CINXE.COM

Serre spectral sequence in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Serre spectral sequence in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Serre spectral sequence </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/7139/#Item_8" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="algebraic_topology">Algebraic topology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></strong> – application of <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a> and <a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a> to the study of (<a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable</a>) <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+type">homotopy type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy</a></p> <p><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></p> <p><a class="existingWikiWord" href="/nlab/show/homology">homology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence">spectral sequence</a></p> </li> </ul> </div></div> <h4 id="homological_algebra">Homological algebra</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a></strong></p> <p>(also <a class="existingWikiWord" href="/nlab/show/nonabelian+homological+algebra">nonabelian homological algebra</a>)</p> <p><em><a class="existingWikiWord" href="/schreiber/show/Introduction+to+Homological+Algebra">Introduction</a></em></p> <p><strong>Context</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/additive+and+abelian+categories">additive and abelian categories</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ab-enriched+category">Ab-enriched category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pre-additive+category">pre-additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/additive+category">additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pre-abelian+category">pre-abelian category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+category">Grothendieck category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaves">abelian sheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semi-abelian+category">semi-abelian category</a></p> </li> </ul> <p><strong>Basic definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/kernel">kernel</a>, <a class="existingWikiWord" href="/nlab/show/cokernel">cokernel</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex">complex</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential">differential</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homology">homology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+chain+complexes">category of chain complexes</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+complex">chain complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+map">chain map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+homotopy">chain homotopy</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+homology+and+cohomology">chain homology and cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-isomorphism">quasi-isomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homological+resolution">homological resolution</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cochain+on+a+simplicial+set">simplicial homology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+homology">generalized homology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/exact+sequence">exact sequence</a>,</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/short+exact+sequence">short exact sequence</a>, <a class="existingWikiWord" href="/nlab/show/long+exact+sequence">long exact sequence</a>, <a class="existingWikiWord" href="/nlab/show/split+exact+sequence">split exact sequence</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+object">injective object</a>, <a class="existingWikiWord" href="/nlab/show/projective+object">projective object</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+resolution">injective resolution</a>, <a class="existingWikiWord" href="/nlab/show/projective+resolution">projective resolution</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/flat+resolution">flat resolution</a></p> </li> </ul> </li> </ul> <p><strong>Stable homotopy theory notions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+category">derived category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/triangulated+category">triangulated category</a>, <a class="existingWikiWord" href="/nlab/show/enhanced+triangulated+category">enhanced triangulated category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+model+category">stable model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pretriangulated+dg-category">pretriangulated dg-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E-category">A-∞-category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+chain+complexes">(∞,1)-category of chain complexes</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+functor">derived functor</a>, <a class="existingWikiWord" href="/nlab/show/derived+functor+in+homological+algebra">derived functor in homological algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Tor">Tor</a>, <a class="existingWikiWord" href="/nlab/show/Ext">Ext</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+limit">homotopy limit</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+colimit">homotopy colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lim%5E1+and+Milnor+sequences">lim^1 and Milnor sequences</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fr-code">fr-code</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> </li> </ul> <p><strong>Constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/double+complex">double complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Koszul-Tate+resolution">Koszul-Tate resolution</a>, <a class="existingWikiWord" href="/nlab/show/BRST-BV+complex">BRST-BV complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence">spectral sequence</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence+of+a+filtered+complex">spectral sequence of a filtered complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence+of+a+double+complex">spectral sequence of a double complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+spectral+sequence">Grothendieck spectral sequence</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Leray+spectral+sequence">Leray spectral sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Serre+spectral+sequence">Serre spectral sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild-Serre+spectral+sequence">Hochschild-Serre spectral sequence</a></p> </li> </ul> </li> </ul> </li> </ul> <p><strong>Lemmas</strong></p> <p><a class="existingWikiWord" href="/nlab/show/diagram+chasing">diagram chasing</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/3x3+lemma">3x3 lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/four+lemma">four lemma</a>, <a class="existingWikiWord" href="/nlab/show/five+lemma">five lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/snake+lemma">snake lemma</a>, <a class="existingWikiWord" href="/nlab/show/connecting+homomorphism">connecting homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/horseshoe+lemma">horseshoe lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Baer%27s+criterion">Baer's criterion</a></p> </li> </ul> <p><a class="existingWikiWord" href="/nlab/show/Schanuel%27s+lemma">Schanuel's lemma</a></p> <p><strong>Homology theories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/singular+homology">singular homology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cyclic+homology">cyclic homology</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Dold-Kan+correspondence">Dold-Kan correspondence</a> / <a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal</a>, <a class="existingWikiWord" href="/nlab/show/operadic+Dold-Kan+correspondence">operadic</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Moore+complex">Moore complex</a>, <a class="existingWikiWord" href="/nlab/show/Alexander-Whitney+map">Alexander-Whitney map</a>, <a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+map">Eilenberg-Zilber map</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+theorem">Eilenberg-Zilber theorem</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cochain+on+a+simplicial+set">cochain on a simplicial set</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+coefficient+theorem">universal coefficient theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K%C3%BCnneth+theorem">Künneth theorem</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <ul> <li><a href='#InOrdinaryCohomology'>In ordinary cohomology</a></li> <li><a href='#in_generalized_cohomology'>In generalized cohomology</a></li> <li><a href='#InRelativeCohomology'>In relative cohomology</a></li> <li><a href='#in_equivariant_cohomology'>In equivariant cohomology</a></li> </ul> <li><a href='#details'>Details</a></li> <li><a href='#examples'>Examples</a></li> <li><a href='#consequences'>Consequences</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#general'>General</a></li> <li><a href='#in_equivariant_cohomology_2'>In equivariant cohomology</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <h3 id="InOrdinaryCohomology">In ordinary cohomology</h3> <p>The <em>Serre spectral sequence</em> or <em>Leray-Serre spectral sequence</em> is a <a class="existingWikiWord" href="/nlab/show/spectral+sequence">spectral sequence</a> for computation of <a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a> (<a class="existingWikiWord" href="/nlab/show/ordinary+homology">ordinary homology</a>) of <a class="existingWikiWord" href="/nlab/show/topological+spaces">topological spaces</a> in a <a class="existingWikiWord" href="/nlab/show/Serre+fibration">Serre</a>-<a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a> of <a class="existingWikiWord" href="/nlab/show/topological+spaces">topological spaces</a>.