CINXE.COM

Search results for: organic solvent

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: organic solvent</title> <meta name="description" content="Search results for: organic solvent"> <meta name="keywords" content="organic solvent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="organic solvent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="organic solvent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3041</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: organic solvent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3041</span> Producing Lutein Powder from Algae by Extraction and Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zexin%20Lei">Zexin Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Langrish"> Timothy Langrish </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lutein is a type of carotene believed to be beneficial to the eyes. This study aims to explore the possibility of using a closed cycle spray drying system to produce lutein. The system contains a spray dryer, a condenser, a heater, and a pressure seal. Hexane, ethanol, and isopropanol will be used as organic solvents to compare the extraction effects. Several physical and chemical methods of cell disruption will be compared. By continuously sweeping the system with nitrogen, the oxygen content will be controlled below 2%, reducing the concentration of organic solvent below the explosion limit and preventing lutein from being oxidized. Lutein powder will be recovered in the collection device. The volatile organic solvent will be cooled in the condenser and deposited in the bottom until it is discharged from the bottom of the condenser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=closed%20cycle%20spray%20drying%20system" title="closed cycle spray drying system">closed cycle spray drying system</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20vulgaris" title=" Chlorella vulgaris"> Chlorella vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvent" title=" organic solvent"> organic solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20recovery" title=" solvent recovery"> solvent recovery</a> </p> <a href="https://publications.waset.org/abstracts/120838/producing-lutein-powder-from-algae-by-extraction-and-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3040</span> Polyimide Supported Membrane Made of 2D-Coordination-Crosslinked Polyimide for Rapid Molecular Separation in Multi-Solvent Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Netsanet%20Kebede%20Hundessa">Netsanet Kebede Hundessa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Substrate modification of thin film composite (TFC) membranes with various crosslinkers is typically necessary for organic solvent nanofiltration (OSN) applications. This modification is aimed at enhancing membrane stability and solvent resistance, but it often results in a decline in permeance. This study introduces a distinct approach by developing a coordination-crosslinked polyimide substrate, which differs from the covalently-crosslinked substrates traditionally used. This developed substrate achieves enhanced solvent resistance, improved hydrophilicity, and optimized porous microstructure simultaneously. The study investigates the effects of an alkaline coagulation bath, subsequent ion exchange, and further solvent activation. The resulting TFC membrane successfully overcomes the typical permeability-selectivity trade-off of OSN membranes. It demonstrates significantly improved solvent permeance (1.5–2 times higher than previously reported data) with values of 65.2 LMH/bar for methanol, 33.1 LMH/bar for ethanol, and 59.1 LMH/bar for acetone while maintaining competitive solute rejection (>98% for Rose Bengal). This research is expected to provide a new direction for developing high-performance OSN composite membranes and other separation applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20coordinatiom" title="metal coordinatiom">metal coordinatiom</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite%20membrane" title=" thin film composite membrane"> thin film composite membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvent%20nanofiltration" title=" organic solvent nanofiltration"> organic solvent nanofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20activation" title=" solvent activation"> solvent activation</a> </p> <a href="https://publications.waset.org/abstracts/183068/polyimide-supported-membrane-made-of-2d-coordination-crosslinked-polyimide-for-rapid-molecular-separation-in-multi-solvent-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3039</span> Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20A.%20Nabeela%20Nasreen">S. A. A. Nabeela Nasreen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sundarrajan"> S. Sundarrajan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Syed%20Nizar"> S. A. Syed Nizar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvothermal" title=" solvothermal"> solvothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF" title=" ZIF"> ZIF</a> </p> <a href="https://publications.waset.org/abstracts/97314/layer-by-layer-coating-of-zinc-oxidemetal-organic-framework-nanocomposite-on-ceramic-support-for-solventsolvent-separation-using-pervaporation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3038</span> Magnetic Solvent Extraction Using Nanoparticles Coated by Oleic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nat%C3%A1lia%20C.%20C.%20Lobato">Natália C. C. Lobato</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%82ngela%20M.%20Ferreira"> Ângela M. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20B.%20Mansur"> Marcelo B. Mansur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In solvent extraction operations, large sedimentation areas in the mixer-settler are required when the disengagement of the aqueous and the organic phases is slow and/or difficult. The use of a magnetic organic liquid (also known as ferrofluid), consisting of magnetite nanoparticles coated by oleic acid dispersed in the organic diluent, has proven successful to speed up phase disengagement. The method, however, has never been used industrially; therefore, the aim of this study is to raise its main limitations. Tests were carried out using a ferrofluid containing 30 g/l of magnetite dissolved in commercial aliphatic kerosene Exxsol D80. The efficiency of cobalt extraction ([Co] = 1 g/l) with 10% v/v Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) at changing pH of the aqueous phase (2 to 7) was found unaffected in the conditions studied. However, the chemical resistance of the ferrofluid in contact with deionized water at changing acidity (from 10-7 to 2 mol/l) revealed that the nanoparticles are not resistant when contacted to aqueous solutions with a pH ≤ 2. Such result represents a serious limitation to the applicability of the method mainly to hydrometallurgical systems because solvent extraction operations are normally done in acid conditions, therefore more effective strategies to coat the particles are required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20solvent%20extraction" title="magnetic solvent extraction">magnetic solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=oleic%20acid" title=" oleic acid"> oleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetite%20nanoparticles" title=" magnetite nanoparticles"> magnetite nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanex%20272" title=" cyanex 272"> cyanex 272</a> </p> <a href="https://publications.waset.org/abstracts/41603/magnetic-solvent-extraction-using-nanoparticles-coated-by-oleic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3037</span> Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Kumar">Alok Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20Ram"> Hari Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebin%20Thomas"> Lebin Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ved%20Pal%20Singh"> Ved