CINXE.COM
(PDF) Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator | Yilmaz Simsek - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="L6KTAcAK+MegvADTE36jbmoAzw8c08di64xTr3aSTAdh5G6aEHrvMmWRUXxr2a8iVOhMlr0O30WH7/i/vVw2xA==" /> <meta name="citation_title" content="Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator" /> <meta name="citation_publication_date" content="2021/01/01" /> <meta name="citation_author" content="Yilmaz Simsek" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator" /> <meta name="twitter:title" content="Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator" /> <meta name="twitter:description" content="The main purpose of this paper is to not only define Apostol type new classes of numbers and polynomials, but also construct generating function for two new classes of special combinatorial numbers and polynomials by applications of p-adic integrals" /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator" /> <meta property="og:title" content="Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="The main purpose of this paper is to not only define Apostol type new classes of numbers and polynomials, but also construct generating function for two new classes of special combinatorial numbers and polynomials by applications of p-adic integrals" /> <meta property="article:author" content="https://independent.academia.edu/YilmazSimsek2" /> <meta name="description" content="The main purpose of this paper is to not only define Apostol type new classes of numbers and polynomials, but also construct generating function for two new classes of special combinatorial numbers and polynomials by applications of p-adic integrals" /> <title>(PDF) Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator | Yilmaz Simsek - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '9387f500ddcbb8d05c67bef28a2fe0334f1aafb8'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1733020706000); window.Aedu.timeDifference = new Date().getTime() - 1733020706000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"The main purpose of this paper is to not only define Apostol type new classes of numbers and polynomials, but also construct generating function for two new classes of special combinatorial numbers and polynomials by applications of p-adic integrals including the Volkenborn integral and the fermionic integral. By using these generating functions, we introduce not only fundamental properties of these combinatorial numbers and polynomials, but also new identities and formulas. In general, identities and formulas obtained in this paper include the newly introduced combinatorial numbers and polynomials, Bernoulli numbers and polynomials, Euler numbers and polynomials, Apostol-Bernoulli numbers and polynomials, Apostol-Euler numbers and polynomials, Stirling numbers of the second kind, Daehee numbers, Changhee numbers, the generalized Eulerian type numbers, Eulerian polynomials, Fubini numbers, Dobinski numbers. Moreover, by applying derivative operator to the generating functions for tw...","author":[{"@context":"https://schema.org","@type":"Person","name":"Yilmaz Simsek"}],"contributor":[],"dateCreated":"2021-12-21","dateModified":null,"datePublished":"2021-01-01","headline":"Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator","inLanguage":"en","keywords":[],"locationCreated":null,"publication":null,"publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "1b8538d68eb2063735c88a87a438f90c57adab9b3ff4b122a32b24e44634b3da", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="4QvOJdRuDEeytbLn0a/T81S4rV1CQA9lpuP9WV8qlzevTTO+BB4bsneY40ipCN+/alAuxOOdF0LKgFZJlOTt9A==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="eTmzBx9BceCPNmAjqZqKirvMDnOaiHjEFD/c/CL/wM43f06czzFmFUobMYzRPYbGhSSN6jtVYON4XHfs6TG6DQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-86832e264efa375cdd3fa5979579c95643bf6a5c1b20c95ec7a98005fcb4b9a4.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 146832572; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F65429740%2FInterpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F65429740%2FInterpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":77030718,"identifier":"Attachment_77030718","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":65429740,"created_at":"2021-12-21T23:44:09.508-08:00","from_world_paper_id":188469117,"updated_at":"2021-12-22T00:07:02.460-08:00","_data":{"abstract":"The main purpose of this paper is to not only define Apostol type new classes of numbers and polynomials, but also construct generating function for two new classes of special combinatorial numbers and polynomials by applications of p-adic integrals including the Volkenborn integral and the fermionic integral. By using these generating functions, we introduce not only fundamental properties of these combinatorial numbers and polynomials, but also new identities and formulas. In general, identities and formulas obtained in this paper include the newly introduced combinatorial numbers and polynomials, Bernoulli numbers and polynomials, Euler numbers and polynomials, Apostol-Bernoulli numbers and polynomials, Apostol-Euler numbers and polynomials, Stirling numbers of the second kind, Daehee numbers, Changhee numbers, the generalized Eulerian type numbers, Eulerian polynomials, Fubini numbers, Dobinski numbers. Moreover, by applying derivative operator to the generating functions for tw...","publication_date":"2021,,"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [146832572]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":77030718,"attachmentType":"pdf"}"><img alt="First page of “Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/77030718/mini_magick20211221-17385-1grz5v6.png?1640159148" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2"><img alt="Profile image of Yilmaz Simsek" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Yilmaz