CINXE.COM
Search results for: non-linear viscoelastic
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: non-linear viscoelastic</title> <meta name="description" content="Search results for: non-linear viscoelastic"> <meta name="keywords" content="non-linear viscoelastic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="non-linear viscoelastic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="non-linear viscoelastic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1450</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: non-linear viscoelastic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1390</span> On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Giniatoulline">A. Giniatoulline</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title="Galerkin method">Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equations" title=" Navier-Stokes equations"> Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20partial%20differential%20equations" title=" nonlinear partial differential equations"> nonlinear partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Sobolev%20spaces" title=" Sobolev spaces"> Sobolev spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20fluid" title=" stratified fluid"> stratified fluid</a> </p> <a href="https://publications.waset.org/abstracts/52024/on-the-strong-solutions-of-the-nonlinear-viscous-rotating-stratified-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1389</span> Identification of Nonlinear Systems Using Radial Basis Function Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Pislaru">C. Pislaru</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shebani"> A. Shebani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title="system identification">system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=K-means%20clustering%20algorithm" title=" K-means clustering algorithm "> K-means clustering algorithm </a> </p> <a href="https://publications.waset.org/abstracts/14775/identification-of-nonlinear-systems-using-radial-basis-function-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1388</span> Design of a Fuzzy Luenberger Observer for Fault Nonlinear System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Bekaik">Mounir Bekaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Messaoud%20Ramdani"> Messaoud Ramdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system" title="nonlinear system">nonlinear system</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=faults" title=" faults"> faults</a>, <a href="https://publications.waset.org/abstracts/search?q=TS" title=" TS"> TS</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov-Krasovskii" title=" Lyapunov-Krasovskii"> Lyapunov-Krasovskii</a>, <a href="https://publications.waset.org/abstracts/search?q=observer" title=" observer"> observer</a> </p> <a href="https://publications.waset.org/abstracts/47230/design-of-a-fuzzy-luenberger-observer-for-fault-nonlinear-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1387</span> Dynamic Stability of a Wings for Drone Aircraft Subjected to Parametric Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyd%20Eqqab%20Maree">Iyd Eqqab Maree</a>, <a href="https://publications.waset.org/abstracts/search?q=Habil%20Jurgen%20Bast"> Habil Jurgen Bast</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibration control of machines and structures incorporating viscoelastic materials in suitable arrangement is an important aspect of investigation. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. Multilayered cantilever sandwich beam like structures can be used in aircrafts and other applications such as robot arms for effective vibration control. These members may experience parametric instability when subjected to time dependant forces. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. The purpose of the present work is to investigate the dynamic stability of a three layered symmetric sandwich beam (Drone Aircraft wings ) subjected to an end periodic axial force . Equations of motion are derived using finite element method (MATLAB software). It is observed that with increase in core thickness parameter fundamental buckling load increases. The fundamental resonant frequency and second mode frequency parameter also increase with increase in core thickness parameter. Fundamental loss factor and second mode loss factor also increase with increase in core thickness parameter. Increase in core thickness parameter enhances the stability of the beam. With increase in core loss factor also the stability of the beam enhances. There is a very good agreement of the experimental results with the theoretical findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20cantilever%20beam" title="steel cantilever beam">steel cantilever beam</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20material%20core" title=" viscoelastic material core"> viscoelastic material core</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20factor" title=" loss factor"> loss factor</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20region" title=" transition region"> transition region</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20R2011a" title=" MATLAB R2011a"> MATLAB R2011a</a> </p> <a href="https://publications.waset.org/abstracts/24500/dynamic-stability-of-a-wings-for-drone-aircraft-subjected-to-parametric-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1386</span> Scrutiny and Solving Analytically Nonlinear Differential at Engineering Field of Fluids, Heat, Mass and Wave by New Method AGM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Akbari">Mohammadreza Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Akbari"> Sara Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Domiri%20Ganji"> Davood Domiri Ganji</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooya%20Solimani"> Pooya Solimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Khalili"> Reza Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As all experts know most of engineering system behavior in practical are nonlinear process (especially heat, fluid and mass, etc.) and analytical solving (no numeric) these problems are difficult, complex and sometimes impossible like (fluids and gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure a innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will be emerged after comparing the achieved solutions by Numerical method (Runge-Kutte 4th) and so compare to other methods such as HPM, ADM,… and exact solutions. Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations(ODE and PDE). In this paper, we investigate and solve 4 types of the nonlinear differential equation with AGM method : 1-Heat and fluid, 2-Unsteady state of nonlinear partial differential, 3-Coupled nonlinear partial differential in wave equation, and 4-Nonlinear integro-differential equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20method%20AGM" title="new method AGM">new method AGM</a>, <a href="https://publications.waset.org/abstracts/search?q=sets%20of%20coupled%20nonlinear%20equations%20at%20engineering%20field" title=" sets of coupled nonlinear equations at engineering field"> sets of coupled nonlinear equations at engineering field</a>, <a href="https://publications.waset.org/abstracts/search?q=waves%20equations" title=" waves equations"> waves equations</a>, <a href="https://publications.waset.org/abstracts/search?q=integro-differential" title=" integro-differential"> integro-differential</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal" title=" fluid and thermal"> fluid and thermal</a> </p> <a href="https://publications.waset.org/abstracts/36022/scrutiny-and-solving-analytically-nonlinear-differential-at-engineering-field-of-fluids-heat-mass-and-wave-by-new-method-agm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1385</span> An Investigation on Viscoelastic and Electrical Properties of Biopolymer-Based Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sever">K. Sever</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Seki"> Y. Seki</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Yenier"> Z. Yenier</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0.%20%C5%9Een"> İ. Şen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sarikanat"> M. Sarikanat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that Chitosan, as a natural polymer, has many excellent properties such as bicompotability, biodegradability and nontoxicity. Besides it has some limitations such as poor solubility in water and low conductivity in electrical devices and sensor applications. In order to improve electrical conductivity properties grapheme loading was conducted into chitosan. For this aim, chitosan solution was prepared in acidic condition and Graphene at different ratios was mixed with chitosan solution by the help of homogenizator. After film formation electrical conductivity values of chitosan and graphene loaded chitosan were determined. After grapheme loading into chitosan,solution significant increases in surface resistivity value of chitosan were observed. Besides variations on viscoeleastic properties with graphene loading was determined by dynamic mechanical analysis. Storage and Loss moduli were obtained for chitosan and grapheme loaded chitosan samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20properties" title=" viscoelastic properties"> viscoelastic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/25540/an-investigation-on-viscoelastic-and-electrical-properties-of-biopolymer-based-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1384</span> Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Javaherzadeh">Saeed Javaherzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Dindar%20Safa"> Babak Dindar Safa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=added%20viscoelastic%20damper" title="added viscoelastic damper">added viscoelastic damper</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20base%20shear" title=" design base shear"> design base shear</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title=" response modification factor"> response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20time%20history" title=" non-linear time history"> non-linear time history</a> </p> <a href="https://publications.waset.org/abstracts/31363/proposing-a-new-design-method-for-added-viscoelastic-dampers-application-in-steel-moment-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1383</span> Asymptotic Spectral Theory for Nonlinear Random Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Kimouche">Karima Kimouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the asymptotic problems in spectral analysis of stationary causal random fields. We impose conditions only involving (conditional) moments, which are easily verifiable for a variety of nonlinear random fields. Limiting distributions of periodograms and smoothed periodogram spectral density estimates are obtained and applications to the spectral domain bootstrap are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20nonlinear%20processes" title="spatial nonlinear processes">spatial nonlinear processes</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20estimators" title=" spectral estimators"> spectral estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=GMC%20condition" title=" GMC condition"> GMC condition</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrap%20method" title=" bootstrap method"> bootstrap