CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 449 results for author: <span class="mathjax">Bud'ko, S L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bud'ko, S L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bud%27ko%2C+S+L&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bud'ko, S L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09736">arXiv:2412.09736</a> <span> [<a href="https://arxiv.org/pdf/2412.09736">pdf</a>, <a href="https://arxiv.org/format/2412.09736">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Tuning the structure and superconductivity of SrNi$_2$P$_2$ by Rh substitution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Schmidt%2C+J">Juan Schmidt</a>, <a href="/search/?searchtype=author&query=Sapkota%2C+A">Aashish Sapkota</a>, <a href="/search/?searchtype=author&query=Mueller%2C+C+L">Carsyn L. Mueller</a>, <a href="/search/?searchtype=author&query=Xiao%2C+S">Shuyang Xiao</a>, <a href="/search/?searchtype=author&query=Huyan%2C+S">Shuyuan Huyan</a>, <a href="/search/?searchtype=author&query=Slade%2C+T+J">Tyler J. Slade</a>, <a href="/search/?searchtype=author&query=Lee%2C+S">Seok-Wook Lee</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09736v1-abstract-short" style="display: inline;"> SrNi$_2$P$_2$ is unique among the ThCr$_2$Si$_2$ class since it exhibits a temperature induced transition upon cooling from an uncollapsed tetragonal (ucT) state to a one-third-collapsed orthorhombic (tcO) state where one out of every three P-rows bond across the Sr layers. This compound is also known for exhibiting bulk superconductivity below 1.4 K at ambient pressure. In this work, we report on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09736v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09736v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09736v1-abstract-full" style="display: none;"> SrNi$_2$P$_2$ is unique among the ThCr$_2$Si$_2$ class since it exhibits a temperature induced transition upon cooling from an uncollapsed tetragonal (ucT) state to a one-third-collapsed orthorhombic (tcO) state where one out of every three P-rows bond across the Sr layers. This compound is also known for exhibiting bulk superconductivity below 1.4 K at ambient pressure. In this work, we report on the effects of Rh substitution in Sr(Ni$_{1-x}$Rh$_x$)$_2$P$_2$ on the structural and superconducting properties. We studied the variation of the nearest P-P distances as a function of the Rh fraction at room temperature, as well as its temperature dependence for selected compositions. We find that increasing the Rh fraction leads to a decrease in the transition temperature between the ucT and tcO states, until a full suppression of the tcO state for $x\geq 0.166$. The superconducting transition first remains nearly insensitive to the Rh fraction, and then it increases to 2.3 K after the tcO state is fully suppressed. These results are summarized in a phase diagram, built upon the characterization by energy dispersive x-ray spectroscopy, x-ray diffraction, resistance, magnetization and specific heat measurements done on crystalline samples with varying Rh content. The relationship between band structure, crystal structure and superconductivity is discussed based on previously reported band structure calculations on SrRh$_2$P$_2$. Moreover, the effect of Rh fraction on the stress-induced structural transitions is also addressed by means of strain-stress studies done by uniaxial compression of single-crystalline micropillars of Sr(Ni$_{1-x}$Rh$_x$)$_2$P$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09736v1-abstract-full').style.display = 'none'; document.getElementById('2412.09736v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19029">arXiv:2411.19029</a> <span> [<a href="https://arxiv.org/pdf/2411.19029">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Theory meets experiment: insights into structure and magnetic properties of Fe$_{1-x}$Ni$_{x}$B alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Bhaskar%2C+G">Gourab Bhaskar</a>, <a href="/search/?searchtype=author&query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/?searchtype=author&query=Mudryk%2C+Y">Yaroslav Mudryk</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Antropov%2C+V+P">Vladimir P. Antropov</a>, <a href="/search/?searchtype=author&query=Zaikina%2C+J+V">Julia V. Zaikina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19029v1-abstract-short" style="display: inline;"> We studied the structural and magnetic properties of the solid solution Fe$_{1-x}$Ni$_{x}$B through theoretical and experimental approaches. Powder X-ray diffraction, X-ray Pair Distribution Function analysis, and energy dispersive X-ray spectroscopy reveal that the Fe$_{1-x}$Ni$_{x}$B solid solution crystallizes in the FeB structure type up to x = 0.6-0.7 and exhibits anisotropic unit cell volume… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19029v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19029v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19029v1-abstract-full" style="display: none;"> We studied the structural and magnetic properties of the solid solution Fe$_{1-x}$Ni$_{x}$B through theoretical and experimental approaches. Powder X-ray diffraction, X-ray Pair Distribution Function analysis, and energy dispersive X-ray spectroscopy reveal that the Fe$_{1-x}$Ni$_{x}$B solid solution crystallizes in the FeB structure type up to x = 0.6-0.7 and exhibits anisotropic unit cell volume contraction with increasing Ni concentration. Magnetic measurements showed a transition from ferromagnetism to paramagnetism around x = 0.7. For x = 0.5, the low (< 0.3 $渭_{B}$) magnetic moments suggest itinerant magnetism despite the relatively high Curie temperature (up to 225 K). Theoretical calculations indicated different types of magnetic orderings depending on the Fe/Ni atomic order, with the antiferromagnetic state being stable for ordered FeNiB$_{2}$, whereas the ground state is ferromagnetic for the disordered alloy. Calculations also predicted the coexistence of low- and high-spin states in Fe atoms around the composition with x=0.5, in line with the experimental evidence from $^{57}$Fe M枚ssbauer spectroscopy. The two magnetically distinct Fe sites for x = 0.3, 0.4, and 0.5 observed by $^{57}$Fe M枚ssbauer spectroscopy can also be interpreted as two magnetically different regions or clusters that could affect the critical behavior near a quantum magnetic transition based on a potential ferromagnetic quantum critical point identified computationally and experimentally near x=0.64. This work highlights the complex interplay between structure and magnetism in Fe$_{1-x}$Ni$_{x}$B alloys, suggesting areas for future research on quantum critical behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19029v1-abstract-full').style.display = 'none'; document.getElementById('2411.19029v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05981">arXiv:2411.05981</a> <span> [<a href="https://arxiv.org/pdf/2411.05981">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Near-room-temperature ferromagnetic ordering in the pressure-induced collapsed-tetragonal phase in SrCo2P2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Huyan%2C+S">S. Huyan</a>, <a href="/search/?searchtype=author&query=Schmidt%2C+J">J. Schmidt</a>, <a href="/search/?searchtype=author&query=Valadkhani%2C+A">A. Valadkhani</a>, <a href="/search/?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/?searchtype=author&query=Li%2C+Z">Z. Li</a>, <a href="/search/?searchtype=author&query=Sapkota%2C+A">A. Sapkota</a>, <a href="/search/?searchtype=author&query=Petri%2C+J+L">J. L. Petri</a>, <a href="/search/?searchtype=author&query=Slade%2C+T+J">T. J. Slade</a>, <a href="/search/?searchtype=author&query=Ribeiro%2C+R+A">R. A. Ribeiro</a>, <a href="/search/?searchtype=author&query=Bi%2C+W">W. Bi</a>, <a href="/search/?searchtype=author&query=Xie%2C+W">W. Xie</a>, <a href="/search/?searchtype=author&query=Mazin%2C+I+I">I. I. Mazin</a>, <a href="/search/?searchtype=author&query=Valenti%2C+R">R. Valenti</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05981v1-abstract-short" style="display: inline;"> We present high pressure electrical transport, magnetization, and single crystal X-ray diffraction data on SrCo2P2 single crystals. X-ray diffraction data show that there is a transition to a collapsed tetragonal structure for p ~> 10 GPa and measurements of resistance show that above ~ 10 GPa, a clear transition-like feature can be observed at temperatures up to 260 K. Further magnetization, magn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05981v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05981v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05981v1-abstract-full" style="display: none;"> We present high pressure electrical transport, magnetization, and single crystal X-ray diffraction data on SrCo2P2 single crystals. X-ray diffraction data show that there is a transition to a collapsed tetragonal structure for p ~> 10 GPa and measurements of resistance show that above ~ 10 GPa, a clear transition-like feature can be observed at temperatures up to 260 K. Further magnetization, magnetoresistance and Hall measurements made under pressure all indicate that this transition is to a ferromagnetic ground state. First principles-based density functional theory (DFT) calculations also show that there is a first-order transition between tetragonal and collapsed tetragonal (cT) phases, with an onset near ~ 10 GPa as well as the appearance of the ferromagnetic (FM) ordering in the cT phase. Above ~ 30 GPa, the experimental signatures of the magnetic ordering vanish in a first-order-like manner, consistent with the theoretical calculation results, indicating that SrCo2P2 is another example of the avoidance of quantum criticality in ferromagnetic intermetallic compounds. SrCo2P2 provides clear evidence that the structural, electronic and magnetic properties associated with the cT transition are strongly entangled and are not only qualitatively captured by our first principles-based calculations but are quantitatively reproduced as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05981v1-abstract-full').style.display = 'none'; document.getElementById('2411.05981v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 4 figures in main text, 13 figures in SI, 14 tables in SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06460">arXiv:2409.06460</a> <span> [<a href="https://arxiv.org/pdf/2409.06460">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Insulator to Metal Transition under High Pressure in FeNb$_3$Se$_{10}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wang%2C+H">Haozhe Wang</a>, <a href="/search/?searchtype=author&query=Huyan%2C+S">Shuyuan Huyan</a>, <a href="/search/?searchtype=author&query=Downey%2C+E">Eoghan Downey</a>, <a href="/search/?searchtype=author&query=Wang%2C+Y">Yang Wang</a>, <a href="/search/?searchtype=author&query=Smolenski%2C+S">Shane Smolenski</a>, <a href="/search/?searchtype=author&query=Li%2C+D">Du Li</a>, <a href="/search/?searchtype=author&query=Yang%2C+L">Li Yang</a>, <a href="/search/?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/?searchtype=author&query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/?searchtype=author&query=Xie%2C+W">Weiwei Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06460v1-abstract-short" style="display: inline;"> Non-magnetic FeNb$_3$Se$_{10}$ has been demonstrated to be an insulator at ambient pressure through both theoretical calculations and experimental measurements and it does not host topological surface states. Here we show that on the application of pressure, FeNb$_3$Se$_{10}$ transitions to a metallic state at around 3.0 GPa. With a further increase in pressure, its resistivity becomes independent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06460v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06460v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06460v1-abstract-full" style="display: none;"> Non-magnetic FeNb$_3$Se$_{10}$ has been demonstrated to be an insulator at ambient pressure through both theoretical calculations and experimental measurements and it does not host topological surface states. Here we show that on the application of pressure, FeNb$_3$Se$_{10}$ transitions to a metallic state at around 3.0 GPa. With a further increase in pressure, its resistivity becomes independent of both temperature and pressure. Its crystal structure is maintained to at least 4.4 GPa. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06460v1-abstract-full').style.display = 'none'; document.getElementById('2409.06460v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03809">arXiv:2409.03809</a> <span> [<a href="https://arxiv.org/pdf/2409.03809">pdf</a>, <a href="https://arxiv.org/format/2409.03809">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Competition between the modification of intrinsic superconducting properties and the pinning landscape under external pressure in CaKFe$_4$As$_4$ single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Huyan%2C+S">Shuyuan Huyan</a>, <a href="/search/?searchtype=author&query=Haberkorn%2C+N">Nestor Haberkorn</a>, <a href="/search/?searchtype=author&query=Xu%2C+M">Mingyu Xu</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03809v1-abstract-short" style="display: inline;"> Measurements of low field magnetization, trapped flux magnetization and 5 K flux creep in single crystal of CaKFe$_4$As$_4$ under pressure up to 7.5 GPa in a diamond pressure cell are presented. The observed evolution of the temperature dependence of the self-field critical current and slowing down of the base temperature flux creep rate are explained within the two sources of pinning hypothesis i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03809v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03809v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03809v1-abstract-full" style="display: none;"> Measurements of low field magnetization, trapped flux magnetization and 5 K flux creep in single crystal of CaKFe$_4$As$_4$ under pressure up to 7.5 GPa in a diamond pressure cell are presented. The observed evolution of the temperature dependence of the self-field critical current and slowing down of the base temperature flux creep rate are explained within the two sources of pinning hypothesis involving presence of CaKFe$_4$As$_4$ intergrowths suggested in the literature. Above the half collapsed tetragonal structural transition under pressure, where superconductivity is non-bulk or absent, critically diminished or no diamagnetism and flux trapped magnetization were observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03809v1-abstract-full').style.display = 'none'; document.getElementById('2409.03809v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03770">arXiv:2408.03770</a> <span> [<a href="https://arxiv.org/pdf/2408.03770">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant Uniaxial Magnetocrystalline Anisotropy in SmCrGe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Xu%2C+M">Mingyu Xu</a>, <a href="/search/?searchtype=author&query=Lee%2C+Y">Yongbin Lee</a>, <a href="/search/?searchtype=author&query=Ke%2C+X">Xianglin Ke</a>, <a href="/search/?searchtype=author&query=Kang%2C+M">Min-Chul Kang</a>, <a href="/search/?searchtype=author&query=Boswell%2C+M">Matt Boswell</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Zhou%2C+L">Lin Zhou</a>, <a href="/search/?searchtype=author&query=Ke%2C+L">Liqin Ke</a>, <a href="/search/?searchtype=author&query=Li%2C+M">Mingda Li</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul. C. Canfield</a>, <a href="/search/?searchtype=author&query=Xie%2C+W">Weiwei Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03770v1-abstract-short" style="display: inline;"> Magnetic anisotropy is a crucial characteristic for enhancing spintronic device performance. The synthesis of SmCrGe$_3$ single crystals through a high-temperature solution method has led to the determination of uniaxial magnetocrystalline anisotropy. Phase verification was achieved using scanning transmission electron microscopy (STEM), powder, and single-crystal X-ray diffraction techniques. Ele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03770v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03770v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03770v1-abstract-full" style="display: none;"> Magnetic anisotropy is a crucial characteristic for enhancing spintronic device performance. The synthesis of SmCrGe$_3$ single crystals through a high-temperature solution method has led to the determination of uniaxial magnetocrystalline anisotropy. Phase verification was achieved using scanning transmission electron microscopy (STEM), powder, and single-crystal X-ray diffraction techniques. Electrical transport and specific heat measurements indicate a Curie temperature ($T_C$) of approximately 160 K, while magnetization measurements were utilized to determine the anisotropy fields and constants. Curie-Weiss fitting applied to magnetization data suggests the contribution of both Sm and Cr in the paramagnetic phase. Additionally, density functional theory (DFT) calculations explored the electronic structures and magnetic properties of SmCrGe$_3$, revealing a significant easy-axis single-ion Sm magnetocrystalline anisotropy of 16 meV/f.u.. Based on the magnetization measurements, easy-axis magnetocrystalline anisotropy at 20 K is 13 meV/f.u.. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03770v1-abstract-full').style.display = 'none'; document.getElementById('2408.03770v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 5+5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12990">arXiv:2407.12990</a> <span> [<a href="https://arxiv.org/pdf/2407.12990">pdf</a>, <a href="https://arxiv.org/ps/2407.12990">ps</a>, <a href="https://arxiv.org/format/2407.12990">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Inhomogeneous magnetic ordered state and evolution of magnetic fluctuations in Sr(Co1-xNix)2P2 revealed by 31P NMR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Furukawa%2C+N">Nao Furukawa</a>, <a href="/search/?searchtype=author&query=Ding%2C+Q">Qing-Ping Ding</a>, <a href="/search/?searchtype=author&query=Schmidt%2C+J">Juan Schmidt</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Furukawa%2C+Y">Yuji Furukawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12990v1-abstract-short" style="display: inline;"> SrCo$_2$P$_2$ with a tetragonal structure is known to be a Stoner-enhanced Pauli paramagnetic metal being nearly ferromagnetic. Recently Schmidt et al. [Phys. Rev. B 108, 174415 (2023)] reported that a ferromagnetic ordered state is actually induced by a small Ni substitution for Co of $x$ = 0.02 in Sr(Co$_{1-x}$Ni$_x$)$_2$P$_2$ where antiferromagnetic ordered phase also appears by further Ni-subs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12990v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12990v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12990v1-abstract-full" style="display: none;"> SrCo$_2$P$_2$ with a tetragonal structure is known to be a Stoner-enhanced Pauli paramagnetic metal being nearly ferromagnetic. Recently Schmidt et al. [Phys. Rev. B 108, 174415 (2023)] reported that a ferromagnetic ordered state is actually induced by a small Ni substitution for Co of $x$ = 0.02 in Sr(Co$_{1-x}$Ni$_x$)$_2$P$_2$ where antiferromagnetic ordered phase also appears by further Ni-substitution with $x = 0.06-0.35$. Here, using nuclear magnetic resonance (NMR) measurements on $^{31}$P nuclei, we have investigated how the magnetic properties change by the Ni substitution in Sr(Co$_{1-x}$Ni$_x$)$_2$P$_2$ from a microscopic point of view, especially focusing on the evolution of magnetic fluctuations with the Ni substitution and the characterization of the magnetically ordered states. The temperature dependences of $^{31}$P spin-lattice relaxation rate divided by temperature ($1/T_1T$) and Knight shift ($K$) for SrCo$_2$P$_2$ are reasonably explained by a model where a double-peak structure for the density of states near the Fermi energy is assumed. Based on a Korringa ratio analysis using the $T_1$ and $K$ data, ferromagnetic spin fluctuations are found to dominate in the ferromagnetic Sr(Co$_{1-x}$Ni$_x$)$_2$P$_2$ as well as the antiferromagnets where no clear antiferromagnetic fluctuations are observed. We also found the distribution of the ordered Co moments in the magnetically ordered states from the analysis of the $^{31}$P NMR spectra exhibiting a characteristic rectangular-like shape. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12990v1-abstract-full').style.display = 'none'; document.getElementById('2407.12990v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Rev. B. 12 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 014439 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06291">arXiv:2406.06291</a> <span> [<a href="https://arxiv.org/pdf/2406.06291">pdf</a>, <a href="https://arxiv.org/format/2406.06291">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The first-order structural phase transition at low-temperature in GaPt$_{5}$P and its rapid enhancement with pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Sapkota%2C+A">A. Sapkota</a>, <a href="/search/?searchtype=author&query=Slade%2C+T+J">T. J. Slade</a>, <a href="/search/?searchtype=author&query=Huyan%2C+S">S. Huyan</a>, <a href="/search/?searchtype=author&query=Nepal%2C+N+K">N. K. Nepal</a>, <a href="/search/?searchtype=author&query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/?searchtype=author&query=Furukawa%2C+N">N. Furukawa</a>, <a href="/search/?searchtype=author&query=Laupidus%2C+S+H">S. H. Laupidus</a>, <a href="/search/?searchtype=author&query=Wang%2C+L+-">L. -L. Wang</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06291v1-abstract-short" style="display: inline;"> Single crystals of XPt$_{5}$P (X = Al, Ga, and In) were grown from a Pt-P solution at high temperatures, and ambient-pressure measurements of temperature-dependent magnetization, resistivity, and X-ray diffraction were made. Also, the ambient-pressure Hall resistivity and temperature-dependent resistance under pressure were measured on GaPt$_{5}$P. All three compounds have tetragonal $P4/mmm$ crys… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06291v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06291v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06291v1-abstract-full" style="display: none;"> Single crystals of XPt$_{5}$P (X = Al, Ga, and In) were grown from a Pt-P solution at high temperatures, and ambient-pressure measurements of temperature-dependent magnetization, resistivity, and X-ray diffraction were made. Also, the ambient-pressure Hall resistivity and temperature-dependent resistance under pressure were measured on GaPt$_{5}$P. All three compounds have tetragonal $P4/mmm$ crystal structure at room-temperature with metallic transport and weak diamagnetism over the $2-300$~K temperature range. Surprisingly, at ambient pressure, both the transport and magnetization measurements on GaPt$_{5}$P show a step-like feature in $70-90$~K region suggesting a possible structural phase transition, and no such features were observed in (Al/In)Pt$_{5}$P. Both the hysteretic nature and sharpness of the feature suggest the first-order transition, and single-crystal X-ray diffraction measurements provided further details of the structural transition with a crystal symmetry likely different than $P4/mmm$ below transition. The transition is characterized by anisotropic changes in the lattice parameters, a volume collapse, and satellite peaks at two distinct wave-vectors. Density functional theory calculations present phonon softening as a possible driving mechanism. Additionally, the structural transition temperature increases rapidly with increasing pressure, reaching room temperature by $\sim 2.2$~GPa, highlighting the high degree of pressure sensitivity and fragile nature of GaPt$_{5}$P room-temperature structure. Although the volume collapse and extreme pressure sensitivity suggest chemical pressure should drive a similar structural change in AlPt$_{5}$P, with smaller unit cell dimensions and volume, its structure is found to be $P4/mmm$ as well. Overall, GaPt$_{5}$P stands out as a sole member of the 1-5-1 family of compounds with a temperature-driven structural change. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06291v1-abstract-full').style.display = 'none'; document.getElementById('2406.06291v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00557">arXiv:2406.00557</a> <span> [<a href="https://arxiv.org/pdf/2406.00557">pdf</a>, <a href="https://arxiv.org/format/2406.00557">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic Paramagnetic Peak Effect in Reversible Magnetization of Crystalline Miassite Superconductor $\text{Rh}_{17}\text{S}_{15}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Prozorov%2C+R">Ruslan Prozorov</a>, <a href="/search/?searchtype=author&query=Tanatar%2C+M+A">Makariy A. Tanatar</a>, <a href="/search/?searchtype=author&query=Ko%C5%84czykowski%2C+M">Marcin Ko艅czykowski</a>, <a href="/search/?searchtype=author&query=Grasset%2C+R">Romain Grasset</a>, <a href="/search/?searchtype=author&query=Koshelev%2C+A+E">Alexei E. Koshelev</a>, <a href="/search/?searchtype=author&query=Wang%2C+L">Linlin Wang</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00557v1-abstract-short" style="display: inline;"> We report an unusual anisotropic paramagnetic peak effect observed in reversible magnetization of a single crystalline nodal superconductor $\text{Rh}_{17}\text{S}_{15}$. Both temperature- and field-dependent magnetization measurements reveal a distinct novel vortex state above approximately 1 T. This peak effect is most pronounced when the magnetic field, $H$, is applied parallel to the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00557v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00557v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00557v1-abstract-full" style="display: none;"> We report an unusual anisotropic paramagnetic peak effect observed in reversible magnetization of a single crystalline nodal superconductor $\text{Rh}_{17}\text{S}_{15}$. Both temperature- and field-dependent magnetization measurements reveal a distinct novel vortex state above approximately 1 T. This peak effect is most pronounced when the magnetic field, $H$, is applied parallel to the $\left[111\right]$ direction, whereas it diminishes for $H\parallel\left[110\right]$. Intriguingly, for $H\parallel\left[100\right]$, instead of a peak, we observe a step-like decrease in $M(T)$, with the step amplitude increasing in larger applied magnetic fields. This behavior is opposite to the expectations of conventional Meissner expulsion. The magnitude of the peak effect, expressed in terms of dimensionless volume susceptibility, is on the order of $螖蠂=10^{-5}$ (with full diamagnetic screening corresponding to $蠂=-1$). The observed anisotropic paramagnetic vortex response is unusual considering the cubic symmetry of $\text{Rh}_{17}\text{S}_{15}$. We propose that in this distinct vortex phase, a small but finite attractive interaction between vortices below $H_{c2}$ may be responsible for this unusual phenomenon. Furthermore, the vortices seem to prefer aligning along the $\left[111\right]$ direction, rotating toward it when the magnetic field is applied in other directions. Our findings add another item to the list of unusual properties of $\text{Rh}_{17}\text{S}_{15}$ that attracted recent attention as the first unconventional superconductor that has a mineral analog, miassite, found in nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00557v1-abstract-full').style.display = 'none'; document.getElementById('2406.00557v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18495">arXiv:2405.18495</a> <span> [<a href="https://arxiv.org/pdf/2405.18495">pdf</a>, <a href="https://arxiv.org/format/2405.18495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Effect of Ni substitution on the fragile magnetic system ${\text{La}_{5}\text{Co}_{2}\text {Ge}_{3}}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Das%2C+A">Atreyee Das</a>, <a href="/search/?searchtype=author&query=Slade%2C+T+J">Tyler J. Slade</a>, <a href="/search/?searchtype=author&query=Khasanov%2C+R">Rustem Khasanov</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18495v1-abstract-short" style="display: inline;"> $\text{La}_{5}\text{Co}_{2}\text{Ge}_{3}$ is an itinerant ferromagnet with a Curie temperature, $T_C$, of $\sim$ 3.8 K and a remarkably small saturated moment of 0.1 $渭_{B}/\text{Co}$. Here we present the growth and characterization of single crystals of the ${\text{La}_{5}\text{(Co}_{1-x}\text {Ni}_{x})_2\text {Ge}_{3}}$ series for 0.00 $\leq x \leq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18495v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18495v1-abstract-full" style="display: none;"> $\text{La}_{5}\text{Co}_{2}\text{Ge}_{3}$ is an itinerant ferromagnet with a Curie temperature, $T_C$, of $\sim$ 3.8 K and a remarkably small saturated moment of 0.1 $渭_{B}/\text{Co}$. Here we present the growth and characterization of single crystals of the ${\text{La}_{5}\text{(Co}_{1-x}\text {Ni}_{x})_2\text {Ge}_{3}}$ series for 0.00 $\leq x \leq$ 0.186. We measured powder X-ray diffraction, composition as well as anisotropic temperature dependent resistivity, temperature and field dependent magnetization along with heat capacity on these single crystals. We also measured muon-spin rotation/relaxation ($渭\text{SR}$) for some Ni substitutions ($x$ = 0.027, 0.036, 0.074) to study the evolution of internal field with Ni substitution. Using the measured data we infer a low temperature, transition temperature-composition phase diagram for ${\text{La}_{5}\text{(Co}_{1-x}\text {Ni}_{x})_2\text {Ge}_{3}}$. We find that $T_{C}$ is suppressed for low dopings, $x \leq 0.014 $; whereas for $0.036 \leq {x} \leq 0.186 $, the samples are antiferromagnetic with a Neel temperature, $T_{N}$, that goes through a weak and shallow maximum ($T_N \sim$ 3.4 K for $ x \sim$ 0.07) and then gradually decreases to 2.4 K by $x$ = 0.186. For intermediate Ni substitutions, $0.016 \leq {x} \leq 0.027 $, two transition temperatures are inferred with $T_N > T_C$. Whereas the $T-x$ phase diagram for ${\text{La}_{5}\text{(Co}_{1-x}\text {Ni}_{x})_2\text {Ge}_{3}}$ and the $T-p$ phase diagram determined for the parent $\text{La}_{5}\text{Co}_{2}\text{Ge}_{3}$ under hydrostatic pressure are grossly similar, changing from a low doping or low pressure ferromagnetic (FM) ground state to a high doped or pressure antiferromagnetic (AFM) state, perturbation by Ni substitution enabled us to identify an intermediate doping regime where both FM and AFM transitions occur. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18495v1-abstract-full').style.display = 'none'; document.getElementById('2405.18495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 40 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13837">arXiv:2405.13837</a> <span> [<a href="https://arxiv.org/pdf/2405.13837">pdf</a>, <a href="https://arxiv.org/format/2405.13837">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Direct observation of linear dispersion close to the Fermi level in the topological semimetal WTe$_2$ through Landau quantization at atomic scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=S%C3%A1nchez-Barquilla%2C+R">Raquel S谩nchez-Barquilla</a>, <a href="/search/?searchtype=author&query=Vega%2C+F+M">Francisco Mart铆n Vega</a>, <a href="/search/?searchtype=author&query=Ruiz%2C+A+M">Alberto M. Ruiz</a>, <a href="/search/?searchtype=author&query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/?searchtype=author&query=Herrera%2C+E">Edwin Herrera</a>, <a href="/search/?searchtype=author&query=Baldov%C3%AD%2C+J+J">Jos茅 J. Baldov铆</a>, <a href="/search/?searchtype=author&query=Ochi%2C+M">Masayuki Ochi</a>, <a href="/search/?searchtype=author&query=Arita%2C+R">Ryotaro Arita</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Guillam%C3%B3n%2C+I">Isabel Guillam贸n</a>, <a href="/search/?searchtype=author&query=Suderow%2C+H">Hermann Suderow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13837v1-abstract-short" style="display: inline;"> We study the topological Weyl type-II semimetal WTe$_2$ via Scanning Tunneling Microscopy (STM) and Density Functional Theory calculations (DFT). We succesfully determine the band structure at zero field close to the Fermi level by comparing quasiparticle interference (QPI) experiments with DFT. Under magnetic fields, we observe Landau level quantization on atomic scale measurements and find a lev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13837v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13837v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13837v1-abstract-full" style="display: none;"> We study the topological Weyl type-II semimetal WTe$_2$ via Scanning Tunneling Microscopy (STM) and Density Functional Theory calculations (DFT). We succesfully determine the band structure at zero field close to the Fermi level by comparing quasiparticle interference (QPI) experiments with DFT. Under magnetic fields, we observe Landau level quantization on atomic scale measurements and find a level sequence evidencing a linearly dispersing portion of the band structure. Our results establish the long sought connection between Weyl cones and Landau quantization in WTe$_2$. Atomic scale Landau quantization emerges as a powerful probe of topological surface states for semimetals, superconductors and topological insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13837v1-abstract-full').style.display = 'none'; document.getElementById('2405.13837v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08189">arXiv:2405.08189</a> <span> [<a href="https://arxiv.org/pdf/2405.08189">pdf</a>, <a href="https://arxiv.org/format/2405.08189">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6668/ad45c7">10.1088/1361-6668/ad45c7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trapped flux in a small crystal of CaKFe$_4$As$_4$ at ambient pressure and in a diamond anvil pressure cell </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Huyan%2C+S">Shuyuan Huyan</a>, <a href="/search/?searchtype=author&query=Xu%2C+M">Mingyu Xu</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08189v1-abstract-short" style="display: inline;"> In an extension of our previous work, [Sergey L Bud'ko et al 2023 Supercond. Sci. Technol. 36 115001] the measurements of temperature dependent magnetization associated with trapped magnetic flux in a small single crystal of CaKFe$_4$As$_4$, using zero-field-cooled and field-cooled protocols were performed, on the same crystal, at ambient pressure without a pressure cell and at 2.2 GPa in a commer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08189v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08189v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08189v1-abstract-full" style="display: none;"> In an extension of our previous work, [Sergey L Bud'ko et al 2023 Supercond. Sci. Technol. 36 115001] the measurements of temperature dependent magnetization associated with trapped magnetic flux in a small single crystal of CaKFe$_4$As$_4$, using zero-field-cooled and field-cooled protocols were performed, on the same crystal, at ambient pressure without a pressure cell and at 2.2 GPa in a commercial diamond anvil cell (DAC), showing comparable results. The data show that with a proper care and understanding, trapped flux measurements in superconductors indeed can be performed on samples in DACs under pressure, as was done on superhydrides [V S Minkov et al 2023 Nat. Phys. 19 1293]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08189v1-abstract-full').style.display = 'none'; document.getElementById('2405.08189v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Supercond. Sci. Technol. 37, 065010 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04429">arXiv:2405.04429</a> <span> [<a href="https://arxiv.org/pdf/2405.04429">pdf</a>, <a href="https://arxiv.org/format/2405.04429">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.014429">10.1103/PhysRevB.110.014429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancement of the Curie temperature in single crystalline ferromagnetic LaCrGe$_3$ by electron irradiation-induced disorder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Krenkel%2C+E+H">E. H. Krenkel</a>, <a href="/search/?searchtype=author&query=Tanatar%2C+M+A">M. A. Tanatar</a>, <a href="/search/?searchtype=author&query=Konczykowski%2C+M">M. Konczykowski</a>, <a href="/search/?searchtype=author&query=Grasset%2C+R">R. Grasset</a>, <a href="/search/?