CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 175 results for author: <span class="mathjax">Jiang, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Jiang%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jiang, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jiang%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jiang, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jiang%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14487">arXiv:2410.14487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14487">pdf</a>, <a href="https://arxiv.org/format/2410.14487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Generic non-Hermitian mobility edges in a class of duality-breaking quasicrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiang-Ping Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Mingdi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14487v1-abstract-short" style="display: inline;"> We provide approximate solutions for the mobility edge (ME) that demarcates localized and extended states within a specific class of one-dimensional non-Hermitian (NH) quasicrystals. These NH quasicrystals exhibit a combination of nonreciprocal hopping terms and complex quasiperiodic on-site potentials. Our analytical approach is substantiated by rigorous numerical calculations, demonstrating sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14487v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14487v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14487v1-abstract-full" style="display: none;"> We provide approximate solutions for the mobility edge (ME) that demarcates localized and extended states within a specific class of one-dimensional non-Hermitian (NH) quasicrystals. These NH quasicrystals exhibit a combination of nonreciprocal hopping terms and complex quasiperiodic on-site potentials. Our analytical approach is substantiated by rigorous numerical calculations, demonstrating significant accuracy. Furthermore, our ansatz closely agrees with the established limiting cases of the NH Aubry-Andr{茅}-Harper (AAH) and Ganeshan-Pixley-Das Sarma (GPD) models, which have exact results, thereby enhancing its credibility. Additionally, we have examined their dynamic properties and discovered distinct behaviors in different regimes. Our research provides a practical methodology for estimating the position of MEs in a category of NH quasicrystals that break duality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14487v1-abstract-full').style.display = 'none'; document.getElementById('2410.14487v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11178">arXiv:2410.11178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11178">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Combining Reinforcement Learning with Graph Convolutional Neural Networks for Efficient Design of TiAl/TiAlN Atomic-Scale Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xinyu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Haofan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nian%2C+Q">Qiong Nian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+H">Houlong Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11178v1-abstract-short" style="display: inline;"> Ti/TiN coatings are utilized in a wide variety of engineering applications due to their superior properties such as high hardness and toughness. Doping Al into Ti/TiN can also enhance properties and lead to even higher performance. Therefore, studying the atomic-level behavior of the TiAl/TiAlN interface is important. However, due to the large number of possible combinations for the 50 mol% Al-dop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11178v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11178v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11178v1-abstract-full" style="display: none;"> Ti/TiN coatings are utilized in a wide variety of engineering applications due to their superior properties such as high hardness and toughness. Doping Al into Ti/TiN can also enhance properties and lead to even higher performance. Therefore, studying the atomic-level behavior of the TiAl/TiAlN interface is important. However, due to the large number of possible combinations for the 50 mol% Al-doped Ti/TiN system, it is time-consuming to use the DFT-based Monte Carlo method to find the optimal TiAl/TiAlN system with a high work of adhesion. In this study, we use a graph convolutional neural network as an interatomic potential, combined with reinforcement learning, to improve the efficiency of finding optimal structures with a high work of adhesion. By inspecting the features of structures in neural networks, we found that the optimal structures follow a certain pattern of doping Al near the interface. The electronic structure and bonding analysis indicate that the optimal TiAl/TiAlN structures have higher bonding strength. We expect our approach to significantly accelerate the design of advanced ceramic coatings, which can lead to more durable and efficient materials for engineering applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11178v1-abstract-full').style.display = 'none'; document.getElementById('2410.11178v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20319">arXiv:2409.20319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20319">pdf</a>, <a href="https://arxiv.org/format/2409.20319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Dissipation induced transition between extension and localization in the three-dimensional Anderson model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xuanpu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiang-Ping Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zijun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20319v1-abstract-short" style="display: inline;"> We investigate the probable extension-localization transition in open quantum systems with disorder. The disorder can induce localization in isolated quantum systems and it is generally recognized that localization is fragile under the action of dissipations from the external environment due to its interfering nature. Recent work [Y. Liu, et al, Phys. Rev. Lett. 132, 216301 (2024)] found that a on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20319v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20319v1-abstract-full" style="display: none;"> We investigate the probable extension-localization transition in open quantum systems with disorder. The disorder can induce localization in isolated quantum systems and it is generally recognized that localization is fragile under the action of dissipations from the external environment due to its interfering nature. Recent work [Y. Liu, et al, Phys. Rev. Lett. 132, 216301 (2024)] found that a one-dimensional quasiperiodic system can be driven into the localization phase by a tailored local dissipation where a dissipation-induced extended-localized transition is proposed. Based on this, we consider a more realistic system and show that a dissipation-induced transition between extension and localization appears in the three-dimensional (3D) Anderson model. By tuning local dissipative operators acting on nearest neighboring sites, we find that the system can relax to localized states dominated steady state instead of the choice of initial conditions and dissipation strengths. Moreover, we can also realize an extended states predominated steady state from a localized initial state by using a kind of dissipation operators acting on next nearest neighboring sites. Our results enrich the applicability of dissipation-induced localization and identify the transition between extended and localized phases in 3D disordered systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20319v1-abstract-full').style.display = 'none'; document.getElementById('2409.20319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19209">arXiv:2409.19209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19209">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Boosting SISSO Performance on Small Sample Datasets by Using Random Forests Prescreening for Complex Feature Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiaolin Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guanqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+J">Jiaying Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zhenpeng Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19209v1-abstract-short" style="display: inline;"> In materials science, data-driven methods accelerate material discovery and optimization while reducing costs and improving success rates. Symbolic regression is a key to extracting material descriptors from large datasets, in particular the Sure Independence Screening and Sparsifying Operator (SISSO) method. While SISSO needs to store the entire expression space to impose heavy memory demands, it&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19209v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19209v1-abstract-full" style="display: none;"> In materials science, data-driven methods accelerate material discovery and optimization while reducing costs and improving success rates. Symbolic regression is a key to extracting material descriptors from large datasets, in particular the Sure Independence Screening and Sparsifying Operator (SISSO) method. While SISSO needs to store the entire expression space to impose heavy memory demands, it limits the performance in complex problems. To address this issue, we propose a RF-SISSO algorithm by combining Random Forests (RF) with SISSO. In this algorithm, the Random Forest algorithm is used for prescreening, capturing non-linear relationships and improving feature selection, which may enhance the quality of the input data and boost the accuracy and efficiency on regression and classification tasks. For a testing on the SISSO&#39;s verification problem for 299 materials, RF-SISSO demonstrates its robust performance and high accuracy. RF-SISSO can maintain the testing accuracy above 0.9 across all four training sample sizes and significantly enhancing regression efficiency, especially in training subsets with smaller sample sizes. For the training subset with 45 samples, the efficiency of RF-SISSO was 265 times higher than that of original SISSO. As collecting large datasets would be both costly and time-consuming in the practical experiments, it is thus believed that RF-SISSO may benefit scientific researches by offering a high predicting accuracy with limited data efficiently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19209v1-abstract-full').style.display = 'none'; document.getElementById('2409.19209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18515">arXiv:2409.18515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18515">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Correlation between unconventional superconductivity and strange metallicity revealed by operando superfluid density measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruozhou Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M">Mingyang Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chenyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhanyi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zhongxu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Juan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xingyu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+W">Wenxin Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Q">Qiuyan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuewei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jie Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yangmu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qihong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sachdev%2C+S">Subir Sachdev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zi-Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kui Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhongxian Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18515v1-abstract-short" style="display: inline;"> Strange-metal behavior has been observed in superconductors ranging from cuprates to pressurized nickelates, but its relationship to unconventional superconductivity remains elusive. Here, we perform operando superfluid density measurements on ion-gated FeSe films. We observe for the first time a synchronized evolution of superconducting condensate and the strange-metal phase with electron doping.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18515v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18515v1-abstract-full" style="display: none;"> Strange-metal behavior has been observed in superconductors ranging from cuprates to pressurized nickelates, but its relationship to unconventional superconductivity remains elusive. Here, we perform operando superfluid density measurements on ion-gated FeSe films. We observe for the first time a synchronized evolution of superconducting condensate and the strange-metal phase with electron doping. A linear scaling between zero-temperature superfluid density and the strange-metal resistivity coefficient is further established, which nails down a direct link between the formation of superfluid in the superconducting state and the scattering of carriers in the strange-metal normal state. Remarkably, the scaling also applies for different iron-based and cuprate superconductors despite their distinct electronic structures and pairing symmetries. Such a correlation can be reproduced in a theoretical calculation on the two-dimensional Yukawa-Sachdev-Ye-Kitaev model by considering a cooperative effect of quantum critical fluctuation and disorder. These findings indicate a fundamental principle governing superconducting condensation and strange-metal scattering in unconventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18515v1-abstract-full').style.display = 'none'; document.getElementById('2409.18515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08196">arXiv:2409.08196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08196">pdf</a>, <a href="https://arxiv.org/format/2409.08196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Acoustic higher-order topological insulator from momentum-space nonsymmorphic symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jinbing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kai Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tianle Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xuntao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+S">Songlin Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08196v1-abstract-short" style="display: inline;"> Momentum-space nonsymmorphic symmetries, stemming from the projective algebra of synthetic gauge fields, can modify the manifold of the Brillouin zone and lead to a variety of topological phenomena. We present an acoustic realization of higher-order topological insulators (HOTIs) protected by a pair of anticommutative momentum-space glide reflections. We confirm the presence of momentum-space glid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08196v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08196v1-abstract-full" style="display: none;"> Momentum-space nonsymmorphic symmetries, stemming from the projective algebra of synthetic gauge fields, can modify the manifold of the Brillouin zone and lead to a variety of topological phenomena. We present an acoustic realization of higher-order topological insulators (HOTIs) protected by a pair of anticommutative momentum-space glide reflections. We confirm the presence of momentum-space glide reflection from the measured momentum half translation of edge bands and their momentum-resolved probability distribution using a cylinder geometry made of acoustic resonator arrays. In particular, we observe both intrinsic and extrinsic HOTI features in such a cylinder: hopping strength variation along the open boundary leads to a bulk gap closure, while that along the closed boundary results in an edge gap closure. In addition, we confirm the presence of quadrupole corner modes with transmission and field distribution measurements. Our observation enriches the study of topological physics of momentum-space nonsymmorphic symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08196v1-abstract-full').style.display = 'none'; document.getElementById('2409.08196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03591">arXiv:2409.03591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03591">pdf</a>, <a href="https://arxiv.org/format/2409.03591">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Exact anomalous mobility edges in one-dimensional non-Hermitian quasicrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiang-Ping Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+W">Weilei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yayun Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03591v1-abstract-short" style="display: inline;"> Recent research has made significant progress in understanding localization transitions and mobility edges (MEs) that separate extended and localized states in non-Hermitian (NH) quasicrystals. Here we focus on studying critical states and anomalous MEs, which identify the boundaries between critical and localized states within two distinct NH quasiperiodic