Pal Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amylase" title="amylase">amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activity" title=" enzyme activity"> enzyme activity</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20applications" title=" industrial applications"> industrial applications</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvent%20tolerant" title=" organic solvent tolerant"> organic solvent tolerant</a>, <a href="https://publications.waset.org/abstracts/search?q=protease" title=" protease"> protease</a> </p> <a href="https://publications.waset.org/abstracts/4042/production-of-organic-solvent-tolerant-hydrolytic-enzymes-amylase-and-protease-by-bacteria-isolated-from-soil-of-a-dairy-farm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3036</span> Microwave Accelerated Simultaneous Distillation –Extraction: Preparative Recovery of Volatiles from Food Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Mohamed">Ferhat Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukhatem%20Mohamed%20Nadjib"> Boukhatem Mohamed Nadjib</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemat%20Farid"> Chemat Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simultaneous distillation–extraction (SDE) is routinely used by analysts for sample preparation prior to gas chromatography analysis. In this work, a new process design and operation for microwave assisted simultaneous distillation – solvent extraction (MW-SDE) of volatile compounds was developed. Using the proposed method, isolation, extraction and concentration of volatile compounds can be carried out in a single step. To demonstrate its feasibility, MW-SDE was compared with the conventional technique, Simultaneous distillation–extraction (SDE), for gas chromatography-mass spectrometry (GC-MS) analysis of volatile compounds in a fresh orange juice and a dry spice “carvi seeds”. SDE method required long time (3 h) to isolate the volatile compounds, and large amount of organic solvent (200 mL of hexane) for further extraction, while MW-SDE needed little time (only 30 min) to prepare sample, and less amount of organic solvent (10 mL of hexane). These results show that MW-SDE–GC-MS is a simple, rapid and solvent-less method for determination of volatile compounds from aromatic plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title="essential oil">essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=carvi%20seeds" title=" carvi seeds"> carvi seeds</a> </p> <a href="https://publications.waset.org/abstracts/30977/microwave-accelerated-simultaneous-distillation-extraction-preparative-recovery-of-volatiles-from-food-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3035</span> Synthesis of Flavonoid Derivatives Precursors of Active Pharmaceutical Ingredients by Mechanical Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Abid">Imen Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Calvet"> Rachel Calvet</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Baltas"> Michel Baltas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flavonoids are secondary metabolites that belong to a polyphenolic class, present in fruits and vegetables, playing a significant role in biological systems. The structural variations of these flavonoids are associated with many biological and pharmacological activities (antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal, antiviral, and antimalarial). Given their importance in plants and health-promoting roles in humans, significant efforts have been devoted towards their isolation of flavonoids and chemical elaboration (organic synthesis). But with the increasing public concern over environmental degradation and future resources, it is of great importance for chemists to come up with different approaches, less hazardous to human health and the environment. Being employed in large amounts, the solvents used in organic synthesis are high on the list of environmental pollutants. To overcome these problems, our approach is to develop unconventional processes involving solvent-free conditions. The application of mechanical forces to solvent-free or solvent-less reaction mixtures through the use of ball mills offers many advantages over traditional solvent-based strategies. It is one of the unconventional activation methods, which makes it possible to overcome the use of solvents, in the context of green chemistry and more respectful of the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20synthesis" title="organic synthesis">organic synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=mecanochemistry" title=" mecanochemistry"> mecanochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20molecules" title=" pharmaceutical molecules"> pharmaceutical molecules</a> </p> <a href="https://publications.waset.org/abstracts/168281/synthesis-of-flavonoid-derivatives-precursors-of-active-pharmaceutical-ingredients-by-mechanical-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3034</span> Ionic Liquid 1-Butyl-3-Methylimidazolium Bromide as Reaction Medium for the Synthesis of Flavanones under Solvent-Free Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20Espindola">Cecilia Espindola</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Carlos%20Palacios"> Juan Carlos Palacios</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flavonoids are a large group of natural compounds which are found in many fruits and vegetables. A subgroup of these called flavanones display a wide range of biological activities, and they also have an important physiological role in plants. The ionic liquid (ILs) are compounds consisting of an organic cation with an organic or inorganic anion. Due to its unique properties such as high electrical conductivity, wide temperature range of the liquid state, thermal and electrochemical stability, high ionic density and low volatility and flammability, are considered as ecological solvents in organic synthesis, catalysis, electrolytes in accumulators, and electrochemistry, non-volatile plasticizers, and chemical separation. It was synthesized ionic liquid IL 1-butyl-3-methylimidazolium bromide free-solvent and used as reaction medium for flavanones synthesis, under several reaction conditions of temperature, time and production. The obtained compounds were analyzed by melting point, elemental analysis, IR and UV-vis spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1-butyl-3-methylimidazolium%20bromide" title="1-butyl-3-methylimidazolium bromide">1-butyl-3-methylimidazolium bromide</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=free-solvent" title=" free-solvent"> free-solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20spectroscopy" title=" IR spectroscopy"> IR spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/108195/ionic-liquid-1-butyl-3-methylimidazolium-bromide-as-reaction-medium-for-the-synthesis-of-flavanones-under-solvent-free-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3033</span> A New Seperation / Precocentration and Determination Procedure Based on Solidified Floating Organic Drop Microextraction (SFODME) of Lead by Using Graphite Furnace Atomic Absorption Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyda%20Donmez">Seyda Donmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Oya%20Aydin%20Urucu"> Oya Aydin Urucu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ece%20Kok%20Yetimoglu"> Ece Kok Yetimoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solidified floating organic drop microextraction was used for a preconcentration method of trace amount of lead. The analyte was complexed with 1-(2-pyridylazo)-2-naphtol and 