CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 180 results for author: <span class="mathjax">Joshi, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Joshi%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Joshi, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Joshi%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Joshi, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Joshi%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Joshi%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Joshi%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Joshi%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Joshi%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10717">arXiv:2502.10717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.10717">pdf</a>, <a href="https://arxiv.org/format/2502.10717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Constraining Statistical Isotropy using 21cm Power Spectrum and Bispectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=kothari%2C+R">Rahul kothari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10717v1-abstract-short" style="display: inline;"> The Cosmological Principle states that the universe is statistically isotropic and homogeneous on large length scales, typically $\gtrsim 70$Mpc. A detection of significant deviation would help us falsify the simplest models of inflation. In this regard, there are potential indications of departures from this principle, e.g., observations from WMAP and Planck show signs of a preferred direction in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10717v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10717v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10717v1-abstract-full" style="display: none;"> The Cosmological Principle states that the universe is statistically isotropic and homogeneous on large length scales, typically $\gtrsim 70$Mpc. A detection of significant deviation would help us falsify the simplest models of inflation. In this regard, there are potential indications of departures from this principle, e.g., observations from WMAP and Planck show signs of a preferred direction in the temperature fluctuations known as hemispherical asymmetry in CMB. Phenomenologically, this has been studied using a dipole modulation model. In addition to this, a number of possible mechanisms have been proposed in the literature to explain this anomaly. Some of these scenarios generate dipolar asymmetry or predict quadrupolar asymmetry in the primordial power spectrum of curvature perturbations. In this paper, we study both these asymmetries. To fulfill the objective, we employ 21cm intensity mapping technique post during post-reionization era, i.e., $z\lesssim 7$. We apply Fisher formalism to constrain dipolar and quadrupolar anisotropy parameters using both 21cm power and bispectra and give forecasts for three intensity mapping surveys: SKA-Mid, HIRAX and PUMA. Although 21cm intensity mapping is a very promising cosmological probe, the signals are severely affected by foregrounds. To mitigate the foreground effects, we use foreground avoidance approach. For the interferometer mode of operation, we also include the wedge effect. From our analysis, we find that PUMA, on account of its high redshift range is able to constrain both dipolar and quadrupolar parameters to better than $\sim 10^{-3}$ for redshifts $z \gtrsim 1$. This is one order of magnitude better constraints as compared to those provided by the latest CMB surveys. We also find that as compared to power spectrum, the constraining power of bispectrum is more sensitive towards foregrounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10717v1-abstract-full').style.display = 'none'; document.getElementById('2502.10717v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08969">arXiv:2501.08969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08969">pdf</a>, <a href="https://arxiv.org/format/2501.08969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Properties of high-redshift Type II supernovae discovered by the JADES transient survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Moriya%2C+T+J">Takashi J. Moriya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulter%2C+D+A">David A. Coulter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeCoursey%2C+C">Christa DeCoursey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pierel%2C+J+D+R">Justin D. R. Pierel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hainline%2C+K">Kevin Hainline</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siebert%2C+M+R">Matthew R. Siebert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">Armin Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egami%2C+E">Eiichi Egami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomez%2C+S">Sebastian Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quimby%2C+R+M">Robert M. Quimby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O+D">Ori D. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Engesser%2C+M">Michael Engesser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+F">Fengwu Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+W">Wenlei Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zenati%2C+Y">Yossef Zenati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gezari%2C+S">Suvi Gezari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+A">Bhavin A. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shahbandeh%2C+M">Melissa Shahbandeh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strolger%2C+L">Louis-Gregory Strolger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Q">Qinan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alberts%2C+S">Stacey Alberts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhatawdekar%2C+R">Rachana Bhatawdekar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunker%2C+A+J">Andrew J. Bunker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rinaldi%2C+P">Pierluigi Rinaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robertson%2C+B+E">Brant E. Robertson</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08969v1-abstract-short" style="display: inline;"> In this work we estimate the explosion and progenitor properties of six Type II supernovae (SNe) at 0.675 &lt;= z &lt;= 3.61 discovered by the JWST Advanced Deep Extragalactic Survey (JADES) transient survey by modeling their light curves. This high-redshift Type II SN sample allows us to compare low-redshift Type II SNe to their high-redshift counterparts. Two Type II SNe are found to have high explosi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08969v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08969v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08969v1-abstract-full" style="display: none;"> In this work we estimate the explosion and progenitor properties of six Type II supernovae (SNe) at 0.675 &lt;= z &lt;= 3.61 discovered by the JWST Advanced Deep Extragalactic Survey (JADES) transient survey by modeling their light curves. This high-redshift Type II SN sample allows us to compare low-redshift Type II SNe to their high-redshift counterparts. Two Type II SNe are found to have high explosion energies of 3e51 erg, while the other four Type II SNe are estimated to have typical explosion energies found in the local Universe [(0.5-2)e51 erg]. The fraction of Type II SNe with high explosion energies might be higher at high redshifts because of, e.g., lower metallicity, but it is still difficult to draw a firm conclusion because of the small sample size and potential observational biases. We found it difficult to constrain the progenitor masses for Type II SNe in our sample because of the sparse light-curve data. We found two Type II SN light curves can be better reproduced by introducing confined, dense circumstellar matter. Thus, the confined, dense circumstellar matter frequently observed in nearby Type II SNe is likely to exist in Type II SNe at high redshifts as well. Two Type II SNe are estimated to have high host galaxy extinctions, showing the ability of JWST to discover dust-obscured SNe at high redshifts. More high-redshift Type II SNe are required to investigate the differences in the properties of Type II SNe near and far, but here we show the first glimpse into the high-redshift population of Type II SNe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08969v1-abstract-full').style.display = 'none'; document.getElementById('2501.08969v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures, 2 tables, submitted to Publications of the Astronomical Society of Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05513">arXiv:2501.05513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05513">pdf</a>, <a href="https://arxiv.org/format/2501.05513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a likely Type II SN at $z$=3.6 with JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coulter%2C+D+A">D. A. Coulter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pierel%2C+J+D+R">J. D. R. Pierel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeCoursey%2C+C">C. DeCoursey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moriya%2C+T+J">T. J. Moriya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siebert%2C+M+R">M. R. Siebert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+A">B. A. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Engesser%2C+M">M. Engesser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">A. Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egami%2C+E">E. Egami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shahbandeh%2C+M">M. Shahbandeh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+W">W. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O+D">O. D. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strolger%2C+L+G">L. G. Strolger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zenati%2C+Y">Y. Zenati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunker%2C+A+J">A. J. Bunker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cargile%2C+P+A">P. A. Cargile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curti%2C+M">M. Curti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eisenstein%2C+D+J">D. J. Eisenstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gezari%2C+S">S. Gezari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomez%2C+S">S. Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guolo%2C+M">M. Guolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hainline%2C+K">K. Hainline</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jencson%2C+J">J. Jencson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+D">B. D. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karmen%2C+M">M. Karmen</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05513v2-abstract-short" style="display: inline;"> Transient astronomy in the early, high-redshift (z &gt; 3) Universe is an unexplored regime that offers the possibility of probing the first stars and the Epoch of Reionization. During Cycles 1 and 2 of the James Webb Space Telescope (JWST), the JWST Advanced Deep Extragalactic Survey (JADES) program enabled one of the first searches for transients in deep images (~30 AB mag) over a relatively wide a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05513v2-abstract-full').style.display = 'inline'; document.getElementById('2501.05513v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05513v2-abstract-full" style="display: none;"> Transient astronomy in the early, high-redshift (z &gt; 3) Universe is an unexplored regime that offers the possibility of probing the first stars and the Epoch of Reionization. During Cycles 1 and 2 of the James Webb Space Telescope (JWST), the JWST Advanced Deep Extragalactic Survey (JADES) program enabled one of the first searches for transients in deep images (~30 AB mag) over a relatively wide area (25 arcmin^2). One transient, AT 2023adsv, was discovered with an F200W magnitude of 28.04 AB mag, and subsequent JWST observations revealed that the transient is a likely supernova (SN) in a host with z_spec = 3.613 +/- 0.001 and an inferred metallicity at the position of the SN of Z_* = 0.3 +/- 0.1 Z_{\odot}. At this redshift, the first detections in F115W and F150W show that AT 2023adsv had bright rest-frame ultraviolet flux at the time of discovery. The multi-band light curve of AT 2023adsv is best matched by a template of an SN IIP with a peak absolute magnitude of M_B ~ -18.3 AB mag. We find a good match to a 20 M_{\odot} red supergiant progenitor star with an explosion energy of 2.0x10^51 ergs, likely higher than normally observed in the local Universe, but consistent with SNe IIP drawn from local, lower metallicity environments. AT 2023adsv is the most distant photometrically classified SN IIP yet discovered with a spectroscopic redshift measurement, and may represent a global shift in SNe IIP properties as a function of redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05513v2-abstract-full').style.display = 'none'; document.getElementById('2501.05513v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02274">arXiv:2501.02274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.02274">pdf</a>, <a href="https://arxiv.org/format/2501.02274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Solar Ultraviolet Imaging Telescope on board Aditya-L1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tripathi%2C+D">Durgesh Tripathi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramaprakash%2C+A+N">A. N. Ramaprakash</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padinhatteeri%2C+S">Sreejith Padinhatteeri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarkar%2C+J">Janmejoy Sarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burse%2C+M">Mahesh Burse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+A">Anurag Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kesharwani%2C+R">Ravi Kesharwani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sinha%2C+S">Sakya Sinha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhushan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deogaonkar%2C+R">Rushikesh Deogaonkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roy%2C+S">Soumya Roy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nived%2C+V+N">V. N. Nived</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gopalakrishnan%2C+R">Rahul Gopalakrishnan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+A">Akshay Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khan%2C+A">Aafaque Khan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+A">Avyarthana Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rajarshi%2C+C">Chaitanya Rajarshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Modi%2C+D">Deepa Modi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+G">Ghanshyam Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yadav%2C+R">Reena Yadav</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Varma%2C+M">Manoj Varma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bayanna%2C+R">Raja Bayanna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chordia%2C+P">Pravin Chordia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karmakar%2C+M">Mintu Karmakar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abraham%2C+L">Linn Abraham</a> , et al. (53 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02274v2-abstract-short" style="display: inline;"> The Solar Ultraviolet Imaging Telescope (SUIT) is an instrument on the Aditya-L1 mission of the Indian Space Research Organization (ISRO) launched on September 02, 2023. SUIT continuously provides, near-simultaneous full-disk and region-of-interest images of the Sun, slicing through the photosphere and chromosphere and covering a field of view up to 1.5 solar radii. For this purpose, SUIT uses 11&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02274v2-abstract-full').style.display = 'inline'; document.getElementById('2501.02274v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02274v2-abstract-full" style="display: none;"> The Solar Ultraviolet Imaging Telescope (SUIT) is an instrument on the Aditya-L1 mission of the Indian Space Research Organization (ISRO) launched on September 02, 2023. SUIT continuously provides, near-simultaneous full-disk and region-of-interest images of the Sun, slicing through the photosphere and chromosphere and covering a field of view up to 1.5 solar radii. For this purpose, SUIT uses 11 filters tuned at different wavelengths in the 200{--}400~nm range, including the Mg~{\sc ii} h~and~k and Ca~{\sc ii}~H spectral lines. The observations made by SUIT help us understand the magnetic coupling of the lower and middle solar atmosphere. In addition, for the first time, it allows the measurements of spatially resolved solar broad-band radiation in the near and mid ultraviolet, which will help constrain the variability of the solar ultraviolet irradiance in a wavelength range that is central for the chemistry of the Earth&#39;s atmosphere. This paper discusses the details of the instrument and data products. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02274v2-abstract-full').style.display = 'none'; document.getElementById('2501.02274v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, Accepted for Publication in Solar Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13055">arXiv:2412.13055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13055">pdf</a>, <a href="https://arxiv.org/format/2412.13055">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> HCG 57: Evidence for shock-heated intergalactic gas from X-rays and optical emission line spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=O%27Sullivan%2C+E">Ewan O&#39;Sullivan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appleton%2C+P+N">P. N. Appleton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+A">B. A. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lanz%2C+L">L. Lanz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alatalo%2C+K">K. Alatalo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vrtilek%2C+J+M">J. M. Vrtilek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zezas%2C+A">A. Zezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=David%2C+L+P">L. P. David</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13055v1-abstract-short" style="display: inline;"> We present Chandra and XMM-Newton X-ray observations of the compact group HCG 57, and optical integral field spectroscopy of the interacting galaxy pair HCG 57A/D. These two spiral galaxies recently suffered an off-axis collision with HCG 57D passing through the disk of A. We find evidence of a gas bridge linking the galaxies, containing ~10^8 Msol of hot, ~1 keV thermal plasma and warm ionized ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13055v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13055v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13055v1-abstract-full" style="display: none;"> We present Chandra and XMM-Newton X-ray observations of the compact group HCG 57, and optical integral field spectroscopy of the interacting galaxy pair HCG 57A/D. These two spiral galaxies recently suffered an off-axis collision with HCG 57D passing through the disk of A. We find evidence of a gas bridge linking the galaxies, containing ~10^8 Msol of hot, ~1 keV thermal plasma and warm ionized gas radiating in H$伪$, H$尾$, [OIII] and [NII] lines. The optical emission lines in the central regions of HCG 57D show excitation properties consistent with HII-regions, while the outer rim of HCG 57D, parts of the bridge and the outer regions of HCG 57A show evidence of shocked gas consistent with shock velocities of 200-300 km/s. In contrast, the X-ray emitting gas requires a collision velocity of ~650-750 km/s to explain the observed temperatures. These different shock velocities can be reconciled by considering the contributions of rotation to collision velocity in different parts of the disks, and the clumpy nature of the pre-shock medium in the galaxies, which likely lead to different shock velocities in different components of the turbulent post-shocked gas. We examine the diffuse X-ray emission in the group members and their associated point sources, identifying X-ray AGN in HCG 57A, B, and D. We also confirm the previously reported ~1 keV intra-group medium and find it to be relaxed with a low central entropy (18.0+-1.7 kev cm^2 within 20 kpc) but a long cooling time (5.9+-0.8 Gyr). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13055v1-abstract-full').style.display = 'none'; document.getElementById('2412.13055v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 11 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00964">arXiv:2412.00964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00964">pdf</a>, <a href="https://arxiv.org/format/2412.00964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/1.JATIS.10.4.044005">10.1117/1.JATIS.10.4.044005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The WALOP-North Instrument I: Optical Design, Filter Design, Calibration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kypriotakis%2C+J+A">John A. Kypriotakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maharana%2C+S">Siddharth Maharana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anche%2C+R+M">Ramya M. Anche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rajarshi%2C+C+V">Chaitanya V. Rajarshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramaprakash%2C+A+N">A. N. Ramaprakash</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhushan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basyrov%2C+A">Artem Basyrov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blinov%2C+D">Dmitry Blinov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+T">Tuhin Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gjerlow%2C+E">Eirik Gjerlow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiehlmann%2C+S">Sebastian Kiehlmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandarakas%2C+N">Nikolaos Mandarakas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Panopoulou%2C+G+V">Georgia V. Panopoulou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Papadaki%2C+K">Katerina Papadaki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pavlidou%2C+V">Vasiliki Pavlidou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearson%2C+T+J">Timothy J. Pearson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pelgrims%2C+V">Vincent Pelgrims</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Potter%2C+S+B">Stephen B. Potter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Readhead%2C+A+C+S">Anthony C. S. Readhead</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skalidis%2C+R">Raphael Skalidis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tassis%2C+K">Konstantinos Tassis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00964v1-abstract-short" style="display: inline;"> The Wide Area Linear Optical Polarimeter North (WALOP-North) is an optical polarimeter designed for the needs of the PASIPHAE survey. It will be installed on the 1.3m telescope at the Skinakas Observatory in Crete, Greece. After commissioning, it will measure the polarization of millions of stars at high Galactic latitude, aiming to measure hundreds of stars per $deg^2$. The astronomical filter us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00964v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00964v1-abstract-full" style="display: none;"> The Wide Area Linear Optical Polarimeter North (WALOP-North) is an optical polarimeter designed for the needs of the PASIPHAE survey. It will be installed on the 1.3m telescope at the Skinakas Observatory in Crete, Greece. After commissioning, it will measure the polarization of millions of stars at high Galactic latitude, aiming to measure hundreds of stars per $deg^2$. The astronomical filter used in the instrument is a modified, polarimetrically-neutral broadband SDSS-r. This instrument will be pioneering one due to its large field-of-view (FoV) of $30\times 30$ $arcmin^2$ and high accuracy polarimetry measurements. The accuracy and sensitivity of the instrument in polarization fraction will be at the 0.1\% and 0.05\% level, respectively. Four separate 4k$\times$4k CCDs will be used as the instrument detectors, each imaging one of the $0掳, 45掳, 90掳$ and $135掳$ polarized FoV separately, therefore making the instrument a four-channel, one-shot polarimeter. Here, we present the overall optical design of the instrument, emphasizing on the aspects of the instrument that are different from WALOP-South. We also present a novel design of filters appropriate for polarimetry along with details on the management of the instrument size and its polarimetric calibration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00964v1-abstract-full').style.display = 'none'; document.getElementById('2412.00964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 31 figures, 7 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Astron. Telesc. Instrum. Syst. 10(4) 044005 (30 October 2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08035">arXiv:2411.08035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08035">pdf</a>, <a href="https://arxiv.org/format/2411.08035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Simulating continuum-based redshift measurement in the \textit{Roman&#39;s} High Latitude Spectroscopy Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Guo%2C+Z">Zhiyuan Guo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhavin Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Walter%2C+C+W">Chris. W. Walter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Troxel%2C+M+A">M. A. Troxel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08035v1-abstract-short" style="display: inline;"> We investigate the capability of the \textit{Nancy Grace Roman Space Telescope&#39;s (Roman)} Wide-Field Instrument (WFI) G150 slitless grism to detect red, quiescent galaxies based on the current reference survey. We simulate dispersed images for \textit{Roman} reference High-Latitude Spectroscopic Survey (HLSS) and analyze two-dimensional spectroscopic data using the grism Redshift and Line Analysis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08035v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08035v1-abstract-full" style="display: none;"> We investigate the capability of the \textit{Nancy Grace Roman Space Telescope&#39;s (Roman)} Wide-Field Instrument (WFI) G150 slitless grism to detect red, quiescent galaxies based on the current reference survey. We simulate dispersed images for \textit{Roman} reference High-Latitude Spectroscopic Survey (HLSS) and analyze two-dimensional spectroscopic data using the grism Redshift and Line Analysis (\verb|Grizli|) software. This study focus on assessing \textit{Roman} grism&#39;s capability for continuum-level redshift measurement for a redshift range of $0.5 \leq z \leq 2.5$. The redshift recovery is assessed by setting three requirements of: $蟽_z = \frac{\left|z-z_{\mathrm{true}}\right|}{1+z}\leq0.01$, signal-to-noise ratio (S/N) $\geq 5$ and the presence of a single dominant peak in redshift likelihood function. We find that, for quiescent galxaies, the reference HLSS can reach a redshift recovery completeness of $\geq50\%$ for F158 magnitude brighter than 20.2 mag. We also explore how different survey parameters, such as exposure time and the number of exposures, influence the accuracy and completeness of redshift recovery, providing insights that could optimize future survey strategies and enhance the scientific yield of the \textit{Roman} in cosmological research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08035v1-abstract-full').style.display = 'none'; document.getElementById('2411.08035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02554">arXiv:2409.02554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02554">pdf</a>, <a href="https://arxiv.org/format/2409.02554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> DH type II radio bursts during solar cycles 23-25: Origin and association with solar eruptive events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patel%2C+B+D">Binal D. Patel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cho%2C+K">Kyung-Suk Cho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+R">Rok-Soon Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02554v1-abstract-short" style="display: inline;"> We analyses occurrence of DH type II solar radio bursts spanning over solar cycles 23-25 during which a total of 590 DH type II bursts are reported with confirmed 568 and 462 cases of associated CME and flares, respectively. We find short-term yet important differences in DH type II activity when the data is examined in terms of event counts and their durations, e.g., temporal shift in the peak ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02554v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02554v1-abstract-full" style="display: none;"> We analyses occurrence of DH type II solar radio bursts spanning over solar cycles 23-25 during which a total of 590 DH type II bursts are reported with confirmed 568 and 462 cases of associated CME and flares, respectively. We find short-term yet important differences in DH type II activity when the data is examined in terms of event counts and their durations, e.g., temporal shift in the peak activity during cycle 24 and variation in the growth rate of the activity level during cycle 25. For an in-depth exploration, DH type II bursts are classified in 3 categories based on their end-frequencies: Low-, Medium-, and High- Frequency Groups (LFG, MFG, and HFG, respectively). The HFG category is the most populous (~47 %) while the LFG category occupy about a quarter of the events (~24 %). The LFG events show a clear inclination toward fastest CMEs and X-class flares with a quarter of events exhibiting end frequency below 50 MHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02554v1-abstract-full').style.display = 'none'; document.getElementById('2409.02554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, 4 tables, Proceedings IAU Symposium No. 388</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19428">arXiv:2406.19428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19428">pdf</a>, <a href="https://arxiv.org/format/2406.19428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3016144">10.1117/12.3016144 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Systems design, assembly, integration and lab testing of WALOP-South Polarimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Maharana%2C+S">Siddharth Maharana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramaprakash%2C+A+N">A. N. Ramaprakash</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rajarshi%2C+C">Chaitanya Rajarshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khodade%2C+P">Pravin Khodade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhushan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chordia%2C+P">Pravin Chordia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kohok%2C+A">Abhay Kohok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anche%2C+R+M">Ramya M. Anche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Modi%2C+D">Deepa Modi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kypriotakis%2C+J+A">John A. Kypriotakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deokar%2C+A">Amit Deokar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kinjawadekar%2C+A">Aditya Kinjawadekar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Potter%2C+S+B">Stephen B. Potter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blinov%2C+D">Dmitry Blinov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">Hans Kristian Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Falalaki%2C+M">Myrto Falalaki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gajjar%2C+H">Hitesh Gajjar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+T">Tuhin Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gjerl%C3%B8w%2C+E">Eirik Gjerl酶w</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiehlmann%2C+S">Sebastain Kiehlmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liodakis%2C+I">Ioannis Liodakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandarakas%2C+N">Nikolaos Mandarakas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Panopoulou%2C+G+V">Georgia V. Panopoulou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pavlidou%2C+V">Vasiliki Pavlidou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearson%2C+T+J">Timothy J. Pearson</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19428v1-abstract-short" style="display: inline;"> Wide-Area Linear Optical Polarimeter (WALOP)-South is the first wide-field and survey-capacity polarimeter in the optical wavelengths. On schedule for commissioning in 2024, it will be mounted on the 1 m SAAO telescope in Sutherland Observatory, South Africa to undertake the PASIPHAE sky survey. PASIPHAE program will create the first polarimetric sky map in the optical wavelengths, spanning more t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19428v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19428v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19428v1-abstract-full" style="display: none;"> Wide-Area Linear Optical Polarimeter (WALOP)-South is the first wide-field and survey-capacity polarimeter in the optical wavelengths. On schedule for commissioning in 2024, it will be mounted on the 1 m SAAO telescope in Sutherland Observatory, South Africa to undertake the PASIPHAE sky survey. PASIPHAE program will create the first polarimetric sky map in the optical wavelengths, spanning more than 2000 square degrees of the southern Galactic region. The innovative design of WALOP-South will enable it to measure the linear polarization (Stokes parameters $q$ and $u$), in a single exposure, of all sources in a field of view (FoV) of $35\times35$ arcminutes-squared in the SDSS-r broadband and narrowband filters between 500-750 nm with 0.1 % polarization accuracy. The unique goals of the instrument place very stringent systems engineering goals, including on the performance of the optical, polarimetric, optomechanical, and electronic subsystems. All the subsystems have been designed carefully to meet the overall instrument performance goals. As of May 2024, all the instrument optical and mechanical subsystems have been assembled and are currently getting tested and integrated. The complete testing and characterization of the instrument in the lab is expected to be completed by August 2024. In this paper, we will present (a) the design and development of the entire instrument and its major subsystems, focusing on the opto-mechanical design which has not been reported before, and (b) assembly and integration of the instrument in the lab and early results from lab characterization of the instrument. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19428v1-abstract-full').style.display = 'none'; document.getElementById('2406.19428v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages; presented at 2024 SPIE Astronomical Telescopes + Instrumentation conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 130967P </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings Volume 13096, Ground-based and Airborne Instrumentation for Astronomy X; 130967P (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05089">arXiv:2406.05089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05089">pdf</a>, <a href="https://arxiv.org/format/2406.05089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Discovery of An Apparent Red, High-Velocity Type Ia Supernova at z = 2.9 with JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pierel%2C+J+D+R">J. D. R. Pierel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Engesser%2C+M">M. Engesser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulter%2C+D+A">D. A. Coulter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Decoursey%2C+C">C. Decoursey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siebert%2C+M+R">M. R. Siebert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">A. Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egami%2C+E">E. Egami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+W">W. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O+D">O. D. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+D+O">D. O. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+A">B. A. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moriya%2C+T+J">T. J. Moriya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zenati%2C+Y">Y. Zenati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunker%2C+A+J">A. J. Bunker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cargile%2C+P+A">P. A. Cargile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curti%2C+M">M. Curti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eisenstein%2C+D+J">D. J. Eisenstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gezari%2C+S">S. Gezari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomez%2C+S">S. Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guolo%2C+M">M. Guolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+D">B. D. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karmen%2C+M">M. Karmen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maiolino%2C+R">R. Maiolino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quimby%2C+R+M">Robert M. Quimby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robertson%2C+B">B. Robertson</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05089v2-abstract-short" style="display: inline;"> We present the JWST discovery of SN 2023adsy, a transient object located in a host galaxy JADES-GS$+53.13485$$-$$27.82088$ with a host spectroscopic redshift of $2.903\pm0.007$. The transient was identified in deep James Webb Space Telescope (JWST)/NIRCam imaging from the JWST Advanced Deep Extragalactic Survey (JADES) program. Photometric and spectroscopic followup with NIRCam and NIRSpec, respec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05089v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05089v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05089v2-abstract-full" style="display: none;"> We present the JWST discovery of SN 2023adsy, a transient object located in a host galaxy JADES-GS$+53.13485$$-$$27.82088$ with a host spectroscopic redshift of $2.903\pm0.007$. The transient was identified in deep James Webb Space Telescope (JWST)/NIRCam imaging from the JWST Advanced Deep Extragalactic Survey (JADES) program. Photometric and spectroscopic followup with NIRCam and NIRSpec, respectively, confirm the redshift and yield UV-NIR light-curve, NIR color, and spectroscopic information all consistent with a Type Ia classification. Despite its classification as a likely SN Ia, SN 2023adsy is both fairly red (E(B-V)$\sim0.9$) despite a host galaxy with low-extinction and has a high Ca II velocity ($19,000\pm2,000$km/s) compared to the general population of SNe Ia. While these characteristics are consistent with some Ca-rich SNe Ia, particularly SN 2016hnk, SN 2023adsy is intrinsically brighter than the low-z Ca-rich population. Although such an object is too red for any low-z cosmological sample, we apply a fiducial standardization approach to SN 2023adsy and find that the SN 2023adsy luminosity distance measurement is in excellent agreement ($\lesssim1蟽$) with $螞$CDM. Therefore unlike low-z Ca-rich SNe Ia, SN 2023adsy is standardizable and gives no indication that SN Ia standardized luminosities change significantly with redshift. A larger sample of distant SNe Ia is required to determine if SN Ia population characteristics at high-z truly diverge from their low-z counterparts, and to confirm that standardized luminosities nevertheless remain constant with redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05089v2-abstract-full').style.display = 'none'; document.getElementById('2406.05089v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05076">arXiv:2406.05076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05076">pdf</a>, <a href="https://arxiv.org/format/2406.05076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a Relativistic Stripped Envelope Type Ic-BL Supernova at z = 2.83 with JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Siebert%2C+M+R">M. R. Siebert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Decoursey%2C+C">C. Decoursey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulter%2C+D+A">D. A. Coulter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Engesser%2C+M">M. Engesser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pierel%2C+J+D+R">J. D. R. Pierel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">A. Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egami%2C+E">E. Egami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shahbandeh%2C+M">M. Shahbandeh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+W">W. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O+D">O. D. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zenati%2C+Y">Y. Zenati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moriya%2C+T+J">T. J. Moriya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunker%2C+A+J">A. J. Bunker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cargile%2C+P+A">P. A. Cargile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curti%2C+M">M. Curti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eisenstein%2C+D+J">D. J. Eisenstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gezari%2C+S">S. Gezari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomez%2C+S">S. Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guolo%2C+M">M. Guolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+D">B. D. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+A">B. A. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karmen%2C+M">M. Karmen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maiolino%2C+R">R. Maiolino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quimby%2C+R+M">R. M. Quimby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robertson%2C+B">B. Robertson</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05076v3-abstract-short" style="display: inline;"> We present JWST NIRCam and NIRSpec observations of a Type Ic supernova (SN Ic) and its host galaxy (JADES-GS+53.13533-27.81457) at $z = 2.83$. This SN (named SN 2023adta) was identified in deep James Webb Space Telescope (JWST)/NIRCam imaging from the JWST Advanced Deep Extragalactic Survey (JADES) Program. Follow-up observations with JWST/NIRSpec provided a spectroscopic redshift of $z = 2.83$ an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05076v3-abstract-full').style.display = 'inline'; document.getElementById('2406.05076v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05076v3-abstract-full" style="display: none;"> We present JWST NIRCam and NIRSpec observations of a Type Ic supernova (SN Ic) and its host galaxy (JADES-GS+53.13533-27.81457) at $z = 2.83$. This SN (named SN 2023adta) was identified in deep James Webb Space Telescope (JWST)/NIRCam imaging from the JWST Advanced Deep Extragalactic Survey (JADES) Program. Follow-up observations with JWST/NIRSpec provided a spectroscopic redshift of $z = 2.83$ and the classification as a SN Ic-BL. The light curve of SN 2023adta matches well with other stripped envelope supernovae and we find a high peak luminosity, $M_V = -19.0 \pm 0.2$ mag, based on the distribution of best-fit SNe. The broad absorption features in its spectrum are consistent with other SNe Ic-BL 1-3 weeks after peak brightness. We measure a Ca II NIR triplet expansion velocity of $29{,}000 \pm 2{,}000$ km s$^{-1}$. The host galaxy of SN 2023adta is irregular, and modeling of its spectral energy distribution (SED) indicates a metallicity of $Z = 0.35^{+0.16}_{-0.08} Z_{\odot}$. This environment is consistent with the population of low-$z$ SNe Ic-BL which prefer lower metallicities relative to other stripped envelope supernovae, and track long duration $纬$-ray burst (LGRB) environments. We do not identify any GRBs that are coincident with SN 2023adta. Given the rarity of SNe Ic-BL in the local universe, the detection of a SN Ic-BL at $z = 2.83$ could indicate that their rates are enhanced at high redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05076v3-abstract-full').style.display = 'none'; document.getElementById('2406.05076v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, Published in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05060">arXiv:2406.05060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05060">pdf</a>, <a href="https://arxiv.org/format/2406.05060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The JADES Transient Survey: Discovery and Classification of Supernovae in the JADES Deep Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=DeCoursey%2C+C">Christa DeCoursey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egami%2C+E">Eiichi Egami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pierel%2C+J+D+R">Justin D. R. Pierel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+F">Fengwu Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">Armin Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulter%2C+D+A">David A. Coulter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Engesser%2C+M">Michael Engesser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siebert%2C+M+R">Matthew R. Siebert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hainline%2C+K+N">Kevin N. Hainline</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+D">Benjamin D. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunker%2C+A+J">Andrew J. Bunker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cargile%2C+P+A">Phillip A. Cargile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Charlot%2C+S">Stephane Charlot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+W">Wenlei Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curti%2C+M">Mirko Curti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeFour-Remy%2C+S">Shea DeFour-Remy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eisenstein%2C+D+J">Daniel J. Eisenstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O+D">Ori D. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gezari%2C+S">Suvi Gezari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomez%2C+S">Sebastian Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jencson%2C+J">Jacob Jencson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+A">Bhavin A. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khairnar%2C+S">Sanvi Khairnar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lyu%2C+J">Jianwei Lyu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maiolino%2C+R">Roberto Maiolino</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05060v4-abstract-short" style="display: inline;"> The JWST Advanced Deep Extragalactic Survey (JADES) is a multi-cycle JWST program that has taken among the deepest near-/mid-infrared images to date (down to $\sim$30 ABmag) over $\sim$25 arcmin$^2$ in the GOODS-S field in two sets of observations with one year of separation. This presented the first opportunity to systematically search for transients, mostly supernovae (SNe), out to $z$$&gt;$2. We f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05060v4-abstract-full').style.display = 'inline'; document.getElementById('2406.05060v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05060v4-abstract-full" style="display: none;"> The JWST Advanced Deep Extragalactic Survey (JADES) is a multi-cycle JWST program that has taken among the deepest near-/mid-infrared images to date (down to $\sim$30 ABmag) over $\sim$25 arcmin$^2$ in the GOODS-S field in two sets of observations with one year of separation. This presented the first opportunity to systematically search for transients, mostly supernovae (SNe), out to $z$$&gt;$2. We found 79 SNe: 38 at $z$$&lt;$2, 23 at 2$&lt;$$z$$&lt;$3, 8 at 3$&lt;$$z$$&lt;$4, 7 at 4$&lt;$$z$$&lt;$5, and 3 with undetermined redshifts, where the redshifts are predominantly based on spectroscopic or highly reliable JADES photometric redshifts of the host galaxies. At this depth, the detection rate is $\sim$1-2 per arcmin$^2$ per year, demonstrating the power of JWST as a supernova discovery machine. We also conducted multi-band follow-up NIRCam observations of a subset of the SNe to better constrain their light curves and classify their types. Here, we present the survey, sample, search parameters, spectral energy distributions (SEDs), light curves, and classifications. Even at $z$$\geq$2, the NIRCam data quality is high enough to allow SN classification via multi-epoch light-curve fitting with confidence. The multi-epoch SN sample includes a Type Ia SN at $z_{\mathrm{spec}}$$=$2.90, Type IIP SN at $z_{\mathrm{spec}}$$=$3.61, and a Type Ic-BL SN at $z_{\mathrm{spec}}$$=$2.83. We also found that two $z$$\sim$16 galaxy candidates from the first imaging epoch were actually transients that faded in the second epoch, illustrating the possibility that moderate/high-redshift SNe could mimic high-redshift dropout galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05060v4-abstract-full').style.display = 'none'; document.getElementById('2406.05060v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 16 figures, 16 tables. Accepted by ApJ. Appendix A (64 MB) is available at https://drive.google.com/file/d/1xs5jXUVOvdDPgdghK72KR1FMGvPcK7dv/view?usp=sharing . Appendix B (81 MB) is available at https://drive.google.com/file/d/18ImLT80pQdPzXCZA-KEy21DaE2CQiGz1/view?usp=sharing</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14351">arXiv:2405.14351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14351">pdf</a>, <a href="https://arxiv.org/format/2405.14351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2024.96">10.1017/pasa.2024.96 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The ORT and the uGMRT Pulsar Monitoring Program : Pulsar Timing Irregularities &amp; the Gaussian Process Realization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Grover%2C+H">Himanshu Grover</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singha%2C+J">Jaikhomba Singha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCgercino%C4%9Flu%2C+E">Erbil G眉gercino臒lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">Paramasivan Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bandyopadhyay%2C+D">Debades Bandyopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chibueze%2C+J+O">James O. Chibueze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">Shantanu Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eya%2C+I+O">Innocent O. Eya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kundu%2C+A">Anu Kundu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Urama%2C+J+O">Johnson O. Urama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14351v2-abstract-short" style="display: inline;"> The spin-down law of pulsars is generally perturbed by two types of timing irregularities: glitches and timing noise. Glitches are sudden changes in the rotational frequency of pulsars, while timing noise is a discernible stochastic wandering in the phase, period, or spin-down rate of a pulsar. We present the timing results of a sample of glitching pulsars observed using the Ooty Radio Telescope (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14351v2-abstract-full').style.display = 'inline'; document.getElementById('2405.14351v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14351v2-abstract-full" style="display: none;"> The spin-down law of pulsars is generally perturbed by two types of timing irregularities: glitches and timing noise. Glitches are sudden changes in the rotational frequency of pulsars, while timing noise is a discernible stochastic wandering in the phase, period, or spin-down rate of a pulsar. We present the timing results of a sample of glitching pulsars observed using the Ooty Radio Telescope (ORT) and the upgraded Giant Metrewave Radio Telescope (uGMRT). Our findings include timing noise analysis for 17 pulsars, with seven being reported for the first time. We detected five glitches in four pulsars and a glitch-like event in PSR J1825-0935. The frequency evolution of glitch in pulsars, J0742-2822 and J1740-3015, is presented for the first time. Additionally, we report timing noise results for three glitching pulsars. The timing noise was analyzed separately in the pre-glitch region and post-glitch regions. We observed an increase in the red noise parameters in the post-glitch regions, where exponential recovery was considered in the noise analysis. Timing noise can introduce ambiguities in the correct evaluation of glitch observations. Hence, it is important to consider timing noise in glitch analysis. We propose an innovative glitch verification approach designed to discern between a glitch and strong timing noise. The novel glitch analysis technique is also demonstrated using the observed data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14351v2-abstract-full').style.display = 'none'; document.getElementById('2405.14351v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures. Accepted for publication in PASA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03292">arXiv:2405.03292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03292">pdf</a>, <a href="https://arxiv.org/format/2405.03292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Source Region and Launch Characteristics of Magnetic-arch-blowout Solar Coronal Mass Ejections Driven by Homologous Compact-flare Blowout Jets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Patel%2C+B+D">Binal D. Patel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sterling%2C+A+C">Alphonse C. Sterling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+R+L">Ronald L. Moore</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03292v1-abstract-short" style="display: inline;"> We study the formation of four coronal mass ejections (CMEs) originating from homologous blowout jets. All of the blowout jets originated from NOAA active region (AR) 11515 on 2012 July 2, within a time interval of $\approx$14 hr. All of the CMEs were wide (angular widths $\approx$95$-$150$^\circ$), and propagated with speeds ranging between $\approx$300$-$500 km s$^{-1}$ in LASCO coronagraph imag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03292v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03292v1-abstract-full" style="display: none;"> We study the formation of four coronal mass ejections (CMEs) originating from homologous blowout jets. All of the blowout jets originated from NOAA active region (AR) 11515 on 2012 July 2, within a time interval of $\approx$14 hr. All of the CMEs were wide (angular widths $\approx$95$-$150$^\circ$), and propagated with speeds ranging between $\approx$300$-$500 km s$^{-1}$ in LASCO coronagraph images. Observations at various EUV wavelengths in Solar Dynamics Observatory/Atmospheric Imaging Assembly images reveal that in all the cases, the source region of the jets lies at the boundary of the leading part of AR 11515 that hosts a small filament before each event. Coronal magnetic field modeling based on nonlinear force free extrapolations indicate that in each case the filament is contained inside of a magnetic flux rope that remains constrained by overlying compact loops. The southern footpoint of each filament is rooted in the negative polarity region where the eruption onsets occur. This negative-polarity region undergoes continuous flux changes, including emergence and cancellation with opposite polarity in the vicinity of the flux rope, and the EUV images reveal brightening episodes near the filament&#39;s southeastern footpoint before each eruption. Therefore, these flux changes are likely the cause of the subsequent eruptions. These four homologous eruptions originate near adjacent feet of two large-scale loop systems connecting from that positive-polarity part of the AR to two remote negative-polarity regions, and result in large-scale consequences in the solar corona. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03292v1-abstract-full').style.display = 'none'; document.getElementById('2405.03292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 11 Figures, 1 Table, Accepted for publication in the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11555">arXiv:2404.11555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11555">pdf</a>, <a href="https://arxiv.org/format/2404.11555">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad6843">10.3847/1538-4357/ad6843 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Reliability of Type Ia Supernovae Delay Time Distributions Recovered from Galaxy Star Formation Histories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+A">Bhavin A. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strolger%2C+L">Louis-Gregory Strolger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zenati%2C+Y">Yossef Zenati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11555v2-abstract-short" style="display: inline;"> We present a numerical analysis investigating the reliability of type Ia supernova (SN~Ia) delay-time distributions recovered from individual host galaxy star-formation histories. We utilize star-formation histories of mock samples of galaxies generated from the IllustrisTNG simulation at two redshifts to recover delay-time distributions. The delay-time distributions are constructed through piecew&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11555v2-abstract-full').style.display = 'inline'; document.getElementById('2404.11555v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11555v2-abstract-full" style="display: none;"> We present a numerical analysis investigating the reliability of type Ia supernova (SN~Ia) delay-time distributions recovered from individual host galaxy star-formation histories. We utilize star-formation histories of mock samples of galaxies generated from the IllustrisTNG simulation at two redshifts to recover delay-time distributions. The delay-time distributions are constructed through piecewise constants as opposed to typically employed parametric forms such as power-laws or Gaussian or skew/log-normal functions. The SN~Ia delay-time distributions are recovered through a Markov Chain Monte Carlo exploration of the likelihood space by comparing the expected SN Ia rate within each mock galaxy to the observed rate. We show that a reduced representative sample of \emph{non-host} galaxies is sufficient to reliably recover delay-time distributions while simultaneously reducing the computational load. We also highlight a potential systematic between recovered delay-time distributions and the mass-weighted ages of the underlying host galaxy stellar population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11555v2-abstract-full').style.display = 'none'; document.getElementById('2404.11555v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 974 15 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02139">arXiv:2404.02139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02139">pdf</a>, <a href="https://arxiv.org/format/2404.02139">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad4648">10.3847/2041-8213/ad4648 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lensed Type Ia Supernova &#34;Encore&#34; at z=2: The First Instance of Two Multiply-Imaged Supernovae in the Same Host Galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pierel%2C+J+D+R">J. D. R. Pierel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Newman%2C+A+B">A. B. Newman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhawan%2C+S">S. Dhawan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+M">M. Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+A">B. A. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+T">T. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schuldt%2C+S">S. Schuldt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strolger%2C+L+G">L. G. Strolger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suyu%2C+S+H">S. H. Suyu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caminha%2C+G+B">G. B. Caminha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cohen%2C+S+H">S. H. Cohen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Diego%2C+J+M">J. M. Diego</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dsilva%2C+J+C+J">J. C. J. Dsilva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ertl%2C+S">S. Ertl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frye%2C+B+L">B. L. Frye</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Granata%2C+G">G. Granata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grillo%2C+C">C. Grillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koekemoer%2C+A+M">A. M. Koekemoer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robotham%2C+A">A. Robotham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Summers%2C+J">J. Summers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Treu%2C+T">T. Treu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Windhorst%2C+R+A">R. A. Windhorst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zitrin%2C+A">A. Zitrin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agarwal%2C+S">S. Agarwal</a> , et al. (38 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02139v3-abstract-short" style="display: inline;"> A bright ($m_{\rm F150W,AB}$=24 mag), $z=1.95$ supernova (SN) candidate was discovered in JWST/NIRCam imaging acquired on 2023 November 17. The SN is quintuply-imaged as a result of strong gravitational lensing by a foreground galaxy cluster, detected in three locations, and remarkably is the second lensed SN found in the same host galaxy. The previous lensed SN was called &#34;Requiem&#34;, and therefore&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02139v3-abstract-full').style.display = 'inline'; document.getElementById('2404.02139v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02139v3-abstract-full" style="display: none;"> A bright ($m_{\rm F150W,AB}$=24 mag), $z=1.95$ supernova (SN) candidate was discovered in JWST/NIRCam imaging acquired on 2023 November 17. The SN is quintuply-imaged as a result of strong gravitational lensing by a foreground galaxy cluster, detected in three locations, and remarkably is the second lensed SN found in the same host galaxy. The previous lensed SN was called &#34;Requiem&#34;, and therefore the new SN is named &#34;Encore&#34;. This makes the MACS J0138.0$-$2155 cluster the first known system to produce more than one multiply-imaged SN. Moreover, both SN Requiem and SN Encore are Type Ia SNe (SNe Ia), making this the most distant case of a galaxy hosting two SNe Ia. Using parametric host fitting, we determine the probability of detecting two SNe Ia in this host galaxy over a $\sim10$ year window to be $\approx3\%$. These observations have the potential to yield a Hubble Constant ($H_0$) measurement with $\sim10\%$ precision, only the third lensed SN capable of such a result, using the three visible images of the SN. Both SN Requiem and SN Encore have a fourth image that is expected to appear within a few years of $\sim2030$, providing an unprecedented baseline for time-delay cosmography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02139v3-abstract-full').style.display = 'none'; document.getElementById('2404.02139v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted, ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01875">arXiv:2312.01875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01875">pdf</a>, <a href="https://arxiv.org/format/2312.01875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2024.30">10.1017/pasa.2024.30 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-frequency pulse-jitter measurement with the uGMRT I : PSR J0437$-$4715 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kikunaga%2C+T">Tomonosuke Kikunaga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hisano%2C+S">Shinnosuke Hisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batra%2C+N+D">Neelam Dhanda Batra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">Shantanu Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">Manjari Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prabu%2C+T">T. Prabu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takahashi%2C+K">Keitaro Takahashi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+S">Swetha Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">Adarsh Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dandapat%2C+S">Subhajit Dandapat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deb%2C+D">Debabrata Deb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dwivedi%2C+C">Churchil Dwivedi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+Y">Yashwant Gupta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jacob%2C+S+J">Shebin Jose Jacob</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kareem%2C+F">Fazal Kareem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%2C+N">Nobleson K</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mamidipaka%2C+P">Pragna Mamidipaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paladi%2C+A+K">Avinash Kumar Paladi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=B%2C+A+P">Arul Pandian B</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rana%2C+P">Prerna Rana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singha%2C+J">Jaikhomba Singha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srivastava%2C+A">Aman Srivastava</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surnis%2C+M">Mayuresh Surnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tarafdar%2C+P">Pratik Tarafdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01875v3-abstract-short" style="display: inline;"> High-precision pulsar timing observations are limited in their accuracy by the jitter noise that appears in the arrival time of pulses. Therefore, it is important to systematically characterise the amplitude of the jitter noise and its variation with frequency. In this paper, we provide jitter measurements from low-frequency wideband observations of PSR J0437$-$4715 using data obtained as part of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01875v3-abstract-full').style.display = 'inline'; document.getElementById('2312.01875v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01875v3-abstract-full" style="display: none;"> High-precision pulsar timing observations are limited in their accuracy by the jitter noise that appears in the arrival time of pulses. Therefore, it is important to systematically characterise the amplitude of the jitter noise and its variation with frequency. In this paper, we provide jitter measurements from low-frequency wideband observations of PSR J0437$-$4715 using data obtained as part of the Indian Pulsar Timing Array experiment. We were able to detect jitter in both the 300 - 500 MHz and 1260 - 1460 MHz observations of the upgraded Giant Metrewave Radio Telescope (uGMRT). The former is the first jitter measurement for this pulsar below 700 MHz, and the latter is in good agreement with results from previous studies. In addition, at 300 - 500 MHz, we investigated the frequency dependence of the jitter by calculating the jitter for each sub-banded arrival time of pulses. We found that the jitter amplitude increases with frequency. This trend is opposite as compared to previous studies, indicating that there is a turnover at intermediate frequencies. It will be possible to investigate this in more detail with uGMRT observations at 550 - 750 MHz and future high sensitive wideband observations from next generation telescopes, such as the Square Kilometre Array. We also explored the effect of jitter on the high precision dispersion measure (DM) measurements derived from short duration observations. We find that even though the DM precision will be better at lower frequencies due to the smaller amplitude of jitter noise, it will limit the DM precision for high signal-to-noise observations, which are of short durations. This limitation can be overcome by integrating for a long enough duration optimised for a given pulsar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01875v3-abstract-full').style.display = 'none'; document.getElementById('2312.01875v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures, 3 tables, accepted for Publication of the Astronomical Society of Australia</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12844">arXiv:2310.12844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12844">pdf</a>, <a href="https://arxiv.org/format/2310.12844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Observational Characteristics of solar EUV waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chandra%2C+R">Ramesh Chandra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devi%2C+P">Pooja Devi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+P+F">P. F. