CINXE.COM
Search results for: numerical approach
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: numerical approach</title> <meta name="description" content="Search results for: numerical approach"> <meta name="keywords" content="numerical approach"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="numerical approach" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="numerical approach"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16713</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: numerical approach</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16713</span> Optimization of the Numerical Fracture Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hentati">H. Hentati</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Abdelmoula"> R. Abdelmoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Jia"> Li Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Maalej"> A. Maalej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present numerical simulations of the quasi-static crack propagation based on the variation approach. We perform numerical simulations of a piece of brittle material without initial crack. An alternate minimization algorithm is used. Based on these numerical results, we determine the influence of numerical parameters on the location of crack. We show the importance of trying to optimize the time of numerical computation and we present the first attempt to develop a simple numerical method to optimize this time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title="fracture mechanics">fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=variation%20approach" title=" variation approach"> variation approach</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic" title=" mechanic"> mechanic</a> </p> <a href="https://publications.waset.org/abstracts/5187/optimization-of-the-numerical-fracture-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16712</span> Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zi%C3%B3%C5%82kowska">M. Ziółkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20T.%20Duda"> J. T. Duda</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Milewska-Duda"> J. Milewska-Duda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarbons" title=" nanocarbons"> nanocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/14405/evaluation-of-hydrogen-particle-volume-on-surfaces-of-selected-nanocarbons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16711</span> Numerical Solution of Integral Equations by Using Discrete GHM Multiwavelet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archit%20Yajnik">Archit Yajnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Rustam%20Ali"> Rustam Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, numerical method based on discrete GHM multiwavelets is presented for solving the Fredholm integral equations of second kind. There is hardly any article available in the literature in which the integral equations are numerically solved using discrete GHM multiwavelet. A number of examples are demonstrated to justify the applicability of the method. In GHM multiwavelets, the values of scaling and wavelet functions are calculated only at t = 0, 0.5 and 1. The numerical solution obtained by the present approach is compared with the traditional Quadrature method. It is observed that the present approach is more accurate and computationally efficient as compared to quadrature method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GHM%20multiwavelet" title="GHM multiwavelet">GHM multiwavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=fredholm%20integral%20equations" title=" fredholm integral equations"> fredholm integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrature%20method" title=" quadrature method"> quadrature method</a>, <a href="https://publications.waset.org/abstracts/search?q=function%20approximation" title=" function approximation"> function approximation</a> </p> <a href="https://publications.waset.org/abstracts/36311/numerical-solution-of-integral-equations-by-using-discrete-ghm-multiwavelet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16710</span> Numerical Modelling of Surface Waves Generated by Low Frequency Electromagnetic Field for Silicon Refinement Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Geza">V. Geza</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vencels"> J. Vencels</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Zageris"> G. Zageris</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pavlovs"> S. Pavlovs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus. Therefore, a new approach could address this problem. We propose an approach of creating surface waves on silicon melt’s surface in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which includes coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title="numerical modelling">numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20refinement" title=" silicon refinement"> silicon refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20waves" title=" surface waves"> surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF%20method" title=" VOF method"> VOF method</a> </p> <a href="https://publications.waset.org/abstracts/84333/numerical-modelling-of-surface-waves-generated-by-low-frequency-electromagnetic-field-for-silicon-refinement-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16709</span> About Multi-Resolution Techniques for Large Eddy Simulation of Reactive Multi-Phase Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Rossi">Giacomo Rossi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernardo%20Favini"> Bernardo Favini</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugenio%20Giacomazzi"> Eugenio Giacomazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Franca%20Rita%20Picchia"> Franca Rita Picchia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nunzio%20Maria%20Salvatore%20Arcidiacono"> Nunzio Maria Salvatore Arcidiacono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical technique for mesh refinement in the HeaRT (Heat Release and Transfer) numerical code is presented. In the CFD framework, Large Eddy Simulation (LES) approach is gaining in importance as a tool for simulating turbulent combustion processes, also if this approach has an high computational cost due to the complexity of the turbulent modeling and the high number of grid points necessary to obtain a good numerical solution. In particular, when a numerical simulation of a big domain is performed with a structured grid, the number of grid points can increase so much that the simulation becomes impossible: this problem can be overcame with a mesh refinement technique. Mesh refinement technique developed for HeaRT numerical code (a staggered finite difference code) is based on an high order reconstruction of the variables at the grid interfaces by means of a least square quasi-ENO interpolation: numerical code is written in modern Fortran (2003 standard of newer) and is parallelized using domain decomposition and message passing interface (MPI) standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LES" title="LES">LES</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-resolution" title=" multi-resolution"> multi-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=ENO" title=" ENO"> ENO</a>, <a href="https://publications.waset.org/abstracts/search?q=fortran" title=" fortran"> fortran</a> </p> <a href="https://publications.waset.org/abstracts/11679/about-multi-resolution-techniques-for-large-eddy-simulation-of-reactive-multi-phase-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16708</span> FE Analysis of Blade-Disc Dovetail Joints Using Mortar Base Frictional Contact Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Moradi">Abbas Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Safajoy"> Mohsen Safajoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Yazdanparast"> Reza Yazdanparast</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of blade-disc dovetail joints is one of the biggest challenges facing designers of aero-engines. To avoid comparatively expensive experimental full-scale tests, numerical methods can be used to simulate loaded disc-blades assembly. Mortar method provides a powerful and flexible tool for solving frictional contact problems. In this study, 2D frictional contact in dovetail has been analysed based on the mortar algorithm. In order to model the friction, the classical law of coulomb and moving friction cone algorithm is applied. The solution is then obtained by solving the resulting set of non-linear equations using an efficient numerical algorithm based on Newton–Raphson Method. The numerical results show that this approach has better convergence rate and accuracy than other proposed numerical methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20contact%20mechanics" title="computational contact mechanics">computational contact mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=dovetail%20joints" title=" dovetail joints"> dovetail joints</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20FEM" title=" nonlinear FEM"> nonlinear FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar%20approach" title=" mortar approach"> mortar approach</a> </p> <a href="https://publications.waset.org/abstracts/4936/fe-analysis-of-blade-disc-dovetail-joints-using-mortar-base-frictional-contact-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16707</span> On the Evaluation of Different Turbulence Models through the Displacement of Oil-Water Flow in Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidique%20Gawusu">Sidique Gawusu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaobing%20Zhang"> Xiaobing Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbulence models play a significant role in all computational fluid dynamics based modelling approaches. There is, however, no general turbulence model suitable for all flow scenarios. Therefore, a successful numerical modelling approach is only achievable if a more appropriate closure model is used. This paper evaluates different turbulence models in numerical modelling of oil-water flow within the Eulerian-Eulerian approach. A comparison among the obtained numerical results and published benchmark data showed reasonable agreement. The domain was meshed using structured mesh, and grid test was performed to ascertain grid independence. The evaluation of the models was made through analysis of velocity and pressure profiles across the domain. The models were tested for their suitability to accurately obtain a scalable and precise numerical experience. As a result, it is found that all the models except Standard-ω provide comparable results. The study also revealed new insights on flow in porous media, specifically oil reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modelling" title="turbulence modelling">turbulence modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20flows" title=" multi-phase flows"> multi-phase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=water-flooding" title=" water-flooding"> water-flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20oil" title=" heavy oil"> heavy oil</a> </p> <a href="https://publications.waset.org/abstracts/118414/on-the-evaluation-of-different-turbulence-models-through-the-displacement-of-oil-water-flow-in-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16706</span> Numerical Solutions of an Option Pricing Rainfall Derivatives Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clarinda%20Vitorino%20Nhangumbe">Clarinda Vitorino Nhangumbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Erc%C3%ADlia%20Sousa"> Ercília Sousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20differences%20method" title="finite differences method">finite differences method</a>, <a href="https://publications.waset.org/abstracts/search?q=ornstein-uhlenbeck%20process" title=" ornstein-uhlenbeck process"> ornstein-uhlenbeck process</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations%20approach" title=" partial differential equations approach"> partial differential equations approach</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20derivatives" title=" rainfall derivatives"> rainfall derivatives</a> </p> <a