CINXE.COM
Search results for: equal-channel angular pressing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: equal-channel angular pressing</title> <meta name="description" content="Search results for: equal-channel angular pressing"> <meta name="keywords" content="equal-channel angular pressing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="equal-channel angular pressing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="equal-channel angular pressing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 576</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: equal-channel angular pressing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">576</span> Effect of Hot Equal Channel Angular Pressing Process on Mechanical Properties of Commercial Pure Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ata%20Khalkhkali%20Sharifi">Seyed Ata Khalkhkali Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamhossein%20Majzoubi"> Gholamhossein Majzoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Abroush"> Farhad Abroush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing mechanical properties of pure titanium has been reviewed in this paper by using ECAP process. At the first step of this article, the experimental samples were prepared as mentioned in the standards. Then pure grade 2 Ti was processed via equal-channel angular pressing (ECAp) for 2 passes following route-A at 400°C. After processing, the microstructural evolution, tensile, fatigue, hardness properties and wear behavior were investigated. Finally, the effect of ECAP process on these samples was analyzed. The results showed improvement in strength values with a slight decrease in ductility. The analysis on 30 points within the sample showed hardness increase in each pass. Also, it was concluded that fatigue properties were increased too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing" title="equal-channel angular pressing">equal-channel angular pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20materials%20and%20applications" title=" engineering materials and applications"> engineering materials and applications</a> </p> <a href="https://publications.waset.org/abstracts/4117/effect-of-hot-equal-channel-angular-pressing-process-on-mechanical-properties-of-commercial-pure-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">575</span> Effect of Molybdenum Addition to Aluminum Grain Refined by Titanium Plus Boron on Its Grain Size and Mechanical Characteristics in the Cast and After Pressing by the Equal Channel Angular Pressing Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20O.%20Zaid">A. I. O. Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Attieh"> A. M. Attieh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20Al%20Qawabah"> S. M. A. Al Qawabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum and its alloys solidify in columnar structure with large grain size which tends to reduce their mechanical strength and surface quality. They are, therefore, grain refined by addition of either titanium or titanium plus boron to their melt before solidification. Equal channel angular pressing, ECAP, process is a recent forming method for producing heavy plastic deformation in materials. In this paper, the effect of molybdenum addition to aluminum grain refined by Ti+B on its metallurgical and mechanical characteristics are investigated in the as cast condition and after pressing by the ECAP process. It was found that addition of Mo or Ti+B alone or together to aluminum resulted in grain refining of its microstructure in the as cast condition, as the average grain size was reduced from 139 micron to 46 micron when Mo and Ti+B are added together. Pressing by the ECAP process resulted in further refinement of the microstructure where 32 micron of average grain size was achieved in Al and the Al-Mo microalloy. Regarding the mechanical strength, addition of Mo or Ti+B alone to Al resulted in deterioration of its mechanical behavior but resulted in enhancement of its mechanical behavior when added together, increase of 10% in flow stress was achieved at 20% strain. However, pressing by ECAP addition of Mo or Ti+B alone to Al resulted in enhancement of its mechanical strength but reduced its strength when added together. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECAP" title="ECAP">ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=cast" title=" cast"> cast</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characteristics" title=" mechanical characteristics"> mechanical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=Mo%20grain%20refiner" title=" Mo grain refiner "> Mo grain refiner </a> </p> <a href="https://publications.waset.org/abstracts/9994/effect-of-molybdenum-addition-to-aluminum-grain-refined-by-titanium-plus-boron-on-its-grain-size-and-mechanical-characteristics-in-the-cast-and-after-pressing-by-the-equal-channel-angular-pressing-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20G.%20F.%20Siqueira">P. G. F. Siqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20S.%20Almeida"> N. G. S. Almeida</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20A.%20Stemler"> P. M. A. Stemler</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Cetlin"> P. R. Cetlin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20P.%20Aguilar"> M. T. P. Aguilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECAP" title="ECAP">ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20design" title=" mechanical design"> mechanical design</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=SPD" title=" SPD"> SPD</a> </p> <a href="https://publications.waset.org/abstracts/112287/the-design-of-a-die-for-the-processing-of-aluminum-through-equal-channel-angular-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">573</span> Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20H.