models. Specifically, the first model is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03591v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03591v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03591v1-abstract-full" style="display: none;"> Recent research has made significant progress in understanding localization transitions and mobility edges (MEs) that separate extended and localized states in non-Hermitian (NH) quasicrystals. Here we focus on studying critical states and anomalous MEs, which identify the boundaries between critical and localized states within two distinct NH quasiperiodic models. Specifically, the first model is a quasiperiodic mosaic lattice with both nonreciprocal hopping term and on-site potential. In contrast, the second model features an unbounded quasiperiodic on-site potential and nonreciprocal hopping. Using Avila&#39;s global theory, we analytically derive the Lyapunov exponent and exact anomalous MEs. To confirm the emergence of the robust critical states in both models, we conduct a numerical multifractal analysis of the wave functions and spectrum analysis of level spacing. Furthermore, we investigate the transition between real and complex spectra and the topological origins of the anomalous MEs. Our results may shed light on exploring the critical states and anomalous MEs in NH quasiperiodic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03591v1-abstract-full').style.display = 'none'; document.getElementById('2409.03591v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08194">arXiv:2408.08194</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08194">pdf</a>, <a href="https://arxiv.org/format/2408.08194">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.184304">10.1103/PhysRevB.110.184304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-doublon Bloch oscillations in the mass-imbalanced extended Fermi-Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kun-Liang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xun-Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yong-Yao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08194v3-abstract-short" style="display: inline;"> Interactions between particles normally induce the decay of the particles Bloch oscillations (BOs) in a periodic lattice. In the limit of strong on-site interactions, spin-$1/2$ fermions may form doublon bound states and undergo BOs in the presence of a tilted potential. Here we investigate the impact of nearest-neighbor interaction $V$ on the multi-doublon BOs in a mass-imbalanced extended Fermi-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08194v3-abstract-full').style.display = 'inline'; document.getElementById('2408.08194v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08194v3-abstract-full" style="display: none;"> Interactions between particles normally induce the decay of the particles Bloch oscillations (BOs) in a periodic lattice. In the limit of strong on-site interactions, spin-$1/2$ fermions may form doublon bound states and undergo BOs in the presence of a tilted potential. Here we investigate the impact of nearest-neighbor interaction $V$ on the multi-doublon BOs in a mass-imbalanced extended Fermi-Hubbard model. We derive an effective Hamiltonian for doublons, and show that a slight change in $V$ can qualitatively alter their dynamic behaviors. Notably, at a resonance point, the doublons behave like free hard-core bosons. Under a tilted potential, the system may exhibit different types of multi-doublon BOs at or deviation from the resonance point. Numerical results are presented to demonstrate our conclusions in both one- and two-dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08194v3-abstract-full').style.display = 'none'; document.getElementById('2408.08194v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 184304 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07585">arXiv:2408.07585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07585">pdf</a>, <a href="https://arxiv.org/format/2408.07585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Localization and mobility edges in non-Hermitian continuous quasiperiodic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiang-Ping Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhende Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yayun Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07585v1-abstract-short" style="display: inline;"> The mobility edge (ME) is a fundamental concept in the Anderson localized systems, which marks the energy separating extended and localized states. Although the ME and localization phenomena have been extensively studied in non-Hermitian (NH) quasiperiodic tight-binding models, they remain limited to NH continuum systems. Here, we investigate the ME and localization properties of a one-dimensional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07585v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07585v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07585v1-abstract-full" style="display: none;"> The mobility edge (ME) is a fundamental concept in the Anderson localized systems, which marks the energy separating extended and localized states. Although the ME and localization phenomena have been extensively studied in non-Hermitian (NH) quasiperiodic tight-binding models, they remain limited to NH continuum systems. Here, we investigate the ME and localization properties of a one-dimensional (1D) NH quasiperiodic continuous system, which is described by a Schr{枚}dinger equation with an imaginary vector potential and an incommensurable one-site potential. We find that the ME is located in the real spectrum and falls between the localized and extended states. Additionally, we show that under the periodic boundary condition, the energy spectrum always exhibits an open curve representing high-energy extended electronic states characterized by a non-zero integer winding number. This complex spectrum topology is closely connected with the non-Hermitian skin effect (NHSE) observed under open boundary conditions, where the eigenstates of the bulk bands accumulate at the boundaries. Furthermore, we analyze the critical behavior of the localization transition and obtain critical potential amplitude accompanied by the universal critical exponent $谓\simeq 1/3$. Our study provides valuable inspiration for exploring MEs and localization behaviors in NH quasiperiodic continuous systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07585v1-abstract-full').style.display = 'none'; document.getElementById('2408.07585v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17301">arXiv:2407.17301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17301">pdf</a>, <a href="https://arxiv.org/format/2407.17301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Dissipation induced ergodic-nonergodic transitions in finite-height mosaic Wannier-Stark lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiang-Ping Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xuanpu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yayun Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17301v1-abstract-short" style="display: inline;"> Recent research has observed the occurrence of pseudo-mobility edge (ME) within a modulated mosaic model incorporating the Wannier-Stark potential. This pseudo-ME, which signifies the critical energy that distinguishes between ergodic and weakly ergodic, or weakly ergodic and nonergodic states, is a crucial concept in comprehending the transport and localization phenomena in Wannier-Stark systems.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17301v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17301v1-abstract-full" style="display: none;"> Recent research has observed the occurrence of pseudo-mobility edge (ME) within a modulated mosaic model incorporating the Wannier-Stark potential. This pseudo-ME, which signifies the critical energy that distinguishes between ergodic and weakly ergodic, or weakly ergodic and nonergodic states, is a crucial concept in comprehending the transport and localization phenomena in Wannier-Stark systems. Here we investigate the influence of dissipation on a finite-height mosaic Wannier-Stark lattice that features such pseudo-MEs by computing the steady state density matrix. Our findings indicate that particular dissipation can steer the system into specific states, regardless of its initial state, predominantly characterized by either ergodic or nonergodic states. This suggests that dissipation can be harnessed as a novel method for inducing transitions between these states and manipulating particle localization behaviors in disorder-free systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17301v1-abstract-full').style.display = 'none'; document.getElementById('2407.17301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06111">arXiv:2407.06111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06111">pdf</a>, <a href="https://arxiv.org/format/2407.06111">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Enhancing the Prediction of Glass Dynamics by Incorporating the Direction of Deviation from Equilibrium Positions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Z">Zean Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kenli Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wangyu Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06111v2-abstract-short" style="display: inline;"> Elucidating the intricate relationship between the structure and dynamics in the context of the glass transition has been a persistent challenge. Machine learning (ML) has emerged as a pivotal tool, offering novel pathways to predict dynamic behaviors from structural descriptors. Notably, recent research has highlighted that the distance between the initial particle positions between the equilibri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06111v2-abstract-full').style.display = 'inline'; document.getElementById('2407.06111v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06111v2-abstract-full" style="display: none;"> Elucidating the intricate relationship between the structure and dynamics in the context of the glass transition has been a persistent challenge. Machine learning (ML) has emerged as a pivotal tool, offering novel pathways to predict dynamic behaviors from structural descriptors. Notably, recent research has highlighted that the distance between the initial particle positions between the equilibrium positions substantially enhances the prediction of glassy dynamics. However, these methodologies have been limited in their ability to capture the directional aspects of these deviations from the equilibrium positions, which are crucial for a comprehensive understanding of the complex particle interactions within the cage dynamics. Therefore, this paper introduces a novel structural parameter: the vectorial displacement of particles from their initial configuration to their equilibrium positions. Recognizing the inadequacy of current ML models in effectively handling such vectorial parameters, we have developed an Equivariance-Constrained Invariant Graph Neural Network (EIGNN). This innovative model not only bolsters the descriptive capacity of conventional rotation-invariant models but also streamlines the computational demands associated with rotation-equivariant graph neural networks. Our rigorous experimental validation on 3D glassy system from GlassBench dataset has yielded compelling evidence that the EIGNN model significantly enhance the correlation between structural representation and dynamic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06111v2-abstract-full').style.display = 'none'; document.getElementById('2407.06111v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03212">arXiv:2405.03212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03212">pdf</a>, <a href="https://arxiv.org/format/2405.03212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Using magnetic dynamics to measure the spin gap in a candidate Kitaev material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xinyi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+H">Hoyoung Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wenjie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xianghong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">Li Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+B">Byungjune Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sang-Youn Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minseok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyeong-Do Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xinqiang Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nanlin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+J+J">Joshua J. Turner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03212v1-abstract-short" style="display: inline;"> Materials potentially hosting Kitaev spin-liquid states are considered crucial for realizing topological quantum computing. However, the intricate nature of spin interactions within these materials complicates the precise measurement of low-energy spin excitations indicative of fractionalized excitations. Using Na$_{2}$Co$_2$TeO$_{6}$ as an example, we study these low-energy spin excitations using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03212v1-abstract-full" style="display: none;"> Materials potentially hosting Kitaev spin-liquid states are considered crucial for realizing topological quantum computing. However, the intricate nature of spin interactions within these materials complicates the precise measurement of low-energy spin excitations indicative of fractionalized excitations. Using Na$_{2}$Co$_2$TeO$_{6}$ as an example, we study these low-energy spin excitations using the time-resolved resonant elastic x-ray scattering (tr-REXS). Our observations unveil remarkably slow spin dynamics at the magnetic peak, whose recovery timescale is several nanoseconds. This timescale aligns with the extrapolated spin gap of $\sim$ 1 $渭$eV, obtained by density matrix renormalization group (DMRG) simulations in the thermodynamic limit. The consistency demonstrates the efficacy of tr-REXS in discerning low-energy spin gaps inaccessible to conventional spectroscopic techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03212v1-abstract-full').style.display = 'none'; document.getElementById('2405.03212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11911">arXiv:2404.11911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11911">pdf</a>, <a href="https://arxiv.org/format/2404.11911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.034003">10.1103/PhysRevMaterials.8.034003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable magnetism in bilayer transition metal dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Li-Ya Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiu-Cai Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+Z">Ze Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu-Zhong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11911v1-abstract-short" style="display: inline;"> Twist between neighboring layers and variation of interlayer distance are two extra ways to control the physical properties of stacked two-dimensional van der Waals materials without alteration of chemical compositions or application of external fields, compared to their monolayer counterparts. In this work, we explored the dependence of the magnetic states of the untwisted and twisted bilayer 1T-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11911v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11911v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11911v1-abstract-full" style="display: none;"> Twist between neighboring layers and variation of interlayer distance are two extra ways to control the physical properties of stacked two-dimensional van der Waals materials without alteration of chemical compositions or application of external fields, compared to their monolayer counterparts. In this work, we explored the dependence of the magnetic states of the untwisted and twisted bilayer 1T-VX$_2$ (X = S, Se) on the interlayer distance by density functional theory calculations. We find that, while a magnetic phase transition occurs from interlayer ferromagnetism to interlayer antiferromagnetism either as a function of decreasing interlayer distance for the untwisted bilayer 1T-VX$_2$ or after twist, richer magnetic phase transitions consecutively take place for the twisted bilayer 1T-VX$_2$ as interlayer distance is gradually reduced. Besides, the critical pressures for the phase transition are greatly reduced in twisted bilayer 1T-VX$_2$ compared with the untwisted case. We derived the Heisenberg model with intralayer and interlayer exchange couplings to comprehend the emergence of various magnetic states. Our results point out an easy access towards tunable two-dimensional magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11911v1-abstract-full').style.display = 'none'; document.getElementById('2404.11911v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 8, 034003 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04602">arXiv:2404.04602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04602">pdf</a>, <a