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Prozorov%2C+R">R. Prozorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04429v1-abstract-short" style="display: inline;"> LaCrGe$_3$ has attracted attention as a potential candidate for studies of quantum phase transitions in a ferromagnetic material. The application of pressure avoids a quantum critical point by developing a new magnetic phase. It was suggested that the disorder may provide an alternative route to a quantum critical point. We used low-temperature 2.5 MeV electron irradiation to induce relatively sma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04429v1-abstract-full').style.display = 'inline'; document.getElementById('2405.04429v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04429v1-abstract-full" style="display: none;"> LaCrGe$_3$ has attracted attention as a potential candidate for studies of quantum phase transitions in a ferromagnetic material. The application of pressure avoids a quantum critical point by developing a new magnetic phase. It was suggested that the disorder may provide an alternative route to a quantum critical point. We used low-temperature 2.5 MeV electron irradiation to induce relatively small amounts of point-like disorder in single crystals of LaCrGe$_3$. Irradiation leads to an increase of the resistivity at all temperatures with some deviation from the Matthiessen rule. Hall effect measurements show that electron irradiation does not cause any detectable change in the carrier density. Unexpectedly, the Curie temperature, $T_{\text{FM}}$, \emph{increases} with the increase of disorder from approximately 90 K in pristine samples up to nearly 100 K in the heavily irradiated sample, with a tendency towards saturation at higher doses. Although the mechanism of this effect is not entirely clear, we conclude that it cannot be caused by effective ``doping" or ``pressure" due to electron irradiation. We suggest that disorder-induced broadening of a sharp peak in the density of states, $D(E)$, situated at $E_p=E_F-0.25$ eV below the Fermi energy, $E_F$, causes an increase in $D(E_F)$, leading to an enhancement of $T_\text{FM}$ in this itinerant ferromagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04429v1-abstract-full').style.display = 'none'; document.getElementById('2405.04429v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 14429 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09592">arXiv:2401.09592</a> <span> [<a href="https://arxiv.org/pdf/2401.09592">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Suppression of metal-to-insulator transition and stabilization of superconductivity by pressure in Re3Ge7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Huyan%2C+S">S. Huyan</a>, <a href="/search/?searchtype=author&query=Mun%2C+E">E. Mun</a>, <a href="/search/?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/?searchtype=author&query=Slade%2C+T+J">T. J. Slade</a>, <a href="/search/?searchtype=author&query=Li%2C+Z">Z. Li</a>, <a href="/search/?searchtype=author&query=Schmidt%2C+J">J. Schmidt</a>, <a href="/search/?searchtype=author&query=Ribeiro%2C+R+A">R. A. Ribeiro</a>, <a href="/search/?searchtype=author&query=Xie%2C+W">W. Xie</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09592v1-abstract-short" style="display: inline;"> The effect of pressure on the low-temperature states of the Re3Ge7 is investigated by both electrical and Hall resistance and magnetization measurements. At ambient pressure, the temperature dependent resistance of Re3Ge7 behaves quasi-linearly from room temperature down to 60 K, then undergoes a two-step metal-to-insulator transitions (MIT) at temperatures T1 = 59.4 K and T2 = 58.7 K which may be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09592v1-abstract-full').style.display = 'inline'; document.getElementById('2401.09592v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09592v1-abstract-full" style="display: none;"> The effect of pressure on the low-temperature states of the Re3Ge7 is investigated by both electrical and Hall resistance and magnetization measurements. At ambient pressure, the temperature dependent resistance of Re3Ge7 behaves quasi-linearly from room temperature down to 60 K, then undergoes a two-step metal-to-insulator transitions (MIT) at temperatures T1 = 59.4 K and T2 = 58.7 K which may be related to a structural phase transition or occurrence of charge density wave ordering. Upon applying pressure, the two-step (T1, T2) MIT splits into three steps (T1, T2 and T3) above 1 GPa, and all traces of MITs are fully suppressed by ~8 GPa. Subsequently, the onset of bulk superconductivity (SC) occurs between 10.8 and 12.2 GPa and persists to our highest pressure of 26.8 GPa. At 12.2 GPa the superconducting transition temperature, Tc, and upper critical field, Hc2 reach the maximum of Tc (onset) ~5.9 K and Hc2 (1.8 K) ~ 14 kOe. Our results not only present the observation of SC under high pressure in Re3Ge7 but also delineate the interplay between SC and other competing electronic states by creating a T - p phase diagram for this potentially topologically nontrivial system Re3Ge7. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09592v1-abstract-full').style.display = 'none'; document.getElementById('2401.09592v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures, and 37 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03057">arXiv:2401.03057</a> <span> [<a href="https://arxiv.org/pdf/2401.03057">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Double-domed temperature-pressure phase diagram found for CePd3S4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Huyan%2C+S">S. Huyan</a>, <a href="/search/?searchtype=author&query=Slade%2C+T+J">T. J. Slade</a>, <a href="/search/?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/?searchtype=author&query=Flint%2C+R">R. Flint</a>, <a href="/search/?searchtype=author&query=Ribeiro%2C+R+A">R. A. Ribeiro</a>, <a href="/search/?searchtype=author&query=Xie%2C+W">W. Xie</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03057v1-abstract-short" style="display: inline;"> CePd3S4 exhibits interplay between ferromagnetism (FM), quadrupolar order, and the Kondo effect at low temperatures with a FM transition temperature that is much higher than the value expected from the de Gennes scaling of the heavier RPd3S4 compounds. In this work, we investigated the electrical transport and magnetic properties of CePd3S4 under pressure up through 12 GPa so as to better understa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03057v1-abstract-full').style.display = 'inline'; document.getElementById('2401.03057v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03057v1-abstract-full" style="display: none;"> CePd3S4 exhibits interplay between ferromagnetism (FM), quadrupolar order, and the Kondo effect at low temperatures with a FM transition temperature that is much higher than the value expected from the de Gennes scaling of the heavier RPd3S4 compounds. In this work, we investigated the electrical transport and magnetic properties of CePd3S4 under pressure up through 12 GPa so as to better understand the interplay between electronic and magnetic phases in this material. Our findings show that the low pressure FM state is suddenly replaced by a new magnetically ordered phase that is most likely antiferromagnetic that spans from ~ 7 GPa to ~ 11 GPa. Whereas this could be described as an example of avoided quantum criticality, given that clear changes in resistance and Hall data are detected near 6.3 GPa for all temperatures below 300 K, it is also possible that the change in ground state is a response to a pressure induced change in structure. The lack of any discernible change in the pressure dependence of the room temperature unit cell parameter/volume across this whole pressure range suggests that this change in structure is either more subtle than could be detected by our measurements (i.e. development of weak, new wave vector) or the transition is electronic (such as a Lifshitz transition). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03057v1-abstract-full').style.display = 'none'; document.getElementById('2401.03057v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 16 figures, 74 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14251">arXiv:2312.14251</a> <span> [<a href="https://arxiv.org/pdf/2312.14251">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure-dependent "Insulator-Metal-Insulator" Behavior in Sr-doped La$_3$Ni$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Xu%2C+M">Mingyu Xu</a>, <a href="/search/?searchtype=author&query=Huyan%2C+S">Shuyuan Huyan</a>, <a href="/search/?searchtype=author&query=Wang%2C+H">Haozhe Wang</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Chen%2C+X">Xinglong Chen</a>, <a href="/search/?searchtype=author&query=Ke%2C+X">Xianglin Ke</a>, <a href="/search/?searchtype=author&query=Mitchell%2C+J+F">J. F. Mitchell</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Li%2C+J">Jie Li</a>, <a href="/search/?searchtype=author&query=Xie%2C+W">Weiwei Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14251v1-abstract-short" style="display: inline;"> Recently, superconductivity at high temperatures has been observed in bulk La$_3$Ni$_2$O$_{7-未}$ under high pressure. However, the attainment of high-purity La$_3$Ni$_2$O$_{7-未}$ single crystals, exhibiting controlled and homogeneous stoichiometry through the post-annealing process in an oxygen-rich floating zone furnace, remains a formidable challenge. Here, we report the crystal structure and ph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14251v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14251v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14251v1-abstract-full" style="display: none;"> Recently, superconductivity at high temperatures has been observed in bulk La$_3$Ni$_2$O$_{7-未}$ under high pressure. However, the attainment of high-purity La$_3$Ni$_2$O$_{7-未}$ single crystals, exhibiting controlled and homogeneous stoichiometry through the post-annealing process in an oxygen-rich floating zone furnace, remains a formidable challenge. Here, we report the crystal structure and physical properties of single crystals of Sr-doped La$_3$Ni$_2$O$_7$ synthesized at high pressure (20 GPa) and high temperature (1400 掳C). Through single crystal X-ray diffraction, we showed that high-pressure-synthesized paramagnetic Sr-doped La$_3$Ni$_2$O$_7$ crystallizes in an orthorhombic structure with Ni-O-Ni bond angles of 173.4(2)掳out-of-plane and 175.0(2)掳and 176.7(2)掳in plane. The substitution of Sr alters in band filling and the ratio of Ni$^{2+}$/Ni$^{3+}$ in Sr-doped La$_3$Ni$_2$O$_7$, aligning them with those of "La$_3$Ni$_2$O$_{7.05}$", thereby leading to significant modifications in properties under high pressure relative to the unsubstituted parent phase. At ambient pressure, Sr-doped La$_3$Ni$_2$O$_7$ exhibits insulating properties, and the conductivity increases as pressure goes up to 10 GPa. However, upon further increasing pressure beyond 10.7 GPa, Sr-doped La$_3$Ni$_2$O$_7$ transits back from a metal-like behavior to an insulator. The insulator-metal-insulator trend under high pressure dramatically differs from the behavior of the parent compound La$_3$Ni$_2$O$_{7-未}$, despite their similar behavior in the low-pressure regime. These experimental results underscore the considerable challenge in achieving superconductivity in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14251v1-abstract-full').style.display = 'none'; document.getElementById('2312.14251v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04495">arXiv:2312.04495</a> <span> [<a href="https://arxiv.org/pdf/2312.04495">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Is MgB$_2$ a superconductor? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Talantsev%2C+E+F">E. F. Talantsev</a>, <a href="/search/?searchtype=author&query=Minkov%2C+V+S">V. S. Minkov</a>, <a href="/search/?searchtype=author&query=Ksenofontov%2C+V">V. Ksenofontov</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Eremets%2C+M+I">M. I. Eremets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04495v3-abstract-short" style="display: inline;"> Hirsch and Marsiglio, in their recent publication (J. Supercond. Nov. Mag. 35, 3141-3145 (2022)), assert that experimental data on the trapping of magnetic flux by hydrogen-rich compounds clearly demonstrate the absence of superconductivity in hydrides at high pressures. We argue that this assertion is incorrect, as it relies on the wrong model coupled with selective manipulations (hide/delete) of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04495v3-abstract-full').style.display = 'inline'; document.getElementById('2312.04495v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04495v3-abstract-full" style="display: none;"> Hirsch and Marsiglio, in their recent publication (J. Supercond. Nov. Mag. 35, 3141-3145 (2022)), assert that experimental data on the trapping of magnetic flux by hydrogen-rich compounds clearly demonstrate the absence of superconductivity in hydrides at high pressures. We argue that this assertion is incorrect, as it relies on the wrong model coupled with selective manipulations (hide/delete) of calculated datasets and ignores the reference measurements after the release of pressure. A critical examination of the authors' claim of having performed fitting of experimental data to the model reveals that, in fact, the authors conducted simulations where all free parameters were fixed. Importantly, an application of the Hirsch-Marsiglio model to MgB$_2$ leads to the conclusion that it is not a superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04495v3-abstract-full').style.display = 'none'; document.getElementById('2312.04495v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, Supplementary Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00754">arXiv:2312.00754</a> <span> [<a href="https://arxiv.org/pdf/2312.00754">pdf</a>, <a href="https://arxiv.org/format/2312.00754">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0190229">10.1063/5.0190229 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of nematic susceptibility with phase sensitive nuclear magnetic resonance in pulsed strain fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Chaffey%2C+C">C. Chaffey</a>, <a href="/search/?searchtype=author&query=Williams%2C+C">C. Williams</a>, <a href="/search/?searchtype=author&query=Tanatar%2C+M+A">M. A. Tanatar</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Curro%2C+N+J">N. J. Curro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00754v1-abstract-short" style="display: inline;"> We present nuclear magnetic resonance data in BaFe$_2$As$_2$ in the presence of pulsed strain fields that are interleaved in time with the radiofrequency excitation pulses. In this approach, the precessing nuclear magnetization acquires a phase shift that is proportional to the strain and pulse time. The sensitivity in this approach is limited by the homogeneous decoherence time, $T_2$, rather tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00754v1-abstract-full').style.display = 'inline'; document.getElementById('2312.00754v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00754v1-abstract-full" style="display: none;"> We present nuclear magnetic resonance data in BaFe$_2$As$_2$ in the presence of pulsed strain fields that are interleaved in time with the radiofrequency excitation pulses. In this approach, the precessing nuclear magnetization acquires a phase shift that is proportional to the strain and pulse time. The sensitivity in this approach is limited by the homogeneous decoherence time, $T_2$, rather than the inhomogeneous linewidth. We measure the nematic susceptibility as a function of temperature, and demonstrate three orders of magnitude improvement in sensitivity. This approach will enable studies of the strain response in a broad range of materials that previously were inaccessible due to inhomogeneous broadening. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00754v1-abstract-full').style.display = 'none'; document.getElementById('2312.00754v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 95, 043903 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00270">arXiv:2312.00270</a> <span> [<a href="https://arxiv.org/pdf/2312.00270">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Insulator to Metal Transition, Spin-Phonon Coupling, and Potential Magnetic Transition Observed in Quantum Spin Liquid Candidate LiYbSe$_2$ under High Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wang%2C+H">Haozhe Wang</a>, <a href="/search/?searchtype=author&query=Shi%2C+L">Lifen Shi</a>, <a href="/search/?searchtype=author&query=Huyan%2C+S">Shuyuan Huyan</a>, <a href="/search/?searchtype=author&query=Jose%2C+G+C">Greeshma C. Jose</a>, <a href="/search/?searchtype=author&query=Lavina%2C+B">Barbara Lavina</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Bi%2C+W">Wenli Bi</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/?searchtype=author&query=Xie%2C+W">Weiwei Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00270v2-abstract-short" style="display: inline;"> Metallization of quantum spin liquid (QSL) materials has long been considered as a potential route to achieve unconventional superconductivity. Here we report our endeavor in this direction by pressurizing a three-dimensional QSL candidate, LiYbSe$_2$, with a previously unreported pyrochlore structure. High-pressure X-ray diffraction and Raman studies up to 50 GPa reveal no appreciable changes of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00270v2-abstract-full').style.display = 'inline'; document.getElementById('2312.00270v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00270v2-abstract-full" style="display: none;"> Metallization of quantum spin liquid (QSL) materials has long been considered as a potential route to achieve unconventional superconductivity. Here we report our endeavor in this direction by pressurizing a three-dimensional QSL candidate, LiYbSe$_2$, with a previously unreported pyrochlore structure. High-pressure X-ray diffraction and Raman studies up to 50 GPa reveal no appreciable changes of structural symmetry or distortion in this pressure range. This compound is so insulating that its resistance decreases below 10$^5$ $惟$ only at pressures above 25 GPa in the corresponding temperature range accompanying the gradual reduction of band gap upon compression. Interestingly, an insulator-to-metal transition takes place in LiYbSe$_2$ at about 68 GPa and the metallic behavior remains up to 123.5 GPa, the highest pressure reached in the present study. A possible sign of magnetic or other phase transition was observed in LiYbSe$_2$. The insulator-to-metal transition in LiYbSe$_2$ under high pressure makes it an ideal system to study the pressure effects on QSL candidates of spin-1/2 Yb$^{3+}$ system in different lattice patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00270v2-abstract-full').style.display = 'none'; document.getElementById('2312.00270v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11680">arXiv:2308.11680</a> <span> [<a href="https://arxiv.org/pdf/2308.11680">pdf</a>, <a href="https://arxiv.org/ps/2308.11680">ps</a>, <a href="https://arxiv.org/format/2308.11680">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.134421">10.1103/PhysRevB.108.134421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short-range magnetic correlations in quasicrystalline i-Tb-Cd </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Das%2C+P">P. Das</a>, <a href="/search/?searchtype=author&query=Kreyssig%2C+A">A. Kreyssig</a>, <a href="/search/?searchtype=author&query=Tucker%2C+G+S">G. S. Tucker</a>, <a href="/search/?searchtype=author&query=Podlesnyak%2C+A">A. Podlesnyak</a>, <a href="/search/?searchtype=author&query=Ye%2C+F">Feng Ye</a>, <a href="/search/?searchtype=author&query=Matsuda%2C+M">Masaaki Matsuda</a>, <a href="/search/?searchtype=author&query=Kong%2C+T">T. Kong</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Flint%2C+R">R. Flint</a>, <a href="/search/?searchtype=author&query=Orth%2C+P+P">P. P. Orth</a>, <a href="/search/?searchtype=author&query=Yamada%2C+T">T. Yamada</a>, <a href="/search/?searchtype=author&query=McQueeney%2C+R+J">R. J. McQueeney</a>, <a href="/search/?searchtype=author&query=Goldman%2C+A+I">A. I. Goldman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11680v1-abstract-short" style="display: inline;"> We report on elastic and inelastic neutron scattering from single-grain isotopically-enriched samples to elucidate the local magnetic correlations between Tb$^{3+}$ moments in quasicrystalline i-Tb-Cd. The inelastic neutron scattering measurements of the CEF excitations demonstrated that the Tb$^{3+}$ moments are directed primarily along the local five-fold axes of the Tsai-type cluster as was fou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11680v1-abstract-full').style.display = 'inline'; document.getElementById('2308.11680v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11680v1-abstract-full" style="display: none;"> We report on elastic and inelastic neutron scattering from single-grain isotopically-enriched samples to elucidate the local magnetic correlations between Tb$^{3+}$ moments in quasicrystalline i-Tb-Cd. The inelastic neutron scattering measurements of the CEF excitations demonstrated that the Tb$^{3+}$ moments are directed primarily along the local five-fold axes of the Tsai-type cluster as was found for the TbCd6 approximant phase. Based on the inelastic measurements, we consider of a simple Ising-type model for the moment configurations on a single Tb$^{3+}$ icosahedron and enumerate the lowest energy moment configurations. We then calculate the diffuse scattering from these configurations and compare with the experimental magnetic diffuse scattering measurements to identify the most likely single cluster moment configurations and find reasonable agreement between the broad features observed in our scattering simulations. We further consider the role of higher-order (longer range) intercluster correlations for the magnetic scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11680v1-abstract-full').style.display = 'none'; document.getElementById('2308.11680v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 134421 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10604">arXiv:2307.10604</a> <span> [<a href="https://arxiv.org/pdf/2307.10604">pdf</a>, <a href="https://arxiv.org/format/2307.10604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Tuning superconductivity and spin-vortex fluctuations in CaKFe$_4$As$_4$ through in-plane antisymmetric strains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Valadkhani%2C+A">Adrian Valadkhani</a>, <a href="/search/?searchtype=author&query=C%C3%A9spedes%2C+B+Z">Bel茅n Z煤帽iga C茅spedes</a>, <a href="/search/?searchtype=author&query=Mandloi%2C+S">Salony Mandloi</a>, <a href="/search/?searchtype=author&query=Xu%2C+M">Mingyu Xu</a>, <a href="/search/?searchtype=author&query=Schmidt%2C+J">Juan Schmidt</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/?searchtype=author&query=Gati%2C+E">Elena Gati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10604v1-abstract-short" style="display: inline;"> Lattice strains of appropriate symmetry have served as an excellent tool to explore the interaction of superconductivity in the iron-based superconductors with nematic and stripe spin-density wave (SSDW) order, which are both closely tied to an orthorhombic distortion. In this work, we contribute to a broader understanding of the coupling of strain to superconductivity and competing normal-state o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10604v1-abstract-full').style.display = 'inline'; document.getElementById('2307.10604v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10604v1-abstract-full" style="display: none;"> Lattice strains of appropriate symmetry have served as an excellent tool to explore the interaction of superconductivity in the iron-based superconductors with nematic and stripe spin-density wave (SSDW) order, which are both closely tied to an orthorhombic distortion. In this work, we contribute to a broader understanding of the coupling of strain to superconductivity and competing normal-state orders by studying CaKFe$_4$As$_4$ under large, in-plane strains of $B_{1g}$ and $B_{2g}$ symmetry. In contrast to the majority of iron-based superconductors, pure CaKFe$_4$As$_4$ exhibits superconductivity with relatively high transition temperature of $T_c\,\sim\,$35 K in proximity of a non-collinear, tetragonal, hedgehog spin-vortex crystal (SVC) order. Through experiments, we demonstrate an anisotropic in-plane strain response of $T_c$, which is reminiscent of the behavior of other pnictides with nematicity. However, our calculations suggest that in CaKFe$_4$As$_4$, this anisotropic response correlates with the one of the SVC fluctuations, highlighting the close interrelation of magnetism and high-$T_c$ superconductivity. By suggesting moderate $B_{2g}$ strains as an effective parameter to change the stability of SVC and SSDW, we outline a pathway to a unified phase diagram of iron-based superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10604v1-abstract-full').style.display = 'none'; document.getElementById('2307.10604v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures + references and supplemental information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16517">arXiv:2306.16517</a> <span> [<a href="https://arxiv.org/pdf/2306.16517">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Strong enhancement of magnetic ordering temperature and structural/valence transitions in EuPd3S4 under high pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Huyan%2C+S">S. Huyan</a>, <a href="/search/?searchtype=author&query=Ryan%2C+D+H">D. H. Ryan</a>, <a href="/search/?searchtype=author&query=Slade%2C+T+J">T. J. Slade</a>, <a href="/search/?searchtype=author&query=Lavina%2C+B">B. Lavina</a>, <a href="/search/?searchtype=author&query=Jose%2C+G+C">G. C. Jose</a>, <a href="/search/?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/?searchtype=author&query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/?searchtype=author&query=Ribeiro%2C+R+A">R. A. Ribeiro</a>, <a href="/search/?searchtype=author&query=Zhao%2C+J">J. Zhao</a>, <a href="/search/?searchtype=author&query=Xie%2C+W">W. Xie</a>, <a href="/search/?searchtype=author&query=Bi%2C+W">W. Bi</a>, <a href="/search/?searchtype=author&query=Alp%2C+E+E">E. E. Alp</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16517v1-abstract-short" style="display: inline;"> We present a comprehensive study of the mixed valent compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain 151Eu synchrotron M枚ssbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. The electrical transport measurements show that the antiferromagnetic ordering temperature, TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16517v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16517v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16517v1-abstract-full" style="display: none;"> We present a comprehensive study of the mixed valent compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain 151Eu synchrotron M枚ssbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. The electrical transport measurements show that the antiferromagnetic ordering temperature, TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated with TN is detected. A pressure-induced first order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~32 GPa) that corresponds to the TN plateau. M枚ssbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+ to fully Eu3+ at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhances TN, most likely via enhanced hybridization between the Eu 4f states and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16517v1-abstract-full').style.display = 'none'; document.getElementById('2306.16517v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures in main manuscript, 10 figures in SI</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Natl. Acad. Sci. 120 (52) e2310779120 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13206">arXiv:2306.13206</a> <span> [<a href="https://arxiv.org/pdf/2306.13206">pdf</a>, <a href="https://arxiv.org/format/2306.13206">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00656-0">10.1038/s41535-024-00656-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New insight into tuning magnetic phases of $R$Mn$_6$Sn$_6$ kagome metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Riberolles%2C+S+X+M">Simon X. M. Riberolles</a>, <a href="/search/?searchtype=author&query=Han%2C+T">Tianxiong Han</a>, <a href="/search/?searchtype=author&query=Slade%2C+T+J">Tyler J. Slade</a>, <a href="/search/?searchtype=author&query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/?searchtype=author&query=Sapkota%2C+A">A. Sapkota</a>, <a href="/search/?searchtype=author&query=Tian%2C+W">Wei Tian</a>, <a href="/search/?searchtype=author&query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/?searchtype=author&query=Abernathy%2C+D+L">D. L. Abernathy</a>, <a href="/search/?searchtype=author&query=Sanjeewa%2C+L+D">L. D. Sanjeewa</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=McQueeney%2C+R+J">R. J. McQueeney</a>, <a href="/search/?searchtype=author&query=Ueland%2C+B+G">B. G. Ueland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13206v3-abstract-short" style="display: inline;"> Predicting magnetic ordering in kagome compounds offers the possibility of harnessing topological or flat-band physical properties through tuning of the magnetism. Here, we examine the magnetic interactions and phases of ErMn$_6$Sn$_6$ which belongs to a family of $R$Mn$_6$Sn$_6$, $R=$ Sc, Y, Gd--Lu, compounds with magnetic kagome Mn layers, triangular $R$ layers, and signatures of topological pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13206v3-abstract-full').style.display = 'inline'; document.getElementById('2306.13206v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13206v3-abstract-full" style="display: none;"> Predicting magnetic ordering in kagome compounds offers the possibility of harnessing topological or flat-band physical properties through tuning of the magnetism. Here, we examine the magnetic interactions and phases of ErMn$_6$Sn$_6$ which belongs to a family of $R$Mn$_6$Sn$_6$, $R=$ Sc, Y, Gd--Lu, compounds with magnetic kagome Mn layers, triangular $R$ layers, and signatures of topological properties. Using results from single-crystal neutron diffraction and mean-field analysis, we find that ErMn$_6$Sn$_6$ sits close to the critical boundary separating the spiral-magnetic and ferrimagnetic ordered states typical for nonmagnetic versus magnetic $R$ layers, respectively. Finding interlayer magnetic interactions and easy-plane Mn magnetic anisotropy consistent with other members of the family, we predict the existence of a number of temperature and field dependent collinear, noncollinear, and noncoplanar magnetic phases. We show that thermal fluctuations of the Er magnetic moment, which act to weaken the Mn-Er interlayer magnetic interaction and quench the Er magnetic anisotropy, dictate magnetic phase stability. Our results provide a starting point and outline a multitude of possibilities for studying the behavior of Dirac fermions in $R$Mn$_6$Sn$_6$ compounds with control of the Mn spin orientation and real-space spin chirality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13206v3-abstract-full').style.display = 'none'; document.getElementById('2306.13206v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary Information included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9, 42 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09867">arXiv:2306.09867</a> <span> [<a href="https://arxiv.org/pdf/2306.09867">pdf</a>, <a href="https://arxiv.org/format/2306.09867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.224419">10.1103/PhysRevB.107.224419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic ground state and perturbations of the distorted kagome Ising metal TmAgGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Larsen%2C+C+B">C. B. Larsen</a>, <a href="/search/?searchtype=author&query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/?searchtype=author&query=Gauthier%2C+N">N. Gauthier</a>, <a href="/search/?searchtype=author&query=Rosales%2C+H+D">H. D. Rosales</a>, <a href="/search/?searchtype=author&query=Albarrac%C3%ADn%2C+F+A+G">F. A. G贸mez Albarrac铆n</a>, <a href="/search/?searchtype=author&query=Lass%2C+J">J. Lass</a>, <a href="/search/?searchtype=author&query=Boraley%2C+X">X. Boraley</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09867v1-abstract-short" style="display: inline;"> We present the magnetic orders and excitations of the distorted kagome intermetallic magnet TmAgGe. Using neutron single crystal diffraction we identify the propagation vectors $\bf{k}$ = (1/2 0 0) and $\bf{k}$ = (0 0 0) and determine the magnetic structures of the zero-field and magnetic field-induced phases for $H$ along the $a$ and [-1 1 0] crystal directions. We determine the experimental magn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09867v1-abstract-full').style.display = 'inline'; document.getElementById('2306.09867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09867v1-abstract-full" style="display: none;"> We present the magnetic orders and excitations of the distorted kagome intermetallic magnet TmAgGe. Using neutron single crystal diffraction we identify the propagation vectors $\bf{k}$ = (1/2 0 0) and $\bf{k}$ = (0 0 0) and determine the magnetic structures of the zero-field and magnetic field-induced phases for $H$ along the $a$ and [-1 1 0] crystal directions. We determine the experimental magnetic field-temperature ($H$, $T$)-phase diagram and reproduce it by Monte-Carlo simulations of an effective spin exchange Hamiltonian for one distorted kagome layer. Our model includes a strong axial single-ion anisotropy and significantly smaller exchange couplings which span up to the third-nearest neighbours within the layer. Single crystal inelastic neutron scattering (INS) measurements reveal an almost flat, only weakly dispersive mode around 7 meV that we use alongside bulk magnetization data to deduce the crystal-electric field (CEF) scheme for the Tm$^{3+}$ ions. Random phase approximation (RPA) calculations based on the determined CEF wave functions of the two lowest quasi-doublets enable an estimation of the interlayer coupling that is compatible with the experimental INS spectra. No evidence for low-energy spin waves associated to the magnetic order was found, which is consistent with the strongly Ising nature of the ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09867v1-abstract-full').style.display = 'none'; document.getElementById('2306.09867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 224419 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00261">arXiv:2306.00261</a> <span> [<a href="https://arxiv.org/pdf/2306.00261">pdf</a>, <a href="https://arxiv.org/format/2306.00261">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unconventional nodal superconductivity in miassite Rh$_{17}$S$_{15}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Kim%2C+H">Hyunsoo Kim</a>, <a href="/search/?searchtype=author&query=Tanatar%2C+M+A">Makariy A. Tanatar</a>, <a href="/search/?searchtype=author&query=Ko%C5%84czykowski%2C+M">Marcin Ko艅czykowski</a>, <a href="/search/?searchtype=author&query=Kaluarachchi%2C+U+S">Udhara S. Kaluarachchi</a>, <a href="/search/?searchtype=author&query=Teknowijoyo%2C+S">Serafim Teknowijoyo</a>, <a href="/search/?searchtype=author&query=Cho%2C+K">Kyuil Cho</a>, <a href="/search/?searchtype=author&query=Sapkota%2C+A">Aashish Sapkota</a>, <a href="/search/?searchtype=author&query=Wilde%2C+J+M">John M. Wilde</a>, <a href="/search/?searchtype=author&query=Krogstad%2C+M+J">Matthew J. Krogstad</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Brydon%2C+P+M+R">Philip M. R. Brydon</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Prozorov%2C+R">Ruslan Prozorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00261v1-abstract-short" style="display: inline;"> Unconventional superconductivity has long been believed to arise from a lab-grown correlated electronic system. Here we report compelling evidence of unconventional nodal superconductivity in a mineral superconductor \rhs. We investigated the temperature-dependent London penetration depth $螖位(T)$ and disorder evolution of the critical temperature $T_c$ and upper critical field $H_{c2}(T)$ in synth… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00261v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00261v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00261v1-abstract-full" style="display: none;"> Unconventional superconductivity has long been believed to arise from a lab-grown correlated electronic system. Here we report compelling evidence of unconventional nodal superconductivity in a mineral superconductor \rhs. We investigated the temperature-dependent London penetration depth $螖位(T)$ and disorder evolution of the critical temperature $T_c$ and upper critical field $H_{c2}(T)$ in synthetic miassite \rhs. We found a power-law behavior of $螖位(T)\sim T^n$ with $n\approx 1.1$ at low temperatures below $0.3T_c$ ($T_c$ = 5.4 K), which is consistent with the presence of lines of the node in the superconducting gap of \rhs. The nodal character of the superconducting state in \rhs~was supported by the observed pairbreaking effect in $T_c$ and $H_{c2}(T)$ in samples with the controlled disorder that was introduced by low-temperature electron irradiation. We propose a nodal sign-changing superconducting gap in the $A_{1g}$ irreducible representation, which preserves the cubic symmetry of the crystal and is in excellent agreement with the superfluid density, $位^2(0)/位^2(T)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00261v1-abstract-full').style.display = 'none'; document.getElementById('2306.00261v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01805">arXiv:2305.01805</a> <span> [<a href="https://arxiv.org/pdf/2305.01805">pdf</a>, <a href="https://arxiv.org/format/2305.01805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effects of Co substitution on the structural and magnetic properties of Sr(Ni$_{1-x}$Co$_x$)$_2$P$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Schmidt%2C+J">Juan Schmidt</a>, <a href="/search/?searchtype=author&query=Gorgen-Lesseux%2C+G">Guilherme Gorgen-Lesseux</a>, <a href="/search/?searchtype=author&query=Ribeiro%2C+R+A">Raquel A. Ribeiro</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01805v2-abstract-short" style="display: inline;"> Although SrNi$_2$P$_2$ adopts the common ThCr$_2$Si$_2$ structure for $T\geq 325$ K, being in an uncollapsed tetragonal (ucT) state, on cooling below 325 K it adopts a one-third collapsed orthorhombic (tcO) phase where one out of every three P-rows bond across the Sr layers. On the other hand, SrCo$_2$P$_2$ only exhibits the uncollapsed ThCr$_2$Si$_2$ structure from room temperature down to 1.8 K.