CINXE.COM

Search results for: plant growth traits

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plant growth traits</title> <meta name="description" content="Search results for: plant growth traits"> <meta name="keywords" content="plant growth traits"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plant growth traits" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plant growth traits"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9607</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plant growth traits</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9607</span> Improvement of the Melon (Cucumis melo L.) through Genetic Gain and Discriminant Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Naroui%20Rad">M. R. Naroui Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Fanaei"> H. Fanaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghalandarzehi"> A. Ghalandarzehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To find out the yield of melon, the traits are vital. This research was performed with the objective to assess the impact of nine different morphological traits on the production of 20 melon landraces in the sistan weather region. For all the traits genetic variation was noted. Minimum genetical variance (9.66) along with high genetic interaction with the environment led to low heritability (0.24) of the yield. The broad sense heritability of the traits that were included into the differentiating model was more than it was in the production. In this study, the five selected traits, number of fruit, fruit weight, fruit width, flesh diameter and plant yield can differentiate the genotypes with high or low production. This demonstrated the significance of these 5 traits in plant breeding programs. Discriminant function of these 5 traits, particularly, the weight of the fruit, in case of the current outputs was employed as an all-inclusive parameter for pointing out landraces with the highest yield. 75% of variation in yield can be explained with this index, and the weight of fruit also has substantial relation with the total production (r=0.72**). This factor can be highly beneficial in case of future breeding program selections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melon" title="melon">melon</a>, <a href="https://publications.waset.org/abstracts/search?q=discriminant%20analysis" title=" discriminant analysis"> discriminant analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20components" title=" genetic components"> genetic components</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a> </p> <a href="https://publications.waset.org/abstracts/48563/improvement-of-the-melon-cucumis-melo-l-through-genetic-gain-and-discriminant-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9606</span> Investigation of Drought Resistance in Iranian Sesamum Germpelasm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Najafi">Fatemeh Najafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major stress factor limiting crop growth and development of sesame (Sesamum indicum L.) is drought stress in arid and semiarid regions of the world. For this study the effects of water stress on some qualitative and quantitative traits in sesame germplasm was conducted in the Research Farm of Seed and Plant Improvement Institute, Karaj, in the crop year. Genotypes in a randomized complete block design with three replications in two environments (moisture stress and normal) were studied in regard of the seed weight, capsule weight, grain yield, biomass, plant height, number of capsules per plant, etc. The characteristics were evaluated based on the combined analysis. Irrigation was based on first class evaporation basin. After flowering stage drought stress was applied. The water deficit reduced growth period. Days to reach full ripening decreased so that the reduction was significant at the five percent level. Drought stress reduces yield and plant biomass. Genotypes based on combined analysis of these two traits were significant at the one percent level. Genotypes differ in terms of yield stress in terms of density plots, grain yield, days to first flowering and days to the half of the cap on the confidence level of five percent and traits of days to emergence of the first capsule and days to reach full ripening at the one percent level were significant. Other traits were not significant. The correlation of traits in circumstances of stress the number of seeds per capsule has the greatest impact on performance. The sensitivity and stress tolerance index was calculated. Based on the indicators, (Fars variety) and variety Karaj were identified as the most tolerant genotypes among the studied genotypes to drought stress. The highest sensitivity indicator of stress was related to genotype (FARS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sesamum" title="sesamum">sesamum</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=germplasm" title=" germplasm"> germplasm</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/171841/investigation-of-drought-resistance-in-iranian-sesamum-germpelasm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9605</span> Estimates of (Co)Variance Components and Genetic Parameters for Body Weights and Growth Efficiency Traits in the New Zealand White Rabbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sakthivel">M. Sakthivel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Devaki"> A. Devaki</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Balasubramanyam"> D. Balasubramanyam</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kumarasamy"> P. Kumarasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Raja"> A. Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Anilkumar"> R. Anilkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Gopi"> H. Gopi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The genetic parameters of growth traits in the New Zealand White rabbits maintained at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India were estimated by partitioning the variance and covariance components. The (co)variance components of body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (1=42 to 70 days; 2=70 to 135 days and 3=42 to 135 days) from weaning to marketing were estimated by restricted maximum likelihood, fitting six animal models with various combinations of direct and maternal effects. Data were collected over a period of 15 years (1998 to 2012). A log-likelihood ratio test was used to select the most appropriate univariate model for each trait, which was subsequently used in bivariate analysis. Heritability estimates for W42, W70 and W135 were 0.42 ± 0.07, 0.40 ± 0.08 and 0.27 ± 0.07, respectively. Heritability estimates of growth efficiency traits were moderate to high (0.18 to 0.42). Of the total phenotypic variation, maternal genetic effect contributed 14 to 32% for early body weight traits (W42 and W70) and ADG1. The contribution of maternal permanent environmental effect varied from 6 to 18% for W42 and for all the growth efficiency traits except for KR2. Maternal permanent environmental effect on most of the growth efficiency traits was a carryover effect of maternal care during weaning. Direct maternal genetic correlations, for the traits in which maternal genetic effect was significant, were moderate to high in magnitude and negative in direction. Maternal effect declined as the age of the animal increased. The estimates of total heritability and maternal across year repeatability for growth traits were moderate and an optimum rate of genetic progress seems possible in the herd by mass selection. The estimates of genetic and phenotypic correlations among body weight traits were moderate to high and positive; among growth efficiency traits were low to high with varying directions; between body weights and growth efficiency traits were very low to high in magnitude and mostly negative in direction. Moderate to high heritability and higher genetic correlation in body weight traits promise good scope for genetic improvement provided measures are taken to keep the inbreeding at the lowest level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20parameters" title="genetic parameters">genetic parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20traits" title=" growth traits"> growth traits</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal%20effects" title=" maternal effects"> maternal effects</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit%20genetics" title=" rabbit genetics"> rabbit genetics</a> </p> <a href="https://publications.waset.org/abstracts/68262/estimates-of-covariance-components-and-genetic-parameters-for-body-weights-and-growth-efficiency-traits-in-the-new-zealand-white-rabbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9604</span> Sustainable Agriculture Practices Using Bacterial-mediated Alleviation of Salinity Stress in Crop Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Trigui">Mohamed Trigui</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Masmoudi"> Fatma Masmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Imen%20Zouari"> Imen Zouari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Massive