%20El%20Garaihy">W. H. El Garaihy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nassef"> A. Nassef</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Samy"> S. Samy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Mg-Si%20alloy" title="Al-Mg-Si alloy">Al-Mg-Si alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=equal%20channel%20angular%20pressing" title=" equal channel angular pressing"> equal channel angular pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation "> severe plastic deformation </a> </p> <a href="https://publications.waset.org/abstracts/23250/enhancement-of-mechanical-properties-for-al-mg-si-alloy-using-equal-channel-angular-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">572</span> Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Al-Mufadi">F. Al-Mufadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Djavanroodi"> F. Djavanroodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPD" title="SPD">SPD</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20Al" title=" pure Al"> pure Al</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/10280/finite-element-modeling-and-mechanical-properties-of-aluminum-proceed-by-equal-channel-angular-pressing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">571</span> Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Al-Mufadi">Fahad Al-Mufadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Djavanroodi"> F. Djavanroodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultra-fine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20 mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPD" title="SPD">SPD</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20cu" title=" pure cu"> pure cu</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20property" title=" impact property"> impact property</a> </p> <a href="https://publications.waset.org/abstracts/3553/effect-of-equal-channel-angular-pressing-process-on-impact-property-of-pure-copper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">570</span> Numerical Investigation of Material Behavior During Non-Equal Channel Multi Angular Extrusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20El-Asfoury">Mohamed S. El-Asfoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdel-Moneim"> Ahmed Abdel-Moneim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20N.%20A.%20Nasr"> Mohamed N. A. Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study uses finite element modeling to investigate and analyze a modified form of the from the conventional equal channel multi-angular pressing (ECMAP), using non-equal channels, on the workpiece material plastic deformation. The modified process non-equal channel multi-angular extrusion (NECMAE) is modeled using two-dimensional plane strain finite element model built using the commercial software ABAQUS. The workpiece material used is pure aluminum. The model was first validated by comparing its results to analytical solutions for single-pass equal channel angular extrusion (ECAP), as well as previously published data. After that, the model was used to examine the effects of different % of reductions of the area (for the second stage) on material plastic deformation, corner gap, and required the load. Three levels of reduction in the area were modeled; 10%, 30%, and 50%, and compared to single-pass and double-pass ECAP. Cases with a higher reduction in the area were found to have smaller corner gaps, higher and much uniform plastic deformation, as well as higher required loads. The current results are mainly attributed to the back pressure effects exerted by the second stage, as well as strain hardening effects experienced during the first stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-equal%20channel%20angular%20extrusion" title="non-equal channel angular extrusion">non-equal channel angular extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-pass" title=" multi-pass"> multi-pass</a>, <a href="https://publications.waset.org/abstracts/search?q=sever%20plastic%20deformation" title=" sever plastic deformation"> sever plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20pressure" title=" back pressure"> back pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Modelling%20%28FEM%29" title=" Finite Element Modelling (FEM)"> Finite Element Modelling (FEM)</a> </p> <a href="https://publications.waset.org/abstracts/15028/numerical-investigation-of-material-behavior-during-non-equal-channel-multi-angular-extrusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">569</span> Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Srion">A. Srion</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Thepsuwan"> W. Thepsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Monmaturapoj"> N. Monmaturapoj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two Lithium disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through glass melting method and then fabricated into dental crowns via hot pressing at 850˚C and 900˚C in order to study the effect of the pressing temperatures on theirs phase formation and microstructure. The factor such as heat treatment temperature (as-cast glass, 600˚C and 700˚C) of the glass ceramics used to press was also investigated the effect of an initial microstructure before pressing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine phase formation and microstructure of the samples, respectively. X-ray diffraction result shows that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F, SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formation but have less effect during pressing. Scanning electron microscopy analysis showed microstructure of lath-like of Li2Si2O5 in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by hot pressing and compiled microstructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20disilicate" title="lithium disilicate">lithium disilicate</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20pressing" title=" hot pressing"> hot pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20crown" title=" dental crown"> dental crown</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/17453/preparation-and-fabrication-of-lithium-disilicate-glass-ceramic-as-dental-crowns-via-hot-pressing-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">568</span> Modified Form of Margin Based Angular Softmax Loss for Speaker Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamshaid%20ul%20Rahman">Jamshaid ul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhter%20Ali"> Akhter Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Manzoor"> Adnan Manzoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20parameter" title="additive parameter">additive parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20softmax" title=" angular softmax"> angular softmax</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20verification" title=" speaker verification"> speaker verification</a>, <a href="https://publications.waset.org/abstracts/search?q=PLDA" title=" PLDA"> PLDA</a> </p> <a href="https://publications.waset.org/abstracts/152915/modified-form-of-margin-based-angular-softmax-loss-for-speaker-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Equal