method</a> </p> <a href="https://publications.waset.org/abstracts/12479/asymptotic-spectral-theory-for-nonlinear-random-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1382</span> Damping Optimal Design of Sandwich Beams Partially Covered with Damping Patches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guerich%20Mohamed">Guerich Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Assaf%20Samir"> Assaf Samir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of viscoelastic materials in the form of constrained layers in mechanical structures is an efficient and cost-effective technique for solving noise and vibration problems. This technique requires a design tool to select the best location, type, and thickness of the damping treatment. This paper presents a finite element model for the vibration of beams partially or fully covered with a constrained viscoelastic damping material. The model is based on Bernoulli-Euler theory for the faces and Timoshenko beam theory for the core. It uses four variables: the through-thickness constant deflection, the axial displacements of the faces, and the bending rotation of the beam. The sandwich beam finite element is compatible with the conventional C1 finite element for homogenous beams. To validate the proposed model, several free vibration analyses of fully or partially covered beams, with different locations of the damping patches and different percent coverage, are studied. The results show that the proposed approach can be used as an effective tool to study the influence of the location and treatment size on the natural frequencies and the associated modal loss factors. Then, a parametric study regarding the variation in the damping characteristics of partially covered beams has been conducted. In these studies, the effect of core shear modulus value, the effect of patch size variation, the thickness of constraining layer, and the core and the locations of the patches are considered. In partial coverage, the spatial distribution of additive damping by using viscoelastic material is as important as the thickness and material properties of the viscoelastic layer and the constraining layer. Indeed, to limit added mass and to attain maximum damping, the damping patches should be placed at optimum locations. These locations are often selected using the modal strain energy indicator. Following this approach, the damping patches are applied over regions of the base structure with the highest modal strain energy to target specific modes of vibration. In the present study, a more efficient indicator is proposed, which consists of placing the damping patches over regions of high energy dissipation through the viscoelastic layer of the fully covered sandwich beam. The presented approach is used in an optimization method to select the best location for the damping patches as well as the material thicknesses and material properties of the layers that will yield optimal damping with the minimum area of coverage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title="finite element model">finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20treatment" title=" damping treatment"> damping treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20materials" title=" viscoelastic materials"> viscoelastic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20beam" title=" sandwich beam"> sandwich beam</a> </p> <a href="https://publications.waset.org/abstracts/134289/damping-optimal-design-of-sandwich-beams-partially-covered-with-damping-patches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1381</span> Analytical Solving of Nonlinear Differential Equations in the Nonlinear Phenomena for Viscos Fluids </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Jafari">Arash Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Taghaddosi"> Mehdi Taghaddosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Azin%20Parvin"> Azin Parvin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper, our purpose is to enhance the ability to solve a nonlinear differential equation which is about the motion of an incompressible fluid flow going down of an inclined plane without thermal effect with a simple and innovative approach which we have named it new method. Comparisons are made amongst the Numerical, new method, and HPM methods, and the results reveal that this method is very effective and simple and can be applied to other nonlinear problems. It is noteworthy that there are some valuable advantages in this way of solving differential equations, and also most of the sets of differential equations can be answered in this manner which in the other methods they do not have acceptable solutions up to now. A summary of the excellence of this method in comparison to the other manners is as follows: 1) Differential equations are directly solvable by this method. 2) Without any dimensionless procedure, we can solve equation(s). 3) It is not necessary to convert variables into new ones. According to the afore-mentioned assertions which will be proved in this case study, the process of solving nonlinear equation(s) will be very easy and convenient in comparison to the other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscos%20fluid" title="viscos fluid">viscos fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=incompressible%20fluid%20flow" title=" incompressible fluid flow"> incompressible fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20plane" title=" inclined plane"> inclined plane</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20phenomena" title=" nonlinear phenomena"> nonlinear phenomena</a> </p> <a href="https://publications.waset.org/abstracts/58352/analytical-solving-of-nonlinear-differential-equations-in-the-nonlinear-phenomena-for-viscos-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1380</span> Existence Theory for First Order Functional Random Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20N.