Simsek</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2021</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">24 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 65429740; const worksViewsPath = "/v0/works/views?subdomain_param=api&work_ids%5B%5D=65429740"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { const viewCountNumber = Number(viewCount); if (!viewCountNumber) { throw new Error('Failed to parse view count'); } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (viewCountBody) { viewCountBody.textContent = `${commaizedViewCount} views`; } else { throw new Error('Failed to find work views element'); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">The main purpose of this paper is to not only define Apostol type new classes of numbers and polynomials, but also construct generating function for two new classes of special combinatorial numbers and polynomials by applications of p-adic integrals including the Volkenborn integral and the fermionic integral. By using these generating functions, we introduce not only fundamental properties of these combinatorial numbers and polynomials, but also new identities and formulas. In general, identities and formulas obtained in this paper include the newly introduced combinatorial numbers and polynomials, Bernoulli numbers and polynomials, Euler numbers and polynomials, Apostol-Bernoulli numbers and polynomials, Apostol-Euler numbers and polynomials, Stirling numbers of the second kind, Daehee numbers, Changhee numbers, the generalized Eulerian type numbers, Eulerian polynomials, Fubini numbers, Dobinski numbers. Moreover, by applying derivative operator to the generating functions for tw...</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":77030718,"attachmentType":"pdf","workUrl":"https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":77030718,"attachmentType":"pdf","workUrl":"https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="77030718" data-landing_url="https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="65429680" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429680/Analysis_of_the_p_adic_q_Volkenborn_integrals_An_approach_to_generalized_Apostol_type_special_numbers_and_polynomials_and_their_applications">Analysis of the p-adic q-Volkenborn integrals: An approach to generalized Apostol-type special numbers and polynomials and their applications</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Cogent Mathematics</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Analysis of the p-adic q-Volkenborn integrals: An approach to generalized Apostol-type special numbers and polynomials and their applications","attachmentId":77030805,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429680/Analysis_of_the_p_adic_q_Volkenborn_integrals_An_approach_to_generalized_Apostol_type_special_numbers_and_polynomials_and_their_applications","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/65429680/Analysis_of_the_p_adic_q_Volkenborn_integrals_An_approach_to_generalized_Apostol_type_special_numbers_and_polynomials_and_their_applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="77100416" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/77100416/New_Families_of_Special_Polynomial_Identities_Based_upon_Combinatorial_Sums_Related_to_p_Adic_Integrals">New Families of Special Polynomial Identities Based upon Combinatorial Sums Related to p-Adic Integrals</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Symmetry, 2021</p><p class="ds-related-work--abstract ds2-5-body-sm">The aim of this paper is to study and investigate generating-type functions, which have been recently constructed by the author, with the aid of the Euler’s identity, combinatorial sums, and p-adic integrals. Using these generating functions with their functional equation, we derive various interesting combinatorial sums and identities including new families of numbers and polynomials, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Daehee numbers, the Changhee numbers, and other numbers and polynomials. Moreover, we present some revealing remarks and comments on the results of this paper.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"New Families of Special Polynomial Identities Based upon Combinatorial Sums Related to p-Adic Integrals","attachmentId":84580102,"attachmentType":"pdf","work_url":"https://www.academia.edu/77100416/New_Families_of_Special_Polynomial_Identities_Based_upon_Combinatorial_Sums_Related_to_p_Adic_Integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/77100416/New_Families_of_Special_Polynomial_Identities_Based_upon_Combinatorial_Sums_Related_to_p_Adic_Integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="65429734" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429734/New_integral_formulas_and_identities_involving_special_numbers_and_functions_derived_from_certain_class_of_special_combinatorial_sums">New integral formulas and identities involving special numbers and functions derived from certain class of special combinatorial sums</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas, 2020</p><p class="ds-related-work--abstract ds2-5-body-sm">By applying p-adic integral, in Simsek (Montes Taurus J Pure Appl Math 3(1):38–61, 2021), we constructed generating function for the special numbers and polynomials involving novel combinatorial sums and numbers. The aim of this paper is to use these combinatorial sums and numbers to derive various new formulas and relations associated with the Bernstein basis functions, the Fibonacci numbers, the Harmonic numbers, the alternating Harmonic numbers, the Bernoulli polynomials of higher order, binomial coefficients and new integral formulas for the Riemann integral. We also investigate and study on open problems involving these numbers. Moreover, we give relation among these numbers, the Digamma function, and the Euler constant. Moreover, by applying special values of these combinatorial sums, we give decomposition of the multiple Hurwitz zeta function which interpolates the Bernoulli polynomials of higher order. Finally, we give conclusions for the results of this paper with some comm...