"https://www.academia.edu/Documents/in/Science_and_Technology_Studies?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_37506455" data-work_id="37506455" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/37506455/Robert_Owen_%C3%B6nergesinin_200_y%C4%B1l%C4%B1nda_Yeni_Toplum_ve_makineler">Robert Owen önergesinin 200. yılında Yeni Toplum ve makineler</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">Makineler ve sınıfsız toplum; inovasyon, yapay zeka ve insanlığın geleceği; Robert Owen&#39;dan günümüze makineler ve sosyalizm</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/37506455" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="12c44c905b13a29d2832f34313490ac9" rel="nofollow" data-download="{&quot;attachment_id&quot;:57478265,&quot;asset_id&quot;:37506455,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/57478265/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="44179144" href="https://independent.academia.edu/kg%C3%BCc%C3%BCm">kuntay gücüm</a><script data-card-contents-for-user="44179144" type="text/json">{"id":44179144,"first_name":"kuntay","last_name":"gücüm","domain_name":"independent","page_name":"kgücüm","display_name":"kuntay gücüm","profile_url":"https://independent.academia.edu/kg%C3%BCc%C3%BCm?f_ri=3413","photo":"https://0.academia-photos.com/44179144/18965579/18912435/s65_kuntay.g_c_m.jpg"}</script></span></span></li><li class="js-paper-rank-work_37506455 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="37506455"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 37506455, container: ".js-paper-rank-work_37506455", }); });</script></li><li class="js-percentile-work_37506455 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 37506455; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_37506455"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_37506455 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="37506455"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 37506455; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=37506455]").text(description); $(".js-view-count-work_37506455").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_37506455").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="37506455"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">20</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>,&nbsp;<script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="21593" href="https://www.academia.edu/Documents/in/Artificial_Inteligence">Artificial Inteligence</a>,&nbsp;<script data-card-contents-for-ri="21593" type="text/json">{"id":21593,"name":"Artificial Inteligence","url":"https://www.academia.edu/Documents/in/Artificial_Inteligence?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26138" href="https://www.academia.edu/Documents/in/Utopianism">Utopianism</a><script data-card-contents-for-ri="26138" type="text/json">{"id":26138,"name":"Utopianism","url":"https://www.academia.edu/Documents/in/Utopianism?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=37506455]'), work: {"id":37506455,"title":"Robert Owen önergesinin 200. yılında Yeni Toplum ve makineler","created_at":"2018-09-30T23:42:52.315-07:00","url":"https://www.academia.edu/37506455/Robert_Owen_%C3%B6nergesinin_200_y%C4%B1l%C4%B1nda_Yeni_Toplum_ve_makineler?f_ri=3413","dom_id":"work_37506455","summary":"Makineler ve sınıfsız toplum; inovasyon, yapay zeka ve insanlığın geleceği; Robert Owen'dan günümüze makineler ve sosyalizm","downloadable_attachments":[{"id":57478265,"asset_id":37506455,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":44179144,"first_name":"kuntay","last_name":"gücüm","domain_name":"independent","page_name":"kgücüm","display_name":"kuntay gücüm","profile_url":"https://independent.academia.edu/kg%C3%BCc%C3%BCm?f_ri=3413","photo":"https://0.academia-photos.com/44179144/18965579/18912435/s65_kuntay.g_c_m.jpg"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":21593,"name":"Artificial Inteligence","url":"https://www.academia.edu/Documents/in/Artificial_Inteligence?f_ri=3413","nofollow":false},{"id":26138,"name":"Utopianism","url":"https://www.academia.edu/Documents/in/Utopianism?f_ri=3413","nofollow":false},{"id":74262,"name":"Philosophy of Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Philosophy_of_Artificial_Intelligence?f_ri=3413"},{"id":81883,"name":"Inovation","url":"https://www.academia.edu/Documents/in/Inovation?f_ri=3413"},{"id":89919,"name":"Robots","url":"https://www.academia.edu/Documents/in/Robots?f_ri=3413"},{"id":169976,"name":"Utopia/dystopia","url":"https://www.academia.edu/Documents/in/Utopia_dystopia?f_ri=3413"},{"id":243574,"name":"Yapay Zeka","url":"https://www.academia.edu/Documents/in/Yapay_Zeka?f_ri=3413"},{"id":250353,"name":"Komunisme","url":"https://www.academia.edu/Documents/in/Komunisme?f_ri=3413"},{"id":281051,"name":"Türkiye'de Teknoloji ve İnovasyon","url":"https://www.academia.edu/Documents/in/Turkiyede_Teknoloji_ve_Inovasyon?f_ri=3413"},{"id":358251,"name":"Komünizmin teorik altyapısı","url":"https://www.academia.edu/Documents/in/Komunizmin_teorik_altyapisi?f_ri=3413"},{"id":377749,"name":"Sosyalizm","url":"https://www.academia.edu/Documents/in/Sosyalizm?f_ri=3413"},{"id":398267,"name":"İnovasyon","url":"https://www.academia.edu/Documents/in/Inovasyon?f_ri=3413"},{"id":408303,"name":"Makine Kırıcılığı","url":"https://www.academia.edu/Documents/in/Makine_Kiriciligi?f_ri=3413"},{"id":476168,"name":"Robert Owen","url":"https://www.academia.edu/Documents/in/Robert_Owen?f_ri=3413"},{"id":751155,"name":"Inovation and Opportunity Research","url":"https://www.academia.edu/Documents/in/Inovation_and_Opportunity_Research?f_ri=3413"},{"id":775235,"name":"ütopya","url":"https://www.academia.edu/Documents/in/utopya?f_ri=3413"},{"id":1296130,"name":"Endüstriyel Robotlar","url":"https://www.academia.edu/Documents/in/Endustriyel_Robotlar?f_ri=3413"},{"id":1335783,"name":"Inovasyon Yönetimi","url":"https://www.academia.edu/Documents/in/Inovasyon_Yonetimi?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1232567" data-work_id="1232567" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1232567/A_versatile_camera_calibration_technique_for_high_accuracy_3D_machine_vision_metrology_using_off_the_shelf_TV_cameras_and_lenses">A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">A new technique for three-dimensional (3D) camera calibration for machine vision metrology using off-the-shelf TV cameras and lenses is described. The two-stage technique is aimed at efficient computation of camera external position and... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_1232567" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">A new technique for three-dimensional (3D) camera calibration for machine vision metrology using off-the-shelf TV cameras and lenses is described. The two-stage technique is aimed at efficient computation of camera external position and orientation relative to object reference coordinate system as well as the effective focal length, radial lens distortion, and image scanning parameters. The two-stage technique has advantage in terms of accuracy, speed, and versatility over existing state of the art. A critical review of the state of the art is given in the beginning. A theoretical framework is established, supported by comprehensive proof in five appendixes, and may pave the way for future research on 3D robotics vision. Test results using real data are described. Both accuracy and speed are reported. The experimental results are analyzed and compared with theoretical prediction. Recent effort indicates that with slight modification, the two-stage calibration can be done in real time.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1232567" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f2e64a34e7d3a157d3c86fc5a9a46b34" rel="nofollow" data-download="{&quot;attachment_id&quot;:19112410,&quot;asset_id&quot;:1232567,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/19112410/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1965529" href="https://independent.academia.edu/ErshadKarimi">Ershad Karimi</a><script data-card-contents-for-user="1965529" type="text/json">{"id":1965529,"first_name":"Ershad","last_name":"Karimi","domain_name":"independent","page_name":"ErshadKarimi","display_name":"Ershad Karimi","profile_url":"https://independent.academia.edu/ErshadKarimi?f_ri=3413","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_1232567 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1232567"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1232567, container: ".js-paper-rank-work_1232567", }); });</script></li><li class="js-percentile-work_1232567 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1232567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1232567"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1232567 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1232567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1232567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1232567]").text(description); $(".js-view-count-work_1232567").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1232567").