CINXE.COM
Search results for: NO2 gas sensor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: NO2 gas sensor</title> <meta name="description" content="Search results for: NO2 gas sensor"> <meta name="keywords" content="NO2 gas sensor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="NO2 gas sensor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="NO2 gas sensor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1409</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: NO2 gas sensor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1169</span> Multilayer Ceramic Capacitors: Based Force Sensor Array for Occlusal Force Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Che%20Chen">Sheng-Che Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Keng-Ren%20Lin"> Keng-Ren Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Hsin%20Lin"> Che-Hsin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao-Yuan%20Tseng"> Hao-Yuan Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Chang"> Chih-Han Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teeth play an important role in providing the essential nutrients. The force loading of chewing on the crow is important condition to evaluate long-term success of many dental treatments. However, the quantification of the force regarding forces are distributed over the dental crow is still not well recognized. This study presents an industrial-grade piezoelectric-based multilayer ceramic capacitors (MLCCs) force sensor for measuring the distribution of the force distribute over the first molar. The developed sensor array is based on a flexible polyimide electrode and barium titanate-based MLCCs. MLCCs are commonly used in the electronic industry and it is a typical electric component composed of BaTiO₃, which is used as a capacitive material. The most important is that it also can be used as a force-sensing component by its piezoelectric property. In this study, to increase the sensitivity as well as to reduce the variation of different MLCCs, a treatment process is utilized. The MLCC force sensors are able to measure large forces (above 500 N), making them suitable for measuring the bite forces on the tooth crown. Moreover, the sensors also show good force response and good repeatability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20sensor%20array" title="force sensor array">force sensor array</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20ceramic%20capacitors" title=" multilayer ceramic capacitors"> multilayer ceramic capacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusal%20force" title=" occlusal force"> occlusal force</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/45572/multilayer-ceramic-capacitors-based-force-sensor-array-for-occlusal-force-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1168</span> Potentiometric Determination of Moxifloxacin in Some Pharmaceutical Formulation Using PVC Membrane Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Hefnawy">M. M. Hefnawy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20A.%20Homoda"> A. M. A. Homoda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Abounassif"> M. A. Abounassif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Alanazia"> A. M. Alanazia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Majed"> A. Al-Majed</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20A.%20E.%20Mostafa"> Gamal A. E. Mostafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PVC membrane sensors using different approach e.g. ion-pair, ionophore, and Schiff-base has been used as testing membrane sensor. Analytical applications of membrane sensors for direct measurement of variety of different ions in complex biological and environmental sample are reported. The most important step of such PVC membrane sensor is the sensing active material. The potentiometric sensors have some outstanding advantages including simple design, operation, wide linear dynamic range, relative fast response time, and rotational selectivity. The analytical applications of these techniques to pharmaceutical compounds in dosage forms are also discussed. The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 ×10-2-4.0×10-6, 1 × 10-2-5.0×10-6, 1 × 10-2-5.0×10-6 M), with detection limits of 3×10-6, 4×10-6 and 4.0×10-6 M for sensor 1, 2 and 3, respectively over a pH range of 6.0-9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 µg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6 % and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2, and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potentiometry" title="potentiometry">potentiometry</a>, <a href="https://publications.waset.org/abstracts/search?q=PVC" title=" PVC"> PVC</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20sensors" title=" membrane sensors"> membrane sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-pair" title=" ion-pair"> ion-pair</a>, <a href="https://publications.waset.org/abstracts/search?q=ionophore" title=" ionophore"> ionophore</a>, <a href="https://publications.waset.org/abstracts/search?q=schiff-base" title=" schiff-base"> schiff-base</a>, <a href="https://publications.waset.org/abstracts/search?q=moxifloxacin%20HCl" title=" moxifloxacin HCl"> moxifloxacin HCl</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20tetraphenyl%20borate" title=" sodium tetraphenyl borate"> sodium tetraphenyl borate</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphomolybdic%20acid" title=" phosphomolybdic acid"> phosphomolybdic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphotungstic%20acid" title=" phosphotungstic acid"> phosphotungstic acid</a> </p> <a href="https://publications.waset.org/abstracts/20132/potentiometric-determination-of-moxifloxacin-in-some-pharmaceutical-formulation-using-pvc-membrane-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1167</span> Performance Evaluation of Hierarchical Location-Based Services Coupled to the Greedy Perimeter Stateless Routing Protocol for Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rania%20Khadim">Rania Khadim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Erritali"> Mohammed Erritali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhakim%20Maaden"> Abdelhakim Maaden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays Wireless Sensor Networks have attracted worldwide research and industrial interest, because they can be applied in various areas. Geographic routing protocols are very