1-undecanol, acetonitrile was added as an extraction and dispersive solvent respectively. The influences of some analytical parameters pH, volumes of extraction and disperser solvent, concentration of chelating agent, and concentration of salt were optimized. Under the optimum conditions the detection limits of Pb (II) was determined. The procedure was validated for the analysis of NCS DC 73347a hair standard reference material with satisfactory result. The developed procedure was successfully applied to food and water samples for detection of Pb (II) ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20methods" title="analytical methods">analytical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20furnace%20atomic%20absorption%20spectrometry" title=" graphite furnace atomic absorption spectrometry"> graphite furnace atomic absorption spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=solidified%20floating%20organic%20drop%20microextraction" title=" solidified floating organic drop microextraction"> solidified floating organic drop microextraction</a> </p> <a href="https://publications.waset.org/abstracts/48197/a-new-seperation-precocentration-and-determination-procedure-based-on-solidified-floating-organic-drop-microextraction-sfodme-of-lead-by-using-graphite-furnace-atomic-absorption-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3032</span> Production of Pour Point Depressant for Paraffinic Crude Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosaad%20Attia%20Elkasaby">Mosaad Attia Elkasaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crude oil contains paraffines, aromatics, and asphaltenes in addition to some organic impurities, with increasing demands to reduce the cost of crude oil production, the uses of a pour point depressant is mandatory to maintain good flow rate. The wax materials cause many problems during production, storage, and transport, especially at low temperature, as these waxes tend, at low temperatures, to precipitate on the wall lines, thus leads to the high viscosity of crude oil and impede the flow rate, which represents an additional burden for crude oil pumping system from the place of production to the refinery. There are many ways to solve this problem, including, but not limited to, heat the crude and the use of organic solvents. But one of the most important disadvantages of these methods is the high economic cost. The aim of this innovation is to manufacture some polymeric materials (polymers based on aniline) that are processed locally that can be used as a pour point depressant of crude oil. For the first time, polymer based on aniline is modified and used with a number of organic solvents and tested with solvent (Styrene). It was found that the polymer based on aniline, when modified, had full solubility in styrene, unlike other organic solvent that was used in the past, such as chloroform and toluene. We also used a new solvent (PONA) that is obtained from the process of hydrotreating and separation of straight run naphtha to dissolve polymer based on aniline as a pour point depressant of crude oil. This innovative include studies conducted on highly paraffinic crude oil (C.O.1 and C.O.2). On using concentration (2500 ppm) of polymer based on aniline, the pour point of crude oil has decreased from +33 to - 9°C in case of crude oil (C.O.1) and from + 42 to – 6°C in case crude oil (C.O.2) at the same concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PPD" title="PPD">PPD</a>, <a href="https://publications.waset.org/abstracts/search?q=aniline" title=" aniline"> aniline</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffinic%20crude%20oils" title=" paraffinic crude oils"> paraffinic crude oils</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/159751/production-of-pour-point-depressant-for-paraffinic-crude-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3031</span> Olefin and Paraffin Separation Using Simulations on Extractive Distillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem">Muhammad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20A.%20Al-Rabiah"> Abdulrahman A. Al-Rabiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technical mixture of C4 containing 1-butene and n-butane are very close to each other with respect to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent shows an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator; moreover NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99 % pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1 : 7.9 and 15 plates for the solvent recovery column, previously feed to solvent ratio was more than this and the proposed plates were 30, which can economize the separation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extractive%20distillation" title="extractive distillation">extractive distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=1-butene" title=" 1-butene"> 1-butene</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspen%20Plus" title=" Aspen Plus"> Aspen Plus</a>, <a href="https://publications.waset.org/abstracts/search?q=ACN%20solvent" title=" ACN solvent "> ACN solvent </a> </p> <a href="https://publications.waset.org/abstracts/10500/olefin-and-paraffin-separation-using-simulations-on-extractive-distillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3030</span> Solvent Extraction in Ionic Liquids: Structuration and Aggregation Effects on Extraction Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandrine%20Dourdain">Sandrine Dourdain</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Lopez"> Cesar Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamir%20Sukhbaatar"> Tamir Sukhbaatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilhem%20Arrachart"> Guilhem Arrachart</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Pellet-Rostaing"> Stephane Pellet-Rostaing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A promising challenge in solvent extraction is to replace the conventional organic solvents, with ionic liquids (IL). Depending on the extraction systems, these new solvents show better efficiency than the conventional ones. Although some assumptions based on ions exchanges have been proposed in the literature, these properties are not predictable because the involved mechanisms are still poorly understood. It is well established that the mechanisms underlying solvent extraction processes are based not only on the molecular chelation of the extractant molecules but also on their ability to form supra-molecular aggregates due to their amphiphilic nature. It is therefore essential to evaluate how IL affects the aggregation properties of the extractant molecules. Our aim is to evaluate the influence of IL structure and polarity on solvent extraction mechanisms, by looking at the aggregation of the extractant molecules in IL. We compare extractant systems that are well characterized in common solvents and show thanks to SAXS and SANS measurements, that in the absence of IL ion exchange mechanisms, extraction properties are related to aggregation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction%20in%20Ionic%20liquid" title="solvent extraction in Ionic liquid">solvent extraction in Ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure" title=" Ionic liquids structure"> Ionic liquids structure</a>, <a href="https://publications.waset.org/abstracts/search?q=SAXS" title=" SAXS"> SAXS</a>, <a href="https://publications.waset.org/abstracts/search?q=SANS" title=" SANS"> SANS</a> </p> <a href="https://publications.waset.org/abstracts/107612/solvent-extraction-in-ionic-liquids-structuration-and-aggregation-effects-on-extraction-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3029</span> The Impact of Initiators on Fast Drying Traffic Marking Paint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Taheri">Maryam Taheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jahanfar"> Mehdi Jahanfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenji%20Ogino"> Kenji Ogino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast drying traffic marking paint comprising a solvent-borne resin, a filler, a pigment and a solvent that is especially suitable for colder ambient (temperatures near freezing) applications, where waterborne traffic paint cannot be used. Acrylic resins based on methyl methacrylate, butyl acrylate, acrylic acid, and styrene were synthesized in different solvents using organic peroxide initiators such as peroxyester, peroxyketal, dialkylperoxide and azo. After polymerization, the molecular weight (Mw), polydispersity index= PDI (Mw/Mn), viscosity, total residual monomer and APHA color were evaluated and results of organic peroxide initiators (t- butyl and t-amyl derivatives) were also compared with the azo initiator. The Mw, PDI, viscosity, mass conversation and APHA color of resins with t-amyl derivatives of organic peroxide initiators are very proper. The results of the traffic marking paints test such as non-volatile matter, no- pick- up time, hiding power, resistance to wear and water resistance study that produced with these resins also confirm this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20drying%20traffic%20marking%20paint" title="fast drying traffic marking paint">fast drying traffic marking paint</a>, <a href="https://publications.waset.org/abstracts/search?q=acrylic%20resin" title=" acrylic resin"> acrylic resin</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20peroxide%20initiator" title=" organic peroxide initiator"> organic peroxide initiator</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxyester" title=" peroxyester"> peroxyester</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxyketal" title=" peroxyketal"> peroxyketal</a>, <a href="https://publications.waset.org/abstracts/search?q=dialkylperoxide%20and%20azo%20initiator" title=" dialkylperoxide and azo initiator"> dialkylperoxide and azo initiator</a> </p> <a href="https://publications.waset.org/abstracts/82325/the-impact-of-initiators-on-fast-drying-traffic-marking-paint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3028</span> Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Soliman">Fathi Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title="molecular dynamics simulation">molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=n-paraffin" title=" n-paraffin"> n-paraffin</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvents" title=" organic solvents"> organic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a> </p> <a href="https://publications.waset.org/abstracts/129674/predicting-the-solubility-of-aromatic-waste-petroleum-paraffin-wax-in-organic-solvents-to-separate-ultra-pure-phase-change-materials-pcms-by-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3027</span> Process Simulation of 1-Butene Separation from C4 Mixture by Extractive Distillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem">Muhammad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20A.%20Al-Rabiah"> Abdulrahman A. Al-Rabiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasif%20Mughees"> Wasif Mughees</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technical mixture of C4 containing 1-butene and n-butane are very close to each other with regard to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent plays an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator. Moreover, NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99% pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1: 7.9 and 15 plates for the solvent recovery column. Previously feed to solvent ratio was more than this and the number of proposed plates were 30, which shows that the separation process can be economized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extractive%20distillation" title="extractive distillation">extractive distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=1-butene" title=" 1-butene"> 1-butene</a>, <a href="https://publications.waset.org/abstracts/search?q=aspen%20plus" title=" aspen plus"> aspen plus</a>, <a href="https://publications.waset.org/abstracts/search?q=ACN%20solvent" title=" ACN solvent"> ACN solvent</a> </p> <a href="https://publications.waset.org/abstracts/5813/process-simulation-of-1-butene-separation-from-c4-mixture-by-extractive-distillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3026</span> Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Pauport%C3%A9">Thierry Pauporté</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Koussi"> Sana Koussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabrice%20Odobel"> Fabrice Odobel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiO" title="NiO">NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=p-type%20sensitized%20solar%20cells" title=" p-type sensitized solar cells"> p-type sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/66597/electrodeposition-of-nio-films-from-organic-solvent-based-electrolytic-solutions-for-solar-cell-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3025</span> Selective Solvent Extraction of Calcium and Magnesium from Concentrate Nickel Solutions Using Mixtures of Cyanex 272 and D2EHPA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20S.%20Guimar%C3%A3es">Alexandre S. Guimarães</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20B.%20Mansur"> Marcelo B. Mansur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of organophosphorus extractants Cyanex 272 and D2EHPA on the purification of concentrate nickel sulfate solutions was evaluated. Batch scale tests were carried out at pH range of 2 to 7 using a laboratory solution simulating concentrate nickel liquors as those typically obtained when sulfate intermediates from nickel laterite are re-leached and treated for the selective removal of cobalt, zinc, manganese and copper with Cyanex 272 ([Ca] = 0.57 g/L, [Mg] = 3.2 g/L, and [Ni] = 88 g/L). The increase on the concentration of D2EHPA favored the calcium extraction. The extraction of magnesium is dependent on the pH and of ratio of extractants D2EHPA and Cyanex 272 in the organic phase. The composition of the investigated organic phase did not affect nickel extraction. The number of stages is dependent on the magnesium extraction. The most favorable operating condition to selectively remove calcium and magnesium was determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title="solvent extraction">solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphorus%20extractants" title=" organophosphorus extractants"> organophosphorus extractants</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20earth%20metals" title=" alkaline earth metals"> alkaline earth metals</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/41602/selective-solvent-extraction-of-calcium-and-magnesium-from-concentrate-nickel-solutions-using-mixtures-of-cyanex-272-and-d2ehpa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3024</span> Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Y.%20Ali">Alaa Y. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalie%20P.%20Holmes"> Natalie P. Holmes</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Holdsworth"> John Holdsworth</a>, <a href="https://publications.waset.org/abstracts/search?q=Warwick%20Belcher"> Warwick Belcher</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Dastoor"> Paul Dastoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojing%20Zhou"> Xiaojing Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (T<sub>source</sub>) of 180 &deg;C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces.&nbsp; Systematic variation of hydrogen gas (H<sub>2</sub>) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (T<sub>growth</sub>) from 400 to 800 &deg;C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 &deg;C source carbon past the Cu foil at 600 &deg;C for 1 min. The deposition at 600 &deg;C with a H<sub>2</sub> flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm<sup>-1</sup> FWHM and a relative intensity ratio of the G to 2D bands (I<sub>G</sub>/I<sub>2D</sub>) of 0.21. This recipe fabricated a few layers of good quality graphene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20source" title=" carbon source"> carbon source</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20growth" title=" low temperature growth"> low temperature growth</a> </p> <a href="https://publications.waset.org/abstracts/100272/growth-of-multi-layered-graphene-using-organic-solvent-pmma-film-as-the-carbon-source-under-low-temperature-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3023</span> Improvement of Egyptian Vacuum Distillates by Solvent Dewaxing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehssan%20M.%20R.%20Nassef">Ehssan M. R. Nassef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> De-waxing of vacuum distillates by using solvent was investigated in the present study. The present work deals with studying solvent dewaxing system which have been developed to give better dewaxing performance with respect to the important factors in the choice of solvents which are good solubility of oil in the solvent and low solubility of wax in the solvent. In this study, solvent dewaxing process using Methyl Ethyl Ketone (MEK) and toluene are used for Egyptian vacuum distillates using two types of distillates. The effect of varying the composition of(MEK to toluene) on the percent yield of the oil, percent of wax, pour point, refractive index at 20 and 70°C, viscosity at 40 and 100°C, viscosity index and specific gravity of the oil produced for the two types of distillates (I & II) were evaluated. In the present study, the operating conditions of solvent dewaxing using MEK toluene mixture achieved the best pour point at -15°C for distillate I at (1:1) solvent composition mixture. At the same ratio of MEK to toluene the best specific gravity of oil produced changed from 0.871 to 0.8802, with refractive index of 1.84. Percent yield of 65% for oil was obtained. The results for distillate II, of higher specific gravity, are comparatively higher than those for distillate I. The effect of temperature was also investigated and the best temperature was -20°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewaxing" title="dewaxing">dewaxing</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20dewaxing" title=" solvent dewaxing"> solvent dewaxing</a>, <a href="https://publications.waset.org/abstracts/search?q=pour%20point" title=" pour point"> pour point</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricating%20oil%20production" title=" lubricating oil production"> lubricating oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=wax" title=" wax "> wax </a> </p> <a href="https://publications.waset.org/abstracts/22202/improvement-of-egyptian-vacuum-distillates-by-solvent-dewaxing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3022</span> Ionic Liquids as Substrates for Metal-Organic Framework Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julian%20Mehler">Julian Mehler</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Fischer"> Marcus Fischer</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Hartmann"> Martin Hartmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20S.%20Schulz"> Peter S. Schulz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last two decades, the synthesis of metal-organic frameworks (MOFs) has gained ever increasing attention. Based on their pore size and shape as well as host-guest interactions, they are of interest for numerous fields related to porous materials, like catalysis and gas separation. Usually, MOF-synthesis takes place in an organic solvent between room temperature and approximately 220 °C, with mixtures of polyfunctional organic linker molecules and metal precursors as substrates. Reaction temperatures above the boiling point of the solvent, i.e. solvothermal reactions, are run in autoclaves or sealed glass vessels under autogenous pressures. A relatively new approach for the synthesis of MOFs is the so-called ionothermal synthesis route. It applies an ionic liquid as a solvent, which can serve as a structure-directing template and/or a charge-compensating agent in the final coordination polymer structure. Furthermore, this method often allows for less harsh reaction conditions than the solvothermal route. Here a variation of the ionothermal approach is reported, where the ionic liquid also serves as an organic linker source. By using 1-ethyl-3-methylimidazolium terephthalates ([EMIM][Hbdc] and [EMIM]₂[bdc]), the one-step synthesis of MIL-53(Al)/Boehemite composites with interesting features is possible. The resulting material is already formed at moderate temperatures (90-130 °C) and is stabilized in the usually unfavored ht-phase. Additionally, in contrast to already published procedures for MIL-53(Al) synthesis, no further activation at high temperatures is mandatory. A full characterization of this novel composite material is provided, including XRD, SS-NMR, El-Al., SEM as well as sorption measurements and its interesting features are compared to MIL-53(Al) samples produced by the classical solvothermal route. Furthermore, the syntheses of the applied ionic liquids and salts is discussed. The influence of the degree of ionicity of the linker source [EMIM]x[H(2-x)bdc] on the crystal structure and the achievable synthesis temperature are investigated and give insight into the role of the IL during synthesis. Aside from the synthesis of MIL-53 from EMIM terephthalates, the use of the phosphonium cation in this approach is discussed as well. Additionally, the employment of ILs in the preparation of other MOFs is presented briefly. This includes the ZIF-4 framework from the respective imidazolate ILs and chiral camphorate based frameworks from their imidazolium precursors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=ionothermal%20synthesis" title=" ionothermal synthesis"> ionothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20synthesis" title=" material synthesis"> material synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=MIL-53" title=" MIL-53"> MIL-53</a>, <a href="https://publications.waset.org/abstracts/search?q=MOFs" title=" MOFs"> MOFs</a> </p> <a href="https://publications.waset.org/abstracts/76567/ionic-liquids-as-substrates-for-metal-organic-framework-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3021</span> Preconcentration and Determination of Cyproheptadine in Biological Samples by Hollow Fiber Liquid Phase Microextraction Coupled with High Performance Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Najari%20Moghadam">Sh. Najari Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Qomi"> M. Qomi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Raofie"> F. Raofie</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Khadiv"> J. Khadiv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a liquid phase microextraction by hollow fiber (HF-LPME) combined with high performance liquid chromatography-UV detector was applied to preconcentrate and determine trace levels of Cyproheptadine in human urine and plasma samples. Cyproheptadine was extracted from 10 mL alkaline aqueous solution (pH: 9.81) into an organic solvent (n-octnol) which was immobilized in the wall pores of a hollow fiber. Then, it was back-extracted into an acidified aqueous solution (pH: 2.59) located inside the lumen of the hollow fiber. This method is simple, efficient and cost-effective. It is based on pH gradient