href="https://publications.waset.org/abstracts/169674/numerical-solutions-of-an-option-pricing-rainfall-derivatives-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16705</span> Some Results on the Generalized Higher Rank Numerical Ranges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Zahraei">Mohsen Zahraei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ε>0 the notion of Birkhoff-James approximate orthogonality sets for ε-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed definitions yield a natural generalization of the standard higher rank numerical ranges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8E%E2%80%8ERank-k%20numerical%20range%E2%80%8E" title="Rank-k numerical range">Rank-k numerical range</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Eisometry%E2%80%8E" title=" isometry"> isometry</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Enumerical%20range%E2%80%8E" title=" numerical range"> numerical range</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Erectangular%20matrix%20polynomials" title=" rectangular matrix polynomials"> rectangular matrix polynomials</a> </p> <a href="https://publications.waset.org/abstracts/28955/some-results-on-the-generalized-higher-rank-numerical-ranges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16704</span> Numerical and Analytical Approach for Film Condensation on Different Forms of Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kazemi%20Jouybari">A. Kazemi Jouybari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirabdolah%20Lavasani"> A. Mirabdolah Lavasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper seeks to the solution of condensation around of a flat plate, circular and elliptical tube in way of numerical and analytical methods. Also, it calculates the entropy production rates. The first, problem was solved by using mesh dynamic and rational assumptions, next it was compared with the numerical solution that the result had acceptable errors. An additional supporting relation was applied based on a characteristic of condensation phenomenon for condensing elements. As it has been shown here, due to higher rates of heat transfer for elliptical tubes, they have more entropy production rates, in comparison to circular ones. Findings showed that two methods were efficient. Furthermore, analytical methods can be used to optimize the problem and reduce the entropy production rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20rate" title=" entropy rate"> entropy rate</a> </p> <a href="https://publications.waset.org/abstracts/94520/numerical-and-analytical-approach-for-film-condensation-on-different-forms-of-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16703</span> Using Derivative Free Method to Improve the Error Estimation of Numerical Quadrature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chin-Yun%20Chen">Chin-Yun Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical integration is an essential tool for deriving different physical quantities in engineering and science. The effectiveness of a numerical integrator depends on different factors, where the crucial one is the error estimation. This work presents an error estimator that combines a derivative free method to improve the performance of verified numerical quadrature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20quadrature" title="numerical quadrature">numerical quadrature</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20estimation" title=" error estimation"> error estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=derivative%20free%20method" title=" derivative free method"> derivative free method</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20computation" title=" interval computation "> interval computation </a> </p> <a href="https://publications.waset.org/abstracts/17210/using-derivative-free-method-to-improve-the-error-estimation-of-numerical-quadrature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16702</span> Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Ahamefula%20Mba">Samuel Ahamefula Mba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulence" title="turbulence">turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equation" title=" Navier-Stokes equation"> Navier-Stokes equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%20pressure%20equation" title=" Poisson pressure equation"> Poisson pressure equation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20investigation" title=" numerical investigation"> numerical investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev-finite%20difference" title=" Chebyshev-finite difference"> Chebyshev-finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20computational%20approach" title=" hybrid computational approach"> hybrid computational approach</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20Eddy%20simulation%20with%20wall%20models" title=" large Eddy simulation with wall models"> large Eddy simulation with wall models</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation" title=" direct numerical simulation"> direct numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/167838/numerical-investigation-of-entropy-signatures-in-fluid-turbulence-poisson-equation-for-pressure-transformation-from-navier-stokes-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16701</span> The Impact of Cooperative Learning on Numerical Methods Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Bilal">Sara Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Omar%20Shuriye"> Abdi Omar Shuriye</a>, <a href="https://publications.waset.org/abstracts/search?q=Raihan%20Othman"> Raihan Othman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical Methods is a course that can be conducted using workshops and group discussion. This study has been implemented on undergraduate students of level two at the Faculty of Engineering, International Islamic University Malaysia. The Numerical Method course has been delivered to two Sections 1 and 2 with 44 and 22 students in each section, respectively. Systematic steps have been followed to apply the student centered learning approach in teaching Numerical Method course. Initially, the instructor has chosen the topic which was Euler’s Method to solve Ordinary