CINXE.COM

Search results for: Swapna Koneru

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Swapna Koneru</title> <meta name="description" content="Search results for: Swapna Koneru"> <meta name="keywords" content="Swapna Koneru"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Swapna Koneru" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Swapna Koneru"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Swapna Koneru</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Spectroscopic and 1.08mm Laser Properties of Nd3+ Doped Oxy-Fluoro Borate Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapna%20Koneru">Swapna Koneru</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Prakash%20Gaddem"> Vijaya Prakash Gaddem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different concentrations of neodymium-doped (Nd-doped) oxy fluoroborate (OFB) glasses were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements to understand the lasing potentialities of these glasses. Optical absorption spectra were recorded and have been analyzed using Judd–Ofelt theory. The dipole strengths are parameterized in terms of three phenomenological Judd–Ofelt intensity parameters Ωλ (λ=2, 4 and 6) to elucidate the glassy matrix around Nd3+ ion as well as to determine the 4F3/2 metastable state radiative properties such as the transition probability (AR), radiative lifetime (τR), branching ratios (βR) and integrated absorption cross-section (σa) have been measured for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses exhibit two peaks at 1085 and 1328 nm corresponding to 4F3/2 to 4I11/2 and 4I13/2 transitions have been obtained for all the glasses upon 808 nm diode laser excitation in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2.0 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses due to the concentration quenching. The decay curves of all these glasses show single exponential behavior. The spectroscopy of Nd3+ in these glasses is well understood and laser properties can be accurately determined from measured spectroscopic properties. The results obtained are compared with reports on similar glasses. The results indicate that the present glasses could be useful for 1.08 µm laser applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence%20spectroscopy" title=" photoluminescence spectroscopy "> photoluminescence spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/47257/spectroscopic-and-108mm-laser-properties-of-nd3-doped-oxy-fluoro-borate-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Collaborative Team Work in Higher Education: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapna%20Bhargavi%20Gantasala">Swapna Bhargavi Gantasala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> If teamwork is the key to organizational learning, productivity, and growth, then, why do some teams succeed in achieving these, while others falter at different stages? Building teams in higher education institutions has been a challenge and an open-ended constructivist approach was considered on an experimental basis for this study to address this challenge. For this research, teams of students from the MBA program were chosen to study the effect of teamwork in learning, the motivation levels among student team members, and the effect of collaboration in achieving team goals. The teams were built on shared vision and goals, cohesion was ensured, positive induction in the form of faculty mentoring was provided for each participating team and the results have been presented with conclusions and suggestions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teamwork" title="teamwork">teamwork</a>, <a href="https://publications.waset.org/abstracts/search?q=leadership" title=" leadership"> leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation%20and%20reinforcement" title=" motivation and reinforcement"> motivation and reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=collaboration" title=" collaboration"> collaboration</a> </p> <a href="https://publications.waset.org/abstracts/12489/collaborative-team-work-in-higher-education-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Carvedilol Ameliorates Potassium Dichromate-Induced Acute Renal Injury in Rats: Plausible Role of Inflammation and Apoptosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bidya%20Dhar%20Sahu">Bidya Dhar Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meghana%20Koneru"> Meghana Koneru</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Shyam%20Sunder"> R. Shyam Sunder</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramakrishna%20Sistla"> Ramakrishna Sistla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental and occupational exposure to hexavalent chromium [Cr(VI)] via textile manufacture, metallurgy, spray paints, stainless steel industries, drinking water containing chromium are often known to cause acute renal injury in humans and animals. Nephrotoxicity is the major effect of chromium poisoning. In the present study, we investigated the potential renoprotective effect and underlying mechanisms of carvedilol using rat model of potassium dichromate (K2Cr2O7)-induced nephrotoxicity. Exploration of the underlying mechanisms of carvedilol revealed that carvedilol attenuated nuclear translocation and DNA binding activity of NF-κB (p65), restored antioxidant and mitochondrial respiratory enzyme activities and attenuated apoptosis related protein expressions in kidney tissues. The serum levels of TNF-α, the renal iNOS and myeloperoxidase activity were significantly decreased in carvedilol pre-treated K2Cr2O7-induced nephrotoxic rats. These results were further supported and confirmed by histological findings. In conclusion, the findings of the present study demonstrated that carvedilol is an effective chemoprotectant against K2Cr2O7-induced nephrotoxicity in rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=carvedilol" title=" carvedilol"> carvedilol</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20dichromate-induced%20nephrotoxicity" title=" potassium dichromate-induced nephrotoxicity"> potassium dichromate-induced nephrotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=applied%20pharmacology" title=" applied pharmacology"> applied pharmacology</a> </p> <a href="https://publications.waset.org/abstracts/7028/carvedilol-ameliorates-potassium-dichromate-induced-acute-renal-injury-in-rats-plausible-role-of-inflammation-and-apoptosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Comprehensive Evaluation of the Bus Rapid Transit Project from Gazipur to Airport at Dhaka Focusing on Environmental Impacts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapna%20Begum">Swapna Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=Higano%20Yoshiro"> Higano Yoshiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dhaka is the capital city of Bangladesh. It is considered as one of the traffic congested cities in the world. The growth of the population of this city is increasing day by day. The land use pattern and the increased socio-economic characteristics increase the motor vehicle ownership of this city. The rapid unplanned urbanization and poor transportation planning have deteriorated the transport environment of this city. Also, the huge travel demand with non-motorized traffics on streets is accounted for enormous traffic congestion in this city. The land transport sector in Dhaka is mainly dependent on road transport comprised of both motorized and non-motorized modes of travel. This improper modal mix and the un-integrated system have resulted in huge traffic congestion in this city. Moreover, this city has no well-organized public transport system and any Mass Transit System to cope with this ever increasing demand. Traffic congestion causes serious air pollution and adverse impact on the economy by deteriorating the accessibility, level of service, safety, comfort and operational efficiency. Therefore, there is an imperative need to introduce a well-organized, properly scheduled mass transit system like (Bus Rapid Transit) BRT minimizing the existing problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=BRT" title=" BRT"> BRT</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transit" title=" mass transit"> mass transit</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion" title=" traffic congestion"> traffic congestion</a> </p> <a href="https://publications.waset.org/abstracts/68750/a-comprehensive-evaluation-of-the-bus-rapid-transit-project-from-gazipur-to-airport-at-dhaka-focusing-on-environmental-impacts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Enhanced PAHs&#039; Biodegradation by Consortia Developed with Biofilm – Biosurfactant - Producing Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapna%20Guntupalli">Swapna Guntupalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Leela%20Madhuri%20Chalasani"> Leela Madhuri Chalasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Kshatri%20Jyothi"> Kshatri Jyothi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Rao"> C. V. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bondili%20J.%20S."> Bondili J. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study hypothesizes that enhanced biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) is achievable with an assemblage of microorganisms that are capable of producing biofilm and biosurfactants. Accordingly, PAHs degrading microorganism’s (bacteria, fungi, actinomycetes and yeast) were screened and grouped into different consortia based on their capabilities to produce biofilm and biosurfactants. Among these, Consortium BTSN09 consisting of bacterial fungal cocultures showed highest degradation due to the synergistic action between them. Degradation effiencies were evaluated using HPLC and GC-MS. Within 7days, BTSN09 showed 51% and 50.7% degradation of Phenanthrene (PHE) and Pyrene (PYR) with 200mg/L and 100 mg/L concentrations respectively in a liquid medium. In addition, several degradative enzymes like laccases, 1hydroxy-2-naphthoicacid dioxygenase, 2-carboxybenzaldehyde dehydrogenase, catechol1,2 dioxygenase and catechol2,3 dioxygenase activity was observed during degradation. Degradation metabolites were identified using GC-MS analysis and from the results it was confirmed that the metabolism of degradation proceeds via pthalic acid pathway for both PAHs. Besides, Microbial consortia also demonstrated good biosurfactant production capacity, achieving maximum oil displacement area and emulsification activity of 19.62 cm2, 65.5% in presence of PAHs as sole carbon source. Scanning Electron Microscopy analysis revealed exopolysaccharides (EPS) production, micro and macrocolonies formation with different stages of biofim development in presence of PAHs during degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PAHs" title="PAHs">PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation "> biodegradation </a> </p> <a href="https://publications.waset.org/abstracts/20079/enhanced-pahs-biodegradation-by-consortia-developed-with-biofilm-biosurfactant-producing-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Photoluminescence and Spectroscopic Studies of Tm3+ Ions Doped Lead Tungsten Tellurite Glasses for Visible Red and Near-Ir Laser Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Venkateswarlu">M. Venkateswarlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Mahamuda"> S. K. Mahamuda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna"> K. Swapna</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vijaya%20Prakash"> G. Vijaya Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Tm3+ ions were prepared by using melt quenching technique and characterized through optical absorption, photoluminescence