utilizations of chemical fertilizer and chemical pesticides in agriculture sector to improve the farming productivity have created increasing environmental damages. Then, agriculture must become sustainable, focusing on production systems that respect the environment and help to reduce climate change. Isolation and microbial identification of new bacterial strains from naturally saline habitats and compost extracts could be a prominent way in pest management and crop production under saline conditions. In this study, potential mechanisms involved in plant growth promotion and suppressive activity against fungal diseases of a compost extract produced from poultry manure/olive husk compost and halotolerant and halophilic bacterial strains under saline stress were investigated. On the basis of the antimicrobial tests, different strains isolated from Sfax solar saltern (Tunisia) and from compost extracts were selected and tested for their plant growth promoting traits, such as siderophores production, nitrogen fixation, phosphate solubilization and the production of extracellular hydrolytic enzymes (protease and lipase) under in-vitro conditions. Among 450 isolated bacterial strains, 16 isolates showed potent antifungal activity against the tested plant pathogenic fungi. Their identification based on 16S rRNA gene sequence revealed they belonged to different species. Some of these strains were also characterized for their plant growth promoting capacities. Obtained results showed the ability of four strains belonging to Bacillus genesis to ameliorate germination rate and root elongation compared to the untreated positive controls. Combinatorial capacity of halotolerant bacteria with antimicrobial activity and plant growth promoting traits could be promising sources of interesting bioactive substances under saline stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abiotic%20stress" title="abiotic stress">abiotic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=biofertilizer" title=" biofertilizer"> biofertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=biotic%20stress" title=" biotic stress"> biotic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=compost%20extract" title=" compost extract"> compost extract</a>, <a href="https://publications.waset.org/abstracts/search?q=halobacteria" title=" halobacteria"> halobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20promoting%20%28PGP%29" title=" plant growth promoting (PGP)"> plant growth promoting (PGP)</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility" title=" soil fertility"> soil fertility</a> </p> <a href="https://publications.waset.org/abstracts/166274/sustainable-agriculture-practices-using-bacterial-mediated-alleviation-of-salinity-stress-in-crop-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9603</span> Effect of Three Sand Types on Potato Vegetative Growth and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shatha%20A.%20Yousif">Shatha A. Yousif</a>, <a href="https://publications.waset.org/abstracts/search?q=Qasim%20M.%20Zamil"> Qasim M. Zamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Y.%20Al%20Muhi"> Hasan Y. Al Muhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Al%20Shammari"> Jamal A. Al Shammari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato (Solanum tuberosum L.) is one of the major vegetable crops that are grown world wide because of its economic importance. This experiment investigated the effect of local sands (River Base, Al-Ekader and Karbala) on number and total weight of mini tubers. Statistical analysis revealed that there were no significant differences among sand cultures in number of stem/plant, chlorophyll index and tubers dry weight. River Base sand had the highest plant height (74.9 cm), leaf number/plant number (39.3), leaf area (84.4 dcm2⁄plant), dry weight/plant (26.31), tubers number/plant (8.5), tubers weight/plant (635.53 gm) and potato tuber yields/trove (28.60 kg), whereas the Karbala sand had lower performance. All the characters had positive and significant correlation with yields except the traits number of stem and tuber dry weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20culture" title=" sand culture"> sand culture</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/25112/effect-of-three-sand-types-on-potato-vegetative-growth-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9602</span> Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali.%20Marjani">Ali. Marjani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farsi"> M. Farsi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimizadeh"> M. Rahimizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea (<em>Cicer arietinum</em> L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20stage" title=" growth stage"> growth stage</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/55202/response-of-chickpea-cicer-arietinum-l-genotypes-to-drought-stress-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9601</span> Agro-Morphological Traits Based Genetic Diversity Analysis of ‘Ethiopian Dinich’ Plectranthus edulis (Vatke) Agnew Populations Collected from Diverse Agro-Ecologies in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fekadu%20Gadissa">Fekadu Gadissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kassahun%20Tesfaye"> Kassahun Tesfaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Kifle%20Dagne"> Kifle Dagne</a>, <a href="https://publications.waset.org/abstracts/search?q=Mulatu%20Geleta"> Mulatu Geleta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> ‘Ethiopian dinich’ also called ‘Ethiopian potato’ is one of the economically important ‘orphan’ edible tuber crops indigenous to Ethiopia. We evaluated the morphological and agronomic traits performances of 174 samples from Ethiopia at multiple locations using 12 qualitative and 16 quantitative traits, recorded at the correct growth stages. We observed several morphotypes and phenotypic variations for qualitative traits along with a wide range of mean performance values for all quantitative traits. Analysis of variance for each quantitative trait showed a highly significant (p<0.001) variation among the collections with eventually non-significant variation for environment-traits interaction for all but flower length. A comparatively high phenotypic and genotypic coefficient of variation was observed for plant height, days to flower initiation, days to 50% flowering and tuber number per hill. Moreover, the variability and coefficients of variation due to genotype-environment interaction was nearly zero for all the traits except flower length. High genotypic coefficients of variation coupled with a high estimate of broad sense heritability and high genetic advance as a percent of collection mean were obtained for tuber weight per hill, number of primary branches per plant, tuber number per hill and number of plants per hill. Association of tuber yield per hectare of land showed a large magnitude of positive phenotypic and genotypic correlation with those traits. Principal components analysis revealed 76% of the total variation for the first six principal axes with high factor loadings again from tuber number per hill, number of primary branches per plant and tuber weight. The collections were grouped into four clusters with the weak region (zone) of origin based pattern. In general, there is high genetic-based variability for ‘Ethiopian dinich’ improvement and conservation. DNA based markers are recommended for further genetic diversity estimation for use in breeding and conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-morphological%20traits" title="agro-morphological traits">agro-morphological traits</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopian%20dinich" title=" Ethiopian dinich"> Ethiopian dinich</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20components" title=" variance components"> variance components</a> </p> <a href="https://publications.waset.org/abstracts/86088/agro-morphological-traits-based-genetic-diversity-analysis-of-ethiopian-dinich-plectranthus-edulis-vatke-agnew-populations-collected-from-diverse-agro-ecologies-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9600</span> Inbreeding and Its Effect on Growth Performance in a Closed Herd of New Zealand White Rabbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sakthivel">M. Sakthivel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Devaki"> A. Devaki</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Balasubramanyam"> D. Balasubramanyam</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kumarasamy"> P. Kumarasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Raja"> A. Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Anilkumar"> R. Anilkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Gopi"> H. Gopi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of inbreeding on growth traits in the New Zealand White rabbits maintained at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India was studied in a closed herd. Data were collected over a period of 15 years (1998 to 2012). The traits studied were body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (1=42 to 70 days; 2=70 to 135 days and 3=42 to 135 days) from weaning to marketing. The effects of inbreeding along with other non-genetic factors (sex of the kit, season and period of birth of the kit) were analyzed using least-squares method. The inbreeding (F) and equivalent inbreeding (EF) coefficients were taken as fixed classes as well as covariates in separate analyses. When taken as covariate, the effect was analyzed as partial regression of respective growth trait on individual inbreeding coefficient (F or EF). The mean body weights at weaning, post-weaning and marketing were 0.715, 1.276 and 2.187 kg, respectively. The maximum growth efficiency was noticed between weaning and post-weaning. Season and period had highly significant influence on all the growth parameters studied and sex of the kit had significant influence on certain growth efficiency traits only. The average coefficients of inbreeding and equivalent inbreeding in the population were 13.233 and 17.585 percent, respectively. About 11.17 percent of total matings were highly inbred in which full-sib, half-sib and parent-offspring matings were 1.20, 6.30 and 3.67 percent, respectively. The regression of body weight traits on F and EF showed negative effect whereas most of the growth efficiency traits showed positive effects. Significant inbreeding depression was observed in W42 and W70. The depression in W42 was 0.214 kg and 0.139 kg and in W70 was 0.269 kg and 0.172 kg for every one unit increase in F and EF, respectively. Though the trait W135 showed positive value and ADG1 showed depression, the effects of inbreeding and equivalent inbreeding were non-significant in these traits. Higher values of inbreeding depression could be due to more variance of F or EF in the population. The analysis of the effect of level of inbreeding on growth traits revealed that the inbreeding class was significant on W70, ADG2, RGR2 and KR2 while EF classes had significant influence only on ADG2, RGR2 and KR2. Obviously, inbreeding does not have a positive effect, therefore, these results suggest that inbreeding had no effect on these traits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20parameters" title="growth parameters">growth parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20inbreeding" title=" equivalent inbreeding"> equivalent inbreeding</a>, <a href="https://publications.waset.org/abstracts/search?q=inbreeding%20effects" title=" inbreeding effects"> inbreeding effects</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit%20genetics" title=" rabbit genetics"> rabbit genetics</a> </p> <a href="https://publications.waset.org/abstracts/68265/inbreeding-and-its-effect-on-growth-performance-in-a-closed-herd-of-new-zealand-white-rabbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9599</span> Adaptive Strategies of Maize in Leaf Traits to N Deficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panpan%20Fan">Panpan Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Ming"> Bo Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Niels%20Anten"> Niels Anten</a>, <a href="https://publications.waset.org/abstracts/search?q=Jochem%20Evers"> Jochem Evers</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaoyao%20Li"> Yaoyao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaokun%20Li"> Shaokun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruizhi%20xie"> Ruizhi xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen (N) utilization for crop production under N deficiency conditions is subject to a trade-off between maintaining specific leaf N content (SLN), important for radiation-use efficiency (RUE), versus maintaining leaf area (LA) development, important for light capture. This paper aims to explore how maize deals with this trade-off through responses in SLN, LA and their underlying traits during the vegetative and reproductive growth stages. In a ten-year N fertilization trial in Jilin province, Northeast China, three N fertilizer levels have been maintained: N-deficiency (N0), low N supply (N1), and high N supply (N2). We analyzed data from years 8 and 10 of this experiment for two common hybrids. Under N deficiency, maize plants maintained LA and decreased SLN during vegetative stages, while both LA and SLN decreased comparably during reproductive stages. Canopy-average specific leaf area (SLA) decreased sharply during vegetative stages and slightly during reproductive stages, mainly because senesced leaves in the lower canopy had a higher SLA. In the vegetative stage, maize maintained leaf area at low N by maintaining leaf biomass (albeit hence having N content/mass) and slightly increasing SLA. These responses to N deficiency were stronger in maize hybrid XY335 than in ZD958. We conclude the main strategy of maize to cope with low N is to maintain plant growth, mainly by increasing SLA throughout the plant during early growth. N was too limiting for either strategy to be followed during later growth stages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaf%20N%20content%20per%20unit%20leaf%20area" title="leaf N content per unit leaf area">leaf N content per unit leaf area</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20deficiency" title=" N deficiency"> N deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20leaf%20area" title=" specific leaf area"> specific leaf area</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20strateg" title=" maize strateg"> maize strateg</a> </p> <a href="https://publications.waset.org/abstracts/153846/adaptive-strategies-of-maize-in-leaf-traits-to-n-deficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9598</span> Response of Barley Quality Traits, Yield and Antioxidant Enzymes to Water-Stress and Chemical Inducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20Hafez">Emad Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Seleiman"> Mahmoud Seleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two field experiments were carried out in order to investigate the effect of chemical inducers [benzothiadiazole 0.9 mM L-1, oxalic acid 1.0 mM L-1, salicylic acid 0.2 mM L-1] on physiological and technological traits as well as on yields and antioxidant enzyme activities of barley grown under abiotic stress (i.e. water surplus and deficit conditions). Results showed that relative water content, leaf area, chlorophyll and yield as well as technological properties of barley were improved with chemical inducers application under water surplus and water-stress conditions. Antioxidant enzymes activity (i.e. catalase and peroxidase) were significantly increased in barley grown under water-stress and treated with chemical inducers. Yield and related parameters of barley presented also significant decrease under water-stress treatment, while chemical inducers application enhanced the yield-related traits. Starch and protein contents were higher in plants treated with salicylic acid than in untreated plants when water-stress was applied. In conclusion, results show that chemical inducers application have a positive interaction and synergetic influence and should be suggested to improve plant growth, yield and technological properties of water stressed barley. Salicylic acid application was better than oxalic acid and benzothiadiazole in terms of plant growth and yield improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title="antioxidant enzymes">antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Hordeum%20vulgare%20L." title=" Hordeum vulgare L."> Hordeum vulgare L.</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/74163/response-of-barley-quality-traits-yield-and-antioxidant-enzymes-to-water-stress-and-chemical-inducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9597</span> Potential Application of Selected Halotolerant PSB Isolated from Rhizospheric Soil of Chenopodium quinoa in Plant Growth Promotion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Mahdi">Ismail Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidal%20Fahsi"> Nidal Fahsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hafidi"> Mohamed Hafidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmounaim%20Allaoui"> Abdelmounaim Allaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Latefa%20Biskri"> Latefa Biskri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To meet the worldwide demand for food, smart management of arable lands is needed. This could be achieved through sustainable approaches such as the use of plant growth-promoting microorganisms including bacteria. Phosphate (P) solubilization is one of the major mechanisms of plant growth promotion by associated bacteria. In the present study, we isolated and screened 14 strains from the rhizosphere of Chenopodium quinoa wild grown in the experimental farm of UM6P and assessed their plant growth promoting properties. Next, they were identified by using 16S rRNA and Cpn60 genes sequencing as Bacillus, Pseudomonas and Enterobacter. These strains showed dispersed capacities to solubilize P (up to 346 mg L−1) following five days of incubation in NBRIP broth. We also assessed their abilities for indole acetic acid (IAA) production (up to 795,3 µg ml−1) and in vitro salt tolerance. Three Bacillus strains