</p> <p> <div class='num_prop' id='OrdinaryCohomologicalSerreSpectralSequence'> <h6>Proposition</h6> <p><strong>(ordinary cohomology Serre spectral sequence)</strong><br /></p> <p>Given a <a class="existingWikiWord" href="/nlab/show/homotopy+fiber+sequence">homotopy fiber sequence</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>F</mi></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>E</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>p</mi></mpadded></msup></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mi>X</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ F &amp;\longrightarrow&amp; E \\ &amp;&amp; \downarrow^{\mathrlap{p}} \\ &amp;&amp; X } </annotation></semantics></math></div> <p>over a <a class="existingWikiWord" href="/nlab/show/connected+topological+space">connected topological space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, such that the canonical <a class="existingWikiWord" href="/nlab/show/group+action">group action</a> of the <a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_1(X)</annotation></semantics></math> on the <a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a> of the <a class="existingWikiWord" href="/nlab/show/fiber">fiber</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/trivial+action">trivial</a> (for instance if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/simply+connected+topological+space">simply connected topological space</a>), then there exists a <em>cohomology Serre spectral sequence</em> of the form:</p> <div class="maruku-equation" id="eq:SecondPageAndConvergenceOfOrdinaryCohomologicalSerreSpectralSequence"><span class="maruku-eq-number">(1)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>E</mi> <mn>2</mn> <mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><msup><mi>H</mi> <mi>p</mi></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>X</mi><mo>,</mo><mspace width="thinmathspace"></mspace><msup><mi>H</mi> <mi>q</mi></msup><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>⇒</mo><mspace width="thickmathspace"></mspace><msup><mi>H</mi> <mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></msup><mo stretchy="false">(</mo><mi>E</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> E_2^{p,q} \;=\; H^p \big( X, \, H^q(F) \big) \;\Rightarrow\; H^{p+q}(E) \,. </annotation></semantics></math></div> <p></p> </div> </p> <p>(e.g. <a href="#Hatcher">Hatcher, Thm. 1.14</a>)</p> <p id="ConvergenceOfTheOrdinaryCohomologySSS"> Hence for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math> we have a <a class="existingWikiWord" href="/nlab/show/filtration">filtration</a> of <a class="existingWikiWord" href="/nlab/show/abelian+groups">abelian groups</a></p> <div class="maruku-equation" id="eq:FilteringForOrdinaryCohomologySerreSpectralSequence"><span class="maruku-eq-number">(2)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>0</mn><mover><mo>↪</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msubsup><mi>E</mi> <mn>∞</mn> <mrow><mi>n</mi><mo>,</mo><mn>0</mn></mrow></msubsup><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><msubsup><mi>F</mi> <mi>n</mi> <mi>n</mi></msubsup><mover><mo>↪</mo><mrow><msubsup><mi>E</mi> <mn>∞</mn> <mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msubsup></mrow></mover><msubsup><mi>F</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow> <mi>n</mi></msubsup><mover><mo>↪</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mi>⋯</mi><mover><mo>↪</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><msubsup><mi>F</mi> <mn>1</mn> <mi>n</mi></msubsup><mover><mo>↪</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msubsup><mi>E</mi> <mn>∞</mn> <mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msubsup><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><msubsup><mi>F</mi> <mn>0</mn> <mi>n</mi></msubsup><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><msup><mi>H</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>E</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> 0 \xhookrightarrow{ \;\; E^{n,0}_\infty \;\; } F^n_n \xhookrightarrow{ E^{n-1,1}_\infty } F^n_{n-1} \xhookrightarrow{\;\;\;\;\;} \cdots \xhookrightarrow{\;\;\;\;\;} F^n_{1} \xhookrightarrow{ \;\; E^{0,n}_\infty \;\; } F^n_0 \;=\; H^n(E) \,, </annotation></semantics></math></div> <p>where</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>F</mi> <mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow> <mi>n</mi></msubsup><mover><mo>↪</mo><mrow><msubsup><mi>E</mi> <mn>∞</mn> <mrow><mi>p</mi><mo>,</mo><mi>n</mi><mo>−</mo><mi>p</mi></mrow></msubsup></mrow></mover><msubsup><mi>F</mi> <mi>p</mi> <mi>n</mi></msubsup><mphantom><mi>AAAA</mi></mphantom><mtext>means that</mtext><mphantom><mi>AAAA</mi></mphantom><mn>0</mn><mo>→</mo><msubsup><mi>F</mi> <mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow> <mi>n</mi></msubsup><mover><mo>↪</mo><mspace width="thickmathspace"></mspace></mover><msubsup><mi>F</mi> <mi>p</mi> <mi>n</mi></msubsup><mo>↠</mo><msubsup><mi>E</mi> <mn>∞</mn> <mrow><mi>p</mi><mo>,</mo><mi>n</mi><mo>−</mo><mi>p</mi></mrow></msubsup><mo>→</mo><mn>0</mn><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> F^n_{p+1} \xhookrightarrow{ E^{p,n-p}_\infty } F^n_{p} {\phantom{AAAA}} \text{means that} {\phantom{AAAA}} 0 \to F^n_{p+1} \xhookrightarrow{\;} F^n_{p} \twoheadrightarrow E^{p,n-p}_\infty \to 0 \,, </annotation></semantics></math></div> <p>hence that – iteratively as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> <em>decreases</em> – <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>F</mi> <mi>p</mi> <mi>n</mi></msubsup></mrow><annotation encoding="application/x-tex">F^n_p</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/algebra+extension">extension</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>E</mi> <mn>∞</mn> <mrow><mi>p</mi><mo>,</mo><mi>n</mi><mo>−</mo><mi>p</mi></mrow></msubsup></mrow><annotation encoding="application/x-tex">E^{p,n-p}_\infty</annotation></semantics></math> by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>F</mi> <mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow> <mi>n</mi></msubsup></mrow><annotation encoding="application/x-tex">F^n_{p+1}</annotation></semantics></math>.</p> <h3 id="in_generalized_cohomology">In generalized cohomology</h3> <p>The generalization of this from <a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a> to <a class="existingWikiWord" href="/nlab/show/generalized+%28Eilenberg-Steenrod%29+cohomology">generalized (Eilenberg-Steenrod) cohomology</a> is the <em><a class="existingWikiWord" href="/nlab/show/Atiyah-Hirzebruch+spectral+sequence">Atiyah-Hirzebruch spectral sequence</a></em>, see there for details.</p> <h3 id="InRelativeCohomology">In relative cohomology</h3> <p>There are two kinds of <strong>relative Serre spectral sequences</strong>.</p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>→</mo><mi>E</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">F \to E \to X</annotation></semantics></math> as above and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>↪</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">A \hookrightarrow X</annotation></semantics></math> a subspace, the induced restriction of the fibration</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>F</mi></mtd> <mtd><mo>≃</mo></mtd> <mtd><mi>F</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><msup><mi>p</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>E</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>p</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>A</mi></mtd> <mtd><mo>↪</mo></mtd> <mtd><mi>X</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ F &amp; \simeq &amp; F \\ \downarrow &amp;&amp; \downarrow \\ p^{-1}(A) &amp;\longrightarrow&amp; E \\ \downarrow &amp;&amp; \downarrow^{\mathrlap{p}} \\ A &amp;\hookrightarrow&amp; X } </annotation></semantics></math></div> <p>induces a spectral sequence in <a class="existingWikiWord" href="/nlab/show/relative+cohomology">relative cohomology</a> of the base space of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>E</mi> <mn>2</mn> <mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>=</mo><msup><mi>H</mi> <mi>p</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo>;</mo><msup><mi>H</mi> <mi>q</mi></msup><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>⇒</mo><mspace