CINXE.COM
Search results for: trace metal
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: trace metal</title> <meta name="description" content="Search results for: trace metal"> <meta name="keywords" content="trace metal"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="trace metal" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="trace metal"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2924</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: trace metal</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2924</span> An Assessment of Water and Sediment Quality of the Danube River: Polycyclic Aromatic Hydrocarbons and Trace Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Szab%C3%B3%20Nagy">A. Szabó Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Szab%C3%B3"> J. Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Vass"> I. Vass</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water and sediment samples from the Danube River and Moson Danube Arm (Hungary) have been collected and analyzed for contamination by 18 polycyclic aromatic hydrocarbons (PAHs) and eight trace metal(loid)s (As, Cu, Pb, Ni, Cr, Cd, Hg and Zn) in the period of 2014-2015. Moreover, the trace metal(loid) concentrations were measured in the Rába and Marcal rivers (parts of the tributary system feeding the Danube). Total PAH contents in water were found to vary from 0.016 to 0.133 µg/L and concentrations in sediments varied in the range of 0.118 mg/kg and 0.283 mg/kg. Source analysis of PAHs using diagnostic concentration ratios indicated that PAHs found in sediments were of pyrolytic origins. The dissolved trace metal and arsenic concentrations were relatively low in the surface waters. However, higher concentrations were detected in the water samples of Rába (Zn, Cu, Ni, Pb) and Marcal (As, Cu, Ni, Pb) compared to the Danube and Moson Danube. The concentrations of trace metals in sediments were higher than those found in water samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20water" title="surface water">surface water</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=PAH" title=" PAH"> PAH</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metal" title=" trace metal"> trace metal</a> </p> <a href="https://publications.waset.org/abstracts/80197/an-assessment-of-water-and-sediment-quality-of-the-danube-river-polycyclic-aromatic-hydrocarbons-and-trace-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2923</span> Trace Element Phytoremediation Potential of Mangrove Plants in Indian Sundarban</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranju%20Chowdhury">Ranju Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20K.%20Sarkar"> Santosh K. Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trace element accumulation potential of ten mangrove species in individual plant tissues (leaves, bark and root/pneumatophore) along with host sediments was carried out at 2 study sites of diverse environmental stresses of Indian Sundarban Wetland, a UNESCO world heritage site. The study was undertaken with the following objectives: (i) to investigate the extent of accumulation and the distribution of trace metals in plant tissues (ii) to determine whether sediment trace metal levels are correlated with trace metal levels in tissues and (iii) to find out the suitable candidate for phytoremediation species. Mangrove sediments showed unique potential in many- fold increase for most trace metals than plant tissues due to their inherent physicochemical properties. The concentrations of studied 11 trace elements (expressed in µg g -1) showed wide range of variations in host sediment with the following descending order: Fe (2865.31-3019.62) > Mn (646.04- 648.47 > Cu (35.03- 41.55) > Zn (32.51- 36.33) > Ni (34.4- 36.60) > Cr (27.5- 29.54) > Pb (11.6- 20.34) > Co (6.79- 8.55) > As (3.22- 4.41) > Cd (0.19- 0.22) > Hg (0.06- 0.07). The ranges of concentration of trace metals (expressed in µg g -1) for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in plant tissues were 0.006- 0.31, 0.02- 2.97, 0.10- 4.80, 0.13- 6.49, 4.46- 48.30, 9.20- 938.13, 0.02- 0.13, 9.8- 1726.24, 5.41- 11.34, 0.04 - 7.64, 3.81- 52.20 respectively. Among all trace elements, Cd and Zn were highly bioaccumulated in Excoecaria agallocha (2.97 and 52.20 µg g -1 respectively). The bio- concentration factor (BCF) showed its maximum value (15.5) in E. agallocha for Cd, suggesting that it can be considered as a high-efficient plant for trace metal bioaccumulation. Therefore, phytoremediation could be extensively used for the removal of the toxic contaminants for sustainable management of Sundarban coastal regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indian%20Sundarban" title="Indian Sundarban">Indian Sundarban</a>, <a href="https://publications.waset.org/abstracts/search?q=mangroves" title=" mangroves"> mangroves</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elements" title=" trace elements"> trace elements</a> </p> <a href="https://publications.waset.org/abstracts/34660/trace-element-phytoremediation-potential-of-mangrove-plants-in-indian-sundarban" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2922</span> Geochemical Evaluation of Weathering-Induced Release of Trace Metals from the Maastritchian Shales in Parts of Bida an Anambra Basins, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adetunji%20Olusegun%20Aderigibigbe">Adetunji Olusegun Aderigibigbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shales, especially black shales, are of great geological significance, in the study of heavy/trace metal contamination. This is due to their abundance in occurrence and high concentration of heavy metals embedded which are released during their weathering. Heavy metals constitute one of the most dangerous pollution known to human because they are toxic (i.e., carcinogenic), non-biodegradable and can enter the global eco-biological circle. In the past, heavy metal contamination in aquatic environment and agricultural top soil has been attributed to industrial wastes, mining extractions and pollution from traffic vehicles; only a few studies have focused on weathering of shale as possible source of heavy metal contamination. Based on the above background, this study attempts to establish weathering of shale as possible source of trace/heavy metal contaminations. This was done by carefully selecting fresh and their corresponding weathered shale samples from selected localities in Bida and Anambra Basins. The samples were analysed in Activation Laboratories Ltd; Ontario, Canada for trace/heavy metal. It was observed that some major and trace metals were released during weathering, i.e., some were depleted and some enriched. By this contamination of water zones and agricultural top soils are not only traceable to biogenic processes but geogenic inputs (weathering of shale) as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20samples" title=" fresh samples"> fresh samples</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=shales" title=" shales"> shales</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=weathered%20samples" title=" weathered samples"> weathered samples</a> </p> <a href="https://publications.waset.org/abstracts/109970/geochemical-evaluation-of-weathering-induced-release-of-trace-metals-from-the-maastritchian-shales-in-parts-of-bida-an-anambra-basins-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2921</span> Assessment of Trace Metal Concentration of Soils Contaminated with Carbide in Abraka, Delta State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.M.%20Agbogidi">O.M. Agbogidi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.M.