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01805v2-abstract-full').style.display = 'inline'; document.getElementById('2305.01805v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01805v2-abstract-full" style="display: none;"> Although SrNi$_2$P$_2$ adopts the common ThCr$_2$Si$_2$ structure for $T\geq 325$ K, being in an uncollapsed tetragonal (ucT) state, on cooling below 325 K it adopts a one-third collapsed orthorhombic (tcO) phase where one out of every three P-rows bond across the Sr layers. On the other hand, SrCo$_2$P$_2$ only exhibits the uncollapsed ThCr$_2$Si$_2$ structure from room temperature down to 1.8 K. Neither SrNi$_2$P$_2$ nor SrCo$_2$P$_2$ manifest magnetic transitions down to 50 mK and 2 K, respectively. In this work we report the effects of Co substitution in Sr(Ni$_{1-x}$Co$_x$)$_2$P$_2$, which allows for tuning the transition between the one-third collapsed and the uncollapsed structure. We find a rapid decrease of the one-third collapsed structural transition temperature with increasing Co fraction, until reaching full suppression for $x \geq 0.1$. Substitution levels in the range $0.11\leq x\leq 0.58$ show no signs of any transition down to 1.8 K in the magnetization or resistance measurements in the range $1.8\ \text{K}\leq T\leq 300\ \text{K}$. However, different magnetically ordered states emerge for $x\geq 0.65$, and disappear for $x\geq 0.99$, recovering the known paramagnetic properties of the parent compound SrCo$_2$P$_2$. These results are summarized in a phase diagram, built upon the characterization done on single crystals with different Co fraction. Both the magnetic and structural properties are compared to other systems with ThCr$_2$Si$_2$ structure that exhibit magnetic ordering and collapsed tetragonal transitions. The magnetic ordering and moment formation are well described by Takahashi's spin fluctuation theory of itinerant electron magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01805v2-abstract-full').style.display = 'none'; document.getElementById('2305.01805v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03157">arXiv:2304.03157</a> <span> [<a href="https://arxiv.org/pdf/2304.03157">pdf</a>, <a href="https://arxiv.org/ps/2304.03157">ps</a>, <a href="https://arxiv.org/format/2304.03157">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Microscopic characterization of the magnetic properties of the itinerant antiferromagnet La2Ni7 by 139La NMR/NQR measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ding%2C+Q+-">Q. -P. Ding</a>, <a href="/search/?searchtype=author&query=Babu%2C+J">J. Babu</a>, <a href="/search/?searchtype=author&query=Rana%2C+K">K. Rana</a>, <a href="/search/?searchtype=author&query=Lee%2C+Y">Y. Lee</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Ribeiro%2C+R+A">R. A. Ribeiro</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Furukawa%2C+Y">Y. Furukawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03157v2-abstract-short" style="display: inline;"> 139La nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements have been performed to investigate the magnetic properties of the itinerant magnet La2Ni7 which shows a series of antiferromagnetic (AFM) phase transitions at $T_{N1}$=61 K, $T_{N2}$=56 K, and $T_{N3}$=42 K under zero magnetic field. Two distinct La NMR signals were observed due to the two crystallographical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03157v2-abstract-full').style.display = 'inline'; document.getElementById('2304.03157v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03157v2-abstract-full" style="display: none;"> 139La nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements have been performed to investigate the magnetic properties of the itinerant magnet La2Ni7 which shows a series of antiferromagnetic (AFM) phase transitions at $T_{N1}$=61 K, $T_{N2}$=56 K, and $T_{N3}$=42 K under zero magnetic field. Two distinct La NMR signals were observed due to the two crystallographically inequivalent La sites in La2Ni7 (La1 and La2 in the La2Ni4 and the LaNi5 sub-units of the La2Ni7 unit cell, respectively). From the 139La NQR spectrum in the AFM state below $T_{N3}$, the AFM state was revealed to be a commensurate state where Ni ordered moments align along the crystalline c axis. Owing to the two different La sites, we were able to estimate the average values of the Ni ordered moments ($\sim$0.09-0.10 $渭_{B}$/Ni and $\sim$0.17$渭_{B}$/Ni around La1 and La2, respectively) from 139La NMR spectrum measurements in the AFM state below $T_{N3}$, suggesting a non-uniform distribution of the Ni-ordered moments in the AFM state. In contrast, a more uniform distribution of the Ni-ordered moments in the saturated paramagnetic state induced by the application of high magnetic fields is observed. The temperature dependence of the sublattice magnetization measured by the internal field at the La2 site in the AFM state was reproduced by a local moment model better than the self-consistent renormalization (SCR) theory for weak itinerant antiferromagnets. Given the small Ni-ordered moments in the magnetically ordered state, our results suggest that La2Ni7 has characteristics of both itinerant and localized natures in its magnetism. With this in mind, it is noteworthy that the temperature dependence of nuclear spin-relaxation rates in the paramagnetic state above $T_{N1}$ measured at zero magnetic field can be explained qualitatively by both the SCR theory and the local-moment model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03157v2-abstract-full').style.display = 'none'; document.getElementById('2304.03157v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Rev. B. 10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 064413 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01427">arXiv:2304.01427</a> <span> [<a href="https://arxiv.org/pdf/2304.01427">pdf</a>, <a href="https://arxiv.org/ps/2304.01427">ps</a>, <a href="https://arxiv.org/format/2304.01427">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.134507">10.1103/PhysRevB.107.134507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interrelationships between nematicity, antiferromagnetic spin fluctuations and superconductivity: Role of hotspots in FeSe$_{1-x}$S$_{x}$ revealed by high pressure $^{77}$Se NMR study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Rana%2C+K">K. Rana</a>, <a href="/search/?searchtype=author&query=Ambika%2C+D+V">D. V. Ambika</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=B%C3%B6hmer%2C+A+E">A. E. B枚hmer</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Furukawa%2C+Y">Y. Furukawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01427v1-abstract-short" style="display: inline;"> The sulfur-substituted FeSe, FeSe$_{1-x}$S$_{x} $, is one of the unique systems that provides an independent tunability of nematicity, antiferromagnetism and superconductivity under pressure ($p$). Recently Rana et al. [Phys. Rev. B 101, 180503(R) (2020)] reported, from $^{77}$Se nuclear magnetic resonance (NMR) measurements on FeSe$_{0.91}$S$_{0.09}$ under pressure, that there exists a clear role… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01427v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01427v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01427v1-abstract-full" style="display: none;"> The sulfur-substituted FeSe, FeSe$_{1-x}$S$_{x} $, is one of the unique systems that provides an independent tunability of nematicity, antiferromagnetism and superconductivity under pressure ($p$). Recently Rana et al. [Phys. Rev. B 101, 180503(R) (2020)] reported, from $^{77}$Se nuclear magnetic resonance (NMR) measurements on FeSe$_{0.91}$S$_{0.09}$ under pressure, that there exists a clear role of nematicity on the relationship between antiferromagnetic (AFM) spin fluctuations and superconducting transition temperature ($T_{\rm c}$) where the AFM spin fluctuations are more effective in enhancing $T_{\rm c}$ in the absence of nematicity than with nematicity. Motivated by the work, we carried out $^{77}$Se NMR measurements on FeSe$_{1-x}$S$_{x}$ with $x$= 0.15 and 0.29 under pressure up to 2.10 GPa to investigate the relationship in a wide range of $x$ in the FeSe$_{1-x}$S$_x$ system. Based on the new results together with the previously reported data for $x$=0 [P. Wiecki et al., Phys. Rev. B 96, 180502(R) (2017)] and 0.09 [K. Rana et al. Phys. Rev. B 101, 180503(R) (2020)], we established a $p$ - $x$ - temperature ($T$) phase diagram exhibiting the evolution of AFM spin fluctuations. From the systematic analysis of the NMR data, we found that the superconducting (SC) state in nematic state arises from a non Fermi liquid state with strong stripe-type AFM spin fluctuations while the SC state without nematicity comes from a Fermi liquid state with mild stripe-type AFM spin fluctuations. Furthermore, we show that the previously reported impact of nematicity on the relationship between AFM fluctuations and superconductivity holds throughout the wide range of $x$ from $x$ = 0 to 0.29 in FeSe$_{1-x}$S$_{x}$ under pressure. We discuss the origin of the role of nematicity in terms of the different numbers of hotspots on Fermi surfaces with and without nematicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01427v1-abstract-full').style.display = 'none'; document.getElementById('2304.01427v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 134507 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08770">arXiv:2303.08770</a> <span> [<a href="https://arxiv.org/pdf/2303.08770">pdf</a>, <a href="https://arxiv.org/format/2303.08770">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Elastocaloric effect of the heavy-fermion system YbPtBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Gati%2C+E">Elena Gati</a>, <a href="/search/?searchtype=author&query=Schmidt%2C+B">Burkhard Schmidt</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08770v1-abstract-short" style="display: inline;"> YbPtBi is one of the heavy-fermion systems with largest Sommerfeld coefficient $纬$ and is thus classified as a `super'-heavy fermion material. In this work, we resolve the long-debated question about the hierarchy of relevant energy scales, such as crystal-electric field (CEF) levels, Kondo and magnetic ordering temperature, in YbPtBi. Through measurements of the a.c. elastocaloric effect and gene… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08770v1-abstract-full').style.display = 'inline'; document.getElementById('2303.08770v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08770v1-abstract-full" style="display: none;"> YbPtBi is one of the heavy-fermion systems with largest Sommerfeld coefficient $纬$ and is thus classified as a `super'-heavy fermion material. In this work, we resolve the long-debated question about the hierarchy of relevant energy scales, such as crystal-electric field (CEF) levels, Kondo and magnetic ordering temperature, in YbPtBi. Through measurements of the a.c. elastocaloric effect and generic symmetry arguments, we identify an \textit{elastic level splitting} that is uniquely associated with the symmetry-allowed splitting of a quartet CEF level. This quartet, which we identify to be the first excited state at $螖/k_\text B\approx1.6\,\rm K$ above the doublet ground state at ambient pressure, is well below the Kondo temperature $T_\text K\approx10\,\rm K$. Thus, our analysis provides strong support for models that predict that the heavy electron mass is a result of an enhanced degeneracy of the CEF ground state, i.e., a quasi-sextet in YbPtBi. At the same time, our study shows the potential of the a.c. elastocaloric effect to control and quantify strain-induced changes of the CEF schemes, opening a different route to disentangle the CEF energy scales from other relevant energy scales in correlated quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08770v1-abstract-full').style.display = 'none'; document.getElementById('2303.08770v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, three figures + Supplemental information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02062">arXiv:2303.02062</a> <span> [<a href="https://arxiv.org/pdf/2303.02062">pdf</a>, <a href="https://arxiv.org/format/2303.02062">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.134437">10.1103/PhysRevB.107.134437 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual coercivity and zero field stabilization of fully saturated magnetization in single crystals of LaCrGe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Xu%2C+M">M. Xu</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Prozorov%2C+R">R. Prozorov</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02062v1-abstract-short" style="display: inline;"> LaCrGe$_3$ is an itinerant, metallic ferromagnet with a Curie temperature ($T_C$) of $\sim$ 86 K. Whereas LaCrGe$_3$ has been studied extensively as a function of pressure as an example of avoided ferromagnetic quantum criticality, questions about its ambient pressure ordered state remain; specifically, whether there is a change in the nature of the ferromagnetically ordered state below $T_C$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02062v1-abstract-full').style.display = 'inline'; document.getElementById('2303.02062v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02062v1-abstract-full" style="display: none;"> LaCrGe$_3$ is an itinerant, metallic ferromagnet with a Curie temperature ($T_C$) of $\sim$ 86 K. Whereas LaCrGe$_3$ has been studied extensively as a function of pressure as an example of avoided ferromagnetic quantum criticality, questions about its ambient pressure ordered state remain; specifically, whether there is a change in the nature of the ferromagnetically ordered state below $T_C$ $\sim$ 86 K. We present anisotropic $M$($H$) isotherms, coupled with anisotropic AC susceptibility data, and demonstrate that LaCrGe$_3$ has a remarkable, low temperature coercivity associated with exceptionally sharp, complete magnetization reversals to and from fully polarized states. This coercivity is temperature dependent, it drops to zero in the 40 - 55 K region and reappears in the 70 - 85 K regions. At low temperatures LaCrGe$_3$ has magnetization loops and behavior that has previously associated with micromagnetic/nanocrystalline materials, not bulk, macroscopic samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02062v1-abstract-full').style.display = 'none'; document.getElementById('2303.02062v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+2 pages and 7+5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04717">arXiv:2302.04717</a> <span> [<a href="https://arxiv.org/pdf/2302.04717">pdf</a>, <a href="https://arxiv.org/format/2302.04717">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.134511">10.1103/PhysRevB.107.134511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity and magnetic and transport properties of single-crystalline CaK(Fe$_{1-x}$Cr$_{x}$)$_{4}$As$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Xu%2C+M">M. Xu</a>, <a href="/search/?searchtype=author&query=Schmidt%2C+J">J. Schmidt</a>, <a href="/search/?searchtype=author&query=Tanatar%2C+M+A">M. A. Tanatar</a>, <a href="/search/?searchtype=author&query=Prozorov%2C+R">R. Prozorov</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04717v1-abstract-short" style="display: inline;"> Members of the CaK(Fe$_{1-x}$Cr$_{x}$)$_{4}$As$_{4}$ series have been synthesized by high-temperature solution growth in single crystalline form and characterized by X-ray diffraction, elemental analysis, magnetic and transport measurements. The effects of Cr substitution on the superconducting and magnetic ground states of CaKFe$_4$As$_4$ ($T_c$ = 35 K) have been studied. These measurements show… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04717v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04717v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04717v1-abstract-full" style="display: none;"> Members of the CaK(Fe$_{1-x}$Cr$_{x}$)$_{4}$As$_{4}$ series have been synthesized by high-temperature solution growth in single crystalline form and characterized by X-ray diffraction, elemental analysis, magnetic and transport measurements. The effects of Cr substitution on the superconducting and magnetic ground states of CaKFe$_4$As$_4$ ($T_c$ = 35 K) have been studied. These measurements show that the