CINXE.COM

Search results for: drought stress

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: drought stress</title> <meta name="description" content="Search results for: drought stress"> <meta name="keywords" content="drought stress"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="drought stress" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="drought stress"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4140</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: drought stress</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4140</span> Variation in Adaptation Strategies of Commelina Communis L. Biotypes under Drought Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Haroon">Muhammad Haroon</a>, <a href="https://publications.waset.org/abstracts/search?q=LI%20Xiangju"> LI Xiangju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> C. communis L. is an important weed of many crop, but very little information about the adaptation strategies of C. communis L. biotypes under drought stress. We investigated five biotypes of C. communis L under drought stress to identify the adaptation mechanism. The expression of drought stress related genes (DRS1, EREB and HRB1) was up-regulated in biotypes, while in some biotypes their expression was down regulated. All five biotypes can thus regulate water balance to consume less water to maintain their status under drought stress condition. This result concluded that C. communis L. biotypes can survive longer under drought stress condition. Weed scientist should seek more effective management strategies to deal with C. communis L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20communis" title="C. communis">C. communis</a>, <a href="https://publications.waset.org/abstracts/search?q=biotypes" title=" biotypes"> biotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression "> gene expression </a> </p> <a href="https://publications.waset.org/abstracts/128956/variation-in-adaptation-strategies-of-commelina-communis-l-biotypes-under-drought-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4139</span> Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali.%20Marjani">Ali. Marjani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farsi"> M. Farsi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimizadeh"> M. Rahimizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea (<em>Cicer arietinum</em> L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20stage" title=" growth stage"> growth stage</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/55202/response-of-chickpea-cicer-arietinum-l-genotypes-to-drought-stress-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4138</span> The Expression of a Novel Gene Encoding an Ankyrin-Repeat Protein, DRA1, Is Regulated by Drought-Responsive Alternative Splicing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Sakamoto">H. Sakamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Nakagawara"> Y. Nakagawara</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Oguri"> S. Oguri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drought stress is a critical environmental factor that adversely affects crop productivity and quality. Because of their immobile nature, plants have evolved mechanisms to sense and respond to drought stress. We identified a novel locus of Arabidopsis, designated DRA1 (drought responsive ankyrin 1), whose disruption leads to increased drought stress tolerance. DRA1 encodes a transmembrane protein with an ankyrin repeat motif that has been implicated in diverse cellular processes such as signal transduction. RT-PCR analysis revealed that there were at least two splicing variants of DRA1 transcripts in wild type plants. In response to drought stress, the levels of DRA1 transcripts retaining second and third introns were increased, whereas these introns were removed under unstressed conditions. These results suggest that DRA1 protein may negatively regulate plant drought tolerance and that the expression of DRA1 is regulated in response to drought stress by alternative splicing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20splicing" title="alternative splicing">alternative splicing</a>, <a href="https://publications.waset.org/abstracts/search?q=ankyrin%20repeat" title=" ankyrin repeat"> ankyrin repeat</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabidopsis" title=" Arabidopsis"> Arabidopsis</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20tolerance" title=" drought tolerance"> drought tolerance</a> </p> <a href="https://publications.waset.org/abstracts/2967/the-expression-of-a-novel-gene-encoding-an-ankyrin-repeat-protein-dra1-is-regulated-by-drought-responsive-alternative-splicing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4137</span> Phosphoproteomic Analysis of the Response of Rice Leaves to Chitosan under Drought Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narumon%20Phaonakrop">Narumon Phaonakrop</a>, <a href="https://publications.waset.org/abstracts/search?q=Janthima%20Jaresitthikunchai"> Janthima Jaresitthikunchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sittiruk%20Roytrakul"> Sittiruk Roytrakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasinee%20Pongprayoon"> Wasinee Pongprayoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan has been proposed as a natural polymer, and it is derived from chitin. The objective of this research was to determine the growth promoting responses induced by chitosan at the molecular physiology level in Khao Dawk Mali 105 (KDML 105) rice (Oryza sativa L.) seedlings under drought stress by adding of 2% polyethylene glycol 4000 (PEG4000) to the nutrient solution and after removal of the drought stress (re-water). Oligomeric chitosan at 40 ppm could enhance shoot fresh weight and shoot dry weight during drought stress and re-water. After 7 days of drought stress and re-water, significant increases in chlorophyll a and chlorophyll b contents in KDML 105 cultivar were observed. The 749 phosphoproteins in rice leaf treated with chitosan could be resolved by phosphoprotein enrichment, tryptic digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. They can be classified into 10 groups. Proteins involved in the metabolic process and biological regulation were upregulated in response to chitosan during drought stress. This work will help us to understand protein phosphorylation relating to chitosan response during drought stress in aromatic rice seedlings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chitosan" title="Chitosan">Chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoproteome" title=" phosphoproteome"> phosphoproteome</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a> </p> <a href="https://publications.waset.org/abstracts/109972/phosphoproteomic-analysis-of-the-response-of-rice-leaves-to-chitosan-under-drought-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4136</span> Minerals of Canola (Brassica napus) as Affected by Water Stress and Applied Calcium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Alam">Rizwan Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikhtiar%20Khan"> Ikhtiar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqib%20Iqbal"> Aqib Iqbal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants are naturally exposed to a wide variety of environmental stresses. The stresses may be biotic or/and abiotic. These environmental stresses have adverse effects on photosynthesis, water relation and nutrients uptake of plants. Fertilization of plants with exogenous minerals can enhance the drought tolerance in plants. In this experiment, canola (Brassica napus) was treated with solutions of calcium nitrate in different concentrations before the imposition of drought stress for 10 days. It was observed that drought stress decreased the tissue-K, Ca and K/Ca ratio of canola seedlings. The tissue-carbon and nitrogen contents were also depressed by the drought stress. Application of calcium nitrate, however, could alleviate the adverse effects of drought stress by showing a positive effect on all the aforementioned parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brassica%20napus" title="Brassica napus">Brassica napus</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium" title=" potassium "> potassium </a> </p> <a href="https://publications.waset.org/abstracts/4996/minerals-of-canola-brassica-napus-as-affected-by-water-stress-and-applied-calcium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4135</span> Regulation of Water Balance of the Plant from the Different Geo-Environmental Locations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Astghik%20R.