%20Onochie"> I.M. Onochie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation was carried out on trace metal concentration of soils contaminated with carbide in Abraka, Delta State, Nigeria in 2014 with a view to providing baseline formation on their status relative to the control plants and to the tolerable limits recommended by World standard bodies including WHO and FAO. The metals were analyzed using the Atomic Absorption Spectrophotometer which showed an elevated level when compared with the control plots. High level of metals including Fe, Pb, Zn, Cu, Cd, Ni, Cr and arsenic were recorded and these values were significantly different (P<0.05) from values obtained from the control plots. These results are indicative of the fact that carbide polluted soil had higher level of trace metals and because these metals are non-biodegradable elements in the ecosystem, a rise to their lethal levels in food chains is envisaged due to the interdependency of plants and animals stemming from soil-water organisms interrelationship. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-concentration" title="bio-concentration">bio-concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20contaminated%20soils" title=" carbide contaminated soils"> carbide contaminated soils</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a> </p> <a href="https://publications.waset.org/abstracts/31776/assessment-of-trace-metal-concentration-of-soils-contaminated-with-carbide-in-abraka-delta-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2920</span> Some Trace and Toxic Metal Content of Crude Ethanol Leaf Extract of Globimetula Oreophila (Hook. F) Danser Azadirachta Indica Using Atomic Absorption Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dauda%20G.">Dauda G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bila%20Ha%20Sani%20Y.%20M."> Bila Ha Sani Y. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Magaji%20M.%20G."> Magaji M. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20A.%20M."> Musa A. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20H.%20S."> Hassan H. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Globimetula oreophila is a parasitic plant with a known therapeutic value that is widely used in the treatment of various ailments, including malaria, hypertension, cancer, diabetes, epilepsy and as a diuretic agent. Objectives: The present study is aimed at analyzing and documenting the level of trace and toxic metals in the crude ethanol leaf extract of G. oreophila. Methods: After collection and authentication, the leaves were air-dried, mashed into powder, weighed and extracted using aqueous ethanol (70%). The crude extract (0.5g) was digested with HNO₃: HCl (3:1); then heated to 2000C and analyzed for its metal content by atomic absorption spectroscopy (AAS). Results: Fe had the highest concentration (32.73mg/kg), while Pb was not detected. The concentrations of Co, Cu, Ni, Zn and Cd detected were 5.97, 10.8, 8.01 and 0.9mg/kg, respectively. The concentration of Cd, Fe and Ni were above the permissible limit of FAO/WHO. Conclusion: The results also show that the analyzed plant is a beneficial source of appropriate and essential trace metals. However, the leaf of G. oreophila in the present study was probably unsafe for long-term use because of the level of Fe, Ni, and Cd concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Globimetula%20oreophila" title="Globimetula oreophila">Globimetula oreophila</a>, <a href="https://publications.waset.org/abstracts/search?q=minerals" title=" minerals"> minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20element" title=" trace element"> trace element</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20extract" title=" crude extract"> crude extract</a> </p> <a href="https://publications.waset.org/abstracts/143724/some-trace-and-toxic-metal-content-of-crude-ethanol-leaf-extract-of-globimetula-oreophila-hook-f-danser-azadirachta-indica-using-atomic-absorption-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2919</span> The Establishment and Application of TRACE/FRAPTRAN Model for Kuosheng Nuclear Power Plant </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen">S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20K.%20Lin"> W. K. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang"> J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20Lin"> H. T. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Chang"> H. C. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Y.%20Li"> W. Y. Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kuosheng nuclear power plant (NPP) is a BWR/6 type NPP and located on the northern coast of Taiwan. First, Kuosheng NPP TRACE model were developed in this research. In order to assess the system response of Kuosheng NPP TRACE model, startup tests data were used to evaluate Kuosheng NPP TRACE model. Second, the over pressurization transient analysis of Kuosheng NPP TRACE model was performed. Besides, in order to confirm the mechanical property and integrity of fuel rods, FRAPTRAN analysis was also performed in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TRACE" title="TRACE">TRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20analysis" title=" safety analysis"> safety analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=BWR%2F6" title=" BWR/6"> BWR/6</a>, <a href="https://publications.waset.org/abstracts/search?q=FRAPTRA" title=" FRAPTRA"> FRAPTRA</a> </p> <a href="https://publications.waset.org/abstracts/18370/the-establishment-and-application-of-tracefraptran-model-for-kuosheng-nuclear-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2918</span> Ecological Risk Aspects of Essential Trace Metals in Soil Derived From Gold Mining Region, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lowanika%20Victor%20Tibane">Lowanika Victor Tibane</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Mamba"> David Mamba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human body, animals, and plants depend on certain essential metals in permissible quantities for their survival. Excessive metal concentration may cause severe malfunctioning of the organisms and even fatal in extreme cases. Because of gold mining in the Witwatersrand basin in South Africa, enormous untreated mine dumps comprise elevated concentration of essential trace elements. Elevated quantities of trace metal have direct negative impact on the quality of soil for different land use types, reduce soil efficiency for plant growth, and affect the health human and animals. A total of 21 subsoil samples were examined using inductively coupled plasma optical emission spectrometry and X-ray fluorescence methods and the results elevated men concentration of Fe (36,433.39) > S (5,071.83) > Cu (1,717,28) > Mn (612.81) > Cr (74.52) > Zn (68.67) > Ni (40.44) > Co (9.63) > P (3.49) > Mo > (2.74), reported in mg/kg. Using various contamination indices, it was discovered that the sites surveyed are on average moderately contaminated with Co, Cr, Cu, Mn, Ni, S, and Zn. The ecological risk assessment revealed a low ecological risk for Cr, Ni and Zn, whereas Cu poses a very high ecological risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20trace%20elements" title="essential trace elements">essential trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title=" soil contamination"> soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20indices" title=" contamination indices"> contamination indices</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive%20statistics" title=" descriptive statistics"> descriptive statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20risk%20evaluation" title=" ecological risk evaluation"> ecological risk evaluation</a> </p> <a href="https://publications.waset.org/abstracts/149302/ecological-risk-aspects-of-essential-trace-metals-in-soil-derived-from-gold-mining-region-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2917</span> Trace Logo: A Notation for Representing Control-Flow of Operational Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Manoj%20Kumar">M. V. Manoj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Likewin%20Thomas"> Likewin Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Annappa"> Annappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process mining research discipline bridges the gap between data mining and business process modeling and analysis, it offers the process-centric and end-to-end methods/techniques for analyzing information of real-world process detailed in operational event-logs. In this paper, we have proposed a notation called trace logo for graphically representing control-flow perspective (order of execution of activities) of process. A trace logo consists of a stack of activity names at each position, sizes of the activity name indicates their frequency in the traces and the total height of the activity depicts the information content of the position. A trace logo created from a set of aligned traces generated using Multiple Trace Alignment technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consensus%20trace" title="consensus trace">consensus trace</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20mining" title=" process mining"> process mining</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20trace%20alignment" title=" multiple trace alignment"> multiple trace alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20logo" title=" trace logo "> trace logo </a> </p> <a href="https://publications.waset.org/abstracts/44978/trace-logo-a-notation-for-representing-control-flow-of-operational-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2916</span> Coagulation-flocculation Process with Metal Salts, Synthetic Polymers and Biopolymers for the Removal of Trace Metals (Cu, Pb, Ni, Zn) from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Hargreaves">Andrew Hargreaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Vale"> Peter Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Whelan"> Jonathan Whelan</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Constantino"> Carlos Constantino</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Dotro"> Gabriela Dotro</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Campo"> Pablo Campo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a consequence of their potential to cause harm, there are strong regulatory drivers that require metals to be removed as part of the wastewater treatment process. Bioavailability-based standards have recently been specified for copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) and are expected to reduce acceptable metal concentrations. In order to comply with these standards, wastewater treatment works may require new treatment types to enhance metal removal and it is, therefore, important to examine potential treatment options. A substantial proportion of Cu, Pb, Ni and Zn in effluent is adsorbed to and/or complexed with macromolecules (eg. proteins, polysaccharides, aminosugars etc.) that are present in the colloidal size fraction. Therefore, technologies such as coagulation-flocculation (CF) that are capable of removing colloidal particles have good potential to enhance metals removal from wastewater. The present study investigated the effectiveness of CF at removing trace metals from humus effluent using the following coagulants; ferric chloride (FeCl3), the synthetic polymer polyethyleneimine (PEI), and the biopolymers chitosan and Tanfloc. Effluent samples were collected from a trickling filter treatment works operating in the UK. Using jar tests, the influence of coagulant dosage and the velocity and time of the slow mixing stage were studied. Chitosan and PEI had a limited effect on the removal of trace metals (<35%). FeCl3 removed 48% Cu, 56% Pb and 41% Zn at the recommended dose of 0.10 mg/L. At the recommended dose of 0.25 mg/L Tanfloc removed 77% Cu, 68% Pb, 18% Ni and 42% Zn. The dominant mechanism for particle removal by FeCl3 was enmeshment in the precipitates (i.e. sweep flocculation) whereas, for Tanfloc, inter-particle bridging was the dominant removal mechanism. Overall, FeCl3 and Tanfloc were found to be most effective at removing trace metals from wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation-flocculation" title="coagulation-flocculation">coagulation-flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=jar%20test" title=" jar test"> jar test</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/60245/coagulation-flocculation-process-with-metal-salts-synthetic-polymers-and-biopolymers-for-the-removal-of-trace-metals-cu-pb-ni-zn-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2915</span> Using TRACE, PARCS, and SNAP Codes to Analyze the Load Rejection Transient of ABWR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang">J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Chang"> H. C. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Ho"> A. L. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Yang"> J. H. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study is to analyze the load rejection transient of ABWR by using TRACE, PARCS, and SNAP codes. This study has some steps. First, using TRACE, PARCS, and SNAP codes establish the model of ABWR. Second, the key parameters are identified to refine the TRACE/PARCS/SNAP model further in the frame of a steady state analysis. Third, the TRACE/PARCS/SNAP model is used to perform the load rejection transient analysis. Finally, the FSAR data are used to compare with the analysis results. The results of TRACE/PARCS are consistent with the FSAR data for the important parameters. It indicates that the TRACE/PARCS/SNAP model of ABWR has a good accuracy in the load rejection transient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABWR" title="ABWR">ABWR</a>, <a href="https://publications.waset.org/abstracts/search?q=TRACE" title=" TRACE"> TRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=PARCS" title=" PARCS"> PARCS</a>, <a href="https://publications.waset.org/abstracts/search?q=SNAP" title=" SNAP"> SNAP</a> </p> <a href="https://publications.waset.org/abstracts/102806/using-trace-parcs-and-snap-codes-to-analyze-the-load-rejection-transient-of-abwr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2914</span> Concentrations of Some Metallic Trace Elements in Twelve Sludge Incineration Ashes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Khiari">Lotfi Khiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Karam"> Antoine Karam</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude-Alla%20Joseph"> Claude-Alla Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20H%C3%A9bert"> Marc Hébert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of incineration of sludge generated from municipal or agri-food waste treatment plant is to reduce the volume of sludge to be disposed of as a solid or liquid waste, whilst concentrating or destroying potentially harmful volatile substances. In some cities in Canada and United States of America (USA), a large amount of sludge is incinerated, which entails a loss of organic matter and water leading to phosphorus, potassium and some metallic trace element (MTE) accumulation in ashes. The purpose of this study was to evaluate the concentration of