and decay spectral studies to know the feasibility of using these glasses as luminescent devices in visible Red and NIR regions. By using optical absorption spectral data, the energy band gaps for all the glasses were evaluated and were found to be in the range of 2.34-2.59 eV; which is very useful for the construction of optical devices. Judd-Ofelt (J-O)theory has been applied to the optical absorption spectral profiles to calculate the J-O intensity parameters Ωλ (λ=2, 4 and 6) and consecutively used to evaluate various radiative properties such as radiative transition probability (AR), radiative lifetimes (τ_R) and branching ratios (β_R) for the prominent luminescent levels. The luminescence spectra for all the LTT glass samples have shown two intense peaks in bright red and Near Infrared regions at 650 nm (1G4→3F4) and 800 nm (3H4→3H6) respectively for which effective bandwidths (〖Δλ〗_P), experimental branching ratios (β_exp) and stimulated emission cross-sections (σ_se) are evaluated. The decay profiles for all the glasses were also recorded to measure the quantum efficiency of the prepared LTT glasses by coupling the radiative and experimental lifetimes. From the measured emission cross-sections, quantum efficiency and CIE chromaticity coordinates, it was found that 0.5 mol% of Tm3+ ions doped LTT glass is most suitable for generating bright visible red and NIR lasers to operate at 650 and 800 nm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=JO%20parameters" title=" JO parameters"> JO parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20materials" title=" optical materials"> optical materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thullium" title=" thullium"> thullium</a> </p> <a href="https://publications.waset.org/abstracts/47260/photoluminescence-and-spectroscopic-studies-of-tm3-ions-doped-lead-tungsten-tellurite-glasses-for-visible-red-and-near-ir-laser-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrinalini%20Amritkar">Mrinalini Amritkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Disha%20Patil"> Disha Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapna%20Kulkarni"> Swapna Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukratu%20Barve"> Sukratu Barve</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Gosavi"> Suresh Gosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lab-on-chip" title="Lab-on-chip">Lab-on-chip</a>, <a href="https://publications.waset.org/abstracts/search?q=LOC" title=" LOC"> LOC</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-mixer" title=" micro-mixer"> micro-mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS" title=" PDMS"> PDMS</a> </p> <a href="https://publications.waset.org/abstracts/103224/unsteady-flow-simulations-for-microchannel-design-and-its-fabrication-for-nanoparticle-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna">K. Swapna</a>, <a href="https://publications.waset.org/abstracts/search?q=Sk.%20Mahamuda"> Sk. Mahamuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch"> Ch</a>, <a href="https://publications.waset.org/abstracts/search?q=Annapurna"> Annapurna</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Srinivasa%20Rao"> A. Srinivasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vijaya%20Prakash"> G. Vijaya Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoro%20tungsten%20tellurite%20glasses" title="fluoro tungsten tellurite glasses">fluoro tungsten tellurite glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=judd-ofelt%20intensity%20parameters" title=" judd-ofelt intensity parameters"> judd-ofelt intensity parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulated%20emission%20cross-section" title=" stimulated emission cross-section"> stimulated emission cross-section</a> </p> <a href="https://publications.waset.org/abstracts/43867/composition-dependent-spectroscopic-studies-of-sm3-doped-alkali-fluoro-tungsten-tellurite-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna">K. Swapna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=J-O%20parameters" title=" J-O parameters"> J-O parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=I-H%20model" title=" I-H model"> I-H model</a> </p> <a href="https://publications.waset.org/abstracts/88085/spectroscopic-studies-of-dy3-ions-in-alkaline-earth-boro-tellurite-glasses-for-optoelectronic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Clinical Profile of Oral Sensory Abilities in Developmental Dysarthria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapna%20N.">Swapna N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepthy%20Ann%20Joy"> Deepthy Ann Joy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major causes of communication disorders in pediatric population is Motor speech disorders. These disorders which affect the motor aspects of speech articulators can have an adverse effect on the communication abilities of children in their developmental period. The motor aspects are dependent on the sensory abilities of children with motor speech disorders. Hence, oral sensorimotor evaluation is an important component in the assessment of children with motor speech disorders. To our knowledge, the importance of oral motor examination has been well established, yet the sensory assessment of the oral structures has received less focus. One of the most common motor speech disorders seen in children is developmental dysarthria. The present study aimed to assess the orosensory aspects in children with developmental dysarthria (CDD). The control group consisted of 240 children in the age range of four and eight years which was divided into four subgroups (4-4.11, 5-5.11, 6-6.11 and 7-7.11 years). The experimental group consisted of 15 children who were diagnosed with developmental dysarthria secondary to cerebral palsy who belonged in the age range of four and eight years. The oro-sensory