width="thickmathspace"></mspace><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy="false">(</mo><mi>E</mi><mo>,</mo><msup><mi>p</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> E_2^{p,q} = H^p(X,A; H^q(F)) \;\Rightarrow\; H^\bullet(E, p^{-1}(A)) \,. </annotation></semantics></math></div> <p>(e.g. <a href="#Davis91">Davis 91, theorem 9.33</a>)</p> <p>Conversely, for</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>F</mi><mo>′</mo></mtd> <mtd><mo>↪</mo></mtd> <mtd><mi>F</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>E</mi><mo>′</mo></mtd> <mtd><mo>↪</mo></mtd> <mtd><mi>E</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>p</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>X</mi></mtd> <mtd><mo>↪</mo></mtd> <mtd><mi>X</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ F' &amp; \hookrightarrow &amp; F \\ \downarrow &amp;&amp; \downarrow \\ E' &amp;\hookrightarrow&amp; E \\ \downarrow &amp;&amp; \downarrow^{\mathrlap{p}} \\ X &amp;\hookrightarrow&amp; X } </annotation></semantics></math></div> <p>a sub-fibration over the same base, then this induces a spectral sequence for <a class="existingWikiWord" href="/nlab/show/relative+cohomology">relative cohomology</a> of the the total space in terms of ordinary cohomology with coefficients in the relative cohomology of the fibers:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>E</mi> <mn>2</mn> <mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>=</mo><msup><mi>H</mi> <mi>p</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo>;</mo><msup><mi>H</mi> <mi>q</mi></msup><mo stretchy="false">(</mo><mi>F</mi><mo>,</mo><mi>F</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>⇒</mo><mspace width="thickmathspace"></mspace><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy="false">(</mo><mi>E</mi><mo>,</mo><mi>E</mi><mo>′</mo><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> E^{p,q}_2 = H^p(X; H^q(F,F')) \;\Rightarrow\; H^\bullet(E,E') \,. </annotation></semantics></math></div> <p>(e.g. <a href="#Kochman96">Kochman 96, theorem 2.6.3</a>, <a href="#Davis91">Davis 91, theorem 9.34</a>)</p> <h3 id="in_equivariant_cohomology">In equivariant cohomology</h3> <p>There is also a generalization to <a class="existingWikiWord" href="/nlab/show/equivariant+cohomology">equivariant cohomology</a>: for <a href="Mackey+functor#Cohomology">cohomology with coefficients in a Mackey functor</a> with<a class="existingWikiWord" href="/nlab/show/RO%28G%29-grading">RO(G)-grading</a> for <a class="existingWikiWord" href="/nlab/show/representation+spheres">representation spheres</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mi>V</mi></msup></mrow><annotation encoding="application/x-tex">S^V</annotation></semantics></math>, then for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">E \to X</annotation></semantics></math> an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>-fibration of <a class="existingWikiWord" href="/nlab/show/topological+G-spaces">topological G-spaces</a> and for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/Mackey+functor">Mackey functor</a>, the equivariant Serre spectral sequence looks like (<a href="#Kronholm10">Kronholm 10, theorem 3.1</a>):</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>E</mi> <mn>2</mn> <mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>=</mo><msup><mi>H</mi> <mi>p</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msup><mi>H</mi> <mrow><mi>V</mi><mo>+</mo><mi>q</mi></mrow></msup><mo stretchy="false">(</mo><mi>F</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>⇒</mo><mspace width="thinmathspace"></mspace><msup><mi>H</mi> <mrow><mi>V</mi><mo>+</mo><mi>p</mi><mo>+</mo><mi>q</mi></mrow></msup><mo stretchy="false">(</mo><mi>E</mi><mo>,</mo><mi>A</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> E_2^{p,q} = H^p(X, H^{V+q}(F,A)) \,\Rightarrow\, H^{V+p+q}(E,A) \,, </annotation></semantics></math></div> <p>where on the left in the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">E_2</annotation></semantics></math>-page we have <a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a> with <a class="existingWikiWord" href="/nlab/show/coefficients">coefficients</a> in the genuine equivariant cohomology groups of the fiber.</p> <h2 id="details">Details</h2> <p>For details on the plain Serre spectral sequence see at <em><a class="existingWikiWord" href="/nlab/show/Atiyah-Hirzebruch+spectral+sequence">Atiyah-Hirzebruch spectral sequence</a></em> and take <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>=</mo><mi>H</mi><mi>R</mi></mrow><annotation encoding="application/x-tex">E = H R</annotation></semantics></math> to be ordinary cohomology.</p> <h2 id="examples">Examples</h2> <p> <div class='num_remark' id='IntegralCohomologyOfHomotopyQuotientOf4SphereByADEAction'> <h6>Example</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a> of <a class="existingWikiWord" href="/nlab/show/homotopy+quotient">homotopy quotient</a> of <a class="existingWikiWord" href="/nlab/show/4-sphere">4-sphere</a> by <a class="existingWikiWord" href="/nlab/show/finite+subgroup+of+SU%282%29">finite subgroup of SU(2)</a>)</strong> <br /></p> <p>Let</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mover><mo>↪</mo><mrow><mspace width="thickmathspace"></mspace><mi>i</mi><mspace width="thickmathspace"></mspace></mrow></mover><mi>Sp</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>SU</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>Spin</mi><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G \xhookrightarrow{\;i\;} Sp(1) \simeq SU(2) \simeq Spin(3)</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/finite+subgroup+of+SU%282%29">finite subgroup of SU(2)</a>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mi>G</mi><mi>Actions</mi><mo stretchy="false">(</mo><msub><mi>VectorSpaces</mi> <mi>ℝ</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbb{H} \,\in\, G Actions(VectorSpaces_{\mathbb{R}})</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/linear+representation">linear representation</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> on the <a class="existingWikiWord" href="/nlab/show/quaternions">quaternions</a>, regarded as a 4d <a class="existingWikiWord" href="/nlab/show/real+vector+space">real vector space</a>, which is the <a class="existingWikiWord" href="/nlab/show/restricted+representation">restricted representation</a> of the defining representation of <a class="existingWikiWord" href="/nlab/show/Sp%281%29">Sp(1)</a>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mi>ℍ</mi></msup><mo>∈</mo><mi>G</mi><mi>Actions</mi><mo stretchy="false">(</mo><mi>TopologicalSpaces</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">S^{\mathbb{H}} \in G Actions(TopologicalSpaces)</annotation></semantics></math> the corresponding <a class="existingWikiWord" href="/nlab/show/representation+sphere">representation sphere</a>.</p> </li> </ul> <p>Then the <a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a> in degree 4 of the <a class="existingWikiWord" href="/nlab/show/homotopy+quotient">homotopy quotient</a> is the <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a></p> <div class="maruku-equation" id="eq:Integral4CohomologyOfHomotopyQuotientOf4SphereByFiniteSubgroupOfSU2"><span class="maruku-eq-number">(3)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>4</mn></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>S</mi> <mi>ℍ</mi></msup><mspace width="negativethinmathspace"></mspace><mo>⫽</mo><mspace width="negativethinmathspace"></mspace><mi>G</mi><mo>,</mo><mspace width="thinmathspace"></mspace><mi>ℤ</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>ℤ</mi><mo>⊕</mo><mo stretchy="false">(</mo><mi>ℤ</mi><mo stretchy="false">/</mo><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> H^4 \big( S^{\mathbb{H}} \!\sslash\! G, \, \mathbb{Z} \big) \;\; \simeq \;\; \mathbb{Z} \oplus (\mathbb{Z}/\left\vert G \right\vert) </annotation></semantics></math></div> <p>of the <a class="existingWikiWord" href="/nlab/show/integers">integers</a> with the <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a> of <a class="existingWikiWord" href="/nlab/show/order+of+a+group">order</a> that of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>.</p> <p></p> </div> <div class='proof'> <h6>Proof</h6> <p>By the <a class="existingWikiWord" href="/nlab/show/Borel+construction">Borel construction</a> we have a <a class="existingWikiWord" href="/nlab/show/homotopy+fiber+sequence">homotopy fiber sequence</a> of the form</p> <div class="maruku-equation" id="eq:BorelConstructionFor4SphereActedOnByADESubgroup"><span class="maruku-eq-number">(4)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msup><mi>S</mi> <mn>4</mn></msup></mtd> <mtd><mo>⟶</mo></mtd> <mtd><msup><mi>S</mi> <mi>ℍ</mi></msup><mspace width="negativethinmathspace"></mspace><mo>⫽</mo><mspace width="negativethinmathspace"></mspace><mi>G</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mi>B</mi><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ S^4 &amp;\longrightarrow&amp; S^{\mathbb{H}} \!