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmieder%2C+B">Brigitte Schmieder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+R">Reetika Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Awasthi%2C+A+K">Arun Kumar Awasthi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12844v1-abstract-short" style="display: inline;"> Extreme-ultraviolet (EUV) waves are one of the large-scale phenomena on the Sun. They are defined as large propagating fronts in the low corona with speeds ranging from a few tens km/s to a multiple of 1000 km/s. They are often associated with solar filament eruptions, flares, or coronal mass ejections (CMEs). EUV waves show different features, such as, wave and nonwave components, stationary fron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12844v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12844v1-abstract-full" style="display: none;"> Extreme-ultraviolet (EUV) waves are one of the large-scale phenomena on the Sun. They are defined as large propagating fronts in the low corona with speeds ranging from a few tens km/s to a multiple of 1000 km/s. They are often associated with solar filament eruptions, flares, or coronal mass ejections (CMEs). EUV waves show different features, such as, wave and nonwave components, stationary fronts, reflection, refraction, and mode conversion. Apart from these, they can hit the nearby coronal loops and filaments/prominences during their propagation and trigger them to oscillate. These oscillating loops and filaments/prominences enable us to diagnose coronal parameters such as the coronal magnetic field strength. In this article, we present the different observed features of the EUV waves along with existing models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12844v1-abstract-full').style.display = 'none'; document.getElementById('2310.12844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, 3rd BINA workshop proceeding</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.00366">arXiv:2310.00366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.00366">pdf</a>, <a href="https://arxiv.org/format/2310.00366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.25518/0037-9565.11942">10.25518/0037-9565.11942 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Onset and evolution of solar flares: Application of 2D and 3D models of magnetic reconnection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mitra%2C+P+K">Prabir K. Mitra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Veronig%2C+A+M">Astrid M. Veronig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhattacharyya%2C+R">R. Bhattacharyya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.00366v1-abstract-short" style="display: inline;"> The contemporary multi-wavelength observations have revealed various important features during solar flares which, on one hand, support the two-dimensional (2D) &#34;standard flare model&#34; while, on other hand, also urge for the exploration of three-dimensional (3D) magnetic field topologies involved in flares. Traditionally, the formation of parallel ribbons on both side of the polarity inversion line&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00366v1-abstract-full').style.display = 'inline'; document.getElementById('2310.00366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.00366v1-abstract-full" style="display: none;"> The contemporary multi-wavelength observations have revealed various important features during solar flares which, on one hand, support the two-dimensional (2D) &#34;standard flare model&#34; while, on other hand, also urge for the exploration of three-dimensional (3D) magnetic field topologies involved in flares. Traditionally, the formation of parallel ribbons on both side of the polarity inversion line (PIL) and associated overlying loop arcades have been recognized as the most prominent features of eruptive flares which has formed the basis for the development of the standard model providing a 2D description of the flare-associated phenomena. The actual flare, however, occurs in a more complicated 3D magnetic structure. Thus, despite the general applicability, the standard model has limited or no scope in explaining some of the features which exclusively requires a 3D description. In this context, the observations of &#34;circular ribbon flares&#34; stand out where one of the ribbons presents an almost fully closed quasi-circular or quasi-ellipsoidal shape, evidencing the involvement of a typical fan-spine magnetic configuration. In this article, we discuss observational features vis 脿 vis theoretical understanding of solar flares in view of 2D and 3D models of magnetic reconnection. We highlight a few complex cases of circular ribbon flares exhibiting parallel ribbons, a coronal jet, and/or an erupting magnetic flux rope. Exploring various 3D topologies also enables us to probe similarities between the circumstances that govern the onset of jets, confined flares and CME-producing eruptive flares. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00366v1-abstract-full').style.display = 'none'; document.getElementById('2310.00366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures, invited review in the 3rd BINA workshop, to be published in the Bulletin of the Li猫ge Royal Society of Sciences</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.16765">arXiv:2309.16765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.16765">pdf</a>, <a href="https://arxiv.org/format/2309.16765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae2405">10.1093/mnras/stae2405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving DM estimates using low-frequency scattering-broadening estimates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Singha%2C+J">Jaikhomba Singha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krishnakumar%2C+M+A">M. A. Krishnakumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kareem%2C+F">Fazal Kareem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">Adarsh Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dwivedi%2C+C">Churchil Dwivedi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jacob%2C+S+J">Shebin Jose Jacob</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">Shantanu Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tarafdar%2C+P">Pratik Tarafdar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">P. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+S">Swetha Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">Manjari Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batra%2C+N+D">Neelam Dhanda Batra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dandapat%2C+S">Subhajit Dandapat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deb%2C+D">Debabrata Deb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Debnath%2C+J">Jyotijwal Debnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gopakumar%2C+A">A Gopakumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+Y">Yashwant Gupta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hisano%2C+S">Shinnosuke Hisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kato%2C+R">Ryo Kato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kikunaga%2C+T">Tomonosuke Kikunaga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marmat%2C+P">Piyush Marmat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nobleson%2C+K">K. Nobleson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paladi%2C+A+K">Avinash K. Paladi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=B.%2C+A+P">Arul Pandian B.</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.16765v2-abstract-short" style="display: inline;"> A pulsar&#39;s pulse profile gets broadened at low frequencies due to dispersion along the line of sight or due to multi-path propagation. The dynamic nature of the interstellar medium makes both of these effects time-dependent and introduces slowly varying time delays in the measured times-of-arrival similar to those introduced by passing gravitational waves. In this article, we present an improved m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16765v2-abstract-full').style.display = 'inline'; document.getElementById('2309.16765v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.16765v2-abstract-full" style="display: none;"> A pulsar&#39;s pulse profile gets broadened at low frequencies due to dispersion along the line of sight or due to multi-path propagation. The dynamic nature of the interstellar medium makes both of these effects time-dependent and introduces slowly varying time delays in the measured times-of-arrival similar to those introduced by passing gravitational waves. In this article, we present an improved method to correct for such delays by obtaining unbiased dispersion measure (DM) measurements by using low-frequency estimates of the scattering parameters. We evaluate this method by comparing the obtained DM estimates with those, where scatter-broadening is ignored using simulated data. A bias is seen in the estimated DMs for simulated data with pulse-broadening with a larger variability for a data set with a variable frequency scaling index, $伪$, as compared to that assuming a Kolmogorov turbulence. Application of the proposed method removes this bias robustly for data with band averaged signal-to-noise ratio larger than 100. We report the measurements of the scatter-broadening time and $伪$ from analysis of PSR J1643$-$1224, observed with upgraded Giant Metrewave Radio Telescope as part of the Indian Pulsar Timing Array experiment. These scattering parameters were found to vary with epoch and $伪$ was different from that expected for Kolmogorov turbulence. Finally, we present the DM time-series after application of this technique to PSR J1643$-$1224. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16765v2-abstract-full').style.display = 'none'; document.getElementById('2309.16765v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00693">arXiv:2309.00693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00693">pdf</a>, <a href="https://arxiv.org/format/2309.00693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Comparing recent PTA results on the nanohertz stochastic gravitational wave background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+International+Pulsar+Timing+Array+Collaboration"> The International Pulsar Timing Array Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agazie%2C+G">G. Agazie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antoniadis%2C+J">J. Antoniadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anumarlapudi%2C+A">A. Anumarlapudi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Archibald%2C+A+M">A. M. Archibald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">P. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+S">S. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arzoumanian%2C+Z">Z. Arzoumanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Askew%2C+J">J. Askew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Babak%2C+S">S. Babak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">M. Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bailes%2C+M">M. Bailes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nielsen%2C+A+-+B">A. -S. Bak Nielsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baker%2C+P+T">P. T. Baker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bassa%2C+C+G">C. G. Bassa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">A. Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=B%C3%A9csy%2C+B">B. B茅csy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthereau%2C+A">A. Berthereau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhat%2C+N+D+R">N. D. R. Bhat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blecha%2C+L">L. Blecha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonetti%2C+M">M. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bortolas%2C+E">E. Bortolas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brazier%2C+A">A. Brazier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brook%2C+P+R">P. R. Brook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgay%2C+M">M. Burgay</a> , et al. (220 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00693v1-abstract-short" style="display: inline;"> The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTA&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00693v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00693v1-abstract-full" style="display: none;"> The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within $1蟽$. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we &#34;extended&#34; each PTA&#39;s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings and Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA&#39;s Data Release 3, which will involve not just adding in additional pulsars, but also including data from all three PTAs where any given pulsar is timed by more than as single PTA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00693v1-abstract-full').style.display = 'none'; document.getElementById('2309.00693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02670">arXiv:2307.02670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02670">pdf</a>, <a href="https://arxiv.org/format/2307.02670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Roman CCS White Paper: Measuring Type Ia Supernovae Discovered in the Roman High Latitude Time Domain Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hounsell%2C+R">Rebekah Hounsell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Dan Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brout%2C+D">Dillon Brout</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+B">Benjamin Rose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O">Ori Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sako%2C+M">Masao Sako</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macias%2C+P">Phillip Macias</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhavin Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desutua%2C+S">Susana Desutua</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubin%2C+D">David Rubin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">Stefano Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perlmutter%2C+S">Saul Perlmutter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aldering%2C+G">Greg Aldering</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+K">Kaisey Mandel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sosey%2C+M">Megan Sosey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suzuki%2C+N">Nao Suzuki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryan%2C+R">Russell Ryan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02670v1-abstract-short" style="display: inline;"> We motivate the cosmological science case of measuring Type Ia supernovae with the Nancy Grace Roman Space Telescope as part of the High Latitude Time Domain Survey. We discuss previously stated requirements for the science, and a baseline survey strategy. We discuss the various areas that must still be optimized and point to the other white papers that consider these topics in detail. Overall, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02670v1-abstract-full').style.display = 'inline'; document.getElementById('2307.02670v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02670v1-abstract-full" style="display: none;"> We motivate the cosmological science case of measuring Type Ia supernovae with the Nancy Grace Roman Space Telescope as part of the High Latitude Time Domain Survey. We discuss previously stated requirements for the science, and a baseline survey strategy. We discuss the various areas that must still be optimized and point to the other white papers that consider these topics in detail. Overall, the baseline case should enable an exquisite measurement of dark energy using SNe Ia from z=0.1 to z&gt;2, and further optimization should only strengthen this once-in-a-generation experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02670v1-abstract-full').style.display = 'none'; document.getElementById('2307.02670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17233">arXiv:2306.17233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.17233">pdf</a>, <a href="https://arxiv.org/format/2306.17233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Roman CCS White Paper: Characterizing Superluminous Supernovae with Roman </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gomez%2C+S">Sebastian Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexander%2C+K">Kate Alexander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanchard%2C+P+K">Peter K. Blanchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eftekhari%2C+T">Tarraneh Eftekhari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O">Ori Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+K">Kiranjyot Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hiramatsu%2C+D">Daichi Hiramatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhavin Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karmen%2C+M">Mitchell Karmen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moriya%2C+T">Takashi Moriya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">Matt Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quimby%2C+R">Robert Quimby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Regos%2C+E">Eniko Regos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">Armin Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+B">Benjamin Rose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shahbandeh%2C+M">Melissa Shahbandeh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Villar%2C+V+A">V. Ashley Villar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17233v1-abstract-short" style="display: inline;"> Type-I Superluminous Supernovae (SLSNe) are an exotic class of core-collapse SN (CCSN) that can be up to 100 times brighter and more slowly-evolving than normal CCSNe. SLSNe represent the end-stages of the most massive stripped stars, and are thought to be powered by the spin-down energy of a millisecond magnetar. Studying them and measuring their physical parameters can help us to better understa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17233v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17233v1-abstract-full" style="display: none;"> Type-I Superluminous Supernovae (SLSNe) are an exotic class of core-collapse SN (CCSN) that can be up to 100 times brighter and more slowly-evolving than normal CCSNe. SLSNe represent the end-stages of the most massive stripped stars, and are thought to be powered by the spin-down energy of a millisecond magnetar. Studying them and measuring their physical parameters can help us to better understand stellar mass-loss, evolution, and explosions. Moreover, thanks to their high luminosities, SLSNe can be seen up to greater distances, allowing us to explore how stellar physics evolves as a function of redshift. The High Latitude Time Domain Survey (HLTDS) will provide us with an exquisite dataset that will discover 100s of SLSNe. Here, we focus on the question of which sets of filters and cadences will allow us to best characterize the physical parameters of these SLSNe. We simulate a set of SLSNe at redshifts ranging from z = 0.1 to z = 5.0, using six different sets of filters, and cadences ranging from 5 to 100 days. We then fit these simulated light curves to attempt to recover the input parameter values for their ejecta mass, ejecta velocity, magnetic field strength, and magnetar spin period. We find that four filters are sufficient to accurately characterize SLSNe at redshifts below $z = 3$, and that cadences faster than 20 days are required to obtain measurements with an uncertainty below 10\%, although a cadence of 70 days is still acceptable under certain conditions. Finally, we find that the nominal survey strategy will not be able to properly characterize the most distant SLSNe at $z = 5$. We find that the addition of 60-day cadence observations for 4 years to the nominal HLTDS survey can greatly improve the prospect of characterizing these most extreme and distant SNe, with only an 8\% increase to the time commitment of the survey. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17233v1-abstract-full').style.display = 'none'; document.getElementById('2306.17233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted as part of the Nancy Grace Roman Space Telescope&#39;s Core Community Surveys call for white papers</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17231">arXiv:2306.17231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.17231">pdf</a>, <a href="https://arxiv.org/format/2306.17231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Roman CCS White Paper: Tracing stellar mass assembly and emerging quiescence at cosmic noon -- the case for deep imaging with all of Roman&#39;s wide filters in the HLTDS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhavin Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strolger%2C+L">Louis-Gregory Strolger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomez%2C+S">Sebastian Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+B">Benjamin Rose</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17231v1-abstract-short" style="display: inline;"> We present arguments for including observations with all of the Wide Field Instrument imaging filters, with the exception of F146, within the Nancy Grace Roman Space Telescope (\emph{Roman}) High Latitude Time Domain Survey (HLTDS). Our case is largely driven by the extragalactic deep field science that can be accomplished with HLTDS observations and also by the improvements in type Ia supernova (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17231v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17231v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17231v1-abstract-full" style="display: none;"> We present arguments for including observations with all of the Wide Field Instrument imaging filters, with the exception of F146, within the Nancy Grace Roman Space Telescope (\emph{Roman}) High Latitude Time Domain Survey (HLTDS). Our case is largely driven by the extragalactic deep field science that can be accomplished with HLTDS observations and also by the improvements in type Ia supernova (SN Ia) cosmology systematics that a wide wavelength coverage affords. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17231v1-abstract-full').style.display = 'none'; document.getElementById('2306.17231v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted in response to the call for community input to Roman core community surveys</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17228">arXiv:2306.17228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.17228">pdf</a>, <a href="https://arxiv.org/ps/2306.17228">ps</a>, <a href="https://arxiv.org/format/2306.17228">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Roman CCS White Paper: Options to Increase the Coverage Area of Prism Time Series in the High-Latitude Time Domain Core Community Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+B">Benjamin Rose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomez%2C+S">Sebastian Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hounsell%2C+R">Rebekah Hounsell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhavin Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubin%2C+D">David Rubin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Dan Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sako%2C+M">Masao Sako</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17228v1-abstract-short" style="display: inline;"> The current reference High-latitude time domain survey increases the completeness of transients with prism temporal time series data by adjusting the ratio of prism-to-imaging time. However, there are two other nobs that allow for a more complete prism coverage: prism cadence and exposure time. In this white paper, we discuss how changes to the prism cadence and exposure time -- in order to increa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17228v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17228v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17228v1-abstract-full" style="display: none;"> The current reference High-latitude time domain survey increases the completeness of transients with prism temporal time series data by adjusting the ratio of prism-to-imaging time. However, there are two other nobs that allow for a more complete prism coverage: prism cadence and exposure time. In this white paper, we discuss how changes to the prism cadence and exposure time -- in order to increase the fraction of observed transients with spectral time series -- affect supernova cosmology, transient typing and template building, and the study of rare transients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17228v1-abstract-full').style.display = 'none'; document.getElementById('2306.17228v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the Roman Core Community Survey call for white papers</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17226">arXiv:2306.17226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.17226">pdf</a>, <a href="https://arxiv.org/format/2306.17226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Roman CCS White Paper: Considerations for Selecting Fields for the Roman High-latitude Time Domain Core Community Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+B">Benjamin Rose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aldering%2C+G">Greg Aldering</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hounsell%2C+R">Rebekah Hounsell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhavin Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubin%2C+D">David Rubin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Dan Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perlmutter%2C+S">Saul Perlmutter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deustua%2C+S">Susana Deustua</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sako%2C+M">Masao Sako</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17226v1-abstract-short" style="display: inline;"> In this white paper, we review five top considerations for selecting locations of the fields of the Roman High-latitude Time Domain Survey. Based on these considerations, we recommend Akari Deep Field South (ADFS)/Euclid Deep Field South (EDFS) in the Southern Hemisphere has it avoids bright stars, has minimal Milky Way dust, is in Roman Continuous viewing zone, overlaps with multiple past and fut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17226v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17226v1-abstract-full" style="display: none;"> In this white paper, we review five top considerations for selecting locations of the fields of the Roman High-latitude Time Domain Survey. Based on these considerations, we recommend Akari Deep Field South (ADFS)/Euclid Deep Field South (EDFS) in the Southern Hemisphere has it avoids bright stars, has minimal Milky Way dust, is in Roman Continuous viewing zone, overlaps with multiple past and future surveys, and minimal zodiacal background variation. In the North, Extended Groth Strip (EGS) is good except for its zodiacal variation and Supernova/Acceleration Probe North (SNAP-N) and European Large Area Infrared Space Observatory Survey-North 1 (ELAIS N-1) are good except for their synergistic archival data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17226v1-abstract-full').style.display = 'none'; document.getElementById('2306.17226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the Roman Core Community Survey call for white papers</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16227">arXiv:2306.16227</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16227">pdf</a>, <a href="https://arxiv.org/format/2306.16227">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> The second data release from the European Pulsar Timing Array: IV. Implications for massive black holes, dark matter and the early Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Antoniadis%2C+J">J. Antoniadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">P. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+S">S. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auclair%2C+P">P. Auclair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Babak%2C+S">S. Babak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">M. Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nielsen%2C+A+-+B">A. -S. Bak Nielsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barausse%2C+E">E. Barausse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bassa%2C+C+G">C. G. Bassa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">A. Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthereau%2C+A">A. Berthereau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonetti%2C+M">M. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bortolas%2C+E">E. Bortolas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brook%2C+P+R">P. R. Brook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgay%2C+M">M. Burgay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caballero%2C+R+N">R. N. Caballero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caprini%2C+C">C. Caprini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chalumeau%2C+A">A. Chalumeau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Champion%2C+D+J">D. J. Champion</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chanlaridis%2C+S">S. Chanlaridis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+S">S. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cognard%2C+I">I. Cognard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crisostomi%2C+M">M. Crisostomi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dandapat%2C+S">S. Dandapat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deb%2C+D">D. Deb</a> , et al. (89 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16227v2-abstract-short" style="display: inline;"> The European Pulsar Timing Array (EPTA) and Indian Pulsar Timing Array (InPTA) collaborations have measured a low-frequency common signal in the combination of their second and first data releases respectively, with the correlation properties of a gravitational wave background (GWB). Such signal may have its origin in a number of physical processes including a cosmic population of inspiralling sup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16227v2-abstract-full').style.display = 'inline'; document.getElementById('2306.16227v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16227v2-abstract-full" style="display: none;"> The European Pulsar Timing Array (EPTA) and Indian Pulsar Timing Array (InPTA) collaborations have measured a low-frequency common signal in the combination of their second and first data releases respectively, with the correlation properties of a gravitational wave background (GWB). Such signal may have its origin in a number of physical processes including a cosmic population of inspiralling supermassive black hole binaries (SMBHBs); inflation, phase transitions, cosmic strings and tensor mode generation by non-linear evolution of scalar perturbations in the early Universe; oscillations of the Galactic potential in the presence of ultra-light dark matter (ULDM). At the current stage of emerging evidence, it is impossible to discriminate among the different origins. Therefore, in this paper, we consider each process separately, and investigate the implications of the signal under the hypothesis that it is generated by that specific process. We find that the signal is consistent with a cosmic population of inspiralling SMBHBs, and its relatively high amplitude can be used to place constraints on binary merger timescales and the SMBH-host galaxy scaling relations. If this origin is confirmed, this is the first direct evidence that SMBHBs merge in nature, adding an important observational piece to the puzzle of structure formation and galaxy evolution. As for early Universe processes, the measurement would place tight constraints on the cosmic string tension and on the level of turbulence developed by first-order phase transitions. Other processes would require non-standard scenarios, such as a blue-tilted inflationary spectrum or an excess in the primordial spectrum of scalar perturbations at large wavenumbers. Finally, a ULDM origin of the detected signal is disfavoured, which leads to direct constraints on the abundance of ULDM in our Galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16227v2-abstract-full').style.display = 'none'; document.getElementById('2306.16227v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 23 figures, replaced to match the version published in Astronomy &amp; Astrophysics, note the change in the numbering order in the series (now paper IV)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16226">arXiv:2306.16226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16226">pdf</a>, <a href="https://arxiv.org/format/2306.16226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348568">10.1051/0004-6361/202348568 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The second data release from the European Pulsar Timing Array V. Search for continuous gravitational wave signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Antoniadis%2C+J">J. Antoniadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">P. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+S">S. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Babak%2C+S">S. Babak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">M. Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nielsen%2C+A+S+B">A. S. Bak Nielsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bassa%2C+C+G">C. G. Bassa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">A. Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthereau%2C+A">A. Berthereau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonetti%2C+M">M. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bortolas%2C+E">E. Bortolas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brook%2C+P+R">P. R. Brook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgay%2C+M">M. Burgay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caballero%2C+R+N">R. N. Caballero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chalumeau%2C+A">A. Chalumeau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Champion%2C+D+J">D. J. Champion</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chanlaridis%2C+S">S. Chanlaridis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+S">S. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cognard%2C+I">I. Cognard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dandapat%2C+S">S. Dandapat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deb%2C+D">D. Deb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">S. Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desvignes%2C+G">G. Desvignes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhanda-Batra%2C+N">N. Dhanda-Batra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dwivedi%2C+C">C. Dwivedi</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16226v3-abstract-short" style="display: inline;"> We present the results of a search for continuous gravitational wave signals (CGWs) in the second data release (DR2) of the European Pulsar Timing Array (EPTA) collaboration. The most significant candidate event from this search has a gravitational wave frequency of 4-5 nHz. Such a signal could be generated by a supermassive black hole binary (SMBHB) in the local Universe. We present the results o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16226v3-abstract-full').style.display = 'inline'; document.getElementById('2306.16226v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16226v3-abstract-full" style="display: none;"> We present the results of a search for continuous gravitational wave signals (CGWs) in the second data release (DR2) of the European Pulsar Timing Array (EPTA) collaboration. The most significant candidate event from this search has a gravitational wave frequency of 4-5 nHz. Such a signal could be generated by a supermassive black hole binary (SMBHB) in the local Universe. We present the results of a follow-up analysis of this candidate using both Bayesian and frequentist methods. The Bayesian analysis gives a Bayes factor of 4 in favor of the presence of the CGW over a common uncorrelated noise process, while the frequentist analysis estimates the p-value of the candidate to be 1%, also assuming the presence of common uncorrelated red noise. However, comparing a model that includes both a CGW and a gravitational wave background (GWB) to a GWB only, the Bayes factor in favour of the CGW model is only 0.7. Therefore, we cannot conclusively determine the origin of the observed feature, but we cannot rule it out as a CGW source. We present results of simulations that demonstrate that data containing a weak gravitational wave background can be misinterpreted as data including a CGW and vice versa, providing two plausible explanations of the EPTA DR2 data. Further investigations combining data from all PTA collaborations will be needed to reveal the true origin of this feature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16226v3-abstract-full').style.display = 'none'; document.getElementById('2306.16226v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 figures, 15 pages, accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 690, A118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16225">arXiv:2306.16225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16225">pdf</a>, <a href="https://arxiv.org/format/2306.16225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346842">10.1051/0004-6361/202346842 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The second data release from the European Pulsar Timing Array II. Customised pulsar noise models for spatially correlated gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Antoniadis%2C+J">J. Antoniadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">P. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+S">S. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Babak%2C+S">S. Babak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">M. Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nielsen%2C+A+S+B">A. S. Bak Nielsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bassa%2C+C+G">C. G. Bassa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">A. Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthereau%2C+A">A. Berthereau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonetti%2C+M">M. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bortolas%2C+E">E. Bortolas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brook%2C+P+R">P. R. Brook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgay%2C+M">M. Burgay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caballero%2C+R+N">R. N. Caballero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chalumeau%2C+A">A. Chalumeau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Champion%2C+D+J">D. J. Champion</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chanlaridis%2C+S">S. Chanlaridis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+S">S. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cognard%2C+I">I. Cognard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dandapat%2C+S">S. Dandapat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deb%2C+D">D. Deb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">S. Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desvignes%2C+G">G. Desvignes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhanda-Batra%2C+N">N. Dhanda-Batra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dwivedi%2C+C">C. Dwivedi</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16225v1-abstract-short" style="display: inline;"> The nanohertz gravitational wave background (GWB) is expected to be an aggregate signal of an ensemble of gravitational waves emitted predominantly by a large population of coalescing supermassive black hole binaries in the centres of merging galaxies. Pulsar timing arrays, ensembles of extremely stable pulsars, are the most precise experiments capable of detecting this background. However, the su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16225v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16225v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16225v1-abstract-full" style="display: none;"> The nanohertz gravitational wave background (GWB) is expected to be an aggregate signal of an ensemble of gravitational waves emitted predominantly by a large population of coalescing supermassive black hole binaries in the centres of merging galaxies. Pulsar timing arrays, ensembles of extremely stable pulsars, are the most precise experiments capable of detecting this background. However, the subtle imprints that the GWB induces on pulsar timing data are obscured by many sources of noise. These must be carefully characterized to increase the sensitivity to the GWB. In this paper, we present a novel technique to estimate the optimal number of frequency coefficients for modelling achromatic and chromatic noise and perform model selection. We also incorporate a new model to fit for scattering variations in the pulsar timing package temponest and created realistic simulations of the European Pulsar Timing Array (EPTA) datasets that allowed us to test the efficacy of our noise modelling algorithms. We present an in-depth analysis of the noise properties of 25 millisecond pulsars (MSPs) that form the second data release (DR2) of the EPTA and investigate the effect of incorporating low-frequency data from the Indian PTA collaboration. We use enterprise and temponest packages to compare noise models with those reported with the EPTA DR1. We find that, while in some pulsars we can successfully disentangle chromatic from achromatic noise owing to the wider frequency coverage in DR2, in others the noise models evolve in a more complicated way. We also find evidence of long-term scattering variations in PSR J1600$-$3053. Through our simulations, we identify intrinsic biases in our current noise analysis techniques and discuss their effect on GWB searches. The results presented here directly help improve sensitivity to the GWB and are already being used as part of global PTA efforts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16225v1-abstract-full').style.display = 'none'; document.getElementById('2306.16225v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures, 9 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 678, A49 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16214">arXiv:2306.16214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16214">pdf</a>, <a href="https://arxiv.org/format/2306.16214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346844">10.1051/0004-6361/202346844 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Antoniadis%2C+J">J. Antoniadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">P. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+S">S. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Babak%2C+S">S. Babak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">M. Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nielsen%2C+A+-+B">A. -S. Bak Nielsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bassa%2C+C+G">C. G. Bassa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">A. Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthereau%2C+A">A. Berthereau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonetti%2C+M">M. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bortolas%2C+E">E. Bortolas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brook%2C+P+R">P. R. Brook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgay%2C+M">M. Burgay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caballero%2C+R+N">R. N. Caballero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chalumeau%2C+A">A. Chalumeau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Champion%2C+D+J">D. J. Champion</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chanlaridis%2C+S">S. Chanlaridis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+S">S. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cognard%2C+I">I. Cognard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dandapat%2C+S">S. Dandapat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deb%2C+D">D. Deb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">S. Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desvignes%2C+G">G. Desvignes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhanda-Batra%2C+N">N. Dhanda-Batra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dwivedi%2C+C">C. Dwivedi</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16214v1-abstract-short" style="display: inline;"> We present the results of the search for an isotropic stochastic gravitational wave background (GWB) at nanohertz frequencies using the second data release of the European Pulsar Timing Array (EPTA) for 25 millisecond pulsars and a combination with the first data release of the Indian Pulsar Timing Array (InPTA). We analysed (i) the full 24.7-year EPTA data set, (ii) its 10.3-year subset based on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16214v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16214v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16214v1-abstract-full" style="display: none;"> We present the results of the search for an isotropic stochastic gravitational wave background (GWB) at nanohertz frequencies using the second data release of the European Pulsar Timing Array (EPTA) for 25 millisecond pulsars and a combination with the first data release of the Indian Pulsar Timing Array (InPTA). We analysed (i) the full 24.7-year EPTA data set, (ii) its 10.3-year subset based on modern observing systems, (iii) the combination of the full data set with the first data release of the InPTA for ten commonly timed millisecond pulsars, and (iv) the combination of the 10.3-year subset with the InPTA data. These combinations allowed us to probe the contributions of instrumental noise and interstellar propagation effects. With the full data set, we find marginal evidence for a GWB, with a Bayes factor of four and a false alarm probability of $4\%$. With the 10.3-year subset, we report evidence for a GWB, with a Bayes factor of $60$ and a false alarm probability of about $0.1\%$ ($\gtrsim 3蟽$ significance). The addition of the InPTA data yields results that are broadly consistent with the EPTA-only data sets, with the benefit of better noise modelling. Analyses were performed with different data processing pipelines to test the consistency of the results from independent software packages. The inferred spectrum from the latest EPTA data from new generation observing systems is rather uncertain and in mild tension with the common signal measured in the full data set. However, if the spectral index is fixed at 13/3, the two data sets give a similar amplitude of ($2.5\pm0.7)\times10^{-15}$ at a reference frequency of $1\,{\rm yr}^{-1}$. By continuing our detection efforts as part of the International Pulsar Timing Array (IPTA), we expect to be able to improve the measurement of spatial correlations and better characterise this signal in the coming years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16214v1-abstract-full').style.display = 'none'; document.getElementById('2306.16214v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures, 4 appendix figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 678, A50 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13072">arXiv:2304.13072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13072">pdf</a>, <a href="https://arxiv.org/format/2304.13072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3122">10.1093/mnras/stad3122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-band Extension of the Wideband Timing Technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Paladi%2C+A+K">Avinash Kumar Paladi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dwivedi%2C+C">Churchil Dwivedi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rana%2C+P">Prerna Rana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%2C+N">Nobleson K</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Susobhanan%2C+A">Abhimanyu Susobhanan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tarafdar%2C+P">Pratik Tarafdar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deb%2C+D">Debabrata Deb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+S">Swetha Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gopakumar%2C+A">A Gopakumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krishnakumar%2C+M+A">M A Krishnakumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batra%2C+N+D">Neelam Dhanda Batra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Debnath%2C+J">Jyotijwal Debnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kareem%2C+F">Fazal