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"New integral formulas and identities involving special numbers and functions derived from certain class of special combinatorial sums","attachmentId":77030711,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429734/New_integral_formulas_and_identities_involving_special_numbers_and_functions_derived_from_certain_class_of_special_combinatorial_sums","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/65429734/New_integral_formulas_and_identities_involving_special_numbers_and_functions_derived_from_certain_class_of_special_combinatorial_sums"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="59587871" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/59587871/Applications_on_the_Apostol_Daehee_numbers_and_polynomials_associated_with_special_numbers_polynomials_and_p_adic_integrals">Applications on the Apostol-Daehee numbers and polynomials associated with special numbers, polynomials, and p-adic integrals</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146411090" href="https://independent.academia.edu/YardimciAhmet">Ahmet Yardimci</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Difference Equations, 2016</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Applications on the Apostol-Daehee numbers and polynomials associated with special numbers, polynomials, and p-adic integrals","attachmentId":73434433,"attachmentType":"pdf","work_url":"https://www.academia.edu/59587871/Applications_on_the_Apostol_Daehee_numbers_and_polynomials_associated_with_special_numbers_polynomials_and_p_adic_integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/59587871/Applications_on_the_Apostol_Daehee_numbers_and_polynomials_associated_with_special_numbers_polynomials_and_p_adic_integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="59587873" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/59587873/New_families_of_special_numbers_and_polynomials_arising_from_applications_of_p_adic_q_integrals">New families of special numbers and polynomials arising from applications of p-adic q-integrals</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146411090" href="https://independent.academia.edu/YardimciAhmet">Ahmet Yardimci</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Difference Equations</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"New families of special numbers and polynomials arising from applications of p-adic q-integrals","attachmentId":73434419,"attachmentType":"pdf","work_url":"https://www.academia.edu/59587873/New_families_of_special_numbers_and_polynomials_arising_from_applications_of_p_adic_q_integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/59587873/New_families_of_special_numbers_and_polynomials_arising_from_applications_of_p_adic_q_integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="77100392" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/77100392/Identities_and_relations_for_Fubini_type_numbers_and_polynomials_via_generating_functions_and_p_adic_integral_approach">Identities and relations for Fubini type numbers and polynomials via generating functions and p-adic integral approach</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Publications de l'Institut Math?matique (Belgrade), 2019</p><p class="ds-related-work--abstract ds2-5-body-sm">The Fubini type polynomials have many application not only especially in combinatorial analysis, but also other branches of mathematics, in engineering and related areas. Therefore, by using the p-adic integrals method and functional equation of the generating functions for Fubini type polynomials and numbers, we derive various different new identities, relations and formulas including well-known numbers and polynomials such as the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers of the second kind, the ?-array polynomials and the Lah numbers.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Identities and relations for Fubini type numbers and polynomials via generating functions and p-adic integral approach","attachmentId":84580090,"attachmentType":"pdf","work_url":"https://www.academia.edu/77100392/Identities_and_relations_for_Fubini_type_numbers_and_polynomials_via_generating_functions_and_p_adic_integral_approach","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/77100392/Identities_and_relations_for_Fubini_type_numbers_and_polynomials_via_generating_functions_and_p_adic_integral_approach"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="51060558" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/51060558/Identities_related_to_special_polynomials_and_combinatorial_numbers">Identities related to special polynomials and combinatorial numbers</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Filomat</p><p class="ds-related-work--abstract ds2-5-body-sm">The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Identities related to special polynomials and combinatorial numbers","attachmentId":68920589,"attachmentType":"pdf","work_url":"https://www.academia.edu/51060558/Identities_related_to_special_polynomials_and_combinatorial_numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/51060558/Identities_related_to_special_polynomials_and_combinatorial_numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="65429723" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429723/Explicit_formulas_for_p_adic_integrals_approach_to_p_adic_distributions_and_some_families_of_special_numbers_and_polynomials">Explicit formulas for p-adic integrals: approach to p-adic distributions and some families of special numbers and