CINXE.COM
Alexander-Whitney map in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Alexander-Whitney map in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Alexander-Whitney map </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="homological_algebra">Homological algebra</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a></strong></p> <p>(also <a class="existingWikiWord" href="/nlab/show/nonabelian+homological+algebra">nonabelian homological algebra</a>)</p> <p><em><a class="existingWikiWord" href="/schreiber/show/Introduction+to+Homological+Algebra">Introduction</a></em></p> <p><strong>Context</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/additive+and+abelian+categories">additive and abelian categories</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ab-enriched+category">Ab-enriched category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pre-additive+category">pre-additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/additive+category">additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pre-abelian+category">pre-abelian category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+category">Grothendieck category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaves">abelian sheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semi-abelian+category">semi-abelian category</a></p> </li> </ul> <p><strong>Basic definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/kernel">kernel</a>, <a class="existingWikiWord" href="/nlab/show/cokernel">cokernel</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex">complex</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential">differential</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homology">homology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+chain+complexes">category of chain complexes</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+complex">chain complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+map">chain map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+homotopy">chain homotopy</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+homology+and+cohomology">chain homology and cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-isomorphism">quasi-isomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homological+resolution">homological resolution</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cochain+on+a+simplicial+set">simplicial homology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+homology">generalized homology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/exact+sequence">exact sequence</a>,</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/short+exact+sequence">short exact sequence</a>, <a class="existingWikiWord" href="/nlab/show/long+exact+sequence">long exact sequence</a>, <a class="existingWikiWord" href="/nlab/show/split+exact+sequence">split exact sequence</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+object">injective object</a>, <a class="existingWikiWord" href="/nlab/show/projective+object">projective object</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+resolution">injective resolution</a>, <a class="existingWikiWord" href="/nlab/show/projective+resolution">projective resolution</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/flat+resolution">flat resolution</a></p> </li> </ul> </li> </ul> <p><strong>Stable homotopy theory notions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+category">derived category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/triangulated+category">triangulated category</a>, <a class="existingWikiWord" href="/nlab/show/enhanced+triangulated+category">enhanced triangulated category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+model+category">stable model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pretriangulated+dg-category">pretriangulated dg-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E-category">A-∞-category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+chain+complexes">(∞,1)-category of chain complexes</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+functor">derived functor</a>, <a class="existingWikiWord" href="/nlab/show/derived+functor+in+homological+algebra">derived functor in homological algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Tor">Tor</a>, <a class="existingWikiWord" href="/nlab/show/Ext">Ext</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+limit">homotopy limit</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+colimit">homotopy colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lim%5E1+and+Milnor+sequences">lim^1 and Milnor sequences</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fr-code">fr-code</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> </li> </ul> <p><strong>Constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/double+complex">double complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Koszul-Tate+resolution">Koszul-Tate resolution</a>, <a class="existingWikiWord" href="/nlab/show/BRST-BV+complex">BRST-BV complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence">spectral sequence</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence+of+a+filtered+complex">spectral sequence of a filtered complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence+of+a+double+complex">spectral sequence of a double complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+spectral+sequence">Grothendieck spectral sequence</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Leray+spectral+sequence">Leray spectral sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Serre+spectral+sequence">Serre spectral sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild-Serre+spectral+sequence">Hochschild-Serre spectral sequence</a></p> </li> </ul> </li> </ul> </li> </ul> <p><strong>Lemmas</strong></p> <p><a class="existingWikiWord" href="/nlab/show/diagram+chasing">diagram chasing</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/3x3+lemma">3x3 lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/four+lemma">four lemma</a>, <a class="existingWikiWord" href="/nlab/show/five+lemma">five lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/snake+lemma">snake lemma</a>, <a class="existingWikiWord" href="/nlab/show/connecting+homomorphism">connecting homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/horseshoe+lemma">horseshoe lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Baer%27s+criterion">Baer's criterion</a></p> </li> </ul> <p><a class="existingWikiWord" href="/nlab/show/Schanuel%27s+lemma">Schanuel's