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1232567"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">12</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="12901" href="https://www.academia.edu/Documents/in/TV">TV</a>,&nbsp;<script data-card-contents-for-ri="12901" type="text/json">{"id":12901,"name":"TV","url":"https://www.academia.edu/Documents/in/TV?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="14417" href="https://www.academia.edu/Documents/in/Machine_Vision">Machine Vision</a>,&nbsp;<script data-card-contents-for-ri="14417" type="text/json">{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="52545" href="https://www.academia.edu/Documents/in/Metrology">Metrology</a><script data-card-contents-for-ri="52545" type="text/json">{"id":52545,"name":"Metrology","url":"https://www.academia.edu/Documents/in/Metrology?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1232567]'), work: {"id":1232567,"title":"A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses","created_at":"2012-06-17T22:34:05.630-07:00","url":"https://www.academia.edu/1232567/A_versatile_camera_calibration_technique_for_high_accuracy_3D_machine_vision_metrology_using_off_the_shelf_TV_cameras_and_lenses?f_ri=3413","dom_id":"work_1232567","summary":"A new technique for three-dimensional (3D) camera calibration for machine vision metrology using off-the-shelf TV cameras and lenses is described. The two-stage technique is aimed at efficient computation of camera external position and orientation relative to object reference coordinate system as well as the effective focal length, radial lens distortion, and image scanning parameters. The two-stage technique has advantage in terms of accuracy, speed, and versatility over existing state of the art. A critical review of the state of the art is given in the beginning. A theoretical framework is established, supported by comprehensive proof in five appendixes, and may pave the way for future research on 3D robotics vision. Test results using real data are described. Both accuracy and speed are reported. The experimental results are analyzed and compared with theoretical prediction. Recent effort indicates that with slight modification, the two-stage calibration can be done in real time.","downloadable_attachments":[{"id":19112410,"asset_id":1232567,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1965529,"first_name":"Ershad","last_name":"Karimi","domain_name":"independent","page_name":"ErshadKarimi","display_name":"Ershad Karimi","profile_url":"https://independent.academia.edu/ErshadKarimi?f_ri=3413","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":12901,"name":"TV","url":"https://www.academia.edu/Documents/in/TV?f_ri=3413","nofollow":false},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413","nofollow":false},{"id":52545,"name":"Metrology","url":"https://www.academia.edu/Documents/in/Metrology?f_ri=3413","nofollow":false},{"id":93882,"name":"Robot kinematics","url":"https://www.academia.edu/Documents/in/Robot_kinematics?f_ri=3413"},{"id":96446,"name":"Measurement","url":"https://www.academia.edu/Documents/in/Measurement?f_ri=3413"},{"id":96893,"name":"Calibration","url":"https://www.academia.edu/Documents/in/Calibration?f_ri=3413"},{"id":99818,"name":"Camera Calibration","url":"https://www.academia.edu/Documents/in/Camera_Calibration?f_ri=3413"},{"id":412636,"name":"Theoretical Framework","url":"https://www.academia.edu/Documents/in/Theoretical_Framework?f_ri=3413"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional?f_ri=3413"},{"id":1258317,"name":"Lens Distortion","url":"https://www.academia.edu/Documents/in/Lens_Distortion?f_ri=3413"},{"id":1931321,"name":"Application Software","url":"https://www.academia.edu/Documents/in/Application_Software?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_34205003" data-work_id="34205003" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/34205003/1st_IET_Call_for_Book_Chapters_IMAGE_AND_SENSING_FOR_UNMANNED_AERIAL_VEHICLES_Volume_1_CONTROL_AND_PERFORMANCE">1st IET Call for Book Chapters: IMAGE AND SENSING FOR UNMANNED AERIAL VEHICLES. Volume 1- CONTROL AND PERFORMANCE</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">IET indexes its books and journal in SCOPUS and IEEE Xplore. Computer Vision (CV) and Sensors play a decisive role in the operation of Unmanned Aerial Vehicle (UAV), but there exists a void when it comes to analysing the extent of their... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_34205003" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">IET indexes its books and journal in SCOPUS and IEEE Xplore. <br />Computer Vision (CV) and Sensors play a decisive role in the operation of Unmanned Aerial Vehicle (UAV), but there exists a void when it comes to analysing the extent of their impact on the entire UAV system. In general, the fact that a UAV is a Cyber-Physical System (CPS) is not taken into account. In this proposal, we propose to expand on earlier books covering the use of CV and sensing in UAVs. Among other things, an entirely autonomous UAV can help to (i) obtain information about the environment, (ii) work for an extended period of time without human interference, (iii) move either all or part of itself all over its operating location devoid of human help and (iv) stay away from dangerous situations for people and their possessions. A Vision System (VS) entails the way CV data will be utilized, the appropriate architecture for total avionics integration, the control interfaces, and the UAV operation. Since the VS core is its sensors and cameras, multi-sensor fusion, navigation, hazard detection, and ground correlation in real time are important operational aspects that can benefit from CV knowledge and technology. This book will aim to collect and shed some light on the existing information on CV software and hardware for UAVs as well as pinpoint aspects that need additional thinking. It will list standards and a set of prerequisites (or lack of them thereof) when it comes to CV deployment in UAVs. The issue of data fusion takes a centre place when the book explores ways to deal with sensor data and images as well as their integration and display. The best practices to fuse image and sensor information to enhance UAV performance by means of CV can greatly improve all aspects of the corresponding CPS. The CPS viewpoint can improve the way UAVs interact with the Internet of Things (IoT), use cloud computing, meet communications requirements, implement hardware/software paradigms necessary to handle video streaming, incorporate satellite data, and combine CV with Virtual/Augmented Realities. <br /> <br />VOLUME 1-CONTROL AND PERFORMANCE: This tome explores how sensors and computer vision technologies are used in unmanned aerial vehicles for the navigation, control, stability, reliability, guidance, fault detection, self-maintenance, strategic replanning and reconfiguration of the entire system. It helps analyse the manner UAVs interact with the Internet of Things (IoT), use cloud computing, meet communications requirements, implement hardware/software paradigms necessary to handle still imagery, video streaming, incorporate satellite data, and combine computer vision with virtual/augmented realities (VR/AR).NB: This is planned to be the companion volume of Estrela, Hemanth, Saotome (Eds) / Imaging and Sensing for Unmanned Aerial Vehicles: Volume 2-Deployment and Applications</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/34205003" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="64757e837be3f075369efafaf09d61a7" rel="nofollow" data-download="{&quot;attachment_id&quot;:54121803,&quot;asset_id&quot;:34205003,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/54121803/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1569445" href="https://uff.academia.edu/VaniaEstrela">Vania V Estrela</a><script data-card-contents-for-user="1569445" type="text/json">{"id":1569445,"first_name":"Vania","last_name":"Estrela","domain_name":"uff","page_name":"VaniaEstrela","display_name":"Vania V Estrela","profile_url":"https://uff.academia.edu/VaniaEstrela?f_ri=3413","photo":"https://0.academia-photos.com/1569445/584405/780232/s65_vania_v..estrela.jpg"}</script></span></span></li><li class="js-paper-rank-work_34205003 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="34205003"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 34205003, container: ".js-paper-rank-work_34205003", }); });</script></li><li class="js-percentile-work_34205003 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 34205003; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_34205003"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_34205003 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="34205003"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 34205003; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=34205003]").text(description); $(".js-view-count-work_34205003").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_34205003").