\sslash\! G \\ &amp;&amp; \big\downarrow \\ &amp;&amp; B G } </annotation></semantics></math></div> <p>over the <a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>.</p> <p>Here the <a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a> of the <a class="existingWikiWord" href="/nlab/show/4-sphere">4-sphere</a> <a class="existingWikiWord" href="/nlab/show/fiber">fiber</a> is (e.g. by the nature of the <a class="existingWikiWord" href="/nlab/show/Eilenberg-MacLane+space">Eilenberg-MacLane space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi><mo stretchy="false">(</mo><mi>ℤ</mi><mo>,</mo><mn>4</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">K(\mathbb{Z},4)</annotation></semantics></math>)</p> <div class="maruku-equation" id="eq:IntegralCohomologyOfThe4Sphere"><span class="maruku-eq-number">(5)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mi>n</mi></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>S</mi> <mn>4</mn></msup><mo>,</mo><mspace width="thinmathspace"></mspace><mi>ℤ</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mrow><mo>{</mo><mrow><mtable><mtr><mtd><mi>ℤ</mi></mtd> <mtd><mi>for</mi></mtd> <mtd><mi>n</mi><mo>∈</mo><mo stretchy="false">{</mo><mn>0</mn><mo>,</mo><mn>4</mn><mo stretchy="false">}</mo></mtd></mtr> <mtr><mtd><mn>0</mn></mtd> <mtd><mtext>otherwise</mtext><mspace width="thinmathspace"></mspace><mo>.</mo></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding="application/x-tex"> H^n \big( S^4, \, \mathbb{Z} \big) \;\simeq\; \left\{ \array{ \mathbb{Z} &amp; for &amp; n \in \{0,4\} \\ 0 &amp; \text{otherwise} \,. } \right. </annotation></semantics></math></div> <p>We claim that the <a class="existingWikiWord" href="/nlab/show/group+action">group action</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>B</mi><mi>G</mi><mo stretchy="false">)</mo><mo>≃</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">\pi_1(B G) \simeq G</annotation></semantics></math> (by <a href="simplicial+classifying+space#HomotopyGroupsOfBarWG">this Prop.</a>) on the <a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a> of the <a class="existingWikiWord" href="/nlab/show/fiber">fiber</a> is <a class="existingWikiWord" href="/nlab/show/trivial+action">trivial</a>. This follows by observing that:</p> <ol> <li> <p>we have an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> of <a class="existingWikiWord" href="/nlab/show/topological+G-spaces">topological G-spaces</a> between the <a class="existingWikiWord" href="/nlab/show/representation+sphere">representation sphere</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{H}</annotation></semantics></math> and the <a class="existingWikiWord" href="/nlab/show/unit+sphere">unit sphere</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi><mo>⊕</mo><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R} \oplus \mathbb{H}</annotation></semantics></math> (by <a href="representation+sphere#RepresentationSpheresAsUnitSpheres">this Prop.</a>):</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mi>ℍ</mi></msup><mspace width="thickmathspace"></mspace><msub><mo>≃</mo> <mi>G</mi></msub><mspace width="thickmathspace"></mspace><mi>S</mi><mo stretchy="false">(</mo><mi>ℝ</mi><mo>⊕</mo><mi>ℍ</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>;</mo></mrow><annotation encoding="application/x-tex"> S^{\mathbb{H}} \;\simeq_{G}\; S(\mathbb{R} \oplus \mathbb{H}) \,; </annotation></semantics></math></div></li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/group+action">group action</a> of <a class="existingWikiWord" href="/nlab/show/Sp%281%29">Sp(1)</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi><msub><mo>≃</mo> <mi>ℝ</mi></msub><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{H} \simeq_{\mathbb{R}} \mathbb{R}^4</annotation></semantics></math> is through the defining action of <a class="existingWikiWord" href="/nlab/show/SO%284%29">SO(4)</a>, hence the action on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi><mo>⊕</mo><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R} \oplus \mathbb{H}</annotation></semantics></math> is through <a class="existingWikiWord" href="/nlab/show/SO%285%29">SO(5)</a>,</p> <p>because <a class="existingWikiWord" href="/nlab/show/quaternions">quaternions</a> are a <a class="existingWikiWord" href="/nlab/show/normed+division+algebra">normed division algebra</a>, so that left-multiplication by unit-<a class="existingWikiWord" href="/nlab/show/norm">norm</a> quaternions <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo>∈</mo></mrow><annotation encoding="application/x-tex">q \in</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Sp%281%29">Sp(1)</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>=</mo><mi>S</mi><mo stretchy="false">(</mo><mi>ℍ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">= S(\mathbb{H})</annotation></semantics></math> preserves the <a class="existingWikiWord" href="/nlab/show/norm">norm</a> (e.g <a class="existingWikiWord" href="/schreiber/show/Equivariant+homotopy+and+super+M-branes">HSS 18, Rem. A.8</a>);</p> </li> <li> <p>the generator of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>4</mn></msup><mo stretchy="false">(</mo><msup><mi>S</mi> <mn>4</mn></msup><mo>,</mo><mi>ℤ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^4(S^4,\mathbb{Z})</annotation></semantics></math> may be identified with the <a class="existingWikiWord" href="/nlab/show/volume+form">volume form</a> (under the <a class="existingWikiWord" href="/nlab/show/Hopf+degree+theorem">Hopf degree theorem</a> and the <a class="existingWikiWord" href="/nlab/show/de+Rham+theorem">de Rham theorem</a>) which is manifestly preserved by the action of the <a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SO</mi><mo stretchy="false">(</mo><mn>5</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">SO(5)</annotation></semantics></math>.</p> </li> </ol> <p>Therefore, the <a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral</a>-cohomological Serre spectral sequence (Prop. <a class="maruku-ref" href="#OrdinaryCohomologicalSerreSpectralSequence"></a>) applies to the Borel fiber sequence <a class="maruku-eqref" href="#eq:BorelConstructionFor4SphereActedOnByADESubgroup">(4)</a>.</p> <p>Now, noticing that the <a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a> of a <a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a> of a <a class="existingWikiWord" href="/nlab/show/discrete+group">discrete group</a> is its <a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy="false">(</mo><mi>B</mi><mi>G</mi><mo>,</mo><mi>ℤ</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msubsup><mi>H</mi> <mi>grp</mi> <mo>•</mo></msubsup><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>ℤ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> H^\bullet(B G, \mathbb{Z}) \;\simeq\; H^\bullet_{grp}(G, \mathbb{Z}) </annotation></semantics></math></div> <p>we have for the given <a class="existingWikiWord" href="/nlab/show/finite+subgroup+of+SU%282%29">finite subgroup of SU(2)</a> (by <a href="finite+rotation+group#GroupCohomologyOfFiniteSubgroupsOfSU2">this Prop</a>) that:</p> <div class="maruku-equation" id="eq:IntegralCohomologyOfClassifyingSpaceOfFiniteSubgroupOfSU2"><span class="maruku-eq-number">(6)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>B</mi><mi>G</mi><mo>,</mo><mi>ℤ</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mrow><mo>{</mo><mrow><mtable><mtr><mtd><mi>ℤ</mi></mtd> <mtd><mo stretchy="false">|</mo></mtd> <mtd><mi>n</mi><mo>=</mo><mn>0</mn></mtd></mtr> <mtr><mtd><msup><mi>G</mi> <mi>ab</mi></msup></mtd> <mtd><mo stretchy="false">|</mo></mtd> <mtd><mi>n</mi><mo>=</mo><mn>2</mn><mspace width="thinmathspace"></mspace><mi>mod</mi><mspace width="thinmathspace"></mspace><mn>4</mn></mtd></mtr> <mtr><mtd><mi>ℤ</mi><mo stretchy="false">/</mo><mrow><mo stretchy="false">|</mo><mi>G</mi><mo stretchy="false">|</mo></mrow></mtd> <mtd><mo stretchy="false">|</mo></mtd> <mtd><mi>n</mi><mspace width="thinmathspace"></mspace><mtext>positive multiple of</mtext><mspace width="thinmathspace"></mspace><mn>4</mn></mtd></mtr> <mtr><mtd><mn>0</mn></mtd> <mtd><mo stretchy="false">|</mo></mtd> <mtd><mtext>otherwise</mtext><mspace width="thinmathspace"></mspace><mo>,</mo></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding="application/x-tex"> H^n(B G, \mathbb{Z}) \;\simeq\; \left\{ \array{ \mathbb{Z} &amp;\vert&amp; n = 0 \\ G^{ab} &amp;\vert&amp; n = 2 \, mod \, 4 \\ \mathbb{Z}/{\vert G \vert} &amp;\vert&amp; n \, \text{positive multiple of} \, 4 \\ 0 &amp;\vert&amp; \text{otherwise} \,, } \right. </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>G</mi> <mi>ab</mi></msup><mo>≔</mo><mi>G</mi><mo stretchy="false">/</mo><mo stretchy="false">[</mo><mi>G</mi><mo>,</mo><mi>G</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">G^{ab} \coloneqq G / [G,G]</annotation></semantics></math> denotes the <a class="existingWikiWord" href="/nlab/show/abelianization">abelianization</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>.