%20Ingle">Rajkumar N. Ingle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Random%20Fixed%20Point%20Theorem" title="Random Fixed Point Theorem">Random Fixed Point Theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20random%20differential%20equation" title=" functional random differential equation"> functional random differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=N.F.R.D.E." title=" N.F.R.D.E."> N.F.R.D.E.</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20random%20phenomenon" title=" universal random phenomenon "> universal random phenomenon </a> </p> <a href="https://publications.waset.org/abstracts/28934/existence-theory-for-first-order-functional-random-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1379</span> An Algorithm Based on the Nonlinear Filter Generator for Speech Encryption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Belmeguenai">A. Belmeguenai</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mansouri"> K. Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Djemili"> R. Djemili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work present a new algorithm based on the nonlinear filter generator for speech encryption and decryption. The proposed algorithm consists on the use a linear feedback shift register (LFSR) whose polynomial is primitive and nonlinear Boolean function. The purpose of this system is to construct Keystream with good statistical properties, but also easily computable on a machine with limited capacity calculated. This proposed speech encryption scheme is very simple, highly efficient, and fast to implement the speech encryption and decryption. We conclude the paper by showing that this system can resist certain known attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20filter%20generator" title="nonlinear filter generator">nonlinear filter generator</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20ciphers" title=" stream ciphers"> stream ciphers</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20encryption" title=" speech encryption"> speech encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20analysis" title=" security analysis"> security analysis</a> </p> <a href="https://publications.waset.org/abstracts/39095/an-algorithm-based-on-the-nonlinear-filter-generator-for-speech-encryption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1378</span> Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicol%C3%B2%20Vaiana">Nicolò Vaiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Serino"> Giorgio Serino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20isolation" title="base isolation">base isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20efficiency" title=" computational efficiency"> computational efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20exponential%20model" title=" nonlinear exponential model"> nonlinear exponential model</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20time%20history%20analysis" title=" nonlinear time history analysis"> nonlinear time history analysis</a> </p> <a href="https://publications.waset.org/abstracts/59057/speeding-up-nonlinear-time-history-analysis-of-base-isolated-structures-using-a-nonlinear-exponential-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1377</span> Sulfanilamide/Epoxy Resin and Its Application as Tackifier in Epoxy Adhesives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oiane%20Ruiz%20de%20Azua">Oiane Ruiz de Azua</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Borros"> Salvador Borros</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuria%20Agullo"> Nuria Agullo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordi%20Arbusa"> Jordi Arbusa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tackiness is described as the ability to spontaneously form a bond to another material under light pressures within a short application time. During the first few minutes of the adhesive's curing, it is necessary to have enough tack to keep the substrates together while cohesion is increasing within the adhesive. This property plays a key role in the manufacturing process of pieces. Epoxy adhesives, unlike other adhesives, usually present low tackiness before curing; however, there is very little literature about the use of tackifiers in epoxy adhesives, except for the high molecular weight epoxy additives. In the present work, a tetrafunctional epoxy resin based on Bisphenol-A and Sulfanilamide has been synthesized in order to be used as a tackifier. This additive offers improved specific adhesion to two-component (2K) epoxy adhesives. The dosage of the tackifier has to be done carefully not to alter the mechanical and rheological properties of the adhesive. The synthetized product has been analyzed by FTIR and ¹H-NMR analysis, and the effect of the addition of 1 wt % of the tackifier on rheological properties, viscoelastic behavior, and mechanical properties has been studied. On one hand, the addition of the product in the epoxy resin part showed a significant increase in tackiness regarding the neat epoxy resin. On the other hand, tackiness of the whole formulation was also increased. Curing time of the adhesive has not undergone any relevant changes with the tackifier addition. Regarding viscoelastic properties, Storage Modulus (G') and Loss Modulus (G'') remain also unchanged at ambient temperature. Probably, in case higher tackifier concentration would be added, differences in viscoelastic properties would be observed. The study of mechanical