Kareem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">Paramasivan Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">Manjari Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">Adarsh Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dandapat%2C+S">Subhajit Dandapat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">Shantanu Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+Y">Yashwant Gupta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hisano%2C+S">Shinnosuke Hisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kharbanda%2C+D">Divyansh Kharbanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kikunaga%2C+T">Tomonosuke Kikunaga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kolhe%2C+N">Neel Kolhe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maan%2C+Y">Yogesh Maan</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13072v2-abstract-short" style="display: inline;"> The wideband timing technique enables the high-precision simultaneous estimation of pulsar Times of Arrival (ToAs) and Dispersion Measures (DMs) while effectively modeling frequency-dependent profile evolution. We present two novel independent methods that extend the standard wideband technique to handle simultaneous multi-band pulsar data incorporating profile evolution over a larger frequency sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13072v2-abstract-full').style.display = 'inline'; document.getElementById('2304.13072v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13072v2-abstract-full" style="display: none;"> The wideband timing technique enables the high-precision simultaneous estimation of pulsar Times of Arrival (ToAs) and Dispersion Measures (DMs) while effectively modeling frequency-dependent profile evolution. We present two novel independent methods that extend the standard wideband technique to handle simultaneous multi-band pulsar data incorporating profile evolution over a larger frequency span to estimate DMs and ToAs with enhanced precision. We implement the wideband likelihood using the libstempo python interface to perform wideband timing in the tempo2 framework. We present the application of these techniques to the dataset of fourteen millisecond pulsars observed simultaneously in Band 3 (300 - 500 MHz) and Band 5 (1260 - 1460 MHz) of the upgraded Giant Metrewave Radio Telescope (uGMRT) with a large band gap of 760 MHz as a part of the Indian Pulsar Timing Array (InPTA) campaign. We achieve increased ToA and DM precision and sub-microsecond root mean square post-fit timing residuals by combining simultaneous multi-band pulsar observations done in non-contiguous bands for the first time using our novel techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13072v2-abstract-full').style.display = 'none'; document.getElementById('2304.13072v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12105">arXiv:2303.12105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.12105">pdf</a>, <a href="https://arxiv.org/format/2303.12105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.023008">10.1103/PhysRevD.108.023008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise analysis of the Indian Pulsar Timing Array data release I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Srivastava%2C+A">Aman Srivastava</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">Shantanu Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kolhe%2C+N">Neel Kolhe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surnis%2C+M">Mayuresh Surnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Susobhanan%2C+A">Abhimanyu Susobhanan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chalumeau%2C+A">Aur茅lien Chalumeau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hisano%2C+S">Shinnosuke Hisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K.%2C+N">Nobleson K.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+S">Swetha Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kharbanda%2C+D">Divyansh Kharbanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singha%2C+J">Jaikhomba Singha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tarafdar%2C+P">Pratik Tarafdar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">P Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">Manjari Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">Adarsh Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dandapat%2C+S">Subhajit Dandapat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+L">Lankeswar Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dwivedi%2C+C">Churchil Dwivedi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Girgaonkar%2C+R">Raghav Girgaonkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gopakumar%2C+A">A. Gopakumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+Y">Yashwant Gupta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kikunaga%2C+T">Tomonosuke Kikunaga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krishnakumar%2C+M+A">M. A. Krishnakumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+K">Kuo Liu</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12105v2-abstract-short" style="display: inline;"> The Indian Pulsar Timing Array (InPTA) collaboration has recently made its first official data release (DR1) for a sample of 14 pulsars using 3.5 years of uGMRT observations. We present the results of single-pulsar noise analysis for each of these 14 pulsars using the InPTA DR1. For this purpose, we consider white noise, achromatic red noise, dispersion measure (DM) variations, and scattering vari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12105v2-abstract-full').style.display = 'inline'; document.getElementById('2303.12105v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12105v2-abstract-full" style="display: none;"> The Indian Pulsar Timing Array (InPTA) collaboration has recently made its first official data release (DR1) for a sample of 14 pulsars using 3.5 years of uGMRT observations. We present the results of single-pulsar noise analysis for each of these 14 pulsars using the InPTA DR1. For this purpose, we consider white noise, achromatic red noise, dispersion measure (DM) variations, and scattering variations in our analysis. We apply Bayesian model selection to obtain the preferred noise models among these for each pulsar. For PSR J1600$-$3053, we find no evidence of DM and scattering variations, while for PSR J1909$-$3744, we find no significant scattering variations. Properties vary dramatically among pulsars. For example, we find a strong chromatic noise with chromatic index $\sim$ 2.9 for PSR J1939+2134, indicating the possibility of a scattering index that doesn&#39;t agree with that expected for a Kolmogorov scattering medium consistent with similar results for millisecond pulsars in past studies. Despite the relatively short time baseline, the noise models broadly agree with the other PTAs and provide, at the same time, well-constrained DM and scattering variations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12105v2-abstract-full').style.display = 'none'; document.getElementById('2303.12105v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PRD, 30 pages, 17 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05306">arXiv:2301.05306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.05306">pdf</a>, <a href="https://arxiv.org/format/2301.05306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad06bb">10.3847/1538-4357/ad06bb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Simultaneous Dual-Frequency Scintillation Arc Survey of Six Bright Canonical Pulsars Using the Upgraded Giant Metrewave Radio Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Turner%2C+J+E">Jacob E. Turner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McLaughlin%2C+M+A">Maura A. McLaughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stinebring%2C+D+R">Daniel R. Stinebring</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05306v4-abstract-short" style="display: inline;"> We use the upgraded Giant Metrewave Radio Telescope to measure scintillation arc properties in six bright canonical pulsars with simultaneous dual frequency coverage. These observations at frequencies from 300 to 750 MHz allowed for detailed analysis of arc evolution across frequency and epoch. We perform more robust determinations of frequency dependence for arc curvature, scintillation bandwidth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05306v4-abstract-full').style.display = 'inline'; document.getElementById('2301.05306v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05306v4-abstract-full" style="display: none;"> We use the upgraded Giant Metrewave Radio Telescope to measure scintillation arc properties in six bright canonical pulsars with simultaneous dual frequency coverage. These observations at frequencies from 300 to 750 MHz allowed for detailed analysis of arc evolution across frequency and epoch. We perform more robust determinations of frequency dependence for arc curvature, scintillation bandwidth, and scintillation timescale, and comparison between arc curvature and pseudo-curvature than allowed by single-frequency-band-per-epoch measurements, which we find to agree with theory and previous literature. We find a strong correlation between arc asymmetry and arc curvature, which we have replicated using simulations, and attribute to a bias in the Hough transform approach to scintillation arc analysis. Possible evidence for an approximately week long timescale over which a given scattering screen dominates signal propagation was found by tracking visible scintillation arcs in each epoch in PSR J1136+1551. The inclusion of a 155 minute observation allowed us to resolve the scale of scintillation variations on short timescales, which we find to be directly tied to the amount of ISM sampled over the observation. Some of our pulsars showed either consistent or emerging asymmetries in arc curvature, indicating instances of refraction across their lines of sight. Significant features in various pulsars, such as multiple scintillation arcs in PSR J1136+1551 and flat arclets in PSR J1509+5531, that have been found in previous works, were also detected. The simultaneous multiple band observing capability of the upgraded GMRT shows excellent promise for future pulsar scintillation work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05306v4-abstract-full').style.display = 'none'; document.getElementById('2301.05306v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10795">arXiv:2212.10795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10795">pdf</a>, <a href="https://arxiv.org/ps/2212.10795">ps</a>, <a href="https://arxiv.org/format/2212.10795">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Origin of extreme solar eruptive activity from the active region NOAA 12673 and the largest flare of solar cycle 24 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mitra%2C+P+K">Prabir K. Mitra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10795v1-abstract-short" style="display: inline;"> During 2017, when the Sun was moving toward the minimum phase of solar cycle 24, an exceptionally eruptive active region (AR) NOAA 12673 emerged on the Sun during August 28-September 10. During the highest activity level, the AR turned into a delta-type sunspot region, which manifests the most complex configuration of magnetic fields from the photosphere to the coronal heights. The AR 12673 produc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10795v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10795v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10795v1-abstract-full" style="display: none;"> During 2017, when the Sun was moving toward the minimum phase of solar cycle 24, an exceptionally eruptive active region (AR) NOAA 12673 emerged on the Sun during August 28-September 10. During the highest activity level, the AR turned into a delta-type sunspot region, which manifests the most complex configuration of magnetic fields from the photosphere to the coronal heights. The AR 12673 produced four X-class and 27 M-class flares, along with numerous C-class flares, making it one of the most powerful ARs of solar cycle 24. Notably, it produced the largest flare of solar cycle 24, namely, the X9.3 event on 2017 September 6. In this work, we highlight the results of our comprehensive analysis involving multi-wavelength imaging and coronal magnetic field modeling to understand the evolution and eruptivity from AR 12673. We especially focus on the morphological, spectral and kinematical evolution of the two X-class flares on 6 September 2017. We explore various large- and small-scale magnetic field structures of the active region which are associated with the triggering and subsequent outbursts during the powerful solar transients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10795v1-abstract-full').style.display = 'none'; document.getElementById('2212.10795v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IAU S372 Proceedings Series (8 pages, 5 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04150">arXiv:2212.04150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.04150">pdf</a>, <a href="https://arxiv.org/format/2212.04150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acac2d">10.3847/1538-4357/acac2d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of magnetic fields and energy release processes during homologous eruptive flares </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sahu%2C+S">Suraj Sahu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prasad%2C+A">Avijeet Prasad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cho%2C+K">Kyung-Suk Cho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04150v1-abstract-short" style="display: inline;"> We explore the processes of repetitive build-up and explosive release of magnetic energy together with the formation of magnetic flux ropes that eventually resulted into three homologous eruptive flares of successively increasing intensities (i.e., M2.0, M2.6, and X1.0). The flares originated from NOAA active region 12017 during 2014 March 28-29. EUV observations and magnetogram measurements toget&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04150v1-abstract-full').style.display = 'inline'; document.getElementById('2212.04150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04150v1-abstract-full" style="display: none;"> We explore the processes of repetitive build-up and explosive release of magnetic energy together with the formation of magnetic flux ropes that eventually resulted into three homologous eruptive flares of successively increasing intensities (i.e., M2.0, M2.6, and X1.0). The flares originated from NOAA active region 12017 during 2014 March 28-29. EUV observations and magnetogram measurements together with coronal magnetic field modeling suggest that the flares were triggered by the eruption of flux ropes embedded by a densely packed system of loops within a small part of the active region. In X-rays, the first and second events show similar evolution with single, compact sources, while the third event exhibits multiple emission centroids with a set of strong non-thermal conjugate sources at 50-100 keV during the HXR peak. The photospheric magnetic field over an interval of approximately 44 hr encompassing the three flares undergoes important phases of emergence and cancellation processes together with significant changes near the polarity inversion lines within the flaring region. Our observations point toward the tether-cutting mechanism as the plausible triggering process of the eruptions. Between the second and third event, we observe a prominent phase of flux emergence which temporally correlates with the build-up phase of free magnetic energy in the active region corona. In conclusion, our analysis reveals an efficient coupling between the rapidly evolving photospheric and coronal magnetic fields in the active region that led to a continued phase of the build-up of free energy, resulting into the homologous flares of successively increasing intensities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04150v1-abstract-full').style.display = 'none'; document.getElementById('2212.04150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in &#39;The Astrophysical Journal&#39;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.16633">arXiv:2210.16633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.16633">pdf</a>, <a href="https://arxiv.org/ps/2210.16633">ps</a>, <a href="https://arxiv.org/format/2210.16633">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing the Plasma Tail of Interstellar Comet 2I/Borisov </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Manoharan%2C+P+K">P K Manoharan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perillat%2C+P">Phil Perillat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salter%2C+C+J">C J Salter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+T">Tapasi Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raizada%2C+S">Shikha Raizada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lynch%2C+R+S">Ryan S Lynch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonsall-Pisano%2C+A">Amber Bonsall-Pisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">B C Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roshi%2C+A">Anish Roshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brum%2C+C">Christiano Brum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Venkataraman%2C+A">Arun Venkataraman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.16633v1-abstract-short" style="display: inline;"> We present an occultation study of compact radio sources by the plasma tail of interstellar Comet 2I/Borisov (C/2019 Q4) both pre- and near-perihelion using the Arecibo and Green Bank radio telescopes. The interplanetary scintillation (IPS) technique was used to probe the plasma tail at P-band (302--352 MHz), 820 MHz, and L-band (1120--1730 MHz). The presence and absence of scintillation at differ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16633v1-abstract-full').style.display = 'inline'; document.getElementById('2210.16633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.16633v1-abstract-full" style="display: none;"> We present an occultation study of compact radio sources by the plasma tail of interstellar Comet 2I/Borisov (C/2019 Q4) both pre- and near-perihelion using the Arecibo and Green Bank radio telescopes. The interplanetary scintillation (IPS) technique was used to probe the plasma tail at P-band (302--352 MHz), 820 MHz, and L-band (1120--1730 MHz). The presence and absence of scintillation at different perpendicular distances from the central axis of the plasma tail suggests a narrow tail of less than 6~arcmin at a distance of $\sim$10~arcmin ($\sim$$10^6$~km) from the comet nucleus. Data recorded during the occultation of B1019+083 on 31 October 2019 with the Arecibo Telescope covered the width of the plasma tail from its outer region to the central axis. The systematic increase in scintillation during the occultation provides the plasma properties associated with the tail when the comet was at its pre-perihelion phase. The excess level of L-band scintillation indicates a plasma density enhancement of $\sim$15--20 times that of the background solar wind. The evolving shape of the observed scintillation power spectra across the tail from its edge to the central axis suggests a density spectrum flatter than Kolmogorov, and that the plasma-density irregularity scales present in the tail range between 10 and 700 km. The discovery of a high-frequency spectral excess, corresponding to irregularity scales much smaller than the Fresnel scale, suggests the presence of small-scale density structures in the plasma tail, likely caused by interaction between the solar wind and the plasma environment formed by the comet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16633v1-abstract-full').style.display = 'none'; document.getElementById('2210.16633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, and 1 table (Accepted for publication in Planetary Science Journal)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14535">arXiv:2210.14535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.14535">pdf</a>, <a href="https://arxiv.org/format/2210.14535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11207-022-02073-7">10.1007/s11207-022-02073-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near-Earth Interplanetary Coronal Mass Ejections and Their Association with DH Type II Radio Bursts During Solar Cycles 23 and 24 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Patel%2C+B+D">Binal D. Patel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cho%2C+K">Kyung-Suk Cho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+R">Rok-Soon Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moon%2C+Y">Yong-Jae Moon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14535v1-abstract-short" style="display: inline;"> We analyse the characteristics of interplanetary coronal mass ejections (ICMEs) during Solar Cycles 23 and 24. The present analysis is primarily based on the near-Earth ICME catalogue (Richardson and Cane, 2010). An important aspect of this study is to understand the near-Earth and geoeffective aspects of ICMEs in terms of their association (type II ICMEs) versus absence (non-type II ICMEs) of dec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14535v1-abstract-full').style.display = 'inline'; document.getElementById('2210.14535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14535v1-abstract-full" style="display: none;"> We analyse the characteristics of interplanetary coronal mass ejections (ICMEs) during Solar Cycles 23 and 24. The present analysis is primarily based on the near-Earth ICME catalogue (Richardson and Cane, 2010). An important aspect of this study is to understand the near-Earth and geoeffective aspects of ICMEs in terms of their association (type II ICMEs) versus absence (non-type II ICMEs) of decameter-hectometer (DH) type II radio bursts, detected by Wind/WAVES and STEREOS/WAVES. Notably, DH type II radio bursts driven by a CME indicate powerful MHD shocks leaving the inner corona and entering the interplanetary medium. We find a drastic reduction in the occurrence of ICMEs by 56% in Solar Cycle 24 compared to the previous cycle (64 versus 147 events). Interestingly, despite a significant decrease in ICME/CME counts, both cycles contain almost the same fraction of type II ICMEs (~47%). Our analysis reveals that, even at a large distance of 1 AU, type II CMEs maintain significantly higher speeds compared to non-type II events (523 km/s versus 440 km/s). While there is an obvious trend of decrease in ICME transit times with increase in the CME initial speed, there also exists a noticeable wide range of transit times for a given CME speed. Contextually, Cycle 23 exhibits 10 events with shorter transit times ranging between 20-40 hours of predominantly type II categories while, interestingly, Cycle 24 almost completely lacks such &#34;fast&#34; events. We find a significant reduction in the parameter $V_{ICME} \times B_{z}$, the dawn to dusk electric field, by 39% during Solar Cycle 24 in comparison with the previous cycle. Further, $V_{ICME} \times B_{z}$ shows a strong correlation with Dst index, which even surpasses the consideration of $B_{z}$ and $V_{ICME}$ alone. The above results imply the crucial role of $V_{ICME} \times B_{z}$ toward effectively modulating the geoeffectiveness of ICMEs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14535v1-abstract-full').style.display = 