CINXE.COM
Search results for: Ghribi Hayet
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Ghribi Hayet</title> <meta name="description" content="Search results for: Ghribi Hayet"> <meta name="keywords" content="Ghribi Hayet"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Ghribi Hayet" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Ghribi Hayet"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Ghribi Hayet</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medjadj%20Tarek">Medjadj Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghribi%20Hayet"> Ghribi Hayet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geographic%20information%20systems%20%28GIS%29" title="Geographic information systems (GIS)">Geographic information systems (GIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20%28ML%29" title=" machine learning (ML)"> machine learning (ML)</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20mapping" title=" emergency mapping"> emergency mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20disaster%20management" title=" flood disaster management"> flood disaster management</a> </p> <a href="https://publications.waset.org/abstracts/163225/flood-prone-urban-area-mapping-using-machine-learning-a-case-sudy-of-msila-city-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouahab%20Kadri">Ouahab Kadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Hayet%20Mouss"> Leila Hayet Mouss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20algorithms" title="ant colony algorithms">ant colony algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20and%20dynamic%20systems" title=" complex and dynamic systems"> complex and dynamic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/42293/fault-diagnosis-of-manufacturing-systems-using-anttreestoch-with-parameter-optimization-by-aco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Chemical Composition and Antioxidant Properties of Daucus Gracilis Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Kolli%20Meriem">El Kolli Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Laouer%20Hocine"> Laouer Hocine</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahli%20Farida"> Sahli Farida</a>, <a href="https://publications.waset.org/abstracts/search?q=Akkal%20Salah"> Akkal Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Kolli%20Hayet"> El Kolli Hayet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aerial parts of Daucus gracilis (Apiaceae) were subjected to hydrodistillation by a Clevenger apparatus to obtain the essential oil (EO) which has been analyzed by Gas Chromatography (GC) and GC coupled with mass spectrometry. The antioxidant properties of this EO and D. gracilis methanolic extract were studied by both of the free diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and the reducing power techniques. The dominant constituents of the EO were the elemicin (35.3 %) and the geranyl acetate (26.8 %). Both of EO and methanolic extract showed important antioxidant properties with respectively IC50 of 0,002 mg/ml and 0.06 mg/ml. They showed also a reducing power dose-dependent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daucus%20gracilis" title="daucus gracilis">daucus gracilis</a>, <a href="https://publications.waset.org/abstracts/search?q=apiaceae" title=" apiaceae"> apiaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/27494/chemical-composition-and-antioxidant-properties-of-daucus-gracilis-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Investigation of Amorphous Silicon A-Si Thin Films Deposited on Silicon Substrate by Raman Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirouche%20Hammouda">Amirouche Hammouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacer%20Boucherou"> Nacer Boucherou</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Ziouche"> Aicha Ziouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayet%20Boudjellal"> Hayet Boudjellal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicon has excellent physical and electrical properties for optoelectronics industry. It is a promising material with many advantages. On Raman characterization of thin films deposited on crystalline silicon substrate, the signal Raman of amorphous silicon is often disturbed by the Raman signal of the crystalline silicon substrate. In this paper, we propose to characterize thin layers of amorphous silicon deposited on crystalline silicon substrates. The results obtained have shown the possibility to bring out the Raman spectrum of deposited layers by optimizing experimental parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raman%20scattering" title="raman scattering">raman scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silicon" title=" amorphous silicon"> amorphous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20silicon" title=" crystalline silicon"> crystalline silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/175813/investigation-of-amorphous-silicon-a-si-thin-films-deposited-on-silicon-substrate-by-raman-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Ficus carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modeling and Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tizi%20Hayet">Tizi