suitable to those networks because they use location information when they need to route packets. Obviously, location information is maintained by Location-Based Services provided by network nodes in a distributed way. In this paper we choose to evaluate the performance of two hierarchical rendezvous location based-services, GLS (Grid Location Service) and HLS (Hierarchical Location Service) coupled to the GPSR routing protocol (Greedy Perimeter Stateless Routing) for Wireless Sensor Network. The simulations were performed using NS2 simulator to evaluate the performance and power of the two services in term of location overhead, the request travel time (RTT) and the query Success ratio (QSR). This work presents also a new scalability performance study of both GLS and HLS, specifically, what happens if the number of nodes N increases. The study will focus on three qualitative metrics: The location maintenance cost, the location query cost and the storage cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=location%20based-services" title="location based-services">location based-services</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20protocols" title=" routing protocols"> routing protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/48606/performance-evaluation-of-hierarchical-location-based-services-coupled-to-the-greedy-perimeter-stateless-routing-protocol-for-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1166</span> Switched Uses of a Bidirectional Microphone as a Microphone and Sensors with High Gain and Wide Frequency Range</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toru%20Shionoya">Toru Shionoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosuke%20Kurihara"> Yosuke Kurihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kaburagi"> Takashi Kaburagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kajiro%20Watanabe"> Kajiro Watanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mass-produced bidirectional microphones have attractive characteristics. They work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. We present novel multiple functional uses of the microphones. A mathematical model for explaining the high-pass-filtering characteristics of bidirectional microphones was presented. Based on the model, the characteristics of the microphone were investigated, and a novel use for the microphone as a sensor with a wide frequency range was presented. In this study, applications for using the microphone as a security sensor and a human biosensor were introduced. The mathematical model was validated through experiments, and the feasibility of the abovementioned applications for security monitoring and the biosignal monitoring were examined through experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20microphone" title="bidirectional microphone">bidirectional microphone</a>, <a href="https://publications.waset.org/abstracts/search?q=low-frequency" title=" low-frequency"> low-frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response" title=" frequency response"> frequency response</a> </p> <a href="https://publications.waset.org/abstracts/17138/switched-uses-of-a-bidirectional-microphone-as-a-microphone-and-sensors-with-high-gain-and-wide-frequency-range" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1165</span> Evaluation of Sensor Pattern Noise Estimators for Source Camera Identification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Anderson-Sackaney">Benjamin Anderson-Sackaney</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20Abdel-Dayem"> Amr Abdel-Dayem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comprehensive survey of recent source camera identification (SCI) systems. Then, the performance of various sensor pattern noise (SPN) estimators was experimentally assessed, under common photo response non-uniformity (PRNU) frameworks. The experiments used 1350 natural and 900 flat-field images, captured by 18 individual cameras. 12 different experiments, grouped into three sets, were conducted. The results were analyzed using the receiver operator characteristic (ROC) curves. The experimental results demonstrated that combining the basic SPN estimator with a wavelet-based filtering scheme provides promising results. However, the phase SPN estimator fits better with both patch-based (BM3D) and anisotropic diffusion (AD) filtering schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensor%20pattern%20noise" title="sensor pattern noise">sensor pattern noise</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20camera%20identification" title=" source camera identification"> source camera identification</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20response%20non-uniformity" title=" photo response non-uniformity"> photo response non-uniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion" title=" anisotropic diffusion"> anisotropic diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20to%20correlation%20energy%20ratio" title=" peak to correlation energy ratio"> peak to correlation energy ratio</a> </p> <a href="https://publications.waset.org/abstracts/63183/evaluation-of-sensor-pattern-noise-estimators-for-source-camera-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1164</span> An Intelligent WSN-Based Parking Guidance System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Shih%20Wang">Sheng-Shih Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ting%20Wang"> Wei-Ting Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arduino" title="Arduino">Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20guidance" title=" parking guidance"> parking guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=ZigBee" title=" ZigBee"> ZigBee</a> </p> <a href="https://publications.waset.org/abstracts/5080/an-intelligent-wsn-based-parking-guidance-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1163</span> PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lutful%20Karim">Lutful Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20S.%20Al-kahtani"> Mohammed S. Al-kahtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20topology" title=" tree topology"> tree topology</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20aggregation" title=" data aggregation"> data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20networks" title=" sensor networks"> sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/47419/pdda-priority-based-dynamic-data-aggregation-approach-for-sensor-based-big-data-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1162</span> Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Behera">P. Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Singh"> K. K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Saini"> D. K. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De"> M. De</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=array-based%20sensing" title="array-based sensing">array-based sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistant%20bacteria" title=" drug resistant bacteria"> drug resistant bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20discriminant%20analysis" title=" linear discriminant analysis"> linear discriminant analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20MoS%E2%82%82" title=" two-dimensional MoS₂"> two-dimensional MoS₂</a> </p> <a href="https://publications.waset.org/abstracts/133539/discrimination-of-bio-analytes-by-using-two-dimensional-nano-sensor-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1161</span> Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Mohajerzadeh">Amirhossein Mohajerzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Mohajerzadeh"> Abolghasem Mohajerzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing" title=" queuing"> queuing</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a> </p> <a href="https://publications.waset.org/abstracts/92838/multi-tier-data-collection-and-estimation-utilizing-queue-model-in-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1160</span> An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-ding%20Du">Yu-ding Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi-lian%20Bao"> Qi-lian Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassim%20Bessaad"> Nassim Bessaad</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Liu"> Lin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-sensor%20data%20fusion" title="multi-sensor data fusion">multi-sensor data fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20positioning" title=" train positioning"> train positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=GNSS" title=" GNSS"> GNSS</a>, <a href="https://publications.waset.org/abstracts/search?q=odometer" title=" odometer"> odometer</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20track%20map" title=" digital track map"> digital track map</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20matching" title=" map matching"> map matching</a>, <a href="https://publications.waset.org/abstracts/search?q=BP%20neural%20network" title=" BP neural network"> BP neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20weighted%20fusion" title=" adaptive weighted fusion"> adaptive weighted fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/98264/an-adaptive-back-propagation-network-and-kalman-filter-based-multi-sensor-fusion-method-for-train-location-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1159</span> Established Novel Approach for Chemical Oxygen Demand Concentrations Measurement Based Mach-Zehner Interferometer Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Sin%20Chong">Su Sin Chong</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Aziz%20Abdul%20Raman"> Abdul Aziz Abdul Raman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Wadi%20Harun"> Sulaiman Wadi Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamzah%20Arof"> Hamzah Arof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical Oxygen Demand (COD) plays a vital role determination of an appropriate strategy for wastewater treatment including the control of the quality of an effluent. In this study, a new sensing method was introduced for the first time and developed to investigate chemical oxygen demand (COD) using a Mach-Zehner Interferometer (MZI)-based dye sensor. The sensor is constructed by bridging two single mode fibres (SMF1 and SMF2) with a short section (~20 mm) of multimode fibre (MMF) and was formed by tapering the MMF to generate evanescent field which is sensitive to perturbation of sensing medium. When the COD concentration increase takes effect will induce changes in output intensity and effective refractive index between the microfiber and the sensing medium. The adequacy of decisions based on COD values relies on the quality of the measurements. Therefore, the dual output response can be applied to the analytical procedure enhance measurement quality. This work presents a detailed assessment of the determination of COD values in synthetic wastewaters. Detailed models of the measurement performance, including sensitivity, reversibility, stability, and uncertainty were successfully validated by proficiency tests where supported on sound and objective criteria. Comparison of the standard method with the new proposed method was also conducted. This proposed sensor is compact, reliable and feasible to investigate the COD value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title="chemical oxygen demand">chemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sensing" title=" environmental sensing"> environmental sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20interferometer%20sensor" title=" Mach-Zehnder interferometer sensor"> Mach-Zehnder interferometer sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20monitoring" title=" online monitoring"> online monitoring</a> </p> <a href="https://publications.waset.org/abstracts/28806/established-novel-approach-for-chemical-oxygen-demand-concentrations-measurement-based-mach-zehner-interferometer-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1158</span> Measurements of Flow Mixing Behaviors Using a Wire-Mesh Sensor in a Wire-Wrapped 37-Pin Rod Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungmo%20Kim">Hyungmo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwang%20Bae"> Hwang Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok-Kyu%20Chang"> Seok-Kyu Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Won%20Lee"> Dong Won Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung%20Joo%20Ko"> Yung Joo Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Rock%20Choi"> Sun Rock Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae%20Seob%20Choi"> Hae Seob Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20Seok%20Woo"> Hyeon Seok Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Euh"> Dong-Jin Euh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeong-Yeon%20Lee"> Hyeong-Yeon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow mixing characteristics in the wire-wrapped 37-pin rod bundle were measured by using a wire-mesh sensing system for a sodium-cooled fast reactor (SFR). The subchannel flow mixing in SFR core subchannels was an essential characteristic for verification of a core thermal design and safety analysis. A dedicated test facility including the wire-mesh sensor system and tracing liquid injection system was developed, and the conductivity fields at the end of 37-pin rod bundle were visualized in several different flow conditions. These experimental results represented the reasonable agreements with the results of CFD, and the uncertainty of the mixing experiments has been conducted to evaluate the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20thermal%20design" title="core thermal design">core thermal design</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20mixing" title=" flow mixing"> flow mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20wire-mesh%20sensor" title=" a wire-mesh sensor"> a wire-mesh sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20wire-wrap%20effect" title=" a wire-wrap effect"> a wire-wrap effect</a> </p> <a href="https://publications.waset.org/abstracts/23655/measurements-of-flow-mixing-behaviors-using-a-wire-mesh-sensor-in-a-wire-wrapped-37-pin-rod-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">629</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1157</span> Smartphone Video Source Identification Based on Sensor Pattern Noise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raquel%20Ramos%20L%C3%B3pez">Raquel Ramos López</a>, <a href="https://publications.waset.org/abstracts/search?q=Anissa%20El-Khattabi"> Anissa El-Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Lucila%20Sandoval%20Orozco"> Ana Lucila Sandoval Orozco</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Javier%20Garc%C3%ADa%20Villalba"> Luis Javier García Villalba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increasing number of mobile devices with integrated cameras has meant that most digital video comes from these devices. These digital videos can be made anytime, anywhere and for different purposes. They can also be shared on the Internet in a short period of time and may sometimes contain recordings of illegal acts. The need to reliably trace the origin becomes evident when these videos are used for forensic purposes. This work proposes an algorithm to identify the brand and model of mobile device which generated the video. Its procedure is as follows: after obtaining the relevant video information, a classification algorithm based on sensor noise and Wavelet Transform performs the aforementioned identification process. We also present experimental results that support the validity of the techniques used and show promising results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20video" title="digital video">digital video</a>, <a href="https://publications.waset.org/abstracts/search?q=forensics%20analysis" title=" forensics analysis"> forensics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20frame" title=" key frame"> key frame</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20device" title=" mobile device"> mobile device</a>, <a href="https://publications.waset.org/abstracts/search?q=PRNU" title=" PRNU"> PRNU</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20noise" title=" sensor noise"> sensor noise</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20identification" title=" source identification"> source identification</a> </p> <a href="https://publications.waset.org/abstracts/70332/smartphone-video-source-identification-based-on-sensor-pattern-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1156</span> A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Srivastav">Arvind Srivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarun%20Kanti%20Bhattacharyya"> Tarun Kanti Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20early%20warning%20system" title="earthquake early warning system">earthquake early warning system</a>, <a href="https://publications.waset.org/abstracts/search?q=EEWS" title=" EEWS"> EEWS</a>, <a href="https://publications.waset.org/abstracts/search?q=STA%2FLTA" title=" STA/LTA"> STA/LTA</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization"> polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet" title=" wavelet"> wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20detector" title=" event detector"> event detector</a>, <a href="https://publications.waset.org/abstracts/search?q=P-wave%20detector" title=" P-wave detector"> P-wave detector</a> </p> <a href="https://publications.waset.org/abstracts/91103/a-low-power-two-stage-seismic-sensor-scheme-for-earthquake-early-warning-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1155</span> Bioreactor for Cell-Based Impedance Measuring with Diamond Coated Gold Interdigitated Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Matejka">Roman Matejka</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Prochazka"> Vaclav Prochazka</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibor%20Izak"> Tibor Izak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Stepanovska"> Jana Stepanovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Travnickova"> Martina Travnickova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Kromka"> Alexander Kromka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell-based impedance spectroscopy is suitable method for electrical monitoring of cell activity especially on substrates that cannot be easily inspected by optical microscope (without fluorescent markers) like decellularized tissues, nano-fibrous scaffold etc. Special sensor for this measurement was developed. This sensor consists of corning glass substrate with gold interdigitated electrodes covered with diamond layer. This diamond layer provides biocompatible non-conductive surface for cells. Also, a special PPFC flow cultivation chamber was developed. This chamber is able to fix sensor in place. The spring contacts are connecting sensor pads with external measuring device. Construction allows real-time live cell imaging. Combining with perfusion system allows medium circulation and generating shear stress stimulation. Experimental evaluation consist of several setups, including pure sensor without any coating and also collagen and fibrin coating was done. The Adipose