%20Sukiasyan">Astghik R. Sukiasyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the drought stress condition, the plants would grow slower. Temperature is one of the most important abiotic factors which suppress the germination processes. However, the processes of transpiration are regulated directly by the cell water, which followed to an increase in volume of vacuoles. During stretching under the influence of water pressure, the cell goes into the state of turgor. In our experiments, lines of the semi-dental sweet maize of Armenian population from various zones of growth under mild and severe drought stress were tested. According to results, the value of the water balance of the plant cells may reflect the ability of plants to adapt to drought stress. It can be assumed that the turgor allows evaluating the number of received dissolved substance in cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turgor" title="turgor">turgor</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth" title=" plant growth"> plant growth</a>, <a href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata" title=" Armenian Zea Maize Semidentata"> Armenian Zea Maize Semidentata</a> </p> <a href="https://publications.waset.org/abstracts/47429/regulation-of-water-balance-of-the-plant-from-the-different-geo-environmental-locations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4134</span> Antioxidant Capacity of Maize Corn under Drought Stress from the Different Zones of Growing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Astghik%20R.%20Sukiasyan">Astghik R. Sukiasyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The semidental sweet maize of Armenian population under drought stress and pollution by some heavy metals (HMs) in sites along the river Debet was studied. Accordingly, the objective of this work was to investigate the antioxidant status of maize plant in order to identify simple and reliable criteria for assessing the degree of adaptation of plants to abiotic stress of drought and HMs. It was found that in the case of removal from the mainstream of the river, the antioxidant status of the plant varies. As parameters, the antioxidant status of the plant has been determined by the activity of malondialdehyde (MDA) and Ferric Reducing Ability of Plasma (FRAP), taking into account the characteristics of natural drought of this region. The possibility of using some indicators which characterized the antioxidant status of the plant was concluded. The criteria for assessing the extent of environmental pollution could be HMs. This fact can be used for the early diagnosis of diseases in the population who lives in these areas and uses corn as the main food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20status" title="antioxidant status">antioxidant status</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20corn" title=" maize corn"> maize corn</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a> </p> <a href="https://publications.waset.org/abstracts/48094/antioxidant-capacity-of-maize-corn-under-drought-stress-from-the-different-zones-of-growing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4133</span> The Study of Rapeseed Characteristics by Factor Analysis under Normal and Drought Stress Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bakhtiari%20Gharibdosti">Ali Bakhtiari Gharibdosti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hosein%20Bijeh%20Keshavarzi"> Mohammad Hosein Bijeh Keshavarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Alijani"> Samira Alijani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To understand internal characteristics relationships and determine factors which explain under consideration characteristics in rapeseed varieties, 10 rapeseed genotypes were implemented in complete accidental plot with three-time repetitions under drought stress in 2009-2010 in research field of agriculture college, Islamic Azad University, Karaj branch. In this research, 11 characteristics include of characteristics related to growth, production and functions stages was considered. Variance analysis results showed that there is a significant difference among rapeseed varieties characteristics. By calculating simple correlation coefficient under both conditions, normal and drought stress indicate that seed function characteristics in plant and pod number have positive and significant correlation in 1% probable level with seed function and selection on the base of these characteristics was effective for improving this function. Under normal and drought stress, analyzing the main factors showed that numbers of factors which have more than one amount, had five factors under normal conditions which were 82.72% of total variance totally, but under drought stress four factors diagnosed which were 76.78% of total variance. By considering total results of this research and by assessing effective characteristics for factor analysis and selecting different components of these characteristics, they can be used for modifying works to select applicable and tolerant genotypes in drought stress conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rapeseed" title=" rapeseed"> rapeseed</a> </p> <a href="https://publications.waset.org/abstracts/96693/the-study-of-rapeseed-characteristics-by-factor-analysis-under-normal-and-drought-stress-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4132</span> Full Length Transcriptome Sequencing and Differential Expression Gene Analysis of Hybrid Larch under PEG Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei">Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Qingrong"> Zhao Qingrong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Chen"> Wang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Sufang"> Zhang Sufang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Hanguo"> Zhang Hanguo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Larch is the main afforestation and timber tree species in Northeast China, and drought is one of the main factors limiting the growth of Larch and other organisms in Northeast China. In order to further explore the mechanism of Larch drought resistance, PEG was used to simulate drought stress. The full-length sequencing of Larch embryogenic callus under PEG simulated drought stress was carried out by combining Illumina-Hiseq and SMRT-seq. A total of 20.3Gb clean reads and 786492 CCS reads were obtained from the second and third generation sequencing. The de-redundant transcript sequences were predicted by lncRNA, 2083 lncRNAs were obtained, and the target genes were predicted, and a total of 2712 target genes were obtained. The de-redundant transcripts were further screened, and 1654 differentially expressed genes (DEGs )were obtained. Among them, different DEGs respond to drought stress in different ways, such as oxidation-reduction process, starch and sucrose metabolism, plant hormone pathway, carbon metabolism, lignin catabolic/biosynthetic process and so on. This study provides basic full-length sequencing data for the study of Larch drought resistance, and excavates a large number of DEGs in response to drought stress, which helps us to further understand the function of Larch drought resistance genes and provides a reference for in-depth analysis of the molecular mechanism of Larch drought resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=larch" title="larch">larch</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=full-length%20transcriptome%20sequencing" title=" full-length transcriptome sequencing"> full-length transcriptome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=differentially%20expressed%20genes" title=" differentially expressed genes"> differentially expressed genes</a> </p> <a href="https://publications.waset.org/abstracts/147042/full-length-transcriptome-sequencing-and-differential-expression-gene-analysis-of-hybrid-larch-under-peg-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4131</span> Improvement