properties shows that hardness and tensile strength also keep their values unchanged regarding neat two component adhesive. In conclusion, the addition of 1 wt % of sulfanilamide/epoxy enhanced the tackiness of the epoxy resin part, improves tack without modifying significantly either the rheological, the mechanical, or the viscoelastic properties of the product. Thus, the sulfanilamide presented could be a good candidate to be used as an additive to the 2k epoxy formulation for the manufacturing process of pieces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20adhesive" title="epoxy adhesive">epoxy adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20process%20of%20pieces" title=" manufacturing process of pieces"> manufacturing process of pieces</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfanilamide" title=" sulfanilamide"> sulfanilamide</a>, <a href="https://publications.waset.org/abstracts/search?q=tackifiers" title=" tackifiers"> tackifiers</a> </p> <a href="https://publications.waset.org/abstracts/131587/sulfanilamideepoxy-resin-and-its-application-as-tackifier-in-epoxy-adhesives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1376</span> The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melusi%20Khumalo">Melusi Khumalo</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastacia%20Dlamini"> Anastacia Dlamini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20approach" title=" Galerkin approach"> Galerkin approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredholm%20integral%20equations" title=" Fredholm integral equations"> Fredholm integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20integral%20equations" title=" nonlinear integral equations"> nonlinear integral equations</a> </p> <a href="https://publications.waset.org/abstracts/140832/the-finite-element-method-for-nonlinear-fredholm-integral-equation-of-the-second-kind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1375</span> Viscoelastic Characterization of Bovine Trabecular Bone Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Ramirez%20D.%20Edgar">I. Ramirez D. Edgar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Angeles%20H.%20Jos%C3%A9"> J. Angeles H. José</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruiz%20C.%20Osvaldo"> Ruiz C. Osvaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jacobo%20A.%20Victor"> H. Jacobo A. Victor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ortiz%20P.%20Armando"> Ortiz P. Armando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20viscoelasticity" title="bone viscoelasticity">bone viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20test" title=" fatigue test"> fatigue test</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20relaxation%20test" title=" stress relaxation test"> stress relaxation test</a>, <a href="https://publications.waset.org/abstracts/search?q=trabecular%20bone%20properties" title=" trabecular bone properties"> trabecular bone properties</a> </p> <a href="https://publications.waset.org/abstracts/21146/viscoelastic-characterization-of-bovine-trabecular-bone-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1374</span> Collision Avoidance Based on Model Predictive Control for Nonlinear Octocopter Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Do%C4%9Fan%20Y%C4%B1ld%C4%B1z">Doğan Yıldız</a>, <a href="https://publications.waset.org/abstracts/search?q=Aydan%20M%C3%BC%C5%9Ferref%20Erkmen"> Aydan Müşerref Erkmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The controller of the octocopter is mostly based on the PID controller. For complex maneuvers, PID controllers have limited performance capability like in collision avoidance. When an octocopter needs avoidance from an obstacle, it must instantly show an agile maneuver. Also, this kind of maneuver is affected severely by the nonlinear characteristic of octocopter. When these kinds of limitations are considered, the situation is highly challenging for the PID controller. In the proposed study, these challenges are tried to minimize by using the model predictive controller (MPC) for collision avoidance with a nonlinear octocopter model. The aim is to show that MPC-based collision avoidance has the capability to deal with fast varying conditions in case of obstacle detection and diminish the nonlinear effects of octocopter with varying disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20octocopter%20model" title=" nonlinear octocopter model"> nonlinear octocopter model</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance" title=" collision avoidance"> collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20detection" title=" obstacle detection"> obstacle detection</a> </p> <a href="https://publications.waset.org/abstracts/150063/collision-avoidance-based-on-model-predictive-control-for-nonlinear-octocopter-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1373</span> Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Win%20Ko%20Ko">Win Ko Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Temnov"> A. N. Temnov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20oscillations" title="nonlinear oscillations">nonlinear oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=two-layered%20liquid" title=" two-layered liquid"> two-layered liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=instability%20region" title=" instability region"> instability region</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20coefficients" title=" hydrodynamic coefficients"> hydrodynamic coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20frequency" title=" resonance frequency"> resonance frequency</a> </p> <a