and differences between two aqueous phases. In order to optimize the HF-LPME, some affecting parameters including the pH of donor and acceptor phases, the type of organic solvent, ionic strength, stirring rate, extraction time and temperature were studied and optimized. Under optimal conditions enrichment factor, limit of detection (LOD) and relative standard deviation (RSD(%), n=3) were up to 112, 15 μg.L−1 and 2.7, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20samples" title="biological samples">biological samples</a>, <a href="https://publications.waset.org/abstracts/search?q=cyproheptadine" title=" cyproheptadine"> cyproheptadine</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20fiber" title=" hollow fiber"> hollow fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20microextraction" title=" liquid phase microextraction"> liquid phase microextraction</a> </p> <a href="https://publications.waset.org/abstracts/12240/preconcentration-and-determination-of-cyproheptadine-in-biological-samples-by-hollow-fiber-liquid-phase-microextraction-coupled-with-high-performance-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3020</span> Assessing Effective Parameters on the Extraction of Copper from Pregnant Leach Solution Using Chemorex CP-150</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kimia%20Kiaei">Kimia Kiaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hasan%20Golpayegani"> Mohammad Hasan Golpayegani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extraction of copper from a pregnant leach solution obtained through leaching was investigated in this study. Chemorex CP-150 was utilized as an organic extractant, while kerosene served as a diluent. The study focused on determining the optimal ratios of extractant to diluent, as well as the pH of the aqueous phase. Isotherm curves of extraction were generated, and Mc. Cabe-Thiele diagrams were constructed separately for an optimized experimental pH of 3.17 and a typical industrial pH of 2. Additionally, the sulfuric acid-to-PLS ratio and concentrations of interfering ions comprising Mn²⁺ and Fe³⁺ in the strip solution were evaluated during the stripping stage. The results indicated that the optimized values for the extractant-to-diluent ratio and pH were 5% and 3.17, respectively. The Mc. Cabe-Thiele diagrams revealed that at an aqueous-to-organic ratio of 1, the theoretical stages of solvent extraction at pH levels of 3.17 and 2 were one and two, respectively. Moreover, a sulfuric acid-to-PLS ratio of 20% was employed in the stripping stage, and it was observed that the concentrations of interfering ions fell within the acceptable range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=heap%20leaching" title=" heap leaching"> heap leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemorex%20CP-150" title=" Chemorex CP-150"> Chemorex CP-150</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnant%20leach%20solution" title=" pregnant leach solution"> pregnant leach solution</a> </p> <a href="https://publications.waset.org/abstracts/167510/assessing-effective-parameters-on-the-extraction-of-copper-from-pregnant-leach-solution-using-chemorex-cp-150" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3019</span> Purification of Zr from Zr-Hf Resources Using Crystallization in HF-HCl Solvent Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenichi%20Hirota">Kenichi Hirota</a>, <a href="https://publications.waset.org/abstracts/search?q=Jifeng%20Wang"> Jifeng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadao%20Araki"> Sadao Araki</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Endo"> Koji Endo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hideki%20Yamamoto"> Hideki Yamamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zirconium (Zr) has been used as a fuel cladding tube for nuclear reactors, because of the excellent corrosion resistance and the low adsorptive material for neutron. Generally speaking, the natural resource of Zr is often containing Hf that has similar properties. The content of Hf in the Zr resources is about 2~4 wt%. In the industrial use, the content of Hf in Zr resources should be lower than the 100 ppm. However, the separation of Zr and Hf is not so easy, because of similar chemical and physical properties such as melting point, boiling point and things. Solvent extraction method has been applied for the separation of Zr and Hf from Zr natural resources. This method can separate Hf with high efficiency (Hf < 100ppm), however, it needs much amount of organic solvents for solvent extraction and the cost of its disposal treatment is high. Therefore, we attached attention for the fractional crystallization. This separation method depends on the solubility difference of Zr and Hf in the solvent. In this work, hexafluorozirconate (hafnate) (K2Zr(Hf)F6) was used as model compound. Solubility of K2ZrF6 in water showed lower than that of K2HfF6. By repeating of this treatment, it is possible to purify Zr, practically. In this case, 16-18 times of recrystallization stages were needed for its high purification. The improvement of the crystallization process was carried out in this work. Water, hydrofluoric acid (HF) and hydrofluoric acid (HF) +hydrochloric acid (HCl) mixture were chosen as solvent for dissolution of Zr and Hf. In the experiment, 10g of K2ZrF6 was added to each solvent of 100mL. Each solution was heated for 1 hour at 353K. After 1h of this operation, they were cooled down till 293K, and were held for 5 hours at 273K. Concentration of Zr or Hf was measured using ICP analysis. It was found that Hf was separated from Zr-Hf mixed compound with high efficiency, when HF-HCl solution was used for solvent of crystallization. From the comparison of the particle size of each crystal by SEM, it was confirmed that the particle diameter of the crystal showed smaller size with decreasing of Hf content. This paper concerned with purification of Zr from Zr-Hf mixture using crystallization method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystallization" title="crystallization">crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconium" title=" zirconium"> zirconium</a>, <a href="https://publications.waset.org/abstracts/search?q=hafnium" title=" hafnium"> hafnium</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/35531/purification-of-zr-from-zr-hf-resources-using-crystallization-in-hf-hcl-solvent-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3018</span> Investigation of Solvent Effect on Viscosity of Lubricant in Disposable Medical Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Bagheri">Hamed Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyd%20Javid%20Shariati"> Seyd Javid Shariati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of type and amount of solvent on lubricant which is used in disposable medical devices are investigated in this article. Two kinds of common solvent, n-Hexane and n-Heptane, are used. The mechanical behavior of syringe has shown that n-Heptane has better mixing ratio and also more effective spray process in the barrel of syringe than n-Hexane because of similar solubility parameter to silicon oil. The results revealed that movement of plunger in the barrel increases when pure silicone is used because non-uniform film is created on the surface of barrel, and also, it seems that the form of silicon is converted from oil to gel due to sterilization process. The results showed that the convenient mixing ratio of solvent/lubricant oil is 80/20. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disposal%20medical%20devices" title="disposal medical devices">disposal medical devices</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricant%20oil" title=" lubricant oil"> lubricant oil</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20effect" title=" solvent effect"> solvent effect</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility%20parameter" title=" solubility parameter"> solubility parameter</a> </p> <a href="https://publications.waset.org/abstracts/72192/investigation-of-solvent-effect-on-viscosity-of-lubricant-in-disposable-medical-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3017</span> The Solvent Extraction of Uranium, Plutonium and Thorium from Aqueous Solution by 1-Hydroxyhexadecylidene-1,1-Diphosphonic Acid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhoun%20Ali">M. Bouhoun Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Badjah%20Hadj%20Ahmed"> A. Y. Badjah Hadj Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Attou"> M. Attou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elias"> A. Elias</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Didi"> M. A. Didi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the solvent extraction of uranium(VI), plutonium(IV) and thorium(IV) from aqueous solutions using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) in treated kerosene has been investigated. The HHDPA was previously synthesized and characterized by FT-IR, 1H NMR, 31P NMR spectroscopy and elemental analysis. The effects contact time, initial pH, initial metal concentration, aqueous/organic phase ratio, extractant concentration and temperature on the extraction process have been studied. An empirical modelling was performed by using a 25 full factorial design, and regression equation for extraction metals was determined from the data. The conventional log-log analysis of the extraction data reveals that ratios of extractant to extracted U(VI), Pu(IV) and Th(IV) are 1:1, 1:2 and 1:2, respectively. Thermodynamic parameters showed that the extraction process was exothermic heat and spontaneous. The obtained optimal parameters were applied to real effluents containing uranium(VI), plutonium(IV) and thorium(IV) ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title="solvent extraction">solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium" title=" uranium"> uranium</a>, <a href="https://publications.waset.org/abstracts/search?q=plutonium" title=" plutonium"> plutonium</a>, <a href="https://publications.waset.org/abstracts/search?q=thorium" title=" thorium"> thorium</a>, <a href="https://publications.waset.org/abstracts/search?q=1-hydroxyhexadecylidene-1-1-diphosphonic%20acid" title=" 1-hydroxyhexadecylidene-1-1-diphosphonic acid"> 1-hydroxyhexadecylidene-1-1-diphosphonic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20solution" title=" aqueous solution"> aqueous solution</a> </p> <a href="https://publications.waset.org/abstracts/37851/the-solvent-extraction-of-uranium-plutonium-and-thorium-from-aqueous-solution-by-1-hydroxyhexadecylidene-11-diphosphonic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3016</span> First Approach on Lycopene Extraction Using Limonene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ferhat">M. A. Ferhat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Boukhatem"> M. N. Boukhatem</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Chemat"> F. Chemat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lycopene extraction with petroleum derivatives as solvents has caused safety, health, and environmental concerns everywhere. Thus, finding a safe alternative solvent will have a strong and positive impact on environments and general health of the world population. d-limonene from the orange peel was extracted through a steam distillation procedure followed by a deterpenation process and combining this achievement by using it as a solvent for extracting lycopene from tomato fruit as a substitute of dichloromethane. Lycopene content of fresh tomatoes was determined by high-performance liquid chromatography after extraction. Yields obtained for both extractions showed that yields of d-limonene’s extracts were almost equivalent to those obtained using dichloromethane. The proposed approach using a green solvent to perform extraction is useful and can be considered as a nice alternative to conventional petroleum solvent where toxicity for both operator and environment is reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20solvent" title="alternative solvent">alternative solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=d-limonene" title=" d-limonene"> d-limonene</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lycopene" title=" lycopene"> lycopene</a> </p> <a href="https://publications.waset.org/abstracts/51267/first-approach-on-lycopene-extraction-using-limonene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3015</span> Influence of Cationic Surfactant (TTAB) on the Rate of Dipeptide (Gly-DL-Asp) Ninhydrin Reaction in Absence and Presence of Organic Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Akram">Mohd. Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20M.%20Saeed"> A. A. M. Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surfactants are widely used in our daily life either directly in household and personal care products or indirectly in the industrial processes. The kinetics of the interaction of glycyl-DL-aspartic acid (Gly-DL-Asp) with ninhydrin has been investigated spectrophotometrically in aqueous and organic-solvent media in the absence and presence of cationic surfactant of tetradecyltrimethylammonium bromide (TTAB). The study was carried out under different experimental conditions. The first and fractional order-rate were observed for [Gly-DL-Asp] and [ninhydrin], respectively. The reaction was enhanced about four-fold by TTAB micelles. The effect of organic solvents was studied at a constant concentration of TTAB and showed an increase in the absorbance as well as the rate constant for the formation of product (Ruhemann's purple). The results obtained in micellar media are treated quantitatively in terms of pseudo-phase and Piszkiewicz cooperativity models. The Arrhenius and Eyring equations are valid for the reaction over the range of temperatures used and different activation parameters (Ea, ∆H#, ∆S#, and ∆G#) have been evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycyl-DL-aspartic%20acid" title="glycyl-DL-aspartic acid">glycyl-DL-aspartic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ninhydrin" title=" ninhydrin"> ninhydrin</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvents" title=" organic solvents"> organic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=TTAB" title=" TTAB"> TTAB</a> </p> <a href="https://publications.waset.org/abstracts/18950/influence-of-cationic-surfactant-ttab-on-the-rate-of-dipeptide-gly-dl-asp-ninhydrin-reaction-in-absence-and-presence-of-organic-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3014</span> Solvent-Aided Dispersion of Tannic Acid to Enhance Flame Retardancy of Epoxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Korey">Matthew Korey</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20Youngblood"> Jeffrey Youngblood</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Howarter"> John Howarter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Significance: Tannic acid (TA) is a bio-based high molecular weight organic, aromatic molecule that has been found to increase thermal stability and flame retardancy of many polymer matrices when used as an additive. Although it is biologically sourced, TA is a pollutant in industrial wastewater streams, and there is a desire to find applications in which to downcycle this molecule after extraction from these streams. Additionally, epoxy thermosets have revolutionized many industries, but are too flammable to be used in many applications without additives which augment their flame retardancy (FR). Many flame retardants used in epoxy thermosets