derived stem cells (ASC) and Human umbilical vein endothelial cells (HUVEC) were seeded onto sensor in cultivation chamber. Then the chamber was installed into microscope system for live-cell imaging. The impedance measurement was utilized by vector impedance analyzer. The measured range was from 10 Hz to 40 kHz. These impedance measurements were correlated with live-cell microscopic imaging and immunofluorescent staining. Data analysis of measured signals showed response to cell adhesion of substrates, their proliferation and also change after shear stress stimulation which are important parameters during cultivation. Further experiments plan to use decellularized tissue as scaffold fixed on sensor. This kind of impedance sensor can provide feedback about cell culture conditions on opaque surfaces and scaffolds that can be used in tissue engineering in development artificial prostheses. This work was supported by the Ministry of Health, grants No. 15-29153A and 15-33018A. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-impedance%20measuring" title="bio-impedance measuring">bio-impedance measuring</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cultivation" title=" cell cultivation"> cell cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20layer" title=" diamond layer"> diamond layer</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20interdigitated%20electrodes" title=" gold interdigitated electrodes"> gold interdigitated electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/57716/bioreactor-for-cell-based-impedance-measuring-with-diamond-coated-gold-interdigitated-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1154</span> Wireless Sensor Anomaly Detection Using Soft Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouhammd%20Alkasassbeh">Mouhammd Alkasassbeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Lasasmeh"> Alaa Lasasmeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IDS" title="IDS">IDS</a>, <a href="https://publications.waset.org/abstracts/search?q=Machine%20learning" title=" Machine learning"> Machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=WSN" title=" WSN"> WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=ZigBee%20technology" title=" ZigBee technology"> ZigBee technology</a> </p> <a href="https://publications.waset.org/abstracts/50660/wireless-sensor-anomaly-detection-using-soft-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1153</span> Detection of Adulterants in Milk Using IoT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Mohammad%20Samiullah%20Shariff">Shaik Mohammad Samiullah Shariff</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Sreenath"> Siva Sreenath</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Haripriya"> Sai Haripriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prathyusha"> Prathyusha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Padma%20Lalitha"> M. Padma Lalitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IoT) is the emerging technology that has been utilized to extend the possibilities for smart dairy farming (SDF). Milk consumption is continually increasing due to the world's growing population. As a result, some providers are prone to using dishonest measures to close the supply-demand imbalance, such as adding adulterants to milk. To identify the presence of adulterants in milk, traditional testing methods necessitate the use of particular chemicals and equipment. While efficient, this method has the disadvantage of yielding difficult and time-consuming qualitative results. Furthermore, same milk sample cannot be tested for other adulterants later. As a result, this study proposes an IoT-based approach for identifying adulterants in milk by measuring electrical conductivity (EC) or Total Dissolved Solids (TDS) and PH. In order to achieve this, an Arduino UNO microcontroller is used to assess the contaminants. When there is no adulteration, the pH and TDS values of milk range from 6.45 to 6.67 and 750 to 780ppm, respectively, according to this study. Finally, the data is uploaded to the cloud via an IoT device attached to the Ubidot web platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things%20%28IoT%29" title="internet of things (IoT)">internet of things (IoT)</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20sensor" title=" pH sensor"> pH sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=TDS%20sensor" title=" TDS sensor"> TDS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=EC%20sensor" title=" EC sensor"> EC sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a> </p> <a href="https://publications.waset.org/abstracts/162780/detection-of-adulterants-in-milk-using-iot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1152</span> Analysis and Modeling of Graphene-Based Percolative Strain Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heming%20Yao">Heming Yao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=gauge%20factor" title=" gauge factor"> gauge factor</a>, <a href="https://publications.waset.org/abstracts/search?q=percolative%20transport" title=" percolative transport"> percolative transport</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20sensor" title=" strain sensor"> strain sensor</a> </p> <a href="https://publications.waset.org/abstracts/39164/analysis-and-modeling-of-graphene-based-percolative-strain-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiesik%20Kim">Hiesik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Beom%20Kim"> Yong-Beom Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaheon%20Gu"> Jaheon Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arduino" title="Arduino">Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=Bluetooth" title=" Bluetooth"> Bluetooth</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/71867/changing-arbitrary-data-transmission-period-by-using-bluetooth-module-on-gas-sensor-node-of-arduino-board" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1150</span> Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayadi%20Aya">Ayadi Aya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghorbel%20Oussama"> Ghorbel Oussama</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Obeid%20Abdulfattah"> M. Obeid Abdulfattah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20Mohamed"> Abid Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian%20networks" title="bayesian networks">bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=classification-based%20approaches" title=" classification-based