href="https://publications.waset.org/abstracts/115967/research-of-amplitude-frequency-characteristics-of-nonlinear-oscillations-of-the-interface-of-two-layered-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1372</span> The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Qing%20Dai">Chao-Qing Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20sine-Gordon%20equation" title="discrete sine-Gordon equation">discrete sine-Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20coefficient%20Jacobian%20elliptic%20function%20method" title=" variable coefficient Jacobian elliptic function method"> variable coefficient Jacobian elliptic function method</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=equation" title=" equation"> equation</a> </p> <a href="https://publications.waset.org/abstracts/12987/the-application-of-variable-coefficient-jacobian-elliptic-function-method-to-differential-difference-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">668</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1371</span> Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Zerdoumi">Z. Zerdoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benatia"> D. Benatia</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chicouche">D. Chicouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Neural%20Network" title="Artificial Neural Network">Artificial Neural Network</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20restoration" title=" signal restoration"> signal restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlinear%20Channel%20equalization" title=" Nonlinear Channel equalization"> Nonlinear Channel equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=equalization" title=" equalization "> equalization </a> </p> <a href="https://publications.waset.org/abstracts/24223/signal-restoration-using-neural-network-based-equalizer-for-nonlinear-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1370</span> Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Andrade%20Brand%C3%A3o%20Soares">Alexandra Andrade Brandão Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Batista%20Gon%C3%A7alves"> Paulo Batista Gonçalves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20shells" title="cylindrical shells">cylindrical shells</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20material" title=" functionally graded material"> functionally graded material</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20vibrations" title=" nonlinear vibrations"> nonlinear vibrations</a> </p> <a href="https://publications.waset.org/abstracts/183404/nonlinear-free-vibrations-of-functionally-graded-cylindrical-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1369</span> Nonlinear Modeling of the PEMFC Based on NNARX Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan-Jen%20Cheng">Shan-Jen Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Te-Jen%20Chang"> Te-Jen Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuang-Hsiung%20Tan">Kuang-Hsiung Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shou-Ling%20Kuo">Shou-Ling Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEMFC" title="PEMFC">PEMFC</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20modeling" title=" nonlinear modeling"> nonlinear modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=NNARX" title=" NNARX "> NNARX </a> </p> <a href="https://publications.waset.org/abstracts/25225/nonlinear-modeling-of-the-pemfc-based-on-nnarx-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1368</span> Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Levitsky">S. Levitsky</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bergman"> R. Bergman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20tube" title="elastic tube">elastic tube</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20propagation" title=" sound propagation"> sound propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20liquid" title=" viscoelastic liquid"> viscoelastic liquid</a> </p> <a href="https://publications.waset.org/abstracts/12837/temperature-effect-on-sound-propagation-in-an-elastic-pipe-with-viscoelastic-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1367</span> Investigate and Solving Analytic of Nonlinear Differential at Vibrations (Earthquake)and Beam-Column, by New Approach “AGM”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Akbari">Mohammadreza Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooya%20Soleimani%20Besheli"> Pooya Soleimani Besheli</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Khalili"> Reza Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Akbari"> Sara Akbari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we investigate building structures nonlinear behavior also solving analytic of nonlinear differential at vibrations. As we know most of engineering systems behavior in practical are non- linear process (especial at structural) and analytical solving (no numerical) these problems are complex, difficult and sometimes impossible (of course at form of analytical solving). In this symposium, we are going to exposure one method in engineering, that can solve sets of nonlinear differential equations with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical Method (Runge-Kutte 4th) and exact solutions. Finally, we can proof AGM method could be created huge evolution for researcher and student (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software, we can analytical solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20method%20AGM" title="new method AGM">new method AGM</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-column" title=" beam-column"> beam-column</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20frequency" title=" angular frequency"> angular frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipated" title=" energy