CINXE.COM

Spinor - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Spinor - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"843d8e8d-d18e-460b-84a1-a366d7918306","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Spinor","wgTitle":"Spinor","wgCurRevisionId":1272816164,"wgRevisionId":1272816164,"wgArticleId":29276,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","Articles with short description","Short description is different from Wikidata","Pages using multiple image with auto scaled images","Wikipedia articles needing clarification from July 2022","All articles with unsourced statements","Articles with unsourced statements from October 2023","Articles with unsourced statements from February 2024","Spinors","Rotation in three dimensions","Quantum mechanics","Quantum field theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Spinor","wgRelevantArticleId":29276,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q604907","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","ext.tmh.player.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.tmh.player","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.tmh.player.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/c/c1/Spinor_on_the_circle.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="773"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Spinor_on_the_circle.png/800px-Spinor_on_the_circle.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="516"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Spinor_on_the_circle.png/640px-Spinor_on_the_circle.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="413"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Spinor - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Spinor"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Spinor&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Spinor"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="auth.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Spinor rootpage-Spinor skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Spinor" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Spinor" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Spinor" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Spinor" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction</span> </div> </a> <ul id="toc-Introduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mathematical_definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Mathematical_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Mathematical definition</span> </div> </a> <button aria-controls="toc-Mathematical_definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Mathematical definition subsection</span> </button> <ul id="toc-Mathematical_definition-sublist" class="vector-toc-list"> <li id="toc-Overview" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Overview</span> </div> </a> <ul id="toc-Overview-sublist" class="vector-toc-list"> <li id="toc-Representation_theoretic_point_of_view" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Representation_theoretic_point_of_view"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>Representation theoretic point of view</span> </div> </a> <ul id="toc-Representation_theoretic_point_of_view-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometric_point_of_view" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Geometric_point_of_view"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.2</span> <span>Geometric point of view</span> </div> </a> <ul id="toc-Geometric_point_of_view-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Clifford_algebras" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Clifford_algebras"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Clifford algebras</span> </div> </a> <ul id="toc-Clifford_algebras-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spin_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spin_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Spin groups</span> </div> </a> <ul id="toc-Spin_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spinor_fields_in_physics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spinor_fields_in_physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Spinor fields in physics</span> </div> </a> <ul id="toc-Spinor_fields_in_physics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spinors_in_representation_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spinors_in_representation_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Spinors in representation theory</span> </div> </a> <ul id="toc-Spinors_in_representation_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Attempts_at_intuitive_understanding" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Attempts_at_intuitive_understanding"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Attempts at intuitive understanding</span> </div> </a> <ul id="toc-Attempts_at_intuitive_understanding-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Two_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Two_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Two dimensions</span> </div> </a> <ul id="toc-Two_dimensions-sublist" class="vector-toc-list"> <li id="toc-Examples_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Three_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Three_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Three dimensions</span> </div> </a> <ul id="toc-Three_dimensions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Explicit_constructions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Explicit_constructions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Explicit constructions</span> </div> </a> <button aria-controls="toc-Explicit_constructions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Explicit constructions subsection</span> </button> <ul id="toc-Explicit_constructions-sublist" class="vector-toc-list"> <li id="toc-Component_spinors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Component_spinors"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Component spinors</span> </div> </a> <ul id="toc-Component_spinors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Abstract_spinors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Abstract_spinors"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Abstract spinors</span> </div> </a> <ul id="toc-Abstract_spinors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Minimal_ideals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Minimal_ideals"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Minimal ideals</span> </div> </a> <ul id="toc-Minimal_ideals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exterior_algebra_construction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exterior_algebra_construction"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Exterior algebra construction</span> </div> </a> <ul id="toc-Exterior_algebra_construction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hermitian_vector_spaces_and_spinors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hermitian_vector_spaces_and_spinors"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Hermitian vector spaces and spinors</span> </div> </a> <ul id="toc-Hermitian_vector_spaces_and_spinors-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Clebsch–Gordan_decomposition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Clebsch–Gordan_decomposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Clebsch–Gordan decomposition</span> </div> </a> <button aria-controls="toc-Clebsch–Gordan_decomposition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Clebsch–Gordan decomposition subsection</span> </button> <ul id="toc-Clebsch–Gordan_decomposition-sublist" class="vector-toc-list"> <li id="toc-Even_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Even_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Even dimensions</span> </div> </a> <ul id="toc-Even_dimensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Odd_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Odd_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Odd dimensions</span> </div> </a> <ul id="toc-Odd_dimensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Consequences" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Consequences"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Consequences</span> </div> </a> <ul id="toc-Consequences-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Summary_in_low_dimensions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Summary_in_low_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Summary in low dimensions</span> </div> </a> <ul id="toc-Summary_in_low_dimensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Works_cited" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Works_cited"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Works cited</span> </div> </a> <ul id="toc-Works_cited-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Spinor</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 23 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-23" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">23 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AF%D9%88%D9%85_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="مدوم (رياضيات) – Arabic" lang="ar" hreflang="ar" data-title="مدوم (رياضيات)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A1%D0%BF%D1%96%D0%BD%D0%B0%D1%80" title="Спінар – Belarusian" lang="be" hreflang="be" data-title="Спінар" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Espinor" title="Espinor – Catalan" lang="ca" hreflang="ca" data-title="Espinor" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Spinor" title="Spinor – Czech" lang="cs" hreflang="cs" data-title="Spinor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Spinor" title="Spinor – German" lang="de" hreflang="de" data-title="Spinor" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CE%B9%CE%B1%CE%BD%CF%8D%CF%83%CE%BC%CE%B1%CF%84%CE%B1_%CE%BC%CE%B5_%CF%83%CF%84%CE%BF%CE%B9%CF%87%CE%B5%CE%AF%CE%B1_%CE%BC%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CE%BF%CF%8D%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CF%8D%CF%82" title="Διανύσματα με στοιχεία μιγαδικούς αριθμούς – Greek" lang="el" hreflang="el" data-title="Διανύσματα με στοιχεία μιγαδικούς αριθμούς" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espinor" title="Espinor – Spanish" lang="es" hreflang="es" data-title="Espinor" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Spinoro" title="Spinoro – Esperanto" lang="eo" hreflang="eo" data-title="Spinoro" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D8%B3%D9%BE%DB%8C%D9%86%D9%88%D8%B1" title="اسپینور – Persian" lang="fa" hreflang="fa" data-title="اسپینور" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Spineur" title="Spineur – French" lang="fr" hreflang="fr" data-title="Spineur" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%8A%A4%ED%94%BC%EB%84%88" title="스피너 – Korean" lang="ko" hreflang="ko" data-title="스피너" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Spinore" title="Spinore – Italian" lang="it" hreflang="it" data-title="Spinore" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D0%BD%D0%BE%D1%80" title="Спинор – Kazakh" lang="kk" hreflang="kk" data-title="Спинор" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Spinor" title="Spinor – Dutch" lang="nl" hreflang="nl" data-title="Spinor" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%94%E3%83%8E%E3%83%BC%E3%83%AB" title="スピノール – Japanese" lang="ja" hreflang="ja" data-title="スピノール" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Spinor" title="Spinor – Uzbek" lang="uz" hreflang="uz" data-title="Spinor" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A8%AA%E0%A8%BF%E0%A9%B1%E0%A8%A8%E0%A9%8C%E0%A8%B0" title="ਸਪਿੱਨੌਰ – Punjabi" lang="pa" hreflang="pa" data-title="ਸਪਿੱਨੌਰ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Spinor" title="Spinor – Polish" lang="pl" hreflang="pl" data-title="Spinor" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D0%BD%D0%BE%D1%80" title="Спинор – Russian" lang="ru" hreflang="ru" data-title="Спинор" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Spinor" title="Spinor – Slovenian" lang="sl" hreflang="sl" data-title="Spinor" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Spinori" title="Spinori – Finnish" lang="fi" hreflang="fi" data-title="Spinori" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D1%96%D0%BD%D0%BE%D1%80" title="Спінор – Ukrainian" lang="uk" hreflang="uk" data-title="Спінор" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%97%8B%E9%87%8F" title="旋量 – Chinese" lang="zh" hreflang="zh" data-title="旋量" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q604907#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spinor" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Spinor" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spinor"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spinor&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spinor&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Spinor"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spinor&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spinor&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Spinor" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Spinor" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Spinor&amp;oldid=1272816164" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Spinor&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Spinor&amp;id=1272816164&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpinor"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpinor"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Spinor&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Spinor&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Spinors" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q604907" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Non-tensorial representation of the spin group</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spinor_on_the_circle.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Spinor_on_the_circle.png/330px-Spinor_on_the_circle.png" decoding="async" width="330" height="213" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Spinor_on_the_circle.png/495px-Spinor_on_the_circle.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Spinor_on_the_circle.png/660px-Spinor_on_the_circle.png 2x" data-file-width="844" data-file-height="544" /></a><figcaption>A spinor visualized as a vector pointing along the <a href="/wiki/M%C3%B6bius_band" class="mw-redirect" title="Möbius band">Möbius band</a>, exhibiting a sign inversion when the circle (the "physical system") is continuously rotated through a full turn of 360°.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>In geometry and physics, <b>spinors</b> (pronounced "spinner" IPA <span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="&#39;s&#39; in &#39;sigh&#39;">s</span><span title="&#39;p&#39; in &#39;pie&#39;">p</span><span title="/ɪ/: &#39;i&#39; in &#39;kit&#39;">ɪ</span><span title="&#39;n&#39; in &#39;nigh&#39;">n</span><span title="/ər/: &#39;er&#39; in &#39;letter&#39;">ər</span></span>/</a></span></span>) are elements of a <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex</a> <a href="/wiki/Vector_space" title="Vector space">vector space</a> that can be associated with <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> A spinor transforms linearly when the Euclidean space is subjected to a slight (<a href="/wiki/Infinitesimal_transformation" title="Infinitesimal transformation">infinitesimal</a>) rotation,<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> but unlike <a href="/wiki/Euclidean_vector" title="Euclidean vector">geometric vectors</a> and <a href="/wiki/Tensor" title="Tensor">tensors</a>, a spinor transforms to its negative when the space rotates through 360° (see picture). It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors (although this is inaccurate and may be misleading; they are better viewed as "square roots" of <a href="/wiki/Section_(fiber_bundle)" title="Section (fiber bundle)">sections</a> of <a href="/wiki/Vector_bundle" title="Vector bundle">vector bundles</a> – in the case of the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a> bundle of the <a href="/wiki/Cotangent_bundle" title="Cotangent bundle">cotangent bundle</a>, they thus become "square roots" of <a href="/wiki/Differential_form" title="Differential form">differential forms</a>). </p><p>It is also possible to associate a substantially similar notion of spinor to <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a>, in which case the <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformations</a> of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a> play the role of rotations. Spinors were introduced in geometry by <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a> in 1913.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup> In the 1920s physicists discovered that spinors are essential to describe the <a href="/wiki/Intrinsic_angular_momentum" class="mw-redirect" title="Intrinsic angular momentum">intrinsic angular momentum</a>, or "spin", of the <a href="/wiki/Electron" title="Electron">electron</a> and other subatomic particles.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup> </p><p>Spinors are characterized by the specific way in which they behave under rotations. They change in different ways depending not just on the overall final rotation, but the details of how that rotation was achieved (by a continuous path in the <a href="/wiki/Rotation_group" class="mw-redirect" title="Rotation group">rotation group</a>). There are two topologically distinguishable classes (<a href="/wiki/Homotopy_class" class="mw-redirect" title="Homotopy class">homotopy classes</a>) of paths through rotations that result in the same overall rotation, as illustrated by the <a href="/wiki/Belt_trick" class="mw-redirect" title="Belt trick">belt trick</a> puzzle. These two inequivalent classes yield spinor transformations of opposite sign. The <a href="/wiki/Spin_group" title="Spin group">spin group</a> is the group of all rotations keeping track of the class.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>f<span class="cite-bracket">&#93;</span></a></sup> It doubly covers the rotation group, since each rotation can be obtained in two inequivalent ways as the endpoint of a path. The space of spinors by definition is equipped with a (complex) <a href="/wiki/Linear_representation" class="mw-redirect" title="Linear representation">linear representation</a> of the spin group, meaning that elements of the spin group <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">act</a> as linear transformations on the space of spinors, in a way that genuinely depends on the homotopy class.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>g<span class="cite-bracket">&#93;</span></a></sup> In mathematical terms, spinors are described by a double-valued <a href="/wiki/Projective_representation" title="Projective representation">projective representation</a> of the rotation group <a href="/wiki/SO(3)" class="mw-redirect" title="SO(3)">SO(3)</a>. </p><p>Although spinors can be defined purely as elements of a representation space of the spin group (or its <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> of infinitesimal rotations), they are typically defined as elements of a vector space that carries a linear representation of the <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a>. The Clifford algebra is an <a href="/wiki/Associative_algebra" title="Associative algebra">associative algebra</a> that can be constructed from Euclidean space and its inner product in a basis-independent way. Both the spin group and its Lie algebra are embedded inside the Clifford algebra in a natural way, and in applications the Clifford algebra is often the easiest to work with.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>h<span class="cite-bracket">&#93;</span></a></sup> A Clifford space operates on a spinor space, and the elements of a spinor space are spinors.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> After choosing an <a href="/wiki/Orthonormality" title="Orthonormality">orthonormal</a> basis of Euclidean space, a representation of the Clifford algebra is generated by <a href="/wiki/Gamma_matrices" title="Gamma matrices">gamma matrices</a>, matrices that satisfy a set of canonical anti-commutation relations. The spinors are the <a href="/wiki/Column_vectors" class="mw-redirect" title="Column vectors">column vectors</a> on which these matrices act. In three Euclidean dimensions, for instance, the <a href="/wiki/Pauli_spin_matrices" class="mw-redirect" title="Pauli spin matrices">Pauli spin matrices</a> are a set of gamma matrices,<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>i<span class="cite-bracket">&#93;</span></a></sup> and the two-component complex column vectors on which these matrices act are spinors. However, the particular matrix representation of the Clifford algebra, hence what precisely constitutes a "column vector" (or spinor), involves the choice of basis and gamma matrices in an essential way. As a representation of the spin group, this realization of spinors as (complex<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>j<span class="cite-bracket">&#93;</span></a></sup>) column vectors will either be <a href="/wiki/Irreducible_representation" title="Irreducible representation">irreducible</a> if the dimension is odd, or it will decompose into a pair of so-called "half-spin" or Weyl representations if the dimension is even.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>k<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction">Introduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=1" title="Edit section: Introduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1273380762/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:396px;max-width:396px"><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage" style="height:146px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Belt_trick_2.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Belt_trick_2.gif/200px-Belt_trick_2.gif" decoding="async" width="200" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Belt_trick_2.gif/300px-Belt_trick_2.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Belt_trick_2.gif/400px-Belt_trick_2.gif 2x" data-file-width="533" data-file-height="391" /></a></span></div></div><div class="tsingle" style="width:190px;max-width:190px"><div class="thumbimage" style="height:146px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Belt_trick_1.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Belt_trick_1.gif/188px-Belt_trick_1.gif" decoding="async" width="188" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Belt_trick_1.gif/282px-Belt_trick_1.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Belt_trick_1.gif/376px-Belt_trick_1.gif 2x" data-file-width="514" data-file-height="402" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">A gradual rotation can be visualized as a ribbon in space.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>l<span class="cite-bracket">&#93;</span></a></sup> Two gradual rotations with different classes, one through 360° and one through 720° are illustrated here in the <a href="/wiki/Belt_trick" class="mw-redirect" title="Belt trick">belt trick</a> puzzle. A solution of the puzzle is a continuous manipulation of the belt, fixing the endpoints, that untwists it. This is impossible with the 360° rotation, but possible with the 720° rotation. A solution, shown in the second animation, gives an explicit <a href="/wiki/Homotopy" title="Homotopy">homotopy</a> in the rotation group between the 720° rotation and the 0° identity rotation.</div></div></div></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><span><video id="mwe_player_0" poster="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Belt_Trick.ogv/220px--Belt_Trick.ogv.