approaches"> classification-based approaches</a>, <a href="https://publications.waset.org/abstracts/search?q=KPCA" title=" KPCA"> KPCA</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=one-class%20SVM" title=" one-class SVM"> one-class SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier%20detection" title=" outlier detection"> outlier detection</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/66531/performance-comparison-of-outlier-detection-techniques-based-classification-in-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1149</span> A Study on Game Theory Approaches for Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shoukath%20Ali">M. Shoukath Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Prasad%20Singh"> Rajendra Prasad Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Game Theory approaches and their application in improving the performance of Wireless Sensor Networks (WSNs) are discussed in this paper. The mathematical modeling and analysis of WSNs may have low success rate due to the complexity of topology, modeling, link quality, etc. However, Game Theory is a field, which can efficiently use to analyze the WSNs. Game Theory is related to applied mathematics that describes and analyzes interactive decision situations. Game theory has the ability to model independent, individual decision makers whose actions affect the surrounding decision makers. The outcome of complex interactions among rational entities can be predicted by a set of analytical tools. However, the rationality demands a stringent observance to a strategy based on measured of perceived results. Researchers are adopting game theory approaches to model and analyze leading wireless communication networking issues, which includes QoS, power control, resource sharing, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative%20game%20theory" title=" cooperative game theory"> cooperative game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=non-cooperative%20game%20theory" title=" non-cooperative game theory"> non-cooperative game theory</a> </p> <a href="https://publications.waset.org/abstracts/67173/a-study-on-game-theory-approaches-for-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1148</span> An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Khan">A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mahmood"> H. Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20holes" title="energy holes">energy holes</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=routing" title=" routing"> routing</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater" title=" underwater"> underwater</a> </p> <a href="https://publications.waset.org/abstracts/77618/an-energy-holes-avoidance-routing-protocol-for-underwater-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1147</span> Parameter Measurement Systems to Evaluate Performance of Archers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zikril%20Hakim%20Md.%20Azizi">Muhammad Zikril Hakim Md. Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhafizan%20Ahmad"> Norhafizan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20Ariffin%20Raja%20Ghazilla"> Raja Ariffin Raja Ghazilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postural stability, attention level of the archer and particularly the vibrations of the bow itself plays a prominent role in determining the athletes performance. Many techniques and systems had been developing to monitor the parameters of the archers during training. In Malaysia, archery coaches tend to use non-scientific ways that they are familiar with, to evaluate archer performance. An approach that provides more affordable yet accurate systems to the masses and relatively easy system deployment procedure need to be proposed. Hence, this project will address to fulfil the needs. Three area of the archer parameter were included for data monitoring sensors. Attention level can be measured using EEG sensor, centre of mass linked to the postural stability can be measured by foot pressure sensor, and the bow vibrations in three axis will be relayed by the vibrations sensors placed directly on the bow using wireless sensors. Arduino based microcontroller used to relay all the data back to the interfacing systems. Interface systems will be using Python language and C++ framework for user interface and hardware interfacing systems. All sensor data can be observed in real time using the in-house applications, and each sessions can be saved to common files so that coach and the team can have a further discussion and comparisons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archery" title="archery">archery</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20user%20interface" title=" graphical user interface"> graphical user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor" title=" wireless sensor"> wireless sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20system" title=" monitoring system"> monitoring system</a> </p> <a href="https://publications.waset.org/abstracts/50138/parameter-measurement-systems-to-evaluate-performance-of-archers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1146</span> Secured Cancer Care and Cloud Services in Internet of Things /Wireless Sensor Network Based Medical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeniyi%20Onasanya">Adeniyi Onasanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Maher%20Elshakankiri"> Maher Elshakankiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the Internet of Things (IoT) has constituted a driving force of modern technological advancement, and it has become increasingly common as its impacts are seen in a variety of application domains, including healthcare. IoT is characterized by the interconnectivity of smart sensors, objects, devices, data, and applications. With the unprecedented use of IoT in industrial, commercial and domestic, it becomes very imperative to harness the benefits and functionalities associated with the IoT technology in (re)assessing the provision and positioning of healthcare to ensure efficient and improved healthcare delivery. In this research, we are focusing on two important services in healthcare systems, which are cancer care services and business analytics/cloud services. These services incorporate the implementation of an IoT that provides solution and framework for analyzing health data gathered