potentially hazardous MTE such as cadmium (Cd), lead (Pb) and mercury (Hg) in twelve sludge incineration ash samples obtained from municipal wastewater and other food processing waste treatments from Canada and USA. The average, maximum, and minimum values of MTE in ashes were calculated for each city individually and all together. The trace metal concentration values were compared to the literature reported values. The concentrations of MTE in ashes vary widely depending on the sludge origins and treatment options. The concentrations of MTE in ashes were found the range of 0.1-6.4 mg/kg for Cd; 13-286 mg/kg for Pb and 0.1-0.5 mg/kg for Hg. On average, the following order of metal concentration in ashes was observed: Pb > Cd > Hg. Results show that metal contents in most ashes were similar to MTE levels in synthetic inorganic fertilizers and many fertilizing residual materials. Consequently, the environmental effects of MTE content of these ashes would be low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosolids" title="biosolids">biosolids</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/37772/concentrations-of-some-metallic-trace-elements-in-twelve-sludge-incineration-ashes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2913</span> Using TRACE and SNAP Codes to Establish the Model of Maanshan PWR for SBO Accident</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Shen">B. R. Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang"> J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Yang"> J. H. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Chiang"> Y. Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20F.%20Chang"> Y. F. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Huang"> Y. H. Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, TRACE code with the interface code-SNAP was used to simulate and analyze the SBO (station blackout) accident which occurred in Maanshan PWR (pressurized water reactor) nuclear power plant (NPP). There are four main steps in this research. First, the SBO accident data of Maanshan NPP were collected. Second, the TRACE/SNAP model of Maanshan NPP was established by using these data. Third, this TRACE/SNAP model was used to perform the simulation and analysis of SBO accident. Finally, the simulation and analysis of SBO with mitigation equipments was performed. The analysis results of TRACE are consistent with the data of Maanshan NPP. The mitigation equipments of Maanshan can maintain the safety of Maanshan in the SBO according to the TRACE predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressurized%20water%20reactor%20%28PWR%29" title="pressurized water reactor (PWR)">pressurized water reactor (PWR)</a>, <a href="https://publications.waset.org/abstracts/search?q=TRACE" title=" TRACE"> TRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=station%20blackout%20%28SBO%29" title=" station blackout (SBO)"> station blackout (SBO)</a>, <a href="https://publications.waset.org/abstracts/search?q=Maanshan" title=" Maanshan"> Maanshan</a> </p> <a href="https://publications.waset.org/abstracts/99965/using-trace-and-snap-codes-to-establish-the-model-of-maanshan-pwr-for-sbo-accident" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2912</span> Study Mercapto-Nanoscavenger as a Promising Analytical Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20M.%20Algaradah">Mohammed M. Algaradah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A chelating mercapto- nanoscavenger has been developed exploiting the high surface area of monodisperse nano-sized mesoporous silica. The nanoscavenger acts as a solid phase trace metal extractant whilst suspended as a quasi-stable sol in aqueous samples. This mode of extraction requires no external agitation as the particles move naturally through the sample by Brownian motion, convection and slow sedimentation. Careful size selection enables the nanoscavenger to be easily recovered together with the extracted analyte by conventional filtration or centrifugation. The research describes the successful attachment of chelator mercapto to ca. 136 ± 15 nm high surface area (BET surface area = 1006 m2 g-1) mesoporous silica particles. The resulting material had a copper capacity of ca. 1.34 ± 0.10 mmol g-1 and was successfully applied to the collection of a trace element from water. Essentially complete recovery of Cu (II) has been achieved from freshwater samples giving typical preconcentration factors of 100 from 50 µg/l samples. Data obtained from a nanoscavenger-based extraction of copper from samples were not significantly different from those obtained by using a conventional colorimetric procedure employing complexation/solvent extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20scavenger" title="nano scavenger">nano scavenger</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica" title=" mesoporous silica"> mesoporous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metal" title=" trace metal"> trace metal</a>, <a href="https://publications.waset.org/abstracts/search?q=preconcentration" title=" preconcentration"> preconcentration</a> </p> <a href="https://publications.waset.org/abstracts/147914/study-mercapto-nanoscavenger-as-a-promising-analytical-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2911</span> TRACE/FRAPTRAN Analysis of Kuosheng Nuclear Power Plant Dry-Storage System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang">J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Chiang"> Y. Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Y.%20Li"> W. Y. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20Lin"> H. T. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Chen"> H. C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dry-storage systems of nuclear power plants (NPPs) in Taiwan have become one of the major safety concerns. There are two steps considered in this study. The first step is the verification of the TRACE by using VSC-17 experimental data. The results of TRACE were similar to the VSC-17 data. It indicates that TRACE has the respectable accuracy in the simulation and analysis of the dry-storage systems. The next step is the application of TRACE in the dry-storage system of Kuosheng NPP (BWR/6). Kuosheng NPP is the second BWR NPP of Taiwan Power Company. In order to solve the storage of the spent fuels, Taiwan Power Company developed the new dry-storage system for Kuosheng NPP. In this step, the dry-storage system model of Kuosheng NPP was established by TRACE. Then, the steady state simulation of this model was performed and the results of TRACE were compared with the Kuosheng NPP data. Finally, this model was used to perform the safety analysis of Kuosheng NPP dry-storage system. Besides, FRAPTRAN was used tocalculate the transient performance of fuel rods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BWR" title="BWR">BWR</a>, <a href="https://publications.waset.org/abstracts/search?q=TRACE" title=" TRACE"> TRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=FRAPTRAN" title=" FRAPTRAN"> FRAPTRAN</a>, <a href="https://publications.waset.org/abstracts/search?q=dry-storage" title=" dry-storage"> dry-storage</a> </p> <a href="https://publications.waset.org/abstracts/12388/tracefraptran-analysis-of-kuosheng-nuclear-power-plant-dry-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2910</span> Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veronique%20Troch">Veronique Troch</a>, <a href="https://publications.waset.org/abstracts/search?q=Wouter%20Van%20der%20Borght"> Wouter Van der Borght</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C3%A9ronique%20De%20Bleeker"> Véronique De