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="34205003"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">166</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl11x"><a class="InlineList-item-text" data-has-card-for-ri="50" href="https://www.academia.edu/Documents/in/Electronic_Engineering">Electronic Engineering</a>,&nbsp;<script data-card-contents-for-ri="50" type="text/json">{"id":50,"name":"Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electronic_Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="78" href="https://www.academia.edu/Documents/in/Control_Systems_Engineering">Control Systems Engineering</a>,&nbsp;<script data-card-contents-for-ri="78" type="text/json">{"id":78,"name":"Control Systems Engineering","url":"https://www.academia.edu/Documents/in/Control_Systems_Engineering?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="87" href="https://www.academia.edu/Documents/in/Telecommunications_Engineering">Telecommunications Engineering</a><script data-card-contents-for-ri="87" type="text/json">{"id":87,"name":"Telecommunications Engineering","url":"https://www.academia.edu/Documents/in/Telecommunications_Engineering?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=34205003]'), work: {"id":34205003,"title":"1st IET Call for Book Chapters: IMAGE AND SENSING FOR UNMANNED AERIAL VEHICLES. Volume 1- CONTROL AND PERFORMANCE","created_at":"2017-08-11T15:44:32.275-07:00","url":"https://www.academia.edu/34205003/1st_IET_Call_for_Book_Chapters_IMAGE_AND_SENSING_FOR_UNMANNED_AERIAL_VEHICLES_Volume_1_CONTROL_AND_PERFORMANCE?f_ri=3413","dom_id":"work_34205003","summary":"IET indexes its books and journal in SCOPUS and IEEE Xplore.\r\nComputer Vision (CV) and Sensors play a decisive role in the operation of Unmanned Aerial Vehicle (UAV), but there exists a void when it comes to analysing the extent of their impact on the entire UAV system. In general, the fact that a UAV is a Cyber-Physical System (CPS) is not taken into account. In this proposal, we propose to expand on earlier books covering the use of CV and sensing in UAVs. Among other things, an entirely autonomous UAV can help to (i) obtain information about the environment, (ii) work for an extended period of time without human interference, (iii) move either all or part of itself all over its operating location devoid of human help and (iv) stay away from dangerous situations for people and their possessions. A Vision System (VS) entails the way CV data will be utilized, the appropriate architecture for total avionics integration, the control interfaces, and the UAV operation. Since the VS core is its sensors and cameras, multi-sensor fusion, navigation, hazard detection, and ground correlation in real time are important operational aspects that can benefit from CV knowledge and technology. This book will aim to collect and shed some light on the existing information on CV software and hardware for UAVs as well as pinpoint aspects that need additional thinking. It will list standards and a set of prerequisites (or lack of them thereof) when it comes to CV deployment in UAVs. The issue of data fusion takes a centre place when the book explores ways to deal with sensor data and images as well as their integration and display. The best practices to fuse image and sensor information to enhance UAV performance by means of CV can greatly improve all aspects of the corresponding CPS. The CPS viewpoint can improve the way UAVs interact with the Internet of Things (IoT), use cloud computing, meet communications requirements, implement hardware/software paradigms necessary to handle video streaming, incorporate satellite data, and combine CV with Virtual/Augmented Realities. \r\n\r\nVOLUME 1-CONTROL AND PERFORMANCE: This tome explores how sensors and computer vision technologies are used in unmanned aerial vehicles for the navigation, control, stability, reliability, guidance, fault detection, self-maintenance, strategic replanning and reconfiguration of the entire system. It helps analyse the manner UAVs interact with the Internet of Things (IoT), use cloud computing, meet communications requirements, implement hardware/software paradigms necessary to handle still imagery, video streaming, incorporate satellite data, and combine computer vision with virtual/augmented realities (VR/AR).NB: This is planned to be the companion volume of Estrela, Hemanth, Saotome (Eds) / Imaging and Sensing for Unmanned Aerial Vehicles: Volume 2-Deployment and Applications","downloadable_attachments":[{"id":54121803,"asset_id":34205003,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1569445,"first_name":"Vania","last_name":"Estrela","domain_name":"uff","page_name":"VaniaEstrela","display_name":"Vania V Estrela","profile_url":"https://uff.academia.edu/VaniaEstrela?f_ri=3413","photo":"https://0.academia-photos.com/1569445/584405/780232/s65_vania_v..estrela.jpg"}],"research_interests":[{"id":50,"name":"Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electronic_Engineering?f_ri=3413","nofollow":false},{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":78,"name":"Control Systems Engineering","url":"https://www.academia.edu/Documents/in/Control_Systems_Engineering?f_ri=3413","nofollow":false},{"id":87,"name":"Telecommunications Engineering","url":"https://www.academia.edu/Documents/in/Telecommunications_Engineering?f_ri=3413","nofollow":false},{"id":88,"name":"Aerospace Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_Engineering?f_ri=3413"},{"id":439,"name":"Fault Tolerant Computing","url":"https://www.academia.edu/Documents/in/Fault_Tolerant_Computing?f_ri=3413"},{"id":440,"name":"Distributed Computing","url":"https://www.academia.edu/Documents/in/Distributed_Computing?f_ri=3413"},{"id":471,"name":"Robotics (Computer Science)","url":"https://www.academia.edu/Documents/in/Robotics_Computer_Science_?f_ri=3413"},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413"},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=3413"},{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=3413"},{"id":1326,"name":"Reconfigurable Computing","url":"https://www.academia.edu/Documents/in/Reconfigurable_Computing?f_ri=3413"},{"id":2345,"name":"Wireless Communications","url":"https://www.academia.edu/Documents/in/Wireless_Communications?f_ri=3413"},{"id":2627,"name":"Situation awareness","url":"https://www.academia.edu/Documents/in/Situation_awareness?f_ri=3413"},{"id":2780,"name":"Reconfigurable Digital Systems","url":"https://www.academia.edu/Documents/in/Reconfigurable_Digital_Systems?f_ri=3413"},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413"},{"id":3974,"name":"Telecommunications","url":"https://www.academia.edu/Documents/in/Telecommunications?f_ri=3413"},{"id":4181,"name":"Cybernetics","url":"https://www.academia.edu/Documents/in/Cybernetics?f_ri=3413"},{"id":4202,"name":"Control Engineering","url":"https://www.academia.edu/Documents/in/Control_Engineering?f_ri=3413"},{"id":4758,"name":"Electronics","url":"https://www.academia.edu/Documents/in/Electronics?f_ri=3413"},{"id":4892,"name":"Autonomous Robotics","url":"https://www.academia.edu/Documents/in/Autonomous_Robotics?f_ri=3413"},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=3413"},{"id":5359,"name":"Visual perception","url":"https://www.academia.edu/Documents/in/Visual_perception?f_ri=3413"},{"id":5476,"name":"Cyber-Physical Systems","url":"https://www.academia.edu/Documents/in/Cyber-Physical_Systems?f_ri=3413"},{"id":6203,"name":"Electronics \u0026 Telecommunication Engineering","url":"https://www.academia.edu/Documents/in/Electronics_and_Telecommunication_Engineering?f_ri=3413"},{"id":7454,"name":"Information Communication Technology","url":"https://www.academia.edu/Documents/in/Information_Communication_Technology?f_ri=3413"},{"id":7923,"name":"Global Navigation Satellite Systems","url":"https://www.academia.edu/Documents/in/Global_Navigation_Satellite_Systems?f_ri=3413"},{"id":8106,"name":"Uav","url":"https://www.academia.edu/Documents/in/Uav?f_ri=3413"},{"id":8740,"name":"Aerial Robotics","url":"https://www.academia.edu/Documents/in/Aerial_Robotics?f_ri=3413"},{"id":9135,"name":"The Internet of Things","url":"https://www.academia.edu/Documents/in/The_Internet_of_Things?f_ri=3413"},{"id":9351,"name":"Image Analysis","url":"https://www.academia.edu/Documents/in/Image_Analysis?f_ri=3413"},{"id":9586,"name":"Unmanned Aircraft Systems","url":"https://www.academia.edu/Documents/in/Unmanned_Aircraft_Systems?f_ri=3413"},{"id":10003,"name":"Inertial navigation","url":"https://www.academia.edu/Documents/in/Inertial_navigation?f_ri=3413"},{"id":11136,"name":"Cognitive Robotics","url":"https://www.academia.edu/Documents/in/Cognitive_Robotics?f_ri=3413"},{"id":11677,"name":"Unmanned Air Vechicles","url":"https://www.academia.edu/Documents/in/Unmanned_Air_Vechicles?f_ri=3413"},{"id":11898,"name":"Fault Detection","url":"https://www.academia.edu/Documents/in/Fault_Detection?f_ri=3413"},{"id":11988,"name":"Robotics Navigation","url":"https://www.academia.edu/Documents/in/Robotics_Navigation?f_ri=3413"},{"id":12059,"name":"Human-Robot Interaction","url":"https://www.academia.edu/Documents/in/Human-Robot_Interaction?f_ri=3413"},{"id":12428,"name":"Automatic Control","url":"https://www.academia.edu/Documents/in/Automatic_Control?f_ri=3413"},{"id":13923,"name":"Computer Security","url":"https://www.academia.edu/Documents/in/Computer_Security?f_ri=3413"},{"id":14418,"name":"Mechatronics \u0026 Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics?f_ri=3413"},{"id":14474,"name":"Automation \u0026 COntrol","url":"https://www.academia.edu/Documents/in/Automation_and_COntrol?f_ri=3413"},{"id":15157,"name":"3D