href="https://arxiv.org/format/2404.04602">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.085104">10.1103/PhysRevB.109.085104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Site-selective insulating phase in twisted bilayer Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiu-Cai Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+Z">Ze Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu-Zhong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04602v1-abstract-short" style="display: inline;"> The paramagnetic phase diagrams of the half-filled Hubbard model on a twisted bilayer square lattice are investigated using coherent potential approximation. Besides the conventional metallic, band insulating, and Mott insulating phases, we find two site-selective insulating phases where certain sites exhibit band insulating behaviors while the others display Mott insulating behaviors. These phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04602v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04602v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04602v1-abstract-full" style="display: none;"> The paramagnetic phase diagrams of the half-filled Hubbard model on a twisted bilayer square lattice are investigated using coherent potential approximation. Besides the conventional metallic, band insulating, and Mott insulating phases, we find two site-selective insulating phases where certain sites exhibit band insulating behaviors while the others display Mott insulating behaviors. These phases are identified by the band gap, the double occupancy, the density of states, as well as the imaginary part of self-energy. Furthermore, we examine the effect of on-site potential on the stability of the site-selective insulating phases. Our results indicate that fruitful site-selective phases can be engineered by twisting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04602v1-abstract-full').style.display = 'none'; document.getElementById('2404.04602v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 085104 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00692">arXiv:2404.00692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00692">pdf</a>, <a href="https://arxiv.org/format/2404.00692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.013255">10.1103/PhysRevResearch.6.013255 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous charge-ordered state in Bernal-stacked bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiu-Cai Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Ze-Yi Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+Z">Ze Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu-Zhong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00692v1-abstract-short" style="display: inline;"> We propose that a weakly spontaneous charge-ordered insulating state probably exists in Bernal-stacked bilayer graphene which can account for experimentally observed non-monotonic behavior of resistance as a function of the gated field, namely, the gap closes and reopens at a critical gated field. The underlying physics is demonstrated by a simple model on a corresponding lattice that contains the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00692v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00692v1-abstract-full" style="display: none;"> We propose that a weakly spontaneous charge-ordered insulating state probably exists in Bernal-stacked bilayer graphene which can account for experimentally observed non-monotonic behavior of resistance as a function of the gated field, namely, the gap closes and reopens at a critical gated field. The underlying physics is demonstrated by a simple model on a corresponding lattice that contains the nearest intralayer and interlayer hoppings, electric field, and staggered potential between different sublattices. Combining density functional theory calculations with model analyses, we argue that the interlayer van der Waals interactions cooperating with ripples may be responsible for the staggered potential which induces a charge-ordered insulating state in the absence of the electric field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00692v1-abstract-full').style.display = 'none'; document.getElementById('2404.00692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 013255 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20248">arXiv:2403.20248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.20248">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c00774">10.1021/acs.nanolett.4c00774 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gate-tunable quantum acoustoelectric transport in graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mou%2C+Y">Yicheng Mou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haonan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiaqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+Q">Qing Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiayu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+J">Jiaming Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+T">Tuoyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xue Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W">Wu Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cheng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20248v1-abstract-short" style="display: inline;"> Transport probes the motion of quasiparticles in response to external excitations. Apart from the well-known electric and thermoelectric transport, acoustoelectric transport induced by traveling acoustic waves has been rarely explored. Here, by adopting a hybrid nanodevices integrated with piezoelectric substrates, we establish a simple design of acoustoelectric transport with gate tunability. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20248v1-abstract-full').style.display = 'inline'; document.getElementById('2403.20248v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20248v1-abstract-full" style="display: none;"> Transport probes the motion of quasiparticles in response to external excitations. Apart from the well-known electric and thermoelectric transport, acoustoelectric transport induced by traveling acoustic waves has been rarely explored. Here, by adopting a hybrid nanodevices integrated with piezoelectric substrates, we establish a simple design of acoustoelectric transport with gate tunability. We fabricate dual-gated acoustoelectric devices based on BN-encapsuled graphene on LiNbO3. Longitudinal and transverse acoustoelectric voltages are generated by launching pulsed surface acoustic wave. The gate dependence of zero-field longitudinal acoustoelectric signal presents strikingly similar profiles as that of Hall resistivity, providing a valid approach for extracting carrier density without magnetic field. In magnetic fields, acoustoelectric quantum oscillations appear due to Landau quantization, which are more robust and pronounced than Shubnikov-de Haas oscillations. Our work demonstrates a feasible acoustoelectric setup with gate tunability, which can be extended to the broad scope of various Van der Waals materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20248v1-abstract-full').style.display = 'none'; document.getElementById('2403.20248v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 24(15), 4625-4632 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14387">arXiv:2403.14387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.14387">pdf</a>, <a href="https://arxiv.org/format/2403.14387">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.115106">10.1103/PhysRevB.105.115106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable band gap in twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiu-Cai Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yi-Yuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu-Zhong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14387v1-abstract-short" style="display: inline;"> At large commensurate angles, twisted bilayer graphene which holds even parity under sublattice exchange exhibits a tiny gap. Here, we point out a way to tune this tiny gap into a large gap. We start from comprehensive understanding of the physical origin of gap opening by density functional theory calculations. We reveal that the effective inter-layer hopping, intra-layer CDW, or inter-layer char&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14387v1-abstract-full').style.display = 'inline'; document.getElementById('2403.14387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14387v1-abstract-full" style="display: none;"> At large commensurate angles, twisted bilayer graphene which holds even parity under sublattice exchange exhibits a tiny gap. Here, we point out a way to tune this tiny gap into a large gap. We start from comprehensive understanding of the physical origin of gap opening by density functional theory calculations. We reveal that the effective inter-layer hopping, intra-layer CDW, or inter-layer charge imbalance favors a gap. Then, on the basis of tight-binding calculations, we suggest that a periodic transverse inhomogeneous pressure, which can tune inter-layer hoppings in specific regions of the moi$\rm\acute{r}$e supercell, may open a gap of over $100$~meV, which is further confirmed by first-principles calculations. Our results provide a theoretical guidance for experiments to open a large gap in twisted bilayer graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14387v1-abstract-full').style.display = 'none'; document.getElementById('2403.14387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 105, 115106 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12104">arXiv:2403.12104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12104">pdf</a>, <a href="https://arxiv.org/format/2403.12104">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.104106">10.1103/PhysRevB.110.104106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topology reconstruction for asymmetric systems by isomorphic mapping or perturbation approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yunlin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingguang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+X">Xingchao Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+L">Langlang Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xianjun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yufu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+F">Fang Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xunya Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12104v3-abstract-short" style="display: inline;"> The systems without symmetries, e.g. the spatial and chiral symmetries, are generally thought to be improper for topological study and no conventional integral topological invariant can be well defined. In this work, with multi-band asymmetric Rice-Mele-like systems as examples, for the first time we show that the topology of all gaps can be reconstructed by two general methods and topological ori&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12104v3-abstract-full').style.display = 'inline'; document.getElementById('2403.12104v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12104v3-abstract-full" style="display: none;"> The systems without symmetries, e.g. the spatial and chiral symmetries, are generally thought to be improper for topological study and no conventional integral topological invariant can be well defined. In this work, with multi-band asymmetric Rice-Mele-like systems as examples, for the first time we show that the topology of all gaps can be reconstructed by two general methods and topological origin of many phenomena are revealed. A new integral topological invariant, i.e. the renormalized real-space winding number, can properly characterize the topology and bulk-edge correspondence of such systems. For the first method, an isomorphic mapping relationship between a Rice-Mele-like system and its chiral counterpart is set up, which accounts for the topology reconstruction in the half-filling gaps. For the second method, the Hilbert space of asymmetric systems could be reduced into degenerate subspaces by perturbation approximation, so that the topology in subspaces accounts for the topology reconstruction in the fractional-filling gaps. Surprisingly, the topology reconstructed by perturbation approximation exhibits extraordinary robustness since the topological edge states even exist far beyond the weak perturbation limit. We also show that both methods can be widely used for other asymmetric systems, e.g. the two-dimensional (2D) Rice-Mele systems and the superconductor systems. At last, for the asymmetric photonic systems, we predict different topological edge states by our topology-reconstruction theory and experimentally observe them in the laboratory, which agrees with each other very well. Our findings open a door for investigating new topological phenomena in asymmetric systems by various topological reconstruction methods which should greatly expand the category of topology study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12104v3-abstract-full').style.display = 'none'; document.getElementById('2403.12104v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11613">arXiv:2403.11613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11613">pdf</a>, <a href="https://arxiv.org/format/2403.11613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Scattering Singularity in Topological Dielectric Photonic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+L">Langlang Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xunya Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+G">Guangwei Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11613v1-abstract-short" style="display: inline;"> The exploration of topology in natural materials and metamaterials has garnered significant attention. Notably, the one-dimensional (1D) and two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model, assessed through tight-binding approximations, has been extensively investigated in both quantum and classical systems, encompassing general and higher-order topology. Despite these advancements, a compre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11613v1-abstract-full').style.display = 'inline'; document.getElementById('2403.11613v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11613v1-abstract-full" style="display: none;"> The exploration of topology in natural materials and metamaterials has garnered significant attention. Notably, the one-dimensional (1D) and two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model, assessed through tight-binding approximations, has been extensively investigated in both quantum and classical systems, encompassing general and higher-order topology. Despite these advancements, a comprehensive examination of these models from the perspective of wave physics, particularly the scattering view, remains underexplored. In this study, we systematically unveil the origin of the 1D and 2D Zak phases stemming from the zero-scattering point, termed the scattering singularity in k-space. Employing an expanded plane wave expansion, we accurately compute the reflective spectrum of an infinite 2D photonic crystal (2D-PhC). Analyzing the reflective spectrum reveals the presence of a zero-scattering line in the 2D-PhC, considered the topological origin of the non-trivial Zak phase. Two distinct models, representing omnidirectional non-trivial cases and directional non-trivial cases, are employed to substantiate these findings. Our work introduces a novel perspective for characterizing the nature of non-trivial topological phases. The identification of the zero-scattering line not only enhances our understanding of the underlying physics but also provides valuable insights for the design of innovative devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11613v1-abstract-full').style.display = 'none'; document.getElementById('2403.11613v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08587">arXiv:2403.08587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08587">pdf</a>, <a href="https://arxiv.org/format/2403.08587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.043275">10.1103/PhysRevResearch.5.043275 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An improved particle swarm optimization algorithm and its application to search for new magnetic ground states in the Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+Z">Ze Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiu-Cai Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Ze-Yi Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu-Zhong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08587v1-abstract-short" style="display: inline;"> An improved particle swarm optimization algorithm is proposed and its superiority over standard particle swarm optimization algorithm is tested on two typical benchmark functions. By employing this algorithm to search for the magnetic ground states of the Hubbard model on the real-space square lattice with finite size based on the mean-field approximation, two new magnetic states, namely the doubl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08587v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08587v1-abstract-full" style="display: none;"> An improved particle swarm optimization algorithm is proposed and its superiority over standard