CINXE.COM
Search results for: hydrocarbon solvent
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hydrocarbon solvent</title> <meta name="description" content="Search results for: hydrocarbon solvent"> <meta name="keywords" content="hydrocarbon solvent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hydrocarbon solvent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hydrocarbon solvent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1113</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hydrocarbon solvent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1113</span> Solvent-Aided Dilution Approach for Heavy Hydrocarbon Liquid Evaluation in the Eastern Dahomey Basin, Southwestern Nigeria: Case Study of Agbabu Bitumen in Ondo State.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adetokunbo%20Ademola%20Falade">Adetokunbo Ademola Falade</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatoyin%20Olakunle%20Akinsete"> Oluwatoyin Olakunle Akinsete</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Omeiza%20Aliu"> Hussein Omeiza Aliu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent-aided dilution processes are often employed to recover bitumen by reducing its viscosity. In this study, methanol, toluene, and xylene were investigated as potential hydrocarbon solvents for solvent-aided hydrocarbon recovery of Agbabu bitumen. Solubility, Viscosity, and Saturate, Aromatic, Resin and Asphaltene (SARA) Analysis tests were carried out to determine the solubility of the bitumen in the solvents, the viscosity, and the SARA fraction of the natural bitumen and bitumen-solvent mixtures. Agbabu bitumen was found to have a high content of saturates and aromatics. Viscosity decreases as pressure increases, while solubility reduces as temperature increases. The experimental diffusivity of the sample decreases with temperature and increases with pressure, indicating that the presence of additional solvent molecules in the oil phase facilitates diffusion. Agbabu bitumen was found to be most soluble in toluene, and its viscosity was reduced most in it. Xylene exhibited a similar effect as toluene on the sample, though lesser but better than methanol. Methanol reduced the saturated content and significantly raised the asphaltene content, keeping the mixture viscosity high, a condition that, in turn, favors its colloidal stability. The colloidal instability index (CII) values, which account for the asphaltene stability of the mixture, show that the bitumen-methanol system with a CII of 0.874 will have mild asphaltene deposit issues while others are unstable. This approach of combining multiple tests with the CII can accurately predict the behavior of Agbabu bitumen in solvents and enhance the decision on the choice of bitumen recovery technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent" title=" hydrocarbon solvent"> hydrocarbon solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=SARA" title=" SARA"> SARA</a> </p> <a href="https://publications.waset.org/abstracts/187476/solvent-aided-dilution-approach-for-heavy-hydrocarbon-liquid-evaluation-in-the-eastern-dahomey-basin-southwestern-nigeria-case-study-of-agbabu-bitumen-in-ondo-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1112</span> Olefin and Paraffin Separation Using Simulations on Extractive Distillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem">Muhammad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20A.%20Al-Rabiah"> Abdulrahman A. Al-Rabiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technical mixture of C4 containing 1-butene and n-butane are very close to each other with respect to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent shows an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator; moreover NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99 % pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1 : 7.9 and 15 plates for the solvent recovery column, previously feed to solvent ratio was more than this and the proposed plates were 30, which can economize the separation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extractive%20distillation" title="extractive distillation">extractive distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=1-butene" title=" 1-butene"> 1-butene</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspen%20Plus" title=" Aspen Plus"> Aspen Plus</a>, <a href="https://publications.waset.org/abstracts/search?q=ACN%20solvent" title=" ACN solvent "> ACN solvent </a> </p> <a href="https://publications.waset.org/abstracts/10500/olefin-and-paraffin-separation-using-simulations-on-extractive-distillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1111</span> Process Simulation of 1-Butene Separation from C4 Mixture by Extractive Distillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem">Muhammad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20A.%20Al-Rabiah"> Abdulrahman A. Al-Rabiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasif%20Mughees"> Wasif Mughees</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technical mixture of C4 containing 1-butene and n-butane are very close to each other with regard to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent plays an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator. Moreover, NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99% pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1: 7.9 and 15 plates for the solvent recovery column. Previously feed to solvent ratio was more than this and the number of proposed plates were 30, which shows that the separation process can be economized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extractive%20distillation" title="extractive distillation">extractive distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=1-butene" title=" 1-butene"> 1-butene</a>, <a href="https://publications.waset.org/abstracts/search?q=aspen%20plus" title=" aspen plus"> aspen plus</a>, <a href="https://publications.waset.org/abstracts/search?q=ACN%20solvent" title=" ACN solvent"> ACN solvent</a> </p> <a href="https://publications.waset.org/abstracts/5813/process-simulation-of-1-butene-separation-from-c4-mixture-by-extractive-distillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1110</span> Reburning Characteristics of Biomass Syngas in a Pilot Scale Heavy Oil Furnace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Heon%20Han">Sang Heon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Daejun%20Chang"> Daejun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Won%20Yang"> Won Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NOx reduction characteristics of syngas fuel were numerically investigated for the 2MW pilot scale heavy oil furnace of KITECH (Korea Institute of Industrial Technology). The secondary fuel and syngas was fed into the furnace with two purposes- partial replacement of main fuel and reburning of NOx. Some portion of syngas was fed into the flame zone to partially replace the heavy oil, while the other portion was fed into the furnace downstream to reduce NOx generation. The numerical prediction was verified by comparing it with the experimental results. Syngas of KITECH’s experiment, assumed to be produced from biomass, had very low calorific value and contained 3% hydrocarbon. This study investigated the precise behavior of NOx generation and NOx reduction as well as thermo-fluidic characteristics inside the furnace, which was unavailable with experiment. In addition to 3% hydrocarbon syngas, 5%, and 7% hydrocarbon syngas were numerically tested as reburning fuels to analyze the effect of hydrocarbon proportion to NOx reduction. The prediction showed that the 3% hydrocarbon syngas is as much effective as 7% hydrocarbon syngas in reducing NOx. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=syngas" title="syngas">syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=reburning" title=" reburning"> reburning</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20oil" title=" heavy oil"> heavy oil</a>, <a href="https://publications.waset.org/abstracts/search?q=furnace" title=" furnace"> furnace</a> </p> <a href="https://publications.waset.org/abstracts/23342/reburning-characteristics-of-biomass-syngas-in-a-pilot-scale-heavy-oil-furnace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1109</span> Characterization of Biosurfactant during Crude Oil Biodegradation Employing Pseudomonas sp. PG1: A Strain Isolated from Garage Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaustuvmani%20Patowary">Kaustuvmani Patowary</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Deka"> Suresh Deka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil pollution accidents, nowadays, have become a common phenomenon and have caused ecological and social disasters. Microorganisms with high oil-degrading performance are essential for bioremediation of petroleum hydrocarbon. In this investigation, an effective biosurfactant producer and hydrocarbon degrading bacterial strain, Pseudomonas sp.PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated garage soil of Pathsala, Assam, India, using crude oil enrichment technique. The growth parameters such as pH and temperature were optimized for the strain and upto 81.8% degradation of total petroleum hydrocarbon (TPH) has been achieved after 5 weeks when grown in mineral salt media (MSM) containing 2% (w/v) crude oil as the carbon source. The biosurfactant production during the course of hydrocarbon degradation was monitored by surface tension measurement and emulsification activity. The produced biosurfactant had the ability to decrease the surface tension of MSM from 72 mN/m to 29.6 mN/m, with the critical micelle concentration (CMC)of 56 mg/L. The biosurfactant exhibited 100% emulsification activity on crude oil. FTIR spectroscopy and LCMS-MS analysis of the purified biosurfactant revealed that the biosurfactant is Rhamnolipidic in nature with several rhamnolipid congeners. Gas Chromatography-Mass spectroscopy (GC-MS) analysis clearly demonstrated that the strain PG1 efficiently degrade different hydrocarbon fractions of the crude oil. The study suggeststhat application of the biosurfactant producing strain PG1 as an appropriate candidate for bioremediation of crude oil contaminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbon" title="petroleum hydrocarbon">petroleum hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20contamination" title=" hydrocarbon contamination"> hydrocarbon contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=rhamnolipid" title=" rhamnolipid"> rhamnolipid</a> </p> <a href="https://publications.waset.org/abstracts/27073/characterization-of-biosurfactant-during-crude-oil-biodegradation-employing-pseudomonas-sp-pg1-a-strain-isolated-from-garage-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1108</span> An Assesment of Unconventional Hydrocarbon Potential of the Silurian Dadaş Shales in Diyarbakır Basin, Türkiye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceren%20Sevimli">Ceren Sevimli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20%C4%B0nan"> Sedat İnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Silurian Dadaş Formation within the Diyarbakir Basin in SE Türkiye, like other Silurian shales in North Africa and Middle East, represents a significant prospect for conventional and unconventional hydrocarbon exploration. The Diyarbakır Basin remains relatively underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Silurian Dadaş shales, utilizing basin modeling approach. The Dadaş shales are organic-rich and contain mainly Type II kerogen, especially the basal layer contains up to 10 wt. %TOC and thus it is named as “hot shale”. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. The data obtained from previous studies were used to calibrate basin model that has been established by using PetroMod software (Schlumberger). The calibrated model results suggest that Dadaş shales are in oil generation window and that the major episode for thermal maturation and hydrocarbon generation took place prior rot Alpine orogeny (uplift and erosion) The modeling results elucidate the burial history, maturity history, and hydrocarbon production history of the Silurian-aged Dadaş shales, as well as its hydrocarbon content in the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dada%C5%9F%20formation" title="dadaş formation">dadaş formation</a>, <a href="https://publications.waset.org/abstracts/search?q=diyarbak%C4%B1r%20basin" title=" diyarbakır basin"> diyarbakır basin</a>, <a href="https://publications.waset.org/abstracts/search?q=silurian%20hot%20shale" title=" silurian hot shale"> silurian hot shale</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon" title=" unconventional hydrocarbon"> unconventional hydrocarbon</a> </p> <a href="https://publications.waset.org/abstracts/189223/an-assesment-of-unconventional-hydrocarbon-potential-of-the-silurian-dadas-shales-in-diyarbakir-basin-turkiye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1107</span> Hydrocarbon New Business Opportunities in the Bida Basin of Central Nigeria: Prospect and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Obaje">N. G. Obaje</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Ibrahim"> S. I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dadi-Mamud"> N. Dadi-Mamud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Musa"> M. K. Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Yusuf"> I. Yusuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An integrated study combining geological prospectivity mapping and geophysical aeromagnetic interpretation was carried out to determine hydrocarbon new business opportunities that may exist in the Bida Basin of Central Nigeria. Geological mapping was used to delineate the geological boundaries between the formations which is a significant initial criterion in evaluating hydrocarbon prospectivity. Processed and interpreted geophysical aeromagnetic data over the basin juxtaposed against the geological map has led to ranking of the prospectivity as less prospective, prospective and more prospective. The prospective and more prospective areas constitute new hydrocarbon business opportunities in the basin. The more prospective areas are at Pattishabakolo near Bida and at Kandi near Gulu. Prospective areas cover Badegi, Lemu, Duba, Kutigi, Auna, Mashegu and Mokwa. Geochemical data show that hydrocarbon source rocks exist within the Enagi and Patti formations in the northern and southern sections respectively. The geophysical aeromagnetic data indicates depths of more than 2,000m (> 2 Km) within the identified prospective areas. New business opportunities as used here refer to open acreages in Nigeria’s sedimentary basins that have not been licensed out by the government (Department of Petroleum Resources) to any operator but with significant potentials for commercial hydrocarbon accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title="hydrocarbon">hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=aeromagnetic" title=" aeromagnetic"> aeromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20opportunity" title=" business opportunity"> business opportunity</a>, <a href="https://publications.waset.org/abstracts/search?q=Bida%20Basin" title=" Bida Basin"> Bida Basin</a> </p> <a href="https://publications.waset.org/abstracts/37447/hydrocarbon-new-business-opportunities-in-the-bida-basin-of-central-nigeria-prospect-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1106</span> Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Tunde%20Olagunju">K. Tunde Olagunju</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Scott%20Allen"> C. Scott Allen</a>, <a href="https://publications.waset.org/abstracts/search?q=Freek%20Van%20Der%20Meer"> Freek Van Der Meer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title="hydrocarbon">hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral" title=" hyperspectral"> hyperspectral</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon-substrate%20combination" title=" hydrocarbon-substrate combination"> hydrocarbon-substrate combination</a>, <a href="https://publications.waset.org/abstracts/search?q=Sentinel-2" title=" Sentinel-2"> Sentinel-2</a>, <a href="https://publications.waset.org/abstracts/search?q=WorldView-3" title=" WorldView-3"> WorldView-3</a> </p> <a href="https://publications.waset.org/abstracts/139188/assessing-the-theoretical-suitability-of-sentinel-2-and-worldview-3-data-for-hydrocarbon-mapping-of-spill-events-using-hydrocarbon-spectral-slope-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1105</span> Improvement of Egyptian Vacuum Distillates by Solvent Dewaxing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehssan%20M.%20R.%20Nassef">Ehssan M. R. Nassef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> De-waxing of vacuum distillates by using solvent was investigated in the present study. The present work deals with studying solvent dewaxing system which have been developed to give better dewaxing performance with respect to the important factors in the choice of solvents which are good solubility of oil in the solvent and low solubility of wax in the solvent. In this study, solvent dewaxing process using Methyl Ethyl Ketone (MEK) and toluene are used for Egyptian vacuum distillates using two types of distillates. The effect of varying the composition of(MEK to toluene) on the percent yield of the oil, percent of wax, pour point, refractive index at 20 and 70°C, viscosity at 40 and 100°C, viscosity index and specific gravity of the oil produced for the two types of distillates (I & II) were evaluated. In the present study, the operating conditions of solvent dewaxing using MEK toluene mixture achieved the best pour point at -15°C for distillate I at (1:1) solvent composition mixture. At the same ratio of MEK to toluene the best specific gravity of oil produced changed from 0.871 to 0.8802, with refractive index of 1.84. Percent yield of 65% for oil was obtained. The results for distillate II, of higher specific gravity, are comparatively higher than those for distillate I. The effect of temperature was also investigated and the best temperature was -20°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewaxing" title="dewaxing">dewaxing</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20dewaxing" title=" solvent dewaxing"> solvent dewaxing</a>, <a href="https://publications.waset.org/abstracts/search?q=pour%20point" title=" pour point"> pour point</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricating%20oil%20production" title=" lubricating oil production"> lubricating oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=wax" title=" wax "> wax </a> </p> <a href="https://publications.waset.org/abstracts/22202/improvement-of-egyptian-vacuum-distillates-by-solvent-dewaxing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1104</span> Investigation of Solvent Effect on Viscosity of Lubricant in Disposable Medical Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Bagheri">Hamed Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyd%20Javid%20Shariati"> Seyd Javid Shariati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of type and amount of solvent on lubricant which is used in disposable medical devices are investigated in this article. Two kinds of common solvent, n-Hexane and n-Heptane, are used. The mechanical behavior of syringe has shown that n-Heptane has better mixing ratio and also more effective spray process in the barrel of syringe than n-Hexane because of similar solubility parameter to silicon oil. The results revealed that movement of plunger in the barrel increases when pure silicone is used because non-uniform film is created on the surface of barrel, and also, it seems that the form of silicon is converted from oil to gel due to sterilization process. The results showed that the convenient mixing ratio of solvent/lubricant oil is 80/20. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disposal%20medical%20devices" title="disposal medical devices">disposal medical devices</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricant%20oil" title=" lubricant oil"> lubricant oil</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20effect" title=" solvent effect"> solvent effect</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility%20parameter" title=" solubility parameter"> solubility parameter</a> </p> <a href="https://publications.waset.org/abstracts/72192/investigation-of-solvent-effect-on-viscosity-of-lubricant-in-disposable-medical-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1103</span> First Approach on Lycopene Extraction Using Limonene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ferhat">M. A. Ferhat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Boukhatem"> M. N. Boukhatem</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Chemat"> F. Chemat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lycopene extraction with petroleum derivatives as solvents has caused safety, health, and environmental concerns everywhere. Thus, finding a safe alternative solvent will have a strong and positive impact on environments and general health of the world population. d-limonene from the orange peel was extracted through a steam distillation procedure followed by a deterpenation process and combining this achievement by using it as a solvent for extracting lycopene from tomato fruit as a substitute of dichloromethane. Lycopene content of fresh tomatoes was determined by high-performance liquid chromatography after extraction. Yields obtained for both extractions showed that yields of d-limonene’s extracts were almost equivalent to those obtained using dichloromethane. The proposed approach using a green solvent to perform extraction is useful and can be considered as a nice alternative to conventional petroleum solvent where toxicity for both operator and environment is reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20solvent" title="alternative solvent">alternative solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=d-limonene" title=" d-limonene"> d-limonene</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lycopene" title=" lycopene"> lycopene</a> </p> <a href="https://publications.waset.org/abstracts/51267/first-approach-on-lycopene-extraction-using-limonene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1102</span> An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Anisuzzaman">S. M. Anisuzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sariah%20Abang"> Sariah Abang</a>, <a href="https://publications.waset.org/abstracts/search?q=Awang%20Bono"> Awang Bono</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Krishnaiah"> D. Krishnaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Ismail"> N. M. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20Sandrison"> G. B. Sandrison</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene-vinyl%20acetate" title=" ethylene-vinyl acetate"> ethylene-vinyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=methylcyclohexane" title=" methylcyclohexane"> methylcyclohexane</a>, <a href="https://publications.waset.org/abstracts/search?q=toluene" title=" toluene"> toluene</a>, <a href="https://publications.waset.org/abstracts/search?q=wax" title=" wax"> wax</a> </p> <a href="https://publications.waset.org/abstracts/69607/an-evaluation-of-solubility-of-wax-and-asphaltene-in-crude-oil-for-improved-flow-properties-using-a-copolymer-solubilized-in-organic-solvent-with-an-aromatic-hydrocarbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1101</span> A Two-Step, Temperature-Staged, Direct Coal Liquefaction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyna%20Singh">Reyna Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Lokhat"> David Lokhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Carsky"> Milan Carsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal is an abundant resource. This work was aimed at producing a high value hydrocarbon liquid product from the Direct Coal Liquefaction (DCL) process at, comparatively, mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated. In a two reactor lab-scale pilot plant facility, the objectives included maximising thermal dissolution of the coal in the presence of a hydrogen donor solvent in the first stage, subsequently promoting hydrogen saturation and hydrodesulphurization (HDS) performance in the second. The feed slurry consisted of high grade, pulverized bituminous coal on a moisture-free basis with a size fraction of < 100μm; and Tetralin mixed in 2:1 and 3:1 solvent/coal ratios. Magnetite (Fe3O4) at 0.25wt% of the dry coal feed was added for the catalysed runs. For both stages, hydrogen gas was used to maintain a system pressure of 100barg. In the first stage, temperatures of 250℃ and 300℃, reaction times of 30 and 60 minutes were investigated in an agitated batch reactor. The first stage liquid product was pumped into the second stage vertical reactor, which was designed to counter-currently contact the hydrogen rich gas stream and incoming liquid flow in the fixed catalyst bed. Two commercial hydrotreating catalysts; Cobalt-Molybdenum (CoMo) and Nickel-Molybdenum (NiMo); were compared in terms of their conversion, selectivity and HDS performance at temperatures 50℃ higher than the respective first stage tests. The catalysts were activated at 300°C with a hydrogen flowrate of approximately 10 ml/min prior to the testing. A gas-liquid separator at the outlet of the reactor ensured that the gas was exhausted to the online VARIOplus gas analyser. The liquid was collected and sampled for analysis using Gas Chromatography-Mass Spectrometry (GC-MS). Internal standard quantification methods for the sulphur content, the BTX (benzene, toluene, and xylene) and alkene quality; alkanes and polycyclic aromatic hydrocarbon (PAH) compounds in the liquid products were guided by ASTM standards of practice for hydrocarbon analysis. In the first stage, using a 2:1 solvent/coal ratio, an increased coal to liquid conversion was favoured by a lower operating temperature of 250℃, 60 minutes and a system catalysed by magnetite. Tetralin functioned effectively as the hydrogen donor solvent. A 3:1 ratio favoured increased concentrations of the long chain alkanes undecane and dodecane, unsaturated alkenes octene and nonene and PAH compounds such as indene. The second stage product distribution showed an increase in the BTX quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, NiMo performed better than CoMo. CoMo is selective to a higher concentration of cyclohexane. For 16 days on stream each, NiMo had a higher activity than CoMo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature-staged" title=" temperature-staged"> temperature-staged</a> </p> <a href="https://publications.waset.org/abstracts/26115/a-two-step-temperature-staged-direct-coal-liquefaction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">648</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1100</span> Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Ibrahim">I. A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Elbarbary"> T. A. Elbarbary</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Abdelaty"> N. Abdelaty</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Kandil"> A. T. Kandil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Farhan"> H. K. Farhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ilmenite%20ore" title="ilmenite ore">ilmenite ore</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20solvent%20extraction" title=" titanium solvent extraction"> titanium solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Ghalaga%20ilmenite%20ore" title=" Abu Ghalaga ilmenite ore"> Abu Ghalaga ilmenite ore</a> </p> <a href="https://publications.waset.org/abstracts/76625/hydrometallurgical-treatment-of-abu-ghalaga-ilmenite-ore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1099</span> Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Poyai">T. Poyai</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Painmanakul"> P. Painmanakul</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Chawaloesphonsiya"> N. Chawaloesphonsiya</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Dhanasin"> P. Dhanasin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Getwech"> C. Getwech</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Wattana"> P. Wattana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drill%20cuttings" title="drill cuttings">drill cuttings</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20solvent" title=" green solvent"> green solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20washing" title=" soil washing"> soil washing</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20petroleum%20hydrocarbon%20%28TPH%29" title=" total petroleum hydrocarbon (TPH)"> total petroleum hydrocarbon (TPH)</a> </p> <a href="https://publications.waset.org/abstracts/81709/treatment-of-onshore-petroleum-drill-cuttings-via-soil-washing-process-characterization-and-optimal-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1098</span> Polyimide Supported Membrane Made of 2D-Coordination-Crosslinked Polyimide for Rapid Molecular Separation in Multi-Solvent Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Netsanet%20Kebede%20Hundessa">Netsanet Kebede Hundessa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Substrate modification of thin film composite (TFC) membranes with various crosslinkers is typically necessary for organic solvent nanofiltration (OSN) applications. This modification is aimed at enhancing membrane stability and solvent resistance, but it often results in a decline in permeance. This study introduces a distinct approach by developing a coordination-crosslinked polyimide substrate, which differs from the covalently-crosslinked substrates traditionally used. This developed substrate achieves enhanced solvent resistance, improved hydrophilicity, and optimized porous microstructure simultaneously. The study investigates the effects of an alkaline