Reconstruction","url":"https://www.academia.edu/Documents/in/3D_Reconstruction?f_ri=3413"},{"id":16048,"name":"Teleoperation","url":"https://www.academia.edu/Documents/in/Teleoperation?f_ri=3413"},{"id":16478,"name":"Aircraft Design","url":"https://www.academia.edu/Documents/in/Aircraft_Design?f_ri=3413"},{"id":22688,"name":"Electronics and communication","url":"https://www.academia.edu/Documents/in/Electronics_and_communication?f_ri=3413"},{"id":23408,"name":"Remote sensing and GIS","url":"https://www.academia.edu/Documents/in/Remote_sensing_and_GIS?f_ri=3413"},{"id":29731,"name":"Image Registration","url":"https://www.academia.edu/Documents/in/Image_Registration?f_ri=3413"},{"id":30596,"name":"Control Systems","url":"https://www.academia.edu/Documents/in/Control_Systems?f_ri=3413"},{"id":30945,"name":"Cyberspace","url":"https://www.academia.edu/Documents/in/Cyberspace?f_ri=3413"},{"id":35938,"name":"Digital Image Processing","url":"https://www.academia.edu/Documents/in/Digital_Image_Processing?f_ri=3413"},{"id":36299,"name":"Distributed Systems","url":"https://www.academia.edu/Documents/in/Distributed_Systems?f_ri=3413"},{"id":36300,"name":"Fault Tolerance","url":"https://www.academia.edu/Documents/in/Fault_Tolerance?f_ri=3413"},{"id":39595,"name":"Mechatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mechatronics_and_Robotics-2?f_ri=3413"},{"id":39693,"name":"Distributed Data Mining","url":"https://www.academia.edu/Documents/in/Distributed_Data_Mining?f_ri=3413"},{"id":40775,"name":"Parallel Robots","url":"https://www.academia.edu/Documents/in/Parallel_Robots?f_ri=3413"},{"id":44890,"name":"Unmanned Aerial Vehicles","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicles?f_ri=3413"},{"id":44911,"name":"Embedded and Reconfigurable Systems","url":"https://www.academia.edu/Documents/in/Embedded_and_Reconfigurable_Systems?f_ri=3413"},{"id":46923,"name":"WSN (Wireless sensor network)","url":"https://www.academia.edu/Documents/in/WSN_Wireless_sensor_network_?f_ri=3413"},{"id":46957,"name":"Indoor Navigation","url":"https://www.academia.edu/Documents/in/Indoor_Navigation?f_ri=3413"},{"id":47232,"name":"Automated Landing of UAVs","url":"https://www.academia.edu/Documents/in/Automated_Landing_of_UAVs?f_ri=3413"},{"id":47293,"name":"Fault Tolerant Control","url":"https://www.academia.edu/Documents/in/Fault_Tolerant_Control?f_ri=3413"},{"id":51896,"name":"Adaptive Video Streaming","url":"https://www.academia.edu/Documents/in/Adaptive_Video_Streaming?f_ri=3413"},{"id":52637,"name":"UAV and Aircraft control","url":"https://www.academia.edu/Documents/in/UAV_and_Aircraft_control?f_ri=3413"},{"id":53361,"name":"Computer Networking and Telecommunication","url":"https://www.academia.edu/Documents/in/Computer_Networking_and_Telecommunication?f_ri=3413"},{"id":59496,"name":"Aerial Photographic Interpretation","url":"https://www.academia.edu/Documents/in/Aerial_Photographic_Interpretation?f_ri=3413"},{"id":60189,"name":"Video Streaming","url":"https://www.academia.edu/Documents/in/Video_Streaming?f_ri=3413"},{"id":60798,"name":"Surveillance, personal data, social sorting, privacy, camera surveillance, identification systems, internet surveillance, biometrics","url":"https://www.academia.edu/Documents/in/Surveillance_personal_data_social_sorting_privacy_camera_surveillance_identification_systems_i?f_ri=3413"},{"id":62386,"name":"Avionics","url":"https://www.academia.edu/Documents/in/Avionics?f_ri=3413"},{"id":65305,"name":"Vehicle Collision Avoidance","url":"https://www.academia.edu/Documents/in/Vehicle_Collision_Avoidance?f_ri=3413"},{"id":65430,"name":"Cyber Physical Systems","url":"https://www.academia.edu/Documents/in/Cyber_Physical_Systems?f_ri=3413"},{"id":66379,"name":"Automation","url":"https://www.academia.edu/Documents/in/Automation?f_ri=3413"},{"id":68792,"name":"Sensoriamento Remoto Satelites Monitoramento","url":"https://www.academia.edu/Documents/in/Sensoriamento_Remoto_Satelites_Monitoramento?f_ri=3413"},{"id":70000,"name":"Condition monitoring and fault diagnosis of electric machinery","url":"https://www.academia.edu/Documents/in/Condition_monitoring_and_fault_diagnosis_of_electric_machinery?f_ri=3413"},{"id":74789,"name":"Electronic Records Management","url":"https://www.academia.edu/Documents/in/Electronic_Records_Management?f_ri=3413"},{"id":78563,"name":"Aerial Photogrammetry","url":"https://www.academia.edu/Documents/in/Aerial_Photogrammetry?f_ri=3413"},{"id":79114,"name":"Vision Based Navigation","url":"https://www.academia.edu/Documents/in/Vision_Based_Navigation?f_ri=3413"},{"id":80473,"name":"Sensor networks","url":"https://www.academia.edu/Documents/in/Sensor_networks?f_ri=3413"},{"id":80870,"name":"Parallel \u0026 Distributed Computing","url":"https://www.academia.edu/Documents/in/Parallel_and_Distributed_Computing?f_ri=3413"},{"id":94214,"name":"Telemetry","url":"https://www.academia.edu/Documents/in/Telemetry?f_ri=3413"},{"id":94940,"name":"Electronics and Instrumentation","url":"https://www.academia.edu/Documents/in/Electronics_and_Instrumentation?f_ri=3413"},{"id":96822,"name":"Integrated Modular Avionics","url":"https://www.academia.edu/Documents/in/Integrated_Modular_Avionics?f_ri=3413"},{"id":97807,"name":"Electronic Instrumentation","url":"https://www.academia.edu/Documents/in/Electronic_Instrumentation?f_ri=3413"},{"id":99615,"name":"Reconfigurable Hardware","url":"https://www.academia.edu/Documents/in/Reconfigurable_Hardware?f_ri=3413"},{"id":105089,"name":"Micro Aerial Vehicles","url":"https://www.academia.edu/Documents/in/Micro_Aerial_Vehicles?f_ri=3413"},{"id":107898,"name":"SLAM","url":"https://www.academia.edu/Documents/in/SLAM?f_ri=3413"},{"id":115676,"name":"Cyber Security","url":"https://www.academia.edu/Documents/in/Cyber_Security?f_ri=3413"},{"id":117101,"name":"Fault diagnosis","url":"https://www.academia.edu/Documents/in/Fault_diagnosis?f_ri=3413"},{"id":123217,"name":"UAVs","url":"https://www.academia.edu/Documents/in/UAVs?f_ri=3413"},{"id":123538,"name":"quad rotor thesis UAV robotics control","url":"https://www.academia.edu/Documents/in/quad_rotor_thesis_UAV_robotics_control?f_ri=3413"},{"id":133350,"name":"Avionics Engineering","url":"https://www.academia.edu/Documents/in/Avionics_Engineering?f_ri=3413"},{"id":134210,"name":"Streaming","url":"https://www.academia.edu/Documents/in/Streaming?f_ri=3413"},{"id":143084,"name":"Collision Avoidance","url":"https://www.academia.edu/Documents/in/Collision_Avoidance?f_ri=3413"},{"id":143110,"name":"Self-Maintenance","url":"https://www.academia.edu/Documents/in/Self-Maintenance?f_ri=3413"},{"id":154978,"name":" Satellite Remote Sensing \u0026 Image Processing","url":"https://www.academia.edu/Documents/in/_Satellite_Remote_Sensing_and_Image_Processing?f_ri=3413"},{"id":167206,"name":"UAV systems","url":"https://www.academia.edu/Documents/in/UAV_systems?f_ri=3413"},{"id":176046,"name":"Display Technology","url":"https://www.academia.edu/Documents/in/Display_Technology?f_ri=3413"},{"id":182927,"name":"Avionics Electronics","url":"https://www.academia.edu/Documents/in/Avionics_Electronics?f_ri=3413"},{"id":189027,"name":"Unmanned Aerial Vehicle (UAV)","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicle_UAV_?f_ri=3413"},{"id":199538,"name":"Aircraft Maintenance","url":"https://www.academia.edu/Documents/in/Aircraft_Maintenance?f_ri=3413"},{"id":203343,"name":"Teleoperated Robots","url":"https://www.academia.edu/Documents/in/Teleoperated_Robots?f_ri=3413"},{"id":209205,"name":"Wireless telemetry","url":"https://www.academia.edu/Documents/in/Wireless_telemetry?f_ri=3413"},{"id":236258,"name":"Mobile Robot Navigation","url":"https://www.academia.edu/Documents/in/Mobile_Robot_Navigation?f_ri=3413"},{"id":247058,"name":"Aerospace engineering pertaining to aircraft design and development","url":"https://www.academia.edu/Documents/in/Aerospace_engineering_pertaining_to_aircraft_design_and_development?f_ri=3413"},{"id":255160,"name":"(nano \u0026 Micro Electronics) \u0026(software Programing)","url":"https://www.academia.edu/Documents/in/_nano_and_Micro_Electronics_and_software_Programing_?f_ri=3413"},{"id":255822,"name":"Electronics Engineering","url":"https://www.academia.edu/Documents/in/Electronics_Engineering?f_ri=3413"},{"id":282007,"name":"Avionics, UAV, Electronics","url":"https://www.academia.edu/Documents/in/Avionics_UAV_Electronics?f_ri=3413"},{"id":311746,"name":"Applied Electronics \u0026 instrumentation Engineering","url":"https://www.academia.edu/Documents/in/Applied_Electronics_and_instrumentation_Engineering?f_ri=3413"},{"id":317049,"name":"Sensoriamento Remoto","url":"https://www.academia.edu/Documents/in/Sensoriamento_Remoto?f_ri=3413"},{"id":321194,"name":"Obstacle Avoidance","url":"https://www.academia.edu/Documents/in/Obstacle_Avoidance?f_ri=3413"},{"id":323624,"name":"satellite ground control station (MCC)","url":"https://www.academia.edu/Documents/in/satellite_ground_control_station_MCC_?f_ri=3413"},{"id":329707,"name":"Drones","url":"https://www.academia.edu/Documents/in/Drones?f_ri=3413"},{"id":337810,"name":"Mecatronics and Robotics","url":"https://www.academia.edu/Documents/in/Mecatronics_and_Robotics?f_ri=3413"},{"id":337972,"name":"Ground Control Station for