particle swarm optimization algorithm is tested on two typical benchmark functions. By employing this algorithm to search for the magnetic ground states of the Hubbard model on the real-space square lattice with finite size based on the mean-field approximation, two new magnetic states, namely the double striped-type antiferromagnetic state and the triple antiferromagnetic state, are found. We further perform mean-field calculations in the thermodynamical limit to confirm that these two new magnetic states are not a result of a finite-size effect, where the properties of the double striped-type antiferromagnetic state are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08587v1-abstract-full').style.display = 'none'; document.getElementById('2403.08587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 043275 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14573">arXiv:2402.14573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.14573">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Local Manipulation of Skyrmion Lattice in Fe3GaTe2 at Room Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Shuaizhao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Shouzhe Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+K">Kun Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guangcheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Z">Zunyi Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xingan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Ying Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Houbing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+J">Jiawang Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+T">Tianlong Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xueyun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14573v1-abstract-short" style="display: inline;"> Motivated by advances in spintronic devices, an extensive exploration is underway to uncover materials that host topologically protected spin textures, exemplified by skyrmions. One critical challenge involved in the potential application of skyrmions in van der Waals (vdW) materials is the attainment and manipulation of skyrmions at room temperature. In this study, we report the creation of intri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14573v1-abstract-full').style.display = 'inline'; document.getElementById('2402.14573v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14573v1-abstract-full" style="display: none;"> Motivated by advances in spintronic devices, an extensive exploration is underway to uncover materials that host topologically protected spin textures, exemplified by skyrmions. One critical challenge involved in the potential application of skyrmions in van der Waals (vdW) materials is the attainment and manipulation of skyrmions at room temperature. In this study, we report the creation of intrinsic skyrmion state in van der Waals ferromagnet Fe3GaTe2. By employing variable temperature magnetic force microscopy, the skyrmion lattice can be locally manipulated on Fe3GaTe2 flake. The ordering of skyrmion state is further analyzed. Our result suggest Fe3GaTe2 emerges as a highly promising contender for the realization of skyrmion-based layered spintronic memory devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14573v1-abstract-full').style.display = 'none'; document.getElementById('2402.14573v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14370">arXiv:2402.14370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.14370">pdf</a>, <a href="https://arxiv.org/format/2402.14370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad6bb9">10.1088/1367-2630/ad6bb9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact non-Hermitian mobility edges and robust flat bands in two-dimensional Lieb lattices with imaginary quasiperiodic potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiang-Ping Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+W">Weilei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yayun Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Peng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14370v1-abstract-short" style="display: inline;"> The mobility edge (ME) is a critical energy delineates the boundary between extended and localized states within the energy spectrum, and it plays a crucial role in understanding the metal-insulator transition in disordered or quasiperiodic systems. While there have been extensive studies on MEs in one-dimensional non-Hermitian (NH) quasiperiodic lattices recently, the investigation of exact NH ME&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14370v1-abstract-full').style.display = 'inline'; document.getElementById('2402.14370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14370v1-abstract-full" style="display: none;"> The mobility edge (ME) is a critical energy delineates the boundary between extended and localized states within the energy spectrum, and it plays a crucial role in understanding the metal-insulator transition in disordered or quasiperiodic systems. While there have been extensive studies on MEs in one-dimensional non-Hermitian (NH) quasiperiodic lattices recently, the investigation of exact NH MEs in two-dimensional (2D) cases remains rare. In the present study, we introduce a 2D dissipative Lieb lattice (DLL) model with imaginary quasiperiodic potentials applied solely to the vertices of the Lieb lattice. By mapping this DLL model to the 2D NH Aubry-Andr{茅}-Harper (AAH) model, we analytically derive the exact ME and find it associated with the absolute eigenenergies. We find that the eigenvalues of extended states are purely imaginary when the quasiperiodic potential is strong enough. Additionally, we demonstrate that the introduction of imaginary quasiperiodic potentials does not disrupt the flat bands inherent in the system. Finally, we propose a theoretical framework for realizing our model using the Lindblad master equation. Our results pave the way for further investigation of exact NH MEs and flat bands in 2D dissipative quasiperiodic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14370v1-abstract-full').style.display = 'none'; document.getElementById('2402.14370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 26, 083020 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03743">arXiv:2401.03743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.03743">pdf</a>, <a href="https://arxiv.org/format/2401.03743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.4c00280">10.1021/acs.jpclett.4c00280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards interpreting the thermally activated $尾$ dynamics in metallic glass with the structural constraint neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Z">Zean Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kenli Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wangyu Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03743v1-abstract-short" style="display: inline;"> Unraveling the structural factors influencing the dynamics of amorphous solids is crucial. While deep learning aids in navigating these complexities, transparency issues persist. Inspired by the successful application of prototype neural networks in the field of image analysis, this study introduces a new machine-learning approach to tackle the interpretability challenges faced in glassy research.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03743v1-abstract-full').style.display = 'inline'; document.getElementById('2401.03743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03743v1-abstract-full" style="display: none;"> Unraveling the structural factors influencing the dynamics of amorphous solids is crucial. While deep learning aids in navigating these complexities, transparency issues persist. Inspired by the successful application of prototype neural networks in the field of image analysis, this study introduces a new machine-learning approach to tackle the interpretability challenges faced in glassy research. Distinguishing from traditional machine learning models that only predict dynamics from the structural input, the adapted neural network additionally tries to learn structural prototypes under various dynamic patterns in the training phase. Such learned structural constraints can serve as a breakthrough in explaining how structural differences impact dynamics. We further use the proposed model to explore the correlation between the local structure and activation energy in the CuZr metallic glass. Building upon this interpretable model, we demonstrated significant structural differences among particles with distinct activation energies. The insights gained from this analysis serve as a data-driven solution for unraveling the origins of the structural heterogeneity in amorphous alloys, offering a valuable contribution to the understanding the amorphous materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03743v1-abstract-full').style.display = 'none'; document.getElementById('2401.03743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17064">arXiv:2312.17064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.17064">pdf</a>, <a href="https://arxiv.org/format/2312.17064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.024514">10.1103/PhysRevB.110.024514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity in nickelate and cuprate superconductors with strong bilayer coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Zhen Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jian-Feng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+B">Bo Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+D">Dingshun Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xing-Yu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Normand%2C+B">Bruce Normand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17064v2-abstract-short" style="display: inline;"> The discovery of superconductivity at 80 K under high pressure in La$_3$Ni$_2$O$_7$ presents the groundbreaking confirmation that high-$T_c$ superconductivity is a property of strongly correlated materials beyond cuprates. We use density functional theory (DFT) calculations of the band structure of La$_3$Ni$_2$O$_7$ under pressure to verify that the low-energy bands are composed almost exclusively&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17064v2-abstract-full').style.display = 'inline'; document.getElementById('2312.17064v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17064v2-abstract-full" style="display: none;"> The discovery of superconductivity at 80 K under high pressure in La$_3$Ni$_2$O$_7$ presents the groundbreaking confirmation that high-$T_c$ superconductivity is a property of strongly correlated materials beyond cuprates. We use density functional theory (DFT) calculations of the band structure of La$_3$Ni$_2$O$_7$ under pressure to verify that the low-energy bands are composed almost exclusively of Ni 3$d_{x^2-y^2}$ and O 2$p$ orbitals. We deduce that the Ni 3$d_{z^2}$ orbitals are essentially decoupled by the geometry of the high-pressure structure and by the effect of the Ni Hund coupling being strongly suppressed, which results from the enhanced interlayer antiferromagnetic interaction between $d_{z^2}$ orbitals and the strong intralayer hybridization of the $d_{x^2-y^2}$ orbitals with O 2$p$. By introducing a tight-binding model for the Fermi surfaces and low-energy dispersions, we arrive at a bilayer $t$-$t_\perp$-$J$ model with strong interlayer hopping, which we show is a framework unifying La$_3$Ni$_2$O$_7$ with cuprate materials possessing similar band structures, particularly the compounds La$_2$CaCu$_2$O$_6$, Pb$_2$Sr$_2$YCu$_3$O$_8$, and EuSr$_2$Cu$_2$NbO$_8$. We use a renormalized mean-field theory to show that these systems should have ($d$+$is$)-wave superconductivity, with a dominant $d$-wave component and the high $T_c$ driven by the near-optimally doped $尾$ band, while the $伪$ band adds an $s$-wave component that should lead to clear experimental signatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17064v2-abstract-full').style.display = 'none'; document.getElementById('2312.17064v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 024514 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15939">arXiv:2312.15939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15939">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Acousto-drag photovoltaic effect by piezoelectric integration of two-dimensional semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+J">Jiaming Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mou%2C+Y">Yicheng Mou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jianwen Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haonan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiayu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hangwen Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W">Wu Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+X">Xiang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xue Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ta%2C+D">Dean Ta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cheng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15939v2-abstract-short" style="display: inline;"> Light-to-electricity conversion is crucial for energy harvesting and photodetection, requesting efficient electron-hole pair separation to prevent recombination. Traditional junction-based mechanisms using built-in electric fields fail in non-barrier regions. Homogeneous material harvesting under photovoltaic effect is appealing but only realized in non-centrosymmetric systems via bulk photovoltai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15939v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15939v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15939v2-abstract-full" style="display: none;"> Light-to-electricity conversion is crucial for energy harvesting and photodetection, requesting efficient electron-hole pair separation to prevent recombination. Traditional junction-based mechanisms using built-in electric fields fail in non-barrier regions. Homogeneous material harvesting under photovoltaic effect is appealing but only realized in non-centrosymmetric systems via bulk photovoltaic effect. Here we report the realization of photovoltaic effect by employing surface acoustic waves (SAW) to generate zero-bias photocurrent in a conventional layered semiconductor MoSe2. SAW induces periodic modulation to electronic bands and drags the photoexcited pairs toward the travelling direction. The photocurrent is extracted by a local barrier. The separation of generation and extraction processes suppresses recombination and yields large nonlocal photoresponse. We distinguish acousto-electric drag and electron-hole pair separation effect by fabricating devices of different configurations. The acousto-drag photovoltaic effect, enabled by piezoelectric integration, offers an efficient light-to-electricity conversion method, independent of semiconductor crystal symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15939v2-abstract-full').style.display = 'none'; document.getElementById('2312.15939v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05112">arXiv:2312.05112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05112">pdf</a>, <a href="https://arxiv.org/format/2312.05112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Manipulating Topological Properties in Bi$_2$Se$_3$/BiSe/TMDC Heterostructures with Interface Charge Transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xuance Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yilmaz%2C+T">Turgut Yilmaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Deyu Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05112v1-abstract-short" style="display: inline;"> Heterostructures of topological insulator Bi$_2$Se$_3$ on transition metal dichalcogenides (TMDCs) offer a new materials platform for studying novel quantum states by exploiting the interplay among topological orders, charge orders and magnetic orders. The diverse interface attributes, such as material combination, charge re-arrangement, defect and strain, can be utilized to manipulate the quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05112v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05112v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05112v1-abstract-full" style="display: none;"> Heterostructures of topological insulator Bi$_2$Se$_3$ on transition metal dichalcogenides (TMDCs) offer a new materials platform for studying novel quantum states by exploiting the interplay among topological orders, charge orders and magnetic orders. The diverse interface attributes, such as material combination, charge re-arrangement, defect and strain, can be utilized to manipulate the quantum properties of this class of materials. Recent experiments of Bi$_2$Se$_3$/NbSe$_2$ heterostructures show signatures of strong Rashba band splitting due to the presence of a BiSe buffer layer, but the atomic level mechanism is not fully understood. We conduct first-principles studies of the Bi$_2$Se$_3$/BiSe/TMDC heterostructures with five different TMDC substrates (1T phase VSe$_2$, MoSe$_2$, TiSe$_2$, and 2H phase NbSe$_2$, MoSe$_2$). We find significant charge transfer at both BiSe/TMDC and Bi$_2$Se$_3$/BiSe interfaces