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="220" height="124" data-durationhint="60" data-mwtitle="Belt_Trick.ogv" data-mwprovider="wikimediacommons" resource="/wiki/File:Belt_Trick.ogv"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/a9/Belt_Trick.ogv/Belt_Trick.ogv.480p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="480p.vp9.webm" data-width="854" data-height="480" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/a9/Belt_Trick.ogv/Belt_Trick.ogv.720p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="720" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/a9/Belt_Trick.ogv/Belt_Trick.ogv.1080p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="1080p.vp9.webm" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/a/a9/Belt_Trick.ogv" type="video/ogg; codecs=&quot;theora&quot;" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/a9/Belt_Trick.ogv/Belt_Trick.ogv.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="256" data-height="144" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/a9/Belt_Trick.ogv/Belt_Trick.ogv.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="426" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/a9/Belt_Trick.ogv/Belt_Trick.ogv.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="640" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/a/a9/Belt_Trick.ogv/Belt_Trick.ogv.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="640" data-height="360" /></video></span><figcaption>An object attached to belts or strings can spin continuously without becoming tangled. Notice that after the cube completes a 360° rotation, the spiral is reversed from its initial configuration. The belts return to their original configuration after spinning a full 720°.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><span><video id="mwe_player_1" poster="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Antitwister.ogv/220px--Antitwister.ogv.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="220" height="124" data-durationhint="60" data-mwtitle="Antitwister.ogv" data-mwprovider="wikimediacommons" resource="/wiki/File:Antitwister.ogv"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/Antitwister.ogv/Antitwister.ogv.480p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="480p.vp9.webm" data-width="854" data-height="480" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/Antitwister.ogv/Antitwister.ogv.720p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="720" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/Antitwister.ogv/Antitwister.ogv.1080p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="1080p.vp9.webm" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/c/c4/Antitwister.ogv" type="video/ogg; codecs=&quot;theora&quot;" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/Antitwister.ogv/Antitwister.ogv.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="256" data-height="144" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/Antitwister.ogv/Antitwister.ogv.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="426" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/Antitwister.ogv/Antitwister.ogv.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="640" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/Antitwister.ogv/Antitwister.ogv.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="640" data-height="360" /></video></span><figcaption>A more extreme example demonstrating that this works with any number of strings. In the limit, a piece of solid continuous space can rotate in place like this without tearing or intersecting itself</figcaption></figure> <p>What characterizes spinors and distinguishes them from <a href="/wiki/Geometric_vector" class="mw-redirect" title="Geometric vector">geometric vectors</a> and other tensors is subtle. Consider applying a rotation to the coordinates of a system. No object in the system itself has moved, only the coordinates have, so there will always be a compensating change in those coordinate values when applied to any object of the system. Geometrical vectors, for example, have components that will undergo <i>the same</i> rotation as the coordinates. More broadly, any <a href="/wiki/Tensor" title="Tensor">tensor</a> associated with the system (for instance, the <a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">stress</a> of some medium) also has coordinate descriptions that adjust to compensate for changes to the coordinate system itself. </p><p>Spinors do not appear at this level of the description of a physical system, when one is concerned only with the properties of a single isolated rotation of the coordinates. Rather, spinors appear when we imagine that instead of a single rotation, the coordinate system is gradually (<a href="/wiki/Continuous_function" title="Continuous function">continuously</a>) rotated between some initial and final configuration. For any of the familiar and intuitive ("tensorial") quantities associated with the system, the transformation law does not depend on the precise details of how the coordinates arrived at their final configuration. Spinors, on the other hand, are constructed in such a way that makes them <i>sensitive</i> to how the gradual rotation of the coordinates arrived there: They exhibit path-dependence. It turns out that, for any final configuration of the coordinates, there are actually two ("<a href="/wiki/Topology" title="Topology">topologically</a>") inequivalent <i>gradual</i> (continuous) rotations of the coordinate system that result in this same configuration. This ambiguity is called the <a href="/wiki/Homotopy_class" class="mw-redirect" title="Homotopy class">homotopy class</a> of the gradual rotation. The <a href="/wiki/Belt_trick" class="mw-redirect" title="Belt trick">belt trick</a> (shown, in which both ends of the rotated object are physically tethered to an external reference) demonstrates two different rotations, one through an angle of 2<span class="texhtml">π</span> and the other through an angle of 4<span class="texhtml">π</span>, having the same final configurations but different classes. Spinors actually exhibit a sign-reversal that genuinely depends on this homotopy class. This distinguishes them from vectors and other tensors, none of which can feel the class. </p><p>Spinors can be exhibited as concrete objects using a choice of <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a>. In three Euclidean dimensions, for instance, spinors can be constructed by making a choice of <a href="/wiki/Pauli_spin_matrices" class="mw-redirect" title="Pauli spin matrices">Pauli spin matrices</a> corresponding to (<a href="/wiki/Angular_momentum_operator" title="Angular momentum operator">angular momenta</a> about) the three coordinate axes. These are 2×2 matrices with <a href="/wiki/Complex_number" title="Complex number">complex</a> entries, and the two-component complex <a href="/wiki/Column_vector" class="mw-redirect" title="Column vector">column vectors</a> on which these matrices act by <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a> are the spinors. In this case, the spin group is isomorphic to the group of 2×2 <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary matrices</a> with <a href="/wiki/Determinant" title="Determinant">determinant</a> one, which naturally sits inside the matrix algebra. This group acts by conjugation on the real vector space spanned by the Pauli matrices themselves,<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>m<span class="cite-bracket">&#93;</span></a></sup> realizing it as a group of rotations among them,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>n<span class="cite-bracket">&#93;</span></a></sup> but it also acts on the column vectors (that is, the spinors). </p><p>More generally, a Clifford algebra can be constructed from any vector space <i>V</i> equipped with a (nondegenerate) <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic form</a>, such as <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> with its standard dot product or <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a> with its standard Lorentz metric. The <a href="/wiki/Spin_group" title="Spin group">space of spinors</a> is the space of column vectors with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\lfloor \dim V/2\rfloor }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x230a;<!-- ⌊ --></mo> <mi>dim</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo fence="false" stretchy="false">&#x230b;<!-- ⌋ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\lfloor \dim V/2\rfloor }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d634497e612359dce87a5d6afcfb052592d556d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.89ex; height:2.843ex;" alt="{\displaystyle 2^{\lfloor \dim V/2\rfloor }}" /></span> components. The orthogonal Lie algebra (i.e., the infinitesimal "rotations") and the spin group associated to the quadratic form are both (canonically) contained in the Clifford algebra, so every Clifford algebra representation also defines a representation of the Lie algebra and the spin group.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>o<span class="cite-bracket">&#93;</span></a></sup> Depending on the dimension and <a href="/wiki/Metric_signature" title="Metric signature">metric signature</a>, this realization of spinors as column vectors may be <a href="/wiki/Irreducible_representation" title="Irreducible representation">irreducible</a> or it may decompose into a pair of so-called "half-spin" or Weyl representations.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>p<span class="cite-bracket">&#93;</span></a></sup> When the vector space <i>V</i> is four-dimensional, the algebra is described by the <a href="/wiki/Gamma_matrices" title="Gamma matrices">gamma matrices</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Mathematical_definition">Mathematical definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=2" title="Edit section: Mathematical definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For a more elementary definition, see also: <a href="/wiki/Spinors_in_three_dimensions" title="Spinors in three dimensions">spinors in three dimensions</a></div> <p>The space of spinors is formally defined as the <a href="/wiki/Fundamental_representation" title="Fundamental representation">fundamental representation</a> of the <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a>. (This may or may not decompose into irreducible representations.) The space of spinors may also be defined as a <a href="/wiki/Spin_representation" title="Spin representation">spin representation</a> of the <a href="/wiki/Orthogonal_Lie_algebra" class="mw-redirect" title="Orthogonal Lie algebra">orthogonal Lie algebra</a>. These spin representations are also characterized as the finite-dimensional projective representations of the special orthogonal group that do not factor through linear representations. Equivalently, a spinor is an element of a finite-dimensional <a href="/wiki/Group_representation" title="Group representation">group representation</a> of the <a href="/wiki/Spin_group" title="Spin group">spin group</a> on which the <a href="/wiki/Center_of_a_group" class="mw-redirect" title="Center of a group">center</a> acts non-trivially. </p> <div class="mw-heading mw-heading3"><h3 id="Overview">Overview</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=3" title="Edit section: Overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are essentially two frameworks for viewing the notion of a spinor: the <i>representation theoretic point of view</i> and the <i>geometric point of view</i>. </p> <div class="mw-heading mw-heading4"><h4 id="Representation_theoretic_point_of_view">Representation theoretic point of view</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=4" title="Edit section: Representation theoretic point of view"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>From a <a href="/wiki/Representation_theory" title="Representation theory">representation theoretic</a> point of view, one knows beforehand that there are some representations of the <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> of the <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a> that cannot be formed by the usual tensor constructions. These missing representations are then labeled the <b><a href="/wiki/Spin_representation" title="Spin representation">spin representations</a></b>, and their constituents <i>spinors</i>. From this view, a spinor must belong to a <a href="/wiki/Group_representation" title="Group representation">representation</a> of the <a href="/wiki/Covering_space" title="Covering space">double cover</a> of the <a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">rotation group</a> <span class="texhtml">SO(<i>n</i>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>)</span>, or more generally of a double cover of the <a href="/wiki/Generalized_special_orthogonal_group" class="mw-redirect" title="Generalized special orthogonal group">generalized special orthogonal group</a> <span class="texhtml">SO<sup>+</sup>(<i>p</i>, <i>q</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>)</span> on spaces with a <a href="/wiki/Metric_signature" title="Metric signature">metric signature</a> of <span class="texhtml">(<i>p</i>, <i>q</i>)</span>. These double covers are <a href="/wiki/Lie_groups" class="mw-redirect" title="Lie groups">Lie groups</a>, called the <a href="/wiki/Spin_group" title="Spin group">spin groups</a> <span class="texhtml">Spin(<i>n</i>)</span> or <span class="texhtml">Spin(<i>p</i>, <i>q</i>)</span>. All the properties of spinors, and their applications and derived objects, are manifested first in the spin group. Representations of the double covers of these groups yield double-valued <a href="/wiki/Projective_representation" title="Projective representation">projective representations</a> of the groups themselves. (This means that the action of a particular rotation on vectors in the quantum Hilbert space is only defined up to a sign.) </p><p>In summary, given a representation specified by the data <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (V,{\text{Spin}}(p,q),\rho )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Spin</mtext> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x3c1;<!-- ρ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (V,{\text{Spin}}(p,q),\rho )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fef5252f27eb56775a4fc44f962d43c519a46555" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.473ex; height:2.843ex;" alt="{\displaystyle (V,{\text{Spin}}(p,q),\rho )}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}" /></span> is a vector space over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6419d3aa99701ca996737b17a5e1174d53e6c9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.842ex; height:2.176ex;" alt="{\displaystyle K=\mathbb {R} }" /></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }" /></span> is a homomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho :{\text{Spin}}(p,q)\rightarrow {\text{GL}}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c1;<!-- ρ --></mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Spin</mtext> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>GL</mtext> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho :{\text{Spin}}(p,q)\rightarrow {\text{GL}}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7fd02e4046a42a4f4c04148716c17968ba4ac25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.234ex; height:2.843ex;" alt="{\displaystyle \rho :{\text{Spin}}(p,q)\rightarrow {\text{GL}}(V)}" /></span>, a <b>spinor</b> is an element of the vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}" /></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Geometric_point_of_view">Geometric point of view</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=5" title="Edit section: Geometric point of view"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>From a geometrical point of view, one can explicitly construct the spinors and then examine how they behave under the action of the relevant Lie groups. This latter approach has the advantage of providing a concrete and elementary description of what a spinor is. However, such a description becomes unwieldy when complicated properties of the spinors, such as <a href="/wiki/Fierz_identity" title="Fierz identity">Fierz identities</a>, are needed. </p> <div class="mw-heading mw-heading3"><h3 id="Clifford_algebras">Clifford algebras</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=6" title="Edit section: Clifford algebras"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a></div> <p>The language of <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebras</a><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> (sometimes called <a href="/wiki/Geometric_algebra" title="Geometric algebra">geometric algebras</a>) provides a complete picture of the spin representations of all the spin groups, and the various relationships between those representations, via the <a href="/wiki/Classification_of_Clifford_algebras" title="Classification of Clifford algebras">classification of Clifford algebras</a>. It largely removes the need for <i>ad hoc</i> constructions. </p><p>In detail, let <i>V</i> be a finite-dimensional complex vector space with nondegenerate symmetric bilinear form <i>g</i>. The Clifford algebra <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)</span> is the algebra generated by <i>V</i> along with the anticommutation relation <span class="texhtml"><i>xy</i> + <i>yx</i> = 2<i>g</i>(<i>x</i>, <i>y</i>)</span>. It is an abstract version of the algebra generated by the <a href="/wiki/Gamma_matrices" title="Gamma matrices">gamma</a> or <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a>. If <i>V</i> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53b4e76242764d1bca004168353c380fef25258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {C} ^{n}}" /></span>, with the standard form <span class="texhtml"><i>g</i>(<i>x</i>, <i>y</i>) = <i>x</i><sup>T</sup><i>y</i> = <i>x</i><sub>1</sub><i>y</i><sub>1</sub> + ... + <i>x</i><sub><i>n</i></sub><i>y</i><sub><i>n</i></sub></span> we denote the Clifford algebra by Cℓ<sub><i>n</i></sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>). Since by the choice of an orthonormal basis every complex vector space with non-degenerate form is isomorphic to this standard example, this notation is abused more generally if <span class="texhtml">dim<sub><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span></sub>(<i>V</i>) = <i>n</i></span>. If <span class="texhtml"><i>n</i> = 2<i>k</i></span> is even, <span class="texhtml">Cℓ<sub><i>n</i></sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>)</span> is isomorphic as an algebra (in a non-unique way) to the algebra <span class="texhtml">Mat(2<sup><i>k</i></sup>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>)</span> of <span class="texhtml">2<sup><i>k</i></sup> × 2<sup><i>k</i></sup></span> complex matrices (by the <a href="/wiki/Artin%E2%80%93Wedderburn_theorem" class="mw-redirect" title="Artin–Wedderburn theorem">Artin–Wedderburn theorem</a> and the easy to prove fact that the Clifford algebra is <a href="/wiki/Central_simple_algebra" title="Central simple algebra">central simple</a>). If <span class="texhtml"><i>n</i> = 2<i>k</i> + 1</span> is odd, <span class="texhtml">Cℓ<sub>2<i>k</i>+1</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>)</span> is isomorphic to the algebra <span class="texhtml">Mat(2<sup><i>k</i></sup>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>) ⊕ Mat(2<sup><i>k</i></sup>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>)</span> of two copies of the <span class="texhtml">2<sup><i>k</i></sup> × 2<sup><i>k</i></sup></span> complex matrices. Therefore, in either case <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)</span> has a unique (up to isomorphism) irreducible representation (also called simple <a href="/wiki/Clifford_module" title="Clifford module">Clifford module</a>), commonly denoted by Δ, of dimension 2<sup>[<i>n</i>/2]</sup>. Since the Lie algebra <span class="texhtml"><b>so</b>(<i>V</i>, <i>g</i>)</span> is embedded as a Lie subalgebra in <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)</span> equipped with the Clifford algebra <a href="/wiki/Commutator" title="Commutator">commutator</a> as Lie bracket, the space Δ is also a Lie algebra representation of <span class="texhtml"><b>so</b>(<i>V</i>, <i>g</i>)</span> called a <a href="/wiki/Spin_representation" title="Spin representation">spin representation</a>. If <i>n</i> is odd, this Lie algebra representation is irreducible. If <i>n</i> is even, it splits further<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (July 2022)">clarification needed</span></a></i>&#93;</sup> into two irreducible representations <span class="texhtml">Δ = Δ<sub>+</sub> ⊕ Δ<sub>−</sub></span> called the Weyl or <i>half-spin representations</i>. </p><p>Irreducible representations over the reals in the case when <i>V</i> is a real vector space are much more intricate, and the reader is referred to the <a href="/wiki/Clifford_algebra#Spinors" title="Clifford algebra">Clifford algebra</a> article for more details. </p> <div class="mw-heading mw-heading3"><h3 id="Spin_groups">Spin groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=7" title="Edit section: Spin groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spin_representations_do_not_lift.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Spin_representations_do_not_lift.svg/220px-Spin_representations_do_not_lift.svg.png" decoding="async" width="220" height="213" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Spin_representations_do_not_lift.svg/330px-Spin_representations_do_not_lift.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Spin_representations_do_not_lift.svg/440px-Spin_representations_do_not_lift.svg.png 2x" data-file-width="118" data-file-height="114" /></a><figcaption>The spin representation Δ is a vector space equipped with a representation of the spin group that does not factor through a representation of the (special) orthogonal group. The vertical arrows depict a <a href="/wiki/Short_exact_sequence" class="mw-redirect" title="Short exact sequence">short exact sequence</a>.</figcaption></figure> <p>Spinors form a <a href="/wiki/Vector_space" title="Vector space">vector space</a>, usually over the <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a>, equipped with a linear <a href="/wiki/Group_representation" title="Group representation">group representation</a> of the <a href="/wiki/Spin_group" title="Spin group">spin group</a> that does not factor through a representation of the group of rotations (see diagram). The spin group is the <a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">group of rotations</a> keeping track of the homotopy class. Spinors are needed to encode basic information about the topology of the group of rotations because that group is not <a href="/wiki/Simply_connected" class="mw-redirect" title="Simply connected">simply connected</a>, but the simply connected spin group is its <a href="/wiki/Double_covering_group" class="mw-redirect" title="Double covering group">double cover</a>. So for every rotation there are two elements of the spin group that represent it. <a href="/wiki/Geometric_vector" class="mw-redirect" title="Geometric vector">Geometric vectors</a> and other <a href="/wiki/Tensor" title="Tensor">tensors</a> cannot feel the difference between these two elements, but they produce <i>opposite</i> signs when they affect any spinor under the representation. Thinking of the elements of the spin group as <a href="/wiki/Homotopy_classes" class="mw-redirect" title="Homotopy classes">homotopy classes</a> of one-parameter families of rotations, each rotation is represented by two distinct homotopy classes of paths to the identity. If a one-parameter family of rotations is visualized as a ribbon in space, with the arc length parameter of that ribbon being the parameter (its tangent, normal, binormal frame actually gives the rotation), then these two distinct homotopy classes are visualized in the two states of the <a href="/wiki/Belt_trick" class="mw-redirect" title="Belt trick">belt trick</a> puzzle (above). The space of spinors is an auxiliary vector space that can be constructed explicitly in coordinates, but ultimately only exists up to isomorphism in that there is no "natural" construction of them that does not rely on arbitrary choices such as coordinate systems. A notion of spinors can be associated, as such an auxiliary mathematical object, with any vector space equipped with a <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic form</a> such as <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> with its standard <a href="/wiki/Dot_product" title="Dot product">dot product</a>, or <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a> with its <a href="/wiki/Lorentz_metric" class="mw-redirect" title="Lorentz metric">Lorentz metric</a>. In the latter case, the "rotations" include the <a href="/wiki/Lorentz_boost" class="mw-redirect" title="Lorentz boost">Lorentz boosts</a>, but otherwise the theory is substantially similar.