Bleeker</a>, <a href="https://publications.waset.org/abstracts/search?q=Bram%20Marynissen"> Bram Marynissen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Van%20der%20Eecken"> Nathan Van der Eecken</a>, <a href="https://publications.waset.org/abstracts/search?q=Gijs%20Du%20Laing"> Gijs Du Laing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition" title="atmospheric deposition">atmospheric deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20vegetables" title=" leaf vegetables"> leaf vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20pollution" title=" traffic pollution"> traffic pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title=" urban agriculture"> urban agriculture</a> </p> <a href="https://publications.waset.org/abstracts/44119/accumulation-of-trace-metals-in-leaf-vegetables-cultivated-in-high-traffic-areas-in-ghent-belgium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2909</span> Efficient Mercury Sorbent: Activated Carbon and Metal Organic Framework Hybrid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongseok%20Hong">Yongseok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurt%20Louis%20Solis"> Kurt Louis Solis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a hybrid sorbent using the metal organic framework (MOF), UiO-66, and powdered activated carbon (pAC) is synthesized to remove cationic and anionic metals simultaneously. UiO-66 is an octahedron-shaped MOF with a Zr₆O₄(OH)₄ metal node and 1,4-benzene dicarboxylic acid (BDC) organic linker. Zr-based MOFs are attractive for trace element remediation in wastewaters, because Zr is relatively non-toxic as compared to other classes of MOF and, therefore, it will not cause secondary pollution. Most remediation studies with UiO-66 target anions such as fluoride, but trace element oxyanions such as arsenic, selenium, and antimony have also been investigated. There have also been studies involving mercury removal by UiO-66 derivatives, however these require post-synthetic modifications or have lower effective surface areas. Activated carbon is known for being a readily available, well-studied, effective adsorbent for metal contaminants. Solvothermal method was employed to prepare hybrid sorbent from UiO66 and activated carbon, which could be used to remove mercury and selenium simultaneously. The hybrid sorbent was characterized using FSEM-EDS, FT-IR, XRD, and TGA. The results showed that UiO66 and activated carbon are successfully composited. From BET studies, the hybrid sorbent has a SBET of 1051 m² g⁻¹. Adsorption studies were performed, where the hybrid showed maximum adsorption of 204.63 mg g⁻¹ and 168 mg g⁻¹ for Hg (II) and selenite, respectively, and follows the Langmuir model for both species. Kinetics studies have revealed that the Hg uptake of the hybrid is pseudo-2nd order and has rate constant of 5.6E-05 g mg⁻¹ min⁻¹ and the selenite uptake follows the simplified Elovich model with α = 2.99 mg g⁻¹ min⁻¹, β = 0.032 g mg⁻¹. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=flue%20gas%20wastewater" title=" flue gas wastewater"> flue gas wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=selenite" title=" selenite"> selenite</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20framework" title=" metal organic framework"> metal organic framework</a> </p> <a href="https://publications.waset.org/abstracts/79574/efficient-mercury-sorbent-activated-carbon-and-metal-organic-framework-hybrid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2908</span> Trace Metals in Natural Bottled Water on Montenegrin Market and Comaparison with Tap Water in Podgorica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarina%20%C5%BDivkovi%C4%87">Katarina Živković</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Joksimovi%C4%87"> Ivana Joksimović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many different chemicals may occur in drinking water and cause significant human health risks after prolonged periods of exposure. In particular concern are contaminants that have cumulative toxic properties, such as heavy metals. This investigation was done to clarify concerns about chemical quality and safety of drinking tap water in Podgorica. For comparison, all available natural bottled water on Montenegrin market were bought. All samples (bottled water and tap water from Podgorica) were analyzed using ICP –OES on contents of Al, Cd, Pb, Cu, Zn,Cr, Fe, As and Mn. All results compared with the maximum concentration levels allowed by international standards and World Health Organization (WHO) guidelines. The results of analysis showed that all trace of heavy metals were very low and in same time below MCL according to WHO and International standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inductively%20coupled%20plasma%20-%20optical%20emission%20spectrometry%20%28ICP-OES%29" title="inductively coupled plasma - optical emission spectrometry (ICP-OES)">inductively coupled plasma - optical emission spectrometry (ICP-OES)</a>, <a href="https://publications.waset.org/abstracts/search?q=Montenegro%20%28Podgorica%29" title=" Montenegro (Podgorica)"> Montenegro (Podgorica)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20bottled%20water" title=" natural bottled water"> natural bottled water</a>, <a href="https://publications.waset.org/abstracts/search?q=tap%20water" title=" tap water "> tap water </a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20of%20heavy%20metal" title="trace of heavy metal">trace of heavy metal</a> </p> <a href="https://publications.waset.org/abstracts/31111/trace-metals-in-natural-bottled-water-on-montenegrin-market-and-comaparison-with-tap-water-in-podgorica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2907</span> Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Glasner">Benjamin Glasner</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Henriquez"> Carlos Henriquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Alfaro"> Fernando Alfaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Trefault"> Nicole Trefault</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Andrade"> Santiago Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20De%20La%20Iglesia"> Rodrigo De La Iglesia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Picoeukaryotes" title="Picoeukaryotes">Picoeukaryotes</a>, <a href="https://publications.waset.org/abstracts/search?q=plankton%20communities" title=" plankton communities"> plankton communities</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20patterns" title=" seasonal patterns"> seasonal patterns</a> </p> <a href="https://publications.waset.org/abstracts/84262/seasonal-variability-of-picoeukaryotes-community-structure-under-coastal-environmental-disturbances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2906</span> Impact of Anthropogenic Activities on Soil Quality Using the Land Snail Cantareus apertus as Bioindicator of Heavy Metals Accumulation in The Bejaia Region (Northeastern Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benbelil-Tafoughalt%20Saida">Benbelil-Tafoughalt Saida</a>, <a href="https://publications.waset.org/abstracts/search?q=Tababouchet%20Meriem"> Tababouchet Meriem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this study was to investigate the impact of anthropogenic activities on soil quality using the land snail Cantareusapertus as a bioindicator of heavy metal accumulation. Concentrations of cadmium, copper, and zinc were measured in various body organs, viz: viscera and foot of the land snail Cantareusapertus. The snails were collected from two different sites in the Bejaia region (Northeastern Algeria), exposed to different sources