Channel Angular Pressing of Al1050 Sheets: Experimental and Finite Element Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Keshtiban">P. M. Keshtiban</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zdshakoyan"> M. Zdshakoyan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Faragi"> G. Faragi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different severe plastic deformation (SPD) methods are the most successful ways to build nano-structural materials from coarse grain samples without changing the cross-sectional area. One of the most widely used methods in the SPD process is equal channel angler pressing (ECAP). In this paper, ECAP process on Al1050 sheets was evaluated at room temperature by both experiments and finite element method. Since, one of the main objectives of SPD processes is to achieve high equivalent plastic strain (PEEQ) in one cycle, the values of PEEQ obtained by finite element simulation. Also, force-displacement curve achieved by FEM. To study the changes of mechanical properties, micro-hardness tests were conducted on samples and improvement in the mechanical properties were investigated. Results show that there is the good proportion between FEM, theory and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AL1050" title="AL1050">AL1050</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a> </p> <a href="https://publications.waset.org/abstracts/37584/equal-channel-angular-pressing-of-al1050-sheets-experimental-and-finite-element-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> Influence of Angular Position of Unbalanced Force on Crack Breathing Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roselyn%20Zaman">Roselyn Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobarak%20Hossain"> Mobarak Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new mathematical model is developed to study crack breathing behavior considering effect of angular position of unbalanced force at different crack locations. Crack breathing behavior has been determined using effectual bending angle by studying the transient change of the crack area. Different crack breathing behavior of the unbalanced shaft has been observed for different combination of angular position of unbalanced force with crack location except crack locations 0.3L and 0.8335L, where L is the total length of the shaft, where unbalanced shaft behave completely like the balanced shaft. Based on different combination of angular position of unbalanced force with crack location, the stiffness of unbalanced shaft can be divided into three regions. An unbalanced shaft is overall stiffer than a balanced shaft when angular position of unbalance force is between 90° to 270° and crack located between 0.3L and 0.8335L, and it is overall flexible when the crack located in outside this crack region. On the other hand, it is overall flexible when angular position of unbalanced force is between 0° to 90° or 270° to 360° and crack located in middle region and it is overall stiffer for outside this crack region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracked%20shaft" title="cracked shaft">cracked shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20location" title=" crack location"> crack location</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20stiffness" title=" shaft stiffness"> shaft stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced%20force" title=" unbalanced force"> unbalanced force</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20unbalanced%20force%20orientation" title=" and unbalanced force orientation"> and unbalanced force orientation</a> </p> <a href="https://publications.waset.org/abstracts/87582/influence-of-angular-position-of-unbalanced-force-on-crack-breathing-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> Design and Performance Optimization of Isostatic Pressing Working Cylinder Automatic Exhaust Valve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Zhao">Wei-Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yannian-Bao"> Yannian-Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing-Fan"> Xing-Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei-Cao"> Lei-Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An isostatic pressing working cylinder automatic exhaust valve is designed. The finite element models of valve core and valve body under ultra-high pressure work environment are built to study the influence of interact of valve core and valve body to sealing performance. The contact stresses of metal sealing surface with different sizes are calculated and the automatic exhaust valve is optimized. The result of simulation and experiment shows that the sealing of optimized exhaust valve is more reliable and the service life is greatly improved. The optimized exhaust valve has been used in the warm isostatic pressing equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20valve" title="exhaust valve">exhaust valve</a>, <a href="https://publications.waset.org/abstracts/search?q=sealing" title=" sealing"> sealing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-high%20pressure" title=" ultra-high pressure"> ultra-high pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=isostatic%20pressing" title=" isostatic pressing"> isostatic pressing</a> </p> <a href="https://publications.waset.org/abstracts/9081/design-and-performance-optimization-of-isostatic-pressing-working-cylinder-automatic-exhaust-valve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">564</span> Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tim%20Dunne">Tim Dunne</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaxiang%20Ren"> Jiaxiang Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhao"> Lei Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Cheng"> Peng Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Song"> Yi Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Liu"> Yu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenhan%20Yue"> Wenhan Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiongwen%20Yang"> Xiongwen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equal%20channel%20angular%20processing" title="equal channel angular processing">equal channel angular processing</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolvable%20magnesium" title=" dissolvable magnesium"> dissolvable magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=frac%20plug" title=" frac plug"> frac