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2023)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Spinor_fields_in_physics">Spinor fields in physics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=8" title="Edit section: Spinor fields in physics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The constructions given above, in terms of Clifford algebra or representation theory, can be thought of as defining spinors as geometric objects in zero-dimensional <a href="/wiki/Space-time" class="mw-redirect" title="Space-time">space-time</a>. To obtain the spinors of physics, such as the <a href="/wiki/Dirac_spinor" title="Dirac spinor">Dirac spinor</a>, one extends the construction to obtain a <a href="/wiki/Spin_structure" title="Spin structure">spin structure</a> on 4-dimensional space-time (<a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a>). Effectively, one starts with the <a href="/wiki/Tangent_manifold" class="mw-redirect" title="Tangent manifold">tangent manifold</a> of space-time, each point of which is a 4-dimensional vector space with SO(3,1) symmetry, and then builds the <a href="/wiki/Spin_group" title="Spin group">spin group</a> at each point. The neighborhoods of points are endowed with concepts of smoothness and differentiability: the standard construction is one of a <a href="/wiki/Fiber_bundle" title="Fiber bundle">fiber bundle</a>, the fibers of which are affine spaces transforming under the spin group. After constructing the fiber bundle, one may then consider differential equations, such as the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a>, or the <a href="/wiki/Weyl_equation" title="Weyl equation">Weyl equation</a> on the fiber bundle. These equations (Dirac or Weyl) have solutions that are <a href="/wiki/Plane_wave" title="Plane wave">plane waves</a>, having symmetries characteristic of the fibers, <i>i.e.</i> having the symmetries of spinors, as obtained from the (zero-dimensional) Clifford algebra/spin representation theory described above. Such plane-wave solutions (or other solutions) of the differential equations can then properly be called <a href="/wiki/Fermion" title="Fermion">fermions</a>; fermions have the algebraic qualities of spinors. By general convention, the terms "fermion" and "spinor" are often used interchangeably in physics, as synonyms of one-another.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2024)">citation needed</span></a></i>&#93;</sup> </p><p>It appears that all <a href="/wiki/Fundamental_particle" class="mw-redirect" title="Fundamental particle">fundamental particles</a> in nature that are spin-1/2 are described by the Dirac equation, with the possible exception of the <a href="/wiki/Neutrino" title="Neutrino">neutrino</a>. There does not seem to be any <i>a priori</i> reason why this would be the case. A perfectly valid choice for spinors would be the non-complexified version of <span class="texhtml">Cℓ<sub>2,2</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>)</span>, the <a href="/wiki/Majorana_spinor" class="mw-redirect" title="Majorana spinor">Majorana spinor</a>.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> There also does not seem to be any particular prohibition to having <a href="/wiki/Weyl_spinor" class="mw-redirect" title="Weyl spinor">Weyl spinors</a> appear in nature as fundamental particles. </p><p>The Dirac, Weyl, and Majorana spinors are interrelated, and their relation can be elucidated on the basis of real geometric algebra.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Dirac and Weyl spinors are complex representations while Majorana spinors are real representations. </p><p>Weyl spinors are insufficient to describe massive particles, such as <a href="/wiki/Electron" title="Electron">electrons</a>, since the Weyl plane-wave solutions necessarily travel at the speed of light; for massive particles, the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a> is needed. The initial construction of the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a> of particle physics starts with both the electron and the neutrino as massless Weyl spinors; the <a href="/wiki/Higgs_mechanism" title="Higgs mechanism">Higgs mechanism</a> gives electrons a mass; the classical <a href="/wiki/Neutrino" title="Neutrino">neutrino</a> remained massless, and was thus an example of a Weyl spinor.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>q<span class="cite-bracket">&#93;</span></a></sup> However, because of observed <a href="/wiki/Neutrino_oscillation" title="Neutrino oscillation">neutrino oscillation</a>, it is now believed that they are not Weyl spinors, but perhaps instead Majorana spinors.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> It is not known whether Weyl spinor fundamental particles exist in nature. </p><p>The situation for <a href="/wiki/Condensed_matter_physics" title="Condensed matter physics">condensed matter physics</a> is different: one can construct two and three-dimensional "spacetimes" in a large variety of different physical materials, ranging from <a href="/wiki/Semiconductor" title="Semiconductor">semiconductors</a> to far more exotic materials. In 2015, an international team led by <a href="/wiki/Princeton_University" title="Princeton University">Princeton University</a> scientists announced that they had found a <a href="/wiki/Quasiparticle" title="Quasiparticle">quasiparticle</a> that behaves as a Weyl fermion.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Spinors_in_representation_theory">Spinors in representation theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=9" title="Edit section: Spinors in representation theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Spin_representation" title="Spin representation">Spin representation</a></div> <p>One major mathematical application of the construction of spinors is to make possible the explicit construction of <a href="/wiki/Linear_representation" class="mw-redirect" title="Linear representation">linear representations</a> of the <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebras</a> of the <a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">special orthogonal groups</a>, and consequently spinor representations of the groups themselves. At a more profound level, spinors have been found to be at the heart of approaches to the <a href="/wiki/Atiyah%E2%80%93Singer_index_theorem" title="Atiyah–Singer index theorem">Atiyah–Singer index theorem</a>, and to provide constructions in particular for <a href="/wiki/Discrete_series" class="mw-redirect" title="Discrete series">discrete series</a> representations of <a href="/wiki/Semisimple_group" class="mw-redirect" title="Semisimple group">semisimple groups</a>. </p><p>The spin representations of the special orthogonal Lie algebras are distinguished from the <a href="/wiki/Tensor" title="Tensor">tensor</a> representations given by <a href="/wiki/Young_symmetrizer" title="Young symmetrizer">Weyl's construction</a> by the <a href="/wiki/Weight_(representation_theory)" title="Weight (representation theory)">weights</a>. Whereas the weights of the tensor representations are integer linear combinations of the roots of the Lie algebra, those of the spin representations are half-integer linear combinations thereof. Explicit details can be found in the <a href="/wiki/Spin_representation" title="Spin representation">spin representation</a> article. </p> <div class="mw-heading mw-heading3"><h3 id="Attempts_at_intuitive_understanding">Attempts at intuitive understanding</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=10" title="Edit section: Attempts at intuitive understanding"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The spinor can be described, in simple terms, as "vectors of a space the transformations of which are related in a particular way to rotations in physical space".<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Stated differently: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>Spinors ... provide a linear representation of the group of <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotations</a> in a space with any number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}" /></span> of dimensions, each spinor having <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0fa1eebc5674c68166a18a335b39288ed2eb325" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.266ex; height:2.343ex;" alt="{\displaystyle 2^{\nu }}" /></span> components where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2\nu +1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mi>&#x3bd;<!-- ν --></mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2\nu +1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02fb584fa8bec4ac60d3eeb0b3ae8496199e1c00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.891ex; height:2.343ex;" alt="{\displaystyle n=2\nu +1}" /></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x3bd;<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2654d0632cb4b4cd30cfddb80a75ba7d743216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.395ex; height:2.176ex;" alt="{\displaystyle 2\nu }" /></span>.<sup id="cite_ref-cartan-1966-quote_5-1" class="reference"><a href="#cite_note-cartan-1966-quote-5"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>Several ways of illustrating everyday analogies have been formulated in terms of the <a href="/wiki/Plate_trick" title="Plate trick">plate trick</a>, <a href="/wiki/Tangloids" title="Tangloids">tangloids</a> and other examples of <a href="/wiki/Orientation_entanglement" title="Orientation entanglement">orientation entanglement</a>. </p><p>Nonetheless, the concept is generally considered notoriously difficult to understand, as illustrated by <a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Michael Atiyah</a>'s statement that is recounted by Dirac's biographer Graham Farmelo: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712" /><blockquote class="templatequote"><p>No one fully understands spinors. Their algebra is formally understood but their general significance is mysterious. In some sense they describe the "square root" of geometry and, just as understanding the <a href="/wiki/Square_root_of_%E2%88%921" class="mw-redirect" title="Square root of −1">square root of −1</a> took centuries, the same might be true of spinors.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=11" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The most general mathematical form of spinors was discovered by <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a> in 1913.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> The word "spinor" was coined by <a href="/wiki/Paul_Ehrenfest" title="Paul Ehrenfest">Paul Ehrenfest</a> in his work on <a href="/wiki/Quantum_physics" class="mw-redirect" title="Quantum physics">quantum physics</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>Spinors were first applied to <a href="/wiki/Mathematical_physics" title="Mathematical physics">mathematical physics</a> by <a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Wolfgang Pauli</a> in 1927, when he introduced his <a href="/wiki/Pauli_matrices" title="Pauli matrices">spin matrices</a>.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> The following year, <a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a> discovered the fully <a href="/wiki/Special_relativity" title="Special relativity">relativistic</a> theory of <a href="/wiki/Electron" title="Electron">electron</a> <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> by showing the connection between spinors and the <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a>.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> By the 1930s, Dirac, <a href="/wiki/Piet_Hein_(Denmark)" class="mw-redirect" title="Piet Hein (Denmark)">Piet Hein</a> and others at the <a href="/wiki/Niels_Bohr_Institute" title="Niels Bohr Institute">Niels Bohr Institute</a> (then known as the Institute for Theoretical Physics of the University of Copenhagen) created toys such as <a href="/wiki/Tangloids" title="Tangloids">Tangloids</a> to teach and model the calculus of spinors. </p><p>Spinor spaces were represented as <a href="/wiki/Left_ideal" class="mw-redirect" title="Left ideal">left ideals</a> of a matrix algebra in 1930, by <a href="/w/index.php?title=Gustave_Juvett&amp;action=edit&amp;redlink=1" class="new" title="Gustave Juvett (page does not exist)">Gustave Juvett</a><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> and by <a href="/wiki/Fritz_Sauter" title="Fritz Sauter">Fritz Sauter</a>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-lounesto-1995-p151_35-0" class="reference"><a href="#cite_note-lounesto-1995-p151-35"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> More specifically, instead of representing spinors as complex-valued 2D column vectors as Pauli had done, they represented them as complex-valued 2 × 2 matrices in which only the elements of the left column are non-zero. In this manner the spinor space became a <a href="/wiki/Minimal_ideal" title="Minimal ideal">minimal left ideal</a> in <span class="texhtml">Mat(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>)</span>.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>r<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-lounesto-2001-p148f-p327f_38-0" class="reference"><a href="#cite_note-lounesto-2001-p148f-p327f-38"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1947 <a href="/wiki/Marcel_Riesz" title="Marcel Riesz">Marcel Riesz</a> constructed spinor spaces as elements of a minimal left ideal of <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebras</a>. In 1966/1967, <a href="/wiki/David_Hestenes" title="David Hestenes">David Hestenes</a><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> replaced spinor spaces by the <a href="/wiki/Even_subalgebra" class="mw-redirect" title="Even subalgebra">even subalgebra</a> Cℓ<sup>0</sup><sub>1,3</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>) of the <a href="/wiki/Spacetime_algebra" title="Spacetime algebra">spacetime algebra</a> Cℓ<sub>1,3</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>).<sup id="cite_ref-lounesto-1995-p151_35-1" class="reference"><a href="#cite_note-lounesto-1995-p151-35"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-lounesto-2001-p148f-p327f_38-1" class="reference"><a href="#cite_note-lounesto-2001-p148f-p327f-38"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> As of the 1980s, the theoretical physics group at <a href="/wiki/Birkbeck_College" class="mw-redirect" title="Birkbeck College">Birkbeck College</a> around <a href="/wiki/David_Bohm" title="David Bohm">David Bohm</a> and <a href="/wiki/Basil_Hiley" title="Basil Hiley">Basil Hiley</a> has been developing <a href="/wiki/Basil_Hiley#Implicate_orders,_pre-space_and_algebraic_structures" title="Basil Hiley">algebraic approaches to quantum theory</a> that build on Sauter and Riesz' identification of spinors with minimal left ideals. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=12" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some simple examples of spinors in low dimensions arise from considering the even-graded subalgebras of the Clifford algebra <span class="texhtml">Cℓ<sub><i>p</i>, <i>q</i></sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>)</span>. This is an algebra built up from an orthonormal basis of <span class="texhtml"><i>n</i> = <i>p</i> + <i>q</i></span> mutually orthogonal vectors under addition and multiplication, <i>p</i> of which have norm +1 and <i>q</i> of which have norm −1, with the product rule for the basis vectors <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{i}e_{j}={\begin{cases}+1&amp;i=j,\,i\in (1,\ldots ,p)\\-1&amp;i=j,\,i\in (p+1,\ldots ,n)\\-e_{j}e_{i}&amp;i\neq j.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo>+</mo> <mn>1</mn> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>j</mi> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>j</mi> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mtd> <mtd> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{i}e_{j}={\begin{cases}+1&amp;i=j,\,i\in (1,\ldots ,p)\\-1&amp;i=j,\,i\in (p+1,\ldots ,n)\\-e_{j}e_{i}&amp;i\neq j.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7bb0526bf1c69aae1ca3133e4e894e4dc46e2fd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:41.277ex; height:8.843ex;" alt="{\displaystyle e_{i}e_{j}={\begin{cases}+1&amp;i=j,\,i\in (1,\ldots ,p)\\-1&amp;i=j,\,i\in (p+1,\ldots ,n)\\-e_{j}e_{i}&amp;i\neq j.\end{cases}}}" /></span> </p> <div class="mw-heading mw-heading3"><h3 id="Two_dimensions">Two dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=13" title="Edit section: Two dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Clifford algebra Cℓ<sub>2,0</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>) is built up from a basis of one unit scalar, 1, two orthogonal unit vectors, <i>σ</i><sub>1</sub> and <i>σ</i><sub>2</sub>, and one unit <a href="/wiki/Pseudoscalar" title="Pseudoscalar">pseudoscalar</a> <span class="texhtml"><i>i</i> = <i>σ</i><sub>1</sub><i>σ</i><sub>2</sub></span>. From the definitions above, it is evident that <span class="texhtml">(<i>σ</i><sub>1</sub>)<sup>2</sup> = (<i>σ</i><sub>2</sub>)<sup>2</sup> = 1</span>, and <span class="texhtml">(<i>σ</i><sub>1</sub><i>σ</i><sub>2</sub>)(<i>σ</i><sub>1</sub><i>σ</i><sub>2</sub>) = −<i>σ</i><sub>1</sub><i>σ</i><sub>1</sub><i>σ</i><sub>2</sub><i>σ</i><sub>2</sub> = −1</span>. </p><p>The even subalgebra Cℓ<sup>0</sup><sub>2,0</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>), spanned by <i>even-graded</i> basis elements of Cℓ<sub>2,0</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>), determines the space of spinors via its representations. It is made up of real linear combinations of 1 and <i>σ</i><sub>1</sub><i>σ</i><sub>2</sub>. As a real algebra, Cℓ<sup>0</sup><sub>2,0</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>) is isomorphic to the field of <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a> <span class="texhtml"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span></span>. As a result, it admits a conjugation operation (analogous to <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugation</a>), sometimes called the <i>reverse</i> of a Clifford element, defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b\sigma _{1}\sigma _{2})^{*}=a+b\sigma _{2}\sigma _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b\sigma _{1}\sigma _{2})^{*}=a+b\sigma _{2}\sigma _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b478020c54d9d0ffe746b56175967bf3058a35a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.624ex; height:2.843ex;" alt="{\displaystyle (a+b\sigma _{1}\sigma _{2})^{*}=a+b\sigma _{2}\sigma _{1}}" /></span> which, by the Clifford relations, can be written <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b\sigma _{1}\sigma _{2})^{*}=a+b\sigma _{2}\sigma _{1}=a-b\sigma _{1}\sigma _{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b\sigma _{1}\sigma _{2})^{*}=a+b\sigma _{2}\sigma _{1}=a-b\sigma _{1}\sigma _{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e47f5af5b9cd3885d9982b68c049b3f3631911f7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.2ex; height:2.843ex;" alt="{\displaystyle (a+b\sigma _{1}\sigma _{2})^{*}=a+b\sigma _{2}\sigma _{1}=a-b\sigma _{1}\sigma _{2}.}" /></span> </p><p>The action of an even Clifford element <span class="texhtml"><i>γ</i> ∈ Cℓ<sup>0</sup><sub>2,0</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>)</span> on vectors, regarded as 1-graded elements of Cℓ<sub>2,0</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>), is determined by mapping a general vector <span class="texhtml"><i>u</i> = <i>a</i><sub>1</sub><i>σ</i><sub>1</sub> + <i>a</i><sub>2</sub><i>σ</i><sub>2</sub></span> to the vector <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (u)=\gamma u\gamma ^{*},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x3b3;<!-- γ --></mi> <mi>u</mi> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (u)=\gamma u\gamma ^{*},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f390f9d95e95eecd15482cea53ae5ee26b84e24" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.073ex; height:2.843ex;" alt="{\displaystyle \gamma (u)=\gamma u\gamma ^{*},}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b94d9c54dd2c77e4571ed51bd635158b22c204a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.334ex; height:2.843ex;" alt="{\displaystyle \gamma ^{*}}" /></span> is the conjugate of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }" /></span>, and the product is Clifford multiplication. In this situation, a <b>spinor</b><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>s<span class="cite-bracket">&#93;</span></a></sup> is an ordinary complex number. The action of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }" /></span> on a spinor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3d5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }" /></span> is given by ordinary complex multiplication: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (\phi )=\gamma \phi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x3b3;<!-- γ --></mi> <mi>&#x3d5;<!-- ϕ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (\phi )=\gamma \phi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60002d8d1af4b2d36f494ebd33c0dfc6cfaf61b7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.85ex; height:2.843ex;" alt="{\displaystyle \gamma (\phi )=\gamma \phi .}" /></span> </p><p>An important feature of this definition is the distinction between ordinary vectors and spinors, manifested in how the even-graded elements act on each of them in different ways. In general, a quick check of the Clifford relations reveals that even-graded elements conjugate-commute with ordinary vectors: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (u)=\gamma u\gamma ^{*}=\gamma ^{2}u.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x3b3;<!-- γ --></mi> <mi>u</mi> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>u</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (u)=\gamma u\gamma ^{*}=\gamma ^{2}u.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebd3498f2f7f9ea565bad34197f49377406328e9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.835ex; height:3.176ex;" alt="{\displaystyle \gamma (u)=\gamma u\gamma ^{*}=\gamma ^{2}u.}" /></span> </p><p>On the other hand, in comparison with its action on spinors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (\phi )=\gamma \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x3b3;<!