polynomials</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2019</p><p class="ds-related-work--abstract ds2-5-body-sm">The main objective of this article is to give and classify new formulas of $p$-adic integrals and blend these formulas with previously well known formulas. Therefore, this article gives briefly the formulas of $p$-adic integrals which were found previously, as well as applying the integral equations to the generating functions and other special functions, giving proofs of the new interesting and novel formulas. The $p$-adic integral formulas provided in this article contain several important well-known families of special numbers and special polynomials such as the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers, the Lah numbers, the Peters numbers and polynomials, the central factorial numbers, the Daehee numbers and polynomials, the Changhee numbers and polynomials, the Harmonic numbers, the Fubini numbers, combinatorial numbers and sums. In addition, we defined two new sequences containing the Bernoulli numbers and Euler numbers. These t...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Explicit formulas for p-adic integrals: approach to p-adic distributions and some families of special numbers and polynomials","attachmentId":77030704,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429723/Explicit_formulas_for_p_adic_integrals_approach_to_p_adic_distributions_and_some_families_of_special_numbers_and_polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/65429723/Explicit_formulas_for_p_adic_integrals_approach_to_p_adic_distributions_and_some_families_of_special_numbers_and_polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="65429719" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429719/Derivation_of_Computational_Formulas_for_certain_class_of_finite_sums_Approach_to_Generating_functions_arising_from_p_adic_integrals_and_special_functions">Derivation of Computational Formulas for certain class of finite sums: Approach to Generating functions arising from $p$-adic integrals and special functions</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2021</p><p class="ds-related-work--abstract ds2-5-body-sm">The aim of this paper is to construct generating functions for some families of special finite sums with the aid of the Newton-Mercator series, hypergeometric series, and p-adic integral (the Volkenborn integral). By using these generating functions, their functional equations, and their partial derivative equations, many novel computational formulas involving the special finite sums of (inverse) binomial coefficients, the Bernoulli type polynomials and numbers, Euler polynomials and numbers, the Stirling numbers, the (alternating) harmonic numbers, the Leibnitz polynomials and others. Among these formulas, by considering a computational formula which computes the aforementioned certain class of finite sums with the aid of the Bernoulli numbers and the Stirling numbers of the first kind, we present a computation algorithm and we provide some of their special values. Morover, using the aforementioned special finite sums and combinatorial numbers, we give relations among multiple alte...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Derivation of Computational Formulas for certain class of finite sums: Approach to Generating functions arising from $p$-adic integrals and special functions","attachmentId":77030710,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429719/Derivation_of_Computational_Formulas_for_certain_class_of_finite_sums_Approach_to_Generating_functions_arising_from_p_adic_integrals_and_special_functions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/65429719/Derivation_of_Computational_Formulas_for_certain_class_of_finite_sums_Approach_to_Generating_functions_arising_from_p_adic_integrals_and_special_functions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="65429718" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429718/Formulas_for_p_adic_q_integrals_including_falling_rising_factorials_combinatorial_sums_and_special_numbers">Formulas for p-adic q-integrals including falling-rising factorials, combinatorial sums and special numbers</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2017</p><p class="ds-related-work--abstract ds2-5-body-sm">The main purpose of this paper is to provide a novel approach to deriving formulas for the p-adic q-integral including the Volkenborn integral and the p-adic fermionic integral. By applying integral equations and these integral formulas to the falling factorials, the rising factorials and binomial coefficients, we derive some new and old identities and relations related to various combinatorial sums, well-known special numbers such as the Bernoulli and Euler numbers, the harmonic numbers, the Stirling numbers, the Lah numbers, the Harmonic numbers, the Fubini numbers, the Daehee numbers and the Changhee numbers. Applying these identities and formulas, we give some new combinatorial sums. Finally, by using integral equations, we derive generating functions for new families of special numbers and polynomials. We also give further comments and remarks on these functions, numbers and integral formulas.