of contamination by trace metals. The first sampling site is an urban areas, and the second is characterized by heavy industry, a potential source of soil pollution via heavy metal contamination. The concentrations of heavy metal in all viscera and foot samples were measured using an atomic absorption spectrophotometer. Bioconcentration of the trace metals Cu, Zn, and Cd varied between the viscera and the foot with the viscera having the highest concentration (µgg-1) of all metals than the foots; Cu, 2.03 – 5.8 (Viscera), 0.05 – 3.30 (Foot), Zn, 23.64 – 45.02 (Viscera), 1.87 – 15.15 (Foot) and Cd, 0.36 – 15.26 (Viscera), 0.18 – 13.73 (Foot), which suggest that ingestion may be the main uptake route of these essential metals. On the other hand, the levels of heavy metals varied significantly among the sampling area (P<0.001). in fact, in the foots as well as in the viscera, the concentrations of all studied metals is significantly higher in the snails sampled from sites closest to potential sources of pollution compared to those collected from urban areas characterized by moderate pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20activities" title="anthropogenic activities">anthropogenic activities</a>, <a href="https://publications.waset.org/abstracts/search?q=Bioconcentration" title=" Bioconcentration"> Bioconcentration</a>, <a href="https://publications.waset.org/abstracts/search?q=Cantareus%20apertus" title=" Cantareus apertus"> Cantareus apertus</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a> </p> <a href="https://publications.waset.org/abstracts/142721/impact-of-anthropogenic-activities-on-soil-quality-using-the-land-snail-cantareus-apertus-as-bioindicator-of-heavy-metals-accumulation-in-the-bejaia-region-northeastern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2905</span> Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masbubul%20Ishtiaque%20Ahmed">Masbubul Ishtiaque Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20chain" title="food chain">food chain</a>, <a href="https://publications.waset.org/abstracts/search?q=determine%20the%20levels%20of%20minerals" title=" determine the levels of minerals"> determine the levels of minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elements" title=" trace elements"> trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20and%20use" title=" production and use"> production and use</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20exposure" title=" human exposure"> human exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=carcinogenicity" title=" carcinogenicity"> carcinogenicity</a> </p> <a href="https://publications.waset.org/abstracts/68457/identification-of-toxic-metal-deposition-in-food-cycle-and-its-associated-public-health-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2904</span> Phytochemicals Quatification, Trace Metal Accumulation Pattern and Contamination Risk Assessment of Different Variety of Tomatoes Cultivated on Municipal Waste Sludge Treated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathodzi%20Nditsheni">Mathodzi Nditsheni</a>, <a href="https://publications.waset.org/abstracts/search?q=Olawole%20Emmanuel%20Aina"> Olawole Emmanuel Aina</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Oluwole%20Olowoyo"> Joshua Oluwole Olowoyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever-increasing world population is putting extreme pressure on the already limited agricultural resources for food production. Different soil enhancers were introduced by famers to meet the need of the ever-increasing population demand for food. One of the soil enhancers is the municipal waste sludge. This research investigated the differences in the concentrations of trace metals and levels of phytochemicals in four different tomato varieties cultivated on soil treated with municipal waste sludge in Pretoria, South Africa. Fruits were harvested at maturity and analyzed for trace metals and phytochemicals contents using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and a High-Performance Liquid Chromatography (HPLC) respectively. A one-way analysis of variance (ANOVA) was used to determine the differences in the concentrations of trace metals and phytochemical from different tomato varieties were significant. From the study, Rodade tomato bioaccumulated the highest concentrations of Mn, Cr, Cu and Ni, Roma bioaccumulated the highest concentrations of, Cd, Fe and Pb while Heinz bioaccumulated the highest concentrations of As and Zn. Cherry tomato on the other hand, recorded the lowest concentrations for most metals, Cd, Cr, Cu, Mn, Ni, Pb and Zn. The results of the study further showed that phenolic and flavonoids content were higher in the Solanum lycopersicum fruit grown in soils treated with municipal waste sludge. The study also showed that there was an inverse relationship between the levels of trace metals and phytochemicals. The calculated contamination factor values of trace metals like Cr, Cu, Pb and Zn were above the safe value of 1 which indicated that the tomato fruits may be unsafe for human consumption. However, the contamination factor values for the remaining trace metals were well below the safe value of 1. From the results obtained either for the control group or the treatment, the tomato varieties used in the study, bioaccumulated the toxic trace metals in their fruits and some of the values obtained were higher than the acceptable limit, which may then imply that the varieties of tomato used in this study bio accumulated the toxic trace metals from the soil, hence care should be taken when these tomato varieties are either cultivated or harvested from polluted areas <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title="trace metals">trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20sludge" title=" waste sludge"> waste sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20factors" title=" contamination factors"> contamination factors</a> </p> <a href="https://publications.waset.org/abstracts/163007/phytochemicals-quatification-trace-metal-accumulation-pattern-and-contamination-risk-assessment-of-different-variety-of-tomatoes-cultivated-on-municipal-waste-sludge-treated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2903</span> The SBO/LOCA Analysis of TRACE/SNAP for Kuosheng Nuclear Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang">J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20Lin"> H. T. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Chiang"> Y. Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Chen"> H. C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kuosheng Nuclear Power Plant (NPP) is located on the northern coast of Taiwan. Its nuclear steam supply system is a type of BWR/6 designed and built by General Electric on a twin unit concept. First, the methodology of Kuosheng NPP SPU (Stretch Power Uprate) safety analysis TRACE/SNAP model was developed in this research. Then, in order to estimate the safety of Kuosheng NPP under the more severe condition, the SBO (Station Blackout) + LOCA (Loss-of-Coolant Accident) transient analysis of Kuosheng NPP SPU TRACE/SNAP model was performed. Besides, the animation model of Kuosheng NPP was presented using the animation function of SNAP with TRACE/SNAP analysis results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TRACE" title="TRACE">TRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20analysis" title=" safety analysis"> safety analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=BWR%2F6" title=" BWR/6"> BWR/6</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20accident" title=" severe accident"> severe accident</a> </p> <a href="https://publications.waset.org/abstracts/12387/the-sboloca-analysis-of-tracesnap-for-kuosheng-nuclear-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">714</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2902</span> The Analysis and Simulation of TRACE in the Ultimate Response Guideline for Chinshan BWR/4 Nuclear Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang">J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20Lin"> H. T. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Chen"> H. C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Chiang"> S. C. Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Liu"> C. C. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, TRACE model of Chinshan BWR/4 Nuclear Power Plant (NPP) has been developed for the simulation and analysis of Ultimate Response Guideline (URG). The main actions of URG are the depressurization and low pressure water injection of reactor and containment venting. This research focuses to verify the URG efficiency under Fukushima-like conditions. Trace analysis results show that the URG can keep the PCT below the criteria 1088.7 K under Fukushima-like conditions. It indicated that Chinshan NPP was safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BWR" title="BWR">BWR</a>, <a href="https://publications.waset.org/abstracts/search?q=trace" title=" trace"> trace</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20analysis" title=" safety analysis"> safety analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=URG" title=" URG"> URG</a> </p> <a href="https://publications.waset.org/abstracts/30717/the-analysis-and-simulation-of-trace-in-the-ultimate-response-guideline-for-chinshan-bwr4-nuclear-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">621</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2901</span> Assessment of the Physical and Chemical Characteristics of Ugbogui River, Edo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyagbaye%20O.%20Rich">Iyagbaye O. Rich</a>, <a href="https://publications.waset.org/abstracts/search?q=Omoigberale%20O.%20Michael"> Omoigberale O. Michael</a>, <a href="https://publications.waset.org/abstracts/search?q=Iyagbaye%20A.%20Louis"> Iyagbaye A. Louis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physical, chemical parameters and some trace contents of Ugbogui in Edo State, Nigeria were investigated from August 2015 to April 2016. Four stations were studied from upstream to downstream using standard methods. A total of thirty-three (33) physical and chemical characteristics and trace metal contents were examined; Air and water temperatures, depth, transparency, colour, turbidity, flow velocity, pH, total alkalinity, conductivity and dissolved solids etc. Other includes dissolved oxygen, oxygen saturation, biochemical oxygen demand, chloride, phosphate, sodium, nitrate, sulphate, potassium, calcium, magnesium, iron, lead, copper, zinc, nickel, cadmium, vanadium and chromium. Eleven (11) parameters exhibited clear seasonal variations. However, there were high significant differences (p < 0.01) in the values of depth, colour, total suspended solid, biochemical oxygen demand, chemical oxygen demand, chloride, bicarbonate, phosphate, sulphate, iron, manganese, zinc, copper, chromium and cadmium among the stations. The anthropogenic activities had negatively impacted at station 3 of the river, although most of the recorded values were still within permissible limits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20activities" title="anthropogenic activities">anthropogenic activities</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=permissible%20limits" title=" permissible limits"> permissible limits</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20and%20chemical%20parameters" title=" physical and chemical parameters"> physical and chemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metal" title=" trace metal"> trace metal</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/97178/assessment-of-the-physical-and-chemical-characteristics-of-ugbogui-river-edo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2900</span> Assessment of Chromium Concentration and Human Health Risk in the Steelpoort River Sub-Catchment of the Olifants River Basin, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Addo-Bediako">Abraham Addo-Bediako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many freshwater ecosystems are facing immense pressure from anthropogenic activities, such as agricultural, industrial and mining. Trace metal pollution in freshwater ecosystems has become an issue of public health concern due to its toxicity and persistence in the environment. Trace elements pose a serious risk not only to the environment and aquatic biota but also humans. Chromium is one of such trace elements and its pollution in surface waters and groundwaters represents a serious environmental problem. In South Africa, agriculture, mining, industrial and domestic wastes are the main contributors to chromium discharge in rivers. The common forms of chromium are chromium (III) and chromium (VI). The latter is the most toxic because it can cause damage to human health. The aim of the study was to assess the contamination of chromium in the water and sediments of two rivers in the Steelpoort River sub-catchment of the Olifants River Basin, South Africa and human health risk. The concentration of Cr was analyzed using inductively coupled plasma–optical emission spectrometry (ICP-OES). The concentration of the metal was found to exceed the threshold limit, mainly in areas of high human activities. The hazard quotient through ingestion exposure did not exceed the threshold limit of 1 for adults and children and cancer risk for adults and children computed did not exceed the threshold limit of 10-4. Thus, there is no potential health risk from chromium through ingestion of drinking water for now. However, with increasing human activities, especially mining, the concentration could increase and become harmful to humans who depend on rivers for drinking water. It is recommended that proper management strategies should be taken to minimize the impact of chromium on the rivers and water from the rivers should properly be treated before domestic use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk" title=" health risk"> health risk</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20pollution" title=" metal pollution"> metal pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/168746/assessment-of-chromium-concentration-and-human-health-risk-in-the-steelpoort-river-sub-catchment-of-the-olifants-river-basin-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2899</span> The Main Steamline Break Transient Analysis for Advanced Boiling Water Reactor Using TRACE, PARCS, and SNAP Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Chang">H. C. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang"> J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Ho"> A. L. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Yang"> J. H. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Wang"> L. C. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20boiling%20water%20reactor" title="advanced boiling water reactor">advanced boiling water reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=TRACE" title=" TRACE"> TRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=PARCS" title=" PARCS"> PARCS</a>, <a href="https://publications.waset.org/abstracts/search?q=SNAP" title=" SNAP"> SNAP</a> </p> <a href="https://publications.waset.org/abstracts/100631/the-main-steamline-break-transient-analysis-for-advanced-boiling-water-reactor-using-trace-parcs-and-snap-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2898</span> Heavy Metals in PM2.5 Aerosols in Urban Sites of Győr, Hungary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zs.