QA1, QA2, and S8 tolerated high salt stress induced by NaCl with a maximum tolerable concentration of 8%. Three performant isolates, QA1, S6 and QF11, were further selected for seed germination assay because of their pronounced abilities in terms of P solubilization, IAA production and salt tolerance. The early plant growth potential of tested strains showed that inoculated quinoa seeds displayed greater germination rate and higher seedlings growth under bacterial treatments. The positive effect on seed germination traits strongly suggests that the tested strains are growth promoting, halotolerant and P solubilizing bacteria which could be exploited as biofertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20solubilizing%20bacteria" title="phosphate solubilizing bacteria">phosphate solubilizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=IAA" title=" IAA"> IAA</a>, <a href="https://publications.waset.org/abstracts/search?q=Seed%20germination" title=" Seed germination"> Seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20tolerance" title=" salt tolerance"> salt tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=quinoa" title=" quinoa"> quinoa</a> </p> <a href="https://publications.waset.org/abstracts/125261/potential-application-of-selected-halotolerant-psb-isolated-from-rhizospheric-soil-of-chenopodium-quinoa-in-plant-growth-promotion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9596</span> Supplementation of Mannan Oligosaccharides in Guinea Pigs: Mortality and Growth Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Minguez">C. Minguez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bueso-Rodenas"> J. Bueso-Rodenas</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Ibanez"> C. Ibanez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Calvo"> A. Calvo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mannan oligosaccharides (MOS) is one of the prebiotic most used in livestock nutrition. In this research, the effect of MOS dietary supplementation on growth performance and mortality in meat guinea pigs were studied. Three different experimental groups were compared: Control group (no additives); MOS 1 (1.5 g kg−1); MOS 2 (2 g kg−1). Guinea pigs were housed in 15 collective cages (n = 50 animals in each trial; 10 animals per cage). The young guinea pigs were weaning at day 28 and individually identified by a little ear tag. The fattening period was 49 days. Guinea pigs in both groups were fed ad libitum, with a standard commercial pellet diet (10 MJ of digestible energy/kg, 17% crude protein, 11% crude fiber, and 4.5% crude fat) and alfalfa (Medicago sativa) as forage. Growth traits, including body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR), were measured weekly. On day 74, the animals were slaughtered. Contrasts between groups were obtained by calculated generalized least squares values. Mortality were evaluated by Fisher's exact test. Between MOS groups no significant differences were observed for growth traits and mortality. However, significant differences against the control group were observed for traits studied (pvalue < 0.05). In conclusion, the use of MOS could be a good prebiotic supplement to raise guinea pigs because it MOS has shown positive effects in growth traits and immune response in animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guinea%20pig" title="guinea pig">guinea pig</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=mannan%20oligosaccharides" title=" mannan oligosaccharides"> mannan oligosaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/98416/supplementation-of-mannan-oligosaccharides-in-guinea-pigs-mortality-and-growth-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9595</span> Dilution of Saline Irrigation Based on Plant&#039;s Physiological Responses to Salt Stress Following by Re-Watering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qaiser%20Javed">Qaiser Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Azeem"> Ahmad Azeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity and water scarcity are major environmental problems which are limiting the agricultural production. This research was conducted to construct a model to find out appropriate regime to dilute saline water based on physiological and electrophysiological properties of Brassica napus L., and Orychophragmus violaceus (L.). Plants were treated under salt-stressed concentrations of NaCl (NL₁: 2.5, NL₂: 5, NL₃: 10; gL⁻¹), Na₂SO₄ (NO₁: 2.5, NO₂: 5, NO₃: 10; gL⁻¹), and mixed salt concentration (MX₁: NL₁+ NO₃; MX₂: NL₃+ NO₁; MX₃: NL₂+ NO₂; gL⁻¹) and 0 as control, followed by re-watering. Growth, physiological and electrophysiology traits were highly restricted under high salt concentration levels at NL₃, NO₃, MX₁, and MX₂, respectively. However, during the rewatering phase, growth, electrophysiological, and physiological parameters were recovered well. Consequently, the increase in net photosynthetic rate was noted under moderate stress condition which was 44.13, 37.07, and 43.01%, respectively in Orychophragmus violaceus (L.) and 44.94%, 53.45%, and 63.04%, respectively were found in Brassica napus L. According to the results, the best dilution point was 5–2.5% for NaCl and Na₂SO₄ alternatively, whereas it was 10–0.0% for the mixture of salts. Therefore, the effect of salinity in O. violaceus and B. napus may also be reduced effectively by dilution of saline irrigation. It would be a better approach to utilize dilute saline water for irrigation instead of applies direct saline water to plant. This study provides new insight in the field of agricultural engineering to plan irrigation scheduling considering the crop ability to salt tolerance and irrigation water use efficiency by apply specific quantity of irrigation calculated based on the salt dilution point. It would be helpful to balance between irrigation amount and optimum crop water consumption in salt-affected regions and to utilize saline water in order to safe freshwater resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dilution%20model" title="dilution model">dilution model</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits" title=" plant growth traits"> plant growth traits</a>, <a href="https://publications.waset.org/abstracts/search?q=re-watering" title=" re-watering"> re-watering</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20stress" title=" salt stress"> salt stress</a> </p> <a href="https://publications.waset.org/abstracts/92614/dilution-of-saline-irrigation-based-on-plants-physiological-responses-to-salt-stress-following-by-re-watering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9594</span> Effect of Crude oil Contamination on the Morphological Traits and Protein Content of Avicennia Marina</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Moradi">Babak Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Zare-Maivan"> Hassan Zare-Maivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A greenhouse investigation has been conducted to study the effect of crude oil on morphology and protein content of Avicennia marina plant. Avicennia marina seeds were sown in different concentrations of the crude oil mixed soil (i.e., 2.5, 5, 7.5, and 10 w/w). Controls and replicates were also set up. Morphological traits were recorded 4 months after plantation. Avicennia marina seedlings could tolerate up to 10% (w/w). Results demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Plant height, total leaf number and length reduced significantly with increase of crude oil contamination. Investigation revealed that there is a great impact of crude oil contamination on protein content of the roots of the experimental plant. Protein content of roots grown in different concentrations of crude oil were more than those of the control plant. Further, results also showed that protein content was increased with increased concentration of crude oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avicennia%20marina" title="Avicennia marina">Avicennia marina</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination" title=" oil contamination"> oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20content" title=" protein content"> protein content</a> </p> <a href="https://publications.waset.org/abstracts/23576/effect-of-crude-oil-contamination-on-the-morphological-traits-and-protein-content-of-avicennia-marina" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9593</span> Correlations among Their Characteristics and Determination of Some Morphological Characteristics of Perennial Ryegrass Genotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20%C3%96zk%C3%B6se">Abdullah Özköse</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Tamko%C3%A7"> Ahmet Tamkoç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to determine some plant characteristics of perennial ryegrass (Lolium perenne L.) genotypes collected from the natural flora of Ankara and correlations between these characteristics. In order to evaluate for breeding purposes according to Turkey's environmental conditions, perennial ryegrass plants collected from natural pasture of Ankara at 2004 were utilized. The collected seeds of plants were sown in pots and seedlings