</p> <p>Using the cohomology groups <a class="maruku-eqref" href="#eq:IntegralCohomologyOfThe4Sphere">(5)</a> and <a class="maruku-eqref" href="#eq:IntegralCohomologyOfClassifyingSpaceOfFiniteSubgroupOfSU2">(6)</a> in the fomula <a class="maruku-eqref" href="#eq:SecondPageAndConvergenceOfOrdinaryCohomologicalSerreSpectralSequence">(1)</a> for the second page <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>E</mi> <mn>2</mn> <mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup></mrow><annotation encoding="application/x-tex">E_2^{\bullet, \bullet}</annotation></semantics></math> of the cohomology Serre spectral sequence (Prop. <a class="maruku-ref" href="#OrdinaryCohomologicalSerreSpectralSequence"></a>) shows that this is of the following form:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="243.552" height="185.089" viewBox="0 0 243.552 185.089"> <defs> <g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-0"> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1"> <path d="M 2.203125 -0.578125 C 2.203125 -0.90625 1.921875 -1.15625 1.625 -1.15625 C 1.28125 -1.15625 1.046875 -0.890625 1.046875 -0.578125 C 1.046875 -0.234375 1.34375 0 1.609375 0 C 1.9375 0 2.203125 -0.25 2.203125 -0.578125 Z M 2.203125 -0.578125 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2"> <path d="M 5.359375 -3.828125 C 5.359375 -4.8125 5.296875 -5.78125 4.859375 -6.6875 C 4.375 -7.6875 3.515625 -7.953125 2.921875 -7.953125 C 2.234375 -7.953125 1.390625 -7.609375 0.9375 -6.609375 C 0.609375 -5.859375 0.484375 -5.109375 0.484375 -3.828125 C 0.484375 -2.671875 0.578125 -1.796875 1 -0.9375 C 1.46875 -0.03125 2.296875 0.25 2.921875 0.25 C 3.953125 0.25 4.546875 -0.375 4.90625 -1.0625 C 5.328125 -1.953125 5.359375 -3.125 5.359375 -3.828125 Z M 2.921875 0.015625 C 2.53125 0.015625 1.75 -0.203125 1.53125 -1.5 C 1.40625 -2.21875 1.40625 -3.125 1.40625 -3.96875 C 1.40625 -4.953125 1.40625 -5.828125 1.59375 -6.53125 C 1.796875 -7.34375 2.40625 -7.703125 2.921875 -7.703125 C 3.375 -7.703125 4.0625 -7.4375 4.296875 -6.40625 C 4.453125 -5.71875 4.453125 -4.78125 4.453125 -3.96875 C 4.453125 -3.171875 4.453125 -2.265625 4.3125 -1.53125 C 4.09375 -0.21875 3.328125 0.015625 2.921875 0.015625 Z M 2.921875 0.015625 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-0"> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1"> <path d="M 2.296875 -2.984375 C 2.296875 -3.328125 2.015625 -3.625 1.65625 -3.625 C 1.3125 -3.625 1.03125 -3.328125 1.03125 -2.984375 C 1.03125 -2.640625 1.3125 -2.359375 1.65625 -2.359375 C 2.015625 -2.359375 2.296875 -2.640625 2.296875 -2.984375 Z M 2.296875 -2.984375 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-2-0"> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-2-1"> <path d="M 7.125 -7.75 C 7.234375 -7.90625 7.234375 -7.9375 7.234375 -7.96875 C 7.234375 -8.1875 7.046875 -8.1875 6.84375 -8.1875 L 1.359375 -8.1875 C 0.984375 -8.1875 0.984375 -8.15625 0.9375 -7.84375 L 0.765625 -6.234375 L 0.734375 -6.078125 C 0.734375 -5.90625 0.875 -5.84375 0.953125 -5.84375 C 1.0625 -5.84375 1.140625 -5.921875 1.15625 -6.03125 C 1.203125 -6.3125 1.3125 -6.84375 2.046875 -7.296875 C 2.71875 -7.734375 3.5625 -7.765625 3.96875 -7.765625 L 4.9375 -7.765625 L 0.4375 -0.4375 C 0.328125 -0.28125 0.328125 -0.25 0.328125 -0.21875 C 0.328125 0 0.53125 0 0.734375 0 L 6.875 0 C 7.234375 0 7.234375 -0.03125 7.28125 -0.328125 L 7.609375 -2.6875 C 7.609375 -2.828125 7.5 -2.90625 7.40625 -2.90625 C 7.21875 -2.90625 7.203125 -2.78125 7.15625 -2.546875 C 6.953125 -1.5625 6.03125 -0.421875 4.328125 -0.421875 L 2.625 -0.421875 Z M 1.34375 -7.765625 L 1.984375 -7.765625 L 1.984375 -7.75 C 1.65625 -7.578125 1.4375 -7.359375 1.296875 -7.234375 Z M 5.421875 -7.765625 L 6.640625 -7.765625 L 2.140625 -0.421875 L 0.921875 -0.421875 Z M 6.0625 -0.4375 C 6.390625 -0.625 6.703125 -0.890625 6.984375 -1.21875 C 6.953125 -0.984375 6.9375 -0.84375 6.875 -0.421875 L 6.0625 -0.421875 Z M 6.0625 -0.4375 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-3-0"> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-3-1"> <path d="M 8.921875 -8.3125 C 8.921875 -8.421875 8.828125 -8.421875 8.8125 -8.421875 C 8.78125 -8.421875 8.734375 -8.421875 8.640625 -8.296875 L 7.8125 -7.296875 C 7.75 -7.40625 7.515625 -7.8125 7.046875 -8.09375 C 6.53125 -8.421875 6.03125 -8.421875 5.84375 -8.421875 C 3.28125 -8.421875 0.59375 -5.8125 0.59375 -2.984375 C 0.59375 -1.015625 1.953125 0.25 3.75 0.25 C 4.609375 0.25 5.703125 -0.03125 6.296875 -0.78125 C 6.4375 -0.328125 6.6875 -0.015625 6.78125 -0.015625 C 6.84375 -0.015625 6.84375 -0.046875 6.859375 -0.046875 C 6.875 -0.078125 6.96875 -0.484375 7.03125 -0.703125 L 7.21875 -1.46875 C 7.3125 -1.859375 7.359375 -2.03125 7.453125 -2.390625 C 7.5625 -2.84375 7.59375 -2.875 8.25 -2.890625 C 8.296875 -2.890625 8.4375 -2.890625 8.4375 -3.125 C 8.4375 -3.234375 8.3125 -3.234375 8.28125 -3.234375 C 8.078125 -3.234375 7.859375 -3.21875 7.640625 -3.21875 L 7 -3.21875 C 6.484375 -3.21875 5.96875 -3.234375 5.46875 -3.234375 C 5.359375 -3.234375 5.21875 -3.234375 5.21875 -3.03125 C 5.21875 -2.90625 5.3125 -2.90625 5.3125 -2.890625 L 5.625 -2.890625 C 6.5625 -2.890625 6.5625 -2.796875 6.5625 -2.625 C 6.5625 -2.609375 6.328125 -1.40625 6.109375 -1.046875 C 5.65625 -0.375 4.703125 -0.09375 4 -0.09375 C 3.078125 -0.09375 1.59375 -0.578125 1.59375 -2.640625 C 1.59375 -3.4375 1.875 -5.265625 3.03125 -6.625 C 3.796875 -7.484375 4.90625 -8.0625 5.953125 -8.0625 C 7.359375 -8.0625 7.859375 -6.859375 7.859375 -5.765625 C 7.859375 -5.5625 7.8125 -5.3125 7.8125 -5.140625 C 7.8125 -5.03125 7.9375 -5.03125 7.96875 -5.03125 C 8.109375 -5.03125 8.109375 -5.046875 8.15625 -5.265625 Z M 8.921875 -8.3125 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-0"> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-1"> <path d="M 3.34375 -2.375 C 3.34375 -3.15625 2.59375 -3.546875 1.859375 -3.546875 C 1.203125 -3.546875 0.609375 -3.296875 0.609375 -2.765625 C 0.609375 -2.53125 0.78125 -2.390625 0.984375 -2.390625 C 1.21875 -2.390625 1.359375 -2.546875 1.359375 -2.765625 C 1.359375 -2.953125 1.25 -3.09375 1.0625 -3.125 C 1.359375 -3.328125 1.796875 -3.328125 1.84375 -3.328125 C 2.296875 -3.328125 2.734375 -3.015625 2.734375 -2.359375 L 2.734375 -2.125 C 2.28125 -2.09375 1.75 -2.078125 1.1875 -1.84375 C 0.484375 -1.53125 0.34375 -1.078125 0.34375 -0.8125 C 0.34375 -0.125 1.15625 0.078125 1.703125 0.078125 C 2.28125 0.078125 2.640625 -0.25 2.828125 -0.5625 C 2.859375 -0.265625 3.0625 0.046875 3.421875 0.046875 C 3.5 0.046875 4.171875 0.015625 4.171875 -0.71875 L 4.171875 -1.15625 L 3.921875 -1.15625 L 3.921875 -0.71875 C 3.921875 -0.390625 3.8125 -0.265625 3.640625 -0.265625 C 3.34375 -0.265625 3.34375 -0.625 3.34375 -0.71875 Z M 2.734375 -1.125 C 2.734375 -0.34375 2.09375 -0.140625 1.765625 -0.140625 C 1.359375 -0.140625 1 -0.421875 1 -0.8125 C 1 -1.328125 1.5 -1.875 2.734375 -1.90625 Z M 2.734375 -1.125 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-2"> <path d="M 1.46875 -5.53125 L 0.28125 -5.4375 L 0.28125 -5.171875 C 0.828125 -5.171875 0.890625 -5.125 0.890625 -4.734375 L 0.890625 0 L 1.125 0 L 1.421875 -0.5 C 1.609375 -0.21875 1.984375 0.078125 2.53125 0.078125 C 3.53125 0.078125 4.421875 -0.703125 4.421875 -1.71875 C 4.421875 -2.71875 3.59375 -3.515625 2.625 -3.515625 C 1.984375 -3.515625 1.609375 -3.171875 1.46875 -3.03125 Z M 1.484375 -2.515625 C 1.484375 -2.671875 1.484375 -2.6875 1.609375 -2.828125 C 1.84375 -3.125 2.21875 -3.296875 2.578125 -3.296875 C 2.984375 -3.296875 3.296875 -3.046875 3.453125 -2.8125 C 3.59375 -2.59375 3.703125 -2.3125 3.703125 -1.734375 C 3.703125 -1.546875 3.703125 -0.984375 3.421875 -0.609375 C 3.125 -0.25 2.75 -0.140625 2.5 -0.140625 C 2.109375 -0.140625 1.796875 -0.34375 1.578125 -0.65625 C 1.484375 -0.8125 1.484375 -0.8125 1.484375 -0.96875 Z M 1.484375 -2.515625 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-5-0"> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-5-1"> <path d="M 1.359375 -5.671875 C 1.359375 -5.796875 1.359375 -5.96875 1.171875 -5.96875 C 0.984375 -5.96875 0.984375 -5.796875 0.984375 -5.671875 L 0.984375 1.6875 C 0.984375 1.8125 0.984375 1.984375 1.171875 1.984375 C 1.359375 1.984375 1.359375 1.8125 1.359375 1.6875 Z M 1.359375 -5.671875 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-6-0"> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-6-1"> <path d="M 6.34375 -5.390625 C 6.359375 -5.421875 6.375 -5.46875 6.375 -5.515625 C 6.375 -5.5625 6.328125 -5.609375 6.265625 -5.609375 C 6.21875 -5.609375 6.1875 -5.59375 6.125 -5.515625 L 5.5625 -4.90625 C 5.203125 -5.40625 4.6875 -5.609375 4.140625 -5.609375 C 2.28125 -5.609375 0.421875 -3.890625 0.421875 -2.0625 C 0.421875 -0.734375 1.40625 0.171875 2.765625 0.171875 C 3.625 0.171875 4.265625 -0.140625 4.5625 -0.484375 C 4.65625 -0.234375 4.84375 -0.015625 4.921875 -0.015625 C 4.953125 -0.015625 5 -0.03125 5.015625 -0.0625 C 5.0625 -0.1875 5.25 -1 5.3125 -1.234375 C 