from IoT through various sensor networks and other smart devices in order to improve healthcare delivery and to help health care providers in their decision-making process for enhanced and efficient cancer treatment. In addition, we discuss the wireless sensor network (WSN), WSN routing and data transmission in the healthcare environment. Finally, some operational challenges and security issues with IoT-based healthcare system are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20health%20care%20system" title=" smart health care system"> smart health care system</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20analytics" title=" business analytics"> business analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=%28wireless%29%20sensor%20network" title=" (wireless) sensor network"> (wireless) sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20care%20services" title=" cancer care services"> cancer care services</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20services" title=" cloud services"> cloud services</a> </p> <a href="https://publications.waset.org/abstracts/94356/secured-cancer-care-and-cloud-services-in-internet-of-things-wireless-sensor-network-based-medical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1145</span> Development of a System for Measuring the Three-axis Pedal Force in Cycling and Its Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joo-Hack%20Lee">Joo-Hack Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Seung%20Choi"> Jin-Seung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Won%20Kang"> Dong-Won Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Woo%20Seo"> Jeong-Woo Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Young%20Kim"> Ju-Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Hyeok%20Kim"> Dae-Hyeok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Tae%20Yang"> Seung-Tae Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gye-Rae%20Tack"> Gye-Rae Tack</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For cycling, the analysis of the pedal force is one of the important factors in the study of exercise ability assessment and overuse injuries. In past studies, a two-axis measurement sensor was used at the sagittal plane to measure the force only in the anterior, posterior, and vertical directions and to analyze the loss of force and the injury on the frontal plane due to the forces in the right and left directions. In this study, which is a basic study on diverse analyses of the pedal force that consider the forces on the sagittal plane and the frontal plane, a three-axis pedal force measurement sensor was developed to measure the anterior-posterior (Fx), medio-lateral (Fz), and vertical (Fy) forces. The sensor was fabricated with a size and shape similar to those of the general flat pedal, and had a 550g weight that allowed smooth pedaling. Its measurement range was ±1000 N for Fx and Fz and ±2000 N for Fy, and its non-linearity, hysteresis, and repeatability were approximately 0.5%. The data were sampled at 1000 Hz using a signal collector. To use the developed sensor, the pedaling efficiency (index of efficiency, IE) and the range of left and right (medio-lateral, ML) forces were measured with two seat heights (low and high). The results of the measurement showed that the IE was higher and the force range in the ML direction was lower with the high position than with the low position. The developed measurement sensor and its application results will be useful in understanding and explaining the complicated pedaling technique, and will enable diverse kinematic analyses of the pedal force on the sagittal plane and the frontal plane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycling" title="cycling">cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=pedal%20force" title=" pedal force"> pedal force</a>, <a href="https://publications.waset.org/abstracts/search?q=index%20of%20effectiveness" title=" index of effectiveness"> index of effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=measuring" title=" measuring"> measuring</a> </p> <a href="https://publications.waset.org/abstracts/20626/development-of-a-system-for-measuring-the-three-axis-pedal-force-in-cycling-and-its-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">661</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1144</span> Speed-Up Data Transmission by Using Bluetooth Module on Gas Sensor Node of Arduino Board</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiesik%20Kim">Hiesik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=YongBeum%20Kim"> YongBeum Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to speed up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group(SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as Open source hardware, Gas sensor, and Bluetooth Module and algorithm controlling transmission speed is demonstrated. Experiment controlling transmission speed also is progressed by developing Android Application receiving measured data, and controlling this speed is available at the experiment result. it is important that in the future, improvement for communication algorithm be needed because few error occurs when data is transferred or received. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arduino" title="Arduino">Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=Bluetooth" title=" Bluetooth"> Bluetooth</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20Speed" title=" transmission Speed"> transmission Speed</a> </p> <a href="https://publications.waset.org/abstracts/65582/speed-up-data-transmission-by-using-bluetooth-module-on-gas-sensor-node-of-arduino-board" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1143</span> A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Qi">Lei Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongxin%20Yan"> Rongxin Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lichen%20Sun"> Lichen Sun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20sensor%20array" title="acoustic sensor array">acoustic sensor array</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20assessment" title=" damage assessment"> damage assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20location" title=" leakage location"> leakage location</a> </p> <a href="https://publications.waset.org/abstracts/68599/a-study-of-structural-damage-detection-for-spacecraft-in-orbit-based-on-acoustic-sensor-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1142</span> Sunflower Irrigation with Two Different Types of Soil Moisture Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20D.