coagulation bath, subsequent ion exchange, and further solvent activation. The resulting TFC membrane successfully overcomes the typical permeability-selectivity trade-off of OSN membranes. It demonstrates significantly improved solvent permeance (1.5–2 times higher than previously reported data) with values of 65.2 LMH/bar for methanol, 33.1 LMH/bar for ethanol, and 59.1 LMH/bar for acetone while maintaining competitive solute rejection (>98% for Rose Bengal). This research is expected to provide a new direction for developing high-performance OSN composite membranes and other separation applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20coordinatiom" title="metal coordinatiom">metal coordinatiom</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite%20membrane" title=" thin film composite membrane"> thin film composite membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvent%20nanofiltration" title=" organic solvent nanofiltration"> organic solvent nanofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20activation" title=" solvent activation"> solvent activation</a> </p> <a href="https://publications.waset.org/abstracts/183068/polyimide-supported-membrane-made-of-2d-coordination-crosslinked-polyimide-for-rapid-molecular-separation-in-multi-solvent-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1097</span> Aspects of Environmental Sustainability in the Operation of Onshore Hydrocarbon Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emil%20Aliyev">Emil Aliyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main focus of this conference paper is on the aspects of the environmental sustainability of onshore hydrocarbon pipelines. The latter is notorious for being a source of major environmental contamination and a consumer of vast amounts of natural resources such as water, land, steel, etc. Therefore, the environmentally sustainable operation of pipelines is a concern that requires attention and research. The geographical scope of the paper is confined to onshore hydrocarbon pipelines operated in the Middle East region. The research contains elements of originality as it draws on the author’s field experience and practical implementation of environmental and sustainability solutions in a major Middle East-based pipeline organization. The authors describe some of the most common significant environmental aspects of pipeline operations and provide examples of various approaches and technologies that can be successfully utilized to make pipelines more environmentally sustainable. The author concludes that the operation of onshore hydrocarbon pipelines can be made environmentally sustainable. This can be achieved by adopting a systematic framework, focusing limited resources on significant aspects, integrating a circular economy into day-to-day activities, and having strong management support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipelines" title="pipelines">pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=onshore%20hydrocarbon%20pipelines" title=" onshore hydrocarbon pipelines"> onshore hydrocarbon pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title=" environmental sustainability"> environmental sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=significant%20environmental%20aspects" title=" significant environmental aspects"> significant environmental aspects</a> </p> <a href="https://publications.waset.org/abstracts/160305/aspects-of-environmental-sustainability-in-the-operation-of-onshore-hydrocarbon-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1096</span> Thermal Maturity and Hydrocarbon Generation Histories of the Silurian Tannezuft Shale Formation, Ghadames Basin, Northwestern Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emir%20Borovac">Emir Borovac</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20I%CC%87nan"> Sedat İnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Silurian Tannezuft Formation within the Ghadames Basin of Northwestern Libya, like other Silurian shales in North Africa and the Middle East, represents a significant prospect for unconventional hydrocarbon exploration. Unlike the more popular and extensively studied Sirt Basin, the Ghadames Basin remains underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Tannezuft shales, utilizing calibrated basin modeling approaches. The Tannezuft shales are organic-rich and primarily contain Type II kerogen, especially in the basal layer, which contains up to 10 wt. % TOC, leading to its designation as ‘hot shale’. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. By employing PetroMod software from Schlumberger, calibrated modeling results simulate hydrocarbon generation and migration within the Tannezuft shales. The findings suggest dual-phase hydrocarbon generation from the Lower Silurian Tannezuft source rock, related to deep burial prior to Hercynian orogeny and subsequent Alpine orogeny events. The Ghadames Basin's tectonic history, including major Hercynian and Alpine orogenies, has significantly influenced the generation, migration, and preservation of hydrocarbons, making the Ghadames Basin a promising area for further exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tanezzuft%20formation" title="tanezzuft formation">tanezzuft formation</a>, <a href="https://publications.waset.org/abstracts/search?q=ghadames%20basin" title=" ghadames basin"> ghadames basin</a>, <a href="https://publications.waset.org/abstracts/search?q=silurian%20hot%20shale" title=" silurian hot shale"> silurian hot shale</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon" title=" unconventional hydrocarbon"> unconventional hydrocarbon</a> </p> <a href="https://publications.waset.org/abstracts/189237/thermal-maturity-and-hydrocarbon-generation-histories-of-the-silurian-tannezuft-shale-formation-ghadames-basin-northwestern-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1095</span> Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eng%20Toon%20Saw">Eng Toon Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Liang%20Ang"> Kun Liang Ang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20He"> Wei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuecheng%20Dong"> Xuecheng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=NaA%20zeolite" title=" NaA zeolite"> NaA zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20industry" title=" pharmaceutical industry"> pharmaceutical industry</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20recovery" title=" solvent recovery"> solvent recovery</a> </p> <a href="https://publications.waset.org/abstracts/96273/ultrathin-naa-zeolite-membrane-in-solvent-recovery-preparation-and-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1094</span> The Mechanism Study of Degradative Solvent Extraction of Biomass by Liquid Membrane-Fourier Transform Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Ketren">W. Ketren</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Wannapeera"> J. Wannapeera</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Heishun"> Z. Heishun</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ryuichi"> A. Ryuichi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Toshiteru"> K. Toshiteru</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kouichi"> M. Kouichi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Hideaki"> O. Hideaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradative solvent extraction is the method developed for biomass upgrading by dewatering and fractionation of biomass under