5.375 -1.546875 5.4375 -1.765625 5.484375 -1.828125 C 5.546875 -1.921875 5.703125 -1.9375 5.9375 -1.9375 C 5.984375 -1.9375 6.109375 -1.9375 6.109375 -2.078125 C 6.109375 -2.15625 6.046875 -2.203125 5.984375 -2.203125 C 5.921875 -2.203125 5.828125 -2.171875 5.0625 -2.171875 C 4.859375 -2.171875 4.59375 -2.171875 4.46875 -2.1875 C 4.34375 -2.1875 4.03125 -2.203125 3.90625 -2.203125 C 3.859375 -2.203125 3.75 -2.203125 3.75 -2.046875 C 3.75 -1.9375 3.828125 -1.9375 4.046875 -1.9375 C 4.203125 -1.9375 4.515625 -1.9375 4.703125 -1.859375 C 4.703125 -1.84375 4.71875 -1.796875 4.71875 -1.765625 C 4.71875 -1.734375 4.671875 -1.546875 4.640625 -1.453125 C 4.59375 -1.25 4.515625 -0.90625 4.484375 -0.828125 C 4.21875 -0.296875 3.453125 -0.09375 2.90625 -0.09375 C 2.109375 -0.09375 1.1875 -0.515625 1.1875 -1.8125 C 1.1875 -2.46875 1.453125 -3.625 2.15625 -4.375 C 2.921875 -5.21875 3.78125 -5.34375 4.203125 -5.34375 C 5.171875 -5.34375 5.625 -4.578125 5.625 -3.78125 C 5.625 -3.671875 5.59375 -3.515625 5.59375 -3.421875 C 5.59375 -3.328125 5.6875 -3.328125 5.71875 -3.328125 C 5.828125 -3.328125 5.84375 -3.359375 5.875 -3.5 Z M 6.34375 -5.390625 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-6-2"> <path d="M 1.34375 -0.625 C 1.28125 -0.328125 1.265625 -0.265625 0.671875 -0.265625 C 0.515625 -0.265625 0.421875 -0.265625 0.421875 -0.109375 C 0.421875 0 0.53125 0 0.65625 0 L 3.625 0 C 4.9375 0 5.90625 -0.9375 5.90625 -1.703125 C 5.90625 -2.28125 5.40625 -2.75 4.609375 -2.84375 C 5.53125 -3.015625 6.328125 -3.625 6.328125 -4.328125 C 6.328125 -4.921875 5.75 -5.4375 4.75 -5.4375 L 1.96875 -5.4375 C 1.828125 -5.4375 1.71875 -5.4375 1.71875 -5.296875 C 1.71875 -5.171875 1.8125 -5.171875 1.953125 -5.171875 C 2.21875 -5.171875 2.453125 -5.171875 2.453125 -5.046875 C 2.453125 -5.015625 2.4375 -5.015625 2.421875 -4.90625 Z M 2.59375 -2.9375 L 3.078125 -4.890625 C 3.140625 -5.15625 3.15625 -5.171875 3.484375 -5.171875 L 4.625 -5.171875 C 5.40625 -5.171875 5.59375 -4.671875 5.59375 -4.34375 C 5.59375 -3.671875 4.859375 -2.9375 3.84375 -2.9375 Z M 2.046875 -0.265625 C 1.96875 -0.28125 1.9375 -0.28125 1.9375 -0.328125 C 1.9375 -0.390625 1.953125 -0.46875 1.96875 -0.515625 L 2.53125 -2.71875 L 4.15625 -2.71875 C 4.890625 -2.71875 5.140625 -2.21875 5.140625 -1.765625 C 5.140625 -0.984375 4.375 -0.265625 3.421875 -0.265625 Z M 2.046875 -0.265625 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-6-3"> <path d="M 5.34375 -5.390625 C 5.359375 -5.421875 5.375 -5.46875 5.375 -5.515625 C 5.375 -5.5625 5.328125 -5.609375 5.265625 -5.609375 C 5.21875 -5.609375 5.203125 -5.59375 5.109375 -5.5 C 5.015625 -5.390625 4.8125 -5.140625 4.71875 -5.046875 C 4.421875 -5.5 3.90625 -5.609375 3.5 -5.609375 C 2.40625 -5.609375 1.453125 -4.671875 1.453125 -3.765625 C 1.453125 -3.3125 1.703125 -3.03125 1.734375 -2.984375 C 2 -2.703125 2.234375 -2.640625 2.8125 -2.5 C 3.078125 -2.4375 3.09375 -2.4375 3.328125 -2.375 C 3.5625 -2.3125 4.078125 -2.1875 4.078125 -1.53125 C 4.078125 -0.84375 3.390625 -0.09375 2.546875 -0.09375 C 2.03125 -0.09375 1.078125 -0.25 1.078125 -1.25 C 1.078125 -1.265625 1.078125 -1.4375 1.125 -1.625 L 1.140625 -1.703125 C 1.140625 -1.796875 1.046875 -1.8125 1.015625 -1.8125 C 0.921875 -1.8125 0.90625 -1.78125 0.875 -1.59375 L 0.546875 -0.296875 C 0.515625 -0.171875 0.453125 0.046875 0.453125 0.0625 C 0.453125 0.125 0.5 0.171875 0.5625 0.171875 C 0.609375 0.171875 0.625 0.15625 0.703125 0.0625 L 1.09375 -0.390625 C 1.28125 -0.15625 1.734375 0.171875 2.53125 0.171875 C 3.6875 0.171875 4.640625 -0.875 4.640625 -1.828125 C 4.640625 -2.203125 4.515625 -2.484375 4.296875 -2.703125 C 4.0625 -2.96875 3.796875 -3.03125 3.421875 -3.125 C 3.203125 -3.1875 2.890625 -3.265625 2.703125 -3.3125 C 2.46875 -3.359375 2.015625 -3.515625 2.015625 -4.078125 C 2.015625 -4.703125 2.6875 -5.375 3.5 -5.375 C 4.21875 -5.375 4.703125 -5 4.703125 -4.140625 C 4.703125 -3.9375 4.671875 -3.78125 4.671875 -3.75 C 4.671875 -3.65625 4.75 -3.640625 4.8125 -3.640625 C 4.90625 -3.640625 4.90625 -3.671875 4.9375 -3.796875 Z M 5.34375 -5.390625 "></path> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-7-0"> </g> <g id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-7-1"> <path d="M 3.375 -0.984375 L 3.375 -1.21875 L 2.671875 -1.21875 L 2.671875 -3.859375 C 2.671875 -4 2.671875 -4.046875 2.53125 -4.046875 C 2.421875 -4.046875 2.40625 -4.015625 2.359375 -3.953125 L 0.28125 -1.21875 L 0.28125 -0.984375 L 2.140625 -0.984375 L 2.140625 -0.5 C 2.140625 -0.3125 2.140625 -0.234375 1.640625 -0.234375 L 1.453125 -0.234375 L 1.453125 0 C 1.578125 0 2.140625 -0.03125 2.40625 -0.03125 C 2.671875 -0.03125 3.234375 0 3.34375 0 L 3.34375 -0.234375 L 3.171875 -0.234375 C 2.671875 -0.234375 2.671875 -0.3125 2.671875 -0.5 L 2.671875 -0.984375 Z M 2.171875 -3.390625 L 2.171875 -1.21875 L 0.53125 -1.21875 Z M 2.171875 -3.390625 "></path> </g> </g> <clipPath id="wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-clip-0"> <path clip-rule="nonzero" d="M 0 0 L 243.550781 0 L 243.550781 185.089844 L 0 185.089844 Z M 0 0 "></path> </clipPath> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="24.443" y="26.293"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="24.443" y="30.278"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="24.443" y="34.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="50.512" y="26.293"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="50.512" y="30.278"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="50.512" y="34.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="71.434" y="26.293"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="71.434" y="30.278"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="71.434" y="34.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="92.355" y="26.293"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="92.355" y="30.278"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="92.355" y="34.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="113.277" y="26.293"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="113.277" y="30.278"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="113.277" y="34.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="134.198" y="26.293"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="134.198" y="30.278"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="134.198" y="34.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="155.12" y="26.293"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="155.12" y="30.278"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="155.12" y="34.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="176.041" y="26.293"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="176.041" y="30.278"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-1" x="176.041" y="34.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="23.142" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="49.211" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="70.133" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="91.054" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="111.976" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="132.898" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="153.819" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="174.741" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="198.388" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="203.705673" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="209.011391" y="55.184"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-2-1" x="22.084" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="49.211" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-3-1" x="63.724" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-1" x="72.958" y="71.768"></use> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-2" x="77.192514" y="71.768"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="91.054" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-2-1" x="105.017" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-5-1" x="112.987" y="77.966"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-6-1" x="115.339" y="77.966"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-5-1" x="121.938" y="77.966"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="132.898" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-3-1" x="147.41" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-1" x="156.644" y="71.768"></use> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-2" x="160.878514" y="71.768"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="174.741" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="198.388" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="203.705673" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="209.011391" y="76.106"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="23.142" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="49.211" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="70.133" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="91.054" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="111.976" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="132.898" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="153.819" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="174.741" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="198.388" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="203.705673" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="209.011391" y="97.028"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="23.142" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="49.211" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="70.133" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="91.054" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="111.976" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="132.898" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="153.819" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="174.741" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="198.388" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="203.705673" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="209.011391" y="117.949"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="23.142" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="49.211" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="70.133" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="91.054" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="111.976" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="132.898" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="153.819" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="174.741" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="198.388" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="203.705673" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="209.011391" y="138.871"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-2-1" x="22.084" y="159.792"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="49.211" y="159.792"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-3-1" x="63.724" y="159.792"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-1" x="72.958" y="155.454"></use> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-2" x="77.192514" y="155.454"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="91.054" y="159.792"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-2-1" x="105.017" y="159.792"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-5-1" x="112.987" y="161.652"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-6-1" x="115.339" y="161.652"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-5-1" x="121.938" y="161.652"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="132.898" y="159.792"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-3-1" x="147.41" y="159.792"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-1" x="156.644" y="155.454"></use> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-4-2" x="160.878514" y="155.454"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-0-2" x="174.741" y="159.792"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="198.388" y="159.792"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="203.705673" y="159.792"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-1-1" x="209.011391" y="159.792"></use> </g> <g clip-path="url(#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-clip-0)"> <path fill="none" stroke-width="18.92926" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 100%)" stroke-opacity="0.15" stroke-miterlimit="10" d="M -110.592406 35.930719 L 13.087281 -82.877875 " transform="matrix(1, 0, 0, -1, 121.776, 92.544)"></path> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -86.377562 15.274469 L -57.428344 2.383844 " transform="matrix(1, 0, 0, -1, 121.776, 92.544)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488791 2.869738 C -2.034242 1.147901 -1.017911 0.334733 -0.00112183 0.000690933 C -1.019823 -0.333189 -2.033826 -1.148173 -2.486761 -2.867869 " transform="matrix(0.91351, 0.40677, 0.40677, -0.91351, 64.56715, 90.2589)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -34.033812 12.090875 L -15.572875 2.8565 " transform="matrix(1, 0, 0, -1, 121.776, 92.544)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485467 2.870265 C -2.034455 1.147761 -1.021043 0.335552 -0.000719823 -0.00146148 C -1.020935 -0.337057 -2.030591 -1.147844 -2.488037 -2.870495 " transform="matrix(0.8943, 0.44733, 0.44733, -0.8943, 106.41536, 89.79589)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 8.360719 11.813531 L 26.270875 2.8565 " transform="matrix(1, 0, 0, -1, 121.776, 92.544)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485416 2.870229 C -2.034352 1.147746 -1.020919 0.335572 -0.000590085 -0.0014078 C -1.02079 -0.337033 -2.030416 -1.147849 -2.487806 -2.870506 " transform="matrix(0.89429, 0.44736, 0.44736, -0.89429, 148.25897, 89.79588)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 49.653688 13.110406 L 70.825563 3.993219 " transform="matrix(1, 0, 0, -1, 121.776, 92.544)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488137 2.868392 C -2.031773 1.14671 -1.01939 0.336442 0.000906482 0.00168464 C -1.019275 -0.335511 -2.031472 -1.145626 -2.485066 -2.867828 " transform="matrix(0.91843, 0.39546, 0.39546, -0.91843, 192.82272, 88.64572)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(75%, 75%, 75%)" stroke-opacity="1" stroke-miterlimit="10" d="M -111.283812 -69.241156 L 110.806031 -69.241156 " transform="matrix(1, 0, 0, -1, 121.776, 92.544)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(75%, 75%, 75%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488279 2.867271 C -2.031248 1.148521 -1.019529 0.336021 0.0000025 0.00008375 C -1.019529 -0.335854 -2.031248 -1.148354 -2.488279 -2.87101 " transform="matrix(1, 0, 0, -1, 232.82031, 161.78524)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-6-2" x="215.24" y="170.044"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-6-1" x="222.017773" y="170.044"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(75%, 75%, 75%)" stroke-opacity="1" stroke-miterlimit="10" d="M -100.690062 -83.596625 L -100.690062 83.118219 " transform="matrix(1, 0, 0, -1, 121.776, 92.544)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(75%, 75%, 75%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.484675 2.86758 C -2.03155 1.14883 -1.019831 0.33633 -0.0003 0.0003925 C -1.019831 -0.335545 -2.03155 -1.148045 -2.484675 -2.870701 " transform="matrix(0, -1, -1, 0, 21.08633, 9.1872)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-6-3" x="8.528" y="23.986"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#wtZlSQ5dYHFoeUgXFu_rb0A95Eo=-glyph-7-1" x="14.124" y="21.174"></use> </g> </svg> <p>Since the <a class="existingWikiWord" href="/nlab/show/codomains">codomains</a> of the <a class="existingWikiWord" href="/nlab/show/differentials">differentials</a> on all the following pages are translated diagonally (downwards and rightwards, by the <a href="spectral+sequence#eq:FormOfDifferentialInCohomologySpectralSequence">general formula</a>) from the codomains seen above, one sees that for every differential on every page, the <a class="existingWikiWord" href="/nlab/show/domain">domain</a> or the <a class="existingWikiWord" href="/nlab/show/codomain">codomain</a> is the <a class="existingWikiWord" href="/nlab/show/zero+group">zero group</a>.</p> <p>This means that all differentials are the <a class="existingWikiWord" href="/nlab/show/zero+morphism">zero morphism</a>, hence that the spectral sequence collapses already on this second page:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>E</mi> <mn>∞</mn> <mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msubsup><mi>E</mi> <mn>2</mn> <mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> E^{\bullet, \bullet}_\infty \;\; \simeq \;\; E^{\bullet, \bullet}_2 \,. </annotation></semantics></math></div> <p>Therefore the convergence statement <a class="maruku-eqref" href="#eq:FilteringForOrdinaryCohomologySerreSpectralSequence">(2)</a> says that the degree-4 cohomology group in question is a <a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a> of</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>E</mi> <mn>∞</mn> <mrow><mn>0</mn><mo>,</mo><mn>4</mn></mrow></msubsup><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msup><mi>H</mi> <mn>0</mn></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>B</mi><mi>G</mi><mo>,</mo><mspace width="thinmathspace"></mspace><msup><mi>H</mi> <mn>4</mn></msup><mo stretchy="false">(</mo><msup><mi>S</mi> <mn>4</mn></msup><mo>;</mo><mi>ℤ</mi><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msup><mi>H</mi> <mn>0</mn></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>B</mi><mi>G</mi><mo>,</mo><mspace width="thinmathspace"></mspace><mi>ℤ</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mi>ℤ</mi></mrow><annotation encoding="application/x-tex"> E^{0,4}_\infty \;\simeq\; H^0\big(B G, \, H^4(S^4; \mathbb{Z}) \big) \;\simeq\; H^0\big( B