in Drought Stress Tolerance in Wheat by Arbuscular Mycorrhizal Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seema%20Sangwan">Seema Sangwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekta%20Narwal"> Ekta Narwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannepalli%20Annapurna"> Kannepalli Annapurna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the effect of arbuscular mycorrhizal fungi (AMF) inoculation on drought stress tolerance in 3 genotypes of wheat subjected to moderate water stress, i.e. HD 3043 (drought tolerant), HD 2987 (drought tolerant), and HD 2967 (drought sensitive). Various growth parameters were studied, e.g. total dry weight, total shoot and root length, root volume, root surface area, grain weight and number, leaf area, chlorophyll content in leaves, relative water content, number of spores and percent colonisation of roots by arbuscular mycorrhizal fungi. Total dry weight, root surface area and chlorophyll content were found to be significantly high in AMF inoculated plants as compared to the non-mycorrhizal ones and also higher in drought-tolerant varieties of wheat as compared to the sensitive variety HD 2967, in moderate water stress treatments. Leakage of electrolytes was lower in case of AMF inoculated stressed plants. Under continuous water stress, leaf water content and leaf area were significantly increased in AMF inoculated plants as compared to un-inoculated stressed plants. Overall, the increased colonisation of roots of wheat by AMF in inoculated plants weather drought tolerant or sensitive could have a beneficial effect in alleviating the harmful effects of water stress in wheat and delaying its senescence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arbuscular%20mycorrhizal%20fungi" title="Arbuscular mycorrhizal fungi">Arbuscular mycorrhizal fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/86566/improvement-in-drought-stress-tolerance-in-wheat-by-arbuscular-mycorrhizal-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4130</span> Role of Phenylalanine and Glycine in Plant Signaling to Improve Drought Tolerance Potential in Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abida%20Kausar">Abida Kausar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Parveen"> Shagufta Parveen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The priming of seeds was carried out by two amino acids (phenylalanine and glycine) to improve the drought tolerance potential of two wheat varieties. As wheat is a staple food of more than half of the population of the world, including Pakistan. However, its productivity is mainly adversely affected by abiotic stresses. The current research plan was to investigate the effect of hydropriming and priming by amino acids on wheat varieties under drought stress (50% field capacity). Therefore morphological, biochemical, physiological, and yield attributes were recorded. It was revealed that drought stress significantly decreased the biochemical, morpho-physiological, and growth attributes of the wheat crop. However, the priming treatments have shown a positive correlation with all the studied attributes. It was concluded that priming might involve plant signaling to produce the drought tolerance metabolites under stress conditions which, as a consequence, enhanced the drought tolerance potential of crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20biomass" title="plant biomass">plant biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20parameters" title=" biochemical parameters"> biochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20contents" title=" chlorophyll contents"> chlorophyll contents</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/151774/role-of-phenylalanine-and-glycine-in-plant-signaling-to-improve-drought-tolerance-potential-in-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4129</span> Study on the Expression of Drought Tolerant Genes in Water-Stressed Basella Alba and Basella Rubra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Ajewole">T. O. Ajewole</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Olorunmiaye"> K. S. Olorunmiaye</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20A.%20Animasaun"> D. A. Animasaun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Okpeku"> M. Okpeku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drought impact on the production of food crops for the benefit of mankind cannot be overemphasized. This study shows the different kind of genes expressed at various level of drought regimes on Basella alba and rubra using a real-time PCR machine. The planting was done in the screen house while the gene expression study was carried out in the laboratory. Sandy-loamy soil was collected and four levels of drought regime was used as treatment and a control experiment was set up for the two vegetables. Drought interval of 5, 10, 15 and 20 days were used as treatments while a control experiment which was not starved of water at any point was also set up, five replicates were set up for each treatment. Stress was introduced at 12 Weeks after planting (WAP). From the result of this study, Basella alba shows the highest amplicon size of 34.6 and 52.32 for GmPCS5 and HVA1 respectively which by implication means these genes were expressed the more as the stress period interval increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title="water stress">water stress</a>, <a href="https://publications.waset.org/abstracts/search?q=basella%20alba" title=" basella alba"> basella alba</a>, <a href="https://publications.waset.org/abstracts/search?q=basella%20rubra" title=" basella rubra"> basella rubra</a>, <a href="https://publications.waset.org/abstracts/search?q=HVA1" title=" HVA1"> HVA1</a> </p> <a href="https://publications.waset.org/abstracts/186169/study-on-the-expression-of-drought-tolerant-genes-in-water-stressed-basella-alba-and-basella-rubra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4128</span> Elucidating the Defensive Role of Silicon-Induced Biochemical Responses in Wheat Exposed to Drought and Diuraphis noxia Infestation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lintle%20Mohase">Lintle Mohase</a>, <a href="https://publications.waset.org/abstracts/search?q=Ninikoe%20Lebusa"> Ninikoe Lebusa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mpho%20Stephen%20Mafa"> Mpho Stephen Mafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat is an economically important cereal crop. However, the changing climatic conditions that intensify drought in production areas, and additional pest infestation, such as the Russian wheat aphid (RWA, Diuraphis noxia), severely hamper its production. Drought and pest management require an additional water supply through irrigation and applying inorganic nutrients (including silicon) as alternative strategies to mitigate the stress effects. Therefore, other approaches are needed to enhance wheat productivity during drought stress and aphid abundance. Two wheat cultivars were raised under greenhouse conditions, exposed to drought stress, and treated with silicon before infestation with the South African RWA biotype 2 (RWASA2). The morphological evaluations showed that severe drought or a combination of drought and infestation significantly reduced the plant height of wheat cultivars. Silicon treatment did not alleviate the growth reduction. The biochemical responses were measured using spectrophotometric assays with specific substrates. An evaluation of the enzyme activities associated with oxidative stress and defence responses indicated that drought stress increased NADPH oxidase activity, while silicon treatment significantly reduced it in drought-stressed and infested plants. At 48 and 72 hours sampling periods, a combination of silicon, drought and infestation treatment significantly increased peroxidase activity compared to drought and infestation treatment. The treatment also increased β-1,3-glucanase activity 72 hours after infestation. In addition, silicon and drought treatment increased glucose but reduced sucrose accumulation. Furthermore, silicon, drought, and infestation treatment combinations reduced the sucrose content. Finally, silicon significantly increased the