superconducting transition temperature decreases monotonically and is finally suppressed below 1.8 K as $x$ is increased from 0 to 0.038. The magnetic transition temperature increases in a roughly linear manner as Cr substitution increases. A temperature-composition (\textit{T}-\textit{x}) phase diagram is constructed, revealing a half-dome of superconductivity with the magnetic transition temperature, $T^*$, appearing near 22~K for $x$ $\sim$ 0.017 and rising slowly up to 60~K for $x$ $\sim$ 0.077. The $T$-$x$ phase diagrams for CaK(Fe$_{1-x}$$T$$_{x}$)$_4$As$_4$ for $T$ = Cr and Mn are essentially the same despite the nominally different band filling; this is in marked contrast to $T$ = Co and Ni series for which the $T$-$x$ diagrams scale by a factor of two, consistent with the different changes in band filling Co and Ni would produce when replacing Fe. Superconductivity of CaK(Fe$_{1-x}$Cr$_{x}$)$_{4}$As$_{4}$ is also studied as a function of magnetic field. A clear change in $H^\prime_{c2}$($T$)/$T_c$, where $H^\prime_{c2}$($T$) is d$H_{c2}$($T$)/d$T$, at $x$ $\sim$ 0.012 is observed and probably is related to change of the Fermi surface due to magnetic order. Coherence length and the London penetration depths are also calculated based on $H_{c1}$ and $H_{c2}$ data. Coherence lengths as the function of $x$ also shows changes near $x$ = 0.012, again consistent with Fermi surfaces changes associated with the magnetic ordering seen for higher $x$-values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04717v1-abstract-full').style.display = 'none'; document.getElementById('2302.04717v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work uses the same synthesis and measurements methods to systematicly analysis Cr1144 as our previous work arXiv:2204.10925 (existence of the text overlap) but gives the clear proof of the bi-modal response to electron and hole doping in Fe-based superconductors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06336">arXiv:2301.06336</a> <span> [<a href="https://arxiv.org/pdf/2301.06336">pdf</a>, <a href="https://arxiv.org/format/2301.06336">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ace093">10.1088/1361-648X/ace093 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic order and its interplay with superconductivity in CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/?searchtype=author&query=Sapkota%2C+A">A. Sapkota</a>, <a href="/search/?searchtype=author&query=Ding%2C+Q+-">Q. -P. Ding</a>, <a href="/search/?searchtype=author&query=Xu%2C+M">M. Xu</a>, <a href="/search/?searchtype=author&query=Tian%2C+W">W. Tian</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Furukawa%2C+Y">Y. Furukawa</a>, <a href="/search/?searchtype=author&query=Kreyssig%2C+A">A. Kreyssig</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06336v1-abstract-short" style="display: inline;"> The magnetic order for several compositions of CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ has been studied by nuclear magnetic resonance (NMR), M枚ssbauer spectroscopy, and neutron diffraction. Our observations for the Mn-doped 1144 compound are consistent with the hedgehog spin vortex crystal (hSVC) order which has previously been found for Ni-doped $\text{Ca}\text{K}\text{Fe}_4\text{As}_4$. The hSVC state i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06336v1-abstract-full').style.display = 'inline'; document.getElementById('2301.06336v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06336v1-abstract-full" style="display: none;"> The magnetic order for several compositions of CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ has been studied by nuclear magnetic resonance (NMR), M枚ssbauer spectroscopy, and neutron diffraction. Our observations for the Mn-doped 1144 compound are consistent with the hedgehog spin vortex crystal (hSVC) order which has previously been found for Ni-doped $\text{Ca}\text{K}\text{Fe}_4\text{As}_4$. The hSVC state is characterized by the stripe-type propagation vectors $(蟺\,0)$ and $(0\,蟺)$ just as in the doped 122 compounds. The hSVC state preserves tetragonal symmetry at the Fe site, and only this SVC motif with simple AFM stacking along $\textbf{c}$ is consistent with all our observations using NMR, M枚ssbauer spectroscopy, and neutron diffraction. We find that the hSVC state in the Mn-doped 1144 compound coexists with superconductivity (SC), and by combining the neutron scattering and M枚ssbauer spectroscopy data we can infer a quantum phase transition, hidden under the superconducting dome, associated with the suppression of the AFM transition temperature ($T_\text{N}$) to zero for $x\approx0.01$. In addition, unlike several 122 compounds and Ni-doped 1144, the ordered magnetic moment is not observed to decrease at temperatures below the superconducting transition temperature ($T_\text{c}$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06336v1-abstract-full').style.display = 'none'; document.getElementById('2301.06336v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages and 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 35 395801 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16767">arXiv:2211.16767</a> <span> [<a href="https://arxiv.org/pdf/2211.16767">pdf</a>, <a href="https://arxiv.org/ps/2211.16767">ps</a>, <a href="https://arxiv.org/format/2211.16767">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.195153">10.1103/PhysRevB.106.195153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> NMR evidence for a Peierls transition in the layered square-net compound LaAgSb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Baek%2C+S">Seung-Ho Baek</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Borsa%2C+F">F. Borsa</a>, <a href="/search/?searchtype=author&query=Suh%2C+B+J">Byoung Jin Suh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16767v1-abstract-short" style="display: inline;"> We measured the central ($1/2\leftrightarrow -1/2$) and first satellite ($\pm3/2\leftrightarrow \pm1/2$) lines of the \la\ NMR spectra as a function of temperature in LaAgSb$_2$, in order to elucidate the origin and nature of the charge-density-wave (CDW) transitions at $T_\text{CDW1}=207$ K and $T_\text{CDW2}=186$ K. In the normal state, the Knight shift K reveals a fairly linear relationship wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16767v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16767v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16767v1-abstract-full" style="display: none;"> We measured the central ($1/2\leftrightarrow -1/2$) and first satellite ($\pm3/2\leftrightarrow \pm1/2$) lines of the \la\ NMR spectra as a function of temperature in LaAgSb$_2$, in order to elucidate the origin and nature of the charge-density-wave (CDW) transitions at $T_\text{CDW1}=207$ K and $T_\text{CDW2}=186$ K. In the normal state, the Knight shift K reveals a fairly linear relationship with decreasing temperature, which is ascribed to a pseudogap in the spin excitation spectrum, pointing towards the material being an unconventional metal. Upon further cooling, K decreases more steeply below $T_\text{CDW1}$, indicative of the partial Fermi surface gap opening on top of the pseudogap. The most remarkable finding in our study is a clear splitting of the satellite lines at $T_\text{CDW1}$ observed for $H\parallel c$, whose temperature dependence behaves as the BCS order parameter in the weak-coupling limit, evidencing that the CDW transition induces the periodic lattice distortion. Our NMR findings therefore demonstrate that the CDW transition in LaAgSb$_2$ is of Peierls type, being driven by the electronic instability in the vicinity of the Fermi level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16767v1-abstract-full').style.display = 'none'; document.getElementById('2211.16767v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, published in PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 106, 195153 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11873">arXiv:2211.11873</a> <span> [<a href="https://arxiv.org/pdf/2211.11873">pdf</a>, <a href="https://arxiv.org/ps/2211.11873">ps</a>, <a href="https://arxiv.org/format/2211.11873">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/cryst12121693">10.3390/cryst12121693 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of physical and chemical pressure on charge density wave transitions in LaAg1-xAuxSb2 single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Xiang%2C+L">Li Xiang</a>, <a href="/search/?searchtype=author&query=Ryan%2C+D+H">Dominic H. Ryan</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11873v1-abstract-short" style="display: inline;"> The structural characterization and electrical transport measurements at ambient and applied pressures of the compounds of the La(Ag1-xAux)Sb2 family are presented. Up to two charge density wave (CDW) transitions could be detected upon cooling from room temperature and an equivalence of the effects of chemical and physical pressure on the CDW ordering temperatures was observed with the unit cell v… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11873v1-abstract-full').style.display = 'inline'; document.getElementById('2211.11873v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11873v1-abstract-full" style="display: none;"> The structural characterization and electrical transport measurements at ambient and applied pressures of the compounds of the La(Ag1-xAux)Sb2 family are presented. Up to two charge density wave (CDW) transitions could be detected upon cooling from room temperature and an equivalence of the effects of chemical and physical pressure on the CDW ordering temperatures was observed with the unit cell volume being a salient structural parameter. As such La(Ag1-xAux)Sb2 is a rare example of a non-cubic system that exhibits good agreement between the effects of applied, physical, pressure and changes in unit cell volume from steric changes induced by isovalent substitution. Additionally, for La(Ag0.54Au0.46)Sb2 anomalies in low temperature electrical transport were observed in the pressure range where the lower charge density wave is completely suppressed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11873v1-abstract-full').style.display = 'none'; document.getElementById('2211.11873v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Crystals 12(12), 1693, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09179">arXiv:2211.09179</a> <span> [<a href="https://arxiv.org/pdf/2211.09179">pdf</a>, <a href="https://arxiv.org/format/2211.09179">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetism and $T-x$ phase diagrams of Na and Ag substituted EuCd$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/?searchtype=author&query=Joshi%2C+K+R">Kamal R. Joshi</a>, <a href="/search/?searchtype=author&query=Ghimire%2C+S">Sunil Ghimire</a>, <a href="/search/?searchtype=author&query=Timmons%2C+E">Erik Timmons</a>, <a href="/search/?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/?searchtype=author&query=Gati%2C+E">Elena Gati</a>, <a href="/search/?searchtype=author&query=Xiang%2C+L">Li Xiang</a>, <a href="/search/?searchtype=author&query=Prozorov%2C+R">Ruslan Prozorov</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09179v1-abstract-short" style="display: inline;"> EuCd$_2$As$_2$ is an antiferromagnetic semimetal, that can host non-trivial topological properties, depending upon its magnetic state and excitations. Here, we report the synthesis and characterization of Eu(Cd$_{1-x}$Ag$_x$)$_2$As$_2$ and Eu$_{1-y}$Na$_y$Cd$_2$As$_2$, and study the evolution and nature of magnetic order with doping. Temperature-substitution phase diagrams are constructed from the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09179v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09179v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09179v1-abstract-full" style="display: none;"> EuCd$_2$As$_2$ is an antiferromagnetic semimetal, that can host non-trivial topological properties, depending upon its magnetic state and excitations. Here, we report the synthesis and characterization of Eu(Cd$_{1-x}$Ag$_x$)$_2$As$_2$ and Eu$_{1-y}$Na$_y$Cd$_2$As$_2$, and study the evolution and nature of magnetic order with doping. Temperature-substitution phase diagrams are constructed from the electrical resistance and magnetic susceptibility data. We observe a splitting of the magnetic transition into two different transitions, and the gradual increase in one of the transition temperatures with Ag- and Na-substitution. The other transition remains more or less independent of doping. We further show that a magnetic state with a net ferromagnetic moment is stabilized by both Ag and Na doping and this can be explained by considering the changes in band filling due to substitution as suggested by density functional theory (DFT) calculations. We thus show that chemical substitution and the subsequent changes in band filling could be a pathway to tune the magnetic ground state and to stabilize a ferromagnetic phase in EuCd$_2$As$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09179v1-abstract-full').style.display = 'none'; document.getElementById('2211.09179v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04159">arXiv:2210.04159</a> <span> [<a href="https://arxiv.org/pdf/2210.04159">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Observation of superconductivity in the noncentrosymmetric nodal chain semimetal Ba5In4Bi5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ma%2C+Y">Yuzhe Ma</a>, <a href="/search/?searchtype=author&query=Wang%2C+Y">Yulong Wang</a>, <a href="/search/?searchtype=author&query=Wang%2C+Y">Yuxin Wang</a>, <a href="/search/?searchtype=author&query=Manni%2C+S">Soham Manni</a>, <a href="/search/?searchtype=author&query=Lin%2C+Q">Qisheng Lin</a>, <a href="/search/?searchtype=author&query=Wang%2C+L">Linlin Wang</a>, <a href="/search/?searchtype=author&query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Wang%2C+G">Gang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04159v1-abstract-short" style="display: inline;"> The combination with superconductivity and topological nontrivial band structure provides a promising route towards novel quantum states such as topological superconductivity. Here, we report the first observation of superconductivity (4.1 K) in Ba5In4Bi5 single crystal, a noncentrosymmetric topological semimetal featuring nodal chain loops at the high-symmetry points R and X. The magnetization, r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04159v1-abstract-full').style.display = 'inline'; document.getElementById('2210.04159v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04159v1-abstract-full" style="display: none;"> The combination with superconductivity and topological nontrivial band structure provides a promising route towards novel quantum states such as topological superconductivity. Here, we report the first observation of superconductivity (4.1 K) in Ba5In4Bi5 single crystal, a noncentrosymmetric topological semimetal featuring nodal chain loops at the high-symmetry points R and X. The magnetization, resistivity, and specific heat capacity measurements reveal that Ba5In4Bi5 is a moderately coupled type-II Bardeen-Cooper-Schrieffer superconductor. Bulk superconductivity is suggested from the magnetic susceptibility and specific heat measurements. The results show that Ba5In4Bi5 provides a new platform for exploring the relationship of superconductivity and topological nontrivial band topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04159v1-abstract-full').style.display = 'none'; document.getElementById('2210.04159v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03860">arXiv:2210.03860</a> <span> [<a href="https://arxiv.org/pdf/2210.03860">pdf</a>, <a href="https://arxiv.org/format/2210.03860">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.014402">10.1103/PhysRevB.107.014402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Valence and magnetism in $\rm EuPd_3S_4$ and $\rm (Y,La)_xEu_{1-x}Pd_3S_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ryan%2C+D+H">D. H. Ryan</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03860v1-abstract-short" style="display: inline;"> $^{151}$Eu M枚ssbauer spectroscopy shows that yttrium substitution in mixed-valent $\rm EuPd_3S_4$ drives the initial 50:50 mix of Eu$^{3+}$ and Eu$^{2+}$ towards pure Eu$^{2+}… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03860v1-abstract-full').style.display = 'inline'; document.getElementById('2210.03860v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03860v1-abstract-full" style="display: none;"> $^{151}$Eu M枚ssbauer spectroscopy shows that yttrium substitution in mixed-valent $\rm EuPd_3S_4$ drives the initial 50:50 mix of Eu$^{3+}$ and Eu$^{2+}$ towards pure Eu$^{2+}$, whereas lanthanum substitution has the opposite effect, but only for substitution levels above 50\%. We find that total valence electron count and chemical pressure effects cannot account for the observed behaviour, however conserving the cell volume provides a consistent description of the changes in the Eu$^{2+}$:Eu$^{3+}$ ratio. Remarkably, lanthanum substitution also leads to a clear transition from static mixed-valent behavior at lower temperatures to dynamic mixed valent behavior at higher temperatures, with the onset temperature monotonically increasing with Eu content and extrapolating to a value of $\sim$340~K for the pure $\rm EuPd_3S_4$ compound. Magnetic order persists at least as far as x=0.875 in both series, despite the drastic reduction in the amount of moment-carrying Eu$^{2+}$ ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03860v1-abstract-full').style.display = 'none'; document.getElementById('2210.03860v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 26 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09966">arXiv:2209.09966</a> <span> [<a href="https://arxiv.org/pdf/2209.09966">pdf</a>, <a href="https://arxiv.org/format/2209.09966">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.134505">10.1103/PhysRevB.106.134505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-temperature phase diagram of CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ for $x$=0.024 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Xiang%2C+L">Li Xiang</a>, <a href="/search/?searchtype=author&query=Xu%2C+M">Mingyu Xu</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09966v1-abstract-short" style="display: inline;"> Resistance measurements on single crystals of CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ ($x$ = 0.024) were performed under hydrostatic pressure up to 5.15 GPa. The pressure dependence of the magnetic and superconducting transition temperatures and that of the superconducting upper critical field are reported. Our results show that upon increasing pressure, the magnetic transition temperature $T_{N}$ is supp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09966v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09966v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09966v1-abstract-full" style="display: none;"> Resistance measurements on single crystals of CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ ($x$ = 0.024) were performed under hydrostatic pressure up to 5.15 GPa. The pressure dependence of the magnetic and superconducting transition temperatures and that of the superconducting upper critical field are reported. Our results show that upon increasing pressure, the magnetic transition temperature $T_{N}$ is suppressed, whereas the superconducting transition temperature $T_{c}$ first increases and then decreases, exhibiting a maximum at a pressure $p_c$ corresponding to the intersection of the $T_{N}$($p$) and $T_{c}$($p$) lines. In addition, a minimum in the normalized slope of the superconducting upper critical field as well as a change in the pressure dependence of the inferred superconducting coherence length are observed at $p_c$, suggesting a difference in the Fermi surface of the paramagnetic and antiferromagnetic states. Finally, CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ ($x$ = 0.024) likely goes through a half-collapsed-tetragonal phase transition at $\sim$ 4.3 GPa, further demonstrating that the half-collapsed-tetragonal transition pressure in the CaKFe$_4$As$_4$ system is relatively insensitive to transition metal substitution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09966v1-abstract-full').style.display = 'none'; document.getElementById('2209.09966v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.04997">arXiv:2208.04997</a> <span> [<a href="https://arxiv.org/pdf/2208.04997">pdf</a>, <a href="https://arxiv.org/format/2208.04997">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/14786435.2022.2159561">10.1080/14786435.2022.2159561 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rapid suppression of charge density wave transition in LaSb2 under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Huyan%2C+S">Shuyuan Huyan</a>, <a href="/search/?searchtype=author&query=Herrera-Siklody%2C+P">Paula Herrera-Siklody</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.04997v1-abstract-short" style="display: inline;"> LaSb2 is found to be an example of an exceptionally pressure sensitive and tunable, two dimensional compound. In-plane electrical resistivity of LaSb2 under pressure up to 12.9 kbar was measured in zero and applied magnetic field. The charge density wave transition (observed at ~ 350 K at ambient pressure) is completely suppressed by 6-7 kbar with significant (in comparison with the ambient pressu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04997v1-abstract-full').style.display = 'inline'; document.getElementById('2208.04997v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.04997v1-abstract-full" style="display: none;"> LaSb2 is found to be an example of an exceptionally pressure sensitive and tunable, two dimensional compound. In-plane electrical resistivity of LaSb2 under pressure up to 12.9 kbar was measured in zero and applied magnetic field. The charge density wave transition (observed at ~ 350 K at ambient pressure) is completely suppressed by 6-7 kbar with significant (in comparison with the ambient pressure) increase in Fermi surface gapping and transition hysteresis just above ambient pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04997v1-abstract-full').style.display = 'none'; document.getElementById('2208.04997v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10925">arXiv:2204.10925</a> <span> [<a href="https://arxiv.org/pdf/2204.10925">pdf</a>, <a href="https://arxiv.org/format/2204.10925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.214526">10.1103/PhysRevB.105.214526 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity and phase diagrams of CaK(Fe$_{1-x}$Mn$_{x}$)$_{4}$As$_{4}$ single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Xu%2C+M">M. Xu</a>, <a href="/search/?searchtype=author&query=Schmidt%2C+J">J. Schmidt</a>, <a href="/search/?searchtype=author&query=Gati%2C+E">E. Gati</a>, <a href="/search/?searchtype=author&query=Xiang%2C+L">L. Xiang</a>, <a href="/search/?searchtype=author&query=Meier%2C+W+R">W. R. Meier</a>, <a href="/search/?searchtype=author&query=Kogan%2C+V+G">V. G. Kogan</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10925v2-abstract-short" style="display: inline;"> Members of the CaK(Fe$_{1-x}$Mn$_{x}$)$_{4}$As$_{4}$ series have been synthesized in single crystalline form and characterized by elemental analysis, thermodynamic and transport measurements. These measurements show that the superconducting transition temperature decreases monotonically and is finally suppressed below 1.8 K. For $x$-values greater than 0.016, signatures of a magnetic transition ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10925v2-abstract-full').style.display = 'inline'; document.getElementById('2204.10925v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10925v2-abstract-full" style="display: none;"> Members of the CaK(Fe$_{1-x}$Mn$_{x}$)$_{4}$As$_{4}$ series have been synthesized in single crystalline form and characterized by elemental analysis, thermodynamic and transport measurements. These measurements show that the superconducting transition temperature decreases monotonically and is finally suppressed below 1.8 K. For $x$-values greater than 0.016, signatures of a magnetic transition can be detected in both thermodynamic and transport measurements in which kink-like features allow for the determination of the transition temperature, $T^*$, that increases as Mn substitution increases. A temperature-composition ($T$-$x$) phase diagram is constructed, revealing a half-dome of superconductivity with the magnetic transition temperature, $T^*$, appearing near 26 K for $x$ $\sim$ 0.017 and rising slowly up to 33 K for $x$ $\sim$ 0.036. Specific heat data are used to track the jump in specific heat at $T_c$; The CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ data does not follow the scaling of $螖$$C_{p}$ with $T_{c}^3$ as many of the other Fe-based superconducting systems do. Elastoresistivity coefficients, $2m_{66}$ and $m_{11}-m_{12}$, as a function of temperature are also measured. $2m_{66}$ and $m_{11}-m_{12}$ are qualitatively similar to CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$. This may indicate that the magnetic order in Mn substituted system may be still the same as CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$. A clear change in $H^\prime_{c2}$($T$)/$T_c$, where $H^\prime_{c2}$($T$) is d$H_{c2}$($T$)/d$T$, at $x$ $\sim$ 0.015 is observed and probably is related to change of the Fermi surface due to magnetic order. Coherence lengths and the London penetration depths are also calculated based on $H_{c1}$ and $H_{c2}$ data. Coherence lengths as the function of $x$ also shows the changes near $x$ = 0.015. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10925v2-abstract-full').style.display = 'none'; document.getElementById('2204.10925v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Fig. 16 a and b were corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 214526 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.07847">arXiv:2204.07847</a> <span> [<a href="https://arxiv.org/pdf/2204.07847">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10948-022-06371-w">10.1007/s10948-022-06371-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the analysis of the tin-inside-H3S M枚ssbauer experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Prozorov%2C+R">R. Prozorov</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.07847v1-abstract-short" style="display: inline;"> A simple analysis is presented of the particular experiment used to prove the bulk nature of very-high-Tc superconductivity in H3S compound under ultra-high pressure. In the experiment, an internal magnetic field was sensed by the synchrotron M枚ssbauer spectroscopy in tin placed inside the H2S sample. The experiment showed peculiar anisotropy with respect to the direction of the applied field at f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07847v1-abstract-full').style.display = 'inline'; document.getElementById('2204.07847v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.07847v1-abstract-full" style="display: none;"> A simple analysis is presented of the particular experiment used to prove the bulk nature of very-high-Tc superconductivity in H3S compound under ultra-high pressure. In the experiment, an internal magnetic field was sensed by the synchrotron M枚ssbauer spectroscopy in tin placed inside the H2S sample. The experiment showed peculiar anisotropy with respect to the direction of the applied field at first sight. By considering actual experimental geometries and parameters of the experiment, we show that this particular observation is consistent with the expectations for a regular type-II superconductor with Meissner expulsion and pinning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07847v1-abstract-full').style.display = 'none'; document.getElementById('2204.07847v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Supercond. Nov. Magn. 35, 2615 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00761">arXiv:2204.00761</a> <span> [<a href="https://arxiv.org/pdf/2204.00761">pdf</a>, <a href="https://arxiv.org/format/2204.00761">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.024420">10.1103/PhysRevB.106.024420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Canted Antiferromagnetic phases in the layered candidate Weyl material EuMnSb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wilde%2C+J+M">J. M. Wilde</a>, <a href="/search/?searchtype=author&query=Riberolles%2C+S+X+M">S. X. M. Riberolles</a>, <a href="/search/?searchtype=author&query=Das%2C+A">Atreyee Das</a>, <a href="/search/?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/?searchtype=author&query=Heitmann%2C+T+W">T. W. Heitmann</a>, <a href="/search/?searchtype=author&query=Wang%2C+X">X. Wang</a>, <a href="/search/?searchtype=author&query=Straszheim%2C+W+E">W. E. Straszheim</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Kreyssig%2C+A">A. Kreyssig</a>, <a href="/search/?searchtype=author&query=McQueeney%2C+R+J">R. J. McQueeney</a>, <a href="/search/?searchtype=author&query=Ryan%2C+D+H">D. H. Ryan</a>, <a href="/search/?searchtype=author&query=Ueland%2C+B+G">B. G. Ueland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00761v2-abstract-short" style="display: inline;"> EuMnSb$_2$ is a candidate topological material which can be tuned towards a Weyl semimetal, but there are differing reports for its antiferromagnetic (AFM) phases. The coupling of bands dominated by pure Sb layers hosting topological fermions to Mn and Eu magnetic states provides a potential path to tune the topological properties. We present a detailed analysis of the magnetic structure on three… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00761v2-abstract-full').style.display = 'inline'; document.getElementById('2204.00761v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00761v2-abstract-full" style="display: none;"> EuMnSb$_2$ is a candidate topological material which can be tuned towards a Weyl semimetal, but there are differing reports for its antiferromagnetic (AFM) phases. The coupling of bands dominated by pure Sb layers hosting topological fermions to Mn and Eu magnetic states provides a potential path to tune the topological properties. We present a detailed analysis of the magnetic structure on three AFM phases based on single-crystal neutron diffraction, magnetization, and heat capacity data as well as polycrystalline $^{151}$Eu M枚ssbauer data. The Mn magnetic sublattice orders into a C-type AFM structure below $323(1)$~K with the ordered Mn magnetic moment $渭_{\text{Mn}}$ lying perpendicular to the layers. AFM ordering of the Eu sublattice occurs below $23(1)$~K with the ordered Eu magnetic moment $渭_{\text{Eu}}$ canted away from the layer normal and $渭_{\text{Mn}}$ retaining its higher-temperature order. $渭_{\text{Eu}}$ is ferromagnetically aligned within each Eu layer but exhibits a complicated AFM layer stacking. Both of these higher-temperature phases are described by magnetic space group (MSG) $Pn^{\prime}m^{\prime}a^{\prime}$ with the chemical and magnetic unit cells having the same dimensions. Cooling below $=9(1)$~K reveals a third AFM phase where $渭_{\text{Mn}}$ remains unchanged but $渭_{\text{Eu}}$ develops an additional in-plane canting. This phase has MSG $P11\frac{2_1}{a^{\prime}}$. We additionally find evidence of short-range magnetic correlations associated with the Eu between $12~\text{K} \lesssim T \lesssim 30~\text{K}$. Using the determined magnetic structures, we postulate the signs of nearest-neighbor intralayer and interlayer exchange constants and the magnetic anisotropy within a general Heisenberg-model. We then discuss implications of the various AFM states in EuMnSb$_2$ and its topological properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00761v2-abstract-full').style.display = 'none'; document.getElementById('2204.00761v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published to Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 024420 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10049">arXiv:2203.10049</a> <span> [<a href="https://arxiv.org/pdf/2203.10049">pdf</a>, <a href="https://arxiv.org/format/2203.10049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.094443">10.1103/PhysRevB.105.094443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of external pressure on the narrow gap semiconductor Ce$_{3}$Cd$_{2}$As$_{6}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Piva%2C+M+M">M. M. Piva</a>, <a href="/search/?searchtype=author&query=Xiang%2C+L">L. Xiang</a>, <a href="/search/?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Ribeiro%2C+R+A">R. A. Ribeiro</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10049v1-abstract-short" style="display: inline;"> Here we report the magnetic and electronic properties of recently discovered Ce$_{3}$Cd$_{2}$As$_{6}$. At ambient pressure, Ce$_{3}$Cd$_{2}$As$_{6}$ presents a semiconducting behavior with an activation gap of 74(1)~meV. At 136~K, a sudden increase of the electrical resistivity and a peak in specific heat are consistent with a charge density wave transition. At low temperatures, antiferromagnetic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10049v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10049v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10049v1-abstract-full" style="display: none;"> Here we report the magnetic and electronic properties of recently discovered Ce$_{3}$Cd$_{2}$As$_{6}$. At ambient pressure, Ce$_{3}$Cd$_{2}$As$_{6}$ presents a semiconducting behavior with an activation gap of 74(1)~meV. At 136~K, a sudden increase of the electrical resistivity and a peak in specific heat are consistent with a charge density wave transition. At low temperatures, antiferromagnetic order of the Ce$^{3+}$ ions occurs below $T_{\rm N} = 4.0$~K with a magnetic hard axis along the $c$-axis and a $螕_{6} = |\pm1/2\rangle$ doublet ground state. The application of external pressure strongly suppresses the charge density wave order, which is completely suppressed above 0.8(1)~GPa, and induces a metallic ground state. No evidence for superconductivity is detected above 2~K. Conversely, the antiferromagnetic state is favored by pressure, reaching a transition temperature of 5.3~K at 3.8(1)~GPa. Notably, the resistivity anomaly characterizing the antiferromagnetic order changes with increasing pressure, indicating that two different magnetic phases might be present in Ce$_{3}$Cd$_{2}$As$_{6}$ under pressure. This change in ordering appears to be associated to the crossing of the $T_{\rm CDW}$ and $T_{\rm N}$ lines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10049v1-abstract-full').style.display = 'none'; document.getElementById('2203.10049v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.10490">arXiv:2202.10490</a> <span> [<a href="https://arxiv.org/pdf/2202.10490">pdf</a>, <a href="https://arxiv.org/format/2202.10490">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S160057672200468X">10.1107/S160057672200468X <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of magnetic and non-magnetic doping on the vortex lattice in MgB$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Louden%2C+E+R">E. R. Louden</a>, <a href="/search/?searchtype=author&query=Manni%2C+S">S. Manni</a>, <a href="/search/?searchtype=author&query=Van+Zandt%2C+J+E">J. E. Van Zandt</a>, <a href="/search/?searchtype=author&query=Leishman%2C+A+W+D">A. W. D. Leishman</a>, <a href="/search/?searchtype=author&query=Taufour%2C+V">V. Taufour</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=DeBeer-Schmitt%2C+L">L. DeBeer-Schmitt</a>, <a href="/search/?searchtype=author&query=Honecker%2C+D">D. Honecker</a>, <a href="/search/?searchtype=author&query=Dewhurst%2C+C+D">C. D. Dewhurst</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Eskildsen%2C+M+R">M. R. Eskildsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.10490v4-abstract-short" style="display: inline;"> Using small-angle neutron scattering we have studied the vortex lattice in superconducting MgB$_2$ with the magnetic field applied along the $c$-axis, doped with either manganese or carbon to achieve a similar suppression of the critical temperature. For Mn-doping, the vortex lattice phase diagram remains qualitatively similar to that of pure MgB$_2$, undergoing a field-and temperature-driven… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10490v4-abstract-full').style.display = 'inline'; document.getElementById('2202.10490v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.10490v4-abstract-full" style="display: none;"> Using small-angle neutron scattering we have studied the vortex lattice in superconducting MgB$_2$ with the magnetic field applied along the $c$-axis, doped with either manganese or carbon to achieve a similar suppression of the critical temperature. For Mn-doping, the vortex lattice phase diagram remains qualitatively similar to that of pure MgB$_2$, undergoing a field-and temperature-driven $30^{\circ}$ rotation transition, indicating only a modest effect on the vortex-vortex interaction. In contrast, the vortex lattice rotation transition is completely suppressed in the C-doped case, likely due to a change in the electronic structure which affects the two-band/two-gap nature of superconductivity in MgB2. The vortex lattice longitudinal correlation length shows the opposite behavior, remaining roughly unchanged between pure and C-doped MgB$_2$ while it is significantly reduced in the Mn-doped case. However, the extensive vortex lattice metastability and related activated behavior, observed in conjunction with the vortex lattice transition in pure MgB$_2$, is also seen in the Mn doped sample. This shows that the vortex lattice disordering is not associated with a substantially increased vortex pinning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10490v4-abstract-full').style.display = 'none'; document.getElementById('2202.10490v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the Journal of Applied Crystallography for the special issue "Magnetic Small-Angle Neutron Scattering - from nanoscale magnetism to long-range magnetic structures"</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Cryst. 