dissipated"> energy dissipated</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20load" title=" critical load"> critical load</a> </p> <a href="https://publications.waset.org/abstracts/33102/investigate-and-solving-analytic-of-nonlinear-differential-at-vibrations-earthquakeand-beam-column-by-new-approach-agm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1366</span> Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Rahimi%20Khoygani">Mohammad Reza Rahimi Khoygani</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ghasemi"> Reza Ghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20dynamical%20system" title=" pendulum dynamical system"> pendulum dynamical system</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neural%20controller" title=" adaptive neural controller"> adaptive neural controller</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamical" title=" nonlinear dynamical"> nonlinear dynamical</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF" title=" RBF"> RBF</a>, <a href="https://publications.waset.org/abstracts/search?q=driven%20pendulum" title=" driven pendulum"> driven pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=position%20control" title=" position control "> position control </a> </p> <a href="https://publications.waset.org/abstracts/13649/neural-adaptive-controller-for-a-class-of-nonlinear-pendulum-dynamical-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">670</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1365</span> Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Nejib">Hamza Nejib</a>, <a href="https://publications.waset.org/abstracts/search?q=Okba%20Taouali"> Okba Taouali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=online%20prediction" title="online prediction">online prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=KAF" title=" KAF"> KAF</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=RKHS" title=" RKHS"> RKHS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kernel%20methods" title=" Kernel methods"> Kernel methods</a>, <a href="https://publications.waset.org/abstracts/search?q=KRLS" title=" KRLS"> KRLS</a>, <a href="https://publications.waset.org/abstracts/search?q=KLMS" title=" KLMS"> KLMS</a> </p> <a href="https://publications.waset.org/abstracts/63627/online-prediction-of-nonlinear-signal-processing-problems-based-kernel-adaptive-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1364</span> Nonlinear Flow Behavior and Validity of the Cubic Law in a Rough Fracture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunwar%20Mrityunjai%20Sharma">Kunwar Mrityunjai Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Trilok%20Nath%20Singh"> Trilok Nath Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Navier-Stokes equation is used to study nonlinear fluid flow in rough 2D fractures. The major goal is to investigate the influence of inertial flow owing to fracture wall roughness on nonlinear flow behavior. Roughness profiles are developed using Barton's Joint Roughness Coefficient (JRC) and used as fracture walls to assess wall roughness. Four JRC profiles (5, 11, 15, and 19) are employed in the study, where a higher number indicates higher roughness. A parametric study has been performed using varying pressure gradients, and the corresponding Forchheimer number is calculated to observe the nonlinear behavior. The results indicate that the fracture roughness has a significant effect on the onset of nonlinearity. Additionally, the validity of the cubic law is evaluated and observed that it overestimates the flow in rough fractures and should be used with utmost care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20flow" title="fracture flow">fracture flow</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20flow" title=" nonlinear flow"> nonlinear flow</a>, <a href="https://publications.waset.org/abstracts/search?q=cubic%20law" title=" cubic law"> cubic law</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-stokes%20equation" title=" Navier-stokes equation"> Navier-stokes equation</a> </p> <a href="https://publications.waset.org/abstracts/149916/nonlinear-flow-behavior-and-validity-of-the-cubic-law-in-a-rough-fracture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1363</span> A Nonlinear Dynamical System with Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Eqal%20Al%20Mazrooei">Abdullah Eqal Al Mazrooei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lorenz%20models" title="Lorenz models">Lorenz models</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20estimator" title=" nonlinear estimator"> nonlinear estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=state-space%20model" title=" state-space model"> state-space model</a> </p> <a href="https://publications.waset.org/abstracts/60388/a-nonlinear-dynamical-system-with-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1362</span> Comparison of DPC and FOC Vector Control Strategies on Reducing Harmonics Caused by Nonlinear Load in the DFIG Wind Turbine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Havasi">Hamid Havasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Reza%20Gholami%20Dehbalaei"> Mohamad Reza Gholami Dehbalaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Khorami"> Hamed Khorami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Karimi"> Shahram Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamdi%20Abdi"> Hamdi Abdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doubly-fed induction generator (DFIG) equipped with a power converter is an efficient tool for converting mechanical energy of a variable speed system to a fixed-frequency electrical grid. Since electrical energy sources faces with production