Uav","url":"https://www.academia.edu/Documents/in/Ground_Control_Station_for_Uav?f_ri=3413"},{"id":338410,"name":"UAVs for Mapping","url":"https://www.academia.edu/Documents/in/UAVs_for_Mapping?f_ri=3413"},{"id":347279,"name":"UAV for Photogrammetry","url":"https://www.academia.edu/Documents/in/UAV_for_Photogrammetry?f_ri=3413"},{"id":397597,"name":"control of VTOL-UAVs(quad copters)","url":"https://www.academia.edu/Documents/in/control_of_VTOL-UAVs_quad_copters_?f_ri=3413"},{"id":399714,"name":"Uav Swarms","url":"https://www.academia.edu/Documents/in/Uav_Swarms?f_ri=3413"},{"id":403833,"name":"Multimidia","url":"https://www.academia.edu/Documents/in/Multimidia?f_ri=3413"},{"id":428507,"name":"Aerospace Avionics","url":"https://www.academia.edu/Documents/in/Aerospace_Avionics?f_ri=3413"},{"id":428785,"name":"Situational Analysis","url":"https://www.academia.edu/Documents/in/Situational_Analysis?f_ri=3413"},{"id":431014,"name":"Unmanned Aerial Vehicles, Robotics, Electronic Warfare Systems","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicles_Robotics_Electronic_Warfare_Systems?f_ri=3413"},{"id":431986,"name":"Machine Fault Diagnostics","url":"https://www.academia.edu/Documents/in/Machine_Fault_Diagnostics?f_ri=3413"},{"id":437662,"name":"Electronics instrumentation \u0026 control","url":"https://www.academia.edu/Documents/in/Electronics_instrumentation_and_control?f_ri=3413"},{"id":440638,"name":"Multimídia","url":"https://www.academia.edu/Documents/in/Multim%C3%ADdia?f_ri=3413"},{"id":444501,"name":"Telemetry and Telecontrol","url":"https://www.academia.edu/Documents/in/Telemetry_and_Telecontrol?f_ri=3413"},{"id":467572,"name":"Uav Design","url":"https://www.academia.edu/Documents/in/Uav_Design?f_ri=3413"},{"id":475616,"name":"Reconaissance","url":"https://www.academia.edu/Documents/in/Reconaissance?f_ri=3413"},{"id":479632,"name":"UAV STABILITY AND CONTROL","url":"https://www.academia.edu/Documents/in/UAV_STABILITY_AND_CONTROL?f_ri=3413"},{"id":485701,"name":"Aerial Reconnaissance","url":"https://www.academia.edu/Documents/in/Aerial_Reconnaissance?f_ri=3413"},{"id":546158,"name":"Control Reconfiguration","url":"https://www.academia.edu/Documents/in/Control_Reconfiguration?f_ri=3413"},{"id":550207,"name":"Teleoperation Robot","url":"https://www.academia.edu/Documents/in/Teleoperation_Robot?f_ri=3413"},{"id":554597,"name":"Electronics instrumentation","url":"https://www.academia.edu/Documents/in/Electronics_instrumentation?f_ri=3413"},{"id":586721,"name":"Avionics Systems","url":"https://www.academia.edu/Documents/in/Avionics_Systems?f_ri=3413"},{"id":591172,"name":"Visual SLAM for mobile robots","url":"https://www.academia.edu/Documents/in/Visual_SLAM_for_mobile_robots?f_ri=3413"},{"id":607425,"name":"Design of Autonoums UAV","url":"https://www.academia.edu/Documents/in/Design_of_Autonoums_UAV?f_ri=3413"},{"id":612437,"name":"Drone","url":"https://www.academia.edu/Documents/in/Drone?f_ri=3413"},{"id":617030,"name":"Satellite Telemetry","url":"https://www.academia.edu/Documents/in/Satellite_Telemetry?f_ri=3413"},{"id":655235,"name":"Aerospace And Avionics Engineering","url":"https://www.academia.edu/Documents/in/Aerospace_And_Avionics_Engineering?f_ri=3413"},{"id":713183,"name":"Solar Powered Unmanned Aerial Vehicle","url":"https://www.academia.edu/Documents/in/Solar_Powered_Unmanned_Aerial_Vehicle?f_ri=3413"},{"id":729454,"name":"Avionics Navigation Systems","url":"https://www.academia.edu/Documents/in/Avionics_Navigation_Systems?f_ri=3413"},{"id":772815,"name":"Electronic \u0026 Informatic Engineering","url":"https://www.academia.edu/Documents/in/Electronic_and_Informatic_Engineering?f_ri=3413"},{"id":780359,"name":"Radio Telemetry","url":"https://www.academia.edu/Documents/in/Radio_Telemetry?f_ri=3413"},{"id":786652,"name":"Visual odometry, SLAM, obstacle detection","url":"https://www.academia.edu/Documents/in/Visual_odometry_SLAM_obstacle_detection?f_ri=3413"},{"id":824793,"name":"Ingeniería en Electrónica y Telecomunicaciones","url":"https://www.academia.edu/Documents/in/Ingenieria_en_Electronica_y_Telecomunicaciones?f_ri=3413"},{"id":848799,"name":"Electronics and Instrumentation Engineering","url":"https://www.academia.edu/Documents/in/Electronics_and_Instrumentation_Engineering?f_ri=3413"},{"id":874893,"name":"Aerial Imagery","url":"https://www.academia.edu/Documents/in/Aerial_Imagery?f_ri=3413"},{"id":922055,"name":"Electronics and Communications Engineering","url":"https://www.academia.edu/Documents/in/Electronics_and_Communications_Engineering?f_ri=3413"},{"id":931932,"name":"Distributed Information Systems","url":"https://www.academia.edu/Documents/in/Distributed_Information_Systems?f_ri=3413"},{"id":965291,"name":"Micro Air Vehicles UAV","url":"https://www.academia.edu/Documents/in/Micro_Air_Vehicles_UAV?f_ri=3413"},{"id":985636,"name":"Micro Unmanned Aerial Vehicle","url":"https://www.academia.edu/Documents/in/Micro_Unmanned_Aerial_Vehicle?f_ri=3413"},{"id":1009190,"name":"Sensores Remotos","url":"https://www.academia.edu/Documents/in/Sensores_Remotos?f_ri=3413"},{"id":1135324,"name":"Instrumentacion electronica","url":"https://www.academia.edu/Documents/in/Instrumentacion_electronica?f_ri=3413"},{"id":1227761,"name":"FANET ROUTING","url":"https://www.academia.edu/Documents/in/FANET_ROUTING?f_ri=3413"},{"id":1233135,"name":"Satellite Ground Station","url":"https://www.academia.edu/Documents/in/Satellite_Ground_Station?f_ri=3413"},{"id":1254053,"name":"Light Commercial Vehicle Navigation Systems","url":"https://www.academia.edu/Documents/in/Light_Commercial_Vehicle_Navigation_Systems?f_ri=3413"},{"id":1256407,"name":"Unnamed Aerial Vehicles","url":"https://www.academia.edu/Documents/in/Unnamed_Aerial_Vehicles?f_ri=3413"},{"id":1303555,"name":"Unmanned Aerial Vehicle","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicle?f_ri=3413"},{"id":1398458,"name":"FANETs","url":"https://www.academia.edu/Documents/in/FANETs?f_ri=3413"},{"id":1435992,"name":"Flying Ad Hoc Networks (FANETs)","url":"https://www.academia.edu/Documents/in/Flying_Ad_Hoc_Networks_FANETs_?f_ri=3413"},{"id":1684103,"name":"\tUnmanned Aerial Vehicles (UAVs) Guidance and Technologies.","url":"https://www.academia.edu/Documents/in/_Unmanned_Aerial_Vehicles_UAVs_Guidance_and_Technologies?f_ri=3413"},{"id":1718421,"name":"Unammed Aerial Vehicles","url":"https://www.academia.edu/Documents/in/Unammed_Aerial_Vehicles?f_ri=3413"},{"id":1751801,"name":"System Reconfiguration using Artificial Intelligence","url":"https://www.academia.edu/Documents/in/System_Reconfiguration_using_Artificial_Intelligence?f_ri=3413"},{"id":1800329,"name":"Ground Station","url":"https://www.academia.edu/Documents/in/Ground_Station?f_ri=3413"},{"id":1851077,"name":"Aircraft Instrument","url":"https://www.academia.edu/Documents/in/Aircraft_Instrument?f_ri=3413"},{"id":2477283,"name":"Unmanned Aerial Vehicle (DRONE","url":"https://www.academia.edu/Documents/in/Unmanned_Aerial_Vehicle_DRONE?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_36656466" data-work_id="36656466" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/36656466/Translating_Videos_to_Commands_for_Robotic_Manipulation_with_Deep_Recurrent_Neural_Networks">Translating Videos to Commands for Robotic Manipulation with Deep Recurrent Neural Networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We present a new method to translate videos to commands for robotic manipulation using Deep Recurrent Neural Networks (RNN). Our framework first extracts deep features from the input video frames with a deep Convolutional Neural Networks... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_36656466" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We present a new method to translate videos to commands for robotic manipulation using Deep Recurrent Neural Networks (RNN). Our framework first extracts deep features from the input video frames with a deep Convolutional Neural Networks (CNN). Two RNN layers with an encoder-decoder architecture are then used to encode the visual features and sequentially generate the output words as the command. We demonstrate that the translation accuracy can be improved by allowing a smooth transaction between two RNN layers and using the state-of-the-art feature extractor. The experimental results on our new challenging dataset show that our approach outperforms recent methods by a fair margin. Furthermore, we combine the proposed translation module with the vision and planning system to let a robot perform various manipulation tasks. Finally, we demonstrate the effectiveness of our framework on a full-size humanoid robot WALK-MAN.