Hayet</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrama%20Tarek"> Berrama Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bounif%20Nadia"> Bounif Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and the illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that are considered potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria annually produces 131000 tons of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of a statistical method for modeling and to optimize the conditions of the phenol adsorption from agricultural by-products, locally available (fig leaves). The best experimental performance of phenol elimination on the adsorbent was obtained with: Adsorbent concentration (X₂) = 200 mg L⁻¹; Initial concentration (X₃) = 150 mg L⁻¹; Speed agitation (X₁) = 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-cost%20adsorbents" title="low-cost adsorbents">low-cost adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=fig%20leaves" title=" fig leaves"> fig leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a> </p> <a href="https://publications.waset.org/abstracts/156940/ficus-carica-as-adsorbent-for-removal-of-phenol-from-aqueous-solutions-modeling-and-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Ficus Carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modelling and Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tizi%20Hayet">Tizi Hayet</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrama%20Tarek"> Berrama Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bounif%20Nadia"> Bounif Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that considered as potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria produces annually 131000 tones of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of the statistical method for modeling and optimization of the conditions of the phenol (Ph) adsorption from agricultural by-product locally available (fig leaves). The best experimental performance of Ph elimination on the adsorbent was obtained with: Adsorbent concentration (X2) = 0.2 g L-1; Initial concentration (X3) = 150 mg L-1; Speed agitation (X1) = 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-cost%20adsorbents" title="low-cost adsorbents">low-cost adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=fig%20leaves" title=" fig leaves"> fig leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20factorial%20design" title=" full factorial design"> full factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a> </p> <a href="https://publications.waset.org/abstracts/157011/ficus-carica-as-adsorbent-for-removal-of-phenol-from-aqueous-solutions-modelling-and-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekam%C4%B1%20Hayet">Mekamı Hayet</a>, <a href="https://publications.waset.org/abstracts/search?q=Bounoua%20Nacer"> Bounoua Nacer</a>, <a href="https://publications.waset.org/abstracts/search?q=Benabderrahmane%20Sidahmed"> Benabderrahmane Sidahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Taleb%20Ahmed"> Taleb Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20pose%20classification" title=" facial pose classification"> facial pose classification</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series "> time series </a> </p> <a href="https://publications.waset.org/abstracts/33324/facial-pose-classification-using-hilbert-space-filling-curve-and-multidimensional-scaling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Nematocidal Effects of Laurus Nobilis Essential Oil against Gastrointestinal Nematodes.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Essia%20Sebai">Essia Sebai</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Abidi"> Amel Abidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayet%20benyeddem"> Hayet benyeddem</a>, <a href="https://publications.waset.org/abstracts/search?q=Akkari%20Hafidh"> Akkari Hafidh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herbal extracts are of particular interest to the drug industry; essential oil with significant anthelmintic activity has the potential to be used as an alternative to conventional chemical drugs. In the present study, we describe the chemical profile of Laurus nobilis essential oil (EO), the in vitro anthelmintic activity of laurel oil against Haemonchus contortus and its in vivo anthelmintic effect against the murine helminth parasite model Heligmosomoides polygyrus. The chromatographic profile of L. nobilis (EO) extracted from the leaves of L. nobilis has shown the presence of monoterpenes 1,8-cineol (Eucalyptol) (29.47%), D-Limonène (18.51%) and Linalool (10.84%) in high fractions. The in vitro anthelmintic potential was expressed by an ovicidal effect against H. contortus egg hatching with an inhibition value of 3.23 mg/mL and 87.5% of immobility of adult worms after 8 hours of exposure to 8 mg/mL of L. nobilis EO. Regarding the in vivo anthelmintic potential, L. nobilis (EO) at 2400 mg/kg completely eliminated the egg output of H. polygyrus after seven days of oral treatment, together with a 79.2% of reduction in total worm counts. Based on the obtained funding, L. nobilis EO showed promising in vitro and in vivo anthelmintic capacities against gastrointestinal