-- γ --></mi> <mi>&#x3d5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (\phi )=\gamma \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc3c366d3970de98bbdca34b665682cd128133ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.203ex; height:2.843ex;" alt="{\displaystyle \gamma (\phi )=\gamma \phi }" /></span>, the action of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }" /></span> on ordinary vectors appears as the <i>square</i> of its action on spinors. </p><p>Consider, for example, the implication this has for plane rotations. Rotating a vector through an angle of <i>θ</i> corresponds to <span class="texhtml"><i>γ</i><sup>2</sup> = exp(<i>θ σ</i><sub>1</sub><i>σ</i><sub>2</sub>)</span>, so that the corresponding action on spinors is via <span class="texhtml"><i>γ</i> = ± exp(<i>θ σ</i><sub>1</sub><i>σ</i><sub>2</sub>/2)</span>. In general, because of <a href="/wiki/Branch_cut" class="mw-redirect" title="Branch cut">logarithmic branching</a>, it is impossible to choose a sign in a consistent way. Thus the representation of plane rotations on spinors is two-valued. </p><p>In applications of spinors in two dimensions, it is common to exploit the fact that the algebra of even-graded elements (that is just the ring of complex numbers) is identical to the space of spinors. So, by <a href="/wiki/Abuse_of_notation" title="Abuse of notation">abuse of language</a>, the two are often conflated. One may then talk about "the action of a spinor on a vector". In a general setting, such statements are meaningless. But in dimensions 2 and 3 (as applied, for example, to <a href="/wiki/Computer_graphics" title="Computer graphics">computer graphics</a>) they make sense. </p> <div class="mw-heading mw-heading4"><h4 id="Examples_2">Examples</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=14" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The even-graded element <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ={\tfrac {1}{\sqrt {2}}}(1-\sigma _{1}\sigma _{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ={\tfrac {1}{\sqrt {2}}}(1-\sigma _{1}\sigma _{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/663bab211bf447973ae626e48d4dce92f4a285e8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.963ex; height:4.176ex;" alt="{\displaystyle \gamma ={\tfrac {1}{\sqrt {2}}}(1-\sigma _{1}\sigma _{2})}" /></span> corresponds to a vector rotation of 90° from <i>σ</i><sub>1</sub> around towards <i>σ</i><sub>2</sub>, which can be checked by confirming that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}(1-\sigma _{1}\sigma _{2})\{a_{1}\sigma _{1}+a_{2}\sigma _{2}\}(1-\sigma _{2}\sigma _{1})=a_{1}\sigma _{2}-a_{2}\sigma _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}(1-\sigma _{1}\sigma _{2})\{a_{1}\sigma _{1}+a_{2}\sigma _{2}\}(1-\sigma _{2}\sigma _{1})=a_{1}\sigma _{2}-a_{2}\sigma _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9f96ce85e42d006a011228f1918fdd0b513bef5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:52.576ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}(1-\sigma _{1}\sigma _{2})\{a_{1}\sigma _{1}+a_{2}\sigma _{2}\}(1-\sigma _{2}\sigma _{1})=a_{1}\sigma _{2}-a_{2}\sigma _{1}}" /></span> It corresponds to a spinor rotation of only 45°, however: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{\sqrt {2}}}(1-\sigma _{1}\sigma _{2})\{a_{1}+a_{2}\sigma _{1}\sigma _{2}\}={\frac {a_{1}+a_{2}}{\sqrt {2}}}+{\frac {-a_{1}+a_{2}}{\sqrt {2}}}\sigma _{1}\sigma _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{\sqrt {2}}}(1-\sigma _{1}\sigma _{2})\{a_{1}+a_{2}\sigma _{1}\sigma _{2}\}={\frac {a_{1}+a_{2}}{\sqrt {2}}}+{\frac {-a_{1}+a_{2}}{\sqrt {2}}}\sigma _{1}\sigma _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecb132f02019f89badb29febc13ce451ba5f4b67" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:57.098ex; height:6.009ex;" alt="{\displaystyle {\tfrac {1}{\sqrt {2}}}(1-\sigma _{1}\sigma _{2})\{a_{1}+a_{2}\sigma _{1}\sigma _{2}\}={\frac {a_{1}+a_{2}}{\sqrt {2}}}+{\frac {-a_{1}+a_{2}}{\sqrt {2}}}\sigma _{1}\sigma _{2}}" /></span></li> <li>Similarly the even-graded element <span class="texhtml"><i>γ</i> = −<i>σ</i><sub>1</sub><i>σ</i><sub>2</sub></span> corresponds to a vector rotation of 180°: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\sigma _{1}\sigma _{2})\{a_{1}\sigma _{1}+a_{2}\sigma _{2}\}(-\sigma _{2}\sigma _{1})=-a_{1}\sigma _{1}-a_{2}\sigma _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\sigma _{1}\sigma _{2})\{a_{1}\sigma _{1}+a_{2}\sigma _{2}\}(-\sigma _{2}\sigma _{1})=-a_{1}\sigma _{1}-a_{2}\sigma _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39b463faf28524b66b008b4272f3afba50eeff27" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.336ex; height:2.843ex;" alt="{\displaystyle (-\sigma _{1}\sigma _{2})\{a_{1}\sigma _{1}+a_{2}\sigma _{2}\}(-\sigma _{2}\sigma _{1})=-a_{1}\sigma _{1}-a_{2}\sigma _{2}}" /></span> but a spinor rotation of only 90°:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\sigma _{1}\sigma _{2})\{a_{1}+a_{2}\sigma _{1}\sigma _{2}\}=a_{2}-a_{1}\sigma _{1}\sigma _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\sigma _{1}\sigma _{2})\{a_{1}+a_{2}\sigma _{1}\sigma _{2}\}=a_{2}-a_{1}\sigma _{1}\sigma _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea10716e632f2a721157b86a5e08887cf5d17eee" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.147ex; height:2.843ex;" alt="{\displaystyle (-\sigma _{1}\sigma _{2})\{a_{1}+a_{2}\sigma _{1}\sigma _{2}\}=a_{2}-a_{1}\sigma _{1}\sigma _{2}}" /></span></li> <li>Continuing on further, the even-graded element <span class="texhtml"><i>γ</i> = −1</span> corresponds to a vector rotation of 360°: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)\{a_{1}\sigma _{1}+a_{2}\sigma _{2}\}\,(-1)=a_{1}\sigma _{1}+a_{2}\sigma _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mspace width="thinmathspace"></mspace> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)\{a_{1}\sigma _{1}+a_{2}\sigma _{2}\}\,(-1)=a_{1}\sigma _{1}+a_{2}\sigma _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea83023dfc745ea23caf62c64407372c15717c91" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.714ex; height:2.843ex;" alt="{\displaystyle (-1)\{a_{1}\sigma _{1}+a_{2}\sigma _{2}\}\,(-1)=a_{1}\sigma _{1}+a_{2}\sigma _{2}}" /></span> but a spinor rotation of 180°.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Three_dimensions">Three dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=15" title="Edit section: Three dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Spinors_in_three_dimensions" title="Spinors in three dimensions">Spinors in three dimensions</a> and <a href="/wiki/Quaternions_and_spatial_rotation" title="Quaternions and spatial rotation">Quaternions and spatial rotation</a></div> <p>The Clifford algebra Cℓ<sub>3,0</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>) is built up from a basis of one unit scalar, 1, three orthogonal unit vectors, <a href="/wiki/Pauli_matrices" title="Pauli matrices"><i>σ</i><sub>1</sub>, <i>σ</i><sub>2</sub> and <i>σ</i><sub>3</sub></a>, the three unit bivectors <i>σ</i><sub>1</sub><i>σ</i><sub>2</sub>, <i>σ</i><sub>2</sub><i>σ</i><sub>3</sub>, <i>σ</i><sub>3</sub><i>σ</i><sub>1</sub> and the <a href="/wiki/Pseudoscalar" title="Pseudoscalar">pseudoscalar</a> <span class="texhtml"><i>i</i> = <i>σ</i><sub>1</sub><i>σ</i><sub>2</sub><i>σ</i><sub>3</sub></span>. It is straightforward to show that <span class="texhtml">(<i>σ</i><sub>1</sub>)<sup>2</sup> = (<i>σ</i><sub>2</sub>)<sup>2</sup> = (<i>σ</i><sub>3</sub>)<sup>2</sup> = 1</span>, and <span class="texhtml">(<i>σ</i><sub>1</sub><i>σ</i><sub>2</sub>)<sup>2</sup> = (<i>σ</i><sub>2</sub><i>σ</i><sub>3</sub>)<sup>2</sup> = (<i>σ</i><sub>3</sub><i>σ</i><sub>1</sub>)<sup>2</sup> = (<i>σ</i><sub>1</sub><i>σ</i><sub>2</sub><i>σ</i><sub>3</sub>)<sup>2</sup> = −1</span>. </p><p>The sub-algebra of even-graded elements is made up of scalar dilations, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u'=\rho ^{\left({\frac {1}{2}}\right)}u\rho ^{\left({\frac {1}{2}}\right)}=\rho u,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <msup> <mi>&#x3c1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </msup> <mi>u</mi> <msup> <mi>&#x3c1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </msup> <mo>=</mo> <mi>&#x3c1;<!-- ρ --></mi> <mi>u</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u'=\rho ^{\left({\frac {1}{2}}\right)}u\rho ^{\left({\frac {1}{2}}\right)}=\rho u,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d04f2a3aa833707ea63fe10176696f9155119018" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.52ex; height:4.343ex;" alt="{\displaystyle u&#39;=\rho ^{\left({\frac {1}{2}}\right)}u\rho ^{\left({\frac {1}{2}}\right)}=\rho u,}" /></span> and vector rotations <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u'=\gamma u\gamma ^{*},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x3b3;<!-- γ --></mi> <mi>u</mi> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u'=\gamma u\gamma ^{*},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65714c95b31176621ad444b13210137260b50bdc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.686ex; height:3.009ex;" alt="{\displaystyle u&#39;=\gamma u\gamma ^{*},}" /></span> where </p> <style data-mw-deduplicate="TemplateStyles:r1266403038">.mw-parser-output table.numblk{border-collapse:collapse;border:none;margin-top:0;margin-right:0;margin-bottom:0}.mw-parser-output table.numblk>tbody>tr>td{vertical-align:middle;padding:0}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2){width:99%}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table{border-collapse:collapse;margin:0;border:none;width:100%}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:first-child,.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:last-child{padding:0 0.4ex}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:nth-child(2){width:100%;padding:0}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{padding:0}.mw-parser-output table.numblk>tbody>tr>td:last-child{font-weight:bold}.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child{font-weight:unset}.mw-parser-output table.numblk>tbody>tr>td:last-child::before{content:"("}.mw-parser-output table.numblk>tbody>tr>td:last-child::after{content:")"}.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child::before,.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child::after{content:none}.mw-parser-output table.numblk>tbody>tr>td{border:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td{border:thin solid}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td{border:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td{border:thin solid}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{border-left:none;border-right:none;border-bottom:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{border-left:thin solid;border-right:thin solid;border-bottom:thin solid}.mw-parser-output table.numblk:target{color:var(--color-base,#202122);background-color:#cfe8fd}@media screen{html.skin-theme-clientpref-night .mw-parser-output table.numblk:target{color:var(--color-base,#eaecf0);background-color:#301702}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output table.numblk:target{color:var(--color-base,#eaecf0);background-color:#301702}}</style><table role="presentation" class="numblk" style="margin-left: 0em;"><tbody><tr><td class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left.{\begin{aligned}\gamma &amp;=\cos \left({\frac {\theta }{2}}\right)-\{a_{1}\sigma _{2}\sigma _{3}+a_{2}\sigma _{3}\sigma _{1}+a_{3}\sigma _{1}\sigma _{2}\}\sin \left({\frac {\theta }{2}}\right)\\&amp;=\cos \left({\frac {\theta }{2}}\right)-i\{a_{1}\sigma _{1}+a_{2}\sigma _{2}+a_{3}\sigma _{3}\}\sin \left({\frac {\theta }{2}}\right)\\&amp;=\cos \left({\frac {\theta }{2}}\right)-iv\sin \left({\frac {\theta }{2}}\right)\end{aligned}}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x3b3;<!-- γ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>v</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left.{\begin{aligned}\gamma &amp;=\cos \left({\frac {\theta }{2}}\right)-\{a_{1}\sigma _{2}\sigma _{3}+a_{2}\sigma _{3}\sigma _{1}+a_{3}\sigma _{1}\sigma _{2}\}\sin \left({\frac {\theta }{2}}\right)\\&amp;=\cos \left({\frac {\theta }{2}}\right)-i\{a_{1}\sigma _{1}+a_{2}\sigma _{2}+a_{3}\sigma _{3}\}\sin \left({\frac {\theta }{2}}\right)\\&amp;=\cos \left({\frac {\theta }{2}}\right)-iv\sin \left({\frac {\theta }{2}}\right)\end{aligned}}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/267c7af0fda8511814176c1af9ac00c41731bd40" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:56.359ex; height:18.509ex;" alt="{\displaystyle \left.{\begin{aligned}\gamma &amp;=\cos \left({\frac {\theta }{2}}\right)-\{a_{1}\sigma _{2}\sigma _{3}+a_{2}\sigma _{3}\sigma _{1}+a_{3}\sigma _{1}\sigma _{2}\}\sin \left({\frac {\theta }{2}}\right)\\&amp;=\cos \left({\frac {\theta }{2}}\right)-i\{a_{1}\sigma _{1}+a_{2}\sigma _{2}+a_{3}\sigma _{3}\}\sin \left({\frac {\theta }{2}}\right)\\&amp;=\cos \left({\frac {\theta }{2}}\right)-iv\sin \left({\frac {\theta }{2}}\right)\end{aligned}}\right\}}" /></span></td> <td></td> <td class="nowrap"><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span></td></tr></tbody></table> <p>corresponds to a vector rotation through an angle <i>θ</i> about an axis defined by a unit vector <span class="texhtml"><i>v</i> = <i>a</i><sub>1</sub><i>σ</i><sub>1</sub> + <i>a</i><sub>2</sub><i>σ</i><sub>2</sub> + <i>a</i><sub>3</sub><i>σ</i><sub>3</sub></span>. </p><p>As a special case, it is easy to see that, if <span class="texhtml"><i>v</i> = <i>σ</i><sub>3</sub></span>, this reproduces the <i>σ</i><sub>1</sub><i>σ</i><sub>2</sub> rotation considered in the previous section; and that such rotation leaves the coefficients of vectors in the <i>σ</i><sub>3</sub> direction invariant, since </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[\cos \left({\frac {\theta }{2}}\right)-i\sigma _{3}\sin \left({\frac {\theta }{2}}\right)\right]\sigma _{3}\left[\cos \left({\frac {\theta }{2}}\right)+i\sigma _{3}\sin \left({\frac {\theta }{2}}\right)\right]=\left[\cos ^{2}\left({\frac {\theta }{2}}\right)+\sin ^{2}\left({\frac {\theta }{2}}\right)\right]\sigma _{3}=\sigma _{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>i</mi> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[\cos \left({\frac {\theta }{2}}\right)-i\sigma _{3}\sin \left({\frac {\theta }{2}}\right)\right]\sigma _{3}\left[\cos \left({\frac {\theta }{2}}\right)+i\sigma _{3}\sin \left({\frac {\theta }{2}}\right)\right]=\left[\cos ^{2}\left({\frac {\theta }{2}}\right)+\sin ^{2}\left({\frac {\theta }{2}}\right)\right]\sigma _{3}=\sigma _{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf41676a84bad923febc2a5ba2ed73ab21e6b834" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:90.706ex; height:6.176ex;" alt="{\displaystyle \left[\cos \left({\frac {\theta }{2}}\right)-i\sigma _{3}\sin \left({\frac {\theta }{2}}\right)\right]\sigma _{3}\left[\cos \left({\frac {\theta }{2}}\right)+i\sigma _{3}\sin \left({\frac {\theta }{2}}\right)\right]=\left[\cos ^{2}\left({\frac {\theta }{2}}\right)+\sin ^{2}\left({\frac {\theta }{2}}\right)\right]\sigma _{3}=\sigma _{3}.}" /></span> </p><p>The bivectors <i>σ</i><sub>2</sub><i>σ</i><sub>3</sub>, <i>σ</i><sub>3</sub><i>σ</i><sub>1</sub> and <i>σ</i><sub>1</sub><i>σ</i><sub>2</sub> are in fact <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton's</a> <a href="/wiki/Quaternion" title="Quaternion">quaternions</a> <b>i</b>, <b>j</b>, and <b>k</b>, discovered in 1843: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {i} &amp;=-\sigma _{2}\sigma _{3}=-i\sigma _{1}\\\mathbf {j} &amp;=-\sigma _{3}\sigma _{1}=-i\sigma _{2}\\\mathbf {k} &amp;=-\sigma _{1}\sigma _{2}=-i\sigma _{3}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {i} &amp;=-\sigma _{2}\sigma _{3}=-i\sigma _{1}\\\mathbf {j} &amp;=-\sigma _{3}\sigma _{1}=-i\sigma _{2}\\\mathbf {k} &amp;=-\sigma _{1}\sigma _{2}=-i\sigma _{3}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c87034fb096738a33da19372c00e362379194f4b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:19.923ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}\mathbf {i} &amp;=-\sigma _{2}\sigma _{3}=-i\sigma _{1}\\\mathbf {j} &amp;=-\sigma _{3}\sigma _{1}=-i\sigma _{2}\\\mathbf {k} &amp;=-\sigma _{1}\sigma _{2}=-i\sigma _{3}\end{aligned}}}" /></span> </p><p>With the identification of the even-graded elements with the algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e050965453c42bcc6bd544546703c836bdafeac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {H} }" /></span> of quaternions, as in the case of two dimensions the only representation of the algebra of even-graded elements is on itself.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>t<span class="cite-bracket">&#93;</span></a></sup> Thus the (real<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>u<span class="cite-bracket">&#93;</span></a></sup>) spinors in three-dimensions are quaternions, and the action of an even-graded element on a spinor is given by ordinary quaternionic multiplication. </p><p>Note that the expression (1) for a vector rotation through an angle <span class="texhtml mvar" style="font-style:italic;">θ</span>, <i>the angle appearing in γ was halved</i>. Thus the spinor rotation <span class="texhtml"><i>γ</i>(<i>ψ</i>) = <i>γψ</i></span> (ordinary quaternionic multiplication) will rotate the spinor <span class="texhtml mvar" style="font-style:italic;">ψ</span> through an angle one-half the measure of the angle of the corresponding vector rotation. Once again, the problem of lifting a vector rotation to a spinor rotation is two-valued: the expression (1) with <span class="texhtml">(180° + <i>θ</i>/2)</span> in place of <i>θ</i>/2 will produce the same vector rotation, but the negative of the spinor rotation. </p><p>The spinor/quaternion representation of rotations in 3D is becoming increasingly prevalent in computer geometry and other applications, because of the notable brevity of the corresponding spin matrix, and the simplicity with which they can be multiplied together to calculate the combined effect of successive rotations about different axes. </p> <div class="mw-heading mw-heading2"><h2 id="Explicit_constructions">Explicit constructions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=16" title="Edit section: Explicit constructions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A space of spinors can be constructed explicitly with concrete and abstract constructions. The equivalence of these constructions is a consequence of the uniqueness of the spinor representation of the complex Clifford algebra. For a complete example in dimension 3, see <a href="/wiki/Spinors_in_three_dimensions" title="Spinors in three dimensions">spinors in three dimensions</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Component_spinors">Component spinors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=17" title="Edit section: Component spinors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a vector space <i>V</i> and a quadratic form <i>g</i> an explicit matrix representation of the Clifford algebra <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)</span> can be defined as follows. Choose an orthonormal basis <span class="texhtml"><i>e</i><sup>1</sup> ... <i>e</i><sup><i>n</i></sup></span> for <i>V</i> i.e. <span class="texhtml"><i>g</i>(<i>e</i><sup><i>μ</i></sup><i>e</i><sup><i>ν</i></sup>) = <i>η</i><sup><i>μν</i></sup></span> where <span class="texhtml"><i>η</i><sup><i>μμ</i></sup> = ±1</span> and <span class="texhtml"><i>η</i><sup><i>μν</i></sup> = 0</span> for <span class="texhtml"><i>μ</i> ≠ <i>ν</i></span>. Let <span class="texhtml"><i>k</i> = ⌊<i>n</i>/2⌋</span>. Fix a set of <span class="texhtml">2<sup><i>k</i></sup> × 2<sup><i>k</i></sup></span> matrices <span class="texhtml"><i>γ</i><sup>1</sup> ... <i>γ</i><sup><i>n</i></sup></span> such that <span class="texhtml"><i>γ</i><sup><i>μ</i></sup><i>γ</i><sup><i>ν</i></sup> + <i>γ</i><sup><i>ν</i></sup><i>γ</i><sup><i>μ</i></sup> = 2<i>η</i><sup><i>μν</i></sup>1</span> (i.e. fix a convention for the <a href="/wiki/Gamma_matrices" title="Gamma matrices">gamma matrices</a>). Then the assignment <span class="texhtml"><i>e</i><sup><i>μ</i></sup> → <i>γ</i><sup><i>μ</i></sup></span> extends uniquely to an algebra homomorphism <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>) → Mat(2<sup><i>k</i></sup>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>)</span> by sending the monomial <span class="texhtml"><i>e</i><sup><i>μ</i><sub>1</sub></sup> ⋅⋅⋅ <i>e</i><sup><i>μ</i><sub><i>k</i></sub></sup></span> in the Clifford algebra to the product <span class="texhtml"><i>γ</i><sup><i>μ</i><sub>1</sub></sup> ⋅⋅⋅ <i>γ</i><sup><i>μ</i><sub><i>k</i></sub></sup></span> of matrices and extending linearly. The space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta =\mathbb {C} ^{2^{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta =\mathbb {C} ^{2^{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa1ff934ed5f5d6135a893d0471046dc797f195" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.626ex; height:3.176ex;" alt="{\displaystyle \Delta =\mathbb {C} ^{2^{k}}}" /></span> on which the gamma matrices act is now a space of spinors. One needs to construct such matrices explicitly, however. In dimension 3, defining the gamma matrices to be the <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli sigma matrices</a> gives rise to the familiar two component spinors used in non relativistic <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>. Likewise using the <span class="texhtml">4 × 4</span> Dirac gamma matrices gives rise to the 4 component Dirac spinors used in 3+1 dimensional relativistic <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>. In general, in order to define gamma matrices of the required kind, one can use the <a href="/wiki/Weyl%E2%80%93Brauer_matrices" title="Weyl–Brauer matrices">Weyl–Brauer matrices</a>. </p><p>In this construction the representation of the Clifford algebra <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)</span>, the Lie algebra <span class="texhtml"><b>so</b>(<i>V</i>, <i>g</i>)</span>, and the Spin group <span class="texhtml">Spin(<i>V</i>, <i>g</i>)</span>, all depend on the choice of the orthonormal basis and the choice of the gamma matrices. This can cause confusion over conventions, but invariants like traces are independent of choices. In particular, all physically observable quantities must be independent of such choices. In this construction a spinor can be represented as a vector of 2<sup><i>k</i></sup> complex numbers and is denoted with spinor indices (usually <i>α</i>, <i>β</i>, <i>γ</i>). In the physics literature, such <a href="/wiki/Abstract_indices" class="mw-redirect" title="Abstract indices">indices</a> are often used to denote spinors even when an abstract spinor construction is used. </p> <div class="mw-heading mw-heading3"><h3 id="Abstract_spinors">Abstract spinors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=18" title="Edit section: Abstract spinors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are at least two different, but essentially equivalent, ways to define spinors abstractly. One approach seeks to identify the minimal ideals for the left action of <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)</span> on itself. These are subspaces of the Clifford algebra of the form <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)<i>ω</i></span>, admitting the evident action of <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)</span> by left-multiplication: <span class="texhtml"><i>c</i> : <i>xω</i> → <i>cxω</i></span>. There are two variations on this theme: one can either find a primitive element <span class="texhtml"><i>ω</i></span> that is a <a href="/wiki/Nilpotent" title="Nilpotent">nilpotent</a> element of the Clifford algebra, or one that is an <a href="/wiki/Idempotent" class="mw-redirect" title="Idempotent">idempotent</a>. The construction via nilpotent elements is more fundamental in the sense that an idempotent may then be produced from it.