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Formulas for p-adic q-integrals including falling-rising factorials, combinatorial sums and special numbers","attachmentId":77030708,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429718/Formulas_for_p_adic_q_integrals_including_falling_rising_factorials_combinatorial_sums_and_special_numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/65429718/Formulas_for_p_adic_q_integrals_including_falling_rising_factorials_combinatorial_sums_and_special_numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":77030718,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":77030718,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_77030718" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="90693553" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90693553/Identities_involving_some_special_numbers_and_polynomials_on_p_adic_integral">Identities involving some special numbers and polynomials on p-adic integral</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="245205123" href="https://independent.academia.edu/%C3%B6merduran12">ömer duran</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Notes on Number Theory and Discrete Mathematics</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Identities involving some special numbers and polynomials on p-adic integral","attachmentId":94185372,"attachmentType":"pdf","work_url":"https://www.academia.edu/90693553/Identities_involving_some_special_numbers_and_polynomials_on_p_adic_integral","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/90693553/Identities_involving_some_special_numbers_and_polynomials_on_p_adic_integral"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="65429696" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429696/New_classes_of_Catalan_type_numbers_and_polynomials_with_their_applications_related_to_p_adic_integrals_and_computational_algorithms">New classes of Catalan-type numbers and polynomials with their applications related to p-adic integrals and computational algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">TURKISH JOURNAL OF MATHEMATICS</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"New classes of Catalan-type numbers and polynomials with their applications related to p-adic integrals and computational algorithms","attachmentId":77030815,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429696/New_classes_of_Catalan_type_numbers_and_polynomials_with_their_applications_related_to_p_adic_integrals_and_computational_algorithms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429696/New_classes_of_Catalan_type_numbers_and_polynomials_with_their_applications_related_to_p_adic_integrals_and_computational_algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="77100399" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/77100399/Formulas_involving_sums_of_powers_special_numbers_and_polynomials_arising_from_p_adic_integrals_trigonometric_and_generating_functions">Formulas involving sums of powers, special numbers and polynomials arising from p-adic integrals, trigonometric and generating functions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Publications de l'Institut Math?matique (Belgrade), 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Formulas involving sums of powers, special numbers and polynomials arising from p-adic integrals, trigonometric and generating functions","attachmentId":84580093,"attachmentType":"pdf","work_url":"https://www.academia.edu/77100399/Formulas_involving_sums_of_powers_special_numbers_and_polynomials_arising_from_p_adic_integrals_trigonometric_and_generating_functions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/77100399/Formulas_involving_sums_of_powers_special_numbers_and_polynomials_arising_from_p_adic_integrals_trigonometric_and_generating_functions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="53591649" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/53591649/Some_identities_of_special_numbers_and_polynomials_arising_from_p_adic_integrals_on_Z_p_mathbb_Z_p_">Some identities of special numbers and polynomials arising from p-adic integrals on Z p $\mathbb{Z}_{p}$</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31954770" href="https://independent.academia.edu/SungSooPyo">Sung-Soo Pyo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Difference Equations</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Some identities of special numbers and polynomials arising from p-adic integrals on Z p $\\mathbb{Z}_{p}$","attachmentId":70366047,"attachmentType":"pdf","work_url":"https://www.academia.edu/53591649/Some_identities_of_special_numbers_and_polynomials_arising_from_p_adic_integrals_on_Z_p_mathbb_Z_p_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/53591649/Some_identities_of_special_numbers_and_polynomials_arising_from_p_adic_integrals_on_Z_p_mathbb_Z_p_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="77100428" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/77100428/Generating_functions_for_generalized_Stirling_type_numbers_Array_type_polynomials_Eulerian_type_polynomials_and_their_applications">Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications","attachmentId":84580104,"attachmentType":"pdf","work_url":"https://www.academia.edu/77100428/Generating_functions_for_generalized_Stirling_type_numbers_Array_type_polynomials_Eulerian_type_polynomials_and_their_applications","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/77100428/Generating_functions_for_generalized_Stirling_type_numbers_Array_type_polynomials_Eulerian_type_polynomials_and_their_applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="65429695" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429695/Identities_and_derivative_formulas_for_the_combinatorial_and_Apostol_Euler_type_numbers_by_their_generating_functions">Identities and derivative formulas for the combinatorial and Apostol-Euler type numbers by their generating functions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Filomat</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Identities and derivative formulas for the combinatorial and Apostol-Euler type numbers by their generating functions","attachmentId":77030812,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429695/Identities_and_derivative_formulas_for_the_combinatorial_and_Apostol_Euler_type_numbers_by_their_generating_functions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429695/Identities_and_derivative_formulas_for_the_combinatorial_and_Apostol_Euler_type_numbers_by_their_generating_functions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="51060567" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/51060567/Some_New_Families_of_Special_Polynomials_and_Numbers_Associated_with_Finite_Operators">Some