Differential Equations (ODE) to be learned. The students were then divided into groups with five members in each group. Initial instructions have been given to the group members to prepare their subtopics before meeting members from other groups to discuss the subtopics in an expert group inside the classroom. For the time assigned for the classroom discussion, the setting of the classroom was rearranged to accommodate the student centered learning approach. Teacher strength was by monitoring the process of learning inside and outside the class. The students have been assessed during the migrating to the expert groups, recording of a video explanation outside the classroom and during the final examination. Euler’s Method to solve the ODE was set as part of Question 3(b) in the final exam. It is observed that none of the students from both sections obtained a zero grade in Q3(b), compared to Q3(a) and Q3(c). Also, for Section 1(44 students), 29 students obtained the full mark of 7/7, while only 10 obtained 7/7 for Q3(a) and no students obtained 6/6 for Q3(c). Finally, we can recommend that the Numerical Method course be moved toward more student-centered Learning classrooms where the students will be engaged in group discussion rather than having a teacher one man show. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teacher%20centered%20learning" title="teacher centered learning">teacher centered learning</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20centered%20learning" title=" student centered learning"> student centered learning</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematic" title=" mathematic"> mathematic</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a> </p> <a href="https://publications.waset.org/abstracts/60012/the-impact-of-cooperative-learning-on-numerical-methods-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16700</span> Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gebreegziabher%20Hailu">Gebreegziabher Hailu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20power%20series%20methods" title="residual power series methods">residual power series methods</a>, <a href="https://publications.waset.org/abstracts/search?q=stiff%20differential%20equoations" title=" stiff differential equoations"> stiff differential equoations</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20approach" title=" numerical approach"> numerical approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Runge%20Kutta%20methods" title=" Runge Kutta methods"> Runge Kutta methods</a> </p> <a href="https://publications.waset.org/abstracts/192125/development-of-residual-power-series-methods-for-efficient-solutions-of-stiff-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16699</span> A Time-Reducible Approach to Compute Determinant |I-X|</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xingbo">Wang Xingbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computation of determinant in the form |I-<em>X</em>| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-<em>X</em>|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix <em>X</em>. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=determinant" title=" determinant"> determinant</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue" title=" eigenvalue"> eigenvalue</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20complexity" title=" time complexity"> time complexity</a> </p> <a href="https://publications.waset.org/abstracts/47622/a-time-reducible-approach-to-compute-determinant-i-x" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16698</span> Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samah%20Laalej">Samah Laalej</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelfattah%20Bouatem"> Abdelfattah Bouatem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade%20element%20momentum" title="blade element momentum">blade element momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20forces" title=" aerodynamic forces"> aerodynamic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20blades" title=" wind turbine blades"> wind turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20approach" title=" computational fluid dynamics approach"> computational fluid dynamics approach</a> </p> <a href="https://publications.waset.org/abstracts/183094/application-of-a-hybrid-modified-blade-element-momentum-theorycomputational-fluid-dynamics-approach-for-wine-turbine-aerodynamic-performances-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16697</span> Bi-Criteria Vehicle Routing Problem for Possibility Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bezhan%20Ghvaberidze">Bezhan Ghvaberidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A multiple criteria optimization approach for the solution of the Fuzzy Vehicle Routing Problem (FVRP) is proposed. For the possibility environment the levels of movements between customers are calculated by the constructed simulation interactive algorithm. The first criterion of the bi-criteria optimization problem - minimization of the expectation of total fuzzy travel time on closed routes is constructed for the FVRP. A new, second criterion – maximization of feasibility of movement on the closed routes is constructed by the Choquet finite averaging operator. The FVRP is reduced to the bi-criteria partitioning problem for the so called “promising” routes which were selected from the all admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in the real-time computing. For the numerical solution of the bi-criteria partitioning problem the -constraint approach is used. An exact algorithm is implemented based on D. Knuth’s Dancing Links technique and the algorithm DLX. The Main objective was to present the new approach for FVRP, when there are some difficulties while moving on the roads. This approach is called FVRP for extreme conditions (FVRP-EC) on the roads. Also, the aim of this paper was to construct the solving model of the constructed FVRP. Results are illustrated on the numerical example where all Pareto-optimal solutions are found. Also, an approach for more complex model FVRP with time windows was developed. A numerical example is presented