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> In this way, the spinor representations are identified with certain subspaces of the Clifford algebra itself. The second approach is to construct a vector space using a distinguished subspace of <span class="texhtml"><i>V</i></span>, and then specify the action of the Clifford algebra <i>externally</i> to that vector space. </p><p>In either approach, the fundamental notion is that of an <a href="/wiki/Isotropic_subspace" class="mw-redirect" title="Isotropic subspace">isotropic subspace</a> <span class="texhtml"><i>W</i></span>. Each construction depends on an initial freedom in choosing this subspace. In physical terms, this corresponds to the fact that there is no measurement protocol that can specify a basis of the spin space, even if a preferred basis of <span class="texhtml"><i>V</i></span> is given. </p><p>As above, we let <span class="texhtml">(<i>V</i>, <i>g</i>)</span> be an <span class="texhtml"><i>n</i></span>-dimensional complex vector space equipped with a nondegenerate bilinear form. If <span class="texhtml"><i>V</i></span> is a real vector space, then we replace <span class="texhtml"><i>V</i></span> by its <a href="/wiki/Complexification" title="Complexification">complexification</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\otimes _{\mathbb {R} }\mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\otimes _{\mathbb {R} }\mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/488efafc27b11de008a8bb600fe0a083fab76068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.725ex; height:2.509ex;" alt="{\displaystyle V\otimes _{\mathbb {R} }\mathbb {C} }" /></span> and let <span class="texhtml"><i>g</i></span> denote the induced bilinear form on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\otimes _{\mathbb {R} }\mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\otimes _{\mathbb {R} }\mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/488efafc27b11de008a8bb600fe0a083fab76068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.725ex; height:2.509ex;" alt="{\displaystyle V\otimes _{\mathbb {R} }\mathbb {C} }" /></span>. Let <span class="texhtml"><i>W</i></span> be a maximal isotropic subspace, i.e. a maximal subspace of <span class="texhtml"><i>V</i></span> such that <span class="texhtml"><i>g</i>|<sub><i>W</i></sub> = 0</span>. If <span class="texhtml"><i>n</i> =  2<i>k</i></span> is even, then let <span class="texhtml"><i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span></span> be an isotropic subspace complementary to <span class="texhtml"><i>W</i></span>. If <span class="texhtml"><i>n</i> =  2<i>k</i> + 1</span> is odd, let <span class="texhtml"><i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span></span> be a maximal isotropic subspace with <span class="texhtml"><i>W</i> ∩ <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span> = 0</span>, and let <span class="texhtml"><i>U</i></span> be the orthogonal complement of <span class="texhtml"><i>W</i> ⊕ <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span></span>. In both the even- and odd-dimensional cases <span class="texhtml"><i>W</i></span> and <span class="texhtml"><i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span></span> have dimension <span class="texhtml"><i>k</i></span>. In the odd-dimensional case, <span class="texhtml"><i>U</i></span> is one-dimensional, spanned by a unit vector <span class="texhtml"><i>u</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Minimal_ideals">Minimal ideals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=19" title="Edit section: Minimal ideals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span> is isotropic, multiplication of elements of <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span> inside <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)</span> is <a href="/wiki/Alternative_algebra" title="Alternative algebra">skew</a>. Hence vectors in <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span> anti-commute, and <span class="texhtml">Cℓ(<i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span>, <i>g</i>|<sub><i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span></sub>) = Cℓ(<i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span>, 0)</span> is just the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a> Λ<sup>∗</sup><i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span>. Consequently, the <i>k</i>-fold product of <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span> with itself, <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span><sup><i>k</i></sup>, is one-dimensional. Let <i>ω</i> be a generator of <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span><sup><i>k</i></sup>. In terms of a basis <span class="texhtml"><i>w</i><span class="nowrap" style="padding-left:0.15em;">′</span><sub>1</sub>, ..., <i>w</i><span class="nowrap" style="padding-left:0.15em;">′</span><sub>k</sub></span> of in <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span>, one possibility is to set <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =w'_{1}w'_{2}\cdots w'_{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <msubsup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <msubsup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>&#x22ef;<!-- ⋯ --></mo> <msubsup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =w'_{1}w'_{2}\cdots w'_{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cc67063ae8e7e85e1dc063c02a9ad00954f84a4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.878ex; height:2.843ex;" alt="{\displaystyle \omega =w&#39;_{1}w&#39;_{2}\cdots w&#39;_{k}.}" /></span> </p><p>Note that <span class="texhtml"><i>ω</i><sup>2</sup> = 0</span> (i.e., <i>ω</i> is nilpotent of order 2), and moreover, <span class="texhtml"><i>w</i><span class="nowrap" style="padding-left:0.15em;">′</span><i>ω</i> = 0</span> for all <span class="texhtml"><i>w</i><span class="nowrap" style="padding-left:0.15em;">′</span> ∈ <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span></span>. The following facts can be proven easily: </p> <ol><li>If <span class="texhtml"><i>n</i> = 2<i>k</i></span>, then the left ideal <span class="texhtml">Δ = Cℓ(<i>V</i>, <i>g</i>)<i>ω</i></span> is a minimal left ideal. Furthermore, this splits into the two spin spaces <span class="texhtml">Δ<sub>+</sub> = Cℓ<sup>even</sup><i>ω</i></span> and <span class="texhtml">Δ<sub>−</sub> = Cℓ<sup>odd</sup><i>ω</i></span> on restriction to the action of the even Clifford algebra.</li> <li>If <span class="texhtml"><i>n</i> = 2<i>k</i> + 1</span>, then the action of the unit vector <i>u</i> on the left ideal <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)<i>ω</i></span> decomposes the space into a pair of isomorphic irreducible eigenspaces (both denoted by Δ), corresponding to the respective eigenvalues +1 and −1.</li></ol> <p>In detail, suppose for instance that <i>n</i> is even. Suppose that <i>I</i> is a non-zero left ideal contained in <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)<i>ω</i></span>. We shall show that <i>I</i> must be equal to <span class="texhtml">Cℓ(<i>V</i>, <i>g</i>)<i>ω</i></span> by proving that it contains a nonzero scalar multiple of <i>ω</i>. </p><p>Fix a basis <i>w</i><sub><i>i</i></sub> of <i>W</i> and a complementary basis <i>w</i><sub><i>i</i></sub>′ of <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span> so that </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent" style="padding-left: 1.5em;"><i>w</i><sub><i>i</i></sub><i>w</i><sub><i>j</i></sub>′ +<i>w</i><sub><i>j</i></sub>′<i>w</i><sub><i>i</i></sub> = <i>δ</i><sub><i>ij</i></sub>, and</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573" /><div class="block-indent" style="padding-left: 1.5em;">(<i>w</i><sub><i>i</i></sub>)<sup>2</sup> = 0, (<i>w</i><sub><i>i</i></sub>′)<sup>2</sup> = 0.</div> <p>Note that any element of <i>I</i> must have the form <i>αω</i>, by virtue of our assumption that <span class="texhtml"><i>I</i> ⊂ Cℓ(<i>V</i>, <i>g</i>) <i>ω</i></span>. Let <span class="texhtml"><i>αω</i> ∈ <i>I</i></span> be any such element. Using the chosen basis, we may write <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =\sum _{i_{1}&lt;i_{2}&lt;\cdots &lt;i_{p}}a_{i_{1}\dots i_{p}}w_{i_{1}}\cdots w_{i_{p}}+\sum _{j}B_{j}w'_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b1;<!-- α --></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </msub> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x22ef;<!-- ⋯ --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msubsup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =\sum _{i_{1}&lt;i_{2}&lt;\cdots &lt;i_{p}}a_{i_{1}\dots i_{p}}w_{i_{1}}\cdots w_{i_{p}}+\sum _{j}B_{j}w'_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54269582f7d2a99a2794a8637dda80697bd101be" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:43.047ex; height:6.009ex;" alt="{\displaystyle \alpha =\sum _{i_{1}&lt;i_{2}&lt;\cdots &lt;i_{p}}a_{i_{1}\dots i_{p}}w_{i_{1}}\cdots w_{i_{p}}+\sum _{j}B_{j}w&#39;_{j}}" /></span> where the <i>a</i><sub><i>i</i><sub>1</sub>...<i>i</i><sub><i>p</i></sub></sub> are scalars, and the <i>B</i><sub><i>j</i></sub> are auxiliary elements of the Clifford algebra. Observe now that the product <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \omega =\sum _{i_{1}&lt;i_{2}&lt;\cdots &lt;i_{p}}a_{i_{1}\dots i_{p}}w_{i_{1}}\cdots w_{i_{p}}\omega .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&lt;</mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>&lt;</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </msub> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x22ef;<!-- ⋯ --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \omega =\sum _{i_{1}&lt;i_{2}&lt;\cdots &lt;i_{p}}a_{i_{1}\dots i_{p}}w_{i_{1}}\cdots w_{i_{p}}\omega .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdce618aa9432ffd91667ef48b12130bdf3bd4f8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:34.756ex; height:6.009ex;" alt="{\displaystyle \alpha \omega =\sum _{i_{1}&lt;i_{2}&lt;\cdots &lt;i_{p}}a_{i_{1}\dots i_{p}}w_{i_{1}}\cdots w_{i_{p}}\omega .}" /></span> Pick any nonzero monomial <i>a</i> in the expansion of <i>α</i> with maximal homogeneous degree in the elements <i>w</i><sub>i</sub>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=a_{i_{1}\dots i_{\text{max}}}w_{i_{1}}\dots w_{i_{\text{max}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>max</mtext> </mrow> </msub> </mrow> </msub> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>max</mtext> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=a_{i_{1}\dots i_{\text{max}}}w_{i_{1}}\dots w_{i_{\text{max}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd9626852d843d9c9c30e5df6c0d4faa5bc3cd85" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.234ex; height:2.343ex;" alt="{\displaystyle a=a_{i_{1}\dots i_{\text{max}}}w_{i_{1}}\dots w_{i_{\text{max}}}}" /></span> (no summation implied), then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w'_{i_{\text{max}}}\cdots w'_{i_{1}}\alpha \omega =a_{i_{1}\dots i_{\text{max}}}\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>max</mtext> </mrow> </msub> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>&#x22ef;<!-- ⋯ --></mo> <msubsup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>&#x2032;</mo> </msubsup> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>max</mtext> </mrow> </msub> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w'_{i_{\text{max}}}\cdots w'_{i_{1}}\alpha \omega =a_{i_{1}\dots i_{\text{max}}}\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cf755d3f00b845e960d73c12d6e5881ab7e5697" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:27.384ex; height:3.176ex;" alt="{\displaystyle w&#39;_{i_{\text{max}}}\cdots w&#39;_{i_{1}}\alpha \omega =a_{i_{1}\dots i_{\text{max}}}\omega }" /></span> is a nonzero scalar multiple of <i>ω</i>, as required. </p><p>Note that for <i>n</i> even, this computation also shows that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta =\mathrm {C} \ell (W)\omega =\left(\Lambda ^{*}W\right)\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> </mrow> <mi>&#x2113;<!-- ℓ --></mi> <mo stretchy="false">(</mo> <mi>W</mi> <mo stretchy="false">)</mo> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>W</mi> </mrow> <mo>)</mo> </mrow> <mi>&#x3c9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta =\mathrm {C} \ell (W)\omega =\left(\Lambda ^{*}W\right)\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a1d93a9855e984eed5f58b32008b94f470f86ed" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.216ex; height:2.843ex;" alt="{\displaystyle \Delta =\mathrm {C} \ell (W)\omega =\left(\Lambda ^{*}W\right)\omega }" /></span> as a vector space. In the last equality we again used that <i>W</i> is isotropic. In physics terms, this shows that Δ is built up like a <a href="/wiki/Fock_space" title="Fock space">Fock space</a> by <a href="/wiki/Creation_and_annihilation" class="mw-redirect" title="Creation and annihilation">creating</a> spinors using anti-commuting creation operators in <i>W</i> acting on a vacuum <i>ω</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Exterior_algebra_construction">Exterior algebra construction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=20" title="Edit section: Exterior algebra construction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The computations with the minimal ideal construction suggest that a spinor representation can also be defined directly using the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a> <span class="texhtml">Λ<sup>∗</sup> <i>W</i> = ⊕<sub><i>j</i></sub> Λ<sup><i>j</i></sup> <i>W</i></span> of the isotropic subspace <i>W</i>. Let <span class="texhtml">Δ = Λ<sup>∗</sup> <i>W</i></span> denote the exterior algebra of <i>W</i> considered as vector space only. This will be the spin representation, and its elements will be referred to as spinors.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p>The action of the Clifford algebra on Δ is defined first by giving the action of an element of <i>V</i> on Δ, and then showing that this action respects the Clifford relation and so extends to a <a href="/wiki/Homomorphism" title="Homomorphism">homomorphism</a> of the full Clifford algebra into the <a href="/wiki/Endomorphism_ring" title="Endomorphism ring">endomorphism ring</a> End(Δ) by the <a href="/wiki/Clifford_algebra#Universal_property_and_construction" title="Clifford algebra">universal property of Clifford algebras</a>. The details differ slightly according to whether the dimension of <i>V</i> is even or odd. </p><p>When dim(<span class="texhtml mvar" style="font-style:italic;">V</span>) is even, <span class="texhtml"><i>V</i> = <i>W</i> ⊕ <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span></span> where <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span> is the chosen isotropic complement. Hence any <span class="texhtml"><i>v</i> ∈ <i>V</i></span> decomposes uniquely as <span class="texhtml"><i>v</i> = <i>w</i> + <i>w</i><span class="nowrap" style="padding-left:0.15em;">′</span></span> with <span class="texhtml"><i>w</i> ∈ <i>W</i></span> and <span class="texhtml"><i>w</i><span class="nowrap" style="padding-left:0.15em;">′</span> ∈ <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span></span>. The action of <span class="texhtml mvar" style="font-style:italic;">v</span> on a spinor is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(v)w_{1}\wedge \cdots \wedge w_{n}=\left(\epsilon (w)+i\left(w'\right)\right)\left(w_{1}\wedge \cdots \wedge w_{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2227;<!-- ∧ --></mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>&#x2227;<!-- ∧ --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>&#x3f5;<!-- ϵ --></mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mrow> <mo>(</mo> <msup> <mi>w</mi> <mo>&#x2032;</mo> </msup> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2227;<!-- ∧ --></mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>&#x2227;<!-- ∧ --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(v)w_{1}\wedge \cdots \wedge w_{n}=\left(\epsilon (w)+i\left(w'\right)\right)\left(w_{1}\wedge \cdots \wedge w_{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a462e8307ee6270d43cdd969bcf4ea6595673e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.632ex; height:3.009ex;" alt="{\displaystyle c(v)w_{1}\wedge \cdots \wedge w_{n}=\left(\epsilon (w)+i\left(w&#39;\right)\right)\left(w_{1}\wedge \cdots \wedge w_{n}\right)}" /></span> where <i>i</i>(<i>w</i><span class="nowrap" style="padding-left:0.15em;">′</span>) is <a href="/wiki/Interior_product" title="Interior product">interior product</a> with <i>w</i><span class="nowrap" style="padding-left:0.15em;">′</span> using the nondegenerate quadratic form to identify <i>V</i> with <i>V</i><sup>∗</sup>, and <i>ε</i>(<i>w</i>) denotes the <a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">exterior product</a>. This action is sometimes called the <b>Clifford product</b>. It may be verified that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(u)\,c(v)+c(v)\,c(u)=2\,g(u,v)\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> <mi>c</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> <mi>c</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mi>g</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(u)\,c(v)+c(v)\,c(u)=2\,g(u,v)\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/554e378f254f531a0dbbb56f8103f739cee0b761" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.892ex; height:2.843ex;" alt="{\displaystyle c(u)\,c(v)+c(v)\,c(u)=2\,g(u,v)\,,}" /></span> and so <span class="texhtml mvar" style="font-style:italic;">c</span> respects the Clifford relations and extends to a homomorphism from the Clifford algebra to End(Δ). </p><p>The spin representation Δ further decomposes into a pair of irreducible complex representations of the Spin group<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> (the half-spin representations, or Weyl spinors) via <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{+}=\Lambda ^{\text{even}}W,\,\Delta _{-}=\Lambda ^{\text{odd}}W.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>=</mo> <msup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>even</mtext> </mrow> </msup> <mi>W</mi> <mo>,</mo> <mspace width="thinmathspace"></mspace> <msub> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>=</mo> <msup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>odd</mtext> </mrow> </msup> <mi>W</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{+}=\Lambda ^{\text{even}}W,\,\Delta _{-}=\Lambda ^{\text{odd}}W.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cbfc4860fa4dc00b66a9d4c869c4ceae7981d3f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:29.611ex; height:3.009ex;" alt="{\displaystyle \Delta _{+}=\Lambda ^{\text{even}}W,\,\Delta _{-}=\Lambda ^{\text{odd}}W.}" /></span> </p><p>When dim(<i>V</i>) is odd, <span class="texhtml"><i>V</i> = <i>W</i> ⊕ <i>U</i> ⊕ <i>W</i><span class="nowrap" style="padding-left:0.15em;">′</span></span>, where <i>U</i> is spanned by a unit vector <i>u</i> orthogonal to <i>W</i>. The Clifford action <i>c</i> is defined as before on <span class="texhtml"><i>W</i> ⊕ <i>W</i>′</span>, while the Clifford action of (multiples of) <i>u</i> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(u)\alpha ={\begin{cases}\alpha &amp;{\hbox{if }}\alpha \in \Lambda ^{\text{even}}W\\-\alpha &amp;{\hbox{if }}\alpha \in \Lambda ^{\text{odd}}W\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mi>&#x3b1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>&#x3b1;<!-- α --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xa0;</mtext> </mstyle> </mrow> <mi>&#x3b1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>even</mtext> </mrow> </msup> <mi>W</mi> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x3b1;<!-- α --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>if&#xa0;</mtext> </mstyle> </mrow> <mi>&#x3b1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>odd</mtext> </mrow> </msup> <mi>W</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(u)\alpha ={\begin{cases}\alpha &amp;{\hbox{if }}\alpha \in \Lambda ^{\text{even}}W\\-\alpha &amp;{\hbox{if }}\alpha \in \Lambda ^{\text{odd}}W\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f90f45f13b393d5da7aeef0cf6d13305d9662850" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.635ex; height:6.176ex;" alt="{\displaystyle c(u)\alpha ={\begin{cases}\alpha &amp;{\hbox{if }}\alpha \in \Lambda ^{\text{even}}W\\-\alpha &amp;{\hbox{if }}\alpha \in \Lambda ^{\text{odd}}W\end{cases}}}" /></span> As before, one verifies that <i>c</i> respects the Clifford relations, and so induces a homomorphism. </p> <div class="mw-heading mw-heading3"><h3 id="Hermitian_vector_spaces_and_spinors">Hermitian vector spaces and spinors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=21" title="Edit section: Hermitian vector spaces and spinors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the vector space <i>V</i> has extra structure that provides a decomposition of its complexification into two maximal isotropic subspaces, then the definition of spinors (by either method) becomes natural. </p><p>The main example is the case that the real vector space <i>V</i> is a <a href="/wiki/Hermitian_form" class="mw-redirect" title="Hermitian form">hermitian vector space</a> <span class="texhtml">(<i>V</i>, <i>h</i>)</span>, i.e., <i>V</i> is equipped with a <a href="/wiki/Linear_complex_structure" title="Linear complex structure">complex structure</a> <i>J</i> that is an <a href="/wiki/Orthogonal_transformation" title="Orthogonal transformation">orthogonal transformation</a> with respect to the inner product <i>g</i> on <i>V</i>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\otimes _{\mathbb {R} }\mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\otimes _{\mathbb {R} }\mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/488efafc27b11de008a8bb600fe0a083fab76068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.725ex; height:2.509ex;" alt="{\displaystyle V\otimes _{\mathbb {R} }\mathbb {C} }" /></span> splits in the <span class="texhtml">±<i>i</i></span> eigenspaces of <i>J</i>. These eigenspaces are isotropic for the complexification of <i>g</i> and can be identified with the complex vector space <span class="texhtml">(<i>V</i>, <i>J</i>)</span> and its complex conjugate <span class="texhtml">(<i>V</i>, −<i>J</i>)</span>. Therefore, for a hermitian vector space <span class="texhtml">(<i>V</i>, <i>h</i>)</span> the vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda _{\mathbb {C} }^{\cdot }{\bar {V}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22c5;<!-- ⋅ --></mo> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>V</mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda _{\mathbb {C} }^{\cdot }{\bar {V}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92788e0461a16cbc4e754d6e61e57b58243ce23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.819ex; height:3.176ex;" alt="{\displaystyle \Lambda _{\mathbb {C} }^{\cdot }{\bar {V}}}" /></span> (as well as its complex conjugate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda _{\mathbb {C} }^{\cdot }V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22c5;<!-- ⋅ --></mo> </mrow> </msubsup> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda _{\mathbb {C} }^{\cdot }V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb23cd9e9724920714f95c9e7c94c2955802072b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.819ex; height:2.843ex;" alt="{\displaystyle \Lambda _{\mathbb {C} }^{\cdot }V}" /></span>) is a spinor space for the underlying real euclidean vector space. </p><p>With the Clifford action as above but with contraction using the hermitian form, this construction gives a spinor space at every point of an <a href="/wiki/Almost_Hermitian_manifold" class="mw-redirect" title="Almost Hermitian manifold">almost Hermitian manifold</a> and is the reason why every <a href="/wiki/Almost_complex_manifold" title="Almost complex manifold">almost complex manifold</a> (in particular every <a href="/wiki/Symplectic_manifold" title="Symplectic manifold">symplectic manifold</a>) has a <a href="/wiki/Spin-c_structure" class="mw-redirect" title="Spin-c structure">Spin<sup>c</sup> structure</a>. Likewise, every complex vector bundle on a manifold carries a Spin<sup>c</sup> structure.