were prepared in greenhouse. Seedlings were transplanted to the experimental field at 50x50 cm intervals in Randomized Complete Blocks Design in 2005. Data were obtained from the observations and measurements of 568 perennial ryegrasses in 2007 and 2008. Perennial ryegrass plants’ in the spring re-growth time, color, density, growth habit, tendency to inflorescences, time of inflorescence, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area, leaf shape, number of spikelets per spike, seed yield per spike, and 1000 grain weight were investigated and correlation analyses were made on the data. Correlation coefficients were estimated between all paired combinations of the traits. The yield components exhibited varying trends of association among themselves. Seed yield per spike showed significant and positive association with number of spikelets per spike, 1000 grain weight, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area and color, but significant and negative association with growth habit and in the spring re-growth time spring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20traits" title=" morphological traits"> morphological traits</a>, <a href="https://publications.waset.org/abstracts/search?q=Lolium%20perenne" title=" Lolium perenne"> Lolium perenne</a> </p> <a href="https://publications.waset.org/abstracts/18721/correlations-among-their-characteristics-and-determination-of-some-morphological-characteristics-of-perennial-ryegrass-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9592</span> Growth Curves Genetic Analysis of Native South Caspian Sea Poultry Using Bayesian Statistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Fayazi">Jamal Fayazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Anoosheh"> Farhad Anoosheh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Ghorbani"> Mohammad R. Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20R.%20Paydar"> Ali R. Paydar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, to determine the best non-linear regression model describing the growth curve of native poultry, 9657 chicks of generations 18, 19, and 20 raised in Mazandaran breeding center were used. Fowls and roosters of this center distributed in south of Caspian Sea region. To estimate the genetic variability of none linear regression parameter of growth traits, a Gibbs sampling of Bayesian analysis was used. The average body weight traits in the first day (BW1), eighth week (BW8) and twelfth week (BW12) were respectively estimated as 36.05, 763.03, and 1194.98 grams. Based on the coefficient of determination, mean squares of error and Akaike information criteria, Gompertz model was selected as the best growth descriptive function. In Gompertz model, the estimated values for the parameters of maturity weight (A), integration constant (B) and maturity rate (K) were estimated to be 1734.4, 3.986, and 0.282, respectively. The direct heritability of BW1, BW8 and BW12 were respectively reported to be as 0.378, 0.3709, 0.316, 0.389, 0.43, 0.09 and 0.07. With regard to estimated parameters, the results of this study indicated that there is a possibility to improve some property of growth curve using appropriate selection programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20heritability" title="direct heritability">direct heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=Gompertz" title=" Gompertz"> Gompertz</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20traits" title=" growth traits"> growth traits</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity%20weight" title=" maturity weight"> maturity weight</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20poultry" title=" native poultry"> native poultry</a> </p> <a href="https://publications.waset.org/abstracts/91206/growth-curves-genetic-analysis-of-native-south-caspian-sea-poultry-using-bayesian-statistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9591</span> Cassava Plant Architecture: Insights from Genome-Wide Association Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abiodun%20Olayinka">Abiodun Olayinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Dzidzienyo"> Daniel Dzidzienyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pangirayi%20Tongoona"> Pangirayi Tongoona</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Offei"> Samuel Offei</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwige%20Gaby%20Nkouaya%20Mbanjo"> Edwige Gaby Nkouaya Mbanjo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiedozie%20Egesi"> Chiedozie Egesi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Yusuf%20Rabbi"> Ismail Yusuf Rabbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manihot%20esculenta%20Crantz" title="Manihot esculenta Crantz">Manihot esculenta Crantz</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20architecture" title=" plant architecture"> plant architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=DArtseq" title=" DArtseq"> DArtseq</a>, <a href="https://publications.waset.org/abstracts/search?q=SNP%20markers" title=" SNP markers"> SNP markers</a>, <a href="https://publications.waset.org/abstracts/search?q=genome-wide%20association%20study" title=" genome-wide association study"> genome-wide association study</a> </p> <a href="https://publications.waset.org/abstracts/168860/cassava-plant-architecture-insights-from-genome-wide-association-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9590</span> Identification of Candidate Gene for Root Development and Its Association With Plant Architecture and Yield in Cassava</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abiodun%20Olayinka">Abiodun Olayinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Dzidzienyo"> Daniel Dzidzienyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pangirayi%20Tongoona"> Pangirayi Tongoona</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Offei"> Samuel Offei</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwige%20Gaby%20Nkouaya%20Mbanjo"> Edwige Gaby Nkouaya Mbanjo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiedozie%20Egesi"> Chiedozie Egesi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Yusuf%20Rabbi"> Ismail Yusuf Rabbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manihot%20esculenta%20crantz" title="manihot esculenta crantz">manihot esculenta crantz</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20architecture" title=" plant architecture"> plant architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=dartseq" title=" dartseq"> dartseq</a>, <a href="https://publications.waset.org/abstracts/search?q=snp%20markers" title=" snp markers"> snp markers</a>, <a href="https://publications.waset.org/abstracts/search?q=genome-wide%20association%20study" title=" genome-wide association study"> genome-wide association study</a> </p> <a href="https://publications.waset.org/abstracts/168869/identification-of-candidate-gene-for-root-development-and-its-association-with-plant-architecture-and-yield-in-cassava" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9589</span> Genetic Analysis of Growth Traits in White Boni Sheep under the Central Highlands Region of Yemen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abed%20Al-Bial">Abed Al-Bial</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alazazie"> S. Alazazie</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shami"> A. Shami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The data were collected from 1992 to 2009 of White Boni sheep maintained at the Regional Research Station in the Central Highlands of Yemen. Data were analyzed to study the growth related traits and their genetic control. The least square means for body weights were 2.26±0.67, 11.14±0.46 and 19.21±1.25 kg for birth weight (BW), weaning weight (WW), six-month weight (WM6), respectively. The pre- and post-weaning average daily weight gains (ADG1 and ADG2) were 106.04±4.98g and 46.21±8.36 g/ day. Significant differences associated with the year of lambing were observed in body weight and weight gain at different stages of growth. Males were heavier and had a higher weight gain than females at almost all stages of growth and differences tended to increase with age. Single-born lambs had a distinct advantage over those born in twin births at all stages of growth. The lambs in the dam’s second to fourth parities were generally of heavier weight and higher daily weight gain than those in other parities. The heritabilities of all body weights, weight gains at different stages of growth were moderate (0.11-0.43). The phenotypic and genetic correlation among the different body weights were positive and high. The genetic correlations of the pre- and post-weaning average daily gains with body weights were hight to moderate, except BW with ADG2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breed" title="breed">breed</a>, <a href="https://publications.waset.org/abstracts/search?q=genetics" title=" genetics"> genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20traits" title=" growth traits"> growth traits</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep" title=" sheep "> sheep </a> </p> <a