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/36656466" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="862d74aac5343f5e6241a483e1235907" rel="nofollow" data-download="{&quot;attachment_id&quot;:56589751,&quot;asset_id&quot;:36656466,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/56589751/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2613253" href="https://ucl.academia.edu/DimitriosKanoulas">Dimitrios Kanoulas</a><script data-card-contents-for-user="2613253" type="text/json">{"id":2613253,"first_name":"Dimitrios","last_name":"Kanoulas","domain_name":"ucl","page_name":"DimitriosKanoulas","display_name":"Dimitrios Kanoulas","profile_url":"https://ucl.academia.edu/DimitriosKanoulas?f_ri=3413","photo":"https://0.academia-photos.com/2613253/826405/37226025/s65_dimitrios.kanoulas.jpg"}</script></span></span></li><li class="js-paper-rank-work_36656466 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="36656466"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 36656466, container: ".js-paper-rank-work_36656466", }); });</script></li><li class="js-percentile-work_36656466 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36656466; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_36656466"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_36656466 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="36656466"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36656466; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36656466]").text(description); $(".js-view-count-work_36656466").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_36656466").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="36656466"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4893" href="https://www.academia.edu/Documents/in/Humanoid_Robotics">Humanoid Robotics</a>,&nbsp;<script data-card-contents-for-ri="4893" type="text/json">{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=36656466]'), work: {"id":36656466,"title":"Translating Videos to Commands for Robotic Manipulation with Deep Recurrent Neural Networks","created_at":"2018-05-17T06:29:40.459-07:00","url":"https://www.academia.edu/36656466/Translating_Videos_to_Commands_for_Robotic_Manipulation_with_Deep_Recurrent_Neural_Networks?f_ri=3413","dom_id":"work_36656466","summary":"We present a new method to translate videos to commands for robotic manipulation using Deep Recurrent Neural Networks (RNN). Our framework first extracts deep features from the input video frames with a deep Convolutional Neural Networks (CNN). Two RNN layers with an encoder-decoder architecture are then used to encode the visual features and sequentially generate the output words as the command. We demonstrate that the translation accuracy can be improved by allowing a smooth transaction between two RNN layers and using the state-of-the-art feature extractor. The experimental results on our new challenging dataset show that our approach outperforms recent methods by a fair margin. Furthermore, we combine the proposed translation module with the vision and planning system to let a robot perform various manipulation tasks. Finally, we demonstrate the effectiveness of our framework on a full-size humanoid robot WALK-MAN.","downloadable_attachments":[{"id":56589751,"asset_id":36656466,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2613253,"first_name":"Dimitrios","last_name":"Kanoulas","domain_name":"ucl","page_name":"DimitriosKanoulas","display_name":"Dimitrios Kanoulas","profile_url":"https://ucl.academia.edu/DimitriosKanoulas?f_ri=3413","photo":"https://0.academia-photos.com/2613253/826405/37226025/s65_dimitrios.kanoulas.jpg"}],"research_interests":[{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":4893,"name":"Humanoid Robotics","url":"https://www.academia.edu/Documents/in/Humanoid_Robotics?f_ri=3413","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=3413","nofollow":false},{"id":97481,"name":"Manipulation","url":"https://www.academia.edu/Documents/in/Manipulation?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1783551" data-work_id="1783551" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1783551/Design_of_Algorithms_of_Robot_Vision_Using_Conformal_Geometric_Algebra">Design of Algorithms of Robot Vision Using Conformal Geometric Algebra</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1783551" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="883bf0e6f09e602e875e36a7e11a4613" rel="nofollow" data-download="{&quot;attachment_id&quot;:24151065,&quot;asset_id&quot;:1783551,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/24151065/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2104528" href="https://itesm.academia.edu/LuisEduardoFalc%C3%B3n">Luis Eduardo Falcón</a><script data-card-contents-for-user="2104528" type="text/json">{"id":2104528,"first_name":"Luis Eduardo","last_name":"Falcón","domain_name":"itesm","page_name":"LuisEduardoFalcón","display_name":"Luis Eduardo Falcón","profile_url":"https://itesm.academia.edu/LuisEduardoFalc%C3%B3n?f_ri=3413","photo":"https://0.academia-photos.com/2104528/686263/3795436/s65_luis_eduardo.falc_n.png"}</script></span></span></li><li class="js-paper-rank-work_1783551 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1783551"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1783551, container: ".js-paper-rank-work_1783551", }); });</script></li><li class="js-percentile-work_1783551 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1783551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1783551"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1783551 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1783551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1783551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1783551]").text(description); $(".js-view-count-work_1783551").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1783551").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1783551"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="32702" href="https://www.academia.edu/Documents/in/Design_and_Analysis_of_Algorithms">Design and Analysis of Algorithms</a>,&nbsp;<script data-card-contents-for-ri="32702" type="text/json">{"id":32702,"name":"Design and Analysis of Algorithms","url":"https://www.academia.edu/Documents/in/Design_and_Analysis_of_Algorithms?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="77562" href="https://www.academia.edu/Documents/in/Geometric_Algebra">Geometric Algebra</a><script data-card-contents-for-ri="77562" type="text/json">{"id":77562,"name":"Geometric Algebra","url":"https://www.academia.edu/Documents/in/Geometric_Algebra?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1783551]'), work: {"id":1783551,"title":"Design of Algorithms of Robot Vision Using Conformal Geometric Algebra","created_at":"2012-07-12T02:44:29.881-07:00","url":"https://www.academia.edu/1783551/Design_of_Algorithms_of_Robot_Vision_Using_Conformal_Geometric_Algebra?f_ri=3413","dom_id":"work_1783551","summary":null,"downloadable_attachments":[{"id":24151065,"asset_id":1783551,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2104528,"first_name":"Luis Eduardo","last_name":"Falcón","domain_name":"itesm","page_name":"LuisEduardoFalcón","display_name":"Luis Eduardo Falcón","profile_url":"https://itesm.academia.edu/LuisEduardoFalc%C3%B3n?f_ri=3413","photo":"https://0.academia-photos.com/2104528/686263/3795436/s65_luis_eduardo.falc_n.png"}],"research_interests":[{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":32702,"name":"Design and Analysis of Algorithms","url":"https://www.academia.edu/Documents/in/Design_and_Analysis_of_Algorithms?f_ri=3413","nofollow":false},{"id":77562,"name":"Geometric Algebra","url":"https://www.academia.edu/Documents/in/Geometric_Algebra?f_ri=3413","nofollow":false},{"id":148959,"name":"Stereo Vision","url":"https://www.academia.edu/Documents/in/Stereo_Vision?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_50731343" data-work_id="50731343" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/50731343/CONTEXT_IN_ROBOTIC_VISION_Control_for_real_time_adaptation">CONTEXT IN ROBOTIC VISION Control for real-time adaptation</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/50731343" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3e310c9381bbcdcf686bf9d145d71b28" rel="nofollow" data-download="{&quot;attachment_id&quot;:68604209,&quot;asset_id&quot;:50731343,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/68604209/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="35474739" href="https://independent.academia.edu/VirginioCantoni">Virginio Cantoni</a><script data-card-contents-for-user="35474739" type="text/json">{"id":35474739,"first_name":"Virginio","last_name":"Cantoni","domain_name":"independent","page_name":"VirginioCantoni","display_name":"Virginio Cantoni","profile_url":"https://independent.academia.edu/VirginioCantoni?f_ri=3413","photo":"https://0.academia-photos.com/35474739/34849201/39676455/s65_virginio.cantoni.jpg"}</script></span></span></li><li class="js-paper-rank-work_50731343 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="50731343"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 50731343, container: ".js-paper-rank-work_50731343", }); });</script></li><li class="js-percentile-work_50731343 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 50731343; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_50731343"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_50731343 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="50731343"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 50731343; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=50731343]").text(description); $(".js-view-count-work_50731343").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_50731343").