are synthesized from petroleum-based monomers leading to significant environmental impacts on the industrial scale. Many of these compounds also have significant impacts on human health. Various bio-based modifiers have been developed to improve the FR of the epoxy resin; however, increasing FR of the system without tradeoffs with other properties has proven challenging, especially for TA. Methodologies: In this work, TA was incorporated into the thermoset by use of solvent-exchange using methyl ethyl ketone, a co-solvent for TA, and epoxy resin. Samples were then characterized optically (UV-vis spectroscopy and optical microscopy), thermally (thermogravimetric analysis and differential scanning calorimetry), and for their flame retardancy (mass loss calorimetry). Major Findings: Compared to control samples, all samples were found to have increased thermal stability. Further, the addition of tannic acid to the polymer matrix by the use of solvent greatly increased the compatibility of the additive in epoxy thermosets. By using solvent-exchange, the highest loading level of TA found in literature was achieved in this work (40 wt%). Conclusions: The use of solvent-exchange shows promises for circumventing the limitations of TA in epoxy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant" title=" flame retardant"> flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=tannic%20acid" title=" tannic acid"> tannic acid</a> </p> <a href="https://publications.waset.org/abstracts/116586/solvent-aided-dispersion-of-tannic-acid-to-enhance-flame-retardancy-of-epoxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3013</span> Spatial and Seasonal Distribution of Persistent Organic Pollutant (Polychlorinated Biphenyl) Along the Course of Buffalo River, Eastern Cape Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrazaq%20Yahaya">Abdulrazaq Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Omobola%20Okoh"> Omobola Okoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Okoh"> Anthony Okoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polychlorinated biphenyls (PCBs) are generated from short emission or leakage from capacitors and electrical transformers, industrial chemicals wastewater discharge and careless disposal of wastes. They are toxic, semi-volatile compounds which can persist in the environment, hence classified as persistent organic pollutants. Their presence in the environmental matrices has become a global concern. In this study, we assessed the concentrations and distribution patterns of 19 polychlorinated biphenyls congeners (PCB 1, 5, 18, 31, 44, 52, 66, 87, 101, 110, 138, 141, 151, 153, 170, 180, 183, 187, and 206) at six sampling points in water along the course of Buffalo River, Eastern Cape, South Africa. Solvent extraction followed by sulphuric acid, potassium permanganate and silica gel cleanup were used in this study. The analysis was done with gas chromatography electron capture detector (GC-ECD). The results of the analysis of all the 19 PCBs congeners ranged from not detectable to 0.52 ppb and 2.5 ppb during summer and autumn periods respectively. These values are generally higher than the World Health Organization (WHO) maximum permissible limit. Their presence in the waterbody suggests an increase in anthropogenic activities over the seasons. In view of their volatility, the compounds are transportable over long distances by air currents away from their point of origin putting the health of the communities at risk, thus suggesting the need for strict regulations on the use as well as save disposal of this group of compounds in the communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutants" title="organic pollutants">organic pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyls" title=" polychlorinated biphenyls"> polychlorinated biphenyls</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a> </p> <a href="https://publications.waset.org/abstracts/56910/spatial-and-seasonal-distribution-of-persistent-organic-pollutant-polychlorinated-biphenyl-along-the-course-of-buffalo-river-eastern-cape-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3012</span> Study of Bis(Trifluoromethylsulfonyl)Imide Based Ionic Liquids by Gas Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Mutelet">F. Mutelet</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Cesari"> L. Cesari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of safer and environmentally friendly processes and products is needed to achieve sustainable production and consumption patterns. Ionic liquids, which are of great interest to the chemical and related industries because of their attractive properties as solvents, should be considered. Ionic liquids are comprised of an asymmetric, bulky organic cation and a weakly coordinating organic or inorganic anion. A large number of possible combinations allows for the ability to ‘fine tune’ the solvent properties for a specific purpose. Physical and chemical properties of ionic liquids are not only influenced by the nature of the cation and the nature of cation substituents but also by the polarity and the size of the anion. These features infer to ionic liquids numerous applications, in organic synthesis, separation processes, and electrochemistry. Separation processes required a good knowledge of the behavior of organic compounds with ionic liquids. Gas chromatography is a useful tool to estimate the interactions between organic compounds and ionic liquids. Indeed, retention data may be used to determine infinite dilution thermodynamic properties of volatile organic compounds in ionic liquids. Among others, the activity coefficient at infinite dilution is a direct measure of solute-ionic liquid interaction. In this work, infinite dilution thermodynamic properties of volatile organic compounds in specific bis(trifluoromethylsulfonyl)imide based ionic liquids measured by gas chromatography is presented. It was found that apolar compounds are not miscible in this family of ionic liquids. As expected, the solubility of organic compounds is related to their polarity and hydrogen-bond. Through activity coefficients data, the performance of these ionic liquids was evaluated for different separation processes (benzene/heptane, thiophene/heptane and pyridine/heptane). Results indicate that ionic liquids may be used for the extraction of polar compounds (aromatics, alcohols, pyridine, thiophene, tetrahydrofuran) from aliphatic media. For example, 1-benzylpyridinium bis(trifluoromethylsulfonyl) imide and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide are more efficient for the extraction of aromatics or pyridine from aliphatics than classical solvents. Ionic liquids with long alkyl chain length present important capacity values but their selectivity values are low. In conclusion, we have demonstrated that specific bis(trifluoromethylsulfonyl)imide based ILs containing polar chain grafted on the cation (for example benzyl or cyclohexyl) increases considerably their performance in separation processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interaction%20organic%20solvent-ionic%20liquid" title="interaction organic solvent-ionic liquid">interaction organic solvent-ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=solvation%20model" title=" solvation model"> solvation model</a>, <a href="https://publications.waset.org/abstracts/search?q=COSMO-RS" title=" COSMO-RS"> COSMO-RS</a> </p> <a href="https://publications.waset.org/abstracts/106228/study-of-bistrifluoromethylsulfonylimide-based-ionic-liquids-by-gas-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=101">101</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=102">102</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20solvent&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10