trehalose content under severe drought and infestation, evident at 48 and 72-hour sampling periods. Our findings shed light on silicon’s ability to induce protective biochemical responses during drought and aphid infestation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought" title="drought">drought</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activity" title=" enzyme activity"> enzyme activity</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=soluble%20sugars" title=" soluble sugars"> soluble sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=Russian%20wheat%20aphid" title=" Russian wheat aphid"> Russian wheat aphid</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/164662/elucidating-the-defensive-role-of-silicon-induced-biochemical-responses-in-wheat-exposed-to-drought-and-diuraphis-noxia-infestation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4127</span> Strategies to Improve Heat Stress Tolerance in Chickpea and Dissecting the Cross Talk Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renu%20Yadav">Renu Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar"> Sanjeev Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In northern India, chickpea (Cicer arietinum L.) come across with terminal high-temperature stress during reproductive stage which leads to reduced yield. Hence, stable production of chickpea will depend on the development of new methods like ‘priming’ which allow improved adaptation to the drought and heat stress. In the present experiment, 11-day chickpea seedling was primed with mild drought stress and put on recovery stage by irrigating and finally 30-day seedlings were exposed to heat stress 38°C (4 hours), 35°C (8 hours) and 32°C (12 hours). To study the effect of combinatorial stress, heat and drought stress was applied simultaneously. Analyses of various physiological parameters like membrane damage assay, photosynthetic pigments, antioxidative enzyme, total sugars were estimated at all stages. To study the effect of heat stress on the metabolites of the plants, GC-MS and HPLC were performed, while at transcriptional level Real-Time PCR of predicted heat stress-related genes was done. It was concluded that the heat stress significantly affected the chickpea plant at physiological and molecular level in all the five varieties. Results also show less damaging effect in primed plants by increasing the activity of antioxidative enzymes and increased expression of heat shock proteins and heat shock factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20stress" title=" combinatorial stress"> combinatorial stress</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=priming" title=" priming"> priming</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR" title=" RT-PCR"> RT-PCR</a> </p> <a href="https://publications.waset.org/abstracts/100789/strategies-to-improve-heat-stress-tolerance-in-chickpea-and-dissecting-the-cross-talk-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4126</span> The Effects of Drought and Nitrogen on Soybean (Glycine max (L.) Merrill) Physiology and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oqba%20Basal">Oqba Basal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Szab%C3%B3"> András Szabó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legume crops are able to fix atmospheric nitrogen by the symbiotic relation with specific bacteria, which allows the use of the mineral nitrogen-fertilizer to be reduced, or even excluded, resulting in more profit for the farmers and less pollution for the environment. Soybean (<em>Glycine max</em> (L.) Merrill) is one of the most important legumes with its high content of both protein and oil. However, it is recommended to combine the two nitrogen sources under stress conditions in order to overcome its negative effects. Drought stress is one of the most important abiotic stresses that increasingly limits soybean yields. A precise rate of mineral nitrogen under drought conditions is not confirmed, as it depends on many factors; soybean yield-potential and soil-nitrogen content to name a few. An experiment was conducted during 2017 growing season in Debrecen, Hungary to investigate the effects of nitrogen source on the physiology and the yield of the soybean cultivar &#39;<em>Bogl&aacute;r</em>&#39;. Three N-fertilizer rates including no N-fertilizer (0 N), 35 kg ha<sup>-1</sup> of N-fertilizer (35 N) and 105 kg ha<sup>-1</sup> of N-fertilizer (105 N) were applied under three different irrigation regimes; severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Half of the seeds in each treatment were pre-inoculated with <em>Bradyrhizobium japonicum</em> inoculant. The overall results showed significant differences associated with fertilization and irrigation, but not with inoculation. Increasing N rate was mostly accompanied with increased chlorophyll content and leaf area index, whereas it positively affected the plant height only when the drought was waived off. Plant height was the lowest under severe drought, regardless of inoculation and N-fertilizer application and rate. Inoculation increased the yield when there was no drought, and a low rate of N-fertilizer increased the yield furthermore; however, the high rate of N-fertilizer decreased the yield to a level even less than the inoculated control. On the other hand, the yield of non-inoculated plants increased as the N-fertilizer rate increased. Under drought conditions, adding N-fertilizer increased the yield of the non-inoculated plants compared to their inoculated counterparts; moreover, the high rate of N-fertilizer resulted in the best yield. Regardless of inoculation, the mean yield of the three fertilization rates was better when the water amount increased. It was concluded that applying N-fertilizer to provide the nitrogen needed by soybean plants, with the absence of N<sub>2</sub>-fixation process, is very important. Moreover, adding relatively high rate of N-fertilizer is very important under severe drought stress to alleviate the drought negative effects. Further research to recommend the best N-fertilizer rate to inoculated soybean under drought stress conditions should be executed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title="drought stress">drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculation" title=" inoculation"> inoculation</a>, <a href="https://publications.waset.org/abstracts/search?q=N-fertilizer" title=" N-fertilizer"> N-fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20physiology" title=" soybean physiology"> soybean physiology</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/92750/the-effects-of-drought-and-nitrogen-on-soybean-glycine-max-l-merrill-physiology-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4125</span> Developing Drought and Heat Stress Tolerant Chickpea Genotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derya%20Yucel">Derya Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigar%20Ang%C4%B1n"> Nigar Angın</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%BCrdane%20Mart"> Dürdane Mart</a>, <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Turkeri"> Meltem Turkeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Catalkaya"> Volkan Catalkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Yucel"> Celal Yucel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea (Cicer arietinum L.) with high protein content is a vital food, especially in under-developed and developing countries for the people who do not consume enough meat due to low-income level. The objective of the proposed study is to evaluate growing, yield and yield components of chickpea genotypes under Mediterranean condition so determine tolerance of chickpea genotypes against drought and heat stress. For this purpose, a total of 34 chickpea genotypes were used as material. The experiment was conducted according to factorial randomized complete block design with 3 reps at the Eastern Mediterranean Research Institute, Adana, TURKEY for 2014-15 growing season under three different growing conditions (Winter sowing, irrigated-late sowing and non-irrigated- late sowing). According to results of this experiment, vegetative period, flowering time, poding time, maturity time, plant height, height of first pod, seed yield and 100 seed weight were ranged between 68.33 to 78.77 days, 94.22 to 85.00 days, 94.11 to 106.44 days, 198.56 to 214.44 days, 37.18 to 64.89 cm, 18.33 to 34.83 cm, 417.1 to 1746.4 kg/ha and 14.02 to 45.02 g, respectively. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were least affected by drought and heat stress. Therefore, these genotypes can be used as sources of drought and heat tolerance in further breeding programme for evolving the drought and heat tolerant genotypes in chickpea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/55823/developing-drought-and-heat-stress-tolerant-chickpea-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4124</span> Characterization of Some Bread Wheat Genotypes for Drought Tolerance Using Molecular Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beg%C3%BCm%20Terzi">Begüm Terzi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Ate%C5%9F%20S%C3%B6nmezo%C4%9Flu"> Özlem Ateş Sönmezoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Yildirim"> Ahmet Yildirim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drought is the most important factor that limiting the production and productivity of wheat in the world. The yield of wheat, which is one of the most important crop in the world, reduced depend on drought. Researches to minimize effects of drought are one of the most important about breeding of drought resistant varieties. In recent years, benefiting from the drought resistance wild species and rapid advances in molecular biology studies, researches about drought have been accelerated and number of studies were made on molecular plant breeding which included the molecular mechanisms related to drought resistance. The aim of the present study was characterization of some bread wheat lines for drought tolerance which commonly cultivated in different location of Turkey. In this study, registered 9 bread wheat varieties which on the physiological tests about drought tolerance and 10 bread wheat line has been developed by Transitional Zone Agricultural Research Institute were used. SSR, STS, RAPD and SNP markers that associated with drought tolerance were used. The polymorphisms of the markers were determined by screening of two control varieties. For these purpose 40 molecular markers were used and 12 markers of them were polymorphic among the drought tolerance and the drought sensitive varieties. Control varieties were screened using polymorphic markers. All the DNAs on the genotypes will be searched for the presence of QTLs mapped to different chromosomes. Result of the research, the studied genotypes will be grouped according to drought tolerance and will be detected drought tolerance varieties by molecular markers. In addition, the results will be compared also with physiological tests. The drought tolerant wheat genotypes may be used in breeding studies related to drought stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bread%20wheat" title="bread wheat">bread wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20marker" title=" molecular marker"> molecular marker</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20aestivum" title=" Triticum aestivum"> Triticum aestivum</a> </p> <a href="https://publications.waset.org/abstracts/49403/characterization-of-some-bread-wheat-genotypes-for-drought-tolerance-using-molecular-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4123</span> Assessment of Drought Tolerance Maize Hybrids at Grain Growth Stage in Mediterranean Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20El%20Sabagh">Ayman El Sabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Celaleddin%20Barut%C3%A7ular"> Celaleddin Barutçular</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirofumi%20Saneoka"> Hirofumi Saneoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drought is one of the most serious problems posing a grave threat to cereals production including maize. Maize improvement in drought-stress tolerance poses a great challenge as the global need for food and bio-enegry increases. Thus, the current study was planned to explore the variations and determine the performance of target traits of maize hybrids at grain growth stage under drought conditions during 2014 under Adana, Mediterranean climate conditions, Turkey. Maize hybrids (Sancia, Indaco, 71May69, Aaccel, Calgary, 70May82, 72May80) were evaluated under (irrigated and water stress). Results revealed that, grain yield and yield traits had a negative effects because of water stress conditions compared with the normal irrigation. As well as, based on the result under normal irrigation, the maximum biological yield and harvest index were recorded. According to the differences among hybrids were found that, significant differences were observed among hybrids with respect to yield and yield traits under current research. Based on the results, grain weight had more effect on grain yield than grain number during grain filling growth stage under water stress conditions. In this concern, according to low drought susceptibility index (less grain yield losses), the hybrid (Indaco) was more stable in grain number and grain weight. Consequently, it may be concluded that this hybrid would be recommended for use in the future breeding programs for production of drought tolerant hybrids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20susceptibility%20index" title="drought susceptibility index">drought susceptibility index</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20growth" title=" grain growth"> grain growth</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title=" grain yield"> grain yield</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/37438/assessment-of-drought-tolerance-maize-hybrids-at-grain-growth-stage-in-mediterranean-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4122</span> Evaluation on Heat and Drought Tolerance Capacity of Chickpea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derya%20Yucel">Derya Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigar%20Ang%C4%B1n"> Nigar Angın</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%BCrdane%20Mart"> Dürdane Mart</a>, <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Turkeri"> Meltem Turkeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Catalkaya"> Volkan Catalkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Yucel"> Celal Yucel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea (Cicer arietinum L.) is one of the important legumes widely grown for dietery proteins in semi-arid Mediteranean climatic conditions. To evaluate the genetic diversity with improved heat and drought tolerance capacity in chickpea, thirty-four selected chickpea genotypes were tested under different field-growing conditions (rainfed winter sowing, irrigated-late sowing and rainfed-late sowing) in 2015 growing season. A factorial experiment in randomized complete block design with 3 reps was conducted at the Eastern Mediterranean Research Institute Adana, Turkey. Based on grain yields under different growing conditions, several indices were calculated to identify economically higher-yielding chickpea genotypes with greater heat and drought tolerance capacity. Average across chickpea genotypes, the values of tolerance index, mean productivity, yield index, yield stability index, stress tolerance index, stress susceptibility index, and geometric mean productivity were ranged between 1.1 to 218, 38 to 202, 0.3 to 1.7, 0.2 to 1, 0.1 to 1.2, 0.02 to 1.4, and 36 to 170 for drought stress and 3 to 54, 23 to 118, 0.3 to 1.7, 0.4 to 0.9, 0.2 to 2, 0.2to 2.3, and 23 to 118 for heat stress, respectively. There were highly significant differences observed among the tested chickpea genotypes response to drought and heat stresses. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were identified with a higher drought and heat tolerance capacity. Based on our field studies, it is suggested that the drought and heat tolerance indicators of plants can be used by breeders to select stress-resistant economically productive chickpea genotypes suitable to grow under Mediteranean climatic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfed" title=" rainfed"> rainfed</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20susceptibility" title=" stress susceptibility"> stress susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance%20indice" title=" tolerance indice"> tolerance indice</a> </p> <a href="https://publications.waset.org/abstracts/55821/evaluation-on-heat-and-drought-tolerance-capacity-of-chickpea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4121</span> The Effects of Inoculation and N Fertilization on Soybean (Glycine max (L.) Merr.) Seed Yield and Protein Concentration under Drought Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oqba%20Basal">Oqba Basal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andras%20Szabo"> Andras Szabo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using mineral fertilization is increasing worldwide, as it is claimed to be majorly responsible for achieving high yields; however, the negative impacts of mineral fertilization on soil and environment are becoming more obvious, with alternative methods being more necessary and applicable, especially with the current climatic changes which have imposed serious abiotic stresses, such as drought. An experiment was made during 2017 growing season in Debrecen, Hungary to investigate the effects of inoculation and N fertilization on the seed yield and protein concentration of the soybean (Glycine max (L.) Merr.) cultivar (Panonia Kincse) under three different irrigation regimes: severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Three N fertilizer rates were applied: no N fertilizer (0 N), 35 kg ha⁻¹ of N fertilizer (35 N) and 105 kg ha⁻¹ of N fertilizer (105 N). Half of the seeds in each treatment was inoculated with Bradyrhizobium japonicum inoculant, and the other half was not inoculated. The results showed significant differences in the seed yield associated with inoculation, irrigation and the interaction between them, whereas there were no significant differences in the seed yield associated with fertilization alone or in interaction with inoculation or irrigation or both. When seeds were inoculated, yield was increased when (35 N) was applied compared to (0 N) but not significantly; however, the high rate of N fertilizer (105 N) reduced the yield to a level even less than (0 N). When seeds were not inoculated, the highest rate of N increased the yield the most compared to the other two N fertilizer rates whenever the drought was present (moderate or severe). Under severe drought stress, inoculation was positively and significantly correlated with yield; however, adding N fertilizer increased the yield of uninoculated plants compared to the inoculated ones, regardless of the rate of N fertilizer. Protein concentration in the seeds was significantly affected by irrigation and by fertilization, but not by inoculation. Protein concentration increased as the N fertilization rate increased, regardless of the inoculation or irrigation treatments; moreover, increasing the N rate reduced the correlation coefficient of protein concentration with the irrigation. It was concluded that adding N fertilizer is not always recommended, especially when seeds are inoculated before being sown; however, it is very important under severe drought stress to sustain yield. Enhanced protein concentrations could be achieved by applying N fertilization, whether the seeds were pre-inoculated or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title="drought stress">drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20fertilization" title=" N fertilization"> N fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20concentration" title=" protein concentration"> protein concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/86947/the-effects-of-inoculation-and-n-fertilization-on-soybean-glycine-max-l-merr-seed-yield-and-protein-concentration-under-drought-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4120</span> Investigation of Drought Resistance in Iranian Sesamum Germpelasm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Najafi">Fatemeh Najafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major stress factor limiting crop growth and development of sesame (Sesamum indicum L.) is drought stress in arid and semiarid regions of the world. For this study the effects of water stress on some qualitative and quantitative traits in sesame germplasm was conducted in the Research Farm of Seed and Plant Improvement Institute, Karaj, in the crop year. Genotypes in a randomized complete block design with three replications in two environments (moisture stress and normal) were studied in regard of the seed weight, capsule weight, grain yield, biomass, plant height, number of capsules per plant, etc. The characteristics were evaluated based on the combined analysis. Irrigation was based on first class evaporation basin. After flowering stage drought stress was applied. The water deficit reduced growth period. Days to reach full ripening decreased so that the reduction was significant at the five percent level. Drought stress reduces yield and plant biomass. Genotypes based on combined analysis of these two traits were significant at the one percent level. Genotypes differ in terms of yield stress in terms of density plots, grain yield, days to first flowering and days to the half of the cap on the confidence level of five percent and traits of days to emergence of the first capsule and days to reach full ripening at the one percent level were significant. Other traits were not significant. The correlation of traits in circumstances of stress the number of seeds per capsule has the greatest impact on performance. The sensitivity and stress tolerance index was calculated. Based on the indicators, (Fars variety) and variety Karaj were identified as the most tolerant genotypes among the studied genotypes to drought stress. The highest sensitivity indicator of stress was related to genotype (FARS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sesamum" title="sesamum">sesamum</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=germplasm" title=" germplasm"> germplasm</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/171841/investigation-of-drought-resistance-in-iranian-sesamum-germpelasm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4119</span> The Effect of Gibberellic Acid on Gamma-Aminobutyric Acid (GABA) Metabolism in Phaseolus Vulgaris L. Plant Exposed to Drought and Salt Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fazilet%20%C3%96zlem%20%C3%87eki%C3%A7">Fazilet Özlem Çekiç</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyda%20Y%C4%B1lmaz"> Seyda Yılmaz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity and drought are important environmental problems in the world and have negative effects on plant metabolism. Gamma-aminobutyric acid (GABA), four-carbon non-protein amino acid, is a significant component of the free amino acid pool. GABA is widely distributed in prokaryotic and eukaryotic organisms. Environmental stress factors increase GABA accumulation in plants. Our aim was to evaluate the effect of gibberellic acid (GA) on GABA metabolism system during drought and salt stress factors in Phaseolus vulgaris L. plants. GABA, Glutamate dehydrogenase (GDH) activity, chlorophyll, and lipid peroxidation (MDA) analyses were determined. According to our results we can suggest that GA play a role in GABA metabolism during salt and drought stresses in bean plants. Also GABA shunt is an important metabolic pathway and key signaling allowing to adapt to drought and salt stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gibberellic%20acid" title="gibberellic acid">gibberellic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=GABA" title=" GABA"> GABA</a>, <a href="https://publications.waset.org/abstracts/search?q=Phaseolus%20vulgaris%20L." title=" Phaseolus vulgaris L."> Phaseolus vulgaris L.</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought "> drought </a> </p> <a href="https://publications.waset.org/abstracts/16184/the-effect-of-gibberellic-acid-on-gamma-aminobutyric-acid-gaba-metabolism-in-phaseolus-vulgaris-l-plant-exposed-to-drought-and-salt-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4118</span> Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubaina%20Soni">Lubaina Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Farrell"> Claire Farrell</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Szota"> Christopher Szota</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20D.