plug</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/132877/enhancement-of-mechanical-and-dissolution-properties-of-a-cast-magnesium-alloy-via-equal-angular-channel-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">563</span> Optical and Mechanical Characterization of Severe Plastically Deformed Copper Alloy Processed by Constrained Groove Pressing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaya%20Prasad%20Vanam">Jaya Prasad Vanam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Anurag%20P"> Vinay Anurag P</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidya%20Sravya%20N%20S"> Vidya Sravya N S</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishore%20Babu%20Nagamothu"> Kishore Babu Nagamothu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Constrained Groove Pressing (CGP) is one of the severe plastic deformation technique (SPD) by which we can process Ultra Fine Grained (UFG)/plane metallic materials. This paper discusses the effects of CGP on Cu-Zn alloy specimen at room temperature. A comprehensive study is made on the structural and mechanical properties of Brass specimen before and after Constrained grooves Pressing. Entire process is simulated in AFDEX CAE Software. It is found that most of the properties are superior with respect to brass samples such as yield strength, ultimate tensile strength, hardness, strain rate, etc., and they are found to be better for the CGP processed specimen. The results are discussed with respective graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constrained%20groove%20pressing" title="constrained groove pressing">constrained groove pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=AFDEX" title=" AFDEX"> AFDEX</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20fine%20grained%20materials" title=" ultra fine grained materials"> ultra fine grained materials</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation%20technique" title=" severe plastic deformation technique"> severe plastic deformation technique</a> </p> <a href="https://publications.waset.org/abstracts/125954/optical-and-mechanical-characterization-of-severe-plastically-deformed-copper-alloy-processed-by-constrained-groove-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">562</span> Additive Manufacturing’s Impact on Product Design and Development: An Industrial Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdelsalam">Ahmed Abdelsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Roozbahani"> Daniel Roozbahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjan%20Alizadeh"> Marjan Alizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Heikki%20Handroos"> Heikki Handroos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to redesign a pressing air nozzle with lower weight and improved efficiency utilizing Selective Laser Melting (SLM) technology based on Design for Additive Manufacturing (DfAM) methods. The original pressing air nozzle was modified in SolidWorks 3D CAD, and two design concepts were introduced considering the DfAM approach. In the proposed designs, the air channels were amended. 3D models for the original pressing air nozzle and introduced designs were created to obtain the flow characteristic data using Ansys software. Results of CFD modeling for the original and two proposed designs were extracted, compared, and analyzed to demonstrate the impact of design on the development of a more efficient pressing air nozzle by AM process. Improved airflow was achieved by optimizing the pressing air nozzle's internal channel for both design concepts by providing 30% and 50.6% fewer pressure drops than the original design. Moreover, utilizing the presented designs, a significant reduction in product weight was attained. In addition, by applying the proposed designs, 48.3% and 70.3% reduction in product weight was attained compared to the original design. Therefore, pressing air nozzle with enhanced productivity and lowered weight was generated utilizing the DfAM-driven designs developed in this study. The main contribution of this study is to investigate the additional possibilities that can be achieved in designing modern parts using the advantage of SLM technology in producing that part. The approach presented in this study can be applied to almost any similar industrial application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20for%20additive%20manufacturing" title=" design for additive manufacturing"> design for additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20methods" title=" design methods"> design methods</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20design" title=" product design"> product design</a>, <a href="https://publications.waset.org/abstracts/search?q=pressing%20air%20nozzle" title=" pressing air nozzle"> pressing air nozzle</a> </p> <a href="https://publications.waset.org/abstracts/158160/additive-manufacturings-impact-on-product-design-and-development-an-industrial-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">561</span> Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenjuan%20Du">Wenjuan Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingtian%20Bi"> Jingtian Bi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Wang"> Tong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haifeng%20Wang"> Haifeng Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20system%20small-signal%20angular%20stability" title="power system small-signal angular stability">power system small-signal angular stability</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20low-frequency%20oscillations" title=" power system low-frequency oscillations"> power system low-frequency oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=electromechanical%20oscillation%20modes" title=" electromechanical oscillation modes"> electromechanical oscillation modes</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20farms" title=" wind farms"> wind farms</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20fed%20induction%20generator%20%28DFIG%29" title=" double fed induction generator (DFIG)"> double fed induction generator (DFIG)</a> </p> <a href="https://publications.waset.org/abstracts/44871/assessing-the-effect-of-grid-connection-of-large-scale-wind-farms-on-power-system-small-signal-angular-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">560</span> Turning Parameters Affect Time up and Go Test Performance in Pre-Frail Community-Dwelling Elderly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuei-Yu%20Chien">Kuei-Yu