lemma</a></p> <p><strong>Homology theories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/singular+homology">singular homology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cyclic+homology">cyclic homology</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Dold-Kan+correspondence">Dold-Kan correspondence</a> / <a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal</a>, <a class="existingWikiWord" href="/nlab/show/operadic+Dold-Kan+correspondence">operadic</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Moore+complex">Moore complex</a>, <a class="existingWikiWord" href="/nlab/show/Alexander-Whitney+map">Alexander-Whitney map</a>, <a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+map">Eilenberg-Zilber map</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+theorem">Eilenberg-Zilber theorem</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cochain+on+a+simplicial+set">cochain on a simplicial set</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+coefficient+theorem">universal coefficient theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K%C3%BCnneth+theorem">Künneth theorem</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="definition">Definition</h2> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>:</mo><mi>sAb</mi><mo>→</mo><msubsup><mi>Ch</mi> <mo>•</mo> <mo>+</mo></msubsup></mrow><annotation encoding="application/x-tex">C : sAb \to Ch_\bullet^+</annotation></semantics></math> be the chains/<a class="existingWikiWord" href="/nlab/show/Moore+complex">Moore complex</a> functor of the <a class="existingWikiWord" href="/nlab/show/Dold-Kan+correspondence">Dold-Kan correspondence</a>.</p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>sAb</mi><mo>,</mo><mo>⊗</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(sAb, \otimes)</annotation></semantics></math> be the standard <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> structure given degreewise by the <a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a> on <a class="existingWikiWord" href="/nlab/show/Ab">Ab</a> and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>Ch</mi> <mo>•</mo> <mo>+</mo></msubsup><mo>,</mo><mo>⊗</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(Ch_\bullet^+, \otimes)</annotation></semantics></math> be the standard monoidal structure on the <a class="existingWikiWord" href="/nlab/show/category+of+chain+complexes">category of chain complexes</a>.</p> <div class="un_defn"> <h6 id="definition_2">Definition</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><mi>sAb</mi></mrow><annotation encoding="application/x-tex">A,B \in sAb</annotation></semantics></math> two abelian <a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a>s, the <strong>Alexander-Whitney map</strong> is the <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a> on <a class="existingWikiWord" href="/nlab/show/chain+complex">chain complex</a>es</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub><mo>:</mo><mi>C</mi><mo stretchy="false">(</mo><mi>A</mi><mo>⊗</mo><mi>B</mi><mo stretchy="false">)</mo><mo>→</mo><mi>C</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>C</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \Delta_{A,B} : C(A \otimes B) \to C(A) \otimes C(B) </annotation></semantics></math></div> <p>defined on two <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-simplices <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">a \in A_n</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>∈</mo><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">b \in B_n</annotation></semantics></math> by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub><mo>:</mo><mi>a</mi><mo>⊗</mo><mi>b</mi><mo>↦</mo><msub><mo>⊕</mo> <mrow><mi>p</mi><mo>+</mo><mi>q</mi><mo>=</mo><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><msup><mover><mi>d</mi><mo stretchy="false">˜</mo></mover> <mi>p</mi></msup><mi>a</mi><mo stretchy="false">)</mo><mo>⊗</mo><mo stretchy="false">(</mo><msubsup><mi>d</mi> <mn>0</mn> <mi>q</mi></msubsup><mi>b</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \Delta_{A,B} : a \otimes b \mapsto \oplus_{p + q = n} (\tilde d^p a) \otimes (d^q_0 b) \,, </annotation></semantics></math></div> <p>where the <em>front face map</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mover><mi>d</mi><mo stretchy="false">˜</mo></mover> <mi>p</mi></msup></mrow><annotation encoding="application/x-tex">\tilde d^p</annotation></semantics></math> is that induced by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>p</mi><mo stretchy="false">]</mo><mo>→</mo><mo stretchy="false">[</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">]</mo><mo>:</mo><mi>i</mi><mo>↦</mo><mi>i</mi></mrow><annotation encoding="application/x-tex"> [p] \to [p+q] : i \mapsto i </annotation></semantics></math></div> <p>and the <em>back face</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>d</mi> <mn>0</mn> <mi>q</mi></msubsup></mrow><annotation encoding="application/x-tex">d^q_0</annotation></semantics></math> map is that induced by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>q</mi><mo stretchy="false">]</mo><mo>→</mo><mo stretchy="false">[</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">]</mo><mo>:</mo><mi>i</mi><mo>↦</mo><mi>i</mi><mo>+</mo><mi>p</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> [q] \to [p+q] : i \mapsto i+p \,. </annotation></semantics></math></div></div> <div class="un_defn"> <h6 id="definition_3">Definition</h6> <p>This AW map restricts to the normalized chains complex</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub><mo>:</mo><mi>N</mi><mo stretchy="false">(</mo><mi>A</mi><mo>⊗</mo><mi>B</mi><mo stretchy="false">)</mo><mo>→</mo><mi>N</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>N</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \Delta_{A,B} : N(A \otimes B) \to N(A) \otimes N(B) \,. </annotation></semantics></math></div></div> <h2 id="properties">Properties</h2> <p> <div class='num_prop'> <h6>Proposition</h6> <p>The Alexander-Whitney map is an <a class="existingWikiWord" href="/nlab/show/oplax+monoidal+transformation">oplax monoidal transformation</a> that makes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math> into <a class="existingWikiWord" href="/nlab/show/oplax+monoidal+functors">oplax monoidal functors</a>.</p> </div> </p> <p>Beware that the AW map is <em>not</em> <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric</a>. For details see <em><a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal Dold-Kan correspondence</a></em>.