%20Fletcher"> Tim D. Fletcher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20cover" title=" plant cover"> plant cover</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20drought%20stress" title=" plant drought stress"> plant drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20retention" title=" rainfall retention"> rainfall retention</a> </p> <a href="https://publications.waset.org/abstracts/148263/influence-of-plant-cover-and-redistributing-rainfall-on-green-roof-retention-and-plant-drought-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4117</span> Wheat Yield and Yield Components under Raised Bed Planting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Miri">Hamidreza Miri</a>, <a href="https://publications.waset.org/abstracts/search?q=Farahnaz%20Momtazi"> Farahnaz Momtazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=raised%20bed%20planting" title=" raised bed planting"> raised bed planting</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use" title=" water use"> water use</a> </p> <a href="https://publications.waset.org/abstracts/170384/wheat-yield-and-yield-components-under-raised-bed-planting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4116</span> Evaluation of Drought Tolerant Sunflower Hybrids Indicated Their Broad Adaptability Under Stress Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Rauf">Saeed Rauf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Drought stress is a major production constraint in sunflowers and causes yield losses under tropical and subtropical environments having high evapo-tranpirational losses. Given the consequences, three trials were designed to evaluate drought-resistant sunflower hybrids. Research Methods: Field trials were conducted under a split-plot arrangement with 17 hybrids and two contrasting regimes at Sargodha, Pakistan and 7 hybrids at Karj, Iran. Water stress condition was simulated by holding water in a stress regime. Hybrids were also screened against five levels of osmotic-ally induced stress, i.e. 0-15%, under a completely randomized design with 3 replications. Findings: Hybrids H1 (C.112.× RH.344) and H3 (C.112.× RSIN.82) showed the highest seed yield ha-1 and early flowering at Karj Iran. Commercial hybrid had the highest CTD (18.2°C) followed by C112 × RH.344 (17.29 °C). Hybrid C.250 × R.SIN.82 had the highest seed yield (m-2), followed by C.112 × RH.365 and C.124 × RSIN.82 under both stress and non-stress regimes at Sargodha, Pakistan. Seedling trial results showed that 6 hybrids only germinated in 5 and 7.5% PEG-induced osmotic stress, respectively. H1 (C.112 × RH.344) and H2 (C.112 × RH.347) had the highest germination% at 5% and 7.5% osmotic stress (OS). Seedling vigor index (SVI) was the highest in H1 (C.112 × RH.344) hybrids at 5% OS, H2 had the highest SVI under 7.5% OS, followed by H3 (C112 × RH344) and H4 (C116 × RH344). Originality/Value: In view of above results, it was concluded that hybrid combination H1 had the highest seed yield under stress conditions in both environments. High seed yield may be due to its better germination and vigor index under stress conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=CTD" title=" CTD"> CTD</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20variability" title=" genetic variability"> genetic variability</a>, <a href="https://publications.waset.org/abstracts/search?q=osmotic%20stress" title=" osmotic stress"> osmotic stress</a> </p> <a href="https://publications.waset.org/abstracts/175408/evaluation-of-drought-tolerant-sunflower-hybrids-indicated-their-broad-adaptability-under-stress-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4115</span> Effect of Organic Matter Pre-Treatment on Germination and Seedlings Growth Indices on Marigold (Calendula officinalis L.) under Drought Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahimeh%20Helali%20Soltanahmadi">Fahimeh Helali Soltanahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Nourabdi"> Alireza Nourabdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate the effects of seed pretreatment on drought tolerance, an experimental Marigold (Calendula officinalis L) was tested in 2017-2018. A germination experiment was performed in the laboratory of Urmia University. The experiment was performed as a factorial experiment in a completely randomized design with three replications. The experimental treatments were dry levels of polyethylene glycol in four levels (control, -3, -6 and -9 bar) and treatments of Humic acid (72 mg / l), salicylic acid (2000 μmol) and ascorbic acid (200 ppm), and control were performed. The results of the germination experiment showed that with increasing drought levels caused by polyethylene glycol, germination indices were significantly reduced, so that the highest value obtained from the measured traits was observed in normal irrigation and in priming treatments, and the lowest amount of these traits was observed at the -9 bar drought level due to polyethylene glycol in the control treatment. The results of this study showed an increase in drought tolerance and improved Marigold germination under stress by applying seed priming with salicylic acid, which is recommended in sustainable and organic agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marigold" title="Marigold">Marigold</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title=" organic matter"> organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20pretreatment" title=" seed pretreatment"> seed pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=allometric%20coefficient" title=" allometric coefficient"> allometric coefficient</a> </p> <a href="https://publications.waset.org/abstracts/181874/effect-of-organic-matter-pre-treatment-on-germination-and-seedlings-growth-indices-on-marigold-calendula-officinalis-l-under-drought-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4114</span> Yield, Biochemical Responses and Evaluation of Drought Tolerance of Two Barley Accessions &#039;Ardhaoui&#039; under Deficit Drip Irrigation Using Saline Water in Southern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bagues">Mohamed Bagues</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikbel%20Souli"> Ikbel Souli</a>, <a href="https://publications.waset.org/abstracts/search?q=Feiza%20Boussora"> Feiza Boussora</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Nagaz"> Kamel Nagaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In southern Tunisia, two local barley accessions CV. Ardhaoui; 'Bengardeni' and 'Karkeni' were cultivated in the field under deficit drip irrigation with saline water. Three treatments were used: control or full irrigation T0 (100%ETc) and stressed T1 (75%ETc), T2 (50%ETc). Proline and soluble sugars contents increase significantly under drought between accessions compared to control and varies between growth stages. Moreover, the increasing of Ca2+ concentration enhances the absorption of Na+ ion, consequently K+/Na+ decrease significantly between accessions, these results suggest that a high tolerance of Bengardeni accession to drought stress. Therefore, drought tolerance indices (STI, SSI, MP, GMP, YSI and TOL) were used to identify high yielding and drought tolerant between accessions. MP explained the variation of GYi. GMP and STI explained the variation of GYs. The high values of MP, STI and GMP were associated with higher yielding accession. Higher TOL value is associated with significant grain yield reduction in stressed environment suggesting higher stress responses of accessions. Significant positive correlations between MP, STI and GMP and negative between YSI and SSI. MP, STI, GMP and YSI, TOL, SSI are not correlated with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought" title="drought">drought</a>, <a href="https://publications.waset.org/abstracts/search?q=proline" title=" proline"> proline</a>, <a href="https://publications.waset.org/abstracts/search?q=soluble%20sugars" title=" soluble sugars"> soluble sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=minerals" title=" minerals"> minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20tolerance%20indices" title=" drought tolerance indices"> drought