problems such as harmonics caused by nonlinear loads, so in this paper, compensation performance of DPC and FOC method on harmonics reduction of a DFIG wind turbine connected to a nonlinear load in MATLAB Simulink model has been simulated and effect of each method on nonlinear load harmonic elimination has been compared. Results of the two mentioned control methods shows the advantage of the FOC method on DPC method for harmonic compensation. Also, the fifth and seventh harmonic components of the network and THD greatly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFIG%20machine" title="DFIG machine">DFIG machine</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion" title=" energy conversion"> energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20load" title=" nonlinear load"> nonlinear load</a>, <a href="https://publications.waset.org/abstracts/search?q=THD" title=" THD"> THD</a>, <a href="https://publications.waset.org/abstracts/search?q=DPC" title=" DPC"> DPC</a>, <a href="https://publications.waset.org/abstracts/search?q=FOC" title=" FOC"> FOC</a> </p> <a href="https://publications.waset.org/abstracts/15405/comparison-of-dpc-and-foc-vector-control-strategies-on-reducing-harmonics-caused-by-nonlinear-load-in-the-dfig-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1361</span> Rheological and Microstructural Characterization of Concentrated Emulsions Prepared by Fish Gelatin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20S.%20Joyner%20%28Melito%29">Helen S. Joyner (Melito)</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Anvari"> Mohammad Anvari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentrated emulsions stabilized by proteins are systems of great importance in food, pharmaceutical and cosmetic products. Controlling emulsion rheology is critical for ensuring desired properties during formation, storage, and consumption of emulsion-based products. Studies on concentrated emulsions have focused on rheology of monodispersed systems. However, emulsions used for industrial applications are polydispersed in nature, and this polydispersity is regarded as an important parameter that also governs the rheology of the concentrated emulsions. Therefore, the objective of this study was to characterize rheological (small and large deformation behaviors) and microstructural properties of concentrated emulsions which were not truly monodispersed as usually encountered in food products such as margarines, mayonnaise, creams, spreads, and etc. The concentrated emulsions were prepared at different concentrations of fish gelatin (0.2, 0.4, 0.8% w/v in the whole emulsion system), oil-water ratio 80-20 (w/w), homogenization speed 10000 rpm, and 25oC. Confocal laser scanning microscopy (CLSM) was used to determine the microstructure of the emulsions. To prepare samples for CLSM analysis, FG solutions were stained by Fluorescein isothiocyanate dye. Emulsion viscosity profiles were determined using shear rate sweeps (0.01 to 100 1/s). The linear viscoelastic regions (LVRs) of the emulsions were determined using strain sweeps (0.01 to 100% strain) for each sample. Frequency sweeps were performed in the LVR (0.1% strain) from 0.6 to 100 rad/s. Large amplitude oscillatory shear (LAOS) testing was conducted by collecting raw waveform data at 0.05, 1, 10, and 100% strain at 4 different frequencies (0.5, 1, 10, and 100 rad/s). All measurements were performed in triplicate at 25oC. The CLSM results revealed that increased fish gelatin concentration resulted in more stable oil-in-water emulsions with homogeneous, finely dispersed oil droplets. Furthermore, the protein concentration had a significant effect on emulsion rheological properties. Apparent viscosity and dynamic moduli at small deformations increased with increasing fish gelatin concentration. These results were related to increased inter-droplet network connections caused by increased fish gelatin adsorption at the surface of oil droplets. Nevertheless, all samples showed shear-thinning and weak gel behaviors over shear rate and frequency sweeps, respectively. Lissajous plots, or plots of stress versus strain, and phase lag values were used to determine nonlinear behavior of the emulsions in LAOS testing. Greater distortion in the elliptical shape of the plots followed by higher phase lag values was observed at large strains and frequencies in all samples, indicating increased nonlinear behavior. Shifts from elastic-dominated to viscous dominated behavior were also observed. These shifts were attributed to damage to the sample microstructure (e.g. gel network disruption), which would lead to viscous-type behaviors such as permanent deformation and flow. Unlike the small deformation results, the LAOS behavior of the concentrated emulsions was not dependent on fish gelatin concentration. Systems with different microstructures showed similar nonlinear viscoelastic behaviors. The results of this study provided valuable information that can be used to incorporate concentrated emulsions in emulsion-based food formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrated%20emulsion" title="concentrated emulsion">concentrated emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20gelatin" title=" fish gelatin"> fish gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/46301/rheological-and-microstructural-characterization-of-concentrated-emulsions-prepared-by-fish-gelatin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=2" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=48">48</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=49">49</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-linear%20viscoelastic&page=4" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>