in which optimal routes are constructed for extreme conditions on the roads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization" title="combinatorial optimization">combinatorial optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuzzy%20Vehicle%20routing%20problem" title=" Fuzzy Vehicle routing problem"> Fuzzy Vehicle routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20objective%20programming" title=" multiple objective programming"> multiple objective programming</a>, <a href="https://publications.waset.org/abstracts/search?q=possibility%20theory" title=" possibility theory"> possibility theory</a> </p> <a href="https://publications.waset.org/abstracts/59577/bi-criteria-vehicle-routing-problem-for-possibility-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16696</span> Improvement of the Numerical Integration's Quality in Meshless Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Mougaida">Ahlem Mougaida</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedi%20Bel%20Hadj%20Salah"> Hedi Bel Hadj Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several methods are suggested to improve the numerical integration in Galerkin weak form for Meshless methods. In fact, integrating without taking into account the characteristics of the shape functions reproduced by Meshless methods (rational functions, with compact support etc.), causes a large integration error that influences the PDE’s approximate solution. Comparisons between different methods of numerical integration for rational functions are discussed and compared. The algorithms are implemented in Matlab. Finally, numerical results were presented to prove the efficiency of our algorithms in improving results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20methods" title="adaptive methods">adaptive methods</a>, <a href="https://publications.waset.org/abstracts/search?q=meshless" title=" meshless"> meshless</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20integration" title=" numerical integration"> numerical integration</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20quadrature" title=" rational quadrature"> rational quadrature</a> </p> <a href="https://publications.waset.org/abstracts/46442/improvement-of-the-numerical-integrations-quality-in-meshless-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16695</span> Numerical Investigation of Multiphase Flow in Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gozel%20Judakova">Gozel Judakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Bause"> Markus Bause</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discontinuous%20Galerkin%20method" title="discontinuous Galerkin method">discontinuous Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler%20system" title=" Euler system"> Euler system</a>, <a href="https://publications.waset.org/abstracts/search?q=inviscid%20two-fluid%20model" title=" inviscid two-fluid model"> inviscid two-fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=streamline%20upwind%20Petrov-Galerkin%20method" title=" streamline upwind Petrov-Galerkin method"> streamline upwind Petrov-Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=twophase%20flow" title=" twophase flow"> twophase flow</a> </p> <a href="https://publications.waset.org/abstracts/61998/numerical-investigation-of-multiphase-flow-in-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16694</span> Turbulent Flow in Corrugated Pipes with Helical Grooves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Mendes">P. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Stel"> H. Stel</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20M.%20Morales"> R. E. M. Morales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a numerical and experimental study of turbulent flow in corrugated pipes with helically “d-type" grooves, for Reynolds numbers between 7500 and 100,000. The ANSYS-CFX software is used to solve the RANS equations with the BSL two equation turbulence model, through the element-based finite-volume method approach. Different groove widths and helix angles are considered. Numerical results are validated with experimental pressure drop measurements for the friction factor. A correlation for the friction factor is also proposed considering the geometric parameters and Reynolds numbers evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title="turbulent flow">turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated%20pipe" title=" corrugated pipe"> corrugated pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=helical" title=" helical"> helical</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a> </p> <a href="https://publications.waset.org/abstracts/17407/turbulent-flow-in-corrugated-pipes-with-helical-grooves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16693</span> Numerical Wave Solutions for Nonlinear Coupled Equations Using Sinc-Collocation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Al-Khaled">Kamel Al-Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, numerical solutions for the nonlinear coupled Korteweg-de Vries, (abbreviated as KdV) equations are calculated by Sinc-collocation method. This approach is based on a global collocation method using Sinc basis functions. First, discretizing time derivative of the KdV equations by a classic finite difference formula, while the space derivatives are approximated by a $\theta-$weighted scheme. Sinc functions are used to solve these two equations. Soliton solutions are constructed to show the nature of the solution. The numerical results are shown to demonstrate the efficiency of the newly proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nonlinear%20coupled%20KdV%20equations" title="Nonlinear coupled KdV equations">Nonlinear coupled KdV equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Soliton%20solutions" title=" Soliton solutions"> Soliton solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinc-collocation%20method" title=" Sinc-collocation method"> Sinc-collocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinc%20functions" title=" Sinc functions"> Sinc functions</a> </p> <a