CINXE.COM

Search results for: gel mask

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: gel mask</title> <meta name="description" content="Search results for: gel mask"> <meta name="keywords" content="gel mask"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="gel mask" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="gel mask"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 152</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: gel mask</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Strap Tension Adjusting Device for Non-Invasive Positive Pressure Ventilation Mask Fitting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshie%20Asahara">Yoshie Asahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidekuni%20Takao"> Hidekuni Takao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-invasive positive pressure ventilation (NPPV), a type of ventilation therapy, is a treatment in which a mask is attached to the patient's face and delivers gas into the mask to support breathing. The NPPV mask uses a strap, which is necessary to attach and secure the mask in the appropriate facial position, but the tensile strength of the strap is adjusted by the sensation of the hands. The strap uniformity and fine-tuning strap tension are judged by the skill of the operator and the amount felt by the finger. In the future, additional strap operation and adjustment methods will be required to meet the needs for reducing the burden on the patient’s face. In this study, we fabricated a mechanism that can measure, adjust and fix the tension of the straps. A small amount of strap tension can be adjusted by rotating the shaft. This makes it possible to control the slight strap tension that is difficult to grasp with the sense of the operator's hand. In addition, this mechanism allows the operator to control the strap while controlling the movement of the mask body. This leads to the establishment of a suitable mask fitting method for each patient. The developed mechanism enables the operation and fine reproducible adjustment of the strap tension and the mask balance, reducing the burden on the face. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance%20of%20the%20mask%20strap" title="balance of the mask strap">balance of the mask strap</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20adjustment" title=" fine adjustment"> fine adjustment</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20sensor" title=" film sensor"> film sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=mask%20fitting%20technique" title=" mask fitting technique"> mask fitting technique</a>, <a href="https://publications.waset.org/abstracts/search?q=mask%20strap%20tension" title=" mask strap tension"> mask strap tension</a> </p> <a href="https://publications.waset.org/abstracts/144719/strap-tension-adjusting-device-for-non-invasive-positive-pressure-ventilation-mask-fitting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Understanding Factor Influence in Mask-Wearing Intention Onboard Airplanes during COVID-19: Attitude as a Mediator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Yu%20Pan">Jing Yu Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahai%20Liu"> Dahai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airlines in the US have taken protective measures to battle the COVID-19 pandemic, with a mask mandate being the most important one, especially in the aircraft cabin. As the industry is recovering from the pandemic, mask-wearing will eventually become a personal choice during flight. Nevertheless, COVID-19 will continue to create uncertainty for a long time into the future, making it necessary to understand the attitude and voluntary use of masks by air travelers on airplanes even after masks are no longer mandatory. This study aimed to understand the relationship between demographic characteristics and mask-wearing intention in the US. For age, gender, income, educational, and ethnicity groups, this study examined three factors – subjective norms, risk avoidance, and information seeking and their influence on the mask-wearing intention onboard airplanes during COVID-19 and whether or not attitude toward masks was an important mediator. The results show that all demographic factors except gender could help to explain the group variations in factor impact and the mediating effect in mask-wearing intentions. In particular, Asian travelers had mask-wearing intentions that were not affected by attitude either directly or indirectly. These findings provide useful implications to enhance the health and safety of air travelers, especially in the US, where opposing views toward mask-wearing still widely exist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=passenger%20demographics" title=" passenger demographics"> passenger demographics</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20cabin" title=" aircraft cabin"> aircraft cabin</a>, <a href="https://publications.waset.org/abstracts/search?q=mask-wearing%20intention" title=" mask-wearing intention"> mask-wearing intention</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude%20as%20mediator" title=" attitude as mediator"> attitude as mediator</a> </p> <a href="https://publications.waset.org/abstracts/150505/understanding-factor-influence-in-mask-wearing-intention-onboard-airplanes-during-covid-19-attitude-as-a-mediator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yash%20Jain">Yash Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=datasets" title="datasets">datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=mask-detection" title=" mask-detection"> mask-detection</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time" title=" real-time"> real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=TinyYoloV3" title=" TinyYoloV3"> TinyYoloV3</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stage%20neural%20network%20classifier" title=" two-stage neural network classifier"> two-stage neural network classifier</a> </p> <a href="https://publications.waset.org/abstracts/137207/using-machine-learning-to-build-a-real-time-covid-19-mask-safety-monitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Image Instance Segmentation Using Modified Mask R-CNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avatharam%20Ganivada">Avatharam Ganivada</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Shah"> Krishna Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instance%20segmentation" title="instance segmentation">instance segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/147310/image-instance-segmentation-using-modified-mask-r-cnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Bio-Nano Mask: Antivirus and Antimicrobial Mouth Mask Coating