%20Csan%C3%A1di">Zs. Csanádi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Szab%C3%B3%20Nagy"> A. Szabó Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Szab%C3%B3"> J. Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Erd%C5%91s"> J. Erdős</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt"><span lang="EN-US">Atmospheric concentrations of some heavy metal compounds (Pb, Cd, Ni) and the metalloid As were identified and determined in airborne PM2.5 particles in urban sites of Győr, northwest area of Hungary. PM2.5 aerosol samples were collected in two different sampling sites and the trace metal(loid) (Pb, Ni, Cd and As) content were analyzed by atomic absorption spectroscopy. The concentration of PM2.5 fraction was varied between 12.22 and 36.92 μg/m<sup>3</sup> at the two sampling sites. The trend of heavy metal mean concentrations regarding the mean value of the two urban sites of Győr was found in decreasing order of Pb > Ni > Cd. The mean values were 7.59 ng/m<sup>3</sup> for Pb, 0.34 ng/m<sup>3</sup> for Ni and 0.11 ng/m<sup>3</sup> for Cd, respectively. The metalloid As could be detected only in 3.57% of the total collected samples. The levels of PM2.5 bounded heavy metals were determined and compared with other cities located in Hungary.<o:p></o:p></span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol" title="aerosol">aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title=" air quality"> air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a> </p> <a href="https://publications.waset.org/abstracts/67030/heavy-metals-in-pm25-aerosols-in-urban-sites-of-gyor-hungary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2897</span> Spatial Variation of Trace Elements in Suspended Sediments from Urban River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Macedo%20Neto">Daniel Macedo Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20Froehner"> Sandro Froehner</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Sanez"> Juan Sanez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Suspended sediments (SS) are an environmental constituent able to represent the effects of land use changes on watersheds. One important consideration of land use change is its implication on trace element loading. Water bodies have the capacity to retain trace elements. Spatial variation in trace elements concentrations can be associated with land occupation and sources of pollution. In this work, the spatial variation of trace elements in suspended sediments from an urban river was assessed. Time-integrated fluvial suspended sediment samples were installed in three different sites of Barigui River. The suspend solids were collected every 30 days, from May 2015 to August 2015 (total samples 12). Site P1 covers 44 km2 drainage area and has low land occupation, whilst P2 cover an area of 87 km2 and it is totally urban as P3, which area is higher than 130 km2. Trace elements (As, Cd, Cr, P, Pb and Zn) were analysed by ICP-ES. All elements analyzed showed a similar pattern, i.e., the concentration raise with the urbanization, exception for As (P1=7.75; P2=5.75; P3=5.60mg/kg). There was increase in concentration for Cd (P1=0.75; P2=0.78; P3=1.45mg/kg), Cr (P1=59.50; P2=101.75; P3=102.00 mg/kg), Zn (P1=142.25; P2=152.50; P3=223.00mg/kg), P (P1=937.50; P2=1,545.00; P3=2,355.00 mg/kg) and for Pb (P1=31.25; P2=32.75; P3=39.17±2.56 mg/kg). The variation in concentrations were as follow -27.74% (As), +93.33% (Cd), +71.43% (Cr), +151.20% (P), +25.33% (Pb) e +56.77% (Zn). Cd, Cr, P, Pb and Zn presented a clear trend of increasing the concentration from upstream to downstream. Such variation is more notorious for P, Cd and Cr, possibly due the urbanization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trace%20elements" title="trace elements">trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20sediments" title=" suspended sediments"> suspended sediments</a> </p> <a href="https://publications.waset.org/abstracts/50716/spatial-variation-of-trace-elements-in-suspended-sediments-from-urban-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2896</span> Trace Network: A Probabilistic Relevant Pattern Recognition Approach to Attribution Trace Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Xu">Jian Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaochun%20Yun"> Xiaochun Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongzheng%20Zhang"> Yongzheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yafei%20Sang"> Yafei Sang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Cheng"> Zhenyu Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Network attack prevention is a critical research area of information security. Network attack would be oppressed if attribution techniques are capable to trace back to the attackers after the hacking event. Therefore attributing these attacks to a particular identification becomes one of the important tasks when analysts attempt to differentiate and profile the attacker behind a piece of attack trace. To assist analysts in expose attackers behind the scenes, this paper researches on the connections between attribution traces and proposes probabilistic relevance based attribution patterns. This method facilitates the evaluation of the plausibility relevance between different traceable identifications. Furthermore, through analyzing the connections among traces, it could confirm the existence probability of a certain organization as well as discover its affinitive partners by the means of drawing relevance matrix from attribution traces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attribution%20trace" title="attribution trace">attribution trace</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20relevance" title=" probabilistic relevance"> probabilistic relevance</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20attack" title=" network attack"> network attack</a>, <a href="https://publications.waset.org/abstracts/search?q=attacker%20identification" title=" attacker identification"> attacker identification</a> </p> <a href="https://publications.waset.org/abstracts/61350/trace-network-a-probabilistic-relevant-pattern-recognition-approach-to-attribution-trace-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2895</span> The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang">J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20Lin"> H. T. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Tseng"> Y. S. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Y.%20Li"> W. Y. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Chen"> H. C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m × 7.87 m × 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TRACE" title="TRACE">TRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=FRAPTRAN" title=" FRAPTRAN"> FRAPTRAN</a>, <a href="https://publications.waset.org/abstracts/search?q=BWR" title=" BWR"> BWR</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20pool" title=" spent fuel pool"> spent fuel pool</a> </p> <a href="https://publications.waset.org/abstracts/49105/the-model-establishment-and-analysis-of-tracefraptran-for-chinshan-nuclear-power-plant-spent-fuel-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=97">97</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=98">98</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trace%20metal&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>