href="https://publications.waset.org/abstracts/29533/genetic-analysis-of-growth-traits-in-white-boni-sheep-under-the-central-highlands-region-of-yemen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9588</span> Evaluation of the Role of Bacteria-Derived Flavins as Plant Growth Promoting Molecules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivethika%20Ajeethan">Nivethika Ajeethan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lord%20Abbey"> Lord Abbey</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Yurge"> Svetlana Yurge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Riboflavin is a water-soluble vitamin and the direct precursor of the flavin cofactors flavin mononucleotide and flavin adenine dinucleotide. Flavins (FLs) are bioactive molecules that have a beneficial effect on plant growth and development. Sinorhizobium meliloti strain 1021 is an α-proteobacterium that forms agronomically important N₂-fixing symbiosis with Medicago plants and secretes a considerable amount of FLs (FL⁺ strain). This strain was also implicated in plant growth promotion in its association with non-legume host plants. However, the mechanism of this plant growth promotion is not well understood. In this study, we evaluated the growth and development of tomato plants inoculated with S. meliloti 1021 and its mutant (FL⁻ strain) with limited ability to secrete FLs. Our preliminary experiments indicated that inoculation with FL⁺ strain significantly increased seedlings' root and shoot length and surface area compared to those of plants inoculated with FL⁻ strain. For example, the root lengths of 9-day old seedlings inoculated with FL⁺ strain were 35% longer than seedlings inoculated with the mutant. Proteomic approaches combined with the analysis of plant physiological responses such as growth and photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll content will be used to evaluate the host-plant response to bacteria-derived FLs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flavin" title="flavin">flavin</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20promotion" title=" plant growth promotion"> plant growth promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=riboflavin" title=" riboflavin"> riboflavin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinorhizobium%20meliloti" title=" Sinorhizobium meliloti"> Sinorhizobium meliloti</a> </p> <a href="https://publications.waset.org/abstracts/135412/evaluation-of-the-role-of-bacteria-derived-flavins-as-plant-growth-promoting-molecules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9587</span> Polymorphism in Myostatin Gene and Its Association with Growth Traits in Kurdi Sheep of Northern Khorasan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Alipanah">Masoud Alipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sekineh%20Akbari"> Sekineh Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Dashab"> Gholamreza Dashab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myostatin genes or factor 8 affecting on growth and making differentiation works (GDF8) as a moderator in the development of skeletal muscle inhibitor. If mutations occurs in the coding region of myostatin, alter its inhibitory role and the muscle growth is increased. In this study, blood samples were collected randomly from 60 Kurdish sheep in northern Khorasan and DNA extraction was performed using a modified salt. A fragment 337 bp from exon 3 myostatin gene and-specific primers by using a polymerase chain reaction (PCR) were amplified. In order to detect different forms of an allele at this locus HaeΙΙΙ restriction enzymes and PCR-RFLP analysis were used. Band patterns clarification was performed using agarose gel electrophoresis. The frequency of genotypes mm, Mm, and MM, were respectively detected, 0, 0.15 and 0.85. The allele frequency for alleles m and M, were respectively, 0.07 and 0.93. The statistical analyses indicated that m allele was significantly associated with body weight. The results of this study suggest that the Myostatin gene possibly is a candidate gene that affects growth traits in Kurdish sheep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GDF8%20gene" title="GDF8 gene">GDF8 gene</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurdi%20Sheep%20of%20Northern%20Khorasan" title=" Kurdi Sheep of Northern Khorasan"> Kurdi Sheep of Northern Khorasan</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20traits" title=" weight traits"> weight traits</a> </p> <a href="https://publications.waset.org/abstracts/25104/polymorphism-in-myostatin-gene-and-its-association-with-growth-traits-in-kurdi-sheep-of-northern-khorasan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9586</span> Effects of Plant Growth Promoting Rhizobacteria on the Yield and Nutritive Quality of Tomato Fruits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narjes%20Dashti">Narjes Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=Nida%20Ali"> Nida Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdy%20Montasser"> Magdy Montasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Vineetha%20Cherian"> Vineetha Cherian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of two PGPR strains, Pseudomonas aeruginosa and Stenotrophomonas rhizophilia, on fruit yields, pomological traits and chemical contents of tomato (Solanum lycopersicum) fruits were studied. The study was conducted separately on two different cultivar varieties of tomato, namely Supermarmande and UC82B. The results indicated that the presence of the PGPR almost doubled the average yield per plant. There was a significant improvement in the pomological qualities of the PGPR treated tomato fruits compared to the corresponding healthy treatments especially in traits such as the average fruit weight, height, and fruit volume. The chemical analysis of tomato fruits revealed that the presence of the PGPRs increased the total protein, lycopene, alkalinity and phenol content of the tomato fruits compared to the healthy controls. They had no influence on the reduced sugar, total soluble solids or the titerable acid content of fruits. However their presence reduced the amount of ascorbic acid in tomato fruits compared to the healthy controls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PGPR" title="PGPR">PGPR</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20quality" title=" fruit quality"> fruit quality</a> </p> <a href="https://publications.waset.org/abstracts/29728/effects-of-plant-growth-promoting-rhizobacteria-on-the-yield-and-nutritive-quality-of-tomato-fruits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9585</span> Effect of Sowing Dates on Growth, Agronomic Traits and Yield of Tossa Jute (Corchorus olitorius L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Racha%20Ben%20Yakoub">Amira Racha Ben Yakoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ferchichi"> Ali Ferchichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the impact of sowing time on growth parameters, the length of the development cycle and yield of tossa jute (Corchorus olitorius L.), a field experiment was conducted from March to May 2011 at the Laboratoire d’Aridoculture et Cultures Oasiennes, ‘Institut des Régions Arides de Médénine’, Tunisia. Results of the experiment revealed that the early sowing (the middle of March, the beginning of April) induced a cycle of more than 100 days to reach the stage maturity and generates a marked drop in production. This period of plantation affects plant development and leads to a sharp drop in performance marked primarily by a reduction in growth, number and size of leaves, number of flowers and pods and weight of different parts of plant. Sowing from the end of April seems appropriate for shortening the development cycle and better profitability than the first two dates. Seeding of C. olitorius during May enhance the development of plants more dense, which explains the superiority of production marked by the increase of seed yield and leaf fresh and dry weight of this leafy vegetables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tossa%20jute%20%28Corchorus%20olitorius%20L%29" title="tossa jute (Corchorus olitorius L)">tossa jute (Corchorus olitorius L)</a>, <a href="https://publications.waset.org/abstracts/search?q=sowing%20date" title=" sowing date"> sowing date</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/14532/effect-of-sowing-dates-on-growth-agronomic-traits-and-yield-of-tossa-jute-corchorus-olitorius-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9584</span> Broad Survey of Fine Root Traits to Investigate the Root Economic Spectrum Hypothesis and Plant-Fire Dynamics Worldwide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Lewis%20Watts">Jacob Lewis Watts</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20F.%20A.