%20Papanikolaou">C. D. Papanikolaou</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Giouvanis"> V. A. Giouvanis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Karatasiou"> E. A. Karatasiou</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Dimakas"> D. S. Dimakas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Sakellariou-Makrantonaki"> M. A. Sakellariou-Makrantonaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irrigation is one of the most important cultivation practices for each crop, especially in areas where rainfall is enough to cover the crop water needs. In such areas, the farmers must irrigate in order to achieve high economical results. The precise irrigation scheduling contributes to irrigation water saving and thus a valuable natural resource is protected. Under this point of view, in the experimental field of the Laboratory of Agricultural Hydraulics of the University of Thessaly, a research was conducted during the growing season of 2012 in order to evaluate the growth, seed and oil production of sunflower as well as the water saving, by applying different methods of irrigation scheduling. Three treatments in four replications were organized. These were: a) surface drip irrigation where the irrigation scheduling based on the Penman-Monteith (PM) method (control); b) surface drip irrigation where the irrigation scheduling based on a soil moisture sensor (SMS); and c) surface drip irrigation, where the irrigation scheduling based on a soil potential sensor (WM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20production" title=" energy production"> energy production</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20sensor" title=" soil moisture sensor"> soil moisture sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20saving" title=" water saving"> water saving</a> </p> <a href="https://publications.waset.org/abstracts/87561/sunflower-irrigation-with-two-different-types-of-soil-moisture-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1141</span> Structural Damage Detection in a Steel Column-Beam Joint Using Piezoelectric Sensors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20H.%20Cuadra">Carlos H. Cuadra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuhiro%20Shimoi"> Nobuhiro Shimoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of piezoelectric sensors to detect structural damage due to seismic action on building structures is investigated. Plate-type piezoelectric sensor was developed and proposed for this task. A film-type piezoelectric sheet was attached on a steel plate and covered by a layer of glass. A special glue is used to fix the glass. This glue is a silicone that requires the application of ultraviolet rays for its hardening. Then, the steel plate was set up at a steel column-beam joint of a test specimen that was subjected to bending moment when test specimen is subjected to monotonic load and cyclic load. The structural behavior of test specimen during cyclic loading was verified using a finite element model, and it was found good agreement between both results on load-displacement characteristics. The cross section of steel elements (beam and column) is a box section of 100 mm×100 mm with a thin of 6 mm. This steel section is specified by the Japanese Industrial Standards as carbon steel square tube for general structure (STKR400). The column and beam elements are jointed perpendicularly using a fillet welding. The resulting test specimen has a T shape. When large deformation occurs the glass plate of the sensor device cracks and at that instant, the piezoelectric material emits a voltage signal which would be the indicator of a certain level of deformation or damage. Applicability of this piezoelectric sensor to detect structural damages was verified; however, additional analysis and experimental tests are required to establish standard parameters of the sensor system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20sensor" title="piezoelectric sensor">piezoelectric sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20cyclic%20test" title=" static cyclic test"> static cyclic test</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20damages" title=" seismic damages"> seismic damages</a> </p> <a href="https://publications.waset.org/abstracts/109713/structural-damage-detection-in-a-steel-column-beam-joint-using-piezoelectric-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1140</span> RF Propagation Analysis in Outdoor Environments Using RSSI Measurements Applied in ZigBee Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teles%20de%20Sales%20Bezerra">Teles de Sales Bezerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Saulo%20Aislan%20da%20Silva%20Eleuterio"> Saulo Aislan da Silva Eleuterio</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Anderson%20Rodrigues%20de%20Souza"> José Anderson Rodrigues de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeronimo%20Silva%20Rocha"> Jeronimo Silva Rocha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation in radio frequency is a constant concern in the application of Wireless Sensor Networks (WSN), the behavior of an environment determines how good the quality of signal reception. The objective of this paper is to analyze the behavior of a WSN in an environment for agriculture where environmental variables are present and correlate the capture of values received signal strength (RSSI) with a propagation model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propagation" title="propagation">propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=WSN" title=" WSN"> WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/20471/rf-propagation-analysis-in-outdoor-environments-using-rssi-measurements-applied-in-zigbee-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">755</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=8" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=8">8</a></li> <li class="page-item active"><span class="page-link">9</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=12">12</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=46">46</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=47">47</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=NO2%20gas%20sensor&page=10" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>