New Families of Special Polynomials and Numbers Associated with Finite Operators</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Symmetry</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Some New Families of Special Polynomials and Numbers Associated with Finite Operators","attachmentId":68920528,"attachmentType":"pdf","work_url":"https://www.academia.edu/51060567/Some_New_Families_of_Special_Polynomials_and_Numbers_Associated_with_Finite_Operators","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/51060567/Some_New_Families_of_Special_Polynomials_and_Numbers_Associated_with_Finite_Operators"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="65429688" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429688/Construction_of_some_new_families_of_Apostol_type_numbers_and_polynomials_via_Dirichlet_character_and_p_adic_q_integrals">Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and p-adic q-integrals</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">TURKISH JOURNAL OF MATHEMATICS</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and p-adic q-integrals","attachmentId":77030802,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429688/Construction_of_some_new_families_of_Apostol_type_numbers_and_polynomials_via_Dirichlet_character_and_p_adic_q_integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429688/Construction_of_some_new_families_of_Apostol_type_numbers_and_polynomials_via_Dirichlet_character_and_p_adic_q_integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="51060547" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/51060547/Identities_for_Korobov_type_polynomials_arising_from_functional_equations_and_p_adic_integrals">Identities for Korobov-type polynomials arising from functional equations and p-adic integrals</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">The Journal of Nonlinear Sciences and Applications</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Identities for Korobov-type polynomials arising from functional equations and p-adic integrals","attachmentId":68920506,"attachmentType":"pdf","work_url":"https://www.academia.edu/51060547/Identities_for_Korobov_type_polynomials_arising_from_functional_equations_and_p_adic_integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/51060547/Identities_for_Korobov_type_polynomials_arising_from_functional_equations_and_p_adic_integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="67385594" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/67385594/A_new_extension_of_Euler_numbers_and_polynomials_related_to_their_interpolation_functions">A new extension of -Euler numbers and polynomials related to their interpolation functions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="153530400" href="https://independent.academia.edu/HacerOzden">Hacer Ozden</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Mathematics Letters, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A new extension of -Euler numbers and polynomials related to their interpolation functions","attachmentId":78220763,"attachmentType":"pdf","work_url":"https://www.academia.edu/67385594/A_new_extension_of_Euler_numbers_and_polynomials_related_to_their_interpolation_functions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/67385594/A_new_extension_of_Euler_numbers_and_polynomials_related_to_their_interpolation_functions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="77100442" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/77100442/On_Generating_Functions_for_Parametrically_Generalized_Polynomials_Involving_Combinatorial_Bernoulli_and_Euler_Polynomials_and_Numbers">On Generating Functions for Parametrically Generalized Polynomials Involving Combinatorial, Bernoulli and Euler Polynomials and Numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Symmetry, 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On Generating Functions for Parametrically Generalized Polynomials Involving Combinatorial, Bernoulli and Euler Polynomials and Numbers","attachmentId":84559082,"attachmentType":"pdf","work_url":"https://www.academia.edu/77100442/On_Generating_Functions_for_Parametrically_Generalized_Polynomials_Involving_Combinatorial_Bernoulli_and_Euler_Polynomials_and_Numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/77100442/On_Generating_Functions_for_Parametrically_Generalized_Polynomials_Involving_Combinatorial_Bernoulli_and_Euler_Polynomials_and_Numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="65429744" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429744/Combinatorial_identities_associated_with_new_families_of_the_numbers_and_polynomials_and_their_approximation_values">Combinatorial identities associated with new families of the numbers and polynomials and their approximation values</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv: Number Theory, 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Combinatorial identities associated with new families of the numbers and polynomials and their approximation values","attachmentId":77030822,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429744/Combinatorial_identities_associated_with_new_families_of_the_numbers_and_polynomials_and_their_approximation_values","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429744/Combinatorial_identities_associated_with_new_families_of_the_numbers_and_polynomials_and_their_approximation_values"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="65429687" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429687/Special_Numbers_and_Polynomials_Including_Their_Generating_Functions_in_Umbral_Analysis_Methods">Special Numbers and Polynomials Including