%20Pellegrini"> Adam F. A. Pellegrini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prairies, grasslands, and forests cover an expansive portion of the world’s surface and contribute significantly to Earth’s carbon cycle. The largest driver of carbon dynamics in some of these ecosystems is fire. As the global climate changes, most fire-dominated ecosystems will experience increased fire frequency and intensity, leading to increased carbon flux into the atmosphere and soil nutrient depletion. The plant communities associated with different fire regimes are important for reassimilation of carbon lost during fire and soil recovery. More frequent fires promote conservative plant functional traits aboveground; however, belowground fine root traits are poorly explored and arguably more important drivers of ecosystem function as the primary interface between the soil and plant. The root economic spectrum (RES) hypothesis describes single-dimensional covariation between important fine-root traits along a range of plant strategies from acquisitive to conservative – parallel to the well-established leaf economic spectrum (LES). However, because of the paucity of root trait data, the complex nature of the rhizosphere, and the phylogenetic conservatism of root traits, it is unknown whether the RES hypothesis accurately describes plant nutrient and water acquisition strategies. This project utilizesplants grown in common garden conditions in the Cambridge University Botanic Garden and a meta-analysis of long-term fire manipulation experiments to examine the belowground physiological traits of fire-adapted and non-fire-adapted herbaceous species to 1) test the RES hypothesis and 2) describe the effect of fire regimes on fine root functional traits – which in turn affect carbon and nutrient cycling. A suite of morphological, chemical, and biological root traits (e.g. root diameter, specific root length, percent N, percent mycorrhizal colonization, etc.) of 50 herbaceous species were measuredand tested for phylogenetic conservatism and RES dimensionality. Fire-adapted and non-fire-adapted plants traits were compared using phylogenetic PCA techniques. Preliminary evidence suggests that phylogenetic conservatism may weaken the single-dimensionality of the RES, suggesting that there may not be a single way that plants optimize nutrient and water acquisition and storage in the complex rhizosphere; additionally, fire-adapted species are expected to be more conservative than non-fire-adapted species, which may be indicative of slower carbon cycling with increasing fire frequency and intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20regimes" title=" fire regimes"> fire regimes</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20economic%20spectrum" title=" root economic spectrum"> root economic spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20roots" title=" fine roots"> fine roots</a> </p> <a href="https://publications.waset.org/abstracts/145679/broad-survey-of-fine-root-traits-to-investigate-the-root-economic-spectrum-hypothesis-and-plant-fire-dynamics-worldwide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9583</span> The Study of Genetic Diversity in Canola Cultivars of Kashmar-Iran Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Habib%20Shojaei">Seyed Habib Shojaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Eivazi"> Reza Eivazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Sajad%20Shojaei"> Mir Sajad Shojaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Akbari"> Alireza Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooria%20Mazloom"> Pooria Mazloom</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyede%20Mitra%20Sadati"> Seyede Mitra Sadati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Zeinalabedin%20Shojaei"> Mir Zeinalabedin Shojaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Farbakhsh"> Farnaz Farbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the genetic diversity in rapeseeds and agronomic traits, an experiment was conducted using multivariate statistical methods at Agricultural Research Station of Kashmar in 2012-2013.In this experiment, ten genotypes of rapeseed in a Randomized Complete Block designs with three replications were evaluated. The following traits were studied: seed yield, number of days to the fifty percent of flowering, plant height, number of pods on main stem, length of the pod, seed yield per plant, number of seed in pod, harvest index, weight of 100 seeds, number of pods on lateral branch, number of lateral branches. In analyzing the variance, differences between cultivars were significant. The average comparative revealed that the most valuable variety was Licord regarding to the traits while the least valuable variety was Opera. In stepwise regression, harvest index, grain yield per plant and number of pods per lateral branches were entering to model. Correlation analysis showed that the grain yield with the number of pods per lateral branches and seed yield per plant have positive and significant correlation. In the factor analysis, the first five components explained more than 83% of the variance in the data. In the first factor, seed yield and the number of pods per lateral branches were of the highest importance. The traits, seed yield per plant, and pod per main stem were of a great significance in the second factor. Moreover, in the third factor, plant height and the number of lateral branches were more important. In the fourth factor, plant height and one hundred seeds weight were of the highest variance. Finally, days to fifty percent of flowering and one hundred seeds weight were more important in fifth factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rapeseed" title="rapeseed">rapeseed</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20analysis" title=" variance analysis"> variance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a> </p> <a href="https://publications.waset.org/abstracts/80385/the-study-of-genetic-diversity-in-canola-cultivars-of-kashmar-iran-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9582</span> Genetic Variability Studies of Some Quantitative Traits in Cowpea (Vigna unguiculata L. [Walp.] ) under Water Stress </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auwal%20Ibrahim%20Magashi">Auwal Ibrahim Magashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Dan%20Larai%20Fagwalawa"> Lawan Dan Larai Fagwalawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bello%20Ibrahim"> Muhammad Bello Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A research was conducted to study genetic variability of some quantitative traits in varieties of cowpea (Vigna unguiculata L. [Walp]) under water stressed from Zaria, Nigeria. Seeds of seven varieties of cowpea (Sampea 1, Sampea 2, IAR1074, Sampea 7, Sampea 8, Sampea 10 and Sampea 12) collected from Institute for Agricultural Research (IAR), Samaru, Zaria were screened for water stressed tolerance. The seeds were then sown in poly bags containing sandy-loam arranged in Completely Randomized Design with three replications for quantitative traits evaluation. The nutritional composition of the seeds obtained from the water stress tolerant varieties of cowpea were analyzed. The result obtained revealed highly significant difference (P ≤ 0.01) in the effects of water stress on the number of wilted and dead plants at 40 days after sowing (DAS) and significant (P ≤ 0.05) 34 DAS. However, sampea 10 has the highest mean performance in terms of number of wilted plants at 34 DAS while sampea 2 and IAR 1074 has the lowest mean performance. However, sampea 7 was found to have the highest mean performance for the number of wilted plants at 40 DAS and sampea 2 is lowest. The result for quantitative traits study indicated highly significant difference (P ≤ 0.01) in the plant height, number of days to 50% flowering, number of days to maturity, number of pods per plant, pod length, number of seeds per plant and 100 seed weight; and significant (P ≤ 0.05) at seedling height and number of branches per plant. Similarly, IAR1074 was found to have high performance in terms of most of the quantitative traits under study. However, sampea 8 has the highest mean performance at nutritional level. It was therefore concluded that, all the seven cowpea genotypes were water stress tolerant and produced considerable yield that contained significant nutrients. It was recommended that IAR1074 should be grown for yield while sampea 8 should be grown for protein supplements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cowpea" title="cowpea">cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20variability" title=" genetic variability"> genetic variability</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20traits" title=" quantitative traits"> quantitative traits</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/88668/genetic-variability-studies-of-some-quantitative-traits-in-cowpea-vigna-unguiculata-l-walp-under-water-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9581</span> Influence of Agricultural Utilization of Sewage Sludge Vermicompost on Plant Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meiyan%20Xing">Meiyan Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Cenran%20Li"> Cenran Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Xiang"> Liang Xiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impacts of excess sludge vermicompost on the germination and early growth of plant were tested. The better effect of cow dung vermicompost (CV) on seed germination and seedling growth proved that cow dung was indeed the preferred additive