Chien</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiu-Yu%20Chiu"> Hsiu-Yu Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Nan%20Chen"> Chia-Nan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Chen%20Chen"> Shu-Chen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Frailty is associated with decreased physical performances that affect mobility of the elderly. Time up and go test (TUG) was the common method to evaluate mobility in the community. The purpose of this study was to compare the parameters in different stages of Time up and go test (TUG) and physical performance between pre-frail elderly (PFE) and non-frail elderly (NFE). We also investigated the relationship between TUG parameters and physical performance. Methods: Ninety-two community-dwelling older adults were as participants in this study. Based on Canadian Study of Health and Aging Clinical Frailty Scale, 22 older adults were classified as PFE (71.77 ± 6.05 yrs.) and 70 were classified as NFE (71.2 ± 5.02 yrs.). We performed body composition and physical performance, including balance, muscular strength/endurance, mobility, cardiorespiratory endurance, and flexibility. Results: Pre-frail elderly took significantly longer time than NFE in TUG test (p=.004). Pre-frail elderly had lower turning average angular velocity (p = .017), turning peak angular velocity (p = .041) and turning-stand to sit peak angular velocity (p = .037) than NFE. The turning related parameters related to open-eye stand on right foot, 30-second chair stand test, back scratch, and 2-min step tests. Conclusions: Turning average angular velocity, turning peak angular velocity and turning-stand to sit peak angular velocity mainly affected the TUG performance. We suggested that static/dynamic balance, agility, flexibility, and muscle strengthening of lower limbs exercise were important to PFE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobility" title="mobility">mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=aglity" title=" aglity"> aglity</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20ageing" title=" active ageing"> active ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20fitness" title=" functional fitness"> functional fitness</a> </p> <a href="https://publications.waset.org/abstracts/98466/turning-parameters-affect-time-up-and-go-test-performance-in-pre-frail-community-dwelling-elderly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">559</span> 3D Biomechanical Analysis in Shot Put Techniques of International Throwers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satpal%20Yadav">Satpal Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Phulkar"> Ashish Phulkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20K.%20Sahu"> Krishna K. Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The research aims at doing a 3 Dimension biomechanical analysis in the shot put techniques of International throwers to evaluate the performance. Research Method: The researcher adopted the descriptive method and the data was subjected to calculate by using Pearson’s product moment correlation for the correlation of the biomechanical parameters with the performance of shot put throw. In all the analyses, the 5% critical level (p ≤ 0.05) was considered to indicate statistical significance. Research Sample: Eight (N=08) international shot putters using rotational/glide technique in male category was selected as subjects for the study. The researcher used the following methods and tools to obtain reliable measurements the instrument which was used for the purpose of present study namely the tesscorn slow-motion camera, specialized motion analyzer software, 7.260 kg Shot Put (for a male shot-putter) and steel tape. All measurement pertaining to the biomechanical variables was taken by the principal investigator so that data collected for the present study was considered reliable. Results: The finding of the study showed that negative significant relationship between the angular velocity right shoulder, acceleration distance at pre flight (-0.70), (-0.72) respectively were obtained, the angular displacement of knee, angular velocity right shoulder and acceleration distance at flight (0.81), (0.75) and (0.71) respectively were obtained, the angular velocity right shoulder and acceleration distance at transition phase (0.77), (0.79) respectively were obtained and angular displacement of knee, angular velocity right shoulder, release velocity shot, angle of release, height of release, projected distance and measured distance as the values (0.76), (0.77), (-0.83), (-0.79), (-0.77), (0.99) and (1.00) were found higher than the tabulated value at 0.05 level of significance. On the other hand, there exists an insignificant relationship between the performance of shot put and acceleration distance [m], angular displacement shot, C.G at release and horizontal release distance on the technique of shot put. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title="biomechanics">biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20put" title=" shot put"> shot put</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20throwers" title=" international throwers"> international throwers</a> </p> <a href="https://publications.waset.org/abstracts/92710/3d-biomechanical-analysis-in-shot-put-techniques-of-international-throwers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">558</span> Production of Hard Nickel Particle Reinforced Ti6Al4V Matrix Composites by Hot Pressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridvan%20Yamanoglu">Ridvan Yamanoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, titanium based composites reinforced by hard nickel alloy particles were produced. Powder metallurgical hot pressing technique was used for the fabrication of composite materials. The composites containing different ratio of hard nickel particles were sintered at 900 oC for 15 and 30 minutes under 50 MPa pressure. All titanium based composites were obtained under a vacuum atmosphere of 10-4 mbar to prevent of oxidation of titanium due to its high reactivity to oxygen. The microstructural characterization of the composite samples was carried out by optical and scanning electron microscopy. The mechanical properties of the samples were determined by means of hardness and wear tests. The results showed that when the nickel particle content increased the mechanical properties of the composites enhanced. The results are discussed in detail and optimum nickel particle content were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium" title="titanium">titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20pressing" title=" hot pressing"> hot pressing</a> </p> <a href="https://publications.waset.org/abstracts/89265/production-of-hard-nickel-particle-reinforced-ti6al4v-matrix-composites-by-hot-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">557</span> Spatial Emission of Ions Produced by the APF Plasma Focus Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Habibi">M. Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The angular distribution of ion beam emission from the APF plasma focus device (15kV, 40μf, 115nH) filled with nitrogen gas has been examined through investigating the effect of ion beams on aluminum thin foils in different angular positions. The samples are studied in different distances from the anode end with different shots. The optimum pressure that would be obtained at the applied voltages of 12kV was 0.7 torr. The ions flux declined as the pressure inclined and the maximum ion density at 0.7 torr was about 10.26 × 1022 ions/steradian. The irradiated foils were analyzed with SEM method in order to study their surface and morphological changes. The results of the analysis showed melting and surface evaporation effects and generation of some cracks in the specimens. The result of ion patterns on the samples obtained in this study can be useful in determining ion spatial distributions on the top of anode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20focus" title="plasma focus">plasma focus</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20distribution" title=" spatial distribution"> spatial distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20energy%20ions" title=" high energy ions"> high energy ions</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20angular%20distribution" title=" ion angular distribution"> ion angular distribution</a> </p> <a href="https://publications.waset.org/abstracts/26798/spatial-emission-of-ions-produced-by-the-apf-plasma-focus-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">556</span> Particle Filter Implementation of a Non-Linear Dynamic Fall Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Kobayashi">T. Kobayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shiba"> K. Shiba</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kaburagi"> T. Kaburagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kurihara"> Y. Kurihara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the elderly living alone, falls can be a serious problem encountered in daily life. Some elderly people are unable to stand up without the assistance of a caregiver. They may become unconscious after a fall, which can lead to serious aftereffects such as hypothermia, dehydration, and sometimes even death. We treat the subject as an inverted pendulum and model its angle from the equilibrium position and its angular velocity. As the model is non-linear, we implement the filtering method with a particle filter which can estimate true states of the non-linear model. In order to evaluate the accuracy of the particle filter estimation results, we calculate the root mean square error (RMSE) between the estimated angle/angular velocity and the true values generated by the simulation. The experimental results give the highest accuracy RMSE of 0.0141 rad and 0.1311 rad/s for the angle and angular velocity, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fall" title="fall">fall</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20Doppler%20sensor" title=" microwave Doppler sensor"> microwave Doppler sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20dynamics%20model" title=" non-linear dynamics model"> non-linear dynamics model</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a> </p> <a href="https://publications.waset.org/abstracts/75901/particle-filter-implementation-of-a-non-linear-dynamic-fall-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">555</span> Angular Correlation and Independent Particle Model in Two-Electron Atomic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokuei%20Sako">Tokuei Sako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ground and low-lying singly-excited states of He and He-like atomic ions have been studied by the Full Configuration Interaction (FCI) method focusing on the angular correlation between two electrons in the studied systems. The two-electron angle density distribution obtained by integrating the square-modulus of the FCI wave function over the coordinates other than the interelectronic angle shows a distinct trend between the singlet-triplet pair of states for different values of the nuclear charge Zn. Further, both of these singlet and triplet distributions tend to show an increasingly stronger dependence on the interelectronic angle as Zn increases, in contrast to the well-known fact that the correlation energy approaches towards zero for increasing Zn. This controversial observation has been rationalized on the basis of the recently introduced concept of so-called conjugate Fermi holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=He-like%20systems" title="He-like systems">He-like systems</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20correlation" title=" angular correlation"> angular correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=configuration%20interaction%20wave%20function" title=" configuration interaction wave function"> configuration interaction wave function</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20Fermi%20hole" title=" conjugate Fermi hole"> conjugate Fermi hole</a> </p> <a href="https://publications.waset.org/abstracts/3750/angular-correlation-and-independent-particle-model-in-two-electron-atomic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">554</span> Issues on Optimizing the Structural Parameters of the Induction Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marinka%20K.%20Baghdasaryan">Marinka K. Baghdasaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siranush%20M.%20Muradyan"> Siranush M. Muradyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Avgen%20A.