with Nano-TiO2 and Anthocyanin Utilization as an Effective Solution of High ARI Patients in Riau</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annisa%20Ulfah%20Pristya">Annisa Ulfah Pristya</a>, <a href="https://publications.waset.org/abstracts/search?q=Andi%20Setiawan"> Andi Setiawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia placed in sixth rank total Acute Respiratory Infection (ARI) patient in the world and Riau as one of the province with the highest number of people with respiratory infection in Indonesia reached 37 thousand people. Usually society using a mask as prevention action. Unfortunately the commercial mouth mask only can work maximum for 4 hours and the pores are too large to filter out microorganisms and viruses carried by infectious droplets nucleated 1-5 μm. On the other hand, Indonesia is rich with Titanium dioxide (TiO2) and purple sweet potato anthocyanin pigment. Therefore, offered Bio-nano-mask which is a antimicrobial and antiviral mouth mask with Nano-TiO2 coating and purple sweet potato anthocyanins utilization as an effective solution to high ARI patients in Riau, which has the advantage of the mask surface can’t be attached by infectious droplets, self-cleaning and have anthocyanins biosensors that give visual response can be understood easily by the general public in the form of a mask color change from blue/purple to pink when acid levels increase. Acid level is an indicator of microorganisms accumulation in the mouth and surrounding areas. Bio-nano mask making process begins with the preparation (design, Nano-TiO2 liquid preparation, anthocyanins biosensors manufacture) and then superimposing the Nano-TiO2 on the outer surface of spunbond color using a sprayer, then superimposing anthocyanins biosensors film on the Meltdown surface, making bio nano-mask and it pack. Bio-nano mask has the advantage is effectively preventing pathogenic microorganisms and infectious droplets and has accumulated indicator microorganisms that color changes which easily observed by the common people though. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanins" title="anthocyanins">anthocyanins</a>, <a href="https://publications.waset.org/abstracts/search?q=ARI" title=" ARI"> ARI</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-TiO2%20liquid" title=" nano-TiO2 liquid"> nano-TiO2 liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20cleaning" title=" self cleaning"> self cleaning</a> </p> <a href="https://publications.waset.org/abstracts/26719/bio-nano-mask-antivirus-and-antimicrobial-mouth-mask-coating-with-nano-tio2-and-anthocyanin-utilization-as-an-effective-solution-of-high-ari-patients-in-riau" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O%C4%9Fuzhan%20Urhan">Oğuzhan Urhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20motion%20estimation%3B%20low-complexity%20motion%20estimation" title="fast motion estimation; low-complexity motion estimation">fast motion estimation; low-complexity motion estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20coding" title=" video coding"> video coding</a> </p> <a href="https://publications.waset.org/abstracts/76760/extended-constraint-mask-based-one-bit-transform-for-low-complexity-fast-motion-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamison%20Duckworth">Jamison Duckworth</a>, <a href="https://publications.waset.org/abstracts/search?q=Shankarachary%20Ragi"> Shankarachary Ragi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=mask-RCNN" title=" mask-RCNN"> mask-RCNN</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20plumes" title=" smoke plumes"> smoke plumes</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20bands" title=" spectral bands"> spectral bands</a> </p> <a href="https://publications.waset.org/abstracts/150196/instance-segmentation-of-wildfire-smoke-plumes-using-mask-rcnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Adequacy of Second-Generation Laryngeal Mask Airway during Prolonged Abdominal Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhee%20Park">Sukhee Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaab%20Soo%20Kim"> Gaab Soo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: We aimed to evaluate the adequacy of second-generation laryngeal mask airway use during prolonged abdominal surgery in respect of ventilation, oxygenation, postoperative pulmonary complications (PPC), and postoperative non-pulmonary complications on living donor kidney transplant (LDKT) surgery. Methods: In total, 257 recipients who underwent LDKT using either laryngeal mask airway-ProSeal (LMA-P) or endotracheal tube (ETT) were retrospectively analyzed. Arterial partial pressure of carbon dioxide (PaCO2 and ratio of arterial partial pressure of oxygen to fractional inspired oxygen (PFR) during surgery were compared between two groups. In addition, PPC including pulmonary aspiration and postoperative non-pulmonary complications including nausea, vomiting, hoarseness, vocal cord palsy, delirium, and atrial fibrillation were also compared. Results: PaCO2 and PFR during surgery were not significantly different between the two groups. PPC was also not significantly different between the two groups. Interestingly, the incidence of delirium was significantly lower in the LMA-P group than the ETT group (3.0% vs. 10.3%, P = 0.029). Conclusions: During prolonged abdominal surgery such as LDKT, second-generation laryngeal mask airway offers adequate ventilation and oxygenation and can be considered a suitable alternative to ETT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laryngeal%20mask%20airway" title="laryngeal mask airway">laryngeal mask airway</a>, <a href="https://publications.waset.org/abstracts/search?q=prolonged%20abdominal%20surgery" title=" prolonged abdominal surgery"> prolonged abdominal surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney%20transplantation" title=" kidney transplantation"> kidney transplantation</a>, <a href="https://publications.waset.org/abstracts/search?q=postoperative%20pulmonary%20complication" title=" postoperative pulmonary complication"> postoperative pulmonary complication</a> </p> <a href="https://publications.waset.org/abstracts/100086/adequacy-of-second-generation-laryngeal-mask-airway-during-prolonged-abdominal-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Social Influences on Americans&#039; Mask-Wearing Behavior during COVID-19</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruoya%20Huang">Ruoya Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruoxian%20Huang"> Ruoxian Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Huang"> Edgar Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on a convenience sample of 2,092 participants from across all 50 states