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Clebsch–Gordan_decomposition"><span id="Clebsch.E2.80.93Gordan_decomposition"></span>Clebsch–Gordan decomposition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=22" title="Edit section: Clebsch–Gordan decomposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A number of <a href="/wiki/Clebsch%E2%80%93Gordan_coefficients" title="Clebsch–Gordan coefficients">Clebsch–Gordan decompositions</a> are possible on the <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> of one spin representation with another.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> These decompositions express the tensor product in terms of the alternating representations of the orthogonal group. </p><p>For the real or complex case, the alternating representations are </p> <ul><li><span class="texhtml">Γ<sub><i>r</i></sub> = Λ<sup><i>r</i></sup><i>V</i></span>, the representation of the orthogonal group on skew tensors of rank <i>r</i>.</li></ul> <p>In addition, for the real orthogonal groups, there are three <a href="/wiki/Character_theory" title="Character theory">characters</a> (one-dimensional representations) </p> <ul><li><i>σ</i><sub>+</sub> : O(<i>p</i>, <i>q</i>) → {−1, +1} given by <span class="texhtml"><i>σ</i><sub>+</sub>(R) = −1</span>, if <i>R</i> reverses the spatial orientation of <i>V</i>, +1, if <i>R</i> preserves the spatial orientation of <i>V</i>. (<i>The spatial character</i>.)</li> <li><i>σ</i><sub>−</sub> : O(<i>p</i>, <i>q</i>) → {−1, +1} given by <span class="texhtml"><i>σ</i><sub>−</sub>(R) = −1</span>, if <i>R</i> reverses the temporal orientation of <i>V</i>, +1, if <i>R</i> preserves the temporal orientation of <i>V</i>. (<i>The temporal character</i>.)</li> <li><i>σ</i> = <i>σ</i><sub>+</sub><i>σ</i><sub>−</sub> . (<i>The orientation character</i>.)</li></ul> <p>The Clebsch–Gordan decomposition allows one to define, among other things: </p> <ul><li>An action of spinors on vectors.</li> <li>A <a href="/wiki/Hermitian_metric" class="mw-redirect" title="Hermitian metric">Hermitian metric</a> on the complex representations of the real spin groups.</li> <li>A <a href="/wiki/Dirac_operator" title="Dirac operator">Dirac operator</a> on each spin representation.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Even_dimensions">Even dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=23" title="Edit section: Even dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><i>n</i> = 2<i>k</i></span> is even, then the tensor product of Δ with the <a href="/wiki/Contragredient_representation" class="mw-redirect" title="Contragredient representation">contragredient representation</a> decomposes as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \otimes \Delta ^{*}\cong \bigoplus _{p=0}^{n}\Gamma _{p}\cong \bigoplus _{p=0}^{k-1}\left(\Gamma _{p}\oplus \sigma \Gamma _{p}\right)\oplus \Gamma _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo>&#x2297;<!-- ⊗ --></mo> <msup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2245;<!-- ≅ --></mo> <munderover> <mo>&#x2a01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2245;<!-- ≅ --></mo> <munderover> <mo>&#x2a01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2295;<!-- ⊕ --></mo> <mi>&#x3c3;<!-- σ --></mi> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&#x2295;<!-- ⊕ --></mo> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \otimes \Delta ^{*}\cong \bigoplus _{p=0}^{n}\Gamma _{p}\cong \bigoplus _{p=0}^{k-1}\left(\Gamma _{p}\oplus \sigma \Gamma _{p}\right)\oplus \Gamma _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44847ed0e5eefa962cba502cc86fbf3e0b157610" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:40.656ex; height:7.676ex;" alt="{\displaystyle \Delta \otimes \Delta ^{*}\cong \bigoplus _{p=0}^{n}\Gamma _{p}\cong \bigoplus _{p=0}^{k-1}\left(\Gamma _{p}\oplus \sigma \Gamma _{p}\right)\oplus \Gamma _{k}}" /></span> which can be seen explicitly by considering (in the Explicit construction) the action of the Clifford algebra on decomposable elements <span class="texhtml"><i>αω</i> ⊗ <i>βω</i>′</span>. The rightmost formulation follows from the transformation properties of the <a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a>. Note that on restriction to the even Clifford algebra, the paired summands <span class="texhtml">Γ<sub><i>p</i></sub> ⊕ <i>σ</i>Γ<sub><i>p</i></sub></span> are isomorphic, but under the full Clifford algebra they are not. </p><p>There is a natural identification of Δ with its contragredient representation via the conjugation in the Clifford algebra: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\alpha \omega )^{*}=\omega \left(\alpha ^{*}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x3b1;<!-- α --></mi> <mi>&#x3c9;<!-- ω --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>&#x3c9;<!-- ω --></mi> <mrow> <mo>(</mo> <msup> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\alpha \omega )^{*}=\omega \left(\alpha ^{*}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a6dc2616509329da9df38ed4bb3aee3f6cb9da4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.113ex; height:2.843ex;" alt="{\displaystyle (\alpha \omega )^{*}=\omega \left(\alpha ^{*}\right).}" /></span> So <span class="texhtml">Δ ⊗ Δ</span> also decomposes in the above manner. Furthermore, under the even Clifford algebra, the half-spin representations decompose <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\Delta _{+}\otimes \Delta _{+}^{*}\cong \Delta _{-}\otimes \Delta _{-}^{*}&amp;\cong \bigoplus _{p=0}^{k}\Gamma _{2p}\\\Delta _{+}\otimes \Delta _{-}^{*}\cong \Delta _{-}\otimes \Delta _{+}^{*}&amp;\cong \bigoplus _{p=0}^{k-1}\Gamma _{2p+1}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msubsup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msubsup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>&#x2245;<!-- ≅ --></mo> <munderover> <mo>&#x2a01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>p</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msubsup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msubsup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>&#x2245;<!-- ≅ --></mo> <munderover> <mo>&#x2a01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\Delta _{+}\otimes \Delta _{+}^{*}\cong \Delta _{-}\otimes \Delta _{-}^{*}&amp;\cong \bigoplus _{p=0}^{k}\Gamma _{2p}\\\Delta _{+}\otimes \Delta _{-}^{*}\cong \Delta _{-}\otimes \Delta _{+}^{*}&amp;\cong \bigoplus _{p=0}^{k-1}\Gamma _{2p+1}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef2d15310558a57ebea9d602bb0fb04f4b57166" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:35.748ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}\Delta _{+}\otimes \Delta _{+}^{*}\cong \Delta _{-}\otimes \Delta _{-}^{*}&amp;\cong \bigoplus _{p=0}^{k}\Gamma _{2p}\\\Delta _{+}\otimes \Delta _{-}^{*}\cong \Delta _{-}\otimes \Delta _{+}^{*}&amp;\cong \bigoplus _{p=0}^{k-1}\Gamma _{2p+1}\end{aligned}}}" /></span> </p><p>For the complex representations of the real Clifford algebras, the associated <a href="/wiki/Reality_structure" class="mw-redirect" title="Reality structure">reality structure</a> on the complex Clifford algebra descends to the space of spinors (via the explicit construction in terms of minimal ideals, for instance). In this way, we obtain the complex conjugate <span style="text-decoration:overline;">Δ</span> of the representation Δ, and the following isomorphism is seen to hold: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\Delta }}\cong \sigma _{-}\Delta ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <msup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\Delta }}\cong \sigma _{-}\Delta ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c8ae63789550e6eafb2d65043fa85a78f9abf73" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.863ex; height:3.009ex;" alt="{\displaystyle {\bar {\Delta }}\cong \sigma _{-}\Delta ^{*}}" /></span> </p><p>In particular, note that the representation Δ of the orthochronous spin group is a <a href="/wiki/Unitary_representation" title="Unitary representation">unitary representation</a>. In general, there are Clebsch–Gordan decompositions <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \otimes {\bar {\Delta }}\cong \bigoplus _{p=0}^{k}\left(\sigma _{-}\Gamma _{p}\oplus \sigma _{+}\Gamma _{p}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>&#x2245;<!-- ≅ --></mo> <munderover> <mo>&#x2a01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2295;<!-- ⊕ --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \otimes {\bar {\Delta }}\cong \bigoplus _{p=0}^{k}\left(\sigma _{-}\Gamma _{p}\oplus \sigma _{+}\Gamma _{p}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9fbeb1d7dcc8e018771536b632a0972440f7dab" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:30.092ex; height:7.676ex;" alt="{\displaystyle \Delta \otimes {\bar {\Delta }}\cong \bigoplus _{p=0}^{k}\left(\sigma _{-}\Gamma _{p}\oplus \sigma _{+}\Gamma _{p}\right).}" /></span> </p><p>In metric signature <span class="texhtml">(<i>p</i>, <i>q</i>)</span>, the following isomorphisms hold for the conjugate half-spin representations </p> <ul><li>If <i>q</i> is even, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\Delta }}_{+}\cong \sigma _{-}\otimes \Delta _{+}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msubsup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\Delta }}_{+}\cong \sigma _{-}\otimes \Delta _{+}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/094d3c5fee50051593d05471cadf2daf21dd124f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.67ex; height:3.343ex;" alt="{\displaystyle {\bar {\Delta }}_{+}\cong \sigma _{-}\otimes \Delta _{+}^{*}}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\Delta }}_{-}\cong \sigma _{-}\otimes \Delta _{-}^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msubsup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\Delta }}_{-}\cong \sigma _{-}\otimes \Delta _{-}^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d15bbf37869a1164ded6f6902bb4c8f8560bf767" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.317ex; height:3.343ex;" alt="{\displaystyle {\bar {\Delta }}_{-}\cong \sigma _{-}\otimes \Delta _{-}^{*}.}" /></span></li> <li>If <i>q</i> is odd, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\Delta }}_{+}\cong \sigma _{-}\otimes \Delta _{-}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msubsup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\Delta }}_{+}\cong \sigma _{-}\otimes \Delta _{-}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7fcff16b41eb8d79114f23c89bd87fae75e7f00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.67ex; height:3.343ex;" alt="{\displaystyle {\bar {\Delta }}_{+}\cong \sigma _{-}\otimes \Delta _{-}^{*}}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\Delta }}_{-}\cong \sigma _{-}\otimes \Delta _{+}^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msubsup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\Delta }}_{-}\cong \sigma _{-}\otimes \Delta _{+}^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05fdda604d5760c5b3a53ddd23aff37020e75f32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.317ex; height:3.343ex;" alt="{\displaystyle {\bar {\Delta }}_{-}\cong \sigma _{-}\otimes \Delta _{+}^{*}.}" /></span></li></ul> <p>Using these isomorphisms, one can deduce analogous decompositions for the tensor products of the half-spin representations <span class="texhtml">Δ<sub>±</sub> ⊗ <span style="text-decoration:overline;">Δ</span><sub>±</sub></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Odd_dimensions">Odd dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=24" title="Edit section: Odd dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><i>n</i> = 2<i>k</i> + 1</span> is odd, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \otimes \Delta ^{*}\cong \bigoplus _{p=0}^{k}\Gamma _{2p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo>&#x2297;<!-- ⊗ --></mo> <msup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2245;<!-- ≅ --></mo> <munderover> <mo>&#x2a01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \otimes \Delta ^{*}\cong \bigoplus _{p=0}^{k}\Gamma _{2p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce77d980a71d439d45b1bd03008943c75e59b7ee" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:18.743ex; height:7.676ex;" alt="{\displaystyle \Delta \otimes \Delta ^{*}\cong \bigoplus _{p=0}^{k}\Gamma _{2p}.}" /></span> In the real case, once again the isomorphism holds <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\Delta }}\cong \sigma _{-}\Delta ^{*}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <msup> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\Delta }}\cong \sigma _{-}\Delta ^{*}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c11042b67cf0e4ebd0687f62154fabead4180ed8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.509ex; height:3.009ex;" alt="{\displaystyle {\bar {\Delta }}\cong \sigma _{-}\Delta ^{*}.}" /></span> Hence there is a Clebsch–Gordan decomposition (again using the Hodge star to dualize) given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \otimes {\bar {\Delta }}\cong \sigma _{-}\Gamma _{0}\oplus \sigma _{+}\Gamma _{1}\oplus \dots \oplus \sigma _{\pm }\Gamma _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2295;<!-- ⊕ --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2295;<!-- ⊕ --></mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>&#x2295;<!-- ⊕ --></mo> <msub> <mi>&#x3c3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#xb1;<!-- ± --></mo> </mrow> </msub> <msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \otimes {\bar {\Delta }}\cong \sigma _{-}\Gamma _{0}\oplus \sigma _{+}\Gamma _{1}\oplus \dots \oplus \sigma _{\pm }\Gamma _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea85dc8c1f368185083230c142b22ce024e92740" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:37.125ex; height:3.009ex;" alt="{\displaystyle \Delta \otimes {\bar {\Delta }}\cong \sigma _{-}\Gamma _{0}\oplus \sigma _{+}\Gamma _{1}\oplus \dots \oplus \sigma _{\pm }\Gamma _{k}}" /></span> </p> <div class="mw-heading mw-heading3"><h3 id="Consequences">Consequences</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=25" title="Edit section: Consequences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are many far-reaching consequences of the Clebsch–Gordan decompositions of the spinor spaces. The most fundamental of these pertain to Dirac's theory of the electron, among whose basic requirements are </p> <ul><li>A manner of regarding the product of two spinors <i><span style="text-decoration:overline;">ϕ</span>ψ</i> as a scalar. In physical terms, a spinor should determine a <a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitude</a> for the <a href="/wiki/Quantum_state" title="Quantum state">quantum state</a>.</li> <li>A manner of regarding the product <i>ψ<span style="text-decoration:overline;">ϕ</span></i> as a vector. This is an essential feature of Dirac's theory, which ties the spinor formalism to the geometry of physical space.</li> <li>A manner of regarding a spinor as acting upon a vector, by an expression such as <i>ψv<span style="text-decoration:overline;">ψ</span></i>. In physical terms, this represents an <a href="/wiki/Electric_current" title="Electric current">electric current</a> of Maxwell's <a href="/wiki/Electromagnetic_theory" class="mw-redirect" title="Electromagnetic theory">electromagnetic theory</a>, or more generally a <a href="/wiki/Probability_current" title="Probability current">probability current</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Summary_in_low_dimensions">Summary in low dimensions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=26" title="Edit section: Summary in low dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In 1 dimension (a trivial example), the single spinor representation is formally Majorana, a <a href="/wiki/Real_representation" title="Real representation">real</a> 1-dimensional representation that does not transform.</li> <li>In 2 Euclidean dimensions, the left-handed and the right-handed Weyl spinor are 1-component <a href="/wiki/Complex_representation" title="Complex representation">complex representations</a>, i.e. complex numbers that get multiplied by <i>e</i><sup>±<i>iφ</i>/2</sup> under a rotation by angle <i>φ</i>.</li> <li>In 3 Euclidean dimensions, the single spinor representation is 2-dimensional and <a href="/wiki/Quaternionic_representation" title="Quaternionic representation">quaternionic</a>. The existence of spinors in 3 dimensions follows from the isomorphism of the <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a> <span class="texhtml">SU(2) ≅ Spin(3)</span> that allows us to define the action of Spin(3) on a complex 2-component column (a spinor); the generators of SU(2) can be written as <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a>.</li> <li>In 4 Euclidean dimensions, the corresponding isomorphism is <span class="texhtml">Spin(4) ≅ SU(2) × SU(2)</span>. There are two inequivalent <a href="/wiki/Quaternionic_representation" title="Quaternionic representation">quaternionic</a> 2-component Weyl spinors and each of them transforms under one of the SU(2) factors only.</li> <li>In 5 Euclidean dimensions, the relevant isomorphism is <span class="texhtml">Spin(5) ≅ USp(4) ≅ Sp(2)</span> that implies that the single spinor representation is 4-dimensional and quaternionic.</li> <li>In 6 Euclidean dimensions, the isomorphism <span class="texhtml">Spin(6) ≅ SU(4)</span> guarantees that there are two 4-dimensional complex Weyl representations that are complex conjugates of one another.</li> <li>In 7 Euclidean dimensions, the single spinor representation is 8-dimensional and real; no isomorphisms to a Lie algebra from another series (A or C) exist from this dimension on.</li> <li>In 8 Euclidean dimensions, there are two Weyl–Majorana real 8-dimensional representations that are related to the 8-dimensional real vector representation by a special property of <a href="/wiki/Spin(8)" class="mw-redirect" title="Spin(8)">Spin(8)</a> called <a href="/wiki/Triality" title="Triality">triality</a>.</li> <li>In <span class="texhtml"><i>d</i> + 8</span> dimensions, the number of distinct irreducible spinor representations and their reality (whether they are real, pseudoreal, or complex) mimics the structure in <i>d</i> dimensions, but their dimensions are 16 times larger; this allows one to understand all remaining cases. See <a href="/wiki/Bott_periodicity" class="mw-redirect" title="Bott periodicity">Bott periodicity</a>.</li> <li>In spacetimes with <i>p</i> spatial and <i>q</i> time-like directions, the dimensions viewed as dimensions over the complex numbers coincide with the case of the <span class="texhtml">(<i>p</i> + <i>q</i>)</span>-dimensional Euclidean space, but the reality projections mimic the structure in <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>p</i> − <i>q</i></span>&#124;</span> Euclidean dimensions. For example, in <span class="texhtml">3 + 1</span> dimensions there are two non-equivalent Weyl complex (like in 2 dimensions) 2-component (like in 4 dimensions) spinors, which follows from the isomorphism <span class="texhtml">SL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>) ≅ Spin(3,1)</span>.</li></ul> <table class="wikitable" style="margin:1em auto; text-align:center;"> <tbody><tr> <th rowspan="2"><a href="/wiki/Metric_signature" title="Metric signature">Metric signature</a> </th> <th colspan="2">Weyl, complex </th> <th rowspan="2">Conjugacy </th> <th rowspan="2">Dirac, <br />complex </th> <th colspan="2">Majorana–Weyl, real </th> <th rowspan="2">Majorana, <br />real </th></tr> <tr> <th>Left-handed </th> <th>Right-handed </th> <th>Left-handed </th> <th>Right-handed </th></tr> <tr> <td>(2,0)</td> <td>1</td> <td>1</td> <td>Mutual</td> <td>2</td> <td>–</td> <td>–</td> <td>2 </td></tr> <tr> <td>(1,1)</td> <td>1</td> <td>1</td> <td>Self</td> <td>2</td> <td>1</td> <td>1</td> <td>2 </td></tr> <tr> <td>(3,0)</td> <td>–</td> <td>–</td> <td>–</td> <td>2</td> <td>–</td> <td>–</td> <td>– </td></tr> <tr> <td>(2,1)</td> <td>–</td> <td>–</td> <td>–</td> <td>2</td> <td>–</td> <td>–</td> <td>2 </td></tr> <tr> <td>(4,0)</td> <td>2</td> <td>2</td> <td>Self</td> <td>4</td> <td>–</td> <td>–</td> <td>– </td></tr> <tr> <td>(3,1)</td> <td>2</td> <td>2</td> <td>Mutual</td> <td>4</td> <td>–</td> <td>–</td> <td>4 </td></tr> <tr> <td>(5,0)</td> <td>–</td> <td>–</td> <td>–</td> <td>4</td> <td>–</td> <td>–</td> <td>– </td></tr> <tr> <td>(4,1)</td> <td>–</td> <td>–</td> <td>–</td> <td>4</td> <td>–</td> <td>–</td> <td>– </td></tr> <tr> <td>(6,0)</td> <td>4</td> <td>4</td> <td>Mutual</td> <td>8</td> <td>–</td> <td>–</td> <td>8 </td></tr> <tr> <td>(5,1)</td> <td>4</td> <td>4</td> <td>Self</td> <td>8</td> <td>–</td> <td>–</td> <td>– </td></tr> <tr> <td>(7,0)</td> <td>–</td> <td>–</td> <td>–</td> <td>8</td> <td>–</td> <td>–</td> <td>8 </td></tr> <tr> <td>(6,1)</td> <td>–</td> <td>–</td> <td>–</td> <td>8</td> <td>–</td> <td>–</td> <td>– </td></tr> <tr> <td>(8,0)</td> <td>8</td> <td>8</td> <td>Self</td> <td>16</td> <td>8</td> <td>8</td> <td>16 </td></tr> <tr> <td>(7,1)</td> <td>8</td> <td>8</td> <td>Mutual</td> <td>16</td> <td>–</td> <td>–</td> <td>16 </td></tr> <tr> <td>(9,0)</td> <td>–</td> <td>–</td> <td>–</td> <td>16</td> <td>–</td> <td>–</td> <td>16 </td></tr> <tr> <td>(8,1)</td> <td>–</td> <td>–</td> <td>–</td> <td>16</td> <td>–</td> <td>–</td> <td>16 </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=27" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 27em;"> <ul><li><a href="/wiki/Anyon" title="Anyon">Anyon</a></li> <li><a href="/wiki/Dirac_equation_in_the_algebra_of_physical_space" class="mw-redirect" title="Dirac equation in the algebra of physical space">Dirac equation in the algebra of physical space</a></li> <li><a href="/wiki/Eigenspinor" title="Eigenspinor">Eigenspinor</a></li> <li><a href="/wiki/Einstein%E2%80%93Cartan_theory" title="Einstein–Cartan theory">Einstein–Cartan theory</a></li> <li><a href="/wiki/Projective_representation" title="Projective representation">Projective representation</a></li> <li><a href="/wiki/Pure_spinor" title="Pure spinor">Pure spinor</a></li> <li><a href="/wiki/Spin-1/2" title="Spin-1/2">Spin-1/2</a></li> <li><a href="/wiki/Spinor_bundle" title="Spinor bundle">Spinor bundle</a></li> <li><a href="/wiki/Supercharge" title="Supercharge">Supercharge</a></li> <li><a href="/wiki/Twistor_theory" title="Twistor theory">Twistor theory</a></li> <li><a href="/wiki/Spacetime_algebra" title="Spacetime algebra">Spacetime algebra</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=28" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-lower-alpha" style="column-width: 25em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Spinors in three dimensions are points of a <a href="/wiki/Line_bundle" title="Line bundle">line bundle</a> over a <a href="/wiki/Conic" class="mw-redirect" title="Conic">conic</a> in the <a href="/wiki/Projective_plane" title="Projective plane">projective plane</a>. In this picture, which is associated to spinors of a three-dimensional <a href="/wiki/Pseudo-Euclidean_space" title="Pseudo-Euclidean space">pseudo-Euclidean space</a> of signature (1,2), the conic is an ordinary real conic (here the circle), the line bundle is the Möbius bundle, and the spin group is <span class="texhtml">SL<sub>2</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }" /></span>)</span>. In Euclidean signature, the projective plane, conic and line bundle are over the complex instead, and this picture is just a real slice.