driven by the work function difference, which stabilizes the BiSe layer as an electron donor and creates interface dipole. The electric field of the interface dipole breaks the inversion symmetry in the Bi$_2$Se$_3$ layer, leading to the giant Rashba band splitting in two quintuple layers and the recovery of the Dirac point in three quintuple layers, with the latter otherwise only occurring in thicker samples with at least six Bi$_2$Se$_3$ quintuple layers. Besides, we find that strain can significantly affect the charge transfer at the interfaces. Our study presents a promising avenue for tuning topological properties in heterostructures of two-dimensional materials, with potential applications in quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05112v1-abstract-full').style.display = 'none'; document.getElementById('2312.05112v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07959">arXiv:2311.07959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.07959">pdf</a>, <a href="https://arxiv.org/format/2311.07959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Domain formation and universally critical dynamics through phase separation in two-component Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yikai Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+X">Xizhou Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongyao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+B">Bo Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xunda Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Chaohong Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07959v1-abstract-short" style="display: inline;"> We explore the defect formation and universally critical dynamics in two-dimensional (2D) two-component Bose-Einstein condensates(BECs) subjected to two types of potential traps: a homogeneous trap and a harmonic trap.We focus on the non-equilibrium universal dynamics of the miscible-immiscible phase transition with both linear and nonlinear quenching types.Although there exists spatial independen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07959v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07959v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07959v1-abstract-full" style="display: none;"> We explore the defect formation and universally critical dynamics in two-dimensional (2D) two-component Bose-Einstein condensates(BECs) subjected to two types of potential traps: a homogeneous trap and a harmonic trap.We focus on the non-equilibrium universal dynamics of the miscible-immiscible phase transition with both linear and nonlinear quenching types.Although there exists spatial independence of the critical point, we find that the inhomogeneity of trap doesn&#39;t affect the phase transition of system and the critical exponents can still be explained by the homogeneous Kibble-Zurek mechanism. By analyzing the Bogoliubov excitations, we establish a power-law relationship between the domain correlation length, the phase transition delay, and the quench time.Furthermore, through real-time simulations of phase transition dynamics, the formation of domain defects and the delay of phase transition in non-equilibrium dynamics are demonstrated, along with the corresponding universal scaling of correlation length and phase transition delay for various quench time and quench coefficients, which align well with our analytical predictions.Our study confirms that the universality class of two-component BECs remains unaffected by dimensionality, while the larger nonlinear coefficients effectively suppress non-adiabatic excitations, offering a novel perspective for addressing adiabatic evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07959v1-abstract-full').style.display = 'none'; document.getElementById('2311.07959v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05833">arXiv:2311.05833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.05833">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c03415">10.1021/acs.nanolett.3c03415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature ferromagnetism in epitaxial bilayer FeSb/SrTiO3(001) terminated with a Kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huimin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qinxi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+L">Liangzi Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yanjun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daneshmandi%2C+S">Samira Daneshmandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cen%2C+C">Cheng Cen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voyles%2C+P+M">Paul M. Voyles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xue Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jijun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+C">Ching-Wu Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gai%2C+Z">Zheng Gai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lian Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05833v1-abstract-short" style="display: inline;"> Two-dimensional (2D) magnets exhibit unique physical properties for potential applications in spintronics. To date, most 2D ferromagnets are obtained by mechanical exfoliation of bulk materials with van der Waals interlayer interactions, and the synthesis of single or few-layer 2D ferromagnets with strong interlayer coupling remains experimentally challenging. Here, we report the epitaxial growth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05833v1-abstract-full').style.display = 'inline'; document.getElementById('2311.05833v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05833v1-abstract-full" style="display: none;"> Two-dimensional (2D) magnets exhibit unique physical properties for potential applications in spintronics. To date, most 2D ferromagnets are obtained by mechanical exfoliation of bulk materials with van der Waals interlayer interactions, and the synthesis of single or few-layer 2D ferromagnets with strong interlayer coupling remains experimentally challenging. Here, we report the epitaxial growth of 2D non-van der Waals ferromagnetic bilayer FeSb on SrTiO3(001) substrates stabilized by strong coupling to the substrate, which exhibits in-plane magnetic anisotropy and a Curie temperature above 300 K. In-situ low-temperature scanning tunneling microscopy/spectroscopy and density-functional theory calculations further reveal that a Fe Kagome layer terminates the bilayer FeSb. Our results open a new avenue for further exploring emergent quantum phenomena from the interplay of ferromagnetism and topology for application in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05833v1-abstract-full').style.display = 'none'; document.getElementById('2311.05833v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17840">arXiv:2310.17840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17840">pdf</a>, <a href="https://arxiv.org/ps/2310.17840">ps</a>, <a href="https://arxiv.org/format/2310.17840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.053804">10.1103/PhysRevLett.133.053804 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly anisotropic vortices in dipolar quantum droplets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guilong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zibin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xunda Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhaopin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malomed%2C+B+A">Boris A. Malomed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongyao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17840v3-abstract-short" style="display: inline;"> We construct strongly anisotropic quantum droplets with embedded vorticity in the 3D space, with mutually perpendicular vortex axis and polarization of atomic magnetic moments. Stability of these anisotropic vortex quantum droplets (AVQDs) is verified by means of systematic simulations. Their stability area is identified in the parametric plane of the total atom number and scattering length of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17840v3-abstract-full').style.display = 'inline'; document.getElementById('2310.17840v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17840v3-abstract-full" style="display: none;"> We construct strongly anisotropic quantum droplets with embedded vorticity in the 3D space, with mutually perpendicular vortex axis and polarization of atomic magnetic moments. Stability of these anisotropic vortex quantum droplets (AVQDs) is verified by means of systematic simulations. Their stability area is identified in the parametric plane of the total atom number and scattering length of the contact interactions. We also construct vortex-antivortex-vortex bound states and find their stability region in the parameter space. The application of a torque perpendicular to the vorticity axis gives rise to robust intrinsic oscillations or rotation of the AVQDs. The effect of three-body losses on the AVQD stability is considered too. The results show that the AVQDs can retain the topological structure (vorticity) for a sufficiently long time if the scattering length exceeds a critical value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17840v3-abstract-full').style.display = 'none'; document.getElementById('2310.17840v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, and 80 References, Physical Review Letters, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 053804 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17016">arXiv:2310.17016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17016">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Boosting output performance of contact-separation mode triboelectric nanogenerators by adopting discontinuity and fringing effect: experiment and modelling studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+T">Teresa Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Han Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valizadeh%2C+N">Navid Valizadeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bittner%2C+F">Florian Bittner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Ling Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabczuk%2C+T">Timon Rabczuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiaoning Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+X">Xiaoying Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17016v1-abstract-short" style="display: inline;"> Triboelectric nanogenerators (TENGs) are promising self-powering supplies for a diverse range of intelligent sensing and monitoring devices, especially due to their capability of harvesting electric energy from low frequency and small-scale mechanical motions. Inspired by the fact that contact-separation mode TENGs with small contact areas harvest high electrical outputs due to fringing effect, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17016v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17016v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17016v1-abstract-full" style="display: none;"> Triboelectric nanogenerators (TENGs) are promising self-powering supplies for a diverse range of intelligent sensing and monitoring devices, especially due to their capability of harvesting electric energy from low frequency and small-scale mechanical motions. Inspired by the fact that contact-separation mode TENGs with small contact areas harvest high electrical outputs due to fringing effect, this study employed discontinuity on the dielectric side of contact-separation mode TENGs to promote fringing electric fields for the enhancement of electrical outputs. The results reveal that the TENGs with more discontinuities show higher overall electric performance. Compared to pristine TENGs, the TENGs with cross discontinuities increased the surface charge by 50% and the power density by 114%. However, one should avoid generating discontinuities on tribonegative side of TENGs using metal blade within a positive-ion atmosphere due to the neutralization through electrically conductive metal blade. The computational simulation validated that the TENGs with discontinuities obtained higher electrical outputs, and further investigated the effect of discontinuity gap size and array distance on TENGs performance. This study has provided a promising method for the future design of TENGs using discontinuous structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17016v1-abstract-full').style.display = 'none'; document.getElementById('2310.17016v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10818">arXiv:2308.10818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10818">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Interpretable Ensemble Learning for Materials Property Prediction with Classical Interatomic Potentials: Carbon as an Example </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xinyu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Haofan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choudhary%2C+K">Kamal Choudhary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+H">Houlong Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nian%2C+Q">Qiong Nian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10818v1-abstract-short" style="display: inline;"> Machine learning (ML) is widely used to explore crystal materials and predict their properties. However, the training is time-consuming for deep-learning models, and the regression process is a black box that is hard to interpret. Also, the preprocess to transfer a crystal structure into the input of ML, called descriptor, needs to be designed carefully. To efficiently predict important properties&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10818v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10818v1-abstract-full" style="display: none;"> Machine learning (ML) is widely used to explore crystal materials and predict their properties. However, the training is time-consuming for deep-learning models, and the regression process is a black box that is hard to interpret. Also, the preprocess to transfer a crystal structure into the input of ML, called descriptor, needs to be designed carefully. To efficiently predict important properties of materials, we propose an approach based on ensemble learning consisting of regression trees to predict formation energy and elastic constants based on small-size datasets of carbon allotropes as an example. Without using any descriptor, the inputs are the properties calculated by molecular dynamics with 9 different classical interatomic potentials. Overall, the results from ensemble learning are more accurate than those from classical interatomic potentials, and ensemble learning can capture the relatively accurate properties from the 9 classical potentials as criteria for predicting the final properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10818v1-abstract-full').style.display = 'none'; document.getElementById('2308.10818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12376">arXiv:2307.12376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12376">pdf</a>, <a href="https://arxiv.org/format/2307.12376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Stark many-body localization with long-range interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiang-Ping Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+R">Rui Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yayun Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guangwen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12376v1-abstract-short" style="display: inline;"> In one-dimensional (1D) disorder-free interacting systems, a sufficiently strong linear potential can induce localization of the many-body eigenstates, a phenomenon dubbed as Stark many-body localization (MBL). In this paper, we investigate the fate of Stark MBL in 1D spinless fermions systems with long-range interactions, specifically focusing on the role of interaction strength. We obtain the St&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12376v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12376v1-abstract-full" style="display: none;"> In one-dimensional (1D) disorder-free interacting systems, a sufficiently strong linear potential can induce localization of the many-body eigenstates, a phenomenon dubbed as Stark many-body localization (MBL). In this paper, we investigate the fate of Stark MBL in 1D spinless fermions systems with long-range interactions, specifically focusing on the role of interaction strength. We obtain the Stark MBL phase diagrams by computing the mean gap ratio and many-body inverse participation ratio at half-filling. We show that, for short-range interactions, there is a qualitative symmetry between the limits of weak and strong interactions. However, this symmetry is absent in the case of long-range interactions, where the system is always Stark many-body localized at strong interactions, regardless of the linear potential strength. Furthermore, we study the dynamics of imbalance and entanglement with various initial states using time-dependent variational principle (TDVP) numerical methods. We reveal that the dynamical quantities display a strong dependence on the initial conditions, which suggests that the Hilbert-space fragmentation precludes thermalization. Our results demonstrate the