</p> <p> <div class='num_prop' id='EZAWDeformationRetract'> <h6>Proposition</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber%2FAlexander-Whitney+deformation+retraction">Eilenberg-Zilber/Alexander-Whitney deformation retraction</a>)</strong> <br /></p> <p>Let</p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mi>sAb</mi><mo>=</mo></mrow><annotation encoding="application/x-tex">A, B \,\in\, sAb = </annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/SimplicialAbelianGroups">SimplicialAbelianGroups</a></li> </ul> <p>and denote</p> <ul> <li> <p>by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>,</mo><mi>N</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><msubsup><mi>Ch</mi> <mo>•</mo> <mo>+</mo></msubsup><mo>=</mo></mrow><annotation encoding="application/x-tex">N(A), N(B) \,\in\, Ch^+_\bullet = </annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/ConnectiveChainComplexes">ConnectiveChainComplexes</a> their <a class="existingWikiWord" href="/nlab/show/normalized+chain+complexes">normalized chain complexes</a>,</p> </li> <li> <p>by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>⊗</mo><mi>B</mi><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mi>sAb</mi></mrow><annotation encoding="application/x-tex">A \otimes B \,\in\, sAb</annotation></semantics></math> the degreewise <a class="existingWikiWord" href="/nlab/show/tensor+product+of+abelian+groups">tensor product of abelian groups</a>,</p> </li> <li> <p>by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>N</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">N(A) \otimes N(B)</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/tensor+product+of+chain+complexes">tensor product of chain complexes</a>.</p> </li> </ul> <p>Then there is a <a class="existingWikiWord" href="/nlab/show/deformation+retraction">deformation retraction</a></p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="397.591" height="65.705" viewBox="0 0 397.591 65.705"> <defs> <g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-0"> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-1"> <path d="M 11.046875 -8.640625 C 11.21875 -9.28125 11.453125 -9.71875 12.59375 -9.765625 C 12.640625 -9.765625 12.8125 -9.78125 12.8125 -10.03125 C 12.8125 -10.203125 12.6875 -10.203125 12.625 -10.203125 C 12.328125 -10.203125 11.5625 -10.171875 11.265625 -10.171875 L 10.546875 -10.171875 C 10.34375 -10.171875 10.0625 -10.203125 9.859375 -10.203125 C 9.765625 -10.203125 9.59375 -10.203125 9.59375 -9.921875 C 9.59375 -9.765625 9.703125 -9.765625 9.8125 -9.765625 C 10.703125 -9.734375 10.765625 -9.390625 10.765625 -9.125 C 10.765625 -9 10.75 -8.953125 10.703125 -8.734375 L 9.015625 -2 L 5.828125 -9.953125 C 5.71875 -10.1875 5.703125 -10.203125 5.375 -10.203125 L 3.5625 -10.203125 C 3.25 -10.203125 3.125 -10.203125 3.125 -9.921875 C 3.125 -9.765625 3.21875 -9.765625 3.515625 -9.765625 C 3.578125 -9.765625 4.46875 -9.765625 4.46875 -9.640625 C 4.46875 -9.609375 4.4375 -9.484375 4.421875 -9.4375 L 2.4375 -1.53125 C 2.25 -0.796875 1.890625 -0.484375 0.90625 -0.4375 C 0.84375 -0.4375 0.6875 -0.421875 0.6875 -0.15625 C 0.6875 0 0.84375 0 0.875 0 C 1.1875 0 1.9375 -0.03125 2.234375 -0.03125 L 2.953125 -0.03125 C 3.171875 -0.03125 3.421875 0 3.625 0 C 3.734375 0 3.90625 0 3.90625 -0.28125 C 3.90625 -0.421875 3.75 -0.4375 3.6875 -0.4375 C 3.203125 -0.453125 2.71875 -0.53125 2.71875 -1.078125 C 2.71875 -1.1875 2.75 -1.328125 2.78125 -1.453125 L 4.796875 -9.4375 C 4.890625 -9.296875 4.890625 -9.265625 4.9375 -9.125 L 8.5 -0.265625 C 8.578125 -0.09375 8.609375 0 8.734375 0 C 8.890625 0 8.90625 -0.046875 8.96875 -0.296875 Z M 11.046875 -8.640625 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-2"> <path d="M 2.546875 -1.65625 C 2.015625 -0.78125 1.515625 -0.484375 0.796875 -0.4375 C 0.625 -0.421875 0.515625 -0.421875 0.515625 -0.15625 C 0.515625 -0.0625 0.578125 0 0.6875 0 C 0.953125 0 1.625 -0.03125 1.890625 -0.03125 C 2.328125 -0.03125 2.8125 0 3.21875 0 C 3.3125 0 3.5 0 3.5 -0.28125 C 3.5 -0.421875 3.375 -0.4375 3.28125 -0.4375 C 2.9375 -0.46875 2.65625 -0.578125 2.65625 -0.9375 C 2.65625 -1.15625 2.75 -1.3125 2.9375 -1.640625 L 4.078125 -3.53125 L 7.890625 -3.53125 C 7.90625 -3.390625 7.90625 -3.265625 7.921875 -3.140625 C 7.96875 -2.75 8.140625 -1.1875 8.140625 -0.90625 C 8.140625 -0.46875 7.375 -0.4375 7.140625 -0.4375 C 6.96875 -0.4375 6.8125 -0.4375 6.8125 -0.171875 C 6.8125 0 6.953125 0 7.03125 0 C 7.296875 0 7.59375 -0.03125 7.84375 -0.03125 L 8.6875 -0.03125 C 9.609375 -0.03125 10.265625 0 10.28125 0 C 10.375 0 10.546875 0 10.546875 -0.28125 C 10.546875 -0.4375 10.40625 -0.4375 10.1875 -0.4375 C 9.359375 -0.4375 9.34375 -0.5625 9.3125 -1.015625 L 8.390625 -10.34375 C 8.359375 -10.640625 8.3125 -10.671875 8.140625 -10.671875 C 7.984375 -10.671875 7.90625 -10.640625 7.765625 -10.40625 Z M 4.328125 -3.953125 L 7.328125 -8.984375 L 7.84375 -3.953125 Z M 4.328125 -3.953125 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-3"> <path d="M 5.46875 -9.1875 C 5.59375 -9.734375 5.65625 -9.765625 6.25 -9.765625 L 8.1875 -9.765625 C 9.875 -9.765625 9.875 -8.328125 9.875 -8.203125 C 9.875 -6.984375 8.65625 -5.453125 6.6875 -5.453125 L 4.546875 -5.453125 Z M 7.984375 -5.328125 C 9.625 -5.625 11.09375 -6.765625 11.09375 -8.140625 C 11.09375 -9.3125 10.0625 -10.203125 8.375 -10.203125 L 3.578125 -10.203125 C 3.296875 -10.203125 3.171875 -10.203125 3.171875 -9.921875 C 3.171875 -9.765625 3.296875 -9.765625 3.53125 -9.765625 C 4.4375 -9.765625 4.4375 -9.65625 4.4375 -9.484375 C 4.4375 -9.453125 4.4375 -9.359375 4.375 -9.140625 L 2.359375 -1.109375 C 2.21875 -0.578125 2.203125 -0.4375 1.15625 -0.4375 C 0.859375 -0.4375 0.71875 -0.4375 0.71875 -0.171875 C 0.71875 0 0.8125 0 1.109375 0 L 6.234375 0 C 8.515625 0 10.28125 -1.734375 10.28125 -3.234375 C 10.28125 -4.46875 9.203125 -5.21875 7.984375 -5.328125 Z M 5.875 -0.4375 L 3.859375 -0.4375 C 3.640625 -0.4375 3.609375 -0.4375 3.53125 -0.453125 C 3.359375 -0.46875 3.34375 -0.5 3.34375 -0.609375 C 3.34375 -0.71875 3.375 -0.8125 3.40625 -0.9375 L 4.453125 -5.15625 L 7.265625 -5.15625 C 9.015625 -5.15625 9.015625 -3.515625 9.015625 -3.390625 C 9.015625 -1.953125 7.71875 -0.4375 5.875 -0.4375 Z M 5.875 -0.4375 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-0"> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-1"> <path d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-2"> <path d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-2-0"> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-2-1"> <path d="M 10.78125 -3.734375 C 10.78125 -6.484375 8.546875 -8.703125 5.8125 -8.703125 C 3.03125 -8.703125 