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Spinors can always be defined over the complex numbers. However, in some signatures there exist real spinors. Details can be found in <a href="/wiki/Spin_representation" title="Spin representation">spin representation</a>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">A formal definition of spinors at this level is that the space of spinors is a <a href="/wiki/Linear_representation" class="mw-redirect" title="Linear representation">linear representation</a> of the <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> of <a href="/wiki/Infinitesimal_rotation" class="mw-redirect" title="Infinitesimal rotation">infinitesimal rotations</a> of a <a href="/wiki/Spin_representation" title="Spin representation">certain kind</a>.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">"Spinors were first used under that name, by physicists, in the field of Quantum Mechanics. In their most general form, spinors were discovered in 1913 by the author of this work, in his investigations on the linear representations of simple groups*; they provide a linear representation of the group of rotations in a space with any number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}" /></span> of dimensions, each spinor having <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0fa1eebc5674c68166a18a335b39288ed2eb325" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.266ex; height:2.343ex;" alt="{\displaystyle 2^{\nu }}" /></span> components where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2\nu +1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mi>&#x3bd;<!-- ν --></mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2\nu +1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02fb584fa8bec4ac60d3eeb0b3ae8496199e1c00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.891ex; height:2.343ex;" alt="{\displaystyle n=2\nu +1}" /></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x3bd;<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2654d0632cb4b4cd30cfddb80a75ba7d743216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.395ex; height:2.176ex;" alt="{\displaystyle 2\nu }" /></span>."<sup id="cite_ref-cartan-1966-quote_5-0" class="reference"><a href="#cite_note-cartan-1966-quote-5"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> The star (*) refers to Cartan (1913).</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">More precisely, it is the <a href="/wiki/Fermion" title="Fermion">fermions</a> of <a href="/wiki/Spin-1/2" title="Spin-1/2">spin-1/2</a> that are described by spinors, which is true both in the relativistic and non-relativistic theory. The wavefunction of the non-relativistic electron has values in 2-component spinors transforming under 3-dimensional infinitesimal rotations. The relativistic <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a> for the electron is an equation for 4-component spinors transforming under infinitesimal Lorentz transformations, for which a substantially similar theory of spinors exists.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Formally, the spin group is the group of <a href="/wiki/Relative_homotopy_class" class="mw-redirect" title="Relative homotopy class">relative homotopy classes</a> with fixed endpoints in the rotation group.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">More formally, the space of spinors can be defined as an (<a href="/wiki/Irreducible_representation" title="Irreducible representation">irreducible</a>) representation of the spin group that does not factor through a representation of the rotation group (in general, the connected component of the identity of the <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a>).</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a> is a name for the Clifford algebra in an applied setting.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">The Pauli matrices correspond to <a href="/wiki/Angular_momentum_operator" title="Angular momentum operator">angular momenta</a> operators about the three coordinate axes. This makes them slightly atypical gamma matrices because in addition to their anticommutation relation they also satisfy commutation relations.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">The <a href="/wiki/Metric_signature" title="Metric signature">metric signature</a> relevant as well if we are concerned with real spinors. See <a href="/wiki/Spin_representation" title="Spin representation">spin representation</a>.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Whether the representation decomposes depends on whether they are regarded as representations of the spin group (or its Lie algebra), in which case it decomposes in even but not odd dimensions, or the Clifford algebra when it is the other way around. Other structures than this decomposition can also exist; precise criteria are covered at <a href="/wiki/Spin_representation" title="Spin representation">spin representation</a> and <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a>.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">The <a href="/wiki/TNB_frame" class="mw-redirect" title="TNB frame">TNB frame</a> of the ribbon defines a rotation continuously for each value of the arc length parameter.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">This is the set of 2×2 complex <a href="/wiki/Trace_(linear_algebra)" title="Trace (linear algebra)">traceless</a> <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">hermitian matrices</a>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">Except for a <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\pm 1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo>&#xb1;<!-- ± --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\pm 1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eeb8470fc14dbbc80503092df4c0c36d56e66ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.296ex; height:2.843ex;" alt="{\displaystyle \{\pm 1\}}" /></span> corresponding to the two different elements of the spin group that go to the same rotation.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">So the ambiguity in identifying the spinors themselves persists from the point of view of the group theory, and still depends on choices.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">The Clifford algebra can be given an even/odd <a href="/wiki/Graded_algebra" class="mw-redirect" title="Graded algebra">grading</a> from the parity of the degree in the gammas, and the spin group and its Lie algebra both lie in the even part. Whether here by "representation" we mean representations of the spin group or the Clifford algebra will affect the determination of their reducibility. Other structures than this splitting can also exist; precise criteria are covered at <a href="/wiki/Spin_representation" title="Spin representation">spin representation</a> and <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a>.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">More precisely, the electron starts out as two massless Weyl spinors, left and right-handed. Upon symmetry breaking, both gain a mass, and are coupled to form a Dirac spinor.</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">The matrices of dimension <i>N</i> × <i>N</i> in which only the elements of the left column are non-zero form a <i>left ideal</i> in the <i>N</i> × <i>N</i> matrix algebra <span class="texhtml">Mat(<i>N</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>)</span> – multiplying such a matrix <i>M</i> from the left with any <i>N</i> × <i>N</i> matrix <i>A</i> gives the result <i>AM</i> that is again an <i>N</i> × <i>N</i> matrix in which only the elements of the left column are non-zero. Moreover, it can be shown that it is a <i>minimal left ideal</i>.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">These are the right-handed Weyl spinors in two dimensions. For the left-handed Weyl spinors, the representation is via <span class="texhtml"><i>γ</i>(<i>ϕ</i>) = <i><span style="text-decoration:overline;">γ</span>ϕ</i></span>. The Majorana spinors are the common underlying real representation for the Weyl representations.</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">Since, for a <a href="/wiki/Skew_field" class="mw-redirect" title="Skew field">skew field</a>, the kernel of the representation must be trivial. So inequivalent representations can only arise via an <a href="/wiki/Automorphism" title="Automorphism">automorphism</a> of the skew-field. In this case, there are a pair of equivalent representations: <span class="texhtml"><i>γ</i>(<i>ϕ</i>) = <i>γϕ</i></span>, and its quaternionic conjugate <span class="texhtml"><i>γ</i>(<i>ϕ</i>) = <i>ϕ<span style="text-decoration:overline;">γ</span></i></span>.</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">The complex spinors are obtained as the representations of the <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> <span class="texhtml"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {H} \otimes _{\mathbb {R} }\mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">H</mi> </mrow> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {H} \otimes _{\mathbb {R} }\mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87333035eee79dcfb7042925014511dfc5247b4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.745ex; height:2.509ex;" alt="{\displaystyle \mathbb {H} \otimes _{\mathbb {R} }\mathbb {C} }" /></span> = Mat<sub>2</sub>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }" /></span>)</span>. These are considered in more detail in <a href="/wiki/Spinors_in_three_dimensions" title="Spinors in three dimensions">spinors in three dimensions</a>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=29" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626" /><div class="reflist reflist-columns references-column-width" style="column-width: 25em;"> <ol class="references"> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFCartan1913">Cartan 1913</a>.</span> </li> <li id="cite_note-cartan-1966-quote-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-cartan-1966-quote_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cartan-1966-quote_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Quote from Elie Cartan: <i>The Theory of Spinors</i>, Hermann, Paris, 1966, first sentence of the Introduction section at the beginning of the book, before page numbers start.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFRukhsan-Ul-Haq2016" class="citation journal cs1">Rukhsan-Ul-Haq (December 2016). <a rel="nofollow" class="external text" href="https://www.ias.ac.in/article/fulltext/reso/021/12/1105-1117">"Geometry of Spin: Clifford Algebraic Approach"</a>. <i>Resonance</i>. <b>21</b> (12): <span class="nowrap">1105–</span>1117. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs12045-016-0422-5">10.1007/s12045-016-0422-5</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:126053475">126053475</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Resonance&amp;rft.atitle=Geometry+of+Spin%3A+Clifford+Algebraic+Approach&amp;rft.volume=21&amp;rft.issue=12&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1105-%3C%2Fspan%3E1117&amp;rft.date=2016-12&amp;rft_id=info%3Adoi%2F10.1007%2Fs12045-016-0422-5&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A126053475%23id-name%3DS2CID&amp;rft.au=Rukhsan-Ul-Haq&amp;rft_id=https%3A%2F%2Fwww.ias.ac.in%2Farticle%2Ffulltext%2Freso%2F021%2F12%2F1105-1117&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">For details, see <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFEberlein1962" class="citation journal cs1"><a href="/wiki/William_Frederick_Eberlein" title="William Frederick Eberlein">Eberlein, W. F.</a> (1962). "The Spin Model of Euclidean 3-Space". <i>The American Mathematical Monthly</i>. <b>69</b> (7): <span class="nowrap">587–</span>598. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2310821">10.2307/2310821</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2310821">2310821</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=The+Spin+Model+of+Euclidean+3-Space&amp;rft.volume=69&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E587-%3C%2Fspan%3E598&amp;rft.date=1962&amp;rft_id=info%3Adoi%2F10.2307%2F2310821&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2310821%23id-name%3DJSTOR&amp;rft.aulast=Eberlein&amp;rft.aufirst=W.+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Named after <a href="/wiki/William_Kingdon_Clifford" title="William Kingdon Clifford">William Kingdon Clifford</a>,</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Named after <a href="/wiki/Ettore_Majorana" title="Ettore Majorana">Ettore Majorana</a>.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFrancisKosowsky2005" class="citation journal cs1">Francis, Matthew R.; Kosowsky, Arthur (2005) [20 March 2004]. "The construction of spinors in geometric algebra". <i>Annals of Physics</i>. <b>317</b> (2): <span class="nowrap">383–</span>409. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math-ph/0403040">math-ph/0403040</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005AnPhy.317..383F">2005AnPhy.317..383F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.aop.2004.11.008">10.1016/j.aop.2004.11.008</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119632876">119632876</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Physics&amp;rft.atitle=The+construction+of+spinors+in+geometric+algebra&amp;rft.volume=317&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E383-%3C%2Fspan%3E409&amp;rft.date=2005&amp;rft_id=info%3Aarxiv%2Fmath-ph%2F0403040&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119632876%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.aop.2004.11.008&amp;rft_id=info%3Abibcode%2F2005AnPhy.317..383F&amp;rft.aulast=Francis&amp;rft.aufirst=Matthew+R.&amp;rft.au=Kosowsky%2C+Arthur&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFWilczek2009" class="citation journal cs1"><a href="/wiki/Frank_Wilczek" title="Frank Wilczek">Wilczek, Frank</a> (2009). "Majorana returns". <i>Nature Physics</i>. <b>5</b> (9). <a href="/wiki/Macmillan_Publishers" title="Macmillan Publishers">Macmillan Publishers</a>: <span class="nowrap">614–</span>618. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009NatPh...5..614W">2009NatPh...5..614W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphys1380">10.1038/nphys1380</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1745-2473">1745-2473</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Physics&amp;rft.atitle=Majorana+returns&amp;rft.volume=5&amp;rft.issue=9&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E614-%3C%2Fspan%3E618&amp;rft.date=2009&amp;rft.issn=1745-2473&amp;rft_id=info%3Adoi%2F10.1038%2Fnphys1380&amp;rft_id=info%3Abibcode%2F2009NatPh...5..614W&amp;rft.aulast=Wilczek&amp;rft.aufirst=Frank&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFXu2015" class="citation journal cs1">Xu, Yang-Su; et&#160;al. (2015). "Discovery of a Weyl Fermion semimetal and topological Fermi arcs". <i>Science Magazine</i>. <b>349</b> (6248). <a href="/wiki/American_Association_for_the_Advancement_of_Science" title="American Association for the Advancement of Science">AAAS</a>: <span class="nowrap">613–</span>617. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1502.03807">1502.03807</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015Sci...349..613X">2015Sci...349..613X</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aaa9297">10.1126/science.aaa9297</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26184916">26184916</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206636457">206636457</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+Magazine&amp;rft.atitle=Discovery+of+a+Weyl+Fermion+semimetal+and+topological+Fermi+arcs&amp;rft.volume=349&amp;rft.issue=6248&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E613-%3C%2Fspan%3E617&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206636457%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2015Sci...349..613X&amp;rft_id=info%3Aarxiv%2F1502.03807&amp;rft.issn=0036-8075&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.aaa9297&amp;rft_id=info%3Apmid%2F26184916&amp;rft.aulast=Xu&amp;rft.aufirst=Yang-Su&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">Jean Hladik: <i>Spinors in Physics</i>, translated by J. M. Cole, Springer 1999, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-98647-0" title="Special:BookSources/978-0-387-98647-0">978-0-387-98647-0</a>, p. 3</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFarmelo2009" class="citation book cs1">Farmelo, Graham (2009). <i>The Strangest Man: The hidden life of Paul Dirac, quantum genius</i>. Faber &amp; Faber. p.&#160;430. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-571-22286-5" title="Special:BookSources/978-0-571-22286-5"><bdi>978-0-571-22286-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Strangest+Man%3A+The+hidden+life+of+Paul+Dirac%2C+quantum+genius&amp;rft.pages=430&amp;rft.pub=Faber+%26+Faber&amp;rft.date=2009&amp;rft.isbn=978-0-571-22286-5&amp;rft.aulast=Farmelo&amp;rft.aufirst=Graham&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><a href="#CITEREFCartan1913">Cartan 1913</a></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><a href="#CITEREFTomonaga1998">Tomonaga 1998</a>, p.&#160;129</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><a href="#CITEREFPauli1927">Pauli 1927</a>.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><a href="#CITEREFDirac1928">Dirac 1928</a>.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFJuvet1930" class="citation journal cs1 cs1-prop-foreign-lang-source">Juvet, G. (1930). "Opérateurs de Dirac et équations de Maxwell". <i><a href="/wiki/Commentarii_Mathematici_Helvetici" title="Commentarii Mathematici Helvetici">Commentarii Mathematici Helvetici</a></i> (in French). <b>2</b>: <span class="nowrap">225–</span>235. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01214461">10.1007/BF01214461</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121226923">121226923</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Commentarii+Mathematici+Helvetici&amp;rft.atitle=Op%C3%A9rateurs+de+Dirac+et+%C3%A9quations+de+Maxwell&amp;rft.volume=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E225-%3C%2Fspan%3E235&amp;rft.date=1930&amp;rft_id=info%3Adoi%2F10.1007%2FBF01214461&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121226923%23id-name%3DS2CID&amp;rft.aulast=Juvet&amp;rft.aufirst=G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFSauter1930" class="citation journal cs1">Sauter, F. (1930). "Lösung der Diracschen Gleichungen ohne Spezialisierung der Diracschen Operatoren". <i>Zeitschrift für Physik</i>. <b>63</b> (<span class="nowrap">11–</span>12): <span class="nowrap">803–</span>814. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1930ZPhy...63..803S">1930ZPhy...63..803S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01339277">10.1007/BF01339277</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122940202">122940202</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Zeitschrift+f%C3%BCr+Physik&amp;rft.atitle=L%C3%B6sung+der+Diracschen+Gleichungen+ohne+Spezialisierung+der+Diracschen+Operatoren&amp;rft.volume=63&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E11%E2%80%93%3C%2Fspan%3E12&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E803-%3C%2Fspan%3E814&amp;rft.date=1930&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122940202%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01339277&amp;rft_id=info%3Abibcode%2F1930ZPhy...63..803S&amp;rft.aulast=Sauter&amp;rft.aufirst=F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></span> </li> <li id="cite_note-lounesto-1995-p151-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-lounesto-1995-p151_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-lounesto-1995-p151_35-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Pertti Lounesto: <i><a href="/wiki/Albert_Crumeyrolle" title="Albert Crumeyrolle">Crumeyrolle</a>'s bivectors and spinors</i>, pp.&#160;137–166, In: Rafał Abłamowicz, Pertti Lounesto (eds.): <i>Clifford algebras and spinor structures: A Special Volume Dedicated to the Memory of Albert Crumeyrolle (1919–1992)</i>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7923-3366-7" title="Special:BookSources/0-7923-3366-7">0-7923-3366-7</a>, 1995, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DnyUDg483kEC&amp;pg=PA151">p. 151</a></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">See also: Pertti Lounesto: <i>Clifford algebras and spinors</i>, London Mathematical Society Lecture Notes Series 286, Cambridge University Press, Second Edition 2001, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-00551-7" title="Special:BookSources/978-0-521-00551-7">978-0-521-00551-7</a>, p.&#160;52</span> </li> <li id="cite_note-lounesto-2001-p148f-p327f-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-lounesto-2001-p148f-p327f_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-lounesto-2001-p148f-p327f_38-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Pertti Lounesto: <i>Clifford algebras and spinors</i>, London Mathematical Society Lecture Notes Series 286, Cambridge University Press, Second Edition 2001, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-00551-7" title="Special:BookSources/978-0-521-00551-7">978-0-521-00551-7</a>, p.&#160;148&#160;f. and <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DTecU6UpkSgC&amp;pg=PA327">p. 327 f.</a></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">D. Hestenes: <i>Space–Time Algebra</i>, Gordon and Breach, New York, 1966, 1987, 1992</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHestenes1967" class="citation journal cs1">Hestenes, D. (1967). <a rel="nofollow" class="external text" href="https://davidhestenes.net/geocalc/pdf/RealSpinorFields.pdf">"Real spinor fields"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Journal_of_Mathematical_Physics" title="Journal of Mathematical Physics">J. Math. Phys.</a></i> <b>8</b> (4): <span class="nowrap">798–</span>808. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1967JMP.....8..798H">1967JMP.....8..798H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1705279">10.1063/1.1705279</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13371668">13371668</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Math.+Phys.&amp;rft.atitle=Real+spinor+fields&amp;rft.volume=8&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E798-%3C%2Fspan%3E808&amp;rft.date=1967&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13371668%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1063%2F1.1705279&amp;rft_id=info%3Abibcode%2F1967JMP.....8..798H&amp;rft.aulast=Hestenes&amp;rft.aufirst=D.&amp;rft_id=https%3A%2F%2Fdavidhestenes.net%2Fgeocalc%2Fpdf%2FRealSpinorFields.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">This construction is due to Cartan (1913). The treatment here is based on <a href="#CITEREFChevalley1996">Chevalley (1996)</a>.</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">One source for this subsection is <a href="#CITEREFFultonHarris1991">Fulton &amp; Harris (1991)</a>.</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">Jurgen Jost, "Riemannian Geometry and Geometric Analysis" (2002) Springer-Verlag Universitext <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-42627-2" title="Special:BookSources/3-540-42627-2">3-540-42627-2</a>. <i>See chapter 1.</i></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text">Via the even-graded Clifford algebra.</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><a href="#CITEREFLawsonMichelsohn1989">Lawson &amp; Michelsohn 1989</a>, Appendix D.