in sludge vermicomposting as reported by plentiful researchers worldwide. The effects and the best amount of application of CV were further discussed. Results demonstrated that seed germination and seedling growth (seedlings number, plant height, stem diameter) were the best and heavy metal (Zn, Pb, Cr and As) contents of plant were the lowest when soil amended with CV by 15%. Additionally, CV fostered higher contents of chlorophyll a and chlorophyll b compared to the control when concentration ranged from 5 to 15%, thereafter a slight increase in chlorophyll content was observed form 15% to 25%. Thus, CV at the optimum proportion of 15% could serve as a feasible and satisfactory way of sludge agricultural utilization of sewage sludge. In summary, sewage sludge can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby not only providing a means of sewage sludge treatment and disposal, but also stimulating the growth of plant and the ability to resist disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20dung%20vermicompost" title="cow dung vermicompost">cow dung vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling%20growth" title=" seedling growth"> seedling growth</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20utilization" title=" sludge utilization"> sludge utilization</a> </p> <a href="https://publications.waset.org/abstracts/59981/influence-of-agricultural-utilization-of-sewage-sludge-vermicompost-on-plant-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9580</span> Heritability and Diversity Analysis of Blast Resistant Upland Rice Genotypes Based on Quantitative Traits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mst.%20Tuhina-Khatun">Mst. Tuhina-Khatun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hanafi%20Musa"> Mohamed Hanafi Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Rafii%20Yosup"> Mohd Rafii Yosup</a>, <a href="https://publications.waset.org/abstracts/search?q=Wong%20Mui%20Yun"> Wong Mui Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Aktar-Uz-Zaman"> Md. Aktar-Uz-Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahbod%20Sahebi"> Mahbod Sahebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice is a staple crop of economic importance of most Asian people, and blast is the major constraints for its higher yield. Heritability of plants traits helps plant breeders to make an appropriate selection and to assess the magnitude of genetic improvement through hybridization. Diversity of crop plants is necessary to manage the continuing genetic erosion and address the issues of genetic conservation for successfully meet the future food requirements. Therefore, an experiment was conducted to estimate heritability and to determine the diversity of 27 blast resistant upland rice genotypes based on 18 quantitative traits using randomized complete block design. Heritability value was found to vary from 38 to 93%. The lowest heritability belonged to the character total number of tillers/plant (38%). In contrast, number of filled grains/panicle, and yield/plant (g) was recorded for their highest heritability value viz. 93 and 91% correspondingly. Cluster analysis based on 18 traits grouped 27 rice genotypes into six clusters. Cluster I was the biggest, which comprised 17 genotypes, accounted for about 62.96% of total population. The multivariate analysis suggested that the genotype ‘Chokoto 14’ could be hybridized with ‘IR 5533-55-1-11’ and ‘IR 5533-PP 854-1’ for broadening the gene pool of blast resistant upland rice germplasms for yield and other favorable characters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20resistant" title="blast resistant">blast resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity%20analysis" title=" diversity analysis"> diversity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=upland%20rice" title=" upland rice"> upland rice</a> </p> <a href="https://publications.waset.org/abstracts/38695/heritability-and-diversity-analysis-of-blast-resistant-upland-rice-genotypes-based-on-quantitative-traits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9579</span> Diversity, Phyto Beneficial Activities and Agrobiotechnolody of Plant Growth Promoting Bacillus and Paenibacillus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheba%20Ben%20Amar">Cheba Ben Amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacillus and Paenibacillus are Gram-positive aerobic endospore-forming bacteria (AEFB) and most abundant in the rhizosphere, they mediated plant growth promotion and disease protection by several complex and interrelated processes involving direct and indirect mechanisms that include nitrogen fixation, phosphate solubilization, siderophores production, phytohormones production and plant diseases control. In addition to their multiple PGPR properties, high secretory capacity, spore forming ability and spore resistance to unfavorable conditions enabling their extended commercial applications for long shelf-life. Due to these unique advantages, Bacillus species were the most an ideal candidate for developing efficient PGPR products such as biopesticides, fungicides and fertilizers. This review list all studied and reported plant growth promoting Bacillus species and strains, discuss their capacities to enhance plant growth and protection with special focusing on the most frequent species Bacillus subtilis, B. pumilus ,B. megaterium, B. amyloliquefaciens , B. licheniformis and B. sphaericus, furthermore we recapitulate the beneficial activities and mechanisms of several species and strains of the genus Paenibacillus involved in plant growth stimulation and plant disease control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacillus" title="bacillus">bacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=paenibacillus" title=" paenibacillus"> paenibacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=PGPR" title=" PGPR"> PGPR</a>, <a href="https://publications.waset.org/abstracts/search?q=bene%EF%AC%81cial%20activities" title=" beneficial activities"> beneficial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanisms" title=" mechanisms"> mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20promotion" title=" growth promotion"> growth promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20control" title=" disease control"> disease control</a>, <a href="https://publications.waset.org/abstracts/search?q=agrobiotechnology" title=" agrobiotechnology"> agrobiotechnology</a> </p> <a href="https://publications.waset.org/abstracts/37958/diversity-phyto-beneficial-activities-and-agrobiotechnolody-of-plant-growth-promoting-bacillus-and-paenibacillus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9578</span> Estimation of Genetic Diversity in Sorghum Accessions Using Agro-Mophological and Nutritional Traits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maletsema%20Alina%20Mofokeng">Maletsema Alina Mofokeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemera%20Shargie"> Nemera Shargie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sorghum is one of the most important cereal crops grown as a source of calories for many people in tropics and sub-tropics of the world. Proper characterisation and evaluation of crop germplasm is an important component for effective management of genetic resources and their utilisation in the improvement of the crop through plant breeding. The objective of the study was to estimate the genetic diversity present in sorghum accessions grown in South Africa using agro-morphological traits and some nutritional contents. The experiment was carried out in Potchefstroom. Data were subjected to correlations, principal components analysis, and hierarchical clustering using GenStat statistical software. There were highly significance differences among the accessions based on agro-morphological and nutritional quality traits. Grain yield was highly positively correlated with panicle weight. Plant height was highly significantly correlated with internode length, leaf length, leaf number, stem diameter, the number of nodes and starch content. The Principal component analysis revealed three most important PCs with a total variation of 78.6%. The protein content ranged from 7.7 to 14.7%, and starch ranged from 58.52 to 80.44%. The accessions that had high protein and starch content were AS16cyc and MP4277. There was vast genetic diversity observed among the accessions assessed that can be used by plant breeders to improve yield and nutritional traits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessions" title="accessions">accessions</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20quality" title=" nutritional quality"> nutritional quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sorghum" title=" sorghum"> sorghum</a> </p> <a href="https://publications.waset.org/abstracts/59422/estimation-of-genetic-diversity-in-sorghum-accessions-using-agro-mophological-and-nutritional-traits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=320">320</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=321">321</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20growth%20traits&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10