0.828125 -6.453125 0.828125 -3.734375 C 0.828125 -0.984375 3.0625 1.234375 5.796875 1.234375 C 8.578125 1.234375 10.78125 -1.015625 10.78125 -3.734375 Z M 2.84375 -6.953125 C 2.8125 -6.96875 2.703125 -7.078125 2.703125 -7.109375 C 2.703125 -7.171875 3.90625 -8.328125 5.796875 -8.328125 C 6.3125 -8.328125 7.6875 -8.265625 8.921875 -7.109375 L 5.8125 -3.984375 Z M 2.40625 -0.609375 C 1.5 -1.625 1.1875 -2.78125 1.1875 -3.734375 C 1.1875 -4.890625 1.625 -5.96875 2.40625 -6.859375 L 5.53125 -3.734375 Z M 9.1875 -6.859375 C 9.90625 -6.09375 10.40625 -4.953125 10.40625 -3.734375 C 10.40625 -2.578125 9.984375 -1.5 9.203125 -0.609375 L 6.078125 -3.734375 Z M 8.765625 -0.515625 C 8.796875 -0.5 8.90625 -0.390625 8.90625 -0.359375 C 8.90625 -0.296875 7.6875 0.859375 5.8125 0.859375 C 5.28125 0.859375 3.90625 0.796875 2.6875 -0.359375 L 5.796875 -3.484375 Z M 8.765625 -0.515625 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-3-0"> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-3-1"> <path d="M 1.9375 -6.140625 C 1.9375 -6.4375 1.71875 -6.703125 1.390625 -6.703125 C 1.09375 -6.703125 0.84375 -6.46875 0.84375 -6.15625 C 0.84375 -5.796875 1.125 -5.59375 1.390625 -5.59375 C 1.734375 -5.59375 1.9375 -5.875 1.9375 -6.140625 Z M 0.453125 -4.28125 L 0.453125 -3.953125 C 1.09375 -3.953125 1.171875 -3.890625 1.171875 -3.40625 L 1.171875 -0.78125 C 1.171875 -0.328125 1.0625 -0.328125 0.421875 -0.328125 L 0.421875 0 C 0.8125 -0.03125 1.359375 -0.03125 1.515625 -0.03125 C 1.640625 -0.03125 2.25 -0.03125 2.59375 0 L 2.59375 -0.328125 C 1.9375 -0.328125 1.90625 -0.375 1.90625 -0.765625 L 1.90625 -4.390625 Z M 0.453125 -4.28125 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-3-2"> <path d="M 3.28125 -6.8125 L 3.28125 -6.484375 C 3.953125 -6.484375 4.03125 -6.40625 4.03125 -5.921875 L 4.03125 -3.8125 C 3.6875 -4.203125 3.21875 -4.390625 2.703125 -4.390625 C 1.453125 -4.390625 0.34375 -3.421875 0.34375 -2.140625 C 0.34375 -0.921875 1.34375 0.09375 2.609375 0.09375 C 3.1875 0.09375 3.671875 -0.171875 4 -0.53125 L 4 0.09375 L 5.515625 0 L 5.515625 -0.328125 C 4.84375 -0.328125 4.765625 -0.40625 4.765625 -0.890625 L 4.765625 -6.921875 Z M 4 -1.234375 C 4 -1.0625 4 -1.015625 3.859375 -0.8125 C 3.578125 -0.421875 3.125 -0.171875 2.65625 -0.171875 C 2.1875 -0.171875 1.796875 -0.421875 1.5625 -0.78125 C 1.28125 -1.171875 1.234375 -1.671875 1.234375 -2.140625 C 1.234375 -2.71875 1.328125 -3.125 1.5625 -3.46875 C 1.796875 -3.84375 2.25 -4.109375 2.75 -4.109375 C 3.234375 -4.109375 3.703125 -3.875 4 -3.359375 Z M 4 -1.234375 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-3-3"> <path d="M 4.703125 -6.921875 C 4.59375 -7.125 4.46875 -7.125 4.40625 -7.125 C 4.34375 -7.125 4.21875 -7.125 4.109375 -6.921875 L 0.578125 -0.25 C 0.515625 -0.140625 0.515625 -0.125 0.515625 -0.09375 C 0.515625 0 0.59375 0 0.75 0 L 8.0625 0 C 8.234375 0 8.296875 0 8.296875 -0.09375 C 8.296875 -0.125 8.296875 -0.140625 8.234375 -0.25 Z M 4.078125 -6.140625 L 6.921875 -0.78125 L 1.234375 -0.78125 Z M 4.078125 -6.140625 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-4-0"> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-4-1"> <path d="M 8.234375 -6.546875 C 8.296875 -6.65625 8.296875 -6.703125 8.296875 -6.703125 C 8.296875 -6.8125 8.234375 -6.8125 8.046875 -6.8125 L 0.765625 -6.8125 C 0.578125 -6.8125 0.515625 -6.8125 0.515625 -6.703125 C 0.515625 -6.703125 0.515625 -6.65625 0.578125 -6.546875 L 4.109375 0.09375 C 4.1875 0.234375 4.234375 0.3125 4.40625 0.3125 C 4.578125 0.3125 4.625 0.234375 4.703125 0.09375 Z M 1.859375 -6.046875 L 7.59375 -6.046875 L 4.71875 -0.640625 Z M 1.859375 -6.046875 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-5-0"> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-5-1"> <path d="M 1.6875 -0.90625 C 1.40625 -0.484375 1.15625 -0.328125 0.734375 -0.296875 C 0.625 -0.296875 0.53125 -0.28125 0.53125 -0.109375 C 0.53125 -0.03125 0.59375 0 0.65625 0 C 0.859375 0 1.109375 -0.03125 1.328125 -0.03125 C 1.5 -0.03125 1.9375 0 2.125 0 C 2.203125 0 2.28125 -0.03125 2.28125 -0.1875 C 2.28125 -0.296875 2.1875 -0.296875 2.15625 -0.296875 C 1.984375 -0.3125 1.8125 -0.34375 1.8125 -0.515625 C 1.8125 -0.609375 1.890625 -0.734375 1.921875 -0.78125 L 2.53125 -1.703125 L 4.78125 -1.703125 L 4.96875 -0.5 C 4.96875 -0.296875 4.546875 -0.296875 4.46875 -0.296875 C 4.375 -0.296875 4.25 -0.296875 4.25 -0.109375 C 4.25 -0.078125 4.28125 0 4.375 0 C 4.59375 0 5.140625 -0.03125 5.375 -0.03125 C 5.515625 -0.03125 5.65625 -0.015625 5.8125 -0.015625 C 5.953125 -0.015625 6.125 0 6.265625 0 C 6.3125 0 6.4375 0 6.4375 -0.1875 C 6.4375 -0.296875 6.328125 -0.296875 6.21875 -0.296875 C 5.765625 -0.296875 5.75 -0.34375 5.71875 -0.53125 L 4.96875 -5.125 C 4.953125 -5.265625 4.9375 -5.328125 4.78125 -5.328125 C 4.625 -5.328125 4.578125 -5.265625 4.515625 -5.171875 Z M 2.71875 -2 L 4.34375 -4.421875 L 4.734375 -2 Z M 2.71875 -2 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-5-2"> <path d="M 1.71875 -0.109375 C 1.71875 0.609375 1.34375 1.015625 1.15625 1.1875 C 1.078125 1.25 1.0625 1.265625 1.0625 1.3125 C 1.0625 1.375 1.125 1.453125 1.1875 1.453125 C 1.296875 1.453125 1.96875 0.84375 1.96875 -0.0625 C 1.96875 -0.53125 1.765625 -0.90625 1.40625 -0.90625 C 1.125 -0.90625 0.96875 -0.671875 0.96875 -0.453125 C 0.96875 -0.234375 1.125 0 1.421875 0 C 1.53125 0 1.640625 -0.03125 1.71875 -0.109375 Z M 1.71875 -0.109375 "></path> </g> <g id="3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-5-3"> <path d="M 1.5625 -0.625 C 1.5 -0.34375 1.484375 -0.296875 0.921875 -0.296875 C 0.765625 -0.296875 0.75 -0.296875 0.71875 -0.28125 C 0.671875 -0.25 0.65625 -0.15625 0.65625 -0.109375 C 0.671875 0 0.734375 0 0.890625 0 L 3.921875 0 C 5.21875 0 6.234375 -0.84375 6.234375 -1.59375 C 6.234375 -2.046875 5.828125 -2.546875 4.90625 -2.671875 C 5.765625 -2.8125 6.609375 -3.359375 6.609375 -4.03125 C 6.609375 -4.578125 6.015625 -5.09375 4.96875 -5.09375 L 2.109375 -5.09375 C 1.96875 -5.09375 1.859375 -5.09375 1.859375 -4.921875 C 1.859375 -4.796875 1.96875 -4.796875 2.09375 -4.796875 C 2.234375 -4.796875 2.421875 -4.796875 2.578125 -4.75 C 2.578125 -4.671875 2.578125 -4.625 2.546875 -4.515625 Z M 2.796875 -2.78125 L 3.234375 -4.546875 C 3.296875 -4.78125 3.296875 -4.796875 3.609375 -4.796875 L 4.84375 -4.796875 C 5.625 -4.796875 5.84375 -4.328125 5.84375 -4.015625 C 5.84375 -3.40625 5.078125 -2.78125 4.15625 -2.78125 Z M 2.4375 -0.296875 C 2.296875 -0.296875 2.28125 -0.296875 2.1875 -0.328125 L 2.71875 -2.53125 L 4.359375 -2.53125 C 5.296875 -2.53125 5.453125 -1.921875 5.453125 -1.625 C 5.453125 -0.90625 4.65625 -0.296875 3.734375 -0.296875 Z M 2.4375 -0.296875 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-1" x="6.434" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-1" x="19.71275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-2" x="25.40275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-2" x="36.3715" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-2-1" x="45.38275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-1" x="60.32775" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-1" x="73.60525" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-3" x="79.2965" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-2" x="91.1665" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-1" x="165.914" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-1" x="179.1915" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-2" x="184.88275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-2-1" x="199.17275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-3" x="214.1165" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-2" x="225.9865" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-1" x="300.734" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-1" x="314.01275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-2" x="319.70275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-2" x="330.6715" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-2-1" x="339.68275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-1" x="354.62775" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-1" x="367.90525" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-0-3" x="373.5965" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-1-2" x="385.4665" y="20.404"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -110.939531 -13.191375 C -29.630937 -42.785125 29.630781 -42.785125 110.490156 -13.355438 " transform="matrix(1, 0, 0, -1, 198.795, 16.668)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.48473 2.869203 C -2.031345 1.145312 -1.020351 0.336704 -0.000210455 -0.00133479 C -1.018877 -0.33311 -2.031009 -1.149475 -2.48706 -2.870766 " transform="matrix(0.93968, -0.34201, -0.34201, -0.93968, 309.51146, 29.94008)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-3-1" x="194.386" y="62.488"></use> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-3-2" x="197.325971" y="62.488"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -95.255937 0.00003125 L -40.045 0.00003125 " transform="matrix(1, 0, 0, -1, 198.795, 16.668)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486564 2.867219 C -2.033439 1.148469 -1.02172 0.335969 0.0017175 0.00003125 C -1.02172 -0.335906 -2.033439 -1.148406 -2.486564 -2.871063 " transform="matrix(1, 0, 0, -1, 158.99047, 16.668)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-4-1" x="118.152" y="10.025"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-5-1" x="126.97325" y="11.69875"></use> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-5-2" x="133.878125" y="11.69875"></use> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-5-3" x="136.714496" y="11.69875"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 39.564375 0.00003125 L 94.779219 0.00003125 " transform="matrix(1, 0, 0, -1, 198.795, 16.668)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488451 2.867219 C -2.03142 1.148469 -1.019701 0.335969 -0.00017 0.00003125 C -1.019701 -0.335906 -2.03142 -1.148406 -2.488451 -2.871063 " transform="matrix(1, 0, 0, -1, 293.81267, 16.668)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-3-3" x="252.973" y="10.025"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-5-1" x="261.79425" y="11.69875"></use> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-5-2" x="268.699125" y="11.69875"></use> <use xlink:href="#3JZz9r0WTtEMnw16yJ_K9A8kORM=-glyph-5-3" x="271.535496" y="11.69875"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.997969 -10.98825 L 0.997969 -28.355438 " transform="matrix(1, 0, 0, -1, 198.795, 16.668)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.994219 -10.98825 L -0.994219 -28.355438 " transform="matrix(1, 0, 0, -1, 198.795, 16.668)"></path> </svg><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="372.932" height="65.705" viewBox="0 0 372.932 65.705"> <defs> <g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-0"> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-1"> <path d="M 11.046875 -8.640625 C 11.21875 -9.28125 11.453125 -9.71875 12.59375 -9.765625 C 12.640625 -9.765625 12.8125 -9.78125 12.8125 -10.03125 C 12.8125 -10.203125 12.6875 -10.203125 12.625 -10.203125 C 12.328125 -10.203125 11.5625 -10.171875 11.265625 -10.171875 L 10.546875 -10.171875 C 10.34375 -10.171875 10.0625 -10.203125 9.859375 -10.203125 C 9.765625 -10.203125 9.59375 -10.203125 9.59375 -9.921875 C 9.59375 -9.765625 9.703125 -9.765625 9.8125 -9.765625 C 10.703125 -9.734375 10.765625 -9.390625 10.765625 -9.125 C 10.765625 -9 10.75 -8.953125 10.703125 -8.734375 L 9.015625 -2 L 5.828125 -9.953125 C 5.71875 -10.1875 5.703125 -10.203125 5.375 -10.203125 L 3.5625 -10.203125 C 3.25 -10.203125 3.125 -10.203125 3.125 -9.921875 C 3.125 -9.765625 3.21875 -9.765625 3.515625 -9.765625 C 3.578125 -9.765625 4.46875 -9.765625 4.46875 -9.640625 C 4.46875 -9.609375 4.4375 -9.484375 4.421875 -9.4375 L 2.4375 -1.53125 C 2.25 -0.796875 1.890625 -0.484375 0.90625 -0.4375 C 0.84375 -0.4375 0.6875 -0.421875 0.6875 -0.15625 C 0.6875 0 0.84375 0 0.875 0 C 1.1875 0 1.9375 -0.03125 2.234375 -0.03125 L 2.953125 -0.03125 C 3.171875 -0.03125 3.421875 0 3.625 0 C 3.734375 0 3.90625 0 3.90625 -0.28125 C 3.90625 -0.421875 3.75 -0.4375 3.6875 -0.4375 C 3.203125 -0.453125 2.71875 -0.53125 2.71875 -1.078125 C 2.71875 -1.1875 2.75 -1.328125 2.78125 -1.453125 L 4.796875 -9.4375 C 4.890625 -9.296875 4.890625 -9.265625 4.9375 -9.125 L 8.5 -0.265625 C 8.578125 -0.09375 8.609375 0 8.734375 0 C 8.890625 0 8.90625 -0.046875 8.96875 -0.296875 Z M 11.046875 -8.640625 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-2"> <path d="M 2.546875 -1.65625 C 2.015625 -0.78125 1.515625 -0.484375 0.796875 -0.4375 C 0.625 -0.421875 0.515625 -0.421875 0.515625 -0.15625 C 0.515625 -0.0625 0.578125 0 0.6875 0 C 0.953125 0 1.625 -0.03125 1.890625 -0.03125 C 2.328125 -0.03125 2.8125 0 3.21875 0 C 3.3125 0 3.5 0 3.5 -0.28125 C 3.5 -0.421875 3.375 -0.4375 3.28125 -0.4375 C 2.9375 -0.46875 2.65625 -0.578125 2.65625 -0.9375 C 2.65625 -1.15625 2.75 -1.3125 2.9375 -1.640625 L 4.078125 -3.53125 L 7.890625 -3.53125 C 7.90625 -3.390625 7.90625 -3.265625 7.921875 -3.140625 C 7.96875 -2.75 8.140625 -1.1875 8.140625 -0.90625 C 8.140625 -0.46875 7.375 -0.4375 7.140625 -0.4375 C 6.96875 -0.4375 6.8125 -0.4375 6.8125 -0.171875 C 6.8125 0 6.953125 0 7.03125 0 C 7.296875 0 7.59375 -0.03125 7.84375 -0.03125 L 8.6875 -0.03125 C 9.609375 -0.03125 10.265625 0 10.28125 0 C 10.375 0 10.546875 0 10.546875 -0.28125 C 10.546875 -0.4375 10.40625 -0.4375 10.1875 -0.4375 C 9.359375 -0.4375 9.34375 -0.5625 9.3125 -1.015625 L 8.390625 -10.34375 C 8.359375 -10.640625 8.3125 -10.671875 8.140625 -10.671875 C 7.984375 -10.671875 7.90625 -10.640625 7.765625 -10.40625 Z M 4.328125 -3.953125 L 7.328125 -8.984375 L 7.84375 -3.953125 Z M 4.328125 -3.953125 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-3"> <path d="M 5.46875 -9.1875 C 5.59375 -9.734375 5.65625 -9.765625 6.25 -9.765625 L 8.1875 -9.765625 C 9.875 -9.765625 9.875 -8.328125 9.875 -8.203125 C 9.875 -6.984375 8.65625 -5.453125 6.6875 -5.453125 L 4.546875 -5.453125 Z M 7.984375 -5.328125 C 9.625 -5.625 11.09375 -6.765625 11.09375 -8.140625 C 11.09375 -9.3125 10.0625 -10.203125 8.375 -10.203125 L 3.578125 -10.203125 C 3.296875 -10.203125 3.171875 -10.203125 3.171875 -9.921875 C 3.171875 -9.765625 3.296875 -9.765625 3.53125 -9.765625 C 4.4375 -9.765625 4.4375 -9.65625 4.4375 -9.484375 C 4.4375 -9.453125 4.4375 -9.359375 4.375 -9.140625 L 2.359375 -1.109375 C 2.21875 -0.578125 2.203125 -0.4375 1.15625 -0.4375 C 0.859375 -0.4375 0.71875 -0.4375 0.71875 -0.171875 C 0.71875 0 0.8125 0 1.109375 0 L 6.234375 0 C 8.515625 0 10.28125 -1.734375 10.28125 -3.234375 C 10.28125 -4.46875 9.203125 -5.21875 7.984375 -5.328125 Z M 5.875 -0.4375 L 3.859375 -0.4375 C 3.640625 -0.4375 3.609375 -0.4375 3.53125 -0.453125 C 3.359375 -0.46875 3.34375 -0.5 3.34375 -0.609375 C 3.34375 -0.71875 3.375 -0.8125 3.40625 -0.9375 L 4.453125 -5.15625 L 7.265625 -5.15625 C 9.015625 -5.15625 9.015625 -3.515625 9.015625 -3.390625 C 9.015625 -1.953125 7.71875 -0.4375 5.875 -0.4375 Z M 5.875 -0.4375 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-0"> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-1"> <path d="M 4.859375 3.625 C 4.859375 3.578125 4.859375 3.5625 4.59375 3.296875 C 3.109375 1.796875 2.265625 -0.671875 2.265625 -3.71875 C 2.265625 -6.625 2.96875 -9.109375 4.703125 -10.875 C 4.859375 -11.015625 4.859375 -11.03125 4.859375 -11.078125 C 4.859375 -11.171875 4.78125 -11.203125 4.71875 -11.203125 C 4.53125 -11.203125 3.296875 -10.125 2.5625 -8.65625 C 1.8125 -7.15625 1.46875 -5.5625 1.46875 -3.71875 C 1.46875 -2.390625 1.671875 -0.609375 2.453125 0.984375 C 3.328125 2.78125 4.5625 3.75 4.71875 3.75 C 4.78125 3.75 4.859375 3.71875 4.859375 3.625 Z M 4.859375 3.625 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-2"> <path d="M 4.21875 -3.71875 C 4.21875 -4.859375 4.0625 -6.703125 3.21875 -8.4375 C 2.34375 -10.234375 1.125 -11.203125 0.953125 -11.203125 C 0.890625 -11.203125 0.828125 -11.171875 0.828125 -11.078125 C 0.828125 -11.03125 0.828125 -11.015625 1.078125 -10.75 C 2.5625 -9.25 3.40625 -6.78125 3.40625 -3.734375 C 3.40625 -0.84375 2.703125 1.65625 0.96875 3.421875 C 0.828125 3.5625 0.828125 3.578125 0.828125 3.625 C 0.828125 3.71875 0.890625 3.75 0.953125 3.75 C 1.15625 3.75 2.375 2.671875 3.109375 1.203125 C 3.875 -0.3125 4.21875 -1.921875 4.21875 -3.71875 Z M 4.21875 -3.71875 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-2-0"> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-2-1"> <path d="M 10.78125 -3.734375 C 10.78125 -6.484375 8.546875 -8.703125 5.8125 -8.703125 C 3.03125 -8.703125 0.828125 -6.453125 0.828125 -3.734375 C 0.828125 -0.984375 3.0625 1.234375 5.796875 1.234375 C 8.578125 1.234375 10.78125 -1.015625 10.78125 -3.734375 Z M 2.84375 -6.953125 C 2.8125 -6.96875 2.703125 -7.078125 2.703125 -7.109375 C 2.703125 -7.171875 3.90625 -8.328125 5.796875 -8.328125 C 6.3125 -8.328125 7.6875 -8.265625 8.921875 -7.109375 L 5.8125 -3.984375 Z M 2.40625 -0.609375 C 1.5 -1.625 1.1875 -2.78125 1.1875 -3.734375 C 1.1875 -4.890625 1.625 -5.96875 2.40625 -6.859375 L 5.53125 -3.734375 Z M 9.1875 -6.859375 C 9.90625 -6.09375 10.40625 -4.953125 10.40625 -3.734375 C 10.40625 -2.578125 9.984375 -1.5 9.203125 -0.609375 L 6.078125 -3.734375 Z M 8.765625 -0.515625 C 8.796875 -0.5 8.90625 -0.390625 8.90625 -0.359375 C 8.90625 -0.296875 7.6875 0.859375 5.8125 0.859375 C 5.28125 0.859375 3.90625 0.796875 2.6875 -0.359375 L 5.796875 -3.484375 Z M 8.765625 -0.515625 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-3-0"> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-3-1"> <path d="M 1.9375 -6.140625 C 1.9375 -6.4375 1.71875 -6.703125 1.390625 -6.703125 C 1.09375 -6.703125 0.84375 -6.46875 0.84375 -6.15625 C 0.84375 -5.796875 1.125 -5.59375 1.390625 -5.59375 C 1.734375 -5.59375 1.9375 -5.875 1.9375 -6.140625 Z M 0.453125 -4.28125 L 0.453125 -3.953125 C 1.09375 -3.953125 1.171875 -3.890625 1.171875 -3.40625 L 1.171875 -0.78125 C 1.171875 -0.328125 1.0625 -0.328125 0.421875 -0.328125 L 0.421875 0 C 0.8125 -0.03125 1.359375 -0.03125 1.515625 -0.03125 C 1.640625 -0.03125 2.25 -0.03125 2.59375 0 L 2.59375 -0.328125 C 1.9375 -0.328125 1.90625 -0.375 1.90625 -0.765625 L 1.90625 -4.390625 Z M 0.453125 -4.28125 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-3-2"> <path d="M 3.28125 -6.8125 L 3.28125 -6.484375 C 3.953125 -6.484375 4.03125 -6.40625 4.03125 -5.921875 L 4.03125 -3.8125 C 3.6875 -4.203125 3.21875 -4.390625 2.703125 -4.390625 C 1.453125 -4.390625 0.34375 -3.421875 0.34375 -2.140625 C 0.34375 -0.921875 1.34375 0.09375 2.609375 0.09375 C 3.1875 0.09375 3.671875 -0.171875 4 -0.53125 L 4 0.09375 L 5.515625 0 L 5.515625 -0.328125 C 4.84375 -0.328125 4.765625 -0.40625 4.765625 -0.890625 L 4.765625 -6.921875 Z M 4 -1.234375 C 4 -1.0625 4 -1.015625 3.859375 -0.8125 C 3.578125 -0.421875 3.125 -0.171875 2.65625 -0.171875 C 2.1875 -0.171875 1.796875 -0.421875 1.5625 -0.78125 C 1.28125 -1.171875 1.234375 -1.671875 1.234375 -2.140625 C 1.234375 -2.71875 1.328125 -3.125 1.5625 -3.46875 C 1.796875 -3.84375 2.25 -4.109375 2.75 -4.109375 C 3.234375 -4.109375 3.703125 -3.875 4 -3.359375 Z M 4 -1.234375 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-3-3"> <path d="M 4.703125 -6.921875 C 4.59375 -7.125 4.46875 -7.125 4.40625 -7.125 C 4.34375 -7.125 4.21875 -7.125 4.109375 -6.921875 L 0.578125 -0.25 C 0.515625 -0.140625 0.515625 -0.125 0.515625 -0.09375 C 0.515625 0 0.59375 0 0.75 0 L 8.0625 0 C 8.234375 0 8.296875 0 8.296875 -0.09375 C 8.296875 -0.125 8.296875 -0.140625 8.234375 -0.25 Z M 4.078125 -6.140625 L 6.921875 -0.78125 L 1.234375 -0.78125 Z M 4.078125 -6.140625 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-4-0"> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-4-1"> <path d="M 1.6875 -0.90625 C 1.40625 -0.484375 1.15625 -0.328125 0.734375 -0.296875 C 0.625 -0.296875 0.53125 -0.28125 0.53125 -0.109375 C 0.53125 -0.03125 0.59375 0 0.65625 0 C 0.859375 0 1.109375 -0.03125 1.328125 -0.03125 C 1.5 -0.03125 1.9375 0 2.125 0 C 2.203125 0 2.28125 -0.03125 2.28125 -0.1875 C 2.28125 -0.296875 2.1875 -0.296875 2.15625 -0.296875 C 1.984375 -0.3125 1.8125 -0.34375 1.8125 -0.515625 C 1.8125 -0.609375 1.890625 -0.734375 1.921875 -0.78125 L 2.53125 -1.703125 L 4.78125 -1.703125 L 4.96875 -0.5 C 4.96875 -0.296875 4.546875 -0.296875 4.46875 -0.296875 C 4.375 -0.296875 4.25 -0.296875 4.25 -0.109375 C 4.25 -0.078125 4.28125 0 4.375 0 C 4.59375 0 5.140625 -0.03125 5.375 -0.03125 C 5.515625 -0.03125 5.65625 -0.015625 5.8125 -0.015625 C 5.953125 -0.015625 6.125 0 6.265625 0 C 6.3125 0 6.4375 0 6.4375 -0.1875 C 6.4375 -0.296875 6.328125 -0.296875 6.21875 -0.296875 C 5.765625 -0.296875 5.75 -0.34375 5.71875 -0.53125 L 4.96875 -5.125 C 4.953125 -5.265625 4.9375 -5.328125 4.78125 -5.328125 C 4.625 -5.328125 4.578125 -5.265625 4.515625 -5.171875 Z M 2.71875 -2 L 4.34375 -4.421875 L 4.734375 -2 Z M 2.71875 -2 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-4-2"> <path d="M 1.71875 -0.109375 C 1.71875 0.609375 1.34375 1.015625 1.15625 1.1875 C 1.078125 1.25 1.0625 1.265625 1.0625 1.3125 C 1.0625 1.375 1.125 1.453125 1.1875 1.453125 C 1.296875 1.453125 1.96875 0.84375 1.96875 -0.0625 C 1.96875 -0.53125 1.765625 -0.90625 1.40625 -0.90625 C 1.125 -0.90625 0.96875 -0.671875 0.96875 -0.453125 C 0.96875 -0.234375 1.125 0 1.421875 0 C 1.53125 0 1.640625 -0.03125 1.71875 -0.109375 Z M 1.71875 -0.109375 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-4-3"> <path d="M 1.5625 -0.625 C 1.5 -0.34375 1.484375 -0.296875 0.921875 -0.296875 C 0.765625 -0.296875 0.75 -0.296875 0.71875 -0.28125 C 0.671875 -0.25 0.65625 -0.15625 0.65625 -0.109375 C 0.671875 0 0.734375 0 0.890625 0 L 3.921875 0 C 5.21875 0 6.234375 -0.84375 6.234375 -1.59375 C 6.234375 -2.046875 5.828125 -2.546875 4.90625 -2.671875 C 5.765625 -2.8125 6.609375 -3.359375 6.609375 -4.03125 C 6.609375 -4.578125 6.015625 -5.09375 4.96875 -5.09375 L 2.109375 -5.09375 C 1.96875 -5.09375 1.859375 -5.09375 1.859375 -4.921875 C 1.859375 -4.796875 1.96875 -4.796875 2.09375 -4.796875 C 2.234375 -4.796875 2.421875 -4.796875 2.578125 -4.75 C 2.578125 -4.671875 2.578125 -4.625 2.546875 -4.515625 Z M 2.796875 -2.78125 L 3.234375 -4.546875 C 3.296875 -4.78125 3.296875 -4.796875 3.609375 -4.796875 L 4.84375 -4.796875 C 5.625 -4.796875 5.84375 -4.328125 5.84375 -4.015625 C 5.84375 -3.40625 5.078125 -2.78125 4.15625 -2.78125 Z M 2.4375 -0.296875 C 2.296875 -0.296875 2.28125 -0.296875 2.1875 -0.328125 L 2.71875 -2.53125 L 4.359375 -2.53125 C 5.296875 -2.53125 5.453125 -1.921875 5.453125 -1.625 C 5.453125 -0.90625 4.65625 -0.296875 3.734375 -0.296875 Z M 2.4375 -0.296875 "></path> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-5-0"> </g> <g id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-5-1"> <path d="M 8.234375 -6.546875 C 8.296875 -6.65625 8.296875 -6.703125 8.296875 -6.703125 C 8.296875 -6.8125 8.234375 -6.8125 8.046875 -6.8125 L 0.765625 -6.8125 C 0.578125 -6.8125 0.515625 -6.8125 0.515625 -6.703125 C 0.515625 -6.703125 0.515625 -6.65625 0.578125 -6.546875 L 4.109375 0.09375 C 4.1875 0.234375 4.234375 0.3125 4.40625 0.3125 C 4.578125 0.3125 4.625 0.234375 4.703125 0.09375 Z M 1.859375 -6.046875 L 7.59375 -6.046875 L 4.71875 -0.640625 Z M 1.859375 -6.046875 "></path> </g> </g> <clipPath id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-clip-0"> <path clip-rule="nonzero" d="M 146 0 L 226 0 L 226 65.703125 L 146 65.703125 Z M 146 0 "></path> </clipPath> <clipPath id="0cqAJ165BMQrr_KWRcGUYokx0BQ=-clip-1"> <path clip-rule="nonzero" d="M 160 1 L 213 1 L 213 65.703125 L 160 65.703125 Z M 160 1 "></path> </clipPath> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-1" x="6.434" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-1" x="19.71275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-2" x="25.40275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-2-1" x="39.69275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-3" x="54.6365" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-2" x="66.50775" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-1" x="141.255" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-1" x="154.5325" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-2" x="160.22375" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-2" x="171.1925" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-2-1" x="180.20375" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-1" x="195.1475" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-1" x="208.42625" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-3" x="214.11625" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-2" x="225.98625" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-1" x="300.734" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-1" x="314.01275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-2" x="319.70275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-2-1" x="333.99275" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-0-3" x="348.9365" y="20.404"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-1-2" x="360.80775" y="20.404"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -110.938656 -13.191375 C -29.630063 -42.785125 29.631656 -42.785125 110.491031 -13.355438 " transform="matrix(1, 0, 0, -1, 186.466, 16.668)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487203 2.870103 C -2.033818 1.146212 -1.019153 0.336268 0.000987674 -0.00177086 C -1.017679 -0.333546 -2.033481 -1.148575 -2.485862 -2.871202 " transform="matrix(0.93968, -0.34201, -0.34201, -0.93968, 297.18206, 29.94008)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-3-1" x="182.056" y="62.488"></use> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-3-2" x="184.995971" y="62.488"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -107.587094 0.00003125 L -52.37225 0.00003125 " transform="matrix(1, 0, 0, -1, 186.466, 16.668)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.48803 2.867219 C -2.030999 1.148469 -1.01928 0.335969 0.00025125 0.00003125 C -1.01928 -0.335906 -2.030999 -1.148406 -2.48803 -2.871063 " transform="matrix(1, 0, 0, -1, 134.33178, 16.668)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-3-3" x="93.493" y="10.025"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-4-1" x="102.31425" y="11.69875"></use> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-4-2" x="109.219125" y="11.69875"></use> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-4-3" x="112.055496" y="11.69875"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 