the mild condition. However, the conversion mechanism of the degradative solvent extraction method has not been fully understood so far. The rice straw was treated in 1-methylnaphthalene (1-MN) at a different solvent-treatment temperature varied from 250 to 350 <sup>o</sup>C with the residence time for 60 min. The liquid membrane-Fourier Transform Infrared Spectroscopy (FTIR) technique is applied to study the processing mechanism in-depth without separation of the solvent. It has been found that the strength of the oxygen-hydrogen stretching (3600-3100 cm<sup>-1</sup>) decreased slightly with increasing temperature in the range of 300-350 <sup>o</sup>C. The decrease of the hydroxyl group in the solvent soluble suggested dehydration reaction taking place between 300 and 350 <sup>o</sup>C. FTIR spectra in the carbonyl stretching region (1800-1600 cm<sup>-1</sup>) revealed the presence of esters groups, carboxylic acid and ketonic groups in the solvent-soluble of biomass. The carboxylic acid increased in the range of 200 to 250<sup> o</sup>C and then decreased. The prevailing of aromatic groups showed that the aromatization took place during extraction at above 250 <sup>o</sup>C. From 300 to 350 <sup>o</sup>C, the carbonyl functional groups in the solvent-soluble noticeably decreased. The removal of the carboxylic acid and the decrease of esters into the form of carbon dioxide indicated that the decarboxylation reaction occurred during the extraction process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20waste" title="biomass waste">biomass waste</a>, <a href="https://publications.waset.org/abstracts/search?q=degradative%20solvent%20extraction" title=" degradative solvent extraction"> degradative solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading" title=" upgrading"> upgrading</a> </p> <a href="https://publications.waset.org/abstracts/79176/the-mechanism-study-of-degradative-solvent-extraction-of-biomass-by-liquid-membrane-fourier-transform-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1093</span> Studying the Effect of Hydrocarbon Solutions on the Properties of Epoxy Polymer Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Hasan%20Omar">Mustafa Hasan Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The destruction effect of hydrocarbon solutions on concrete besides its high permeability have led researchers to try to improve the performance of concrete exposed to these solutions, hence improving the durability and usability of oil concrete structures. Recently, polymer concrete is considered one of the most important types of concrete, and its behavior after exposure to oil products is still unknown. In the present work, an experimental study has been carried out, in which the prepared epoxy polymer concrete immersed in different types of hydrocarbon exposure solutions (gasoline, kerosene, and gas oil) for 120 days and compared with the reference concrete left in the air. The results for outdoor specimens indicate that the mechanical properties are increased after 120 days, but the specimens that were immersed in gasoline, kerosene, and gas oil for the same period show a reduction in compressive strength by -21%, -27% and -23%, whereas in splitting tensile strength by -19%, -24% and -20%, respectively. The reductions in ultrasonic pulse velocity for cubic specimens are -17%, -22% and -19% and in cylindrical specimens are -20%, -25% and -22%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solutions" title=" hydrocarbon solutions"> hydrocarbon solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20concrete" title=" polymer concrete"> polymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a> </p> <a href="https://publications.waset.org/abstracts/110602/studying-the-effect-of-hydrocarbon-solutions-on-the-properties-of-epoxy-polymer-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1092</span> Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20A.%20Nabeela%20Nasreen">S. A. A. Nabeela Nasreen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sundarrajan"> S. Sundarrajan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Syed%20Nizar"> S. A. Syed Nizar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvothermal" title=" solvothermal"> solvothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF" title=" ZIF"> ZIF</a> </p> <a href="https://publications.waset.org/abstracts/97314/layer-by-layer-coating-of-zinc-oxidemetal-organic-framework-nanocomposite-on-ceramic-support-for-solventsolvent-separation-using-pervaporation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1091</span> Evaluation of Hydrocarbon Prospects of 'ADE' Field, Niger Delta </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluseun%20A.%20Sanuade">Oluseun A. Sanuade</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanlinn%20I.%20Kaka"> Sanlinn I. Kaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Adesoji%20O.%20Akanji"> Adesoji O. Akanji</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukole%20A.%20Akinbiyi"> Olukole A. Akinbiyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prospect evaluation of ‘the ‘ADE’ field was done using 3D seismic data and well log data. The field is located in the offshore Niger Delta where water depth ranges from 450 to 800 m. The objectives of this study are to explore deeper prospects and to ascertain the kind of traps that are favorable for the accumulation of hydrocarbon in the field. Six horizons with major and minor faults were identified and mapped in the field. Time structure maps of these horizons were generated and using the available check-shot data the maps were converted to top structure maps which were used to calculate the hydrocarbon volume. The results show that regional structural highs that are trending in northeast-southwest (NE-SW) characterized a large portion of the field. These highs were observed across all horizons revealing a regional post-depositional deformation. Three prospects were identified and evaluated to understand the different opportunities in the field. These include stratigraphic pinch out and bi-directional downlap. The results of this study show that the field has potentials for new opportunities that could be explored for further studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title="hydrocarbon">hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=play" title=" play"> play</a>, <a href="https://publications.waset.org/abstracts/search?q=prospect" title=" prospect"> prospect</a>, <a href="https://publications.waset.org/abstracts/search?q=stratigraphy" title=" stratigraphy"> stratigraphy</a> </p> <a href="https://publications.waset.org/abstracts/86819/evaluation-of-hydrocarbon-prospects-of-ade-field-niger-delta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1090</span> Impact of Flavor on Food Product Quality, A Case Study of Vanillin Stability during Biscuit Preparation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Yang">N. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Linforth"> R. Linforth</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Fisk"> I. Fisk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of food processing and choice of flavour solvent was investigated using biscuits prepared with vanillin flavour as an example. Powder vanillin either was added directly into the dough or dissolved into flavour solvent then mixed into the dough. The impact of two commonly used flavour solvents on food quality was compared: propylene glycol (PG) or triacetin (TA). The analytical approach for vanillin detection was developed by chromatography (HPLC-PDA), and the standard extraction method for vanillin was also established. The results indicated the impact of solvent choice on vanillin level during biscuit preparation. After baking, TA as a more heat resistant solvent retained more vanillin than PG, so TA is a better solvent for products that undergo a heating process. The results also illustrated the impact of mixing and baking on vanillin stability in the matrices. The average loss of vanillin was 33% during mixing and 13% during baking, which indicated that the binding of vanillin to fat or flour before baking might cause larger loss than evaporation loss during baking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biscuit" title="biscuit">biscuit</a>, <a href="https://publications.waset.org/abstracts/search?q=flavour%20stability" title=" flavour stability"> flavour stability</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20quality" title=" food quality"> food quality</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillin" title=" vanillin"> vanillin</a> </p> <a href="https://publications.waset.org/abstracts/25487/impact-of-flavor-on-food-product-quality-a-case-study-of-vanillin-stability-during-biscuit-preparation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1089</span> Solvent Extraction of Rb and Cs from Jarosite Slag Using t-BAMBP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Haiyan">Zhang Haiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Zujun"> Su Zujun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Fengqi"> Zhao Fengqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lepidolite after extraction of Lithium by sulfate produced many jarosite slag which contains a lot of Rb and Cs.The separation and recovery of Rubidium(Rb) and Cesium(Cs) can make full of use of Lithium mica. XRF analysis showed that the slag mainly including K Rb Cs Al and etc. Fractional solvent extraction tests were carried out; the results show that using20% t-BAMBP plus 80% sulfonated kerosene, the separation of Rb and Cs can be achieved by adjusting the alkalinity. Extraction is the order of Cs Rb, ratio of Cs to Rb and ratio of Rb to K can reach above 1500 and 2500 respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cesium" title="cesium">cesium</a>, <a href="https://publications.waset.org/abstracts/search?q=jarosite%20slag" title=" jarosite slag"> jarosite slag</a>, <a href="https://publications.waset.org/abstracts/search?q=rubidium" title=" rubidium"> rubidium</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=t-BAMBP" title=" t-BAMBP"> t-BAMBP</a> </p> <a href="https://publications.waset.org/abstracts/82683/solvent-extraction-of-rb-and-cs-from-jarosite-slag-using-t-bambp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1088</span> Salting Effect in Partially Miscible Systems of Water/Acétic Acid/1-Butanol at 298.15k: Experimental Study and Estimation of New Solvent-Solvent and Salt-Solvent Binary Interaction Parameters for NRTL Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bourayou">N. Bourayou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20-H.%20Meniai"> A. -H. Meniai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gouaoura"> A. Gouaoura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of salt can either raise or lower the distribution coefficient of a solute acetic acid in liquid- liquid equilibria. The coefficient of solute is defined as the ratio of the composition of solute in solvent rich phase to the composition of solute in diluents (water) rich phase. The phenomena are known as salting–out or salting-in, respectively. The effect of monovalent salt, sodium chloride and the bivalent salt, sodium sulfate on the distribution of acetic acid between 1-butanol and water at 298.15K were experimentally shown to be effective in modifying the liquid-liquid equilibrium of water/acetic acid/1-butanol system in favour of the solvent extraction of acetic acid from an aqueous solution with 1-butanol, particularly at high salt concentrations of both salts. All the two salts studied are found to have to salt out effect for acetic acid in varying degrees. The experimentally measured data were well correlated by Eisen-Joffe equation. NRTL model for solvent mixtures containing salts was able to provide good correlation of the present liquid-liquid equilibrium data. Using the regressed salt concentration coefficients for the salt-solvent interaction parameters and the solvent-solvent interaction parameters obtained from the same system without salt. The calculated phase equilibrium was in a quite good agreement with the experimental data, showing the ability of NRTL model to correlate salt effect on the liquid-liquid equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity%20coefficient" title="activity coefficient">activity coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=Eisen-Joffe" title=" Eisen-Joffe"> Eisen-Joffe</a>, <a href="https://publications.waset.org/abstracts/search?q=NRTL%20model" title=" NRTL model"> NRTL model</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20chloride" title=" sodium chloride"> sodium chloride</a> </p> <a href="https://publications.waset.org/abstracts/33804/salting-effect-in-partially-miscible-systems-of-wateracetic-acid1-butanol-at-29815k-experimental-study-and-estimation-of-new-solvent-solvent-and-salt-solvent-binary-interaction-parameters-for-nrtl-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1087</span> Defining Unconventional Hydrocarbon Parameter Using Shale Play Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudi%20Ryacudu">Rudi Ryacudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edi%20Artono"> Edi Artono</a>, <a href="https://publications.waset.org/abstracts/search?q=Gema%20Wahyudi%20Purnama"> Gema Wahyudi Purnama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil and gas consumption in Indonesia is currently on the rise due to its nation economic improvement. Unfortunately, Indonesia’s domestic oil production cannot meet it’s own consumption and Indonesia has lost its status as Oil and Gas exporter. Even worse, our conventional oil and gas reserve is declining. Unwilling to give up, the government of Indonesia has taken measures to invite investors to invest in domestic oil and gas exploration to find new potential reserve and ultimately increase production. Yet, it has not bear any fruit. Indonesia has taken steps now to explore new unconventional oil and gas play including Shale Gas, Shale Oil and Tight Sands to increase domestic production. These new plays require definite parameters to differentiate each concept. The purpose of this paper is to provide ways in defining unconventional hydrocarbon reservoir parameters in Shale Gas, Shale Oil and Tight Sands. The parameters would serve as an initial baseline for users to perform analysis of unconventional hydrocarbon plays. Some of the on going concerns or question to be answered in regards to unconventional hydrocarbon plays includes: 1. The TOC number, 2. Has it been well “cooked” and become a hydrocarbon, 3. What are the permeability and the porosity values, 4. Does it need a stimulation, 5. Does it has pores, and 6. Does it have sufficient thickness. In contrast with the common oil and gas conventional play, Shale Play assumes that hydrocarbon is retained and trapped in area with very low permeability. In most places in Indonesia, hydrocarbon migrates from source rock to reservoir. From this case, we could derive a theory