tolerance indices</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a> </p> <a href="https://publications.waset.org/abstracts/53059/yield-biochemical-responses-and-evaluation-of-drought-tolerance-of-two-barley-accessions-ardhaoui-under-deficit-drip-irrigation-using-saline-water-in-southern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4113</span> Drought Alters the Expression of a Candidate Zea Mays P-Coumarate 3-Hydroxylase Gene and Caffeic Acid Biosynthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zintle%20Kolo">Zintle Kolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndiko%20Ludidi"> Ndiko Ludidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The enzymatic activity of p-coumarate 3-hydroxylase (C3H) synthesize caffeic acid from p-coumaric acid. We recently showed that exogenously applied caffeic acid confers salinity tolerance in soybean (Glycine max) by inducing antioxidant enzymatic activity to promote enhanced scavenging or reactive oxygen species, thus limiting salinity-induced oxidative stress. Recent evidence also establishes that pre-treatment of plants with exogenously supplied caffeic acid improves plant tolerance to osmotic stress by improving plant antioxidant capacity and enhancing biosynthesis of compatible solutes. We aimed to identify a C3H in maize (Zea mays) and evaluate the effect of drought on the spatial and temporal expression of the gene encoding the candidate maize C3H (ZmC3H). Primary sequence analysis shows that ZmC3H shares 71% identity with an Arabidopsis thaliana C3H that is implicated in the control of Arabidopsis cell expansion, growth, and responses to stress. In silico ZmC3H promoter analysis reveals the presence of cis-acting elements that interact with transcription factors implicated in plant responses to drought. Spatial expression analysis by semi-quantitative RT-PCR shows that ZmC3H is expressed in both leaves and roots under normal conditions. However, drought represses the expression of ZmC3H in leaves whereas it up-regulates its expression in roots. These changes in ZmC3H expression correlate with the changes in the content of caffeic acid in maize in response to drought. We illustrate the implications of these changes in the expression of the gene in relation to maize responses to drought and discuss the potential of regulating caffeic acid biosynthesis towards genetic improvement of maize tolerance to drought stress. These findings have implications for food security because of the potential of the implications of the study for drought tolerance in maize. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caffeic%20acid" title="caffeic acid">caffeic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=drought-responsive%20expression" title=" drought-responsive expression"> drought-responsive expression</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20drought%20tolerance" title=" maize drought tolerance"> maize drought tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=p-coumarate%203-hydroxylase" title=" p-coumarate 3-hydroxylase"> p-coumarate 3-hydroxylase</a> </p> <a href="https://publications.waset.org/abstracts/24073/drought-alters-the-expression-of-a-candidate-zea-mays-p-coumarate-3-hydroxylase-gene-and-caffeic-acid-biosynthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4112</span> Screening of the Sunflower Genotypes for Drought Stress at Seedling Stage by Polyethylene Glycol under Laboratory Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uzma%20Ayaz">Uzma Ayaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanam%20Bashir"> Sanam Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Iqbal%20Awan"> Shahid Iqbal Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ilyas"> Muhammad Ilyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fareed%20Khan"> Muhammad Fareed Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drought stress directly affects growth along with the productivity of plants by altering plant water status. Sunflower (Helianthus annuus L.), an oilseed crop, is adversely affected by abiotic stresses. The present study was carried out to characterize the genetic variability for seedling and morpho-physiological parameters in different sunflower genotypes under water-stressed conditions. A total of twenty-seven genotypes, including two hybrids, eight advanced lines and seventeen accessions of sunflower (Helianthus annuus L.) were tested against drought stress at Seedling stages by Polyethylene glycol (PEG). Significant means were calculated among traits using analysis of variance (ANOVA) whereas, correlation and principal component analysis also confirmed that germination percentage, root length, shoot length, chlorophyll content, stomatal frequency are positively linked with each other hence, these traits were responsible for most of the variation among genotypes. The cluster analysis results showed that genotypes Ausun, line-3, line-2, and 17578, line-1, line-7, line-6 and 17562 as more diverse among all the genotypes. These most divergent genotypes could be utilized in the development of drought-tolerant inbreed lines which could be subsequently used in future heterosis breeding programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sunflower" title="sunflower">sunflower</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene-%20glycol" title=" polyethylene- glycol"> polyethylene- glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=screening" title=" screening"> screening</a> </p> <a href="https://publications.waset.org/abstracts/118011/screening-of-the-sunflower-genotypes-for-drought-stress-at-seedling-stage-by-polyethylene-glycol-under-laboratory-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4111</span> Critical Appraisal of Different Drought Indices of Drought Predection and Their Application in KBK Districts of Odisha</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bibhuti%20Bhusan%20Sahoo">Bibhuti Bhusan Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramakar%20Jha"> Ramakar Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mapping of the extreme events (droughts) is one of the adaptation strategies to consequences of increasing climatic inconsistency and climate alterations. There is no operational practice to forecast the drought. One of the suggestions is to update mapping of drought prone areas for developmental planning. Drought indices play a significant role in drought mitigation. Many scientists have worked on different statistical analysis in drought and other climatological hazards. Many researchers have studied droughts individually for different sub-divisions or for India. Very few workers have studied district wise probabilities over large scale. In the present study, district wise drought probabilities over KBK (Kalahandi-Balangir-Koraput) districts of Odisha, India, Which are seriously prone to droughts, has been established using Hydrological drought index and Meteorological drought index along with the remote sensing drought indices to develop a multidirectional approach in the field of drought mitigation. Mapping for moderate and severe drought probabilities for KBK districts has been done and regions belonging different class intervals of probabilities of drought have been demarcated. Such type of information would be a good tool for planning purposes, for input in modelling and better promising results can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20indices" title="drought indices">drought indices</a>, <a href="https://publications.waset.org/abstracts/search?q=KBK%20districts" title=" KBK districts"> KBK districts</a>, <a href="https://publications.waset.org/abstracts/search?q=proposed%20drought%20severity%20index" title=" proposed drought severity index"> proposed drought severity index</a>, <a href="https://publications.waset.org/abstracts/search?q=SPI" title=" SPI"> SPI</a> </p> <a href="https://publications.waset.org/abstracts/21564/critical-appraisal-of-different-drought-indices-of-drought-predection-and-their-application-in-kbk-districts-of-odisha" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=137">137</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=138">138</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drought%20stress&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10