'none'; document.getElementById('2210.14535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 Pages, 13 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Solar Physics (2022) 297:139 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03364">arXiv:2210.03364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.03364">pdf</a>, <a href="https://arxiv.org/format/2210.03364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac98b4">10.3847/1538-4357/ac98b4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Soft X-ray Spectral Diagnostics of Multi-thermal Plasma in Solar Flares with Chandrayaan-2 XSM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mithun%2C+N+P+S">N. P. S. Mithun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vadawale%2C+S+V">Santosh V. Vadawale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Del+Zanna%2C+G">Giulio Del Zanna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rao%2C+Y+K">Yamini K. Rao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarkar%2C+A">Aveek Sarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mondal%2C+B">Biswajit Mondal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Janardhan%2C+P">P. Janardhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhardwaj%2C+A">Anil Bhardwaj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+H+E">Helen E. Mason</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03364v1-abstract-short" style="display: inline;"> Spectroscopic observations in X-ray wavelengths provide excellent diagnostics of the temperature distribution in solar flare plasma. The Solar X-ray Monitor (XSM) onboard the Chandrayaan-2 mission provides broad-band disk integrated soft X-ray solar spectral measurements in the energy range of 1-15 keV with high spectral resolution and time cadence. In this study, we analyse X-ray spectra of three&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03364v1-abstract-full').style.display = 'inline'; document.getElementById('2210.03364v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03364v1-abstract-full" style="display: none;"> Spectroscopic observations in X-ray wavelengths provide excellent diagnostics of the temperature distribution in solar flare plasma. The Solar X-ray Monitor (XSM) onboard the Chandrayaan-2 mission provides broad-band disk integrated soft X-ray solar spectral measurements in the energy range of 1-15 keV with high spectral resolution and time cadence. In this study, we analyse X-ray spectra of three representative GOES C-class flares obtained with the XSM to investigate the evolution of various plasma parameters during the course of the flares. Using the soft X-ray spectra consisting of the continuum and well-resolved line complexes of major elements like Mg, Si, and Fe, we investigate the validity of the isothermal and multi-thermal assumptions on the high temperature components of the flaring plasma. We show that the soft X-ray spectra during the impulsive phase of the high intensity flares are inconsistent with isothermal models and are best fitted with double peaked differential emission measure distributions where the temperature of the hotter component rises faster than that of the cooler component. The two distinct temperature components observed in DEM models during the impulsive phase of the flares suggest the presence of the directly heated plasma in the corona and evaporated plasma from the chromospheric footpoints. We also find that the abundances of low FIP elements Mg, Si, and Fe reduces from near coronal to near photospheric values during the rising phase of the flare and recovers back to coronal values during decay phase, which is also consistent with the chromospheric evaporation scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03364v1-abstract-full').style.display = 'none'; document.getElementById('2210.03364v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04119">arXiv:2209.04119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.04119">pdf</a>, <a href="https://arxiv.org/format/2209.04119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/aca163">10.3847/1538-3881/aca163 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST&#39;s PEARLS: Prime Extragalactic Areas for Reionization and Lensing Science: Project Overview and First Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Windhorst%2C+R+A">Rogier A. Windhorst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cohen%2C+S+H">Seth H. Cohen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jansen%2C+R+A">Rolf A. Jansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Summers%2C+J">Jake Summers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tompkins%2C+S">Scott Tompkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Conselice%2C+C+J">Christopher J. Conselice</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Driver%2C+S+P">Simon P. Driver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yan%2C+H">Haojing Yan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coe%2C+D">Dan Coe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frye%2C+B">Brenda Frye</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grogin%2C+N">Norman Grogin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koekemoer%2C+A">Anton Koekemoer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marshall%2C+M+A">Madeline A. Marshall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+R">Rosalia O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pirzkal%2C+N">Nor Pirzkal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robotham%2C+A">Aaron Robotham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryan%2C%2C+R+E">Russell E. Ryan, Jr.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Willmer%2C+C+N+A">Christopher N. A. Willmer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carleton%2C+T">Timothy Carleton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Diego%2C+J+M">Jose M. Diego</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keel%2C+W+C">William C. Keel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Porto%2C+P">Paolo Porto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Redshaw%2C+C">Caleb Redshaw</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scheller%2C+S">Sydney Scheller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilkins%2C+S+M">Stephen M. Wilkins</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04119v3-abstract-short" style="display: inline;"> We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST &#34;Prime Extragalactic Areas for Reionization and Lensing Science&#34; (&#34;PEARLS&#34;) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift proto-clusters;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04119v3-abstract-full').style.display = 'inline'; document.getElementById('2209.04119v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04119v3-abstract-full" style="display: none;"> We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST &#34;Prime Extragalactic Areas for Reionization and Lensing Science&#34; (&#34;PEARLS&#34;) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift proto-clusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, AGN growth, and First Light. Five fields, the JWST NEP Time-Domain Field (TDF), IRAC Dark Field (IDF), and three lensing clusters, will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9-4.5 $渭$m galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9-4.5 渭m. PEARLS is designed to be of lasting benefit to the community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04119v3-abstract-full').style.display = 'none'; document.getElementById('2209.04119v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to AJ, comments welcome. We ask anyone who uses our public PEARLS (NEP TDF) data to refer to this overview paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.12441">arXiv:2208.12441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.12441">pdf</a>, <a href="https://arxiv.org/format/2208.12441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/1.JATIS.8.3.038004">10.1117/1.JATIS.8.3.038004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WALOP-South: A Four-Camera One-Shot Imaging Polarimeter for PASIPHAE Survey. Paper II -- Polarimetric Modelling and Calibration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Maharana%2C+S">Siddharth Maharana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anche%2C+R+M">Ramya M. Anche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramaprakash%2C+A+N">A. N. Ramaprakash</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhushan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basyrov%2C+A">Artem Basyrov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blinov%2C+D">Dmitry Blinov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casadio%2C+C">Carolina Casadio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deka%2C+K">Kishan Deka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">Hans Kristian Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+T">Tuhin Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gjerl%C3%B8w%2C+E">Eirik Gjerl酶w</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kypriotakis%2C+J+A">John A. Kypriotakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiehlmann%2C+S">Sebastian Kiehlmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandarakas%2C+N">Nikolaos Mandarakas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Panopoulou%2C+G+V">Georgia V. Panopoulou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Papadaki%2C+K">Katerina Papadaki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pavlidou%2C+V">Vasiliki Pavlidou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearson%2C+T+J">Timothy J. Pearson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pelgrims%2C+V">Vincent Pelgrims</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Potter%2C+S+B">Stephen B. Potter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Readhead%2C+A+C+S">Anthony C. S. Readhead</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skalidis%2C+R">Raphael Skalidis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Svalheim%2C+T+L">Trygve Leithe Svalheim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tassis%2C+K">Konstantinos Tassis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wehus%2C+I+K">Ingunn K. Wehus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.12441v1-abstract-short" style="display: inline;"> The Wide-Area Linear Optical Polarimeter (WALOP)-South instrument is an upcoming wide-field and high-accuracy optical polarimeter to be used as a survey instrument for carrying out the Polar-Areas Stellar Imaging in Polarization High Accuracy Experiment (PASIPHAE) program. Designed to operate as a one-shot four-channel and four-camera imaging polarimeter, it will have a field of view of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12441v1-abstract-full').style.display = 'inline'; document.getElementById('2208.12441v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.12441v1-abstract-full" style="display: none;"> The Wide-Area Linear Optical Polarimeter (WALOP)-South instrument is an upcoming wide-field and high-accuracy optical polarimeter to be used as a survey instrument for carrying out the Polar-Areas Stellar Imaging in Polarization High Accuracy Experiment (PASIPHAE) program. Designed to operate as a one-shot four-channel and four-camera imaging polarimeter, it will have a field of view of $35\times 35$ arcminutes and will measure the Stokes parameters $I$, $q$, and $u$ in a single exposure in the SDSS-r broadband filter. The design goal for the instrument is to achieve an overall polarimetric measurement accuracy of 0.1 % over the entire field of view. We present here the complete polarimetric modeling of the instrument, characterizing the amount and sources of instrumental polarization. To accurately retrieve the real Stokes parameters of a source from the measured values, we have developed a calibration method for the instrument. Using this calibration method and simulated data, we demonstrate how to correct instrumental polarization and obtain 0.1 % accuracy in the degree of polarization, $p$. Additionally, we tested and validated the calibration method by implementing it on a table-top WALOP-like test-bed polarimeter in the laboratory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12441v1-abstract-full').style.display = 'none'; document.getElementById('2208.12441v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 24 figures. Accepted for publication in the Journal of Astronomical Telescopes, Instruments, and Systems</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. of Astronomical Telescopes, Instruments, and Systems, 8(3), 038004 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.06070">arXiv:2208.06070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.06070">pdf</a>, <a href="https://arxiv.org/format/2208.06070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1119/5.0065381">10.1119/5.0065381 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Bose Horn Antenna Radio Telescope (BHARAT) design for 21 cm hydrogen line experiments for radio astronomy teaching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mhaske%2C+A+A">Ashish A. Mhaske</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+J">Joydeep Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jacob%2C+J">Joe Jacob</a>, <a href="/search/astro-ph?searchtype=author&amp;query=T%2C+P+K">Paul K. T</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.06070v1-abstract-short" style="display: inline;"> We have designed a low-cost radio telescope system named the Bose Horn Antenna Radio Telescope (BHARAT) to detect the 21 cm hydrogen line emission from our Galaxy. The system is being used at the Radio Physics Laboratory (RPL), Inter-University Centre for Astronomy and Astrophysics (IUCAA), India, for laboratory sessions and training students and teachers. It is also a part of the laboratory curri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06070v1-abstract-full').style.display = 'inline'; document.getElementById('2208.06070v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.06070v1-abstract-full" style="display: none;"> We have designed a low-cost radio telescope system named the Bose Horn Antenna Radio Telescope (BHARAT) to detect the 21 cm hydrogen line emission from our Galaxy. The system is being used at the Radio Physics Laboratory (RPL), Inter-University Centre for Astronomy and Astrophysics (IUCAA), India, for laboratory sessions and training students and teachers. It is also a part of the laboratory curriculum at several universities and colleges. Here, we present the design of a highly efficient, easy to build, and cost-effective dual-mode conical horn used as a radio telescope and describe the calibration procedure. We also present some model observation data acquired using the telescope for facilitating easy incorporation of this experiment in the laboratory curriculum of undergraduate or post-graduate programs. We have named the antenna after Acharya Jagadish Chandra Bose, honoring a pioneer in radio-wave science and an outstanding teacher, who inspired several world renowned scientists. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06070v1-abstract-full').style.display = 'none'; document.getElementById('2208.06070v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in American Journal of Physics. 22 pages, 16 figures, and 1 table. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05411">arXiv:2208.05411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05411">pdf</a>, <a href="https://arxiv.org/format/2208.05411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Speckle simulation tool for automated modelling of a large range of telescope aperture to fried parameter ratios </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chhabra%2C+S">Sorabh Chhabra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kohok%2C+A+A">Abhay A. Kohok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+S">Bhushan S. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramprakash%2C+A+N">A. N. Ramprakash</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rajarshi%2C+C+V">Chaitanya V. Rajarshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandare%2C+R+S">Rani S. Bhandare</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05411v1-abstract-short" style="display: inline;"> The Speckle Imager via MUlti Layer Atmospheric Turbulence Object Reconstructor (SIMULATOR) is a lab-based testbed instrument developed to test for speckle correlation-based techniques in the optical regime. However, this instrument can be used as a testbed against post-processing techniques or algorithms like lucky imaging, phase diversity method etc. The SIMULATOR can emulate 3D atmospheric turbu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05411v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05411v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05411v1-abstract-full" style="display: none;"> The Speckle Imager via MUlti Layer Atmospheric Turbulence Object Reconstructor (SIMULATOR) is a lab-based testbed instrument developed to test for speckle correlation-based techniques in the optical regime. However, this instrument can be used as a testbed against post-processing techniques or algorithms like lucky imaging, phase diversity method etc. The SIMULATOR can emulate 3D atmospheric turbulence behaviour using a three-layer turbulence screen, giving the user command over important site characteristics like wind profile, global fried parameter, global isoplanatic patch, mid-layer and high-layer height effects etc. This testbed is unique in that it can mimic a broad range of site and telescope characteristics accurately without the need for manual intervention or tuning of parameters. The current version can handle a Field of View (FoV) of up to $0.3^{\circ}$, bandwidth ranges from 4860 to 6560 nm and can cover atmospheric turbulence heights up to 83 km. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05411v1-abstract-full').style.display = 'none'; document.getElementById('2208.05411v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE conference proceedings 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SPIE 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.06461">arXiv:2207.06461</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.06461">pdf</a>, <a href="https://arxiv.org/format/2207.06461">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s12036-022-09869-w">10.1007/s12036-022-09869-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanohertz Gravitational Wave Astronomy during the SKA Era: An InPTA perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gopakumar%2C+A">Achamveedu Gopakumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandian%2C+A">Arul Pandian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prabu%2C+T">Thiagaraj Prabu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+L">Lankeswar Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">Manjari Bagchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">Shantanu Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tarafdar%2C+P">Pratik Tarafdar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rana%2C+P">Prerna Rana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maan%2C+Y">Yogesh Maan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batra%2C+N+D">Neelam Dhanda Batra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Girgaonkar%2C+R">Raghav Girgaonkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agarwal%2C+N">Nikita Agarwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">Paramasivan Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banik%2C+S">Sarmistha Banik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+A">Avishek Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">Adarsh Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dandapat%2C+S">Subhajit Dandapat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+Y">Yashwant Gupta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hisano%2C+S">Shinnosuke Hisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kato%2C+R">Ryo Kato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kharbanda%2C+D">Divyansh Kharbanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kikunaga%2C+T">Tomonosuke Kikunaga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kolhe%2C+N">Neel Kolhe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krishnakumar%2C+M+A">M. A. Krishnakumar</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.06461v1-abstract-short" style="display: inline;"> Decades long monitoring of millisecond pulsars, which exhibit highly stable rotational periods, in pulsar timing array experiments is on the threshold of discovering nanohertz stochastic gravitational wave background. This paper describes the Indian Pulsar timing array (InPTA) experiment, which employs the upgraded Giant Metrewave Radio Telescope (uGMRT) for timing an ensemble of millisecond pulsa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06461v1-abstract-full').style.display = 'inline'; document.getElementById('2207.06461v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.06461v1-abstract-full" style="display: none;"> Decades long monitoring of millisecond pulsars, which exhibit highly stable rotational periods, in pulsar timing array experiments is on the threshold of discovering nanohertz stochastic gravitational wave background. This paper describes the Indian Pulsar timing array (InPTA) experiment, which employs the upgraded Giant Metrewave Radio Telescope (uGMRT) for timing an ensemble of millisecond pulsars for this purpose. We highlight InPTA&#39;s observation strategies and analysis methods, which are relevant for a future PTA experiment with the more sensitive Square Kilometer Array (SKA) telescope. We show that the unique multi-sub-array multi-band wide-bandwidth frequency coverage of the InPTA provides Dispersion Measure estimates with unprecedented precision for PTA pulsars, e.g., ~ 2 x 10{-5} pc-cm{-3} for PSR J1909-3744. Configuring the SKA-low and SKA-mid as two and four sub-arrays respectively, it is shown that comparable precision is achievable, using observation strategies similar to those pursued by the InPTA, for a larger sample of 62 pulsars requiring about 26 and 7 hours per epoch for the SKA-mid and the SKA-low telescopes respectively. We also review the ongoing efforts to develop PTA-relevant general relativistic constructs that will be required to search for nanohertz gravitational waves from isolated super-massive black hole binary systems like blazar OJ 287. These efforts should be relevant to pursue persistent multi-messenger gravitational wave astronomy during the forthcoming era of the SKA telescope, the Thirty Meter Telescope, and the next-generation Event Horizon Telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06461v1-abstract-full').style.display = 'none'; document.getElementById('2207.06461v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Journal of Astronomy and Astrophysics for Special Issue on Indian Participation in the SKA (Editors : Abhirup Datta, Nirupam Roy, Preeti Kharb and Tirthankar Roy Choudhury)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.06446">arXiv:2207.06446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.06446">pdf</a>, <a href="https://arxiv.org/format/2207.06446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s12036-022-09874-z">10.1007/s12036-022-09874-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulsar timing irregularities and the Neutron Star interior in the era of SKA: An Indian Outlook </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Singha%2C+J">Jaikhomba Singha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bandyopadhyay%2C+D">Debades Bandyopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grover%2C+H">Himanshu Grover</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">Shantanu Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arumugam%2C+P">P. Arumugam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banik%2C+S">Sarmistha Banik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.06446v1-abstract-short" style="display: inline;"> There are two types of timing irregularities seen in pulsars: glitches and timing noise. Both of these phenomena can help us probe the interior of such exotic objects. This article presents a brief overview of the observational and theoretical aspects of pulsar timing irregularities and the main results from the investigations of these phenomena in India. The relevance of such Indian programs for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06446v1-abstract-full').style.display = 'inline'; document.getElementById('2207.06446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.06446v1-abstract-full" style="display: none;"> There are two types of timing irregularities seen in pulsars: glitches and timing noise. Both of these phenomena can help us probe the interior of such exotic objects. This article presents a brief overview of the observational and theoretical aspects of pulsar timing irregularities and the main results from the investigations of these phenomena in India. The relevance of such Indian programs for monitoring of young pulsars with the Square Kilometer Array (SKA) is presented, highlighting possible contributions of the Indian neutron star community to the upcoming SKA endeavour. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06446v1-abstract-full').style.display = 'none'; document.getElementById('2207.06446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figure. Accepted for publication in the Journal of Astrophysics and Astronomy : SKA special issue</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09289">arXiv:2206.09289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.09289">pdf</a>, <a href="https://arxiv.org/format/2206.09289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2022.46">10.1017/pasa.2022.46 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Indian Pulsar Timing Array: First data release </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tarafdar%2C+P">Pratik Tarafdar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K.%2C+N">Nobleson K.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rana%2C+P">Prerna Rana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singha%2C+J">Jaikhomba Singha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krishnakumar%2C+M+A">M. A. Krishnakumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paladi%2C+A+K">Avinash Kumar Paladi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kolhe%2C+N">Neel Kolhe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batra%2C+N+D">Neelam Dhanda Batra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agarwal%2C+N">Nikita Agarwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bathula%2C+A">Adarsh Bathula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dandapat%2C+S">Subhajit Dandapat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">Shantanu Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+L">Lankeswar Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hisano%2C+S">Shinnosuke Hisano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ingale%2C+P">Prathamesh Ingale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kato%2C+R">Ryo Kato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kharbanda%2C+D">Divyansh Kharbanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kikunaga%2C+T">Tomonosuke Kikunaga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marmat%2C+P">Piyush Marmat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandian%2C+B+A">B. Arul Pandian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prabu%2C+T">T. Prabu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srivastava%2C+A">Aman Srivastava</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surnis%2C+M">Mayuresh Surnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Susarla%2C+S+C">Sai Chaitanya Susarla</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09289v3-abstract-short" style="display: inline;"> We present the pulse arrival times and high-precision dispersion measure estimates for 14 millisecond pulsars observed simultaneously in the 300-500 MHz and 1260-1460 MHz frequency bands using the upgraded Giant Metrewave Radio Telescope (uGMRT). The data spans over a baseline of 3.5 years (2018-2021), and is the first official data release made available by the Indian Pulsar Timing Array collabor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09289v3-abstract-full').style.display = 'inline'; document.getElementById('2206.09289v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09289v3-abstract-full" style="display: none;"> We present the pulse arrival times and high-precision dispersion measure estimates for 14 millisecond pulsars observed simultaneously in the 300-500 MHz and 1260-1460 MHz frequency bands using the upgraded Giant Metrewave Radio Telescope (uGMRT). The data spans over a baseline of 3.5 years (2018-2021), and is the first official data release made available by the Indian Pulsar Timing Array collaboration. This data release presents a unique opportunity for investigating the interstellar medium effects at low radio frequencies and their impact on the timing precision of pulsar timing array experiments. In addition to the dispersion measure time series and pulse arrival times obtained using both narrowband and wideband timing techniques, we also present the dispersion measure structure function analysis for selected pulsars. Our ongoing investigations regarding the frequency dependence of dispersion measures have been discussed. Based on the preliminary analysis for five millisecond pulsars, we do not find any conclusive evidence of chromaticity in dispersion measures. Data from regular simultaneous two-frequency observations are presented for the first time in this work. This distinctive feature leads us to the highest precision dispersion measure estimates obtained so far for a subset of our sample. Simultaneous multi-band uGMRT observations in Band 3 and Band 5 are crucial for high-precision dispersion measure estimation and for the prospect of expanding the overall frequency coverage upon the combination of data from the various Pulsar Timing Array consortia in the near future. Parts of the data presented in this work are expected to be incorporated into the upcoming third data release of the International Pulsar Timing Array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09289v3-abstract-full').style.display = 'none'; document.getElementById('2206.09289v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 21 figures, 3 tables. Published in PASA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Publications of the Astronomical Society of Australia, Volume 39, 2022, e053 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12949">arXiv:2205.12949</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.12949">pdf</a>, <a href="https://arxiv.org/format/2205.12949">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac9fd5">10.3847/1538-4357/ac9fd5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Precision Redshifts for Type Ia Supernovae with the Nancy Grace Roman Space Telescope P127 Prism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+A">Bhavin A. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strolger%2C+L">Louis-Gregory Strolger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryan%2C%2C+R+E">Russell E. Ryan, Jr.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippenko%2C+A+V">Alexei V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hounsell%2C+R">Rebekah Hounsell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kelly%2C+P+L">Patrick L. Kelly</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kessler%2C+R">Richard Kessler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macias%2C+P">Phillip Macias</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+B">Benjamin Rose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Daniel Scolnic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12949v2-abstract-short" style="display: inline;"> We present results from simulating slitless spectroscopic observations with the Nancy Grace Roman Space Telescope&#39;s (Roman) Wide-Field Instrument (WFI) P127 prism spanning 0.75 $渭m$ to 1.8 $渭m$. We quantify the efficiency of recovered Type Ia supernovae (SNe Ia) redshifts, as a function of P127 prism exposure time, to guide planning for future observing programs with the Roman prism. Generating th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12949v2-abstract-full').style.display = 'inline'; document.getElementById('2205.12949v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12949v2-abstract-full" style="display: none;"> We present results from simulating slitless spectroscopic observations with the Nancy Grace Roman Space Telescope&#39;s (Roman) Wide-Field Instrument (WFI) P127 prism spanning 0.75 $渭m$ to 1.8 $渭m$. We quantify the efficiency of recovered Type Ia supernovae (SNe Ia) redshifts, as a function of P127 prism exposure time, to guide planning for future observing programs with the Roman prism. Generating the two-dimensional dispersed images and extracting one-dimensional spectra is done with the slitless spectroscopy package pyLINEAR along with custom-written software. From the analysis of 1698 simulated SN Ia P127 prism spectra, we show the efficiency of recovering SN redshifts to $z\lesssim3.0$, highlighting the exceptional sensitivity of the Roman P127 prism. Redshift recovery is assessed by setting a requirement of $蟽_z = (\left|z - z_\mathrm{true} \right|)/(1+z) \leq 0.01$. We find that 3 hr exposures are sufficient for meeting this requirement, for $\gtrsim 50\%$ of the sample of mock SNe Ia at $z\approx2$ and within $\pm5$ days of rest-frame maximum light in the optical. We also show that a 1 hr integration of Roman can achieve the same precision in completeness to a depth of $24.4 \pm 0.06$ AB mag (or $z\lesssim 1$). Implications for cosmological studies with Roman P127 prism spectra of SNe Ia are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12949v2-abstract-full').style.display = 'none'; document.getElementById('2205.12949v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ accepted. Updated to match accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13553">arXiv:2204.13553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13553">pdf</a>, <a href="https://arxiv.org/format/2204.13553">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1652">10.1093/mnras/stad1652 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Synthetic Roman Space Telescope High-Latitude Time-Domain Survey: Supernovae in the Deep Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+K+X">Kevin X. Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Dan Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Troxel%2C+M+A">M. A. Troxel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodney%2C+S+A">Steven A. Rodney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popovic%2C+B">Brodie Popovic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+C">Caleb Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippenko%2C+A+V">Alexei V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foley%2C+R+J">Ryan J. Foley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hounsell%2C+R">Rebekah Hounsell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jha%2C+S+W">Saurabh W. Jha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+D+O">David O. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+A">Bhavin A. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Long%2C+H">Heyang Long</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macias%2C+P">Phillip Macias</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+B+M">Benjamin M. Rose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yamamoto%2C+M">Masaya Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13553v2-abstract-short" style="display: inline;"> NASA will launch the Nancy Grace Roman Space Telescope (Roman) in the second half of this decade, which will allow for a generation-defining measurement of dark energy through multiple probes, including Type Ia supernovae (SNe Ia). To improve decisions on survey strategy, we have created the first simulations of realistic Roman images that include artificial SNe Ia injected as point sources in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13553v2-abstract-full').style.display = 'inline'; document.getElementById('2204.13553v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13553v2-abstract-full" style="display: none;"> NASA will launch the Nancy Grace Roman Space Telescope (Roman) in the second half of this decade, which will allow for a generation-defining measurement of dark energy through multiple probes, including Type Ia supernovae (SNe Ia). To improve decisions on survey strategy, we have created the first simulations of realistic Roman images that include artificial SNe Ia injected as point sources in the images. Our analysis combines work done on Roman simulations for weak gravitational lensing studies as well as catalog-level simulations of SN samples. We have created a time series of images over two years containing $\sim$ 1,050 SNe Ia, covering a 1 square degree subarea of a planned 5 square degree deep survey. We have released these images publicly for community use along with input catalogs of all injected sources. We create secondary products from these images by generating coadded images and demonstrating recovery of transient sources using image subtraction. We perform first-use analyses on these images in order to measure galaxy-detection efficiency, point source-detection efficiency, and host-galaxy association biases. The simulated images can be found here: https://roman.ipac.caltech.edu/sims/SN_Survey_Image_sim.html. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13553v2-abstract-full').style.display = 'none'; document.getElementById('2204.13553v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures. Submitted to MNRAS. For simulated images see https://roman.ipac.caltech.edu/sims/SN_Survey_Image_sim.html</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03954">arXiv:2203.03954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.03954">pdf</a>, <a href="https://arxiv.org/format/2203.03954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac5cc1">10.3847/1538-4357/ac5cc1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Homologous compact major blowout-eruption solar flares and their production of broad CMEs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sahu%2C+S">Suraj Sahu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sterling%2C+A+C">Alphonse C. Sterling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mitra%2C+P+K">Prabir K. Mitra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+R+L">Ronald L. Moore</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03954v1-abstract-short" style="display: inline;"> We analyze the formation mechanism of three homologous broad coronal mass ejections (CMEs) resulting from a series of solar blowout-eruption flares with successively increasing intensities (M2.0, M2.6, and X1.0). The flares originated from active region NOAA 12017 during 2014 March 28-29 within an interval of approximately 24 hr. Coronal magnetic field modeling based on nonlinear-force-free-field&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03954v1-abstract-full').style.display = 'inline'; document.getElementById('2203.03954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03954v1-abstract-full" style="display: none;"> We analyze the formation mechanism of three homologous broad coronal mass ejections (CMEs) resulting from a series of solar blowout-eruption flares with successively increasing intensities (M2.0, M2.6, and X1.0). The flares originated from active region NOAA 12017 during 2014 March 28-29 within an interval of approximately 24 hr. Coronal magnetic field modeling based on nonlinear-force-free-field extrapolation helps to identify low-lying closed bipolar loops within the flaring region enclosing magnetic flux ropes. We obtain a double flux rope system under closed bipolar fields for the all the events. The sequential eruption of the flux ropes led to homologous flares, each followed by a CME. Each of the three CMEs formed from the eruptions gradually attain a large angular width, after expanding from the compact eruption-source site. We find these eruptions and CMEs to be consistent with the &#39;magnetic-arch-blowout&#39; scenario: each compact-flare blowout eruption was seated in one foot of a far-reaching magnetic arch, exploded up the encasing leg of the arch, and blew out the arch to make a broad CME. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03954v1-abstract-full').style.display = 'none'; document.getElementById('2203.03954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.13006">arXiv:2201.13006</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.13006">pdf</a>, <a href="https://arxiv.org/format/2201.13006">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac68f1">10.3847/1538-4357/ac68f1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetar XTE J1810-197: Spectro-temporal evolution of average radio emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Maan%2C+Y">Yogesh Maan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surnis%2C+M+P">Mayuresh P. Surnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B+C">Bhal Chandra Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagchi%2C+M">Manjari Bagchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.13006v2-abstract-short" style="display: inline;"> We present the long-term spectro-temporal evolution of the average radio emission properties of the magnetar XTE J1810-197 (PSR J1809-1943) following its most recent outburst in late 2018. We report the results from two and a half years of monitoring campaign with the upgraded Giant Metrewave Radio Telescope carried out over the frequency range of 300 - 1450 MHz. Our observations show intriguing t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.13006v2-abstract-full').style.display = 'inline'; document.getElementById('2201.13006v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.13006v2-abstract-full" style="display: none;"> We present the long-term spectro-temporal evolution of the average radio emission properties of the magnetar XTE J1810-197 (PSR J1809-1943) following its most recent outburst in late 2018. We report the results from two and a half years of monitoring campaign with the upgraded Giant Metrewave Radio Telescope carried out over the frequency range of 300 - 1450 MHz. Our observations show intriguing time variability in the average profile width, flux density, spectral index and the broadband spectral shape. While the average profile width appears to gradually decrease at later epochs, the flux density shows multiple episodes of radio re-brightening over the course of our monitoring. Our systematic monitoring observations reveal that the radio spectrum has steepened over time, resulting in evolution from a magnetar-like to a more pulsar-like spectrum. A more detailed analysis reveals that the radio spectrum has a turnover, and this turnover shifts towards lower frequencies with time. We present the details of our analysis leading to these results, and discuss our findings in the context of magnetar radio emission mechanisms as well as potential manifestations of the intervening medium. We also briefly discuss whether an evolving spectral turnover could be an ubiquitous property of radio magnetars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.13006v2-abstract-full').style.display = 'none'; document.getElementById('2201.13006v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.14412">arXiv:2112.14412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.14412">pdf</a>, <a href="https://arxiv.org/format/2112.14412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4756">10.3847/1538-4357/ac4756 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiwavelength Signatures of Episodic Null Point Reconnection in a Quadrupolar Magnetic Configuration and the Cause of Failed Flux Rope Eruption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mitra%2C+P+K">Prabir K. Mitra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhuwan Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Veronig%2C+A+M">Astrid M. Veronig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiegelmann%2C+T">Thomas Wiegelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.14412v1-abstract-short" style="display: inline;"> In this paper, we present multiwavelength observations of the triggering of a failed-eruptive M-class flare from the active region NOAA 11302, and investigate the possible reasons for the associated failed eruption. Photospheric observations and Non-Linear Force Free Field extrapolated coronal magnetic field revealed that the flaring region had a complex quadrupolar configuration with a pre-existi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14412v1-abstract-full').style.display = 'inline'; document.getElementById('2112.14412v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.14412v1-abstract-full" style="display: none;"> In this paper, we present multiwavelength observations of the triggering of a failed-eruptive M-class flare from the active region NOAA 11302, and investigate the possible reasons for the associated failed eruption. Photospheric observations and Non-Linear Force Free Field extrapolated coronal magnetic field revealed that the flaring region had a complex quadrupolar configuration with a pre-existing coronal null point situated above the core field. Prior to the onset of the M-class flare, we observed multiple periods of small-scale flux enhancements in GOES and RHESSI soft X-ray observations, from the location of the null point. The pre-flare configuration and evolution reported here are similar to the ones presented in the breakout model but at much lower coronal heights. The core of the flaring region was characterized by the presence of two flux ropes in a double-decker configuration. During the impulsive phase of the flare, one of the two flux ropes initially started erupting but resulted in a failed eruption. Calculation of the magnetic decay index revealed a saddle-like profile where decay index initially increased to the torus unstable limits within the heights of the flux ropes but then decreased rapidly reaching to negative values, which was most likely responsible for the failed eruption of the initially torus unstable flux rope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14412v1-abstract-full').style.display = 'none'; document.getElementById('2112.14412v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 figures, 1 table, accepted for publication in the Astrophysical Journal</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Joshi%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Joshi%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Joshi%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Joshi%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Joshi%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10