robustness of Stark MBL even in the presence of long-range interactions and offer an avenue to explore MBL in disorder-free systems with long-range interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12376v1-abstract-full').style.display = 'none'; document.getElementById('2307.12376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03807">arXiv:2306.03807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.03807">pdf</a>, <a href="https://arxiv.org/format/2306.03807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Localization and mobility edges in non-Hermitian disorder-free lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+R">Rui Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+J">Junpeng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiang-Ping Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03807v1-abstract-short" style="display: inline;"> The non-Hermitian skin effect (NHSE) is a significant phenomenon observed in non-Hermitian systems under open boundary conditions, where the extensive bulk eigenstates tend to accumulate at the lattice edges. In this article, we investigate how an electric field affects the localization properties in a non-Hermitian mosaic Stark lattice, exploring the interplay between the Stark localization, mobi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03807v1-abstract-full').style.display = 'inline'; document.getElementById('2306.03807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03807v1-abstract-full" style="display: none;"> The non-Hermitian skin effect (NHSE) is a significant phenomenon observed in non-Hermitian systems under open boundary conditions, where the extensive bulk eigenstates tend to accumulate at the lattice edges. In this article, we investigate how an electric field affects the localization properties in a non-Hermitian mosaic Stark lattice, exploring the interplay between the Stark localization, mobility edge (ME), and the NHSE induced by nonreciprocity. We analytically obtain the Lyapunov exponent and the phase transition points as well as numerically calculate the density distributions and the spectral winding number. We reveal that in the nonreciprocal Stark lattice with the mosaic periodic parameter $魏=1$, there exists a critical electric field strength that describes the transition of the existence-nonexistence of NHSE and is inversely proportional to the lattice size. This transition is consistent with the real-complex transition and topological transition characterized by spectral winding number under periodic boundary conditions. In the strong fields, the Wannier-Stark ladder is recovered, and the Stark localization is sufficient to suppress the NHSE. When the mosaic period $魏=2$, we show that the system manifests an exact non-Hermitian ME and the skin states are still existing in the strong fields, in contrast to the gigantic field can restrain the NHSE in the $魏=1$ case. Moreover, we further study the expansion dynamics of an initially localized state and dynamically probe the existence of the NHSE and the non-Hermitian ME. These results could help us to control the NHSE and the non-Hermitian ME by using electric fields in the disorder-free systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03807v1-abstract-full').style.display = 'none'; document.getElementById('2306.03807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13977">arXiv:2304.13977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13977">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.256902">10.1103/PhysRevLett.130.256902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant Bulk Electro-photovoltaic Effect in Hetero-nodal-line Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+L">Lei Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jianfeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bing Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13977v1-abstract-short" style="display: inline;"> Realization of giant and continuously tunable second-order photocurrent is desired for many nonlinear optical (NLO) and optoelectronic applications, which remains to be a great challenge. Here, based on a simple two-band model, we propose a concept of bulk electro-photovoltaic effect, that is, an out-of-plane external electric-field ($E_{ext}$) can continuously tune in-plane shift current along wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13977v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13977v1-abstract-full" style="display: none;"> Realization of giant and continuously tunable second-order photocurrent is desired for many nonlinear optical (NLO) and optoelectronic applications, which remains to be a great challenge. Here, based on a simple two-band model, we propose a concept of bulk electro-photovoltaic effect, that is, an out-of-plane external electric-field ($E_{ext}$) can continuously tune in-plane shift current along with its sign flip in a hetero-nodal-line (HNL) system. While strong linear optical transition around the nodal-loop may potentially generate giant shift current, an $E_{ext}$ can effectively control the radius of nodal-loop, which can continuously modulate the shift-vector components inside and outside nodal-loop holding opposite signs. This concept has been demonstrated in the HNL HSnN/MoS$_2$ system using first-principles calculations. The HSnN/MoS$_2$ hetero-bilayer not only can produce giant shift current with 1~2 magnitude order larger than other reported systems, but also can realize a giant bulk electro-photovoltaic effect. Our finding opens new routes to create and manipulate giant NLO responses in 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13977v1-abstract-full').style.display = 'none'; document.getElementById('2304.13977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.07043">arXiv:2304.07043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.07043">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-46626-9">10.1038/s41467-024-46626-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The discovery of three-dimensional Van Hove singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zeping Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yuhan Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+X">Xiao-Sheng Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+X">Xianghao Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guangyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+C">Congming Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengcheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+C">Chunhui Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+H">Haifeng Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhenrong Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Y">Yusheng Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zhongbo Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Junhao Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+X">Xiang Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.07043v2-abstract-short" style="display: inline;"> Arising from the extreme/saddle point in electronic bands, Van Hove singularity (VHS) manifests divergent density of states (DOS) and induces various new states of matter such as unconventional superconductivity. VHS is believed to exist in one and two dimensions, but rarely found in three dimension (3D). Here, we report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07043v2-abstract-full').style.display = 'inline'; document.getElementById('2304.07043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.07043v2-abstract-full" style="display: none;"> Arising from the extreme/saddle point in electronic bands, Van Hove singularity (VHS) manifests divergent density of states (DOS) and induces various new states of matter such as unconventional superconductivity. VHS is believed to exist in one and two dimensions, but rarely found in three dimension (3D). Here, we report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared spectroscopy. External magnetic fields effectively control the exchange interaction in EuCd2As2, and shift 3D Weyl bands continuously, leading to the modification of Fermi velocity and energy dispersion. Above the critical field, the 3D VHS forms and is evidenced by the abrupt emergence of inter-band transitions, which can be quantitatively described by the minimal model of Weyl semimetals. Three additional optical transitions are further predicted theoretically and verified in magneto-near-infrared spectra. Our results pave the way to exploring VHS in 3D systems and uncovering the coordination between electronic correlation and the topological phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07043v2-abstract-full').style.display = 'none'; document.getElementById('2304.07043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15.1 (2024): 2313 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05757">arXiv:2304.05757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05757">pdf</a>, <a href="https://arxiv.org/format/2304.05757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.125427">10.1103/PhysRevB.108.125427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring the interfacial coupling between graphene and the antiferromagnetic insulator MnPSe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+X">Xin Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qiao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kexin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yuanyang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Y">Yi Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xin Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+C">Chengyu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05757v2-abstract-short" style="display: inline;"> Interfacial coupling between graphene and other 2D materials can give rise to intriguing physical phenomena. In particular, several theoretical studies predict that the interplay between graphene and an antiferromagnetic insulator could lead to the emergence of quantum anomalous Hall phases. However, such phases have not been observed experimentally yet, and further experimental studies are needed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05757v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05757v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05757v2-abstract-full" style="display: none;"> Interfacial coupling between graphene and other 2D materials can give rise to intriguing physical phenomena. In particular, several theoretical studies predict that the interplay between graphene and an antiferromagnetic insulator could lead to the emergence of quantum anomalous Hall phases. However, such phases have not been observed experimentally yet, and further experimental studies are needed to reveal the interaction between graphene and antiferromagnetic insulators. Here, we report the study in heterostructures composed of graphene and the antiferromagnetic insulator MnPSe$_3$. It is found that the MnPSe$_3$ has little impact on the quantum Hall phases apart from doping graphene via interfacial charge transfer. However, the magnetic order can contribute indirectly via process like Kondo effect, as evidenced by the observed minimum in the temperature-resistance curve between 20-40 K, far below the N茅el temperature (70 K). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05757v2-abstract-full').style.display = 'none'; document.getElementById('2304.05757v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.16724">arXiv:2303.16724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.16724">pdf</a>, <a href="https://arxiv.org/format/2303.16724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.224201">10.1103/PhysRevB.107.224201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiple localization transitions and novel quantum phases induced by staggered on-site potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+R">Rui Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+J">Junpeng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiang-Ping Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.16724v2-abstract-short" style="display: inline;"> We propose an one-dimensional generalized Aubry-Andr{茅}-Harper (AAH) model with off-diagonal hopping and staggered on-site potential. We find that the localization transitions could be multiple reentrant with the increasing of staggered on-site potential. The multiple localization transitions are verified by the quantum static and dynamic measurements such as the inversed or normalized participati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16724v2-abstract-full').style.display = 'inline'; document.getElementById('2303.16724v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.16724v2-abstract-full" style="display: none;"> We propose an one-dimensional generalized Aubry-Andr{茅}-Harper (AAH) model with off-diagonal hopping and staggered on-site potential. We find that the localization transitions could be multiple reentrant with the increasing of staggered on-site potential. The multiple localization transitions are verified by the quantum static and dynamic measurements such as the inversed or normalized participation ratios, fractal dimension and survival probability. Based on the finite-size scaling analysis, we also obtain an interesting intermediate phase where the extended, localized and critical states are coexistent in certain regime of model parameters. These results are quite different from those in the generalized AAH model with off-diagonal hopping, and can help us to find novel quantum phases, new localization phenomena in the disordered systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16724v2-abstract-full').style.display = 'none'; document.getElementById('2303.16724v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107(2023) 224201 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05358">arXiv:2303.05358</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05358">pdf</a>, <a href="https://arxiv.org/format/2303.05358">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Bayesian optimization of Bose-Einstein condensation via evaporative cooling model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jihao Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+R">Ruihuan Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+C">Chengyin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xunda Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Y">Yuxiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Z">Zhu Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jiatao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+C">Chang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Maojie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+B">Bo Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Chaohong Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05358v1-abstract-short" style="display: inline;"> To achieve Bose-Einstein condensation, one may implement evaporative cooling by dynamically regulating the power of laser beams forming the optical dipole trap. We propose and experimentally demonstrate a protocol of Bayesian optimization of Bose-Einstein condensation via the evaporative cooling model. Applying this protocol, pure Bose-Einstein condensate of 87Rb with 2.4X10e4 atoms can be produce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05358v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05358v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05358v1-abstract-full" style="display: none;"> To achieve Bose-Einstein condensation, one may implement evaporative cooling by dynamically regulating the power of laser beams forming the optical dipole trap. We propose and experimentally demonstrate a protocol of Bayesian optimization of Bose-Einstein condensation via the evaporative cooling model. Applying this protocol, pure Bose-Einstein condensate of 87Rb with 2.4X10e4 atoms can be produced via evaporative cooling from the initial stage when the number of atoms is 6.0X10e5 at a temperature of 12渭K. In comparison with Bayesian optimization via blackbox experiment, our protocol only needs a few experiments required to verify some close-to-optimal curves for optical dipole trap laser powers, therefore it greatly saves experimental resources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05358v1-abstract-full').style.display = 'none'; document.getElementById('2303.05358v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.01811">arXiv:2303.01811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.01811">pdf</a>, <a href="https://arxiv.org/format/2303.01811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.235167">10.1103/PhysRevB.108.235167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of localized $5d^1$ electrons in KTaO$_3$ interface superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xinqiang Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jungho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">Leonardo Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Florio%2C+P">Piero Florio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corti%2C+M">Matteo Corti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+W">Weiliang Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yanqiu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+J">Jiasen Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faure%2C+Q">Quentin Faure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahle%2C+C">Christoph Sahle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Q">Qian Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+C">Changwei Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xinyi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+W">Wei Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yanwu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.01811v1-abstract-short" style="display: inline;"> Recently, an exciting discovery of orientation-dependent superconductivity was made in two-dimensional electron gas (2DEG) at the interfaces of LaAlO$_3$/KTaO$_3$ (LAO/KTO) or EuO/KTaO$_3$ (EuO/KTO). The superconducting transition temperature can reach a $T_c$ of up to $\sim$ 2.2 K, which is significantly higher than its 3$d$ counterpart LaAlO$_3$/SrTiO$_3$ (LAO/STO) with a $T_c$ of $\sim$ 0.2 K.