parasites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lauris%20nobilis" title="lauris nobilis">lauris nobilis</a>, <a href="https://publications.waset.org/abstracts/search?q=anthelmintic" title=" anthelmintic"> anthelmintic</a>, <a href="https://publications.waset.org/abstracts/search?q=haemonchus" title=" haemonchus"> haemonchus</a>, <a href="https://publications.waset.org/abstracts/search?q=pylogyrus" title=" pylogyrus"> pylogyrus</a> </p> <a href="https://publications.waset.org/abstracts/161804/nematocidal-effects-of-laurus-nobilis-essential-oil-against-gastrointestinal-nematodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Mechanism of Antimicrobial Activity and Antioxidant Effects of the Essential Oil and the Methanolic Extract of Carum montanum (Coss. et Dur.) Benth. Et Hook. Aerial Parts from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriem%20El%20Kolli">Meriem El Kolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Laouer"> Hocine Laouer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayet%20El%20Kolli"> Hayet El Kolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Akkal"> Salah Akkal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The methanolic extract (ME) of C. montanum obtained by a hydo-alcoholic maceration and its polyphenol content was evaluated by Folin-Ciocalteu method. This extract and C. montanum essential oil were screened for antimicrobial activity against 21 microbial strains by agar diffusion method. MICs of the EO were determined by the broth micro dilution method. The mechanism of action of the EO was determined on the susceptible strains by the time kill assay and the lysis experience. Antioxidant properties were studied by both free DPPH radical scavenging and reducing power techniques. The TPC in the ME showed a high level of 101.50 ± 5.33 mg GAE /mg. B. cereus was the most sensitive strain with MIC of 55.5 µg/ml , then K. pneumoniae (111 µg/ml). A remarkable decrease in a survival rate as well as in the absorbance at 260 nm were recorded, which suggest that the cytoplasm membrane is one of the targets of the EO. Antioxidant effects were concentration dependent and IC50 values were 1.09 ± 0.37 µg/ml for the EO and 65.04 ± 0.00 µg/ml for the ME by DPPH method and a reducing power dose-dependent. In conclusion, C. montanum extracts showed potent which could be exploited in the food industry for food preservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20montanum" title="C. montanum">C. montanum</a>, <a href="https://publications.waset.org/abstracts/search?q=Apiaceae" title=" Apiaceae"> Apiaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20power" title=" reducing power"> reducing power</a> </p> <a href="https://publications.waset.org/abstracts/41814/the-mechanism-of-antimicrobial-activity-and-antioxidant-effects-of-the-essential-oil-and-the-methanolic-extract-of-carum-montanum-coss-et-dur-benth-et-hook-aerial-parts-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghribi">A. Ghribi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bagane"> M. Bagane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=breakthrough%20curve" title=" breakthrough curve"> breakthrough curve</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20bed%20column" title=" fixed bed column"> fixed bed column</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodamine%20b" title=" rhodamine b"> rhodamine b</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/39169/removal-of-rhodamine-b-from-aqueous-solution-using-natural-clay-by-fixed-bed-column-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Chemical Composition and Antibacterial Activity of the Essential Oils from Bunium alpinum and Bunium incrassatum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayet%20El%20Kolli">Hayet El Kolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Laouer"> Hocine Laouer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bunium in the world comprises about 50 to 100 species, mostly distributed in: Algeria, Italy, Pakistan, Iran, and South Africa. Bunium species have several uses like: Bunium persicum which is commonly used as antispasmodic, carminative, anti-obesity and lactogage. This plant have been widely used as an additive in food stuff such as in bread cooking, rice and yoghurt for its carminative, anti-dyspepsia and antispasmodic effect. The B. paucifolium oil has a wide spectrum of action against moulds, yeast and bacteria. The chemical compositions of Bunium incrassatum and Bunium alpinum essential oils were carry out by GC and GC/MS. Therefore, antibacterial activity of two oils was investigated by disk diffusion method against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1331, Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae ATCC 700603, Bacillus cereus ATCC 10876, Enterococcus faecalis ATCC 49452, Lysteria monocytogenes ATCC 15313, Citrobacter freundii ATCC 8090, Proteus mirabilis ATCC 35659. A moderate antibacterial activity was found. In conclusion, it is found that essential oils of the two species are rich in sesquiterpens and other oxygenated compounds. These compounds have been reported to show bactericidal activity and the presence of phenolic compounds makes them useful antioxidants