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="50731343"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">11</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>,&nbsp;<script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9212" href="https://www.academia.edu/Documents/in/A_Priori_Knowledge">A Priori Knowledge</a>,&nbsp;<script data-card-contents-for-ri="9212" type="text/json">{"id":9212,"name":"A Priori Knowledge","url":"https://www.academia.edu/Documents/in/A_Priori_Knowledge?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="73673" href="https://www.academia.edu/Documents/in/Video_Surveillance">Video Surveillance</a><script data-card-contents-for-ri="73673" type="text/json">{"id":73673,"name":"Video Surveillance","url":"https://www.academia.edu/Documents/in/Video_Surveillance?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=50731343]'), work: {"id":50731343,"title":"CONTEXT IN ROBOTIC VISION Control for real-time adaptation","created_at":"2021-08-04T12:04:11.490-07:00","url":"https://www.academia.edu/50731343/CONTEXT_IN_ROBOTIC_VISION_Control_for_real_time_adaptation?f_ri=3413","dom_id":"work_50731343","summary":null,"downloadable_attachments":[{"id":68604209,"asset_id":50731343,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":35474739,"first_name":"Virginio","last_name":"Cantoni","domain_name":"independent","page_name":"VirginioCantoni","display_name":"Virginio Cantoni","profile_url":"https://independent.academia.edu/VirginioCantoni?f_ri=3413","photo":"https://0.academia-photos.com/35474739/34849201/39676455/s65_virginio.cantoni.jpg"}],"research_interests":[{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":9212,"name":"A Priori Knowledge","url":"https://www.academia.edu/Documents/in/A_Priori_Knowledge?f_ri=3413","nofollow":false},{"id":73673,"name":"Video Surveillance","url":"https://www.academia.edu/Documents/in/Video_Surveillance?f_ri=3413","nofollow":false},{"id":154213,"name":"Background Subtraction","url":"https://www.academia.edu/Documents/in/Background_Subtraction?f_ri=3413"},{"id":229390,"name":"Real Time","url":"https://www.academia.edu/Documents/in/Real_Time?f_ri=3413"},{"id":264064,"name":"Knowledge Extraction","url":"https://www.academia.edu/Documents/in/Knowledge_Extraction?f_ri=3413"},{"id":412636,"name":"Theoretical Framework","url":"https://www.academia.edu/Documents/in/Theoretical_Framework?f_ri=3413"},{"id":673938,"name":"System informatics and control","url":"https://www.academia.edu/Documents/in/System_informatics_and_control?f_ri=3413"},{"id":753483,"name":"Bayesian Confirmation Theory","url":"https://www.academia.edu/Documents/in/Bayesian_Confirmation_Theory?f_ri=3413"},{"id":2699021,"name":"Bayesian theory","url":"https://www.academia.edu/Documents/in/Bayesian_theory?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_6984608" data-work_id="6984608" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/6984608/Design_of_Kinematic_Controller_for_Real_time_Vision_Guided_Robot_Manipulators">Design of Kinematic Controller for Real-time Vision Guided Robot Manipulators</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This paper discusses the control strategies for robot manipulators to track moving targets based on realtime vision guidance. The work is motivated by some new demands of vision guided robot manipulators in which the workpieces being... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_6984608" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This paper discusses the control strategies for robot manipulators to track moving targets based on realtime vision guidance. The work is motivated by some new demands of vision guided robot manipulators in which the workpieces being manipulated are in complex motion and the widely adopted look-then-move control strategy cannot give satisfactory performance. In order to serve industrial applications, the limited sensing and actuation capabilities have to be considered properly. In our work, a cascade control structure is introduced. The sensor and actuator limits are dealt with by consecutive modules in the controller respectively. In particular, the kinematic visual servoing (KVS) module is discussed in detail. It is a kinematic controller that generates reference trajectory in real-time. Sliding control is used to give a basic Jacobian-based design. Constrained optimal control is applied to address the actuator limits. validation is conducted through simulation and experiment.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/6984608" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="331b7dd1e36fd6ba9d07e2b2cb3e24bd" rel="nofollow" data-download="{&quot;attachment_id&quot;:33650246,&quot;asset_id&quot;:6984608,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/33650246/download_file?st=MTczMjQxMTY2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4895190" href="https://njit.academia.edu/CongWang">Cong Wang</a><script data-card-contents-for-user="4895190" type="text/json">{"id":4895190,"first_name":"Cong","last_name":"Wang","domain_name":"njit","page_name":"CongWang","display_name":"Cong Wang","profile_url":"https://njit.academia.edu/CongWang?f_ri=3413","photo":"https://0.academia-photos.com/4895190/2107889/10796424/s65_cong.wang.jpg"}</script></span></span></li><li class="js-paper-rank-work_6984608 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="6984608"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 6984608, container: ".js-paper-rank-work_6984608", }); });</script></li><li class="js-percentile-work_6984608 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6984608; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_6984608"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_6984608 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="6984608"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6984608; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6984608]").text(description); $(".js-view-count-work_6984608").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_6984608").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="6984608"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>,&nbsp;<script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2200" href="https://www.academia.edu/Documents/in/Optimal_Control">Optimal Control</a>,&nbsp;<script data-card-contents-for-ri="2200" type="text/json">{"id":2200,"name":"Optimal Control","url":"https://www.academia.edu/Documents/in/Optimal_Control?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3413" href="https://www.academia.edu/Documents/in/Robot_Vision">Robot Vision</a>,&nbsp;<script data-card-contents-for-ri="3413" type="text/json">{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="7968" href="https://www.academia.edu/Documents/in/Prediction">Prediction</a><script data-card-contents-for-ri="7968" type="text/json">{"id":7968,"name":"Prediction","url":"https://www.academia.edu/Documents/in/Prediction?f_ri=3413","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=6984608]'), work: {"id":6984608,"title":"Design of Kinematic Controller for Real-time Vision Guided Robot Manipulators","created_at":"2014-05-07T10:41:57.679-07:00","url":"https://www.academia.edu/6984608/Design_of_Kinematic_Controller_for_Real_time_Vision_Guided_Robot_Manipulators?f_ri=3413","dom_id":"work_6984608","summary":"This paper discusses the control strategies for robot manipulators to track moving targets based on realtime vision guidance. The work is motivated by some new demands of vision guided robot manipulators in which the workpieces being manipulated are in complex motion and the widely adopted look-then-move control strategy cannot give satisfactory performance. In order to serve industrial applications, the limited sensing and actuation capabilities have to be considered properly. In our work, a cascade control structure is introduced. The sensor and actuator limits are dealt with by consecutive modules in the controller respectively. In particular, the kinematic visual servoing (KVS) module is discussed in detail. It is a kinematic controller that generates reference trajectory in real-time. Sliding control is used to give a basic Jacobian-based design. Constrained optimal control is applied to address the actuator limits. validation is conducted through simulation and experiment.","downloadable_attachments":[{"id":33650246,"asset_id":6984608,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4895190,"first_name":"Cong","last_name":"Wang","domain_name":"njit","page_name":"CongWang","display_name":"Cong Wang","profile_url":"https://njit.academia.edu/CongWang?f_ri=3413","photo":"https://0.academia-photos.com/4895190/2107889/10796424/s65_cong.wang.jpg"}],"research_interests":[{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=3413","nofollow":false},{"id":2200,"name":"Optimal Control","url":"https://www.academia.edu/Documents/in/Optimal_Control?f_ri=3413","nofollow":false},{"id":3413,"name":"Robot Vision","url":"https://www.academia.edu/Documents/in/Robot_Vision?f_ri=3413","nofollow":false},{"id":7968,"name":"Prediction","url":"https://www.academia.edu/Documents/in/Prediction?f_ri=3413","nofollow":false},{"id":10463,"name":"Model Predictive Control (MPC)","url":"https://www.academia.edu/Documents/in/Model_Predictive_Control_MPC_?f_ri=3413"},{"id":14417,"name":"Machine Vision","url":"https://www.academia.edu/Documents/in/Machine_Vision?f_ri=3413"},{"id":15119,"name":"Motion