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01811v1-abstract-full').style.display = 'inline'; document.getElementById('2303.01811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.01811v1-abstract-full" style="display: none;"> Recently, an exciting discovery of orientation-dependent superconductivity was made in two-dimensional electron gas (2DEG) at the interfaces of LaAlO$_3$/KTaO$_3$ (LAO/KTO) or EuO/KTaO$_3$ (EuO/KTO). The superconducting transition temperature can reach a $T_c$ of up to $\sim$ 2.2 K, which is significantly higher than its 3$d$ counterpart LaAlO$_3$/SrTiO$_3$ (LAO/STO) with a $T_c$ of $\sim$ 0.2 K. However, the underlying origin remains to be understood. To uncover the nature of electrons in KTO-based interfaces, we employ x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray spectroscopy (RIXS) to study LAO/KTO and EuO/KTO with different orientations. We reveal the absence of $dd$ orbital excitations in all the measured samples. Our RIXS results are well reproduced by calculations that considered itinerant $5d$ electrons hybridized with O $2p$ electrons. This suggests that there is a lack of localized Ta $5d^1$ electrons in KTO interface superconductors, which is consistent with the absence of magnetic hysteresis observed in magneto-resistance (MR) measurements. These findings offer new insights into our understanding of superconductivity in Ta $5d$ interface superconductors and their potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01811v1-abstract-full').style.display = 'none'; document.getElementById('2303.01811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 235167 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12984">arXiv:2302.12984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.12984">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unusual Nonlinear Optical Responses in Layered Ferroelectric Niobium Oxide Dihalides: Origin and Manipulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+L">Liangting Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wenju Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Dajian Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+D">Donghan Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qiangbing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Dequan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yonggang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaoqiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gou%2C+H">Huiyang Gou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bing Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12984v1-abstract-short" style="display: inline;"> Realization of large and highly tunable second-order nonlinear optical (NLO) responses, e.g., second-harmonic generation (SHG) and bulk photovoltaic effect (BPVE), is critical for developing modern optical and optoelectronic devices. Very recently, the two-dimensional van der Waals ferroelectric NbOX2 (X = Cl, Br or I) are discovered to exhibit unusually large and anisotropic SHG. However, the phy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12984v1-abstract-full').style.display = 'inline'; document.getElementById('2302.12984v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12984v1-abstract-full" style="display: none;"> Realization of large and highly tunable second-order nonlinear optical (NLO) responses, e.g., second-harmonic generation (SHG) and bulk photovoltaic effect (BPVE), is critical for developing modern optical and optoelectronic devices. Very recently, the two-dimensional van der Waals ferroelectric NbOX2 (X = Cl, Br or I) are discovered to exhibit unusually large and anisotropic SHG. However, the physical origin and possible tunability of NLO responses in NbOX2 remain to be unclear. In this article, we reveal that the large SHG in NbOCl2 is dominated by the synergy between large transition dipole moment and band-nesting-induced large intensity of electron-hole pairs. Remarkably, the NbOCl2 can exhibit dramatically different strain-dependent BPVE under different polarized light, originating from the interesting light-polarization-dependent orbital transition. Importantly, we successfully achieve a reversible ferroelectric-to-antiferroelectric phase transition via controlling ambient temperature or external pressure, accompanied by the greatly tunable NLO responses. Furthermore, we discover that the evolutions of SHG and BPVE in NbOX2 with variable X obey different rules. Our study provides a deep understanding on the novel NLO physics in NbOX2 and establishes great external-field tunability for device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12984v1-abstract-full').style.display = 'none'; document.getElementById('2302.12984v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09389">arXiv:2301.09389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.09389">pdf</a>, <a href="https://arxiv.org/ps/2301.09389">ps</a>, <a href="https://arxiv.org/format/2301.09389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2023.128737">10.1016/j.physleta.2023.128737 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universality in nonlinear passage through the miscible-immiscible phase transition in two component Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xunda Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yikai Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Feng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+X">Xizhou Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongyao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Chaohong Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09389v1-abstract-short" style="display: inline;"> In this study, we investigate the formation of domain defects and the universal critical real-time dynamics in a two-component Bose-Einstein condensate with nonlinear quenching across the miscible-immiscible phase transition. By analyzing the Bogoliubov excitations, we obtain the power-law relations among the defect density, the phase transition delay and the quench time near the phase transition.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09389v1-abstract-full').style.display = 'inline'; document.getElementById('2301.09389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09389v1-abstract-full" style="display: none;"> In this study, we investigate the formation of domain defects and the universal critical real-time dynamics in a two-component Bose-Einstein condensate with nonlinear quenching across the miscible-immiscible phase transition. By analyzing the Bogoliubov excitations, we obtain the power-law relations among the defect density, the phase transition delay and the quench time near the phase transition. Moreover, by simulating the real-time dynamics across the miscible-immiscible phase transition, we clearly show the formation of domain defects and the delay of the phase transition. Furthermore, we find that the domain defects are suppressed by large nonlinear coefficients and long quench times. To accurately characterize the domain defects, we quantify the defect excitations using the correlation length and the domain number. In addition, by combining the power-law relations between the phase transition delay and the quench time, we extract the critical exponents for different nonlinear coefficients. Our study not only confirms that the critical exponents do not sensitively depend on the nonlinear quenches but also provides a dynamic path toward the suppression of nonadiabatic excitation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09389v1-abstract-full').style.display = 'none'; document.getElementById('2301.09389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06090">arXiv:2301.06090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06090">pdf</a>, <a href="https://arxiv.org/format/2301.06090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.L032016">10.1103/PhysRevResearch.5.L032016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extracting the Quantum Geometric Tensor of an Optical Raman Lattice by Bloch State Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">Chang-Rui Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jinlong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Huan Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+R">Rui-Heng Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yu-Meng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jin-Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuai Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06090v2-abstract-short" style="display: inline;"> In Hilbert space, the geometry of the quantum state is identified by the quantum geometric tensor (QGT), whose imaginary part is the Berry curvature and real part is the quantum metric tensor. Here, we propose and experimentally implement a complete Bloch state tomography to directly measure eigenfunction of an optical Raman lattice for ultracold atoms. Through the measured eigenfunction, the dist&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06090v2-abstract-full').style.display = 'inline'; document.getElementById('2301.06090v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06090v2-abstract-full" style="display: none;"> In Hilbert space, the geometry of the quantum state is identified by the quantum geometric tensor (QGT), whose imaginary part is the Berry curvature and real part is the quantum metric tensor. Here, we propose and experimentally implement a complete Bloch state tomography to directly measure eigenfunction of an optical Raman lattice for ultracold atoms. Through the measured eigenfunction, the distribution of the complete QGT in the Brillouin zone is reconstructed, with which the topological invariants are extracted by the Berry curvature and the distances of quantum states in momentum space are measured by the quantum metric tensor. Further, we experimentally test a predicted inequality between the Berry curvature and quantum metric tensor, which reveals a deep connection between topology and geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06090v2-abstract-full').style.display = 'none'; document.getElementById('2301.06090v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, L032016 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04305">arXiv:2301.04305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04305">pdf</a>, <a href="https://arxiv.org/ps/2301.04305">ps</a>, <a href="https://arxiv.org/format/2301.04305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1338-7">10.1007/s11467-023-1338-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional anisotropic vortex quantum droplets in dipolar Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guilong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xunda Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhaopin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malomed%2C+B+A">Boris A. Malomed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongyao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04305v3-abstract-short" style="display: inline;"> Creation of stable intrinsically anisotropic self-bound states with embedded vorticity is a challenging issue. Previously, no such states in Bose-Einstein condensates (BECs) or other physical settings were known. Dipolar BEC suggests a unique possibility to predict stable anisotropic vortex quantum droplets (AVQDs). We demonstrate that they can be created with the vortex&#39; axis oriented \emph{perpe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04305v3-abstract-full').style.display = 'inline'; document.getElementById('2301.04305v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04305v3-abstract-full" style="display: none;"> Creation of stable intrinsically anisotropic self-bound states with embedded vorticity is a challenging issue. Previously, no such states in Bose-Einstein condensates (BECs) or other physical settings were known. Dipolar BEC suggests a unique possibility to predict stable anisotropic vortex quantum droplets (AVQDs). We demonstrate that they can be created with the vortex&#39; axis oriented \emph{perpendicular} to the polarization of dipoles. The stability area and characteristics of the AVQDs in the parameter space are revealed by means of analytical and numerical methods. Further, the rotation of the polarizing magnetic field is considered, and the largest angular velocities, up to which spinning AVQDs can follow the rotation in clockwise and anti-clockwise directions, are found. Collisions between moving AVQDs are studied too, demonstrating formation of bound states with a vortex-antivortex-vortex structure. A stability domain for such stationary bound states is identified. Unstable dipolar states, that can be readily implemented by means of phase imprinting, quickly transform into robust AVQDs, which suggests a straightforward possibility for the creation of these states in the experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04305v3-abstract-full').style.display = 'none'; document.getElementById('2301.04305v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, and 48 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Front. Phys., 2024, 19(2): 22202 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The paper was published on Frontiers of Physics (Springer), Volume 19, Issue 2, 22202 (2024) [https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1338-7] </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12832">arXiv:2211.12832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.12832">pdf</a>, <a href="https://arxiv.org/format/2211.12832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0162463">10.1063/5.0162463 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometry-enhanced graph neural network for learning the smoothness of glassy dynamics from static structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Z">Zean Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kenli Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12832v2-abstract-short" style="display: inline;"> Understanding the dynamic processes of the glassy system continues to be challenging. Recent advances have shown the power of graph neural networks (GNNs) for determining the correlation between structure and dynamics in the glassy system. These methods treat the glassy system as a topological graph. However, the inherent &#34;smoothness&#34; property of the dynamics on the graph (variation of dynamics ov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12832v2-abstract-full').style.display = 'inline'; document.getElementById('2211.12832v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12832v2-abstract-full" style="display: none;"> Understanding the dynamic processes of the glassy system continues to be challenging. Recent advances have shown the power of graph neural networks (GNNs) for determining the correlation between structure and dynamics in the glassy system. These methods treat the glassy system as a topological graph. However, the inherent &#34;smoothness&#34; property of the dynamics on the graph (variation of dynamics over the graph) is ignored, resulting in a deteriorated performance of GNN for dynamic predictions over various time scales. In this paper, we first present an experimental investigation assessing the smoothness patterns of particle dynamics from the graph perspective. The results indicate that the long-time dynamics exhibit a smoother property on the graph, while the short-time dynamics reveal a distinctly non-smooth pattern. To establish the relationship between the static structure and dynamics with different smoothness patterns, we propose a novel geometry-enhanced graph neural network (Geo-GNN) model. The Geo-GNN architecture consists of a geometry feature encoder that incorporates rotation-invariant distances and angles to enhance geometric feature learning and a geometry-enhanced aggregation block that can adaptively learn the underlying smoothness patterns during message passing. Experimental results demonstrate that our method is able to capture the inherent smoothness pattern of particles and outperforms state-of-the-art baselines in predicting the dynamics across all time scales. A subsequent study has revealed that geometric features are critical for the model to accurately capture smoothness patterns in dynamics. Our research not only refines the method for predicting glassy dynamics but also provides a new lens