so that results confirm some ethnopharmacologique applications of these two oils of Bunium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bunium%20alpinum" title="Bunium alpinum">Bunium alpinum</a>, <a href="https://publications.waset.org/abstracts/search?q=Bunium%20incrassatum" title=" Bunium incrassatum"> Bunium incrassatum</a>, <a href="https://publications.waset.org/abstracts/search?q=apiaceae" title=" apiaceae"> apiaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=sesquiterpens" title=" sesquiterpens"> sesquiterpens</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activities" title=" antioxidant activities"> antioxidant activities</a> </p> <a href="https://publications.waset.org/abstracts/6330/chemical-composition-and-antibacterial-activity-of-the-essential-oils-from-bunium-alpinum-and-bunium-incrassatum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wade%20Ghribi">Wade Ghribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmoty%20M.%20Ahmed"> Abdelmoty M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Said%20Badawy"> Ahmed Said Badawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Belgacem%20Bouallegue"> Belgacem Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20data%20mining" title="educational data mining">educational data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20performance%20prediction" title=" student performance prediction"> student performance prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20learning" title=" ensemble learning"> ensemble learning</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a> </p> <a href="https://publications.waset.org/abstracts/149220/improve-student-performance-prediction-using-majority-vote-ensemble-model-for-higher-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Adsorption of Congo Red from Aqueous Solution by Raw Clay: A Fixed Bed Column Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghribi">A. Ghribi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bagane"> M. Bagane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removals of such compounds at such low levels are a difficult problem. Physicochemical technique such as coagulation, flocculation, ozonation, reverse osmosis and adsorption on activated carbon, manganese oxide, silica gel and clay are among the methods employed. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. Dye molecules also have very high affinity for clay surfaces and are readily adsorbed when added to clay suspension. The elimination of the organic dye by clay was studied by serval researchers. The focus of this research was to evaluate the adsorption potential of the raw clay in removing congo red from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 7.Experiments were carried out at different bed heights (5-20 cm), influent flow rates (1.6- 8 mL/min) and influent congo red concentrations (10-50 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of congo red from aqueous solution. Uptake of congo red through a fixed-bed column was dependent on the bed depth, influent congo red concentration and flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=breakthrough%20curve" title=" breakthrough curve"> breakthrough curve</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=congo%20red" title=" congo red"> congo red</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20bed%20column" title=" fixed bed column"> fixed bed column</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/39160/adsorption-of-congo-red-from-aqueous-solution-by-raw-clay-a-fixed-bed-column-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Dermatophytoses: Spectrum Evolution of Dermatophytes in Sfax, Tunisia, Between 1999 and 2019</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khemakhem%20Nahed">Khemakhem Nahed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammami%20Fatma"> Hammami Fatma</a>, <a href="https://publications.waset.org/abstracts/search?q=Trabelsi%20Houaida">Trabelsi Houaida</a>, <a href="https://publications.waset.org/abstracts/search?q=Neji%20Sourour"> Neji Sourour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sellami%20Hayet"> Sellami Hayet</a>, <a href="https://publications.waset.org/abstracts/search?q=Makni%20Fattouma"> Makni Fattouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Turki%20Hamida">Turki Hamida</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayadi%20Ali"> Ayadi Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dermatophytoses are considered a public health problem and represent 10% of dermatological consultations in our region. Their epidemiology is influenced by various factors, such as lifestyle, human migration patterns, changes in the environment and the host relationship. The understanding of epidemiology has a major impact on their prevention and treatment. The aim of the study is to determine the prevalence pattern of aetiological agents and to describe the clinical characteristics of dermatophytoses between 1999 and 2019. Out of 65 059 subjects suspected to have superficial mycoses, 36 220 (55.67%) were affected with dermatophytoses. The mean age was 40.1 years (range: 10 days to 99 years). The sex ratio was 0.8. Our patients were from urban regions in 80.9% of