CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 458 results for author: <span class="mathjax">Bond, J R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bond, J R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bond%2C+J+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bond, J R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19046">arXiv:2410.19046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19046">pdf</a>, <a href="https://arxiv.org/format/2410.19046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A measurement of galaxy cluster temperatures through relativistic corrections to the thermal Sunyaev-Zeldovich effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herv%C3%ADas-Caimapo%2C+C">Carlos Herv铆as-Caimapo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A">Arthur Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Marrewijk%2C+J">Joshiwa van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McCarthy%2C+F">Fiona McCarthy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19046v1-abstract-short" style="display: inline;"> The high electron temperature in galaxy clusters ($&gt;1\,$keV or $&gt;10^7\,$K) leads to corrections at the level of a few percent in their thermal Sunyaev-Zeldovich effect signatures. Both the size and frequency dependence of these corrections, which are known as relativistic temperature corrections, depend upon the temperature of the objects. In this work we exploit this effect to measure the average&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19046v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19046v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19046v1-abstract-full" style="display: none;"> The high electron temperature in galaxy clusters ($&gt;1\,$keV or $&gt;10^7\,$K) leads to corrections at the level of a few percent in their thermal Sunyaev-Zeldovich effect signatures. Both the size and frequency dependence of these corrections, which are known as relativistic temperature corrections, depend upon the temperature of the objects. In this work we exploit this effect to measure the average temperature of a stack of Compton-$y$ selected clusters. Specifically, we apply the &#34;spectroscopic method&#34; and search for the temperature that best fits the clusters&#39; signal measured at frequencies from 30 to 545 GHz by the Atacama Cosmology Telescope and Planck satellite. We measure the average temperature of clusters detected in the ACT maps to be $8.5\pm 2.4\,$keV, with an additional systematic error of comparable amplitude dominated by passband uncertainty. Upcoming surveys, such as the Simons Observatory and CMB-S4, have the potential to dramatically improve upon these measurements and thereby enable precision studies of cluster temperatures with millimeter observations. The key challenge for future observations will be mitigating instrumental systematic effects, which already limit this analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19046v1-abstract-full').style.display = 'none'; document.getElementById('2410.19046v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages with 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14404">arXiv:2410.14404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14404">pdf</a>, <a href="https://arxiv.org/format/2410.14404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: a census of bridges between galaxy clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Isopi%2C+G">G. Isopi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Capalbo%2C+V">V. Capalbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">A. D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">L. Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbavara%2C+E">E. Barbavara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cui%2C+W">W. Cui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">W. R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Petris%2C+M">M. De Petris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dolag%2C+K">K. Dolag</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabjan%2C+D">D. Fabjan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferragamo%2C+A">A. Ferragamo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A+S">A. S. Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Y. Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">J. P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lokken%2C+M">M. Lokken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Marrewijk%2C+J">J. van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">K. Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">J. Orlowski-Scherer</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14404v1-abstract-short" style="display: inline;"> According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing&#39;, resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web&#39;&#39;, a network of large scale dark matter filaments. Various studies have detected this i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14404v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14404v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14404v1-abstract-full" style="display: none;"> According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing&#39;, resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web&#39;&#39;, a network of large scale dark matter filaments. Various studies have detected this inter-cluster gas, both by stacking and by observing individual filaments in compact, massive systems. In this paper, we study short filaments (&lt; 10 Mpc) connecting massive clusters ($M_{500} \approx 3\times 10^{14} M_{\odot}$) detected by the Atacama Cosmology Telescope (ACT) using the scattering of CMB light off the ionised gas, a phenomenon known as the thermal Sunyaev-Zeldovich (tSZ) effect. The first part of this work is a search for suitable candidates for high resolution follow-up tSZ observations. We identify four cluster pairs with an intercluster signal above the noise floor (S/N $&gt;$ 2), including two with a tentative $&gt;2蟽$ statistical significance for an intercluster bridge from the ACT data alone. In the second part of this work, starting from the same cluster sample, we directly stack on ${\sim}100$ cluster pairs and observe an excess SZ signal between the stacked clusters of $y=(7.2^{+2.3}_{-2.5})\times 10^{-7}$ with a significance of $3.3蟽$. It is the first tSZ measurement of hot gas between clusters in this range of masses at moderate redshift ($\langle z\rangle\approx 0.5$). We compare this to the signal from simulated cluster pairs with similar redshifts and separations in the THE300 and MAGNETICUM Pathfinder cosmological simulations and find broad consistency. Additionally, we show that our measurement is consistent with scaling relations between filament parameters and mass of the embedded halos identified in simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14404v1-abstract-full').style.display = 'none'; document.getElementById('2410.14404v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 17 images</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 85A40 (Primary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06229">arXiv:2410.06229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06229">pdf</a>, <a href="https://arxiv.org/format/2410.06229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Large-scale velocity reconstruction with the kinematic Sunyaev--Zel&#39;dovich effect and DESI LRGs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=McCarthy%2C+F">Fiona McCarthy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+M+C">Matthew C. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kusiak%2C+A">Aleksandra Kusiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagu%C3%AB%2C+A">Alex Lagu毛</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guachalla%2C+B+R">Bernardita Ried Guachalla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06229v1-abstract-short" style="display: inline;"> The kinematic Sunyaev--Zel&#39;dovich (kSZ) effect induces a non-zero density-density-temperature bispectrum, which we can use to reconstruct the large-scale velocity field from a combination of cosmic microwave background (CMB) and galaxy density measurements, in a procedure known as ``kSZ velocity reconstruction&#39;&#39;. This method has been forecast to constrain large-scale modes with future galaxy and C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06229v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06229v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06229v1-abstract-full" style="display: none;"> The kinematic Sunyaev--Zel&#39;dovich (kSZ) effect induces a non-zero density-density-temperature bispectrum, which we can use to reconstruct the large-scale velocity field from a combination of cosmic microwave background (CMB) and galaxy density measurements, in a procedure known as ``kSZ velocity reconstruction&#39;&#39;. This method has been forecast to constrain large-scale modes with future galaxy and CMB surveys, improving their measurement beyond what is possible with the galaxy surveys alone. Such measurements will enable tighter constraints on large-scale signals such as primordial non-Gaussianity, deviations from homogeneity, and modified gravity. In this work, we demonstrate a statistically significant measurement of kSZ velocity reconstruction for the first time, by applying quadratic estimators to the combination of the ACT DR6 CMB+kSZ map and the DESI LRG galaxies (with photometric redshifts) in order to reconstruct the velocity field. We do so using a formalism appropriate for the 2-dimensional projected galaxy fields that we use, which naturally incorporates the curved-sky effects important on the largest scales. We find evidence for the signal by cross-correlating with an external estimate of the velocity field from the spectroscopic BOSS survey and rejecting the null (no-kSZ) hypothesis at $3.8蟽$. Our work presents a first step towards the use of this observable for cosmological analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06229v1-abstract-full').style.display = 'none'; document.getElementById('2410.06229v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages (main)+5 pages (Appendix); 13 figures (main) + 8 figures (appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04535">arXiv:2409.04535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04535">pdf</a>, <a href="https://arxiv.org/format/2409.04535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lokken%2C+M">M. Lokken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Engelen%2C+A">A. van Engelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S+S">S. S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anbajagane%2C+D">D. Anbajagane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carretero%2C+J">J. Carretero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Costanzi%2C+M">M. Costanzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=da+Costa%2C+L+N">L. N. da Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">W. R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Vicente%2C+J">J. De Vicente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">S. Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doel%2C+P">P. Doel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Z">Z. Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+S">S. Everett</a> , et al. (51 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04535v1-abstract-short" style="display: inline;"> Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev-Zel&#39;dovich (tSZ) maps to measure the anisotropic distribution of hot gas $2.5-40$ Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04535v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04535v1-abstract-full" style="display: none;"> Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev-Zel&#39;dovich (tSZ) maps to measure the anisotropic distribution of hot gas $2.5-40$ Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of $\sim15$ Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a $\sim3\times$ more significant measurement of the extended gas compared to the technique&#39;s proof-of-concept. Decomposing stacks into cosine multipoles of order $m$, we detect a dipole ($m=1$) and quadrupole ($m=2$) at $8-10蟽$, as well as evidence for $m=4$ signal at up to $6蟽$, indicating sensitivity to late-time non-Gaussianity. We compare to the Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04535v1-abstract-full').style.display = 'none'; document.getElementById('2409.04535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 18 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10444">arXiv:2408.10444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10444">pdf</a>, <a href="https://arxiv.org/format/2408.10444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> In-Flight Performance of Spider&#39;s 280 GHz Receivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shaw%2C+E+C">Elle C. Shaw</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akers%2C+S">S. Akers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Domagalski%2C+R+S">R. S. Domagalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L+M">L. M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galloway%2C+M">M. Galloway</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10444v1-abstract-short" style="display: inline;"> SPIDER is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. SPIDER has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, SPIDER observed i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10444v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10444v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10444v1-abstract-full" style="display: none;"> SPIDER is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. SPIDER has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, SPIDER observed in the 95 GHz and 150 GHz frequency bands, setting constraints on the B-mode signature of primordial gravitational waves. Its second flight in the 2022-23 season added new receivers at 280 GHz, each using an array of TESs coupled to the sky through feedhorns formed from stacks of silicon wafers. These receivers are optimized to produce deep maps of polarized Galactic dust emission over a large sky area, providing a unique data set with lasting value to the field. In this work, we describe the instrument&#39;s performance during SPIDER&#39;s second flight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10444v1-abstract-full').style.display = 'none'; document.getElementById('2408.10444v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to SPIE Astronomical Telescopes + Instrumentation 2024, JATIS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20982">arXiv:2407.20982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20982">pdf</a>, <a href="https://arxiv.org/format/2407.20982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Analysis of Polarized Dust Emission from the First Flight of the SPIDER Balloon-Borne Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=SPIDER+Collaboration"> SPIDER Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ganga%2C+K">K. Ganga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gourapura%2C+S">S. Gourapura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">J. E. Gudmundsson</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20982v1-abstract-short" style="display: inline;"> Using data from the first flight of SPIDER and from Planck HFI, we probe the properties of polarized emission from interstellar dust in the SPIDER observing region. Component separation algorithms operating in both the spatial and harmonic domains are applied to probe their consistency and to quantify modeling errors associated with their assumptions. Analyses spanning the full SPIDER region demon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20982v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20982v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20982v1-abstract-full" style="display: none;"> Using data from the first flight of SPIDER and from Planck HFI, we probe the properties of polarized emission from interstellar dust in the SPIDER observing region. Component separation algorithms operating in both the spatial and harmonic domains are applied to probe their consistency and to quantify modeling errors associated with their assumptions. Analyses spanning the full SPIDER region demonstrate that i) the spectral energy distribution of diffuse Galactic dust emission is broadly consistent with a modified-blackbody (MBB) model with a spectral index of $尾_\mathrm{d}=1.45\pm0.05$ $(1.47\pm0.06)$ for $E$ ($B$)-mode polarization, slightly lower than that reported by Planck for the full sky; ii) its angular power spectrum is broadly consistent with a power law; and iii) there is no significant detection of line-of-sight decorrelation of the astrophysical polarization. The size of the SPIDER region further allows for a statistically meaningful analysis of the variation in foreground properties within it. Assuming a fixed dust temperature $T_\mathrm{d}=19.6$ K, an analysis of two independent sub-regions of that field results in inferred values of $尾_\mathrm{d}=1.52\pm0.06$ and $尾_\mathrm{d}=1.09\pm0.09$, which are inconsistent at the $3.9\,蟽$ level. Furthermore, a joint analysis of SPIDER and Planck 217 and 353 GHz data within a subset of the SPIDER region is inconsistent with a simple MBB at more than $3\,蟽$, assuming a common morphology of polarized dust emission over the full range of frequencies. These modeling uncertainties have a small--but non-negligible--impact on limits on the cosmological tensor-to-scalar ratio derived from the \spider dataset. The fidelity of the component separation approaches of future CMB polarization experiments may thus have a significant impact on their constraining power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20982v1-abstract-full').style.display = 'none'; document.getElementById('2407.20982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07152">arXiv:2407.07152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07152">pdf</a>, <a href="https://arxiv.org/format/2407.07152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Evidence for large baryonic feedback at low and intermediate redshifts from kinematic Sunyaev-Zel&#39;dovich observations with ACT and DESI photometric galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hadzhiyska%2C+B">B. Hadzhiyska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">S. Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guachalla%2C+B+R">B. Ried Guachalla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schaan%2C+E">E. Schaan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">S. K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Claybaugh%2C+T">T. Claybaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">W. R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dawson%2C+K">K. Dawson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+B">B. Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doel%2C+P">P. Doel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farren%2C+G+S">G. S. Farren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Font-Ribera%2C+A">A. Font-Ribera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Forero-Romero%2C+J+E">J. E. Forero-Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">P. A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gazta%C3%B1aga%2C+E">E. Gazta帽aga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gontcho%2C+S+G">S. Gontcho Gontcho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gralla%2C+M">M. Gralla</a> , et al. (48 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07152v1-abstract-short" style="display: inline;"> Recent advances in cosmological observations have provided an unprecedented opportunity to investigate the distribution of baryons relative to the underlying matter. In this work, we robustly show that the gas is much more extended than the dark matter at 40$蟽$ and the amount of baryonic feedback at $z \lesssim 1$ strongly disfavors low-feedback models such as that of state-of-the-art hydrodynamic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07152v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07152v1-abstract-full" style="display: none;"> Recent advances in cosmological observations have provided an unprecedented opportunity to investigate the distribution of baryons relative to the underlying matter. In this work, we robustly show that the gas is much more extended than the dark matter at 40$蟽$ and the amount of baryonic feedback at $z \lesssim 1$ strongly disfavors low-feedback models such as that of state-of-the-art hydrodynamical simulation IllustrisTNG compared with high-feedback models such as that of the original Illustris simulation. This has important implications for bridging the gap between theory and observations and understanding galaxy formation and evolution. Furthermore, a better grasp of the baryon-dark matter link is critical to future cosmological analyses, which are currently impeded by our limited knowledge of baryonic feedback. Here, we measure the kinematic Sunyaev-Zel&#39;dovich (kSZ) effect from the Atacama Cosmology Telescope (ACT), stacked on the luminous red galaxy (LRG) sample of the Dark Energy Spectroscopic Instrument (DESI) imaging survey. This is the first analysis to use photometric redshifts for reconstructing galaxy velocities. Due to the large number of galaxies comprising the DESI imaging survey, this is the highest signal-to-noise stacked kSZ measurement to date: we detect the signal at 13$蟽$ and find that the gas is more spread out than the dark matter at $\sim$40$蟽$. Our work opens up the possibility to recalibrate large hydrodynamical simulations using the kSZ effect. In addition, our findings point towards a way of alleviating inconsistencies between weak lensing surveys and cosmic microwave background (CMB) experiments such as the `low $S_8$&#39; tension, and shed light on long-standing enigmas in astrophysics such as the `missing baryon&#39; problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07152v1-abstract-full').style.display = 'none'; document.getElementById('2407.07152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures, submitting to PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04607">arXiv:2407.04607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04607">pdf</a>, <a href="https://arxiv.org/format/2407.04607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Cosmological constraints from the cross-correlation of DESI Luminous Red Galaxies with CMB lensing from Planck PR4 and ACT DR6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sailer%2C+N">Noah Sailer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Joshua Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=White%2C+M">Martin White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguilar%2C+J+N">Jessica Nicole Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahlen%2C+S">Steven Ahlen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">David Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burtin%2C+E">Etienne Burtin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+S">Shi-Fan Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Claybaugh%2C+T">Todd Claybaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dawson%2C+K">Kyle Dawson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+la+Macorra%2C+A">Axel de la Macorra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">Joseph DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+A">Arjun Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+B">Biprateep Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doel%2C+P">Peter Doel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Embil-Villagra%2C+C">Carmen Embil-Villagra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farren%2C+G+S">Gerrit S. Farren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Font-Ribera%2C+A">Andreu Font-Ribera</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04607v1-abstract-short" style="display: inline;"> We infer the growth of large scale structure over the redshift range $0.4\lesssim z \lesssim 1$ from the cross-correlation of spectroscopically calibrated Luminous Red Galaxies (LRGs) selected from the Dark Energy Spectroscopic Instrument (DESI) legacy imaging survey with CMB lensing maps reconstructed from the latest Planck and ACT data. We adopt a hybrid effective field theory (HEFT) model that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04607v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04607v1-abstract-full" style="display: none;"> We infer the growth of large scale structure over the redshift range $0.4\lesssim z \lesssim 1$ from the cross-correlation of spectroscopically calibrated Luminous Red Galaxies (LRGs) selected from the Dark Energy Spectroscopic Instrument (DESI) legacy imaging survey with CMB lensing maps reconstructed from the latest Planck and ACT data. We adopt a hybrid effective field theory (HEFT) model that robustly regulates the cosmological information obtainable from smaller scales, such that our cosmological constraints are reliably derived from the (predominantly) linear regime. We perform an extensive set of bandpower- and parameter-level systematics checks to ensure the robustness of our results and to characterize the uniformity of the LRG sample. We demonstrate that our results are stable to a wide range of modeling assumptions, finding excellent agreement with a linear theory analysis performed on a restricted range of scales. From a tomographic analysis of the four LRG photometric redshift bins we find that the rate of structure growth is consistent with $螞$CDM with an overall amplitude that is $\simeq5-7\%$ lower than predicted by primary CMB measurements with modest $(\sim2蟽)$ statistical significance. From the combined analysis of all four bins and their cross-correlations with Planck we obtain $S_8 = 0.765\pm0.023$, which is less discrepant with primary CMB measurements than previous DESI LRG cross Planck CMB lensing results. From the cross-correlation with ACT we obtain $S_8 = 0.790^{+0.024}_{-0.027}$, while when jointly analyzing Planck and ACT we find $S_8 = 0.775^{+0.019}_{-0.022}$ from our data alone and $蟽_8 = 0.772^{+0.020}_{-0.023}$ with the addition of BAO data. These constraints are consistent with the latest Planck primary CMB analyses at the $\simeq 1.6-2.2蟽$ level, and are in excellent agreement with galaxy lensing surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04607v1-abstract-full').style.display = 'none'; document.getElementById('2407.04607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 26 figures, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04606">arXiv:2407.04606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04606">pdf</a>, <a href="https://arxiv.org/format/2407.04606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope DR6 and DESI: Structure formation over cosmic time with a measurement of the cross-correlation of CMB Lensing and Luminous Red Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Joshua Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sailer%2C+N">Noah Sailer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguilar%2C+J+N">Jessica Nicole Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahlen%2C+S">Steven Ahlen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">David Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burtin%2C+E">Etienne Burtin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+S">Shi-Fan Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Claybaugh%2C+T">Todd Claybaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+la+Macorra%2C+A">Axel de la Macorra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">Joseph DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+A">Arjun Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doel%2C+P">Peter Doel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Embil-Villagra%2C+C">Carmen Embil-Villagra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farren%2C+G+S">Gerrit S. Farren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Font-Ribera%2C+A">Andreu Font-Ribera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Forero-Romero%2C+J+E">Jaime E. Forero-Romero</a> , et al. (48 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04606v1-abstract-short" style="display: inline;"> We present a high-significance cross-correlation of CMB lensing maps from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) with spectroscopically calibrated luminous red galaxies (LRGs) from the Dark Energy Spectroscopic Instrument (DESI). We detect this cross-correlation at a significance of 38$蟽$; combining our measurement with the Planck Public Release 4 (PR4) lensing map, we detect t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04606v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04606v1-abstract-full" style="display: none;"> We present a high-significance cross-correlation of CMB lensing maps from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) with spectroscopically calibrated luminous red galaxies (LRGs) from the Dark Energy Spectroscopic Instrument (DESI). We detect this cross-correlation at a significance of 38$蟽$; combining our measurement with the Planck Public Release 4 (PR4) lensing map, we detect the cross-correlation at 50$蟽$. Fitting this jointly with the galaxy auto-correlation power spectrum to break the galaxy bias degeneracy with $蟽_8$, we perform a tomographic analysis in four LRG redshift bins spanning $0.4 \le z \le 1.0$ to constrain the amplitude of matter density fluctuations through the parameter combination $S_8^\times = 蟽_8 \left(惟_m / 0.3\right)^{0.4}$. Prior to unblinding, we confirm with extragalactic simulations that foreground biases are negligible and carry out a comprehensive suite of null and consistency tests. Using a hybrid effective field theory (HEFT) model that allows scales as small as $k_{\rm max}=0.6$ $h/{\rm Mpc}$, we obtain a 3.3% constraint on $S_8^\times = 蟽_8 \left(惟_m / 0.3\right)^{0.4} = 0.792^{+0.024}_{-0.028}$ from ACT data, as well as constraints on $S_8^\times(z)$ that probe structure formation over cosmic time. Our result is consistent with the early-universe extrapolation from primary CMB anisotropies measured by Planck PR4 within 1.2$蟽$. Jointly fitting ACT and Planck lensing cross-correlations we obtain a 2.7% constraint of $S_8^\times = 0.776^{+0.019}_{-0.021}$, which is consistent with the Planck early-universe extrapolation within 2.1$蟽$, with the lowest redshift bin showing the largest difference in mean. The latter may motivate further CMB lensing tomography analyses at $z&lt;0.6$ to assess the impact of potential systematics or the consistency of the $螞$CDM model over cosmic time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04606v1-abstract-full').style.display = 'none'; document.getElementById('2407.04606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JCAP (47 pages, 13 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07512">arXiv:2406.07512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07512">pdf</a>, <a href="https://arxiv.org/format/2406.07512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451122">10.1051/0004-6361/202451122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMAP Pathfinder -- Season 2 results III. Implications for cosmic molecular gas content at &#34;Cosmic Half-past Eleven&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">D. T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">P. C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+K+A">K. A. Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunne%2C+D+A">D. A. Dunne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunde%2C+J+G+S">J. G. S. Lunde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padmanabhan%2C+H">H. Padmanabhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutzer%2C+N+-">N. -O. Stutzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tolgay%2C+D">D. Tolgay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Church%2C+S+E">S. E. Church</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaier%2C+T">T. Gaier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">J. O. Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+S+E">S. E. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harris%2C+A+I">A. I. Harris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hobbs%2C+R">R. Hobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+H+T">H. T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+J+W">J. W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lawrence%2C+C+R">C. R. Lawrence</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murray%2C+N">N. Murray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearson%2C+T+J">T. J. Pearson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Philip%2C+L">L. Philip</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Readhead%2C+A+C+S">A. C. S. Readhead</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rennie%2C+T+J">T. J. Rennie</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07512v2-abstract-short" style="display: inline;"> The Carbon monOxide Mapping Array Project (COMAP) Pathfinder survey continues to demonstrate the feasibility of line-intensity mapping using high-redshift carbon monoxide (CO) line emission traced at cosmological scales. The latest COMAP Pathfinder power spectrum analysis is based on observations through the end of Season 2, covering the first three years of Pathfinder operations. We use our lates&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07512v2-abstract-full').style.display = 'inline'; document.getElementById('2406.07512v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07512v2-abstract-full" style="display: none;"> The Carbon monOxide Mapping Array Project (COMAP) Pathfinder survey continues to demonstrate the feasibility of line-intensity mapping using high-redshift carbon monoxide (CO) line emission traced at cosmological scales. The latest COMAP Pathfinder power spectrum analysis is based on observations through the end of Season 2, covering the first three years of Pathfinder operations. We use our latest constraints on the CO(1-0) line-intensity power spectrum at $z\sim3$ to update corresponding constraints on the cosmological clustering of CO line emission and thus the cosmic molecular gas content at a key epoch of galaxy assembly. We first mirror the COMAP Early Science interpretation, considering how Season 2 results translate to limits on the shot noise power of CO fluctuations and the bias of CO emission as a tracer of the underlying dark matter distribution. The COMAP Season 2 results place the most stringent limits on the CO tracer bias to date, at $\langle{Tb}\rangle&lt;4.8$ $渭$K. These limits narrow the model space significantly compared to previous CO line-intensity mapping results while maintaining consistency with small-volume interferometric surveys of resolved line candidates. The results also express a weak preference for CO emission models used to guide fiducial forecasts from COMAP Early Science, including our data-driven priors. We also consider directly constraining a model of the halo-CO connection, and show qualitative hints of capturing the total contribution of faint CO emitters through the improved sensitivity of COMAP data. With continued observations and matching improvements in analysis, the COMAP Pathfinder remains on track for a detection of cosmological clustering of CO emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07512v2-abstract-full').style.display = 'none'; document.getElementById('2406.07512v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages + bibliography and appendices (13 pages total); 9 figures, 1 table; v2 reflects minor changes made for version submitted to A&amp;A, with no changes to top-line results</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 691, A337 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07511">arXiv:2406.07511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07511">pdf</a>, <a href="https://arxiv.org/format/2406.07511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451123">10.1051/0004-6361/202451123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMAP Pathfinder -- Season 2 results II. Updated constraints on the CO(1-0) power spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Stutzer%2C+N+-">N. -O. Stutzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunde%2C+J+G+S">J. G. S. Lunde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">P. C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">D. T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+K+A">K. A. Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunne%2C+D+A">D. A. Dunne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+H+T">H. T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padmanabhan%2C+H">H. Padmanabhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tolgay%2C+D">D. Tolgay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wehus%2C+I+K">I. K. Wehus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Church%2C+S+E">S. E. Church</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaier%2C+T">T. Gaier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">J. O. Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harris%2C+A+I">A. I. Harris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+S+E">S. E. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hobbs%2C+R">R. Hobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+J+W">J. W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lawrence%2C+C+R">C. R. Lawrence</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murray%2C+N">N. Murray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearson%2C+T+J">T. J. Pearson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Philip%2C+L">L. Philip</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Readhead%2C+A+C+S">A. C. S. Readhead</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07511v2-abstract-short" style="display: inline;"> We present updated constraints on the cosmological 3D power spectrum of carbon monoxide CO(1-0) emission in the redshift range $2.4$-$3.4$. The constraints are derived from the two first seasons of Carbon monOxide Mapping Array Project (COMAP) Pathfinder line-intensity mapping observations aiming to trace star-formation during the Epoch of Galaxy Assembly. These results improve on the previous Ear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07511v2-abstract-full').style.display = 'inline'; document.getElementById('2406.07511v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07511v2-abstract-full" style="display: none;"> We present updated constraints on the cosmological 3D power spectrum of carbon monoxide CO(1-0) emission in the redshift range $2.4$-$3.4$. The constraints are derived from the two first seasons of Carbon monOxide Mapping Array Project (COMAP) Pathfinder line-intensity mapping observations aiming to trace star-formation during the Epoch of Galaxy Assembly. These results improve on the previous Early Science (ES) results through both increased data volume and improved data processing methodology. On the methodological side, we now perform cross-correlations between groups of detectors (&#39;&#39;feed-groups&#39;&#39;), as opposed to cross-correlations between single feeds, and this new feed-group pseudo power spectrum (FGPXS) is constructed to be more robust against systematic effects. In terms of data volume, the effective mapping speed is significantly increased due to an improved observational strategy as well as better data selection methodology. The updated spherically- and field-averaged FGPXS, $\tilde{C}(k)$, is consistent with zero, at a probability-to-exceed of around $34\,\%$, with an excess of $2.7\,蟽$ in the most sensitive bin. Our power spectrum estimate is about an order of magnitude more sensitive in our six deepest bins across ${0.09\,\mathrm{Mpc}^{-1} &lt; k &lt; 0.73\,\mathrm{Mpc}^{-1}}$, as compared to the feed-feed pseudo power spectrum (FPXS) of COMAP ES. Each of these bins individually constrains the CO power spectrum to ${kP_\mathrm{CO}(k)&lt; 2400-4900\,\mathrm{渭K^2 Mpc^{2}}}$ at $95\,\%$ confidence. To monitor potential contamination from residual systematic effects, we analyze a set of 312 difference-map null tests and find that these are consistent with the instrumental noise prediction. In sum, these results provide the strongest direct constraints on the cosmological 3D CO(1-0) power spectrum published to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07511v2-abstract-full').style.display = 'none'; document.getElementById('2406.07511v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, v2 reflects changes made for version submitted to Astronomy and Astrophysics, addition of additional figure clarifying methodology, no change to final results</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 691, A336 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07510">arXiv:2406.07510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07510">pdf</a>, <a href="https://arxiv.org/format/2406.07510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451121">10.1051/0004-6361/202451121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMAP Pathfinder -- Season 2 results I. Improved data selection and processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lunde%2C+J+G+S">J. G. S. Lunde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutzer%2C+N+-">N. -O. Stutzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">P. C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">D. T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+K+A">K. A. Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunne%2C+D+A">D. A. Dunne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+S+E">S. E. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+H+T">H. T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+J+W">J. W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearson%2C+T+J">T. J. Pearson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Philip%2C+L">L. Philip</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wehus%2C+I+K">I. K. Wehus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woody%2C+D+P">D. P. Woody</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Church%2C+S+E">S. E. Church</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaier%2C+T">T. Gaier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">J. O. Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harris%2C+A+I">A. I. Harris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hobbs%2C+R">R. Hobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lawrence%2C+C+R">C. R. Lawrence</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murray%2C+N">N. Murray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padmanabhan%2C+H">H. Padmanabhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Readhead%2C+A+C+S">A. C. S. Readhead</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07510v2-abstract-short" style="display: inline;"> The CO Mapping Array Project (COMAP) Pathfinder is performing line intensity mapping of CO emission to trace the distribution of unresolved galaxies at redshift $z \sim 3$. We present an improved version of the COMAP data processing pipeline and apply this to the first two seasons of observations. This analysis improves on the COMAP Early Science (ES) results in several key aspects. On the observa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07510v2-abstract-full').style.display = 'inline'; document.getElementById('2406.07510v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07510v2-abstract-full" style="display: none;"> The CO Mapping Array Project (COMAP) Pathfinder is performing line intensity mapping of CO emission to trace the distribution of unresolved galaxies at redshift $z \sim 3$. We present an improved version of the COMAP data processing pipeline and apply this to the first two seasons of observations. This analysis improves on the COMAP Early Science (ES) results in several key aspects. On the observational side, all second season scans were made in constant-elevation mode, after noting that the previous Lissajous scans were associated with increased systematic errors; those scans accounted for 50% of the total Season 1 data volume. Secondly, all new observations were restricted to an elevation range of 35-65 degrees, to minimize sidelobe ground pickup. On the data processing side, more effective data cleaning in both the time- and map-domain has allowed us to eliminate all data-driven power spectrum-based cuts. This increases the overall data retention and reduces the risk of signal subtraction bias. On the other hand, due to the increased sensitivity, two new pointing-correlated systematic errors have emerged, and we introduce a new map-domain PCA filter to suppress these. Subtracting only 5 out of 256 PCA modes, we find that the standard deviation of the cleaned maps decreases by 67% on large angular scales, and after applying this filter, the maps appear consistent with instrumental noise. Combining all these improvements, we find that each hour of raw Season 2 observations yields on average 3.2 times more cleaned data compared to ES analysis. Combining this with the increase in raw observational hours, the effective amount of data available for high-level analysis is a factor of 8 higher than in ES. The resulting maps have reached an uncertainty of $25$-$50\,渭K$ per voxel, providing by far the strongest constraints on cosmological CO line emission published to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07510v2-abstract-full').style.display = 'none'; document.getElementById('2406.07510v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 22 figures, for submission to Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 691, A335 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19038">arXiv:2403.19038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19038">pdf</a>, <a href="https://arxiv.org/format/2403.19038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/09/014">10.1088/1475-7516/2024/09/014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic Neutrino Decoupling and its Observable Imprints: Insights from Entropic-Dual Transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuller%2C+G+M">George M. Fuller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grohs%2C+E">Evan Grohs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meyers%2C+J">Joel Meyers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilson%2C+M+J">Matthew James Wilson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19038v2-abstract-short" style="display: inline;"> Very different processes characterize the decoupling of neutrinos to form the cosmic neutrino background (C$谓$B) and the much later decoupling of photons from thermal equilibrium to form the cosmic microwave background (CMB). The C$谓$B emerges from the fuzzy, energy-dependent neutrinosphere and encodes the physics operating in the early universe in the temperature range $T\sim 10\,{\rm MeV}$ to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19038v2-abstract-full').style.display = 'inline'; document.getElementById('2403.19038v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19038v2-abstract-full" style="display: none;"> Very different processes characterize the decoupling of neutrinos to form the cosmic neutrino background (C$谓$B) and the much later decoupling of photons from thermal equilibrium to form the cosmic microwave background (CMB). The C$谓$B emerges from the fuzzy, energy-dependent neutrinosphere and encodes the physics operating in the early universe in the temperature range $T\sim 10\,{\rm MeV}$ to $T\sim10\,{\rm keV}$. This is the epoch where beyond Standard Model (BSM) physics may be influential in setting the light element abundances and the necessarily distorted fossil neutrino energy spectra. Here we use techniques honed in extensive CMB studies to analyze the C$谓$B as calculated in detailed neutrino energy transport and nuclear reaction simulations. Our moment method, relative entropy, and differential visibility approach can leverage future high precision CMB and primordial abundance measurements to provide new insights into the C$谓$B and any BSM physics it encodes. We demonstrate that the evolution of the energy spectrum of the C$谓$B throughout the weak decoupling epoch is accurately captured in the Standard Model by only three parameters per species, a non-trivial conclusion given the deviation from thermal equilibrium. Furthermore, we can interpret each of the three parameters as physical characteristics of a non-equilibrium system. The success of our compact description within the Standard Model motivates its use also in BSM scenarios. We demonstrate how observations of primordial light element abundances can be used to place constraints on the C$谓$B energy spectrum, deriving response functions that can be applied for general C$谓$B spectral distortions. Combined with the description of those deviations that we develop here, our methods provide a convenient and powerful framework to constrain the impact of BSM physics on the C$谓$B. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19038v2-abstract-full').style.display = 'none'; document.getElementById('2403.19038v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Added Figure 9, Appendix B, and references; Updated to match published version; v1: 50 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> N3AS-24-011 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 09 (2024) 014 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13033">arXiv:2401.13033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13033">pdf</a>, <a href="https://arxiv.org/format/2401.13033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Detection of Patchy Screening of the Cosmic Microwave Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schutt%2C+T">Theo Schutt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maniyar%2C+A+S">Abhishek S. Maniyar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schaan%2C+E">Emmanuel Schaan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A">Arthur Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kramer%2C+D">Darby Kramer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kusiak%2C+A">Aleksandra Kusiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=La+Posta%2C+A">Adrien La Posta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marques%2C+G+A">Gabriela A. Marques</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13033v1-abstract-short" style="display: inline;"> Spatial variations in the cosmic electron density after reionization generate cosmic microwave background anisotropies via Thomson scattering, a process known as the ``patchy screening&#34; effect. In this paper, we propose a new estimator for the patchy screening effect that is designed to mitigate biases from the dominant foreground signals. We use it to measure the cross-correlation between \textit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13033v1-abstract-full').style.display = 'inline'; document.getElementById('2401.13033v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13033v1-abstract-full" style="display: none;"> Spatial variations in the cosmic electron density after reionization generate cosmic microwave background anisotropies via Thomson scattering, a process known as the ``patchy screening&#34; effect. In this paper, we propose a new estimator for the patchy screening effect that is designed to mitigate biases from the dominant foreground signals. We use it to measure the cross-correlation between \textit{unWISE} galaxies and patchy screening, the latter measured by the Atacama Cosmology Telescope and \textit{Planck} satellite. We report the first detection of the patchy screening effect, with the statistical significance of the cross-correlation exceeding $7蟽$. This measurement directly probes the distribution of electrons around these galaxies and provides strong evidence that gas is more extended than the underlying dark matter. By comparing our measurements to electron profiles extracted from simulations, we demonstrate the power of these observations to constrain galaxy evolution models. Requiring only the 2D positions of objects and no individual redshifts or velocity estimates, this approach is complementary to existing gas probes, such as those based on the kinetic Sunyaev-Zeldovich effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13033v1-abstract-full').style.display = 'none'; document.getElementById('2401.13033v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">See Schutt et al for a detailed comparison of patchy screening estimators. 17 pages with 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06120">arXiv:2310.06120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.06120">pdf</a>, <a href="https://arxiv.org/format/2310.06120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348213">10.1051/0004-6361/202348213 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XLSSC 122 caught in the act of growing up: Spatially resolved SZ observations of a z=1.98 galaxy cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Marrewijk%2C+J">J. van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">L. Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A+S">A. S. Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doze%2C+P">P. Doze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Knowles%2C+K">K. Knowles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A">A. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">J. P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">K. Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">S. Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">B. Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popping%2C+G">G. Popping</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">C. Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S+T">S. T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">E. J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06120v3-abstract-short" style="display: inline;"> How protoclusters evolved from sparse galaxy overdensities to mature galaxy clusters is still not well understood. In this context, detecting and characterizing the hot ICM at high redshifts (z~2) is key to understanding how the continuous accretion from and mergers along the filamentary large-scale structure impact the first phases of cluster formation. We study the dynamical state and morphology&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06120v3-abstract-full').style.display = 'inline'; document.getElementById('2310.06120v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06120v3-abstract-full" style="display: none;"> How protoclusters evolved from sparse galaxy overdensities to mature galaxy clusters is still not well understood. In this context, detecting and characterizing the hot ICM at high redshifts (z~2) is key to understanding how the continuous accretion from and mergers along the filamentary large-scale structure impact the first phases of cluster formation. We study the dynamical state and morphology of the z=1.98 galaxy cluster XLSSC 122 with high-resolution observations (~5&#34;) of the ICM through the SZ effect. Via Bayesian forward modeling, we map the ICM on scales from the virial radius down to the core of the cluster. To constrain such a broad range of spatial scales, we employ a new technique that jointly forward-models parametric descriptions of the pressure distribution to interferometric ACA and ALMA observations and multi-band imaging data from the 6-m, single-dish Atacama Cosmology Telescope. We detect the SZ effect with $11蟽$ in the ALMA+ACA observations and find a flattened inner pressure profile that is consistent with a non-cool core classification with a significance of $&gt;3蟽$. In contrast to the previous works, we find better agreement between the SZ effect signal and the X-ray emission as well as the cluster member distribution. Further, XLSSC 122 exhibits an excess of SZ flux in the south of the cluster where no X-ray emission is detected. By reconstructing the interferometric observations and modeling in the uv-plane, we obtain a tentative detection of an infalling group or filamentary-like structure that is believed to boost and heat up the ICM while the density of the gas is low. In addition, we provide an improved SZ mass of $M_{500,\mathrm{c}} = 1.66^{+0.23}_{-0.20} \times 10^{14} \rm M_\odot$. Altogether, the observations indicate that we see XLSSC 122 in a dynamic phase of cluster formation while a large reservoir of gas is already thermalized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06120v3-abstract-full').style.display = 'none'; document.getElementById('2310.06120v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 689, A41 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.00059">arXiv:2310.00059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.00059">pdf</a>, <a href="https://arxiv.org/format/2310.00059">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Cosmological shocks around galaxy clusters: A coherent investigation with DES, SPT &amp; ACT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Anbajagane%2C+D">D. Anbajagane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E+J">E. J. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Charney%2C+S">S. Charney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lokken%2C+M">M. Lokken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bleem%2C+L">L. Bleem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+A">A. Choi</a> , et al. (89 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.00059v2-abstract-short" style="display: inline;"> We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogs from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev-Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00059v2-abstract-full').style.display = 'inline'; document.getElementById('2310.00059v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.00059v2-abstract-full" style="display: none;"> We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogs from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev-Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around $10^5$ clusters with mass and redshift ranges $10^{13.7} &lt; M_{\rm 200m}/M_\odot &lt; 10^{15.5}$ and $0.1 &lt; z &lt; 2$, and the total sky coverage of the maps is $\approx 15,000 \,\,{\rm deg}^2$. We find a clear pressure deficit at $R/R_{\rm 200m}\approx 1.1$ in SZ profiles around both ACT and SPT clusters, estimated at $6蟽$ significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2-5 compared to predictions, and we discuss possible interpretations of this behavior. An oriented stacking of clusters -- where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogs -- shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00059v2-abstract-full').style.display = 'none'; document.getElementById('2310.00059v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">[v2]: Version accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15733">arXiv:2309.15733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15733">pdf</a>, <a href="https://arxiv.org/format/2309.15733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae1333">10.1093/mnras/stae1333 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The informativeness of [C II] line-intensity mapping as a probe of the H I content and metallicity of galaxies at the end of reionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Horlaville%2C+P">Patrick Horlaville</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">Dongwoo T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liang%2C+L">Lichen Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15733v3-abstract-short" style="display: inline;"> Line-intensity mapping (LIM) experiments coming online now will survey fluctuations in aggregate emission in the [C II] ionized carbon line from galaxies at the end of reionization. Experimental progress must be matched by theoretical reassessments of approaches to modelling and the information content of the signal. We present a new model for the halo-[C II] connection, building upon results from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15733v3-abstract-full').style.display = 'inline'; document.getElementById('2309.15733v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15733v3-abstract-full" style="display: none;"> Line-intensity mapping (LIM) experiments coming online now will survey fluctuations in aggregate emission in the [C II] ionized carbon line from galaxies at the end of reionization. Experimental progress must be matched by theoretical reassessments of approaches to modelling and the information content of the signal. We present a new model for the halo-[C II] connection, building upon results from the FIRE simulations suggesting that gas mass and metallicity most directly determine [C II] luminosity. Applying our new model to an ensemble of peak-patch halo lightcones, we generate new predictions for the [C II] LIM signal at $z\gtrsim6$. We expect a baseline 4000-hour LIM survey from the CCAT facility to have the fundamental sensitivity to detect the [C II] power spectrum at a significance of $5蟽$ at $z\sim6$, with an extended or successor Stage 2 experiment improving significance to $48蟽$ at $z\sim6$ and achieving $11蟽$ at $z\sim7.5$. Cross-correlation through stacking, simulated against a mock narrow-band Lyman-break galaxy survey, would yield a strong detection of the radial profile of cosmological [C II] emission surrounding star-forming galaxies. We also analyse the role of a few of our model&#39;s parameters through the pointwise relative entropy (PRE) of the distribution of [C II] intensities. While the PRE signature of different model parameters can become degenerate or diminished after factoring in observational distortions, various parameters do imprint themselves differently on the one-point statistics of the intrinsic signal. Further work can pave the way to access this information and distinguish different sources of non-Gaussianity in the [C II] LIM observation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15733v3-abstract-full').style.display = 'none'; document.getElementById('2309.15733v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages + acknowledgements/bibliography/appendix (18 pages total); 14 figures, one table; v3 incorporates minor changes reflecting version accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05659">arXiv:2309.05659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05659">pdf</a>, <a href="https://arxiv.org/format/2309.05659">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad31a5">10.3847/1538-4357/ad31a5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Cosmology from cross-correlations of unWISE galaxies and ACT DR6 CMB lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Farren%2C+G+S">Gerrit S. Farren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krolewski%2C+A">Alex Krolewski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Joshua Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marques%2C+G+A">Gabriela A. Marques</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05659v2-abstract-short" style="display: inline;"> We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck CMB lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges $0.2 \lesssim z \lesssim 1.1$ and $0.3 \lesssim z \lesssim 1.8$, respectively. We improve on prior unWISE cross-correlations not just by making use of the new, high-precisi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05659v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05659v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05659v2-abstract-full" style="display: none;"> We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck CMB lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges $0.2 \lesssim z \lesssim 1.1$ and $0.3 \lesssim z \lesssim 1.8$, respectively. We improve on prior unWISE cross-correlations not just by making use of the new, high-precision ACT DR6 lensing maps, but also by including additional spectroscopic data for redshift calibration and by analysing our measurements with a more flexible theoretical model. An extensive suite of systematic and null tests within a blind analysis framework ensures that our results are robust. We determine the amplitude of matter fluctuations at low redshifts ($z\simeq 0.2-1.6$), finding $S_8 \equiv 蟽_8 (惟_m / 0.3)^{0.5} = 0.813 \pm 0.021$ using the ACT cross-correlation alone and $S_8 = 0.810 \pm 0.015$ with a combination of Planck and ACT cross-correlations; these measurements are fully consistent with the predictions from primary CMB measurements assuming standard structure growth. The addition of Baryon Acoustic Oscillation data breaks the degeneracy between $蟽_8$ and $惟_m$, allowing us to measure $蟽_8 = 0.813 \pm 0.020$ from the cross-correlation of unWISE with ACT and $蟽_8 = 0.813\pm 0.015$ from the combination of cross-correlations with ACT and Planck. These results also agree with the expectations from primary CMB extrapolations in $螞$CDM cosmology; the consistency of $蟽_8$ derived from our two redshift samples at $z \sim 0.6$ and $1.1$ provides a further check of our cosmological model. Our results suggest that structure formation on linear scales is well described by $螞$CDM even down to low redshifts $z\lesssim 1$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05659v2-abstract-full').style.display = 'none'; document.getElementById('2309.05659v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">73 pages (incl. 31 pages of appendices), 52 figures, 16 tables, published in ApJ. Watch G. S. Farren and A. Krolewski discuss the analysis and results under https://cosmologytalks.com/2023/09/11/act-unwise</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2024 ApJ 966 157 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04412">arXiv:2309.04412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04412">pdf</a>, <a href="https://arxiv.org/format/2309.04412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3987">10.1093/mnras/stad3987 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmology from Cross-Correlation of ACT-DR4 CMB Lensing and DES-Y3 Cosmic Shear </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shaikh%2C+S">S. Shaikh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrison%2C+I">I. Harrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Engelen%2C+A">A. van Engelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marques%2C+G+A">G. A. Marques</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burke%2C+D+L">D. L. Burke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carretero%2C+J">J. Carretero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cawthon%2C+R">R. Cawthon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+A">A. Choi</a> , et al. (83 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04412v1-abstract-short" style="display: inline;"> Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04412v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04412v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04412v1-abstract-full" style="display: none;"> Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and $\textit{Planck}$ data, where most of the contamination due to the thermal Sunyaev Zel&#39;dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio $= 7.1$ and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution ($S_8 \equiv 蟽_8 (惟_{\rm m}/0.3)^{0.5} = 0.782\pm 0.059$) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6x2pt analysis between DES and ACT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04412v1-abstract-full').style.display = 'none'; document.getElementById('2309.04412v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 30 figures (including appendices). Data associated with this article is available at https://github.com/itrharrison/actdr4kappa-x-desy3gamma-data</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-432-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01258">arXiv:2307.01258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01258">pdf</a>, <a href="https://arxiv.org/format/2307.01258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01258v1-abstract-short" style="display: inline;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01258v1-abstract-full" style="display: none;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-$y$ map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'none'; document.getElementById('2307.01258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made public</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17268">arXiv:2306.17268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.17268">pdf</a>, <a href="https://arxiv.org/format/2306.17268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Marques%2C+G+A">G. A. Marques</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">M. S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">O. Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shaikh%2C+S">S. Shaikh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E+J">E. J. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">H. Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carretero%2C+M+C+K+J">M. Carrasco Kind J. Carretero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cawthon%2C+R">R. Cawthon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crocce%2C+M">M. Crocce</a>, <a href="/search/astro-ph?searchtype=author&amp;query=da+Costa%2C+L+N">L. N. da Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pereira%2C+M+E+S">M. E. S. Pereira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Vicente%2C+J">J. De Vicente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">S. Desai</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17268v2-abstract-short" style="display: inline;"> We present a measurement of the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over $\sim 436$ sq.deg. of the sky. Our galaxy sample, which covers $\sim 4143$ sq.deg., is divided into six redshi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17268v2-abstract-full').style.display = 'inline'; document.getElementById('2306.17268v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17268v2-abstract-full" style="display: none;"> We present a measurement of the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over $\sim 436$ sq.deg. of the sky. Our galaxy sample, which covers $\sim 4143$ sq.deg., is divided into six redshift bins spanning the redshift range of $0.20&lt;z&lt;1.05$. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1蟽. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat \LCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude $S_8\equiv 蟽_8 (惟_m/0.3)^{0.5} = 0.75^{+0.04}_{-0.05}$. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower $S_8$ compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level ($&lt; 2 蟽$) of statistical significance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17268v2-abstract-full').style.display = 'none'; document.getElementById('2306.17268v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06792">arXiv:2305.06792</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06792">pdf</a>, <a href="https://arxiv.org/format/2305.06792">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.023516">10.1103/PhysRevD.108.023516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Kinematic Sunyaev-Zel&#39;dovich Effect with ACT, DES, and BOSS: a Novel Hybrid Estimator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mallaby-Kay%2C+M">M. Mallaby-Kay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">S. Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. C. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E+J">E. J. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carretero%2C+J">J. Carretero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crocce%2C+M">M. Crocce</a>, <a href="/search/astro-ph?searchtype=author&amp;query=da+Costa%2C+L+N">L. N. da Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pereira%2C+M+E+S">M. E. S. Pereira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Vicente%2C+J">J. De Vicente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">S. Desai</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06792v3-abstract-short" style="display: inline;"> The kinematic and thermal Sunyaev-Zel&#39;dovich (kSZ and tSZ) effects probe the abundance and thermodynamics of ionized gas in galaxies and clusters. We present a new hybrid estimator to measure the kSZ effect by combining cosmic microwave background temperature anisotropy maps with photometric and spectroscopic optical survey data. The method interpolates a velocity reconstruction from a spectroscop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06792v3-abstract-full').style.display = 'inline'; document.getElementById('2305.06792v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06792v3-abstract-full" style="display: none;"> The kinematic and thermal Sunyaev-Zel&#39;dovich (kSZ and tSZ) effects probe the abundance and thermodynamics of ionized gas in galaxies and clusters. We present a new hybrid estimator to measure the kSZ effect by combining cosmic microwave background temperature anisotropy maps with photometric and spectroscopic optical survey data. The method interpolates a velocity reconstruction from a spectroscopic catalog at the positions of objects in a photometric catalog, which makes it possible to leverage the high number density of the photometric catalog and the precision of the spectroscopic survey. Combining this hybrid kSZ estimator with a measurement of the tSZ effect simultaneously constrains the density and temperature of free electrons in the photometrically selected galaxies. Using the 1000 deg2 of overlap between the Atacama Cosmology Telescope (ACT) Data Release 5, the first three years of data from the Dark Energy Survey (DES), and the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12, we detect the kSZ signal at 4.8$蟽$ and reject the null (no-kSZ) hypothesis at 5.1$蟽$. This corresponds to 2.0$蟽$ per 100,000 photometric objects with a velocity field based on a spectroscopic survey with 1/5th the density of the photometric catalog. For comparison, a recent ACT analysis using exclusively spectroscopic data from BOSS measured the kSZ signal at 2.1$蟽$ per 100,000 objects. Our derived constraints on the thermodynamic properties of the galaxy halos are consistent with previous measurements. With future surveys, such as the Dark Energy Spectroscopic Instrument and the Rubin Observatory Legacy Survey of Space and Time, we expect that this hybrid estimator could result in measurements with significantly better signal-to-noise than those that rely on spectroscopic data alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06792v3-abstract-full').style.display = 'none'; document.getElementById('2305.06792v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 15 figures - matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 023516 - Published 18 July 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10219">arXiv:2304.10219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10219">pdf</a>, <a href="https://arxiv.org/format/2304.10219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> ACT-DR5 Sunyaev-Zel&#39;dovich Clusters: weak lensing mass calibration with KiDS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Robertson%2C+N+C">Naomi Clare Robertson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asgari%2C+M">Marika Asgari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bilicki%2C+M">Maciej Bilicki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giblin%2C+B">Benjamin Giblin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hildebrandt%2C+H">Hendrik Hildebrandt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoekstra%2C+H">Henk Hoekstra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuijken%2C+K">Konrad Kuijken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mallaby-Kay%2C+M">Maya Mallaby-Kay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L">Lyman Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radovich%2C+M">Mario Radovich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schneider%2C+P">Peter Schneider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shan%2C+H">HuanYuan Shan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Spergel%2C+D+N">David N. Spergel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tr%C3%B6ster%2C+T">Tilman Tr枚ster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10219v1-abstract-short" style="display: inline;"> We present weak gravitational lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a $&gt;5蟽$ thermal Sunyaev-Zel&#39;dovich (SZ) signal by the Atacama Cosmology Telescope (ACT). Using a halo-model approach we constrain the average total cluster mass, $M_{\rm WL}$, accounting for the ACT cluster selection function of the full sample. We find that the SZ clu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10219v1-abstract-full').style.display = 'inline'; document.getElementById('2304.10219v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10219v1-abstract-full" style="display: none;"> We present weak gravitational lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a $&gt;5蟽$ thermal Sunyaev-Zel&#39;dovich (SZ) signal by the Atacama Cosmology Telescope (ACT). Using a halo-model approach we constrain the average total cluster mass, $M_{\rm WL}$, accounting for the ACT cluster selection function of the full sample. We find that the SZ cluster mass estimate $M_{\rm SZ}$, which was calibrated using X-ray observations, is biased with $M_{\rm SZ}/M_{\rm WL} = (1-b_{\rm SZ}) = 0.65\pm 0.05$. Separating the sample into six mass bins, we find no evidence of a strong mass-dependency for the mass bias, $(1-b_{\rm SZ})$. Adopting this ACT-KiDS SZ mass-calibration would bring the Planck SZ cluster count into agreement with the counts expected from the {\it Planck} cosmic microwave background $螞$CDM cosmological model, although it should be noted that the cluster sample considered in this work has a lower average mass $M_{\rm SZ, uncor} = 3.64 \times 10^{14} M_{\odot}$ compared to the Planck cluster sample which has an average mass in the range $M_{\rm SZ, uncor} = (5.5-8.5) \times 10^{14} M_{\odot}$, depending on the sub-sample used. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10219v1-abstract-full').style.display = 'none'; document.getElementById('2304.10219v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09832">arXiv:2304.09832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.09832">pdf</a>, <a href="https://arxiv.org/format/2304.09832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> COMAP Early Science: VIII. A Joint Stacking Analysis with eBOSS Quasars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dunne%2C+D+A">Delaney A. Dunne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+K+A">Kieran A. Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">Dongwoo T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+H+T">Havard T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">Hans Kristian Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua Ott Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+L+C">Laura C. Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Junhan Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunde%2C+J+G+S">Jonas Gahr Sturtzel Lunde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murray%2C+N">Norman Murray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padmanabhan%2C+H">Hamsa Padmanabhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Philip%2C+L">Liju Philip</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutzer%2C+N">Nils-Ole Stutzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tolgay%2C+D">Doga Tolgay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wehus%2C+I+K">Ingunn Katherine Wehus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Church%2C+S+E">Sarah E. Church</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaier%2C+T">Todd Gaier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harris%2C+A+I">Andrew I. Harris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hobbs%2C+R">Richard Hobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lawrence%2C+C+R">Charles R. Lawrence</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Readhead%2C+A+C+S">Anthony C. S. Readhead</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woody%2C+D+P">David P. Woody</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09832v2-abstract-short" style="display: inline;"> We present a new upper limit on the cosmic molecular gas density at $z=2.4-3.4$ obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission of 0.129 Jy km/s. De&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09832v2-abstract-full').style.display = 'inline'; document.getElementById('2304.09832v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09832v2-abstract-full" style="display: none;"> We present a new upper limit on the cosmic molecular gas density at $z=2.4-3.4$ obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission of 0.129 Jy km/s. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosity $L&#39;_\mathrm{CO}$ of eBOSS quasars of $\leq 1.26\times10^{11}$ K km pc$^2$ s$^{-1}$, or an average molecular gas density $蟻_\mathrm{H_2}$ in regions of the universe containing a quasar of $\leq 1.52\times10^8$ M$_\odot$ cMpc$^{-3}$. The $L&#39;_\mathrm{CO}$ upper limit falls among CO line luminosities obtained from individually-targeted quasars in the COMAP redshift range, and the $蟻_\mathrm{H_2}$ value is comparable to upper limits obtained from other Line Intensity Mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5-year COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both as a technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09832v2-abstract-full').style.display = 'none'; document.getElementById('2304.09832v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 22 figures; Version 2 is as accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.07283">arXiv:2304.07283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.07283">pdf</a>, <a href="https://arxiv.org/format/2304.07283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Exploring the Non-Gaussianity of the Cosmic Infrared Background and Its Weak Gravitational Lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+J">Jaemyoung Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Motloch%2C+P">Pavel Motloch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Engelen%2C+A">Alexander van Engelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+G">George Stein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.07283v2-abstract-short" style="display: inline;"> Gravitational lensing deflects the paths of photons, altering the statistics of cosmic backgrounds and distorting their information content. We take the Cosmic Infrared Background (CIB), which provides plentiful information about galaxy formation and evolution, as an example to probe the effect of lensing on non-Gaussian statistics. Using the Websky simulations, we first quantify the non-Gaussiani&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07283v2-abstract-full').style.display = 'inline'; document.getElementById('2304.07283v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.07283v2-abstract-full" style="display: none;"> Gravitational lensing deflects the paths of photons, altering the statistics of cosmic backgrounds and distorting their information content. We take the Cosmic Infrared Background (CIB), which provides plentiful information about galaxy formation and evolution, as an example to probe the effect of lensing on non-Gaussian statistics. Using the Websky simulations, we first quantify the non-Gaussianity of the CIB, revealing additional detail on top of its well-measured power spectrum. To achieve this, we use needlet-like multipole-band-filters to calculate the variance and higher-point correlations. Using our simulations, we show the 2-point, 3-point and 4-point spectra, and compare our calculated power spectra and bispectra to Planck values. We then lens the CIB, shell-by-shell with corresponding convergence maps, to capture the broad redshift extent of both the CIB and its lensing convergence. The lensing of the CIB changes the 3-point and 4-point functions by a few tens of percent at large scales, unlike with the power spectrum, which changes by less than two percent. We expand our analyses to encompass the full intensity probability distribution functions (PDFs) involving all n-point correlations as a function of scale. In particular, we use the relative entropy between lensed and unlensed PDFs to create a spectrum of templates that can allow estimation of lensing. The underlying CIB model is missing the important role of star-bursting, which we test by adding a stochastic log-normal term to the intensity distributions. The novel aspects of our filtering and lensing pipeline should prove useful for any radiant background, including line intensity maps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07283v2-abstract-full').style.display = 'none'; document.getElementById('2304.07283v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 16 figures, accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05203">arXiv:2304.05203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05203">pdf</a>, <a href="https://arxiv.org/format/2304.05203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acff5f">10.3847/1538-4357/acff5f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05203v2-abstract-short" style="display: inline;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05203v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05203v2-abstract-full" style="display: none;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ and the Hubble constant $H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$ at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: $蟽_8 = 0.812 \pm 0.013$, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.831\pm0.023$ and $H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$. These measurements agree well with $螞$CDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find $S_8$ from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1$蟽$. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing $z\sim 0.5-5$ on mostly-linear scales and galaxy lensing at $z\sim 0.5$ on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of $螞$CDM, limiting the sum of the neutrino masses to $\sum m_谓 &lt; 0.13$ eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the $螞$CDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'none'; document.getElementById('2304.05203v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 17 figures, replaced with version accepted in ApJ (Feb 2024). Cosmological likelihood data and mass maps are public here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 962, 2024, Page 113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05202">arXiv:2304.05202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05202">pdf</a>, <a href="https://arxiv.org/format/2304.05202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acfe06">10.3847/1538-4357/acfe06 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05202v2-abstract-short" style="display: inline;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05202v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05202v2-abstract-full" style="display: none;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of $A_{\mathrm{lens}}=1.013\pm0.023$ relative to the Planck 2018 CMB power spectra best-fit $螞$CDM model and $A_{\mathrm{lens}}=1.005\pm0.023$ relative to the $\text{ACT DR4} + \text{WMAP}$ best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination $S^{\mathrm{CMBL}}_8 \equiv 蟽_8 \left({惟_m}/{0.3}\right)^{0.25}$ of $S^{\mathrm{CMBL}}_8= 0.818\pm0.022$ from ACT DR6 CMB lensing alone and $S^{\mathrm{CMBL}}_8= 0.813\pm0.018$ when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with $螞$CDM model constraints from Planck or $\text{ACT DR4} + \text{WMAP}$ CMB power spectrum measurements. Our lensing measurements from redshifts $z\sim0.5$--$5$ are thus fully consistent with $螞$CDM structure growth predictions based on CMB anisotropies probing primarily $z\sim1100$. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'none'; document.getElementById('2304.05202v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45+22 pages, 50 figures. v2 matches with published version in ApJ. Cosmological likelihood data and lensing maps are here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Madhavacheril et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-237-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05196">arXiv:2304.05196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05196">pdf</a>, <a href="https://arxiv.org/format/2304.05196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Mitigating the impact of extragalactic foregrounds for the DR6 CMB lensing analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Namikawa%2C+T">Toshiya Namikawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farren%2C+G+S">Gerrit S. Farren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05196v1-abstract-short" style="display: inline;"> We investigate the impact and mitigation of extragalactic foregrounds for the CMB lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data. Two independent microwave sky simulations are used to test a range of mitigation strategies. We demonstrate that finding and then subtracting point sources, finding and then subtracting models of clusters, and using a prof&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05196v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05196v1-abstract-full" style="display: none;"> We investigate the impact and mitigation of extragalactic foregrounds for the CMB lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data. Two independent microwave sky simulations are used to test a range of mitigation strategies. We demonstrate that finding and then subtracting point sources, finding and then subtracting models of clusters, and using a profile bias-hardened lensing estimator, together reduce the fractional biases to well below statistical uncertainties, with the inferred lensing amplitude, $A_{\mathrm{lens}}$, biased by less than $0.2蟽$. We also show that another method where a model for the cosmic infrared background (CIB) contribution is deprojected and high frequency data from Planck is included has similar performance. Other frequency-cleaned options do not perform as well, incurring either a large noise cost, or resulting in biased recovery of the lensing spectrum. In addition to these simulation-based tests, we also present null tests performed on the ACT DR6 data which test for sensitivity of our lensing spectrum estimation to differences in foreground levels between the two ACT frequencies used, while nulling the CMB lensing signal. These tests pass whether the nulling is performed at the map or bandpower level. The CIB-deprojected measurement performed on the DR6 data is consistent with our baseline measurement, implying contamination from the CIB is unlikely to significantly bias the DR6 lensing spectrum. This collection of tests gives confidence that the ACT DR6 lensing measurements and cosmological constraints presented in companion papers to this work are robust to extragalactic foregrounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05196v1-abstract-full').style.display = 'none'; document.getElementById('2304.05196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Companion paper to Qu et al and Madhavacheril et al</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00916">arXiv:2303.00916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00916">pdf</a>, <a href="https://arxiv.org/format/2303.00916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> CMB-S4: Forecasting Constraints on $f_\mathrm{NL}$ Through $渭$-distortion Anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zegeye%2C+D">David Zegeye</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">Federico Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crawford%2C+T">Thomas Crawford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grin%2C+D">Daniel Grin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meerburg%2C+P+D">P. Daniel Meerburg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlando%2C+G">Giorgio Orlando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reichardt%2C+C+L">Christian L. Reichardt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Remazeilles%2C+M">Mathieu Remazeilles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scott%2C+D">Douglas Scott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collaboration%2C+T+C">The CMB-S4 Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00916v1-abstract-short" style="display: inline;"> Diffusion damping of the cosmic microwave background (CMB) power spectrum results from imperfect photon-baryon coupling in the pre-recombination plasma. At redshift $5 \times 10^4 &lt; z &lt; 2 \times 10^6$, the plasma acquires an effective chemical potential, and energy injections from acoustic damping in this era create $渭$-type spectral distortions of the CMB. These $渭$ distortions trace the underlyi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00916v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00916v1-abstract-full" style="display: none;"> Diffusion damping of the cosmic microwave background (CMB) power spectrum results from imperfect photon-baryon coupling in the pre-recombination plasma. At redshift $5 \times 10^4 &lt; z &lt; 2 \times 10^6$, the plasma acquires an effective chemical potential, and energy injections from acoustic damping in this era create $渭$-type spectral distortions of the CMB. These $渭$ distortions trace the underlying photon density fluctuations, probing the primordial power spectrum in short-wavelength modes $k_\mathrm{S}$ over the range $50 \ \mathrm{Mpc}^{-1} \lesssim k \lesssim 10^4 \ \mathrm{Mpc}^{-1}$. Small-scale power modulated by long-wavelength modes $k_\mathrm{L}$ from squeezed-limit non-Gaussianities introduces cross-correlations between CMB temperature anisotropies and $渭$ distortions. Under single-field inflation models, $渭\times T$ correlations measured from an observer in an inertial frame should vanish up to a factor of $(k_\mathrm{L}/k_\mathrm{S})^2 \ll 1$. Thus, any measurable correlation rules out single-field inflation models. We forecast how well the next-generation ground-based CMB experiment CMB-S4 will be able to constrain primordial squeezed-limit non-Gaussianity, parameterized by $f_\mathrm{NL}$, using measurements of $C_{\ell}^{渭T}$ as well as $C_{\ell}^{渭E}$ from CMB $E$ modes. Using current experimental specifications and foreground modeling, we expect $蟽(f_\mathrm{NL}) \lesssim 1000$. This is roughly four times better than the current limit on $f_\mathrm{NL}$ using $渭\times T$ and $渭\times E$ correlations from Planck and is comparable to what is achievable with LiteBIRD, demonstrating the power of the CMB-S4 experiment. This measurement is at an effective scale of $k \simeq 740 \ \text{Mpc}^{-1}$ and is thus highly complementary to measurements at larger scales from primary CMB and large-scale structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00916v1-abstract-full').style.display = 'none'; document.getElementById('2303.00916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00242">arXiv:2211.00242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00242">pdf</a>, <a href="https://arxiv.org/format/2211.00242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1414">10.1093/mnras/stad1414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Boundless baryons: how diffuse gas contributes to anisotropic tSZ signal around simulated Three Hundred clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lokken%2C+M">Martine Lokken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cui%2C+W">Weiguang Cui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlo%C5%BEek%2C+R">Ren茅e Hlo啪ek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murray%2C+N">Norman Murray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dav%C3%A9%2C+R">Romeel Dav茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Engelen%2C+A">Alexander van Engelen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00242v3-abstract-short" style="display: inline;"> Upcoming advances in galaxy surveys and cosmic microwave background data will enable measurements of the anisotropic distribution of diffuse gas in filaments and superclusters at redshift $z=1$ and beyond, observed through the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. These measurements will help distinguish between different astrophysical feedback models, account for baryons that appear to be &#39;mis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00242v3-abstract-full').style.display = 'inline'; document.getElementById('2211.00242v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00242v3-abstract-full" style="display: none;"> Upcoming advances in galaxy surveys and cosmic microwave background data will enable measurements of the anisotropic distribution of diffuse gas in filaments and superclusters at redshift $z=1$ and beyond, observed through the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. These measurements will help distinguish between different astrophysical feedback models, account for baryons that appear to be &#39;missing&#39; from the cosmic census, and present opportunities for using locally-anisotropic tSZ statistics as cosmological probes. This study seeks to guide such future measurements by analysing whether diffuse intergalactic gas is a major contributor to anisotropic tSZ signal in The Three Hundred Gizmo-Simba hydrodynamic simulations. We apply multiple different halo boundary and temperature criteria to divide concentrated from diffuse gas at $z=1$, then create mock Compton-$y$ maps for the separated components. The maps from 98 simulation snapshots are centred on massive galaxy clusters, oriented by the most prominent galaxy filament axis, and stacked. Results vary significantly depending on the definition used for diffuse gas, indicating that assumptions should be clearly defined when claiming observations of the warm-hot intergalactic medium. In all cases, the diffuse gas is important, contributing 25-60% of the tSZ signal in the far field ($&gt;4 h^{-1}$ comoving Mpc) from the stacked clusters. The gas 1-2 virial radii from halo centres is especially key. Oriented stacking and environmental selections help to amplify the signal from the warm-hot intergalactic medium, which is aligned but less concentrated along the filament axis than the hot halo gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00242v3-abstract-full').style.display = 'none'; document.getElementById('2211.00242v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in MNRAS. 18 pages, 13 figures, 2 tables. Minor revisions for clarity; results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 523, Issue 1, pp.1346-1363 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14890">arXiv:2210.14890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.14890">pdf</a>, <a href="https://arxiv.org/format/2210.14890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad359">10.1093/mnras/stad359 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The deconvolved distribution estimator: enhancing reionisation-era CO line-intensity mapping analyses with a cross-correlation analogue for one-point statistics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">Dongwoo T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bangari%2C+I">Ishika Bangari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+H+T">H氓vard T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunne%2C+D+A">Delaney A. Dunne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padmanabhan%2C+H">Hamsa Padmanabhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Philip%2C+L">Liju Philip</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rennie%2C+T+J">Thomas J. Rennie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Viero%2C+M+P">Marco P. Viero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14890v3-abstract-short" style="display: inline;"> We present the deconvolved distribution estimator (DDE), an extension of the voxel intensity distribution (VID), in the context of future observations proposed as part of the CO Mapping Array Project (COMAP). The DDE exploits the fact that the observed VID is a convolution of correlated signal intensity distributions and uncorrelated noise or interloper intensity distributions. By deconvolving the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14890v3-abstract-full').style.display = 'inline'; document.getElementById('2210.14890v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14890v3-abstract-full" style="display: none;"> We present the deconvolved distribution estimator (DDE), an extension of the voxel intensity distribution (VID), in the context of future observations proposed as part of the CO Mapping Array Project (COMAP). The DDE exploits the fact that the observed VID is a convolution of correlated signal intensity distributions and uncorrelated noise or interloper intensity distributions. By deconvolving the individual VID of two observables away from their joint VID in a Fourier-space operation, the DDE suppresses sensitivity to interloper emission while maintaining sensitivity to correlated components. The DDE thus improves upon the VID by reducing the relative influence of uncorrelated noise and interloper biases, which is useful in the context of COMAP observations that observe different rotational transitions of CO from the same comoving volume in different observing frequency bands. Fisher forecasts suggest that the theoretical sensitivity in the DDE allows significant improvements in constraining power compared to either the cross power spectrum or the individual VID data, and matches the constraining power of the combination of all other one- and two-point summary statistics. Future work should further investigate the covariance and model-dependent behaviour of this novel one-point cross-correlation statistic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14890v3-abstract-full').style.display = 'none'; document.getElementById('2210.14890v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages + acknowledgements/bibliography/appendix (12 pages total); 10 figures, 2 tables; v3 reflects the version accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08985">arXiv:2208.08985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.08985">pdf</a>, <a href="https://arxiv.org/format/2208.08985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2023/02/046">10.1088/1475-7516/2023/02/046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: limits on dark matter-baryon interactions from DR4 power spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zack Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boddy%2C+K+K">Kimberly K. Boddy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A">Adam Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A">Arthur Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B">Blake Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vargas%2C+C">Cristian Vargas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08985v1-abstract-short" style="display: inline;"> Diverse astrophysical observations suggest the existence of cold dark matter that interacts only gravitationally with radiation and ordinary baryonic matter. Any nonzero coupling between dark matter and baryons would provide a significant step towards understanding the particle nature of dark matter. Measurements of the cosmic microwave background (CMB) provide constraints on such a coupling that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08985v1-abstract-full').style.display = 'inline'; document.getElementById('2208.08985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08985v1-abstract-full" style="display: none;"> Diverse astrophysical observations suggest the existence of cold dark matter that interacts only gravitationally with radiation and ordinary baryonic matter. Any nonzero coupling between dark matter and baryons would provide a significant step towards understanding the particle nature of dark matter. Measurements of the cosmic microwave background (CMB) provide constraints on such a coupling that complement laboratory searches. In this work we place upper limits on a variety of models for dark matter elastic scattering with protons and electrons by combining large-scale CMB data from the Planck satellite with small-scale information from Atacama Cosmology Telescope (ACT) DR4 data. In the case of velocity-independent scattering, we obtain bounds on the interaction cross section for protons that are 40\% tighter than previous constraints from the CMB anisotropy. For some models with velocity-dependent scattering we find best-fitting cross sections with a 2$蟽$ deviation from zero, but these scattering models are not statistically preferred over $螞$CDM in terms of model selection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08985v1-abstract-full').style.display = 'none'; document.getElementById('2208.08985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03164">arXiv:2207.03164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.03164">pdf</a>, <a href="https://arxiv.org/format/2207.03164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: The Persistence of Neutrino Self-Interaction in Cosmological Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kreisch%2C+C+D">Christina D. Kreisch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+M">Minsu Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cyr-Racine%2C+F">Francis-Yan Cyr-Racine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dore%2C+O">Olivier Dore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P">Patricio Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+T+W">Thomas W. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sifon%2C+C">Cristobal Sifon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Spergel%2C+D+N">David N. Spergel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vargas%2C+C">Cristian Vargas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03164v2-abstract-short" style="display: inline;"> We use data from the Atacama Cosmology Telescope (ACT) DR4 to search for the presence of neutrino self-interaction in the cosmic microwave background. Consistent with prior works, the posterior distributions we find are bimodal, with one mode consistent with $螞$CDM and one where neutrinos strongly self-interact. By combining ACT data with large-scale information from WMAP, we find that a delayed o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03164v2-abstract-full').style.display = 'inline'; document.getElementById('2207.03164v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03164v2-abstract-full" style="display: none;"> We use data from the Atacama Cosmology Telescope (ACT) DR4 to search for the presence of neutrino self-interaction in the cosmic microwave background. Consistent with prior works, the posterior distributions we find are bimodal, with one mode consistent with $螞$CDM and one where neutrinos strongly self-interact. By combining ACT data with large-scale information from WMAP, we find that a delayed onset of neutrino free streaming caused by significantly strong neutrino self-interaction is compatible with these data at the $2-3蟽$ level. As seen in the past, the preference shifts to $螞$CDM with the inclusion of Planck data. We determine that the preference for strong neutrino self-interaction is largely driven by angular scales corresponding to $700 \lesssim \ell \lesssim 1000$ in the ACT E-mode polarization data. This region is expected to be key to discriminate between neutrino self-interacting modes and will soon be probed with more sensitive data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03164v2-abstract-full').style.display = 'none'; document.getElementById('2207.03164v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">added additional references, 9+10 pages, 4+8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08024">arXiv:2203.08024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08024">pdf</a>, <a href="https://arxiv.org/format/2203.08024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 CMB-S4 White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Abazajian%2C+K">Kevork Abazajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abdulghafour%2C+A">Arwa Abdulghafour</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adshead%2C+P">Peter Adshead</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ajello%2C+M">Marco Ajello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akerib%2C+D">Daniel Akerib</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+S+W">Steven W. Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amin%2C+M+A">Mustafa A. Amin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A">Adam Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansarinejad%2C+B">Behzad Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Archipley%2C+M">Melanie Archipley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K+S">Kam S. Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashby%2C+M">Matt Ashby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aung%2C+H">Han Aung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baker%2C+C">Carina Baker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakshi%2C+A">Abhishek Bakshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bard%2C+D">Debbie Bard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barry%2C+P+S">Peter S. Barry</a> , et al. (331 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08024v1-abstract-short" style="display: inline;"> This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08024v1-abstract-full" style="display: none;"> This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08024v1-abstract-full').style.display = 'none'; document.getElementById('2203.08024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. arXiv admin note: substantial text overlap with arXiv:1908.01062, arXiv:1907.04473</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07638">arXiv:2203.07638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07638">pdf</a>, <a href="https://arxiv.org/format/2203.07638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 Cosmic Frontier: Cosmic Microwave Background Measurements White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C+L">Clarence L. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">Bradford A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">Federico Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">Jacques Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flauger%2C+R">Raphael Flauger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A+J">Alan J. Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J+J">Jeffrey J. McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meyers%2C+J">Joel Meyers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Umilta%2C+C">Caterina Umilta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abazajian%2C+K+N">Kevork N. Abazajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akrami%2C+Y">Yashar Akrami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+A+J">Adam J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansarinejad%2C+B">Behzad Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barry%2C+P+S">Peter S. Barry</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07638v1-abstract-short" style="display: inline;"> This is a solicited whitepaper for the Snowmass 2021 community planning exercise. The paper focuses on measurements and science with the Cosmic Microwave Background (CMB). The CMB is foundational to our understanding of modern physics and continues to be a powerful tool driving our understanding of cosmology and particle physics. In this paper, we outline the broad and unique impact of CMB science&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07638v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07638v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07638v1-abstract-full" style="display: none;"> This is a solicited whitepaper for the Snowmass 2021 community planning exercise. The paper focuses on measurements and science with the Cosmic Microwave Background (CMB). The CMB is foundational to our understanding of modern physics and continues to be a powerful tool driving our understanding of cosmology and particle physics. In this paper, we outline the broad and unique impact of CMB science for the High Energy Cosmic Frontier in the upcoming decade. We also describe the progression of ground-based CMB experiments, which shows that the community is prepared to develop the key capabilities and facilities needed to achieve these transformative CMB measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07638v1-abstract-full').style.display = 'none'; document.getElementById('2203.07638v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.13839">arXiv:2112.13839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.13839">pdf</a>, <a href="https://arxiv.org/format/2112.13839">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: a new open-source power spectrum pipeline applied to the Planck legacy data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zack Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jense%2C+H">Hidde Jense</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garrido%2C+X">Xavier Garrido</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jaffe%2C+A+H">Andrew H. Jaffe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meerburg%2C+P+D">P. Daniel Meerburg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Natale%2C+U">Umberto Natale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.13839v1-abstract-short" style="display: inline;"> We present a reproduction of the Planck 2018 angular power spectra at $\ell &gt; 30$, and associated covariance matrices, for intensity and polarization maps at 100, 143 and 217 GHz. This uses a new, publicly available, pipeline that is part of the PSpipe package. As a test case we use the same input maps, ancillary products, and analysis choices as in the Planck 2018 analysis, and find that we can r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13839v1-abstract-full').style.display = 'inline'; document.getElementById('2112.13839v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.13839v1-abstract-full" style="display: none;"> We present a reproduction of the Planck 2018 angular power spectra at $\ell &gt; 30$, and associated covariance matrices, for intensity and polarization maps at 100, 143 and 217 GHz. This uses a new, publicly available, pipeline that is part of the PSpipe package. As a test case we use the same input maps, ancillary products, and analysis choices as in the Planck 2018 analysis, and find that we can reproduce the spectra to 0.1$蟽$ precision, and the covariance matrices to 10%. We show that cosmological parameters estimated from our re-derived products agree with the public Planck products to 0.1$蟽$, providing an independent cross-check of the Planck team&#39;s analysis. Going forward, the publicly-available code can be easily adapted to use alternative input maps, data selections and analysis choices, for future optimal analysis of Planck data with new ground-based Cosmic Microwave Background data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13839v1-abstract-full').style.display = 'none'; document.getElementById('2112.13839v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 18 figures, code available at https://simonsobs.github.io/planck-pr3-web/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00820">arXiv:2112.00820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.00820">pdf</a>, <a href="https://arxiv.org/format/2112.00820">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02729-5">10.1007/s10909-022-02729-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-flight gain monitoring of SPIDER&#39;s transition-edge sensor arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rahlin%2C+A+S">A. S. Rahlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Young%2C+E+Y">E. Y. Young</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dore%2C+O">O. Dore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ganga%2C+K">K. Ganga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gualtieri%2C+R">R. Gualtieri</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00820v2-abstract-short" style="display: inline;"> Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES&#39;s small-signal power response from its electrical respons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00820v2-abstract-full').style.display = 'inline'; document.getElementById('2112.00820v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00820v2-abstract-full" style="display: none;"> Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES&#39;s small-signal power response from its electrical response that is exact in the limit of strong electrothermal feedback. We discuss the application and validation of this method using flight data from SPIDER, a balloon-borne telescope that observes the polarization of the cosmic microwave background with more than 2000 TESs. This method may prove useful for future balloon- and space-based instruments, where observing time and ground control bandwidth are limited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00820v2-abstract-full').style.display = 'none'; document.getElementById('2112.00820v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures; Proceedings of the 19th International Workshop on Low Temperature Detectors (LTD19); Minor updates to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05933">arXiv:2111.05933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05933">pdf</a>, <a href="https://arxiv.org/format/2111.05933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac63c9">10.3847/1538-4357/ac63c9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMAP Early Science: VII. Prospects for CO Intensity Mapping at Reionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">Dongwoo T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+K+A">Kieran A. Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+H+T">H氓vard T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padmanabhan%2C+H">Hamsa Padmanabhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva%2C+M+B">Marta B. Silva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borowska%2C+J">Jowita Borowska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Church%2C+S+E">Sarah E. Church</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunne%2C+D+A">Delaney A. Dunne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">Hans Kristian Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foss%2C+M+K">Marie Kristine Foss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaier%2C+T">Todd Gaier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua Ott Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harris%2C+A+I">Andrew I. Harris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hobbs%2C+R">Richard Hobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+L">Laura Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lawrence%2C+C+R">Charles R. Lawrence</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunde%2C+J+G+S">Jonas G. S. Lunde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murray%2C+N">Norman Murray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearson%2C+T+J">Timothy J. Pearson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Philip%2C+L">Liju Philip</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rasmussen%2C+M">Maren Rasmussen</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05933v2-abstract-short" style="display: inline;"> We introduce COMAP-EoR, the next generation of the Carbon Monoxide Mapping Array Project aimed at extending CO intensity mapping to the Epoch of Reionization. COMAP-EoR supplements the existing 30 GHz COMAP Pathfinder with two additional 30 GHz instruments and a new 16 GHz receiver. This combination of frequencies will be able to simultaneously map CO(1--0) and CO(2--1) at reionization redshifts (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05933v2-abstract-full').style.display = 'inline'; document.getElementById('2111.05933v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05933v2-abstract-full" style="display: none;"> We introduce COMAP-EoR, the next generation of the Carbon Monoxide Mapping Array Project aimed at extending CO intensity mapping to the Epoch of Reionization. COMAP-EoR supplements the existing 30 GHz COMAP Pathfinder with two additional 30 GHz instruments and a new 16 GHz receiver. This combination of frequencies will be able to simultaneously map CO(1--0) and CO(2--1) at reionization redshifts ($z\sim5-8$) in addition to providing a significant boost to the $z\sim3$ sensitivity of the Pathfinder. We examine a set of existing models of the EoR CO signal, and find power spectra spanning several orders of magnitude, highlighting our extreme ignorance about this period of cosmic history and the value of the COMAP-EoR measurement. We carry out the most detailed forecast to date of an intensity mapping cross-correlation, and find that five out of the six models we consider yield signal to noise ratios (S/N) $\gtrsim20$ for COMAP-EoR, with the brightest reaching a S/N above 400. We show that, for these models, COMAP-EoR can make a detailed measurement of the cosmic molecular gas history from $z\sim2-8$, as well as probe the population of faint, star-forming galaxies predicted by these models to be undetectable by traditional surveys. We show that, for the single model that does not predict numerous faint emitters, a COMAP-EoR-type measurement is required to rule out their existence. We briefly explore prospects for a third-generation Expanded Reionization Array (COMAP-ERA) capable of detecting the faintest models and characterizing the brightest signals in extreme detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05933v2-abstract-full').style.display = 'none'; document.getElementById('2111.05933v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper 7 of 7 in series. 19 pages, 10 figures, to be submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05931">arXiv:2111.05931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05931">pdf</a>, <a href="https://arxiv.org/format/2111.05931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac63c7">10.3847/1538-4357/ac63c7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMAP Early Science: V. Constraints and Forecasts at $z \sim 3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">Dongwoo T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+K+A">Kieran A. Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+H+T">H氓vard T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padmanabhan%2C+H">Hamsa Padmanabhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva%2C+M+B">Marta B. Silva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borowska%2C+J">Jowita Borowska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Church%2C+S+E">Sarah E. Church</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunne%2C+D+A">Delaney A. Dunne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">Hans Kristian Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foss%2C+M+K">Marie Kristine Foss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaier%2C+T">Todd Gaier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua Ott Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+S+E">Stuart E. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harris%2C+A+I">Andrew I. Harris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B">Brandon Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hobbs%2C+R">Richard Hobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+L+C">Laura C. Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Junhan Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lawrence%2C+C+R">Charles R. Lawrence</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunde%2C+J+G+S">Jonas Gahr Sturtzel Lunde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murray%2C+N">Norman Murray</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05931v3-abstract-short" style="display: inline;"> We present the current state of models for the $z\sim3$ carbon monoxide (CO) line-intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy-halo connection and previous CO(1-0) observations. The Pat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05931v3-abstract-full').style.display = 'inline'; document.getElementById('2111.05931v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05931v3-abstract-full" style="display: none;"> We present the current state of models for the $z\sim3$ carbon monoxide (CO) line-intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy-halo connection and previous CO(1-0) observations. The Pathfinder early science data spanning wavenumbers $k=0.051$-$0.62\,$Mpc$^{-1}$ represent the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum. Our 95% upper limit on the redshift-space clustering amplitude $A_{\rm clust}\lesssim70\,渭$K$^2$ greatly improves on the indirect upper limit of $420\,渭$K$^2$ reported from the CO Power Spectrum Survey (COPSS) measurement at $k\sim1\,$Mpc$^{-1}$. The COMAP limit excludes a subset of models from previous literature, and constrains interpretation of the COPSS results, demonstrating the complementary nature of COMAP and interferometric CO surveys. Using line bias expectations from our priors, we also constrain the squared mean line intensity-bias product, $\langle{Tb}\rangle^2\lesssim50\,渭$K$^2$, and the cosmic molecular gas density, $蟻_\text{H2}&lt;2.5\times10^8\,M_\odot\,$Mpc$^{-3}$ (95% upper limits). Based on early instrument performance and our current CO signal estimates, we forecast that the five-year Pathfinder campaign will detect the CO power spectrum with overall signal-to-noise of 9-17. Between then and now, we also expect to detect the CO-galaxy cross-spectrum using overlapping galaxy survey data, enabling enhanced inferences of cosmic star-formation and galaxy-evolution history. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05931v3-abstract-full').style.display = 'none'; document.getElementById('2111.05931v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper 5 of 7 in series. 17 pages + appendix and bibliography (30 pages total); 15 figures, 6 tables; accepted for publication in ApJ; v3 reflects the accepted version with minor changes and additions to text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ, 933, 186 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05930">arXiv:2111.05930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05930">pdf</a>, <a href="https://arxiv.org/format/2111.05930">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac63c5">10.3847/1538-4357/ac63c5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMAP Early Science: IV. Power Spectrum Methodology and Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+H+T">H氓vard T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borowska%2C+J">Jowita Borowska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+K+A">Kieran A. Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">Hans Kristian Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foss%2C+M+K">Marie K. Foss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+S+E">Stuart E. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Junhan Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunde%2C+J+G+S">Jonas G. S. Lunde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Philip%2C+L">Liju Philip</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rasmussen%2C+M">Maren Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutzer%2C+N">Nils-Ole Stutzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Uzgil%2C+B+D">Bade D. Uzgil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wehus%2C+I+K">Ingunn Kathrine Wehus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Church%2C+S+E">Sarah E. Church</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">Dongwoo T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dickinson%2C+C">Clive Dickinson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunne%2C+D+A">Delaney A. Dunne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaier%2C+T">Todd Gaier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua Ott Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harris%2C+A+I">Andrew I. Harris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hobbs%2C+R">Richard Hobbs</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05930v3-abstract-short" style="display: inline;"> We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer functions to take into account the effects of instrum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05930v3-abstract-full').style.display = 'inline'; document.getElementById('2111.05930v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05930v3-abstract-full" style="display: none;"> We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer functions to take into account the effects of instrumental beam smoothing and various filter operations applied during the low-level data processing. The power spectra estimated in this way have allowed us to identify a systematic error associated with one of our two scanning strategies, believed to be due to residual ground or atmospheric contamination. We omit these data from our analysis and no longer use this scanning technique for observations. We present the power spectra from our first season of observing and demonstrate that the uncertainties are integrating as expected for uncorrelated noise, with any residual systematics suppressed to a level below the noise. Using the FPXS method, and combining data on scales $k=0.051-0.62 \,\mathrm{Mpc}^{-1}$ we estimate $P_\mathrm{CO}(k) = -2.7 \pm 1.7 \times 10^4渭\textrm{K}^2\mathrm{Mpc}^3$, the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum in the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05930v3-abstract-full').style.display = 'none'; document.getElementById('2111.05930v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05929">arXiv:2111.05929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05929">pdf</a>, <a href="https://arxiv.org/format/2111.05929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac63ca">10.3847/1538-4357/ac63ca <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMAP Early Science: III. CO Data Processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Foss%2C+M+K">Marie K. Foss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+H+T">H氓vard T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borowska%2C+J">Jowita Borowska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+K+A">Kieran A. Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">Hans Kristian Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+S+E">Stuart E. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Junhan Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunde%2C+J+G+S">Jonas G. S. Lunde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Philip%2C+L">Liju Philip</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rasmussen%2C+M">Maren Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutzer%2C+N">Nils-Ole Stutzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Uzgil%2C+B+D">Bade D. Uzgil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wehus%2C+I+K">Ingunn K. Wehus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Church%2C+S+E">Sarah E. Church</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">Dongwoo T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dickinson%2C+C">Clive Dickinson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunne%2C+D+A">Delaney A. Dunne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaier%2C+T">Todd Gaier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua Ott Gundersen</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05929v3-abstract-short" style="display: inline;"> We describe the first season COMAP analysis pipeline that converts raw detector readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data selection, and map-making. Absolute gain calibration relies on a combination of instrumental and astrophysical sources, while relative gain calibration exploits real-time total-power variations. High efficiency&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05929v3-abstract-full').style.display = 'inline'; document.getElementById('2111.05929v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05929v3-abstract-full" style="display: none;"> We describe the first season COMAP analysis pipeline that converts raw detector readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data selection, and map-making. Absolute gain calibration relies on a combination of instrumental and astrophysical sources, while relative gain calibration exploits real-time total-power variations. High efficiency filtering is achieved through spectroscopic common-mode rejection within and across receivers, resulting in nearly uncorrelated white noise within single-frequency channels. Consequently, near-optimal but biased maps are produced by binning the filtered time stream into pixelized maps; the corresponding signal bias transfer function is estimated through simulations. Data selection is performed automatically through a series of goodness-of-fit statistics, including $蠂^2$ and multi-scale correlation tests. Applying this pipeline to the first-season COMAP data, we produce a dataset with very low levels of correlated noise. We find that one of our two scanning strategies (the Lissajous type) is sensitive to residual instrumental systematics. As a result, we no longer use this type of scan and exclude data taken this way from our Season 1 power spectrum estimates. We perform a careful analysis of our data processing and observing efficiencies and take account of planned improvements to estimate our future performance. Power spectrum results derived from the first-season COMAP maps are presented and discussed in companion papers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05929v3-abstract-full').style.display = 'none'; document.getElementById('2111.05929v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper 3 of 7 in series. 26 pages, 23 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05928">arXiv:2111.05928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05928">pdf</a>, <a href="https://arxiv.org/format/2111.05928">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac63c6">10.3847/1538-4357/ac63c6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMAP Early Science: II. Pathfinder Instrument </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+K+A">Kieran A. Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woody%2C+D+P">David P. Woody</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">Dongwoo T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua Ott Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+S+E">Stuart E. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harris%2C+A+I">Andrew I. Harris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hobbs%2C+R">Richard Hobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+H+T">H氓vard T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kocz%2C+J">Jonathon Kocz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearson%2C+T+J">Timothy J. Pearson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Philip%2C+L">Liju Philip</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Powell%2C+T+W">Travis W. Powell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basoalto%2C+L">Lilian Basoalto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borowska%2C+J">Jowita Borowska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Church%2C+S+E">Sarah E. Church</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dickinson%2C+C">Clive Dickinson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunne%2C+D+A">Delaney A. Dunne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">Hans Kristian Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foss%2C+M+K">Marie Kristine Foss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaier%2C+T">Todd Gaier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Junhan Kim</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05928v3-abstract-short" style="display: inline;"> Line intensity mapping (LIM) is a new technique for tracing the global properties of galaxies over cosmic time. Detection of the very faint signals from redshifted carbon monoxide (CO), a tracer of star formation, pushes the limits of what is feasible with a total-power instrument. The CO Mapping Project (COMAP) Pathfinder is a first-generation instrument aiming to prove the concept and develop th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05928v3-abstract-full').style.display = 'inline'; document.getElementById('2111.05928v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05928v3-abstract-full" style="display: none;"> Line intensity mapping (LIM) is a new technique for tracing the global properties of galaxies over cosmic time. Detection of the very faint signals from redshifted carbon monoxide (CO), a tracer of star formation, pushes the limits of what is feasible with a total-power instrument. The CO Mapping Project (COMAP) Pathfinder is a first-generation instrument aiming to prove the concept and develop the technology for future experiments, as well as delivering early science products. With 19 receiver channels in a hexagonal focal plane arrangement on a 10.4 m antenna, and an instantaneous 26-34 GHz frequency range with 2 MHz resolution, it is ideally suited to measuring CO($J$=1-0) from $z\sim3$. In this paper we discuss strategies for designing and building the Pathfinder and the challenges that were encountered. The design of the instrument prioritized LIM requirements over those of ancillary science. After a couple of years of operation, the instrument is well understood, and the first year of data is already yielding useful science results. Experience with this Pathfinder will drive the design of the next generations of experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05928v3-abstract-full').style.display = 'none'; document.getElementById('2111.05928v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper 2 of 7 in series. 27 pages, 28 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05927">arXiv:2111.05927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05927">pdf</a>, <a href="https://arxiv.org/format/2111.05927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac63cc">10.3847/1538-4357/ac63cc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMAP Early Science: I. Overview </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+K+A">Kieran A. Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borowska%2C+J">Jowita Borowska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">Patrick C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catha%2C+M">Morgan Catha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">Dongwoo T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Church%2C+S+E">Sarah E. Church</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dickinson%2C+C">Clive Dickinson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">Hans Kristian Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foss%2C+M+K">Marie Kristine Foss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua Ott Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+S+E">Stuart E. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harris%2C+A+I">Andrew I. Harris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hobbs%2C+R">Richard Hobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=H%C3%A5vard"> H氓vard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ihle%2C+T">T. Ihle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Junhan Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kocz%2C+J">Jonathon Kocz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+J+W">James W. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunde%2C+J+G+S">Jonas G. S. Lunde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padmanabhan%2C+H">Hamsa Padmanabhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearson%2C+T+J">Timothy J. Pearson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Philip%2C+L">Liju Philip</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Powell%2C+T+W">Travis W. Powell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rasmussen%2C+M">Maren Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Readhead%2C+A+C+S">Anthony C. S. Readhead</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05927v3-abstract-short" style="display: inline;"> The CO Mapping Array Project (COMAP) aims to use line intensity mapping of carbon monoxide (CO) to trace the distribution and global properties of galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate the technologies and techniques needed for this goal, a Pathfinder instrument has been constructed and fielded. Sensitive to CO(1-0) emission from $z=2.4$-$3.4$ and a fainte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05927v3-abstract-full').style.display = 'inline'; document.getElementById('2111.05927v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05927v3-abstract-full" style="display: none;"> The CO Mapping Array Project (COMAP) aims to use line intensity mapping of carbon monoxide (CO) to trace the distribution and global properties of galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate the technologies and techniques needed for this goal, a Pathfinder instrument has been constructed and fielded. Sensitive to CO(1-0) emission from $z=2.4$-$3.4$ and a fainter contribution from CO(2-1) at $z=6$-8, the Pathfinder is surveying $12$ deg$^2$ in a 5-year observing campaign to detect the CO signal from $z\sim3$. Using data from the first 13 months of observing, we estimate $P_\mathrm{CO}(k) = -2.7 \pm 1.7 \times 10^4渭\mathrm{K}^2 \mathrm{Mpc}^3$ on scales $k=0.051-0.62 \mathrm{Mpc}^{-1}$ - the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum. Based on these observations alone, we obtain a constraint on the amplitude of the clustering component (the squared mean CO line temperature-bias product) of $\langle Tb\rangle^2&lt;49$ $渭$K$^2$ - nearly an order-of-magnitude improvement on the previous best measurement. These constraints allow us to rule out two models from the literature. We forecast a detection of the power spectrum after 5 years with signal-to-noise ratio (S/N) 9-17. Cross-correlation with an overlapping galaxy survey will yield a detection of the CO-galaxy power spectrum with S/N of 19. We are also conducting a 30 GHz survey of the Galactic plane and present a preliminary map. Looking to the future of COMAP, we examine the prospects for future phases of the experiment to detect and characterize the CO signal from the EoR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05927v3-abstract-full').style.display = 'none'; document.getElementById('2111.05927v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper 1 of 7 in series. 18 pages, 16 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01113">arXiv:2111.01113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01113">pdf</a>, <a href="https://arxiv.org/format/2111.01113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac562f">10.3847/1538-4357/ac562f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Simulation-Based Method for Correcting Mode Coupling in CMB Angular Power Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Leung%2C+J+S+-">J. S. -Y. Leung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartley%2C+J">J. Hartley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">J. M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">C. B. Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shariff%2C+J+A">J. A. Shariff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gambrel%2C+A+E">A. E. Gambrel</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01113v2-abstract-short" style="display: inline;"> Modern CMB analysis pipelines regularly employ complex time-domain filters, beam models, masking, and other techniques during the production of sky maps and their corresponding angular power spectra. However, these processes can generate couplings between multipoles from the same spectrum and from different spectra, in addition to the typical power attenuation. Within the context of pseudo-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01113v2-abstract-full').style.display = 'inline'; document.getElementById('2111.01113v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01113v2-abstract-full" style="display: none;"> Modern CMB analysis pipelines regularly employ complex time-domain filters, beam models, masking, and other techniques during the production of sky maps and their corresponding angular power spectra. However, these processes can generate couplings between multipoles from the same spectrum and from different spectra, in addition to the typical power attenuation. Within the context of pseudo-$C_\ell$ based, MASTER-style analyses, the net effect of the time-domain filtering is commonly approximated by a multiplicative transfer function, $F_{\ell}$, that can fail to capture mode mixing and is dependent on the spectrum of the signal. To address these shortcomings, we have developed a simulation-based spectral correction approach that constructs a two-dimensional transfer matrix, $J_{\ell\ell&#39;}$, which contains information about mode mixing in addition to mode attenuation. We demonstrate the application of this approach on data from the first flight of the SPIDER balloon-borne CMB experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01113v2-abstract-full').style.display = 'none'; document.getElementById('2111.01113v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures; updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 928(2):109, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01601">arXiv:2108.01601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01601">pdf</a>, <a href="https://arxiv.org/format/2108.01601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.123526">10.1103/PhysRevD.105.123526 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-correlation of DES Y3 lensing and ACT/${\it Planck}$ thermal Sunyaev Zel&#39;dovich Effect II: Modeling and constraints on halo pressure profiles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+S">S. Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. C. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+X">X. Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giannini%2C+G">G. Giannini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raveri%2C+M">M. Raveri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+H">H. Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moser%2C+E">E. Moser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M">M. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eckert%2C+K">K. Eckert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elvin-Poole%2C+J">J. Elvin-Poole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+S">S. Everett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferte%2C+A">A. Ferte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrison%2C+I">I. Harrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maccrann%2C+N">N. Maccrann</a> , et al. (100 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01601v2-abstract-short" style="display: inline;"> Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev Zel&#39;dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe, and is sensitive to effects such as baryonic feedback&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01601v2-abstract-full').style.display = 'inline'; document.getElementById('2108.01601v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01601v2-abstract-full" style="display: none;"> Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev Zel&#39;dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe, and is sensitive to effects such as baryonic feedback. In a companion paper (Gatti et al. 2021), we present tomographic measurements and validation tests of the cross-correlation between galaxy shear measurements from the first three years of observations of the Dark Energy Survey, and tSZ measurements from a combination of Atacama Cosmology Telescope and ${\it Planck}$ observations. In this work, we use the same measurements to constrain models for the pressure profiles of halos across a wide range of halo mass and redshift. We find evidence for reduced pressure in low mass halos, consistent with predictions for the effects of feedback from active galactic nuclei. We infer the hydrostatic mass bias ($B \equiv M_{500c}/M_{\rm SZ}$) from our measurements, finding $B = 1.8\pm0.1$ when adopting the ${\it Planck}$-preferred cosmological parameters. We additionally find that our measurements are consistent with a non-zero redshift evolution of $B$, with the correct sign and sufficient magnitude to explain the mass bias necessary to reconcile cluster count measurements with the ${\it Planck}$-preferred cosmology. Our analysis introduces a model for the impact of intrinsic alignments (IA) of galaxy shapes on the shear-tSZ correlation. We show that IA can have a significant impact on these correlations at current noise levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01601v2-abstract-full').style.display = 'none'; document.getElementById('2108.01601v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 13 figures. Comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01600">arXiv:2108.01600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01600">pdf</a>, <a href="https://arxiv.org/format/2108.01600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.123525">10.1103/PhysRevD.105.123525 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-correlation of DES Y3 lensing and ACT/${\it Planck}$ thermal Sunyaev Zel&#39;dovich Effect I: Measurements, systematics tests, and feedback model constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+S">S. Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. C. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moser%2C+E">E. Moser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raveri%2C+M">M. Raveri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+X">X. Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giannini%2C+G">G. Giannini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+H">H. Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M">M. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eckert%2C+K">K. Eckert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elvin-Poole%2C+J">J. Elvin-Poole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+S">S. Everett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferte%2C+A">A. Ferte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrison%2C+I">I. Harrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maccrann%2C+N">N. Maccrann</a> , et al. (104 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01600v1-abstract-short" style="display: inline;"> We present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zeldovich (tSZ) maps from ${\it Planck}$ and the Atacama Cosmology Telescope (ACT) and weak galaxy lensing shears measured during the first three years of observations of the Dark Energy Survey (DES Y3). This correlation is sensitive to the thermal energy in baryons over a wide redshift range, and is therefore a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01600v1-abstract-full').style.display = 'inline'; document.getElementById('2108.01600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01600v1-abstract-full" style="display: none;"> We present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zeldovich (tSZ) maps from ${\it Planck}$ and the Atacama Cosmology Telescope (ACT) and weak galaxy lensing shears measured during the first three years of observations of the Dark Energy Survey (DES Y3). This correlation is sensitive to the thermal energy in baryons over a wide redshift range, and is therefore a powerful probe of astrophysical feedback. We detect the correlation at a statistical significance of $21蟽$, the highest significance to date. We examine the tSZ maps for potential contaminants, including cosmic infrared background (CIB) and radio sources, finding that CIB has a substantial impact on our measurements and must be taken into account in our analysis. We use the cross-correlation measurements to test different feedback models. In particular, we model the tSZ using several different pressure profile models calibrated against hydrodynamical simulations. Our analysis marginalises over redshift uncertainties, shear calibration biases, and intrinsic alignment effects. We also marginalise over $惟_{\rm m}$ and $蟽_8$ using ${\it Planck}$ or DES priors. We find that the data prefers the model with a low amplitude of the pressure profile at small scales, compatible with a scenario with strong AGN feedback and ejection of gas from the inner part of the halos. When using a more flexible model for the shear profile, constraints are weaker, and the data cannot discriminate between different baryonic prescriptions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01600v1-abstract-full').style.display = 'none'; document.getElementById('2108.01600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10364">arXiv:2107.10364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.10364">pdf</a>, <a href="https://arxiv.org/format/2107.10364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac9838">10.3847/1538-4365/ac9838 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CCAT-prime Collaboration: Science Goals and Forecasts with Prime-Cam on the Fred Young Submillimeter Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=collaboration%2C+C">CCAT-Prime collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aravena%2C+M">M. Aravena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+K">K. Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">B. Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertoldi%2C+F">F. Bertoldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigiel%2C+F">F. Bigiel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breysse%2C+P+C">P. C. Breysse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broughton%2C+C">C. Broughton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">R. Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">S. C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Charmetant%2C+M">M. Charmetant</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">S. K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+D+T">D. T. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">N. F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crites%2C+A+T">A. T. Crites</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dev%2C+A">A. Dev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Douglas%2C+K">K. Douglas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">C. J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">R. Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ebina%2C+H">H. Ebina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Erler%2C+J">J. Erler</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10364v3-abstract-short" style="display: inline;"> We present a detailed overview of the science goals and predictions for the Prime-Cam direct detection camera/spectrometer being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6-m aperture submillimeter telescope being built (first light in mid-2024) by an international consortium of institutions led by Corn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10364v3-abstract-full').style.display = 'inline'; document.getElementById('2107.10364v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10364v3-abstract-full" style="display: none;"> We present a detailed overview of the science goals and predictions for the Prime-Cam direct detection camera/spectrometer being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6-m aperture submillimeter telescope being built (first light in mid-2024) by an international consortium of institutions led by Cornell University and sited at more than 5600 meters on Cerro Chajnantor in northern Chile. Prime-Cam is one of two instruments planned for FYST and will provide unprecedented spectroscopic and broadband measurement capabilities to address important astrophysical questions ranging from Big Bang cosmology through reionization and the formation of the first galaxies to star formation within our own Milky Way galaxy. Prime-Cam on the FYST will have a mapping speed that is over ten times greater than existing and near-term facilities for high-redshift science and broadband polarimetric imaging at frequencies above 300 GHz. We describe details of the science program enabled by this system and our preliminary survey strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10364v3-abstract-full').style.display = 'none'; document.getElementById('2107.10364v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61 pages, 16 figures. Resubmitted to ApJSS July 11, 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.05523">arXiv:2107.05523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.05523">pdf</a>, <a href="https://arxiv.org/format/2107.05523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac7043">10.3847/1538-4357/ac7043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: I. Evidence for thermal energy anisotropy using oriented stacking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lokken%2C+M">M. Lokken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlo%C5%BEek%2C+R">R. Hlo啪ek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Engelen%2C+A">A. van Engelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M">M. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+S">S. Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rykoff%2C+E+S">E. S. Rykoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+G">G. Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=To%2C+C">C. To</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kind%2C+M+C">M. Carrasco Kind</a> , et al. (82 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.05523v3-abstract-short" style="display: inline;"> The cosmic web contains filamentary structure on a wide range of scales. On the largest scales, superclustering aligns multiple galaxy clusters along inter-cluster bridges, visible through their thermal Sunyaev-Zel&#39;dovich signal in the Cosmic Microwave Background. We demonstrate a new, flexible method to analyze the hot gas signal from multi-scale extended structures. We use a Compton-$y$ map from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05523v3-abstract-full').style.display = 'inline'; document.getElementById('2107.05523v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.05523v3-abstract-full" style="display: none;"> The cosmic web contains filamentary structure on a wide range of scales. On the largest scales, superclustering aligns multiple galaxy clusters along inter-cluster bridges, visible through their thermal Sunyaev-Zel&#39;dovich signal in the Cosmic Microwave Background. We demonstrate a new, flexible method to analyze the hot gas signal from multi-scale extended structures. We use a Compton-$y$ map from the Atacama Cosmology Telescope (ACT) stacked on redMaPPer cluster positions from the optical Dark Energy Survey (DES). Cutout images from the $y$ map are oriented with large-scale structure information from DES galaxy data such that the superclustering signal is aligned before being overlaid. We find evidence for an extended quadrupole moment of the stacked $y$ signal at the 3.5$蟽$ level, demonstrating that the large-scale thermal energy surrounding galaxy clusters is anisotropically distributed. We compare our ACT$\times$DES results with the Buzzard simulations, finding broad agreement. Using simulations, we highlight the promise of this novel technique for constraining the evolution of anisotropic, non-Gaussian structure using future combinations of microwave and optical surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05523v3-abstract-full').style.display = 'none'; document.getElementById('2107.05523v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 23 figures, 4 tables. Added explanatory figure, table, covariance matrix equations, discussion of CIB impact. Matches the version published in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04611">arXiv:2107.04611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04611">pdf</a>, <a href="https://arxiv.org/format/2107.04611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3391">10.1093/mnras/stab3391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A high-resolution view of the filament of gas between Abell 399 and Abell 401 from the Atacama Cosmology Telescope and MUSTANG-2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radiconi%2C+F">Federico Radiconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbavara%2C+E">Eleonora Barbavara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E">Elia Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+P">Paolo de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Govoni%2C+F">Federica Govoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamagna%2C+L">Luca Lamagna</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04611v2-abstract-short" style="display: inline;"> We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65&#39;$ resolution that allows us to clearly separate the profi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04611v2-abstract-full').style.display = 'inline'; document.getElementById('2107.04611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04611v2-abstract-full" style="display: none;"> We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65&#39;$ resolution that allows us to clearly separate the profiles of the clusters, whose centres are separated by $37&#39;$, from the gas associated with the filament. A model that fits for only the two clusters is ruled out compared to one that includes a bridge component at $&gt;5蟽$. Using a gas temperature determined from Suzaku X-ray data, we infer a total mass of $(3.3\pm0.7)\times10^{14}\,\mathrm{M}_{\odot}$ associated with the filament, comprising about $8\%$ of the entire Abell 399-Abell 401 system. We fit two phenomenological models to the filamentary structure; the favoured model has a width transverse to the axis joining the clusters of ${\sim}1.9\,\mathrm{Mpc}$. When combined with the Suzaku data, we find a gas density of $(0.88\pm0.24)\times10^{-4}\,\mathrm{cm}^{-3}$, considerably lower than previously reported. We show that this can be fully explained by a geometry in which the axis joining Abell 399 and Abell 401 has a large component along the line of sight, such that the distance between the clusters is significantly greater than the $3.2\,\mathrm{Mpc}$ projected separation on the plane of the sky. Finally, we present initial results from higher resolution ($12.7&#34;$ effective) imaging of the bridge with the MUSTANG-2 receiver on the Green Bank Telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04611v2-abstract-full').style.display = 'none'; document.getElementById('2107.04611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 3 tables. This is a pre-copyedited, author-produced PDF of an article accepted for publication in the Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab3391/6442294</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12467">arXiv:2106.12467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.12467">pdf</a>, <a href="https://arxiv.org/format/2106.12467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac26b6">10.3847/1538-4357/ac26b6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining CMB temperature evolution with Sunyaev-Zel&#39;dovich galaxy clusters from the Atacama Cosmology Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R">Renee Hlozek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L">Lyman Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12467v2-abstract-short" style="display: inline;"> The Sunyaev-Zel&#39;dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370 clusters within the redshift range&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12467v2-abstract-full').style.display = 'inline'; document.getElementById('2106.12467v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12467v2-abstract-full" style="display: none;"> The Sunyaev-Zel&#39;dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370 clusters within the redshift range $0.07\lesssim z\lesssim1.4$ from the largest SZ-selected cluster sample to date from the Atacama Cosmology Telescope, we provide new constraints on the deviation of CMB temperature evolution from the standard model $伪=0.017^{+0.029}_{-0.032}$, where $T(z)=T_0(1+z)^{1-伪}$. This result is consistent with no deviation from the standard adiabatic model. Combining it with previous, independent datasets we obtain a joint constraint of $伪=-0.001\pm0.012$. Attributing deviation from adiabaticity to the decay of dark energy, this result constrains its effective equation of state $w_\mathrm{eff}=-0.998^{+0.008}_{-0.010}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12467v2-abstract-full').style.display = 'none'; document.getElementById('2106.12467v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bond%2C+J+R&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10