through which to investigate the issue of causality regarding dynamical heterogeneity in glasses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12832v2-abstract-full').style.display = 'none'; document.getElementById('2211.12832v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Chemical Physics, 159(14) (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00244">arXiv:2211.00244</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00244">pdf</a>, <a href="https://arxiv.org/format/2211.00244">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-022-2035-7">10.1007/s11433-022-2035-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlocal optical conductivity of Fermi surface nesting materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiamin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhou Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00244v1-abstract-short" style="display: inline;"> We investigate the nonlocal optical conductivity of Fermi surface nesting materials which support charge density waves or spin density waves. The nonlocal optical conductivity contains information of correlations in electron fluids which could not be accessed by standard optical probes. Half metal emerges from doping a charge density wave and similarly spin-valley half metal emerges from doping a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00244v1-abstract-full').style.display = 'inline'; document.getElementById('2211.00244v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00244v1-abstract-full" style="display: none;"> We investigate the nonlocal optical conductivity of Fermi surface nesting materials which support charge density waves or spin density waves. The nonlocal optical conductivity contains information of correlations in electron fluids which could not be accessed by standard optical probes. Half metal emerges from doping a charge density wave and similarly spin-valley half metal emerges from doping a spin density wave. Based on the parabolic band approximation, we find the Drude peak is shifted to higher frequency and splits into two peaks in the nonlocal optical conductivity. We attribute this to the two Fermi velocities in the half-metal or spin-valley half metal states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00244v1-abstract-full').style.display = 'none'; document.getElementById('2211.00244v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, to appear on Science China Physics, Mechanics &amp; Astronomy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 66, 247011 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12697">arXiv:2210.12697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12697">pdf</a>, <a href="https://arxiv.org/ps/2210.12697">ps</a>, <a href="https://arxiv.org/format/2210.12697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/acc608">10.1088/1367-2630/acc608 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tetragonal Mexican-Hat Dispersion and Switchable Half-Metal State with Multiple Anisotropic Weyl Fermions in Penta-Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+N">Ningning Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yongting Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Z">Zhiheng Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+J">Junting Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J">Jiangtao Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xue Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jijun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhifeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12697v1-abstract-short" style="display: inline;"> In past decades, the ever-expanding library of 2D carbon allotropes has yielded a broad range of exotic properties for the future carbon-based electronics. However, the known allotropes are all intrinsic nonmagnetic due to the paired valence electrons configuration. Based on the reported 2D carbon structure database and first-principles calculations, herein we demonstrate that inherent ferromagnet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12697v1-abstract-full').style.display = 'inline'; document.getElementById('2210.12697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12697v1-abstract-full" style="display: none;"> In past decades, the ever-expanding library of 2D carbon allotropes has yielded a broad range of exotic properties for the future carbon-based electronics. However, the known allotropes are all intrinsic nonmagnetic due to the paired valence electrons configuration. Based on the reported 2D carbon structure database and first-principles calculations, herein we demonstrate that inherent ferromagnetism can be obtained in the prominent allotrope, penta-graphene, which has an unique Mexican-hat valence band edge, giving rise to van Hove singularities and electronic instability. Induced by modest hole-doping, being achievable in electrolyte gate, the semiconducting pentagraphene can transform into different ferromagnetic half-metals with room temperature stability and switchable spin directions. In particular, multiple anisotropic Weyl states, including type-I and type-II Weyl cones and hybrid quasi Weyl nodal loop, can be found in a sizable energy window of spin-down half-metal under proper strains. These findings not only identify a promising carbon allotrope to obtain the inherent magnetism for carbon-based spintronic devices, but highlight the possibility to realize different Weyl states by combining the electronic and mechanical means as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12697v1-abstract-full').style.display = 'none'; document.getElementById('2210.12697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03341">arXiv:2210.03341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.03341">pdf</a>, <a href="https://arxiv.org/ps/2210.03341">ps</a>, <a href="https://arxiv.org/format/2210.03341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Vortex gap solitons in spin-orbit-coupled Bose-Einstein condensates with competing nonlinearities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaoxi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+F">Feiyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yangui Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xunda Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malomed%2C+B+A">Boris A. Malomed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongyao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03341v1-abstract-short" style="display: inline;"> The formation and dynamics of full vortex gap solitons (FVGSs) is investigated in two-component Bose-Einstein condensates with spin-orbit coupling (SOC), Zeeman splitting (ZS), and competing cubic and quintic nonlinear terms, while the usual kinetic energy is neglected, assuming that it is much smaller than the SOC and ZS terms. Unlike previous SOC system with the cubic-only attractive nonlinearit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03341v1-abstract-full').style.display = 'inline'; document.getElementById('2210.03341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03341v1-abstract-full" style="display: none;"> The formation and dynamics of full vortex gap solitons (FVGSs) is investigated in two-component Bose-Einstein condensates with spin-orbit coupling (SOC), Zeeman splitting (ZS), and competing cubic and quintic nonlinear terms, while the usual kinetic energy is neglected, assuming that it is much smaller than the SOC and ZS terms. Unlike previous SOC system with the cubic-only attractive nonlinearity, in which solely semi-vortices may be stable, with the vorticity carried by a single component, the present system supports stable FVGS states, with the vorticity present in both components (such states are called here full vortex solitons, to stress the difference from the half-vortices). They populate the bandgap in the system&#39;s linear spectrum. In the case of the cubic self-attraction and quintic repulsion, stable FVGSs with a positive effective mass exist near the top of the bandgap. On the contrary, the system with cubic self-repulsion and quintic attraction produces stable FVGSs with a negative mass near the bottom of the bandgap. Mobility and collisions of FVGSs with different topological charges are investigated too. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03341v1-abstract-full').style.display = 'none'; document.getElementById('2210.03341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages,9 figures, 77 references. Communication in Nonlinear Science and Numerical Simulation, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02936">arXiv:2210.02936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02936">pdf</a>, <a href="https://arxiv.org/format/2210.02936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.073401">10.1103/PhysRevLett.131.073401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Functional building blocks for scalable multipartite entanglement in optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei-Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Ming-Gen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hui Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yong-Guang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+A">An Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Han-Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zi-Hang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+P">Pei-Yue Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Ying-Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuan-Kai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Wan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Song-Tao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bin-Chen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+B">Bo Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Meng-Da Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yu-Meng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+H">Han-Ning Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiongfeng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhen-Sheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02936v1-abstract-short" style="display: inline;"> Featuring excellent coherence and operated parallelly, ultracold atoms in optical lattices form a competitive candidate for quantum computation. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale-up and detect multipartite entanglement due to the lack of manipulations over local atomic spins in retro-r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02936v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02936v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02936v1-abstract-full" style="display: none;"> Featuring excellent coherence and operated parallelly, ultracold atoms in optical lattices form a competitive candidate for quantum computation. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale-up and detect multipartite entanglement due to the lack of manipulations over local atomic spins in retro-reflected bichromatic superlattices. Here we developed a new architecture based on a cross-angle spin-dependent superlattice for implementing layers of quantum gates over moderately-separated atoms incorporated with a quantum gas microscope for single-atom manipulation. We created and verified functional building blocks for scalable multipartite entanglement by connecting Bell pairs to one-dimensional 10-atom chains and two-dimensional plaquettes of $2\times4$ atoms. This offers a new platform towards scalable quantum computation and simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02936v1-abstract-full').style.display = 'none'; document.getElementById('2210.02936v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 073401 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07902">arXiv:2208.07902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.07902">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-49783-z">10.1038/s41467-024-49783-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-driven C-H bond activation mediated by 2D transition metal dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jingang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Di Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhongyuan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larson%2C+J+M">Jonathan M. Larson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H">Haoyue Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tianyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yuqian Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blankenship%2C+B">Brian Blankenship</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Min Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zilong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Suichu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kostecki%2C+R">Robert Kostecki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minor%2C+A+M">Andrew M. Minor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigoropoulos%2C+C+P">Costas P. Grigoropoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akinwande%2C+D">Deji Akinwande</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terrones%2C+M">Mauricio Terrones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Redwing%2C+J+M">Joan M. Redwing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yuebing Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07902v2-abstract-short" style="display: inline;"> C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07902v2-abstract-full').style.display = 'inline'; document.getElementById('2208.07902v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07902v2-abstract-full" style="display: none;"> C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C-C coupling mediated by 2D TMDCs to promote C-H activation. Our results shed light on 2D materials for C-H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07902v2-abstract-full').style.display = 'none'; document.getElementById('2208.07902v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 2024, 15, 5546 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.06582">arXiv:2208.06582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.06582">pdf</a>, <a href="https://arxiv.org/format/2208.06582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Coordinated Stress-Structure Self-Organization in Granular Packing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xiaoyu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blumenfeld%2C+R">Raphael Blumenfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsushima%2C+T">Takashi Matsushima</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.06582v2-abstract-short" style="display: inline;"> During quasi-static dynamics of granular systems, the stress and structure self-organise, but there is currently no quantitative measure or understanding of this phenomenon. Such an understanding is essential because local structural properties of the settled material are then correlated with the local stress, which calls into question existing linear theories of stress transmission in granular me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06582v2-abstract-full').style.display = 'inline'; document.getElementById('2208.06582v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.06582v2-abstract-full" style="display: none;"> During quasi-static dynamics of granular systems, the stress and structure self-organise, but there is currently no quantitative measure or understanding of this phenomenon. Such an understanding is essential because local structural properties of the settled material are then correlated with the local stress, which calls into question existing linear theories of stress transmission in granular media. A method to quantify the local stress-structure correlations is necessary for addressing this issue and we present here such a method for planar systems. We then use it to analyze numerically several different systems, compressed quasi-statically by two different procedures. We define cells, cell orders, cell orientations, and cell stresses and report the following results. 1. Cells orient along the local stress major principal axes. 2. The mean ratio of cell principal stresses decreases with cell order and increases with friction. 3. The ratio distributions collapse onto a single curve under a simple scaling, for all packing protocols and friction coefficients. 4. A constructed model explains the correlations between the local cell and stress principal axis orientations. 5. The collapse of the stress ratios onto a Weibull distribution is explained theoretically. Our results quantify the cooperative stress-structure self-organization and provide a way to relate quantitatively the stress-structure coupling to different process parameters and particle characteristics. Significantly, the strong stress-structure correlation, driven by structural re-organization upon application of external stress, suggests that current stress theories of granular matter need to be revisited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06582v2-abstract-full').style.display = 'none'; document.getElementById('2208.06582v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, under review</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jiang%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10