that Kitchen and Source Rock are located right below the reservoir. It is the starting point for user or engineer to construct basin definition in relation with the tectonic play and depositional environment. Shale Play concept requires definition of characteristic, description and reservoir identification to discover reservoir that is technically and economically possible to develop. These are the steps users and engineers has to do to perform Shale Play: a. Calculate TOC and perform mineralogy analysis using water saturation and porosity value. b. Reconstruct basin that accumulate hydrocarbon c. Brittlenes Index calculated form petrophysical and distributed based on seismic multi attributes d. Integrated natural fracture analysis e. Best location to place a well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon" title="unconventional hydrocarbon">unconventional hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20gas" title=" shale gas"> shale gas</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20oil%20tight%20sand%20reservoir%20parameters" title=" shale oil tight sand reservoir parameters"> shale oil tight sand reservoir parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20play" title=" shale play"> shale play</a> </p> <a href="https://publications.waset.org/abstracts/12493/defining-unconventional-hydrocarbon-parameter-using-shale-play-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1086</span> Unconventional Hydrocarbon Management Strategy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edi%20Artono">Edi Artono</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Tamtomo"> Budi Tamtomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gema%20Wahyudi%20Purnama"> Gema Wahyudi Purnama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world energy demand increasing extreamly high time by time, including domestic demand. That is impossible to avoid because energy a country demand proportional to surge in the number of residents, economic growth and addition of industrial sector. Domestic Oil and gas conventional reserves depleted naturally while production outcome from reservoir also depleted time to time. In the other hand, new reserve did not discover significantly to replace it all. Many people are investigating to looking for new alternative energy to answer the challenge. There are several option to solve energy fossil needed problem using Unconventional Hydrocarbon. There are four aspects to consider as a management reference in order that Unconventional Hydrocarbon business can work properly, divided to: 1. Legal aspect, 2. Environmental aspect, 3. Technical aspect and 4. Economy aspect. The economic aspect as the key to whether or not a project can be implemented or not in Oil and Gas business scheme, so do Unconventional Hydorcarbon business scheme. The support of regulation are needed to buttress Unconventional Hydorcarbon business grow up and make benefits contribute to Government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20energy" title="alternative energy">alternative energy</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon" title=" unconventional hydrocarbon"> unconventional hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation%20support" title=" regulation support"> regulation support</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20strategy" title=" management strategy"> management strategy</a> </p> <a href="https://publications.waset.org/abstracts/12494/unconventional-hydrocarbon-management-strategy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1085</span> Adsorbent Removal of Oil Spills Using Bentonite Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Mohamed%20Elsaid%20Abdelrahman">Saad Mohamed Elsaid Abdelrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption method is one of the best modern techniques used in removing pollutants, especially organic hydrocarbon compounds, from polluted water. Through this research, bentonite clay can be used to remove organic hydrocarbon compounds, such as heptane and octane, resulting from oil spills in seawater. Bentonite clay can be obtained from the Kholayaz area, located north of Jeddah, at a distance of 80 km. Chemical analysis shows that bentonite clay consists of a mixture of silica, alumina and oxides of some elements. Bentonite clay can be activated in order to raise its adsorption efficiency and to make it suitable for removing pollutants using an ionic organic solvent. It is necessary to study some of the factors that could be in the efficiency of bentonite clay in removing oily organic compounds, such as the time of contact of the clay with heptane and octane solutions, pH and temperature, in order to reach the highest adsorption capacity of bentonite clay. The temperature can be a few degrees Celsius higher. The adsorption capacity of the clay decreases when the temperature is raised more than 4°C to reach its lowest value at the temperature of 50°C. The results show that the friction time of 30 minutes and the pH of 6.8 is the best conditions to obtain the highest adsorption capacity of the clay, 467 mg in the case of heptane and 385 mg in the case of octane compound. Experiments conducted on bentonite clay were encouraging to select it to remove heavy molecular weight pollutants such as petroleum compounds under study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title="adsorbent">adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite%20clay" title=" bentonite clay"> bentonite clay</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spills" title=" oil spills"> oil spills</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/163185/adsorbent-removal-of-oil-spills-using-bentonite-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1084</span> Producing Lutein Powder from Algae by Extraction and Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zexin%20Lei">Zexin Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Langrish"> Timothy Langrish </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lutein is a type of carotene believed to be beneficial to the eyes. This study aims to explore the possibility of using a closed cycle spray drying system to produce lutein. The system contains a spray dryer, a condenser, a heater, and a pressure seal. Hexane, ethanol, and isopropanol will be used as organic solvents to compare the extraction effects. Several physical and chemical methods of cell disruption will be compared. By continuously sweeping the system with nitrogen, the oxygen content will be controlled below 2%, reducing the concentration of organic solvent below the explosion limit and preventing lutein from being oxidized. Lutein powder will be recovered in the collection device. The volatile organic solvent will be cooled in the condenser and deposited in the bottom until it is discharged from the bottom of the condenser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=closed%20cycle%20spray%20drying%20system" title="closed cycle spray drying system">closed cycle spray drying system</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20vulgaris" title=" Chlorella vulgaris"> Chlorella vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvent" title=" organic solvent"> organic solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20recovery" title=" solvent recovery"> solvent recovery</a> </p> <a href="https://publications.waset.org/abstracts/120838/producing-lutein-powder-from-algae-by-extraction-and-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>