cases. The most common type of infection was onychomycosis (42.64%), followed by tinea pedis (20.8%), intertrigo (18.3%), tinea corporis (8.48%) and tinea capitis (7.87%). The most isolated dermatophyte was Trichophyton rubrum (76.5%), followed by T. mentagrophytes complex (6.3%), Microsporum canis (5.8%), T. violaceum (5.3%), T. verrucosum (0.83%) and Epidermophyton floccosum (0.3%). Zoophilic agents have become more prevalent and their frequency has been increased from 6.46% in 1999 to 13% in 2019. It is interesting to note that M. canis has been on the rise since 2010 and it was the first etiological agent of tinea capitis (48%), while infections caused by T. violaceum continued to decrease from 1999 (16.2%) to 2019 (4.7%). Other dermatophytes have been rarely isolated: T. tonsurans (9 cases), T. schoenleinii (3 cases), T. soudanense (2 cases), M. fulvum (1 case), M. audouinii (1 case) and M. ferrugineum (2 cases).T. mentagrophytes var. quinckeanum was isolated from an inflammatory tinea capitis lesion in an a-3-year-old girl. T. mentagrophytes var. erinacei was isolated from the first case of tinea manuum, in-a-10-year-old girl. The same fungus was isolated from the hair and scales of the hedgehog. Our study showed significant changes in the dermatophytes spectrum in our region. The prevalence of zoophilic species increased in recent years due to people's behavioral changes with the adoption of pets and animal husbandry in urban settings. Molecular methods are often crucial that help us to refine the identification strains of dermatophytes and to identify their origin of the contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dermatophytoses" title="dermatophytoses">dermatophytoses</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR-sequencing" title=" PCR-sequencing"> PCR-sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum"> spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Sfax" title=" Sfax"> Sfax</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/148171/dermatophytoses-spectrum-evolution-of-dermatophytes-in-sfax-tunisia-between-1999-and-2019" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Structural Analysis of Archaeoseismic Records Linked to the 5 July 408 - 410 AD Utica Strong Earthquake (NE Tunisia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Ben%20Ayed">Noureddine Ben Ayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Soumaya"> Abdelkader Soumaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C3%AFd%20Maouche"> Saïd Maouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kadri"> Ali Kadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mongi%20Gueddiche"> Mongi Gueddiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayet%20Khayati-Ammar"> Hayet Khayati-Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Braham"> Ahmed Braham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The archaeological monument of Utica, located in north-eastern Tunisia, was founded (8th century BC) By the Phoenicians as a port installed on the trade route connecting Phoenicia and the Straits of Gibraltar in the Mediterranean Sea. The flourishment of this city as an important settlement during the Roman period was followed by a sudden abandonment, disuse and progressive oblivion in the first half of the fifth century AD. This decadence can be attributed to the destructive earthquake of 5 July 408 - 410 AD, affecting this historic city as documented in 1906 by the seismologist Fernand De Montessus De Ballore. The magnitude of the Utica earthquake was estimated at 6.8 by the Tunisian National Institute of Meteorology (INM). In order to highlight the damage caused by this earthquake, a field survey was carried out at the Utica ruins to detect and analyse the earthquake archaeological effects (EAEs) using structural geology methods. This approach allowed us to highlight several structural damages, including: (1) folded mortar pavements, (2) cracks affecting the mosaic and walls of a water basin in the "House of the Grand Oecus", (3) displaced columns, (4) block extrusion in masonry walls, (5) undulations in mosaic pavements, (6) tilted walls. The structural analysis of these EAEs and data measurements reveal a seismic cause for all evidence of deformation in the Utica monument. The maximum horizontal strain of the ground (e.g. SHmax) inferred from the building oriented damage in Utica shows a NNW-SSE direction under a compressive tectonic regime. For the seismogenic source of this earthquake, we propose the active E-W to NE-SW trending Utique - Ghar El Melh reverse fault, passing through the Utica Monument and extending towards the Ghar El Melh Lake, as the causative tectonic structure. The active fault trace is well supported by instrumental seismicity, geophysical data (e.g., gravity, seismic profiles) and geomorphological analyses. In summary, we find that the archaeoseismic records detected at Utica are similar to those observed at many other archaeological sites affected by destructive ancient earthquakes around the world. Furthermore, the calculated orientation of the average maximum horizontal stress (SHmax) closely match the state of the actual stress field, as highlighted by some earthquake focal