55, 693 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.00485">arXiv:2202.00485</a> <span> [<a href="https://arxiv.org/pdf/2202.00485">pdf</a>, <a href="https://arxiv.org/format/2202.00485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ubiquitous enhancement of nematic fluctuations across the phase diagram of iron based superconductors probed by the Nernst effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wuttke%2C+C">Christoph Wuttke</a>, <a href="/search/?searchtype=author&query=Caglieris%2C+F">Federico Caglieris</a>, <a href="/search/?searchtype=author&query=Sykora%2C+S">Steffen Sykora</a>, <a href="/search/?searchtype=author&query=Steckel%2C+F">Frank Steckel</a>, <a href="/search/?searchtype=author&query=Hong%2C+X">Xiaochen Hong</a>, <a href="/search/?searchtype=author&query=Ran%2C+S">Sheng Ran</a>, <a href="/search/?searchtype=author&query=Khim%2C+S">Seunghyun Khim</a>, <a href="/search/?searchtype=author&query=Kappenberger%2C+R">Rhea Kappenberger</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Wurmehl%2C+S">Sabine Wurmehl</a>, <a href="/search/?searchtype=author&query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/?searchtype=author&query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/?searchtype=author&query=Hess%2C+C">Christian Hess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.00485v1-abstract-short" style="display: inline;"> The role of nematic fluctuations for unconventional superconductivity has been subject of intense discussions for many years. In iron-based superconductors, the most established probe for electronic-nematic fluctuations, i.e. the elastoresistivity seems to imply that superconductivity is reinforced by electronic-nematic fluctuations, since the elastoresistivity amplitude peaks at or close to optim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00485v1-abstract-full').style.display = 'inline'; document.getElementById('2202.00485v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.00485v1-abstract-full" style="display: none;"> The role of nematic fluctuations for unconventional superconductivity has been subject of intense discussions for many years. In iron-based superconductors, the most established probe for electronic-nematic fluctuations, i.e. the elastoresistivity seems to imply that superconductivity is reinforced by electronic-nematic fluctuations, since the elastoresistivity amplitude peaks at or close to optimal $T_C$. However, on the over-doped side of the superconducting dome, the diminishing elastoresistivity suggests a negligible importance in the mechanism of superconductivity. Here we introduce the Nernst coefficient as a genuine probe for electronic nematic fluctuations, and we show that the amplitude of the Nernst coefficient tracks the superconducting dome of two prototype families of iron-based superconductors, namely Rh-doped $BaFe_{2}As_{2}$ and Co-doped $LaFeAsO$. Our data thus provide fresh evidence that in these systems nematic fluctuations foster the superconductivity throughout the phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00485v1-abstract-full').style.display = 'none'; document.getElementById('2202.00485v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main article 15 pages, 3 figures. Supplemental Material 15 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12233">arXiv:2201.12233</a> <span> [<a href="https://arxiv.org/pdf/2201.12233">pdf</a>, <a href="https://arxiv.org/format/2201.12233">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.184431">10.1103/PhysRevB.105.184431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrostatic pressure effect on Co-based honeycomb magnet BaCo2(AsO4)2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Huyan%2C+S">Shuyuan Huyan</a>, <a href="/search/?searchtype=author&query=Schmidt%2C+J">Juan Schmidt</a>, <a href="/search/?searchtype=author&query=Gati%2C+E">Elena Gati</a>, <a href="/search/?searchtype=author&query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/?searchtype=author&query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12233v1-abstract-short" style="display: inline;"> The honeycomb antiferromagnet BaCo2(AsO4)2, in which small in-plane magnetic fields (H1 = 0.26 T and H2 = 0.52 T at T = 1.8 K < TN = 5.4 K) induce two magnetic phase transitions, has attracted attention as a possible candidate material for the realization of Kitaev physics based on the 3d element Co2+. Here, we report on the change of the transition temperature TN and the critical fields H1 and H2… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12233v1-abstract-full').style.display = 'inline'; document.getElementById('2201.12233v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12233v1-abstract-full" style="display: none;"> The honeycomb antiferromagnet BaCo2(AsO4)2, in which small in-plane magnetic fields (H1 = 0.26 T and H2 = 0.52 T at T = 1.8 K < TN = 5.4 K) induce two magnetic phase transitions, has attracted attention as a possible candidate material for the realization of Kitaev physics based on the 3d element Co2+. Here, we report on the change of the transition temperature TN and the critical fields H1 and H2 of BaCo2(AsO4)2 with hydrostatic pressure up to ~ 20 kbar, as determined from magnetization and specific heat measurements. Within this pressure range, a marginal increase of the magnetic ordering temperature is observed. At the same time, the critical fields are changed significantly (up to ~ 25-35 %). Specifically, we find that H1 is increased with hydrostatic pressure, i.e., the antiferromagnetic state is stabilized with hydrostatic pressure, whereas H2, which was previously associated with a transition into a proposed Kitaev spin liquid state, decreases with increasing pressure. These results put constraints on the magnetic models that are used to describe the low-temperature magnetic properties of BaCo2(AsO4)2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12233v1-abstract-full').style.display = 'none'; document.getElementById('2201.12233v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.06349">arXiv:2110.06349</a> <span> [<a href="https://arxiv.org/pdf/2110.06349">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.014412">10.1103/PhysRevB.105.014412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Small moment antiferromagnetic ordering in single crystalline La2Ni7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ribeiro%2C+R+A">Raquel A. Ribeiro</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Xiang%2C+L">Li Xiang</a>, <a href="/search/?searchtype=author&query=Ryan%2C+D+H">Dominic H. Ryan</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.06349v1-abstract-short" style="display: inline;"> Single crystals of La2Ni7 have been grown out of a binary, La-Ni melt. Temperature dependent, zero magnetic field, specific heat, electrical resistivity, and low field magnetization measurements indicate that there is a series of antiferromagnetic phase transitions at T1 = 61.0 \pm 0.2 K, T2 = 56.5 \pm 0.2 K and T3 = 42.2 \pm 0.2 K. The three specific heat anomalies found at these temperatures qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.06349v1-abstract-full').style.display = 'inline'; document.getElementById('2110.06349v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.06349v1-abstract-full" style="display: none;"> Single crystals of La2Ni7 have been grown out of a binary, La-Ni melt. Temperature dependent, zero magnetic field, specific heat, electrical resistivity, and low field magnetization measurements indicate that there is a series of antiferromagnetic phase transitions at T1 = 61.0 \pm 0.2 K, T2 = 56.5 \pm 0.2 K and T3 = 42.2 \pm 0.2 K. The three specific heat anomalies found at these temperatures qualitatively have very small entropy changes associated with them and the anisotropic M(H) data saturate at ~ 0.12 渭B/Ni; both observations strongly suggesting the AFM order is associated with very small, itinerant, moments. Anisotropic, H||c and H{\perp}c, 蟻(H) and M(H) isotherms as well as constant field, 蟻(T) and M(T) sweeps manifest signatures of multiple phase lines and result in H-T phase diagrams that are clearly anisotropic. Analysis of M(T) and M(H) data allow for the identification of the two lower temperature magnetically ordered states as antiferromagnetically ordered, with the moments aligned along the crystallographic c-axis, and the higher temperature, T2 < T < T1, state as having a finite ferromagnetic component. In addition, the metamagnetic transition at low temperatures, for H applied along the crystallographic c-axis (H||c) appears to be a near classic example of a spin-flop transition, resulting in a field stabilized antiferromagnetic state with the moments ordered perpendicular to the c-axis. Although the small moment ordering, and existence of multiple phase transitions in field and temperature, suggesting an energetic proximity of these states, could foretell a degree of pressure sensitivity, our measurements of R(T) for applied pressures up to 2.0 GPa indicate that there is very little pressure dependence of T1, T2 and T3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.06349v1-abstract-full').style.display = 'none'; document.getElementById('2110.06349v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.02909">arXiv:2110.02909</a> <span> [<a href="https://arxiv.org/pdf/2110.02909">pdf</a>, <a href="https://arxiv.org/format/2110.02909">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6501/ac4ff8">10.1088/1361-6501/ac4ff8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature dependent striction effect in a single crystalline Nd2Fe14B revealed using a novel high temperature resistivity measurement technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cho%2C+K">Kyuil Cho</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.02909v1-abstract-short" style="display: inline;"> We studied the temperature dependence of resistivity in a single crystalline Nd2Fe14B using a newly developed high temperature probe. This novel probe uses mechanical pin connectors instead of conducting glue/paste. From warming and cooling curves, the Curie temperature was consistently measured around Tc = 580 K. In addition, anomalous discrete jumps were found only in cooling curves between 400… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02909v1-abstract-full').style.display = 'inline'; document.getElementById('2110.02909v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.02909v1-abstract-full" style="display: none;"> We studied the temperature dependence of resistivity in a single crystalline Nd2Fe14B using a newly developed high temperature probe. This novel probe uses mechanical pin connectors instead of conducting glue/paste. From warming and cooling curves, the Curie temperature was consistently measured around Tc = 580 K. In addition, anomalous discrete jumps were found only in cooling curves between 400 and 500 K, but not shown in warming curves. More interestingly, when the jumps occurred during cooling, the resistivity was increased. This phenomenon can be understood in terms of temperature dependent striction effect induced by the re-orientation of magnetic domains well below the Curie temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02909v1-abstract-full').style.display = 'none'; document.getElementById('2110.02909v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Measurement Science and Technology 33, 055901 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08538">arXiv:2109.08538</a> <span> [<a href="https://arxiv.org/pdf/2109.08538">pdf</a>, <a href="https://arxiv.org/format/2109.08538">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-27277-6">10.1038/s41467-021-27277-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualizing band selective enhancement of quasiparticle lifetime in a metallic ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/?searchtype=author&query=Wu%2C+Y">Yun Wu</a>, <a href="/search/?searchtype=author&query=Trevisan%2C+T+V">Tha铆s V. Trevisan</a>, <a href="/search/?searchtype=author&query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/?searchtype=author&query=Lee%2C+K">Kyungchan Lee</a>, <a href="/search/?searchtype=author&query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/?searchtype=author&query=Schrunk%2C+B">Benjamin Schrunk</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">S. L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/?searchtype=author&query=Orth%2C+P+P">P. P. Orth</a>, <a href="/search/?searchtype=author&query=Kaminski%2C+A">Adam Kaminski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08538v1-abstract-short" style="display: inline;"> Electrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity. Despite the universal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08538v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08538v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08538v1-abstract-full" style="display: none;"> Electrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity. Despite the universality of this phenomenon, a direct observation of the impact of ferromagnetic order on the electronic quasiparticles in a magnetic metal is still lacking. Here we demonstrate that quasiparticles experience a significant enhancement of their lifetime in the ferromagnetic state of the low-density magnetic semimetal EuCd2As2, but this occurs only in selected bands and specific energy ranges. This is a direct consequence of the magnetically induced band splitting and the multi-orbital nature of the material. Our detailed study allows to disentangle different electronic scattering mechanisms due to non-magnetic disorder and magnon exchange. Such high momentum and energy dependence quasiparticle lifetime enhancement can lead to spin selective transport and potential spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08538v1-abstract-full').style.display = 'none'; document.getElementById('2109.08538v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures + supplement</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.04245">arXiv:2108.04245</a> <span> [<a href="https://arxiv.org/pdf/2108.04245">pdf</a>, <a href="https://arxiv.org/format/2108.04245">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.205134">10.1103/PhysRevB.104.205134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase diagram of CeSb$_2$ from magnetostriction and magnetization measurements: Evidence for ferrimagnetic and antiferromagnetic states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Trainer%2C+C">Christopher Trainer</a>, <a href="/search/?searchtype=author&query=Abel%2C+C">Caiden Abel</a>, <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L">Sergey L. Bud'ko</a>, <a href="/search/?searchtype=author&query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/?searchtype=author&query=Wahl%2C+P">Peter Wahl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.04245v1-abstract-short" style="display: inline;"> Cerium diantimonide (CeSb$_2$) is one of a family of rare earth based magnetic materials that exhibit metamagnetism, enabling control of the magnetic ground state through an applied magnetic field. At low temperatures, CeSb$_2$ hosts a rich phase diagram with multiple magnetically ordered phases for many of which the order parameter is only poorly understood. In this paper, we report a study of it… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04245v1-abstract-full').style.display = 'inline'; document.getElementById('2108.04245v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.04245v1-abstract-full" style="display: none;"> Cerium diantimonide (CeSb$_2$) is one of a family of rare earth based magnetic materials that exhibit metamagnetism, enabling control of the magnetic ground state through an applied magnetic field. At low temperatures, CeSb$_2$ hosts a rich phase diagram with multiple magnetically ordered phases for many of which the order parameter is only poorly understood. In this paper, we report a study of its metamagnetic properties by Scanning Tunneling Microscopy (STM) and magnetization measurements. We use STM measurements to characterize the sample magnetostriction with sub-picometer resolution from magnetic field and temperature sweeps. This allows us to directly assess the bulk phase diagram as a function of field and temperature and relate spectroscopic features from tunneling spectroscopy to bulk phases. Our magnetostriction and magnetisation measurements indicate that the low temperature ground state at zero field is ferrimagnetic. Quasiparticle interference mapping shows evidence for a reconstruction of the electronic structure close to the Fermi energy upon entering the magnetically ordered phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04245v1-abstract-full').style.display = 'none'; document.getElementById('2108.04245v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages including appendix, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 205134 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Bud%27ko%2C+S+L&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>