</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><a href="#CITEREFBrauerWeyl1935">Brauer &amp; Weyl 1935</a>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Works_cited">Works cited</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=30" title="Edit section: Works cited"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBrauerWeyl1935" class="citation journal cs1"><a href="/wiki/Richard_Brauer" title="Richard Brauer">Brauer, Richard</a>; <a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl, Hermann</a> (1935). "Spinors in <i>n</i> dimensions". <i>American Journal of Mathematics</i>. <b>57</b> (2). The Johns Hopkins University Press: <span class="nowrap">425–</span>449. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2371218">10.2307/2371218</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2371218">2371218</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Mathematics&amp;rft.atitle=Spinors+in+n+dimensions&amp;rft.volume=57&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E425-%3C%2Fspan%3E449&amp;rft.date=1935&amp;rft_id=info%3Adoi%2F10.2307%2F2371218&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2371218%23id-name%3DJSTOR&amp;rft.aulast=Brauer&amp;rft.aufirst=Richard&amp;rft.au=Weyl%2C+Hermann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFCartan1913" class="citation journal cs1"><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Cartan, Élie</a> (1913). <a rel="nofollow" class="external text" href="http://archive.numdam.org/article/BSMF_1913__41__53_1.pdf">"Les groupes projectifs qui ne laissent invariante aucune multiplicité plane"</a> <span class="cs1-format">(PDF)</span>. <i>Bull. Soc. Math. Fr</i>. <b>41</b>: <span class="nowrap">53–</span>96. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.24033%2Fbsmf.916">10.24033/bsmf.916</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bull.+Soc.+Math.+Fr.&amp;rft.atitle=Les+groupes+projectifs+qui+ne+laissent+invariante+aucune+multiplicit%C3%A9+plane&amp;rft.volume=41&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E53-%3C%2Fspan%3E96&amp;rft.date=1913&amp;rft_id=info%3Adoi%2F10.24033%2Fbsmf.916&amp;rft.aulast=Cartan&amp;rft.aufirst=%C3%89lie&amp;rft_id=http%3A%2F%2Farchive.numdam.org%2Farticle%2FBSMF_1913&#95;_41&#95;_53_1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFChevalley1996" class="citation book cs1"><a href="/wiki/Claude_Chevalley" title="Claude Chevalley">Chevalley, Claude</a> (1996) [1954]. <i>The Algebraic Theory of Spinors and Clifford Algebras</i> (reprint&#160;ed.). Columbia University Press (1954); Springer (1996). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-57063-9" title="Special:BookSources/978-3-540-57063-9"><bdi>978-3-540-57063-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Algebraic+Theory+of+Spinors+and+Clifford+Algebras&amp;rft.edition=reprint&amp;rft.pub=Columbia+University+Press+%281954%29%3B+Springer+%281996%29&amp;rft.date=1996&amp;rft.isbn=978-3-540-57063-9&amp;rft.aulast=Chevalley&amp;rft.aufirst=Claude&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFDirac1928" class="citation journal cs1"><a href="/wiki/Paul_Dirac" title="Paul Dirac">Dirac, Paul M.</a> (1928). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1928.0023">"The quantum theory of the electron"</a>. <i>Proceedings of the Royal Society of London A</i>. <b>117</b> (778): <span class="nowrap">610–</span>624. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1928RSPSA.117..610D">1928RSPSA.117..610D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1928.0023">10.1098/rspa.1928.0023</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/94981">94981</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Society+of+London+A&amp;rft.atitle=The+quantum+theory+of+the+electron&amp;rft.volume=117&amp;rft.issue=778&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E610-%3C%2Fspan%3E624&amp;rft.date=1928&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F94981%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1098%2Frspa.1928.0023&amp;rft_id=info%3Abibcode%2F1928RSPSA.117..610D&amp;rft.aulast=Dirac&amp;rft.aufirst=Paul+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspa.1928.0023&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFultonHarris1991" class="citation book cs1"><a href="/wiki/William_Fulton_(mathematician)" title="William Fulton (mathematician)">Fulton, William</a>; <a href="/wiki/Joe_Harris_(mathematician)" title="Joe Harris (mathematician)">Harris, Joe</a> (1991). <i>Representation Theory: A first course</i>. <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>, Readings in Mathematics. Vol.&#160;129. New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4612-0979-9">10.1007/978-1-4612-0979-9</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-97495-4" title="Special:BookSources/0-387-97495-4"><bdi>0-387-97495-4</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1153249">1153249</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Representation+Theory%3A+A+first+course&amp;rft.place=New+York&amp;rft.series=Graduate+Texts+in+Mathematics%2C+Readings+in+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1991&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1153249%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4612-0979-9&amp;rft.isbn=0-387-97495-4&amp;rft.aulast=Fulton&amp;rft.aufirst=William&amp;rft.au=Harris%2C+Joe&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLawsonMichelsohn1989" class="citation book cs1"><a href="/wiki/H._Blaine_Lawson" title="H. Blaine Lawson">Lawson, H. Blaine</a>; <a href="/wiki/Marie-Louise_Michelsohn" title="Marie-Louise Michelsohn">Michelsohn, Marie-Louise</a> (1989). <i>Spin Geometry</i>. Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-691-08542-0" title="Special:BookSources/0-691-08542-0"><bdi>0-691-08542-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spin+Geometry&amp;rft.pub=Princeton+University+Press&amp;rft.date=1989&amp;rft.isbn=0-691-08542-0&amp;rft.aulast=Lawson&amp;rft.aufirst=H.+Blaine&amp;rft.au=Michelsohn%2C+Marie-Louise&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPauli1927" class="citation journal cs1"><a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Pauli, Wolfgang</a> (1927). "Zur Quantenmechanik des magnetischen Elektrons". <i>Zeitschrift für Physik</i>. <b>43</b> (<span class="nowrap">9–</span>10): <span class="nowrap">601–</span>632. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1927ZPhy...43..601P">1927ZPhy...43..601P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01397326">10.1007/BF01397326</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:128228729">128228729</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Zeitschrift+f%C3%BCr+Physik&amp;rft.atitle=Zur+Quantenmechanik+des+magnetischen+Elektrons&amp;rft.volume=43&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E9%E2%80%93%3C%2Fspan%3E10&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E601-%3C%2Fspan%3E632&amp;rft.date=1927&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A128228729%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01397326&amp;rft_id=info%3Abibcode%2F1927ZPhy...43..601P&amp;rft.aulast=Pauli&amp;rft.aufirst=Wolfgang&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFTomonaga1998" class="citation book cs1">Tomonaga, Sin-Itiro (1998). "Lecture 7: The quantity which is neither vector nor tensor". <i>The Story of Spin</i>. University of Chicago Press. p.&#160;129. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-226-80794-0" title="Special:BookSources/0-226-80794-0"><bdi>0-226-80794-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Lecture+7%3A+The+quantity+which+is+neither+vector+nor+tensor&amp;rft.btitle=The+Story+of+Spin&amp;rft.pages=129&amp;rft.pub=University+of+Chicago+Press&amp;rft.date=1998&amp;rft.isbn=0-226-80794-0&amp;rft.aulast=Tomonaga&amp;rft.aufirst=Sin-Itiro&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spinor&amp;action=edit&amp;section=31" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFCartan1981" class="citation book cs1"><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Cartan, Élie</a> (1981) [1966]. <i>The Theory of Spinors</i> (reprint&#160;ed.). Paris, FR: Hermann (1966); Dover Publications (1981). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-64070-9" title="Special:BookSources/978-0-486-64070-9"><bdi>978-0-486-64070-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+Spinors&amp;rft.place=Paris%2C+FR&amp;rft.edition=reprint&amp;rft.pub=Hermann+%281966%29%3B+Dover+Publications+%281981%29&amp;rft.date=1981&amp;rft.isbn=978-0-486-64070-9&amp;rft.aulast=Cartan&amp;rft.aufirst=%C3%89lie&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFGilkey1984" class="citation book cs1"><a href="/wiki/Peter_B._Gilkey" title="Peter B. Gilkey">Gilkey, Peter B.</a> (1984). <a rel="nofollow" class="external text" href="http://www.emis.de/monographs/gilkey/index.html"><i>Invariance Theory: The heat equation, and the Atiyah–Singer index theorem</i></a>. Publish or Perish. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-914098-20-9" title="Special:BookSources/0-914098-20-9"><bdi>0-914098-20-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Invariance+Theory%3A+The+heat+equation%2C+and+the+Atiyah%E2%80%93Singer+index+theorem&amp;rft.pub=Publish+or+Perish&amp;rft.date=1984&amp;rft.isbn=0-914098-20-9&amp;rft.aulast=Gilkey&amp;rft.aufirst=Peter+B.&amp;rft_id=http%3A%2F%2Fwww.emis.de%2Fmonographs%2Fgilkey%2Findex.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHarvey1990" class="citation book cs1">Harvey, F. Reese (1990). <i>Spinors and Calibrations</i>. Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-329650-4" title="Special:BookSources/978-0-12-329650-4"><bdi>978-0-12-329650-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spinors+and+Calibrations&amp;rft.pub=Academic+Press&amp;rft.date=1990&amp;rft.isbn=978-0-12-329650-4&amp;rft.aulast=Harvey&amp;rft.aufirst=F.+Reese&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHitchin1974" class="citation journal cs1"><a href="/wiki/Nigel_Hitchin" title="Nigel Hitchin">Hitchin, Nigel J.</a> (1974). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0001-8708%2874%2990021-8">"Harmonic spinors"</a>. <i><a href="/wiki/Advances_in_Mathematics" title="Advances in Mathematics">Advances in Mathematics</a></i>. <b>14</b>: <span class="nowrap">1–</span>55. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0001-8708%2874%2990021-8">10.1016/0001-8708(74)90021-8</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0358873">0358873</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Mathematics&amp;rft.atitle=Harmonic+spinors&amp;rft.volume=14&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E55&amp;rft.date=1974&amp;rft_id=info%3Adoi%2F10.1016%2F0001-8708%2874%2990021-8&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D358873%23id-name%3DMR&amp;rft.aulast=Hitchin&amp;rft.aufirst=Nigel+J.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0001-8708%252874%252990021-8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPenroseRindler1988" class="citation book cs1"><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose, Roger</a>; Rindler, W. (1988). <i>Spinor and twistor methods in space-time geometry</i>. Spinors and Space-Time. Vol.&#160;2. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-34786-6" title="Special:BookSources/0-521-34786-6"><bdi>0-521-34786-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spinor+and+twistor+methods+in+space-time+geometry&amp;rft.series=Spinors+and+Space-Time&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1988&amp;rft.isbn=0-521-34786-6&amp;rft.aulast=Penrose&amp;rft.aufirst=Roger&amp;rft.au=Rindler%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpinor" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Tensors176" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tensors" title="Template:Tensors"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tensors" title="Template talk:Tensors"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tensors" title="Special:EditPage/Template:Tensors"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Tensors176" style="font-size:114%;margin:0 4em"><a href="/wiki/Tensor" title="Tensor">Tensors</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i><a href="/wiki/Glossary_of_tensor_theory" title="Glossary of tensor theory">Glossary of tensor theory</a></i></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scope</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Mathematics" title="Mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinate_system" title="Coordinate system">Coordinate system</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Dyadics" title="Dyadics">Dyadic algebra</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">Exterior calculus</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Tensor_algebra" title="Tensor algebra">Tensor algebra</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><div class="hlist"><ul><li><a href="/wiki/Physics" title="Physics">Physics</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_vision" title="Computer vision">Computer vision</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Transport_phenomena" title="Transport phenomena">Transport phenomena</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_index_notation" title="Abstract index notation">Abstract index notation</a></li> <li><a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a></li> <li><a href="/wiki/Index_notation" title="Index notation">Index notation</a></li> <li><a href="/wiki/Multi-index_notation" title="Multi-index notation">Multi-index notation</a></li> <li><a href="/wiki/Penrose_graphical_notation" title="Penrose graphical notation">Penrose graphical notation</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Tetrad_(index_notation)" class="mw-redirect" title="Tetrad (index notation)">Tetrad (index notation)</a></li> <li><a href="/wiki/Van_der_Waerden_notation" title="Van der Waerden notation">Van der Waerden notation</a></li> <li><a href="/wiki/Voigt_notation" title="Voigt notation">Voigt notation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tensor<br />definitions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tensor_(intrinsic_definition)" title="Tensor (intrinsic definition)">Tensor (intrinsic definition)</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a></li> <li><a href="/wiki/Tensor_density" title="Tensor density">Tensor density</a></li> <li><a href="/wiki/Tensors_in_curvilinear_coordinates" title="Tensors in curvilinear coordinates">Tensors in curvilinear coordinates</a></li> <li><a href="/wiki/Mixed_tensor" title="Mixed tensor">Mixed tensor</a></li> <li><a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">Antisymmetric tensor</a></li> <li><a href="/wiki/Symmetric_tensor" title="Symmetric tensor">Symmetric tensor</a></li> <li><a href="/wiki/Tensor_operator" title="Tensor operator">Tensor operator</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor bundle</a></li> <li><a href="/wiki/Two-point_tensor" title="Two-point tensor">Two-point tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Exterior_covariant_derivative" title="Exterior covariant derivative">Exterior covariant derivative</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">Exterior product</a></li> <li><a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a></li> <li><a href="/wiki/Symmetrization" title="Symmetrization">Symmetrization</a></li> <li><a href="/wiki/Tensor_contraction" title="Tensor contraction">Tensor contraction</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a> (2nd-order tensors)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related<br />abstractions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine connection</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Cartan_formalism_(physics)" class="mw-redirect" title="Cartan formalism (physics)">Cartan formalism (physics)</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Connection form</a></li> <li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Dimension" title="Dimension">Dimension</a></li> <li><a href="/wiki/Exterior_form" class="mw-redirect" title="Exterior form">Exterior form</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber bundle</a></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Pseudotensor" title="Pseudotensor">Pseudotensor</a></li> <li><a class="mw-selflink selflink">Spinor</a></li> <li><a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notable tensors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Mathematics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a></li> <li><a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol">Levi-Civita symbol</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></li> <li><a href="/wiki/Nonmetricity_tensor" title="Nonmetricity tensor">Nonmetricity tensor</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></li> <li><a href="/wiki/Weyl_tensor" title="Weyl tensor">Weyl tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Physics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Moment_of_inertia#Inertia_tensor" title="Moment of inertia">Moment of inertia</a></li> <li><a href="/wiki/Angular_momentum#Angular_momentum_in_relativistic_mechanics" title="Angular momentum">Angular momentum tensor</a></li> <li><a href="/wiki/Spin_tensor" title="Spin tensor">Spin tensor</a></li> <li><a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a></li> <li><a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress–energy tensor</a></li> <li><a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a></li> <li><a href="/wiki/Electromagnetic_tensor" title="Electromagnetic tensor">EM tensor</a></li> <li><a href="/wiki/Gluon_field_strength_tensor" title="Gluon field strength tensor">Gluon field strength tensor</a></li> <li><a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">Metric tensor (GR)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematician" title="Mathematician">Mathematicians</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/Elwin_Bruno_Christoffel" title="Elwin Bruno Christoffel">Elwin Bruno Christoffel</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a></li> <li><a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a></li> <li><a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Tullio Levi-Civita</a></li> <li><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Gregorio Ricci-Curbastro</a></li> <li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></li> <li><a href="/wiki/Jan_Arnoldus_Schouten" title="Jan Arnoldus Schouten">Jan Arnoldus Schouten</a></li> <li><a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5c6f46dcf‐9rq49 Cached time: 20250331032841 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.835 seconds Real time usage: 1.036 seconds Preprocessor visited node count: 12282/1000000 Post‐expand include size: 123771/2097152 bytes Template argument size: 25771/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 116692/5000000 bytes Lua time usage: 0.368/10.000 seconds Lua memory usage: 8563795/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 725.160 1 -total 26.27% 190.512 2 Template:Reflist 17.66% 128.042 147 Template:Math 16.05% 116.378 13 Template:Cite_journal 13.50% 97.885 3 Template:Navbox 9.87% 71.554 1 Template:Tensors 9.83% 71.259 1 Template:Short_description 6.25% 45.320 2 Template:Pagetype 5.14% 37.293 1 Template:NumBlk 5.09% 36.944 162 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:29276:|#|:idhash:canonical and timestamp 20250331032841 and revision id 1272816164. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://auth.wikimedia.org/loginwiki/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Spinor&amp;oldid=1272816164">https://en.wikipedia.org/w/index.php?title=Spinor&amp;oldid=1272816164</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Spinors" title="Category:Spinors">Spinors</a></li><li><a href="/wiki/Category:Rotation_in_three_dimensions" title="Category:Rotation in three dimensions">Rotation in three dimensions</a></li><li><a href="/wiki/Category:Quantum_mechanics" title="Category:Quantum mechanics">Quantum mechanics</a></li><li><a href="/wiki/Category:Quantum_field_theory" title="Category:Quantum field theory">Quantum field theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_auto_scaled_images" title="Category:Pages using multiple image with auto scaled images">Pages using multiple image with auto scaled images</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_July_2022" title="Category:Wikipedia articles needing clarification from July 2022">Wikipedia articles needing clarification from July 2022</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_October_2023" title="Category:Articles with unsourced statements from October 2023">Articles with unsourced statements from October 2023</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2024" title="Category:Articles with unsourced statements from February 2024">Articles with unsourced statements from February 2024</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 30 January 2025, at 08:42<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Spinor&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Spinor</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>23 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5f6c89f4bf-8p9t9","wgBackendResponseTime":273,"wgPageParseReport":{"limitreport":{"cputime":"0.835","walltime":"1.036","ppvisitednodes":{"value":12282,"limit":1000000},"postexpandincludesize":{"value":123771,"limit":2097152},"templateargumentsize":{"value":25771,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":116692,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 725.160 1 -total"," 26.27% 190.512 2 Template:Reflist"," 17.66% 128.042 147 Template:Math"," 16.05% 116.378 13 Template:Cite_journal"," 13.50% 97.885 3 Template:Navbox"," 9.87% 71.554 1 Template:Tensors"," 9.83% 71.259 1 Template:Short_description"," 6.25% 45.320 2 Template:Pagetype"," 5.14% 37.293 1 Template:NumBlk"," 5.09% 36.944 162 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.368","limit":"10.000"},"limitreport-memusage":{"value":8563795,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBrauerWeyl1935\"] = 1,\n [\"CITEREFCartan1913\"] = 1,\n [\"CITEREFCartan1981\"] = 1,\n [\"CITEREFChevalley1996\"] = 1,\n [\"CITEREFDirac1928\"] = 1,\n [\"CITEREFEberlein1962\"] = 1,\n [\"CITEREFFarmelo2009\"] = 1,\n [\"CITEREFFrancisKosowsky2005\"] = 1,\n [\"CITEREFFultonHarris1991\"] = 1,\n [\"CITEREFGilkey1984\"] = 1,\n [\"CITEREFHarvey1990\"] = 1,\n [\"CITEREFHestenes1967\"] = 1,\n [\"CITEREFHitchin1974\"] = 1,\n [\"CITEREFJuvet1930\"] = 1,\n [\"CITEREFLawsonMichelsohn1989\"] = 1,\n [\"CITEREFPauli1927\"] = 1,\n [\"CITEREFPenroseRindler1988\"] = 1,\n [\"CITEREFRukhsan-Ul-Haq2016\"] = 1,\n [\"CITEREFSauter1930\"] = 1,\n [\"CITEREFTomonaga1998\"] = 1,\n [\"CITEREFWilczek2009\"] = 1,\n [\"CITEREFXu2015\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 2,\n [\"Abs\"] = 1,\n [\"Block indent\"] = 2,\n [\"Blockquote\"] = 2,\n [\"Citation needed\"] = 1,\n [\"Cite book\"] = 9,\n [\"Cite journal\"] = 13,\n [\"Clarification needed\"] = 1,\n [\"Cn\"] = 1,\n [\"Colend\"] = 1,\n [\"Cols\"] = 1,\n [\"Efn\"] = 21,\n [\"EquationRef\"] = 1,\n [\"Further\"] = 1,\n [\"Harvnb\"] = 7,\n [\"Harvtxt\"] = 2,\n [\"Hatnote\"] = 1,\n [\"IPAc-en\"] = 1,\n [\"ISBN\"] = 3,\n [\"Isbn\"] = 2,\n [\"Main\"] = 2,\n [\"Math\"] = 147,\n [\"Multiple image\"] = 1,\n [\"Mvar\"] = 5,\n [\"Notelist\"] = 1,\n [\"NumBlk\"] = 1,\n [\"Overline\"] = 7,\n [\"Reflist\"] = 1,\n [\"Short description\"] = 1,\n [\"Tensors\"] = 1,\n [\"′\"] = 30,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-5c6f46dcf-9rq49","timestamp":"20250331032841","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Spinor","url":"https:\/\/en.wikipedia.org\/wiki\/Spinor","sameAs":"http:\/\/www.wikidata.org\/entity\/Q604907","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q604907","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-12-17T00:13:07Z","dateModified":"2025-01-30T08:42:01Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/c\/c1\/Spinor_on_the_circle.png","headline":"non-tensorial representation of the spin group; represents fermions in physics"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10