mechanisms in this region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title="Tunisia">Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=utica" title=" utica"> utica</a>, <a href="https://publications.waset.org/abstracts/search?q=seimogenic%20fault" title=" seimogenic fault"> seimogenic fault</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeological%20earthquake%20effects" title=" archaeological earthquake effects"> archaeological earthquake effects</a> </p> <a href="https://publications.waset.org/abstracts/185951/structural-analysis-of-archaeoseismic-records-linked-to-the-5-july-408-410-ad-utica-strong-earthquake-ne-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Archaeoseismological Evidence for a Possible Destructive Earthquake in the 7th Century AD at the Ancient Sites of Bulla Regia and Chemtou (NW Tunisia): Seismotectonic and Structural Implications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Soumaya">Abdelkader Soumaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Ben%20Ayed"> Noureddine Ben Ayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kadri"> Ali Kadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Maouche"> Said Maouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayet%20Khayati%20Ammar"> Hayet Khayati Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Braham"> Ahmed Braham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The historic sites of Bulla Regia and Chemtou are among the most important archaeological monuments in northwestern Tunisia, which flourished as large, wealthy settlements during the Roman and Byzantine periods (2nd to 7th centuries AD). An archaeoseismological study provides the first indications about the impact of a possible ancient strong earthquake in the destruction of these cities. Based on previous archaeological excavation results, including numismatic evidence, pottery, economic meltdown and urban transformation, the abrupt ruin and destruction of the cities of Bulla Regia and Chemtou can be bracketed between 613 and 647 AD. In this study, we carried out the first attempt to use the analysis of earthquake archaeological effects (EAEs) that were observed during our field investigations in these two historic cities. The damage includes different types of EAEs: folds on regular pavements, displaced and deformed vaults, folded walls, tilted walls, collapsed keystones in arches, dipping broken corners, displaced-fallen columns, block extrusions in walls, penetrative fractures in brick-made walls and open fractures on regular pavements. These deformations are spread over 10 different sectors or buildings and include 56 measured EAEs. The structural analysis of the identified EAEs can indicate an ancient destructive earthquake that probably destroyed the Bulla Regia and Chemtou archaeological sites. We then analyzed these measurements using structural geological analysis to obtain the maximum horizontal strain of the ground (e.g., S ₕₘₐₓ) on each building-oriented damage. After the collection and analysis of these strain datasets, we proceed to plot the orientation of Sₕₘₐₓ trajectories on the map of the archaeological site (Bulla Regia). We concluded that the obtained Sₕₘₐₓ trajectories within this site could then be related to the mean direction of ground motion (oscillatory movement of the ground) triggered by a seismic event, as documented for some historical earthquakes across the world. These Sₕₘₐₓ orientations closely match the current active stress field, as highlighted by some instrumental events in northern Tunisia. In terms of the seismic source, we strongly suggest that the reactivation of a neotectonic strike-slip fault trending N50E must be responsible for this probable historic earthquake and the recent instrumental seismicity in this area. This fault segment, affecting the folded quaternary deposits south of Jebel Rebia, passes through the monument of Bulla Regia. Stress inversion of the observed and measured data along this fault shows an N150 - 160 trend of Sₕₘₐₓ under a transpressional tectonic regime, which is quite consistent with the GPS data and the state of the current stress field in this region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NW%20Tunisia" title="NW Tunisia">NW Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeoseismology" title=" archaeoseismology"> archaeoseismology</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20archaeological%20effect" title=" earthquake archaeological effect"> earthquake archaeological effect</a>, <a href="https://publications.waset.org/abstracts/search?q=bulla%20regia%20-%20Chemtou" title=" bulla regia - Chemtou"> bulla regia - Chemtou</a>, <a href="https://publications.waset.org/abstracts/search?q=seismotectonic" title=" seismotectonic"> seismotectonic</a>, <a href="https://publications.waset.org/abstracts/search?q=neotectonic%20fault" title=" neotectonic fault"> neotectonic fault</a> </p> <a href="https://publications.waset.org/abstracts/185904/archaeoseismological-evidence-for-a-possible-destructive-earthquake-in-the-7th-century-ad-at-the-ancient-sites-of-bulla-regia-and-chemtou-nw-tunisia-seismotectonic-and-structural-implications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>