href="https://publications.waset.org/abstracts/23564/numerical-wave-solutions-for-nonlinear-coupled-equations-using-sinc-collocation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16692</span> Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Jaiswal">Shubham Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20fractional%20order%20linear%2Fnonlinear%20reaction-advection%20diffusion%20equation" title="space fractional order linear/nonlinear reaction-advection diffusion equation">space fractional order linear/nonlinear reaction-advection diffusion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=shifted%20Jacobi%20polynomials" title=" shifted Jacobi polynomials"> shifted Jacobi polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20matrix" title=" operational matrix"> operational matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=collocation%20method" title=" collocation method"> collocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=Caputo%20derivative" title=" Caputo derivative"> Caputo derivative</a> </p> <a href="https://publications.waset.org/abstracts/79521/numerical-solution-of-space-fractional-order-linearnonlinear-reaction-advection-diffusion-equation-using-jacobi-polynomial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16691</span> Development of Fem Code for 2-D Elasticity Problems Using Quadrilateral and Triangular Elements </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umar%20Kiani">Muhammad Umar Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Sakawat"> Waseem Sakawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the development of FEM code using Quadrilateral 4-Node (Q4) and Triangular 3-Node (T3) elements. Code is formulated using MATLAB language. Instead of using both elements in the same code, two separate codes are written. Quadrilateral element is difficult to handle directly, that is why natural coordinates (eta, ksi) are used. Due to this, Q4 code includes numerical integration (Gauss quadrature). In this case, complete numerical integration is performed using 2 points. On the other hand, T3 element can be modeled directly, by using direct stiffness approach. Axially loaded element, cantilever (special constraints) and Patch test cases were analyzed using both codes and the results were verified by using Ansys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM%20code" title="FEM code">FEM code</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20integration" title=" numerical integration"> numerical integration</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/2344/development-of-fem-code-for-2-d-elasticity-problems-using-quadrilateral-and-triangular-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16690</span> CFD Study of Free Surface Flows Resulting from a Dam-Breaking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Ben%20Hamza">Sonia Ben Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Habli"> Sabra Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Mahjoub%20Sa%C3%AFd"> Nejla Mahjoub Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Herv%C3%A9%20Bournot"> Hervé Bournot</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Le%20Palec"> Georges Le Palec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Free surface flows caused by dam breaks in channels or rivers is an attention-getting subject to the engineering practice, however, the studies are few to be reported. In this paper, a numerical investigation of unsteady free surface flows resulting from a dam-breaking in a rectangular channel is studied. Numerical computations were carried out using ANSYS Fluent which is based on the finite volume approach. The air/water interface was modeled with the volume of fluid method (VOF). Verification for a typical dam-break problem is analyzed by comparing the present results with others and very good agreement is obtained. The present approach is then used to predict the characteristics of free surface flow due to the dam breaking in channel. The characteristics of complex unsteady free surface flow in these examples are clearly explained. The numerical results show that the flow became more disturbed after impacting the vertical wall, then a recirculation zone, as well as turbulence phenomena, were created. At this instant, a cavity of air was included on the flow. The results agree well with the experimental data found in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=dam-break" title=" dam-break"> dam-break</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20surface" title=" free surface"> free surface</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flows" title=" turbulent flows"> turbulent flows</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a> </p> <a href="https://publications.waset.org/abstracts/42603/cfd-study-of-free-surface-flows-resulting-from-a-dam-breaking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16689</span> The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Uma"> R. Uma</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Sharma"> R. P. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20waves" title="water waves">water waves</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation%20instability" title=" modulation instability"> modulation instability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Schr%C3%B6dinger%27s%20equation" title=" nonlinear Schrödinger's equation"> nonlinear Schrödinger's equation</a> </p> <a href="https://publications.waset.org/abstracts/179074/the-physics-of-turbulence-generation-in-a-fluid-numerical-investigation-using-a-1d-damped-mnls-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16688</span> Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carla%20E.%20O.%20de%20Moraes">Carla E. O. de Moraes</a>, <a href="https://publications.waset.org/abstracts/search?q=Gladson%20O.%20Antunes"> Gladson O. Antunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20A.