aspects such as response to touch, temperature, taste, texture, and orofacial sensitivity were evaluated and profiled. For this purpose, the authors used the ‘Oral Sensorimotor Evaluation Protocol- Children’ which was developed by the authors. The oro-sensory section of the protocol was administered and the clinical profile of oro-sensory abilities of typically developing children and CDD was obtained for each of the sensory abilities. The oro-sensory abilities of speech articulators such as lips, tongue, palate, jaw, and cheeks were assessed in detail and scored. The results indicated that experimental group had poorer scores on oro-sensory aspects such as light static touch, kinetic touch, deep pressure, vibration and double simultaneous touch. However, it was also found that the experimental group performed similar to control group on few aspects like temperature, taste, texture and orofacial sensitivity. Apart from the oro-motor abilities which has received utmost interest, the variation in the oro-sensory abilities of experimental and control group is highlighted and discussed in the present study. This emphasizes the need for assessing the oro-sensory abilities in children with developmental dysarthria in addition to oro-motor abilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerebral%20palsy" title="cerebral palsy">cerebral palsy</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental%20dysarthria" title=" developmental dysarthria"> developmental dysarthria</a>, <a href="https://publications.waset.org/abstracts/search?q=orosensory%20assessment" title=" orosensory assessment"> orosensory assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=touch" title=" touch"> touch</a> </p> <a href="https://publications.waset.org/abstracts/99203/clinical-profile-of-oral-sensory-abilities-in-developmental-dysarthria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Effect of Non-Surgical Periodontal Therapy on Metabolic Control in Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areej%20Al-Khabbaz">Areej Al-Khabbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapna%20%20Goerge"> Swapna Goerge</a>, <a href="https://publications.waset.org/abstracts/search?q=Majedah%20%20Abdul-Rasoul"> Majedah Abdul-Rasoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The most prevalent periodontal disease among children is gingivitis, and it usually becomes more severe in adolescence. A number of intervention studies suggested that resolution of periodontal inflammation can improve metabolic control in patients diagnosed with diabetes mellitus. Aim: to assess the effect of non-surgical periodontal therapy on glycemic control of children diagnosed with diabetes mellitus. Method: Twenty-eight children diagnosed with diabetes mellitus were recruited with established diagnosis diabetes for at least 1 year. Informed consent and child assent form were obtained from children and parents prior to enrolment. The dental examination for the participants was performed on the same week directly following their annual medical assessment. All patients had their glycosylated hemoglobin (HbA1c%) test one week prior to their annual medical and dental visit and 3 months following non-surgical periodontal therapy. All patients received a comprehensive periodontal examination The periodontal assessment included clinical attachment loss, bleeding on probing, plaque score, plaque index and gingival index. All patients were referred for non-surgical periodontal therapy, which included oral hygiene instruction and motivation followed by supra-gingival and subg-ingival scaling using ultrasonic and hand instruments. Statistical Analysis: Data were entered and analyzed using the Statistical Package for Social Science software (SPSS, Chicago, USA), version 18. Statistical analysis of clinical findings was performed to detect differences between the two groups in term of periodontal findings and HbA1c%. Binary logistic regression analysis was performed in order to examine which factors were significant in multivariate analysis after adjusting for confounding between effects. The regression model used the dependent variable ‘Improved glycemic control’, and the independent variables entered in the model were plaque index, gingival index, bleeding %, plaque Statistical significance was set at p < 0.05. Result: A total of 28 children. The mean age of the participants was 13.3±1.92 years. The study participants were divided into two groups; Compliant group (received dental scaling) and non-complaints group (received oral hygiene instructions only). No statistical difference was found between compliant and non-compliant group in age, gender distribution, oral hygiene practice and the level of diabetes control. There was a significant difference between compliant and non-compliant group in term of improvement of HBa1c before and after periodontal therapy. Mean gingival index was the only significant variable associated with improved glycemic control level. In conclusion, this study has demonstrated that non-surgical mechanical periodontal therapy can improve HbA1c% control. The result of this study confirmed that children with diabetes mellitus who are compliant to dental care and have routine professional scaling may have better metabolic control compared to diabetic children who are erratic with dental care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=children" title="children">children</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20control" title=" metabolic control"> metabolic control</a>, <a href="https://publications.waset.org/abstracts/search?q=periodontal%20therapy" title=" periodontal therapy "> periodontal therapy </a> </p> <a href="https://publications.waset.org/abstracts/103388/the-effect-of-non-surgical-periodontal-therapy-on-metabolic-control-in-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10