Planning","url":"https://www.academia.edu/Documents/in/Motion_Planning?f_ri=3413"},{"id":90162,"name":"Kinematics","url":"https://www.academia.edu/Documents/in/Kinematics?f_ri=3413"},{"id":983554,"name":"Robot Manipulator","url":"https://www.academia.edu/Documents/in/Robot_Manipulator?f_ri=3413"}]}, }) } })();</script></ul></li></ul></div></div></div><div class="u-taCenter Pagination"><ul class="pagination"><li class="next_page"><a href="/Documents/in/Robot_Vision?after=50%2C6984608" rel="next">Next</a></li><li class="last next"><a href="/Documents/in/Robot_Vision?page=last">Last &raquo;</a></li></ul></div></div><div class="hidden-xs hidden-sm"><div class="u-pl6x"><div style="width: 300px;"><div class="panel panel-flat u-mt7x"><div class="panel-heading u-p5x"><div class="u-tcGrayDark u-taCenter u-fw700 u-textUppercase">Related Topics</div></div><ul class="list-group"><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Autonomous_Robotics">Autonomous Robotics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="4892">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="4892">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Robotics_Computer_Science_">Robotics (Computer Science)</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="471">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="471">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Mobile_Robotics">Mobile Robotics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="2043">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="2043">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Humanoid_Robotics">Humanoid Robotics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="4893">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="4893">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Cognitive_Robotics">Cognitive Robotics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="11136">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="11136">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Robot_Learning">Robot Learning</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="5670">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="5670">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="854">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="854">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="77">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="77">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Robotics_Navigation">Robotics Navigation</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="11988">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="11988">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Multiagent_Robotics">Multiagent Robotics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="2044">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="2044">Following</a></div></li></ul></div></div></div></div></div></div><script>// MIT License // Copyright © 2011 Sebastian Tschan, https://blueimp.net // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. !function(n){"use strict";function d(n,t){var r=(65535&n)+(65535&t);return(n>>16)+(t>>16)+(r>>16)<<16|65535&r}function f(n,t,r,e,o,u){return d((c=d(d(t,n),d(e,u)))<<(f=o)|c>>>32-f,r);var c,f}function l(n,t,r,e,o,u,c){return f(t&r|~t&e,n,t,o,u,c)}function v(n,t,r,e,o,u,c){return f(t&e|r&~e,n,t,o,u,c)}function g(n,t,r,e,o,u,c){return f(t^r^e,n,t,o,u,c)}function m(n,t,r,e,o,u,c){return f(r^(t|~e),n,t,o,u,c)}function i(n,t){var r,e,o,u;n[t>>5]|=128<<t%32,n[14+(t+64>>>9<<4)]=t;for(var c=1732584193,f=-271733879,i=-1732584194,a=271733878,h=0;h<n.length;h+=16)c=l(r=c,e=f,o=i,u=a,n[h],7,-680876936),a=l(a,c,f,i,n[h+1],12,-389564586),i=l(i,a,c,f,n[h+2],17,606105819),f=l(f,i,a,c,n[h+3],22,-1044525330),c=l(c,f,i,a,n[h+4],7,-176418897),a=l(a,c,f,i,n[h+5],12,1200080426),i=l(i,a,c,f,n[h+6],17,-1473231341),f=l(f,i,a,c,n[h+7],22,-45705983),c=l(c,f,i,a,n[h+8],7,1770035416),a=l(a,c,f,i,n[h+9],12,-1958414417),i=l(i,a,c,f,n[h+10],17,-42063),f=l(f,i,a,c,n[h+11],22,-1990404162),c=l(c,f,i,a,n[h+12],7,1804603682),a=l(a,c,f,i,n[h+13],12,-40341101),i=l(i,a,c,f,n[h+14],17,-1502002290),c=v(c,f=l(f,i,a,c,n[h+15],22,1236535329),i,a,n[h+1],5,-165796510),a=v(a,c,f,i,n[h+6],9,-1069501632),i=v(i,a,c,f,n[h+11],14,643717713),f=v(f,i,a,c,n[h],20,-373897302),c=v(c,f,i,a,n[h+5],5,-701558691),a=v(a,c,f,i,n[h+10],9,38016083),i=v(i,a,c,f,n[h+15],14,-660478335),f=v(f,i,a,c,n[h+4],20,-405537848),c=v(c,f,i,a,n[h+9],5,568446438),a=v(a,c,f,i,n[h+14],9,-1019803690),i=v(i,a,c,f,n[h+3],14,-187363961),f=v(f,i,a,c,n[h+8],20,1163531501),c=v(c,f,i,a,n[h+13],5,-1444681467),a=v(a,c,f,i,n[h+2],9,-51403784),i=v(i,a,c,f,n[h+7],14,1735328473),c=g(c,f=v(f,i,a,c,n[h+12],20,-1926607734),i,a,n[h+5],4,-378558),a=g(a,c,f,i,n[h+8],11,-2022574463),i=g(i,a,c,f,n[h+11],16,1839030562),f=g(f,i,a,c,n[h+14],23,-35309556),c=g(c,f,i,a,n[h+1],4,-1530992060),a=g(a,c,f,i,n[h+4],11,1272893353),i=g(i,a,c,f,n[h+7],16,-155497632),f=g(f,i,a,c,n[h+10],23,-1094730640),c=g(c,f,i,a,n[h+13],4,681279174),a=g(a,c,f,i,n[h],11,-358537222),i=g(i,a,c,f,n[h+3],16,-722521979),f=g(f,i,a,c,n[h+6],23,76029189),c=g(c,f,i,a,n[h+9],4,-640364487),a=g(a,c,f,i,n[h+12],11,-421815835),i=g(i,a,c,f,n[h+15],16,530742520),c=m(c,f=g(f,i,a,c,n[h+2],23,-995338651),i,a,n[h],6,-198630844),a=m(a,c,f,i,n[h+7],10,1126891415),i=m(i,a,c,f,n[h+14],15,-1416354905),f=m(f,i,a,c,n[h+5],21,-57434055),c=m(c,f,i,a,n[h+12],6,1700485571),a=m(a,c,f,i,n[h+3],10,-1894986606),i=m(i,a,c,f,n[h+10],15,-1051523),f=m(f,i,a,c,n[h+1],21,-2054922799),c=m(c,f,i,a,n[h+8],6,1873313359),a=m(a,c,f,i,n[h+15],10,-30611744),i=m(i,a,c,f,n[h+6],15,-1560198380),f=m(f,i,a,c,n[h+13],21,1309151649),c=m(c,f,i,a,n[h+4],6,-145523070),a=m(a,c,f,i,n[h+11],10,-1120210379),i=m(i,a,c,f,n[h+2],15,718787259),f=m(f,i,a,c,n[h+9],21,-343485551),c=d(c,r),f=d(f,e),i=d(i,o),a=d(a,u);return[c,f,i,a]}function a(n){for(var t="",r=32*n.length,e=0;e<r;e+=8)t+=String.fromCharCode(n[e>>5]>>>e%32&255);return t}function h(n){var t=[];for(t[(n.length>>2)-1]=void 0,e=0;e<t.length;e+=1)t[e]=0;for(var r=8*n.length,e=0;e<r;e+=8)t[e>>5]|=(255&n.charCodeAt(e/8))<<e%32;return t}function e(n){for(var t,r="0123456789abcdef",e="",o=0;o<n.length;o+=1)t=n.charCodeAt(o),e+=r.charAt(t>>>4&15)+r.charAt(15&t);return e}function r(n){return unescape(encodeURIComponent(n))}function o(n){return a(i(h(t=r(n)),8*t.length));var t}function u(n,t){return function(n,t){var r,e,o=h(n),u=[],c=[];for(u[15]=c[15]=void 0,16<o.length&&(o=i(o,8*n.length)),r=0;r<16;r+=1)u[r]=909522486^o[r],c[r]=1549556828^o[r];return e=i(u.concat(h(t)),512+8*t.length),a(i(c.concat(e),640))}(r(n),r(t))}function t(n,t,r){return t?r?u(t,n):e(u(t,n)):r?o(n):e(o(n))}"function"==typeof define&&define.amd?define(function(){return t}):"object"==typeof module&&module.exports?module.exports=t:n.md5=t}(this);</script><script>window.AbTest = (function() { return { 'ab_test': (uniqueId, test_name, buckets) => { let override = new URLSearchParams(window.location.search).get(`ab_test[${test_name}]`); if ( override ) { return override; } const bucketNames = buckets.map((bucket) => { return typeof bucket === 'string' ? bucket : Object.keys(bucket)[0]; }); const weights = buckets.map((bucket) => { return typeof bucket === 'string' ? 1 : Object.values(bucket)[0]; }); const total = weights.reduce((sum, weight) => sum + weight); const hash = md5(`${uniqueId}${test_name}`); const hashNum = parseInt(hash.slice(-12), 16); let bucketPoint = total * (hashNum % 100000) / 100000; const bucket = bucketNames.find((_, i) => { if (weights[i] > bucketPoint) { return true; } bucketPoint -= weights[i]; return false; }); return bucket; } }; })();</script><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-landing_url="https://www.academia.edu/Documents/in/Robot_Vision" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><script>function onGoogleOneTapEvent(event) { var momentType = event.getMomentType(); var momentReason = null; if (event.isNotDisplayed()) { momentReason = event.getNotDisplayedReason(); } else if (event.isSkippedMoment()) { momentReason = event.getSkippedReason(); } else if (event.isDismissedMoment()) { momentReason = event.getDismissedReason(); } Aedu.arbitraryEvents.write('GoogleOneTapEvent', { moment_type: momentType, moment_reason: momentReason, }); }</script><script>(function() { var auvid = unescape( document.cookie .split(/; ?/) .find((s) => s.startsWith('auvid')) .substring(6)); var bucket = AbTest.ab_test(auvid, 'lo_ri_one_tap_google_sign_on', ['control', 'one_tap_google_sign_on']); if (bucket === 'control') return; var oneTapTag = document.createElement('script') oneTapTag.async = true oneTapTag.defer = true oneTapTag.src = 'https://accounts.google.com/gsi/client' document.body.appendChild(oneTapTag) })();</script></div></div></div> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "758d2237162976d2ab8a648c235e97eb033f9b4c0da1bf9b234d1dd1b9044b16", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Vs8//nqKGf/j/fnwIunh2+eRrHLZx/3aTwiS1qbZOtjwkMKUBssrlIgl3aCM0s+qczt+5ixvXIfLYjLENVd+3w==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/Documents/in/Robot_Vision" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="AiMaCAZRlCm9suUB5QY9fu5okuIodQzfJ2TWROmlwtCkfOdiehCmQtZqwVFLPRMPesJAdt3drYKjDnZWeiuG1w==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10