Their Generating Functions in Umbral Analysis Methods</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Axioms</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Special Numbers and Polynomials Including Their Generating Functions in Umbral Analysis Methods","attachmentId":77030689,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429687/Special_Numbers_and_Polynomials_Including_Their_Generating_Functions_in_Umbral_Analysis_Methods","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429687/Special_Numbers_and_Polynomials_Including_Their_Generating_Functions_in_Umbral_Analysis_Methods"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="65429686" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429686/Identities_Associated_with_Generalized_Stirling_Type_Numbers_and_Eulerian_Type_Polynomials">Identities Associated with Generalized Stirling Type Numbers and Eulerian Type Polynomials</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Mathematical and Computational Applications</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Identities Associated with Generalized Stirling Type Numbers and Eulerian Type Polynomials","attachmentId":77030806,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429686/Identities_Associated_with_Generalized_Stirling_Type_Numbers_and_Eulerian_Type_Polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429686/Identities_Associated_with_Generalized_Stirling_Type_Numbers_and_Eulerian_Type_Polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="84120866" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/84120866/Some_generalizations_of_the_Apostol_Bernoulli_and_Apostol_Euler_polynomials">Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="38145660" href="https://uvic.academia.edu/HMSrivastava">H. M. Srivastava</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mathematical Analysis and Applications, 2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials","attachmentId":89252314,"attachmentType":"pdf","work_url":"https://www.academia.edu/84120866/Some_generalizations_of_the_Apostol_Bernoulli_and_Apostol_Euler_polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/84120866/Some_generalizations_of_the_Apostol_Bernoulli_and_Apostol_Euler_polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="120229568" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/120229568/A_New_Family_of_Fubini_Type_Numbers_and_Polynomials_Associated_with_Apostol_Bernoulli_Numbers_and_Polynomials">A New Family of Fubini Type Numbers and Polynomials Associated with Apostol-Bernoulli Numbers and Polynomials</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of The Korean Mathematical Society, 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A New Family of Fubini Type Numbers and Polynomials Associated with Apostol-Bernoulli Numbers and Polynomials","attachmentId":115448476,"attachmentType":"pdf","work_url":"https://www.academia.edu/120229568/A_New_Family_of_Fubini_Type_Numbers_and_Polynomials_Associated_with_Apostol_Bernoulli_Numbers_and_Polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/120229568/A_New_Family_of_Fubini_Type_Numbers_and_Polynomials_Associated_with_Apostol_Bernoulli_Numbers_and_Polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="85962552" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/85962552/New_Generalization_of_Eulerian_Polynomials_and_their_Applications">New Generalization of Eulerian Polynomials and their Applications</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="990498" href="https://hku-tr.academia.edu/saraci">Serkan Araci</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv: Number Theory, 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"New Generalization of Eulerian Polynomials and their Applications","attachmentId":90519739,"attachmentType":"pdf","work_url":"https://www.academia.edu/85962552/New_Generalization_of_Eulerian_Polynomials_and_their_Applications","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/85962552/New_Generalization_of_Eulerian_Polynomials_and_their_Applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="65429690" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429690/Generating_functions_for_finite_sums_involving_higher_powers_of_binomial_coefficients_Analysis_of_hypergeometric_functions_including_new_families_of_polynomials_and_numbers">Generating functions for finite sums involving higher powers of binomial coefficients: Analysis of hypergeometric functions including new families of polynomials and numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mathematical Analysis and Applications</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Generating functions for finite sums involving higher powers of binomial coefficients: Analysis of hypergeometric functions including new families of polynomials and numbers","attachmentId":77030814,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429690/Generating_functions_for_finite_sums_involving_higher_powers_of_binomial_coefficients_Analysis_of_hypergeometric_functions_including_new_families_of_polynomials_and_numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429690/Generating_functions_for_finite_sums_involving_higher_powers_of_binomial_coefficients_Analysis_of_hypergeometric_functions_including_new_families_of_polynomials_and_numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="84154866" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/84154866/On_applications_of_blending_generating_functions_of_q_Apostol_type_polynomials">On applications of blending generating functions of q-Apostol-type polynomials</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="15136743" href="https://iste-tr.academia.edu/U%C4%9EURDURAN">UĞUR DURAN</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On applications of blending generating functions of q-Apostol-type