%20Gasparyan"> Avgen A. Gasparyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analytical expressions of the current and angular errors, as well as the frequency characteristics of an induction converter describing the relation with its structural parameters, the core and winding characteristics are obtained. Based on estimation of the dependences obtained, a mathematical problem of parametric optimization is formulated which can successfully be used for investigation and diagnosing an induction converter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20converters" title="induction converters">induction converters</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20circuit%20material" title=" magnetic circuit material"> magnetic circuit material</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20and%20angular%20errors" title=" current and angular errors"> current and angular errors</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response" title=" frequency response"> frequency response</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20formulation" title=" mathematical formulation"> mathematical formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20parameters" title=" structural parameters"> structural parameters</a> </p> <a href="https://publications.waset.org/abstracts/11619/issues-on-optimizing-the-structural-parameters-of-the-induction-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">553</span> Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amr%20AbdelAzim%20Ali">Amr AbdelAzim Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Elsheikh"> G. A. Elsheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Moutaz%20M.%20Hegazy"> Moutaz M. Hegazy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20torque" title="friction torque">friction torque</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20wheels%20modeling" title=" reaction wheels modeling"> reaction wheels modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20in%20the%20loop" title=" software in the loop"> software in the loop</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20attitude%20control" title=" spacecraft attitude control"> spacecraft attitude control</a> </p> <a href="https://publications.waset.org/abstracts/86635/modeling-of-the-attitude-control-reaction-wheels-of-a-spacecraft-in-software-in-the-loop-test-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">552</span> Estimating the Effect of Fluid in Pressing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Movaghar">A. Movaghar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Mahdavinejad"> R. A. Mahdavinejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction<strong>,</strong> the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressing" title="pressing">pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=notch" title=" notch"> notch</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20function" title=" flow function"> flow function</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/39900/estimating-the-effect-of-fluid-in-pressing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">551</span> The Effect of Addition of Some Rare Earth Materials to Zinc Aluminum Alloy ZA-22</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20I.%20O.%20Zaid">Adnan I. O. Zaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc aluminum alloys are versatile materials which are widely used in manufacturing several parts in the automobile and aircraft industries. The effect of grain refinement of these alloys by rare earth elements on their mechanical characteristics is scarce. The equal channel angular pressing is relatively recent method for producing severe plastic deformation in materials subjected to it resulting in refinement of their structure and enhancement of their mechanical characteristics. The phase diagram of these alloys indicates that large dendrites of large grain size can be formed during their solidification of the cast which tends to deteriorate their mechanical strength and surface quality. To overcome this problem they are normally grain refined by either titanium or titanium + boron to their melt prior to solidification. In this paper, comparison between the effect of adding either titanium, (Ti), titanium+boron, (Ti+B), or Molybdenum, Mo, to zinc-aluminum22, alloy, (ZA22) on its metallurgical and mechanical characteristics in the cast condition and after pressing by the ECAP process is investigated. It was found that addition of either Ti, Ti+B, or Mo to the ZA22 alloy in the cast condition resulted in refining of their structure being more refined by the addition of Mo, then .Ti+B and less refining by Ti addition. Furthermore, the ECAP process resulted in further refinement of the alloy micro structure except in case of Ti+B addition where poisoning i.e. coarsening of the grains has occurred. Regarding the addition of these element on the mechanical behavior; it was found that addition of Ti Or Ti+B resulted in little enhancement of the alloy strength factor and its flow stress at 20% true strain; whereas, the addition of resulted in deteriorating of its mechanical behavior as % decrease in the strength factor and % in its flow stress of 20%. As for the strain hardening index; addition of any of these elements resulted in decreasing the strain hardening index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=addition" title="addition">addition</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characteristics" title=" mechanical characteristics"> mechanical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=ZA-22" title=" ZA-22"> ZA-22</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinc-%20aluminum%20alloy" title=" Zinc- aluminum alloy "> Zinc- aluminum alloy </a> </p> <a href="https://publications.waset.org/abstracts/34046/the-effect-of-addition-of-some-rare-earth-materials-to-zinc-aluminum-alloy-za-22" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">550</span> Investigation of Existing Guidelines for Four-Legged Angular Telecommunication Tower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sankara%20Ganesh%20Dhoopam">Sankara Ganesh Dhoopam</a>, <a href="https://publications.waset.org/abstracts/search?q=Phaneendra%20Aduri"> Phaneendra Aduri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lattice towers are light weight structures which are primarily governed by the effects of wind loading. Ensuring a precise assessment of wind loads on the tower structure, antennas, and associated equipment is vital for the safety and efficiency of tower design. Earlier, the Indian standards are not available for design of telecom towers. Instead, the industry conventionally relied on the general building wind loading standard for calculating loads on tower components and the transmission line tower design standard for designing the angular members of the towers. Subsequently, the Bureau of Indian Standards (BIS) revised these standards and angular member design standard. While the