%20Rincon"> Mauro A. Rincon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernoulli-Euler%20plate%20equation" title="Bernoulli-Euler plate equation">Bernoulli-Euler plate equation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20decay" title=" energy decay"> energy decay</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a> </p> <a href="https://publications.waset.org/abstracts/7035/stabilization-of-the-bernoulli-euler-plate-equation-numerical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16687</span> Using the Simple Fixed Rate Approach to Solve Economic Lot Scheduling Problem under the Basic Period Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Jen%20Chang">Yu-Jen Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Chen"> Yun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hei-Lam%20Wong"> Hei-Lam Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Economic Lot Scheduling Problem (ELSP) is a valuable mathematical model that can support decision-makers to make scheduling decisions. The basic period approach is effective for solving the ELSP. The assumption for applying the basic period approach is that a product must use its maximum production rate to be produced. However, a product can lower its production rate to reduce the average total cost when a facility has extra idle time. The past researches discussed how a product adjusts its production rate under the common cycle approach. To the best of our knowledge, no studies have addressed how a product lowers its production rate under the basic period approach. This research is the first paper to discuss this topic. The research develops a simple fixed rate approach that adjusts the production rate of a product under the basic period approach to solve the ELSP. Our numerical example shows our approach can find a better solution than the traditional basic period approach. Our mathematical model that applies the fixed rate approach under the basic period approach can serve as a reference for other related researches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20lot" title="economic lot">economic lot</a>, <a href="https://publications.waset.org/abstracts/search?q=basic%20period" title=" basic period"> basic period</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20rate" title=" fixed rate"> fixed rate</a> </p> <a href="https://publications.waset.org/abstracts/28582/using-the-simple-fixed-rate-approach-to-solve-economic-lot-scheduling-problem-under-the-basic-period-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16686</span> On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kizito%20Ugochukwu%20Nwajeri">Kizito Ugochukwu Nwajeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title="fractional calculus">fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20and%20convergence" title=" stability and convergence"> stability and convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=Adaptive%20step-size%20mechanism" title=" Adaptive step-size mechanism"> Adaptive step-size mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=collocation%20methods" title=" collocation methods"> collocation methods</a> </p> <a href="https://publications.waset.org/abstracts/188911/on-the-solution-of-fractional-order-dynamical-systems-endowed-with-block-hybrid-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16685</span> Numerical Modeling and Characteristic Analysis of a Parabolic Trough Solar Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alibakhsh%20Kasaeian">Alibakhsh Kasaeian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sameti"> Mohammad Sameti</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Noori"> Zahra Noori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Rastgoo%20Bahambari"> Mona Rastgoo Bahambari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the parabolic trough solar collector technology has become the most promising large-scale technology among various solar thermal generations. In this paper, a detailed numerical heat transfer model for a parabolic trough collector with nanofluid is presented based on the finite difference approach for which a MATLAB code was developed. The model was used to simulate the performance of a parabolic trough solar collector’s linear receiver, called a heat collector element (HCE). In this model, the heat collector element of the receiver was discretized into several segments in axial directions and energy balances were used for each control volume. All the heat transfer correlations, the thermodynamic equations and the optical properties were considered in details and the set of algebraic equations were solved simultaneously using iterative numerical solutions. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=trough" title=" trough"> trough</a> </p> <a href="https://publications.waset.org/abstracts/44175/numerical-modeling-and-characteristic-analysis-of-a-parabolic-trough-solar-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16684</span> Experimental Approach and Numerical Modeling of Thermal Properties of Porous Materials: Application to Construction Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Sotehi">Nassima Sotehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents experimental and numerical results concerning the thermal properties of the porous materials used as heat insulator in the buildings sector. Initially, the thermal conductivity of three types of studied walls (classic concrete, concrete with cork aggregate and polystyrene concrete) was measured in experiments by the method of the boxes. Then a numerical modeling of the heat and mass transfers which occur within porous materials was applied to these walls. This work shows the influence of the presence of water in building materials on their thermophysical properties, as well as influence of the nature of materials and dosage of fibers introduced within these materials on the thermal and mass transfers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20materials" title=" thermal materials"> thermal materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a> </p> <a href="https://publications.waset.org/abstracts/38381/experimental-approach-and-numerical-modeling-of-thermal-properties-of-porous-materials-application-to-construction-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=557">557</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=558">558</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=numerical%20approach&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>