G, \, \mathbb{Z}\big) \;\simeq\; \mathbb{Z} </annotation></semantics></math></div> <p>by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>E</mi> <mn>∞</mn> <mrow><mn>4</mn><mo>,</mo><mn>0</mn></mrow></msubsup><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msup><mi>H</mi> <mn>4</mn></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>B</mi><mi>G</mi><mo>,</mo><mspace width="thinmathspace"></mspace><msup><mi>H</mi> <mn>0</mn></msup><mo stretchy="false">(</mo><msup><mi>S</mi> <mn>4</mn></msup><mo>;</mo><mi>ℤ</mi><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msup><mi>H</mi> <mn>4</mn></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>B</mi><mi>G</mi><mo>,</mo><mspace width="thinmathspace"></mspace><mi>ℤ</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mi>ℤ</mi><mo stretchy="false">/</mo><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow><annotation encoding="application/x-tex"> E^{4,0}_\infty \;\simeq\; H^4\big(B G, \, H^0(S^4; \mathbb{Z}) \big) \;\simeq\; H^4\big( B G, \, \mathbb{Z}\big) \;\simeq\; \mathbb{Z}/\left\vert G \right\vert </annotation></semantics></math></div> <p>in that we have a <a class="existingWikiWord" href="/nlab/show/short+exact+sequence">short exact sequence</a> of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>→</mo><mi>ℤ</mi><mo stretchy="false">/</mo><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>↪</mo><msup><mi>H</mi> <mn>4</mn></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>S</mi> <mn>4</mn></msup><mspace width="negativethinmathspace"></mspace><mo>⫽</mo><mspace width="negativethinmathspace"></mspace><mi>G</mi><mo>;</mo><mspace width="thinmathspace"></mspace><mi>ℤ</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>↠</mo><mi>ℤ</mi><mo>→</mo><mn>0</mn><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> 0 \to \mathbb{Z}/\left\vert G\right\vert \hookrightarrow H^4\big( S^4 \!\sslash\! G;\, \mathbb{Z} \big) \twoheadrightarrow \mathbb{Z} \to 0 \,. </annotation></semantics></math></div> <p>But since the <a class="existingWikiWord" href="/nlab/show/Ext-group">Ext-group</a> of the <a class="existingWikiWord" href="/nlab/show/integers">integers</a> is <a class="existingWikiWord" href="/nlab/show/trivial+group">trivial</a> (<a href="Ext#ExtensionsOfTheIntegersAreTrivial">this Expl.</a>) this extension must be the <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>4</mn></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>S</mi> <mn>4</mn></msup><mspace width="negativethinmathspace"></mspace><mo>⫽</mo><mspace width="negativethinmathspace"></mspace><mi>G</mi><mo>;</mo><mspace width="thinmathspace"></mspace><mi>ℤ</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><msub><mi>ℤ</mi> <mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></msub><mo>⊕</mo><mi>ℤ</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> H^4\big( S^4 \!\sslash\! G;\, \mathbb{Z} \big) \;\simeq\; \mathbb{Z}_{\left\vert G\right\vert} \oplus \mathbb{Z} \,. </annotation></semantics></math></div> <p>This is the claim <a class="maruku-eqref" href="#eq:Integral4CohomologyOfHomotopyQuotientOf4SphereByFiniteSubgroupOfSU2">(3)</a> to be proven.</p> </div> </p> <h2 id="consequences">Consequences</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Serre+long+exact+sequence">Serre long exact sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Thom-Gysin+sequence">Thom-Gysin sequence</a></p> </li> </ul> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/long+exact+sequence+in+cohomology">long exact sequence in cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/long+exact+sequence+in+generalized+cohomology">long exact sequence in generalized cohomology</a></li> </ul> </li> </ul> <h2 id="references">References</h2> <h3 id="general">General</h3> <p>The original article is</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jean-Pierre+Serre">Jean-Pierre Serre</a>, <em>Homologie singuliére des espaces fibrés</em> Applications, Ann. of Math. 54 (1951),</li> </ul> <p>Textbook accounts:</p> <ul> <li id="Hatcher"> <p><a class="existingWikiWord" href="/nlab/show/Alan+Hatcher">Alan Hatcher</a>, <em><a href="https://pi.math.cornell.edu/~hatcher/SSAT/SSATpage.html">Spectral sequences in algebraic topology</a></em> <em>I: The Serre spectral sequence</em> (<a href="https://pi.math.cornell.edu/~hatcher/SSAT/SSch1.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Hatcher_SerreSpectralSequence.pdf" title="pdf">pdf</a>)</p> </li> <li id="Kochman96"> <p><a class="existingWikiWord" href="/nlab/show/Stanley+Kochman">Stanley Kochman</a>, section 2.2. of <em><a class="existingWikiWord" href="/nlab/show/Bordism%2C+Stable+Homotopy+and+Adams+Spectral+Sequences">Bordism, Stable Homotopy and Adams Spectral Sequences</a></em>, AMS 1996</p> </li> <li id="Davis91"> <p>Davis, <em>Lecture notes in algebraic topology</em>, 1991</p> </li> </ul> <p>Lecture notes etc. includes</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Greg+Friedman">Greg Friedman</a>, <em>Some extremely brief notes on the Leray spectral sequence</em> (<a href="http://faculty.tcu.edu/richardson/Seminars/Gregspecseq.pdf">pdf</a>)</li> </ul> <p>Discussion in <a class="existingWikiWord" href="/nlab/show/homotopy+type+theory">homotopy type theory</a> includes</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Mike+Shulman">Mike Shulman</a>, <em><a href="http://homotopytypetheory.org/2013/08/08/spectral-sequences/">Spectral Sequences</a></em>, 2013</li> </ul> <p>and implementation in <a class="existingWikiWord" href="/nlab/show/Lean">Lean</a> is in</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Floris+van+Doorn">Floris van Doorn</a>, <a class="existingWikiWord" href="/nlab/show/Egbert+Rijke">Egbert Rijke</a>, <a class="existingWikiWord" href="/nlab/show/Ulrik+Buchholtz">Ulrik Buchholtz</a>, <a class="existingWikiWord" href="/nlab/show/Favonia">Favonia</a>, <a class="existingWikiWord" href="/nlab/show/Steve+Awodey">Steve Awodey</a>, <a class="existingWikiWord" href="/nlab/show/Jeremy+Avigad">Jeremy Avigad</a>, <a class="existingWikiWord" href="/nlab/show/Mike+Shulman">Mike Shulman</a>, <a class="existingWikiWord" href="/nlab/show/Jonas+Frey">Jonas Frey</a>, <em>Spectral</em> (<a href="https://github.com/cmu-phil/Spectral">github.com/cmu-phil/Spectral</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Floris+van+Doorn">Floris van Doorn</a>, §5 in: <em>On the Formalization of Higher Inductive Types and Synthetic Homotopy Theory</em> (2018) &lbrack;<a href="https://arxiv.org/abs/1808.10690">arXiv:1808.10690</a>&rbrack;</p> </li> </ul> <h3 id="in_equivariant_cohomology_2">In equivariant cohomology</h3> <p>In <a class="existingWikiWord" href="/nlab/show/equivariant+cohomology">equivariant cohomology</a>, for <a class="existingWikiWord" href="/nlab/show/Bredon+cohomology">Bredon cohomology</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Ieke+Moerdijk">Ieke Moerdijk</a>, J.-A. Svensson, <em>The Equivariant Serre Spectral Sequence</em>, Proceedings of the American Mathematical Society Vol. 118, No. 1 (May, 1993), pp. 263-278 (<a href="http://www.jstor.org/stable/2160037">JSTOR</a>)</li> </ul> <p>and for genuine equivariant cohomology, i.e. for <a class="existingWikiWord" href="/nlab/show/RO%28G%29-grading">RO(G)</a>-graded <a href="Mackey+functor#Cohomology">cohomology with coefficients in a Mackey functor</a>:</p> <ul> <li id="Kronholm10"><a class="existingWikiWord" href="/nlab/show/William+C.+Kronholm">William C. Kronholm</a>, <em>The <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>RO</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">RO(G)</annotation></semantics></math>-graded Serre spectral sequence</em>, Homology Homotopy Appl. <strong>12</strong> 1 (2010) 75-92. &lbrack;<a href="https://arxiv.org/abs/0908.3827">arXiv:0908.3827</a>, <a href="https://doi.org/10.4310/HHA.2010.v12.n1.a7">doi:10.4310/HHA.2010.v12.n1.a7</a>, <a href="https://projecteuclid.org/euclid.hha/1296223823">euclid:hha/1296223823</a>&rbrack;</li> </ul> <p>See also</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Megan+Shulman">Megan Shulman</a>, <em>Equivariant Spectral Sequences for Local Coefficients</em> (<a href="http://arxiv.org/abs/1005.0379">arXiv:1005.0379</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on December 13, 2023 at 13:29:51. See the <a href="/nlab/history/Serre+spectral+sequence" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Serre+spectral+sequence" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/7139/#Item_8">Discuss</a><span class="backintime"><a href="/nlab/revision/Serre+spectral+sequence/27" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Serre+spectral+sequence" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Serre+spectral+sequence" accesskey="S" class="navlink" id="history" rel="nofollow">History (27 revisions)</a> <a href="/nlab/show/Serre+spectral+sequence/cite" style="color: black">Cite</a> <a href="/nlab/print/Serre+spectral+sequence" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Serre+spectral+sequence" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10