polynomials","attachmentId":89275920,"attachmentType":"pdf","work_url":"https://www.academia.edu/84154866/On_applications_of_blending_generating_functions_of_q_Apostol_type_polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/84154866/On_applications_of_blending_generating_functions_of_q_Apostol_type_polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="89898484" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89898484/A_special_approach_to_derive_new_formulas_for_some_special_numbers_and_polynomials">A special approach to derive new formulas for some special numbers and polynomials</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">TURKISH JOURNAL OF MATHEMATICS, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A special approach to derive new formulas for some special numbers and polynomials","attachmentId":93611581,"attachmentType":"pdf","work_url":"https://www.academia.edu/89898484/A_special_approach_to_derive_new_formulas_for_some_special_numbers_and_polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/89898484/A_special_approach_to_derive_new_formulas_for_some_special_numbers_and_polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="24681830" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24681830/A_Study_on_the_p_Adic_Integral_Representation_on_Zp_Associated_with_Bernstein_and_Bernoulli_Polynomials">A Study on the p-Adic Integral Representation on ℤp Associated with Bernstein and Bernoulli Polynomials</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47577249" href="https://independent.academia.edu/LeechaeJang">Leechae Jang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Difference Equations, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Study on the p-Adic Integral Representation on ℤp Associated with Bernstein and Bernoulli Polynomials","attachmentId":45011423,"attachmentType":"pdf","work_url":"https://www.academia.edu/24681830/A_Study_on_the_p_Adic_Integral_Representation_on_Zp_Associated_with_Bernstein_and_Bernoulli_Polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/24681830/A_Study_on_the_p_Adic_Integral_Representation_on_Zp_Associated_with_Bernstein_and_Bernoulli_Polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="61038332" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/61038332/On_p_adic_Gamma_Function_Related_to_q_Daehee_Polynomials_and_Numbers">On p-adic Gamma Function Related to q-Daehee Polynomials and Numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="72285823" href="https://independent.academia.edu/A%C3%87IKG%C3%96ZM">Mehmet AÇIKGÖZ</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On p-adic Gamma Function Related to q-Daehee Polynomials and Numbers","attachmentId":74219511,"attachmentType":"pdf","work_url":"https://www.academia.edu/61038332/On_p_adic_Gamma_Function_Related_to_q_Daehee_Polynomials_and_Numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/61038332/On_p_adic_Gamma_Function_Related_to_q_Daehee_Polynomials_and_Numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="51060554" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/51060554/Identities_and_recurrence_relations_of_special_numbers_and_polynomials_of_higher_order_by_analysis_of_their_generating_functions">Identities and recurrence relations of special numbers and polynomials of higher order by analysis of their generating functions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Inequalities and Applications</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Identities and recurrence relations of special numbers and polynomials of higher order by analysis of their generating functions","attachmentId":68920507,"attachmentType":"pdf","work_url":"https://www.academia.edu/51060554/Identities_and_recurrence_relations_of_special_numbers_and_polynomials_of_higher_order_by_analysis_of_their_generating_functions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/51060554/Identities_and_recurrence_relations_of_special_numbers_and_polynomials_of_higher_order_by_analysis_of_their_generating_functions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="23" data-entity-id="62219097" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/62219097/Identities_on_Generalized_Apostol_Genocchi_Numbers_and_Polynomials_Involving_Binomial_Coefficients">Identities on Generalized Apostol-Genocchi Numbers and Polynomials Involving Binomial Coefficients</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="24944153" href="https://msumain.academia.edu/EdwardRoweAleluya">Edward Rowe Aleluya</a></div><p class="ds-related-work--metadata ds2-5-body-xs">European Journal of Pure and Applied Mathematics</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Identities on Generalized Apostol-Genocchi Numbers and Polynomials Involving Binomial Coefficients","attachmentId":75052385,"attachmentType":"pdf","work_url":"https://www.academia.edu/62219097/Identities_on_Generalized_Apostol_Genocchi_Numbers_and_Polynomials_Involving_Binomial_Coefficients","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/62219097/Identities_on_Generalized_Apostol_Genocchi_Numbers_and_Polynomials_Involving_Binomial_Coefficients"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="24" data-entity-id="65429706" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429706/Construction_of_a_generalization_of_the_Leibnitz_numbers_and_their_properties">Construction of a generalization of the Leibnitz numbers and their properties</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Construction of a generalization of the Leibnitz numbers and their properties","attachmentId":77030694,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429706/Construction_of_a_generalization_of_the_Leibnitz_numbers_and_their_properties","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429706/Construction_of_a_generalization_of_the_Leibnitz_numbers_and_their_properties"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>