transmission line towers are designed using the above standard, a full-scale model test will be done to prove the design. Telecom angular towers are also designed using the same with overload factor/factor of safety without full scale tower model testing. General construction in steel design code is available with limit state design approach and is applicable to the design of general structures involving angles and tubes but not used for angle member design of towers. Recently, in response to the evolving industry needs, the Bureau of Indian Standards (BIS) introduced a new standard titled “Isolated Towers, Masts, and Poles using structural steel -Code of practice” for the design of telecom towers. This study focuses on a 40m four legged angular tower to compare loading calculations and member designs between old and new standards. Additionally, a comparative analysis aligning with the new code provisions with international loading and design standards with a specific focus on American standards has been carried out. This paper elaborates code-based provisions used for load and member design calculations, including the influence of "ka" area averaging factor introduced in new wind load case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=telecom" title="telecom">telecom</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20tower" title=" angular tower"> angular tower</a>, <a href="https://publications.waset.org/abstracts/search?q=PLS%20tower" title=" PLS tower"> PLS tower</a>, <a href="https://publications.waset.org/abstracts/search?q=GSM%20antenna" title=" GSM antenna"> GSM antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20antenna" title=" microwave antenna"> microwave antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=IS%20875%28Part-3%29%3A2015" title=" IS 875(Part-3):2015"> IS 875(Part-3):2015</a>, <a href="https://publications.waset.org/abstracts/search?q=IS%20802%28Part-1%2Fsec-2%29%3A2016" title=" IS 802(Part-1/sec-2):2016"> IS 802(Part-1/sec-2):2016</a>, <a href="https://publications.waset.org/abstracts/search?q=IS%20800%3A2007" title=" IS 800:2007"> IS 800:2007</a>, <a href="https://publications.waset.org/abstracts/search?q=IS%2017740%3A2022" title=" IS 17740:2022"> IS 17740:2022</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSI%2FTIA-222G" title=" ANSI/TIA-222G"> ANSI/TIA-222G</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSI%2FTIA-222H." title=" ANSI/TIA-222H."> ANSI/TIA-222H.</a> </p> <a href="https://publications.waset.org/abstracts/177863/investigation-of-existing-guidelines-for-four-legged-angular-telecommunication-tower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">549</span> High Temperature Volume Combustion Synthesis of Ti3Al with Low Porosities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nese%20%20Ozturk%20Korpe">Nese Ozturk Korpe</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20H.%20Karas"> Muhammed H. Karas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reaction synthesis, or combustion synthesis, is a processing technique in which the thermal activation energy of formation of a compound is sustained by its exothermic heat of reaction. The aim of the present study was to investigate the effect of high initial pressing pressures (420 MPa, 630 MPa, and 850 MPa) on porosity of Ti3Al which produced by volume combustion synthesis. Microstructure examinations were performed by optical microscope (OM) and scanning electron microscope (SEM). Phase analyses were performed with X-ray diffraction device (XRD). A significant decrease in porosity was obtained due to an increase in the initial pressing pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Titanium%20Aluminide" title="Titanium Aluminide">Titanium Aluminide</a>, <a href="https://publications.waset.org/abstracts/search?q=Volume%20Combustion%20Synthesis" title=" Volume Combustion Synthesis"> Volume Combustion Synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Intermetallic" title=" Intermetallic"> Intermetallic</a>, <a href="https://publications.waset.org/abstracts/search?q=Porosity" title=" Porosity"> Porosity</a> </p> <a href="https://publications.waset.org/abstracts/120337/high-temperature-volume-combustion-synthesis-of-ti3al-with-low-porosities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">548</span> Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umair%20Rashid">Umair Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20convolutional%20neural%20networks" title="deep convolutional neural networks">deep convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=cosine%20margin%20face%20recognition" title=" cosine margin face recognition"> cosine margin face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=softmax%20loss" title=" softmax loss"> softmax loss</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonically%20decreasing%20parameter" title=" monotonically decreasing parameter"> monotonically decreasing parameter</a> </p> <a href="https://publications.waset.org/abstracts/169302/effect-of-monotonically-decreasing-parameters-on-margin-softmax-for-deep-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">547</span> Physical Parameters Influencing the Yield of Nigella Sativa Oil Extracted by Hydraulic Pressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjadj%20Naima">Hadjadj Naima</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mahdi"> K. Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Belhachat"> D. Belhachat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Ait%20Chaouche"> F. S. Ait Chaouche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ferradji"> A. Ferradji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nigella Sativa oil yield extracted by hydraulic pressing is influenced by the pressure temperature and size particles. The optimization of oil extraction is investigated. The rate of extraction of the whole seeds is very weak, a crushing of seeds is necessary to facilitate the extraction. This rate augments with the rise of the temperature and the pressure, and decrease of size particles. The best output (66%) is obtained for a granulometry lower than 1mm, a temperature of 50°C and a pressure of 120 bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil" title="oil">oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title=" Nigella sativa"> Nigella sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/31548/physical-parameters-influencing-the-yield-of-nigella-sativa-oil-extracted-by-hydraulic-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>