51.893375 0.00003125 L 107.108219 0.00003125 " transform="matrix(1, 0, 0, -1, 186.466, 16.668)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485245 2.867219 C -2.03212 1.148469 -1.020401 0.335969 -0.00087 0.00003125 C -1.020401 -0.335906 -2.03212 -1.148406 -2.485245 -2.871063 " transform="matrix(1, 0, 0, -1, 293.81337, 16.668)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-5-1" x="252.973" y="10.025"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-4-1" x="261.79425" y="11.69875"></use> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-4-2" x="268.699125" y="11.69875"></use> <use xlink:href="#0cqAJ165BMQrr_KWRcGUYokx0BQ=-glyph-4-3" x="271.535496" y="11.69875"></use> </g> <g clip-path="url(#0cqAJ165BMQrr_KWRcGUYokx0BQ=-clip-0)"> <path fill="none" stroke-width="2.79451" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00115625 -10.98825 L 0.00275 -25.730438 " transform="matrix(1, 0, 0, -1, 186.466, 16.668)"></path> </g> <g clip-path="url(#0cqAJ165BMQrr_KWRcGUYokx0BQ=-clip-1)"> <path fill="none" stroke-width="1.83812" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(100%, 100%, 100%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00115625 -10.98825 L 0.00275 -25.730438 " transform="matrix(1, 0, 0, -1, 186.466, 16.668)"></path> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -1.553318 3.068445 C -0.799477 1.447281 1.227837 0.0565272 2.384108 0.00178083 C 1.227832 -0.0567563 -0.799622 -1.447308 -1.553624 -3.068396 " transform="matrix(0.00005, 0.99998, 0.99998, -0.00005, 186.46685, 42.39719)"></path> </svg> <p>where</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∇</mo> <mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\nabla_{A,B}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+map">Eilenberg-Zilber map</a>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\Delta_{A,B}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/Alexander-Whitney+map">Alexander-Whitney map</a>.</p> </li> </ul> <p></p> </div> </p> <p>For unnormalized chain complexes, where we have a <a class="existingWikiWord" href="/nlab/show/homotopy+equivalence">homotopy equivalence</a>, this is the original <a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+theorem">Eilenberg-Zilber theorem</a> (<a href="#EilenbergZilber53">Eilenberg & Zilber 1953</a>, <a href="#EilenbergMacLane54">Eilenberg & MacLane 1954, Thm. 2.1</a>). The above <a class="existingWikiWord" href="/nlab/show/deformation+retraction">deformation retraction</a> for normalized chain complexes is <a href="#EilenbergMacLane54">Eilenberg & MacLane 1954, Thm. 2.1a</a>. Both are reviewed in <a href="#May67">May 1967, Cor. 29.10</a>. Explicit description of the <a class="existingWikiWord" href="/nlab/show/homotopy+operator">homotopy operator</a> is given in <a href="#GonzalezDiazReal99">Gonzalez-Diaz & Real 1999</a>).</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><strong>Alexander-Whitney map</strong></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+map">Eilenberg-Zilber map</a></p> </li> </ul> <h2 id="references">References</h2> <p>The <a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+theorem">Eilenberg-Zilber theorem</a> is due to</p> <ul> <li id="EilenbergZilber53"> <p><a class="existingWikiWord" href="/nlab/show/Samuel+Eilenberg">Samuel Eilenberg</a>, <a class="existingWikiWord" href="/nlab/show/Joseph+Zilber">Joseph Zilber</a>, <em>On Products of Complexes</em>, Amer. Jour. Math. 75 (1): 200–204, (1953) (<a href="https://www.jstor.org/stable/2372629">jstor:2372629</a>, <a href="https://doi.org/10.2307/2372629">doi:10.2307/2372629</a>)</p> </li> <li id="EilenbergMacLane54"> <p><a class="existingWikiWord" href="/nlab/show/Samuel+Eilenberg">Samuel Eilenberg</a>, <a class="existingWikiWord" href="/nlab/show/Saunders+MacLane">Saunders MacLane</a>, Section 2 of: <em>On the Groups <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>Π</mi><mo>,</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H(\Pi,n)</annotation></semantics></math>, II: Methods of Computation</em>, Annals of Mathematics, Second Series, Vol. 60, No. 1 (Jul., 1954), pp. 49-139 (<a href="https://www.jstor.org/stable/1969702">jstor:1969702</a>)</p> </li> </ul> <p>using the definition of the <a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+map">Eilenberg-Zilber map</a> in:</p> <ul> <li id="EilenbergMacLane53"><a class="existingWikiWord" href="/nlab/show/Samuel+Eilenberg">Samuel Eilenberg</a>, <a class="existingWikiWord" href="/nlab/show/Saunders+MacLane">Saunders MacLane</a>, (5.3) of: <em>On the groups <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mo stretchy="false">(</mo><mi>Π</mi><mo>,</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H(\Pi,n)</annotation></semantics></math></em>, I<em>, Ann. of Math. (2) 58, (1953), 55–106. (<a href="https://www.jstor.org/stable/1969820">jstor:1969820</a>)</em></li> </ul> <p>Review:</p> <ul> <li id="May67"> <p><a class="existingWikiWord" href="/nlab/show/Peter+May">Peter May</a>, Section 29 of: <em>Simplicial objects in algebraic topology</em> , Chicago Lectures in Mathematics, University of Chicago Press 1967 (<a href="https://press.uchicago.edu/ucp/books/book/chicago/S/bo5956688.html">ISBN:9780226511818</a>, <a href="http://www.math.uchicago.edu/~may/BOOKS/Simp.djvu">djvu</a>, <a class="existingWikiWord" href="/nlab/files/May_SimplicialObjectsInAlgebraicTopology.pdf" title="pdf">pdf</a>)</p> </li> <li id="GonzalezDiazReal99"> <p>Rocio Gonzalez-Diaz, Pedro Real, <em>A Combinatorial Method for Computing Steenrod Squares</em>, Journal of Pure and Applied Algebra 139 (1999) 89-108 (<a href="https://arxiv.org/abs/math/0110308">arXiv:math/0110308</a>)</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on September 13, 2021 at 07:36:46. See the <a href="/nlab/history/Alexander-Whitney+map" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Alexander-Whitney+map" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/Alexander-Whitney+map/6" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Alexander-Whitney+map" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Alexander-Whitney+map" accesskey="S" class="navlink" id="history" rel="nofollow">History (6 revisions)</a> <a href="/nlab/show/Alexander-Whitney+map/cite" style="color: black">Cite</a> <a href="/nlab/print/Alexander-Whitney+map" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Alexander-Whitney+map" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>