of the United States, a survey was conducted to explore Americans&rsquo; mask-wearing behaviors during COVID-19 according to their political convictions, religious beliefs, and ethnic cultures from late July to early September, 2020. The purpose of the study is to provide evidential support for government policymaking so as to drive up more effective public policies by taking into consideration the variance in these social factors. It was found that the respondents&rsquo; party affiliation or preference, religious belief, and ethnicity, in addition to their health condition, gender, level of concern of contracting COVID-19, all affected their mask-wearing habits both in March, the initial coronavirus outbreak stage, and in August, when mask-wearing had been made mandatory by state governments. The study concludes that pandemic awareness campaigns must be run among all citizens, especially among African Americans, Muslims, and Republicans, who have the lowest rates of wearing masks, in order to protect themselves and others. It is recommended that complementary cognitive bias awareness programs should be implemented in non-Black and non-Muslim communities to eliminate social concerns that deter them from wearing masks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19%20pandemic" title="COVID-19 pandemic">COVID-19 pandemic</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnicity" title=" ethnicity"> ethnicity</a>, <a href="https://publications.waset.org/abstracts/search?q=mask-wearing" title=" mask-wearing"> mask-wearing</a>, <a href="https://publications.waset.org/abstracts/search?q=policymaking%20implications" title=" policymaking implications"> policymaking implications</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20affiliations" title=" political affiliations"> political affiliations</a>, <a href="https://publications.waset.org/abstracts/search?q=religious%20beliefs" title=" religious beliefs"> religious beliefs</a>, <a href="https://publications.waset.org/abstracts/search?q=United%20States" title=" United States"> United States</a> </p> <a href="https://publications.waset.org/abstracts/130731/social-influences-on-americans-mask-wearing-behavior-during-covid-19" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiyin%20He">Shiyin He</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Huang"> Zheng Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20detection" title="cell detection">cell detection</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20recognition" title=" cell recognition"> cell recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Mask-RCNN" title=" Mask-RCNN"> Mask-RCNN</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet" title=" ResNet"> ResNet</a> </p> <a href="https://publications.waset.org/abstracts/98649/cells-detection-and-recognition-in-bone-marrow-examination-with-deep-learning-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Smart Oxygen Deprivation Mask: An Improved Design with Biometric Feedback</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20V.%20Bui">Kevin V. Bui</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20A.%20Claytor"> Richard A. Claytor</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20M.%20Priolo"> Elizabeth M. Priolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Weihui%20Li"> Weihui Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxygen deprivation masks operate through the use of restricting valves as a means to reduce respiratory flow where flow is inversely proportional to the resistance applied. This produces the same effect as higher altitudes where lower pressure leads to reduced respiratory flow. Both increased resistance with restricting valves and reduce the pressure of higher altitudes make breathing difficultier and force breathing muscles (diaphragm and intercostal muscles) working harder. The process exercises these muscles, improves their strength and results in overall better breathing efficiency. Currently, these oxygen deprivation masks are purely mechanical devices without any electronic sensor to monitor the breathing condition, thus not be able to provide feedback on the breathing effort nor to evaluate the lung function. That is part of the reason that these masks are mainly used for high-level athletes to mimic training in higher altitude conditions, not suitable for patients or customers. The design aims to improve the current method of oxygen deprivation mask to include a larger scope of patients and customers while providing quantitative biometric data that the current design lacks. This will be accomplished by integrating sensors into the mask’s breathing valves along with data acquisition and Bluetooth modules for signal processing and transmission. Early stages of the sensor mask will measure breathing rate as a function of changing the air pressure in the mask, with later iterations providing feedback on flow rate. Data regarding breathing rate will be prudent in determining whether training or therapy is improving breathing function and quantify this improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxygen%20deprivation%20mask" title="oxygen deprivation mask">oxygen deprivation mask</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20function" title=" lung function"> lung function</a>, <a href="https://publications.waset.org/abstracts/search?q=spirometer" title=" spirometer"> spirometer</a>, <a href="https://publications.waset.org/abstracts/search?q=Bluetooth" title=" Bluetooth"> Bluetooth</a> </p> <a href="https://publications.waset.org/abstracts/69291/smart-oxygen-deprivation-mask-an-improved-design-with-biometric-feedback" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> The Antioxidant Gel Mask Supplies Of Bitter Melon&#039;s Extract ( Momordica charantia Linn.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Risqina">N. S. Risqina</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Edijanti"> G. Edijanti</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Nurita"> P. S. Nurita</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Endang"> L. Endang</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Siti"> R. A. Siti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Tri"> R. Tri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin is an important and vital organs and also as a mirror of health and life. Facial skin care is one of the main emphasis to get the beautiful, healthy, and fresh skin. Potentially antioxidant phenolic compounds shows, antimutagen, antitumor, anti-inflammatory, and anti-cancer. Flavonoids are a group of polyphenolic compounds that have the nature of free radicals, inhibiting the oxidative and hydrolytic enzymes as well as anti-inflammatory. Bitter melon (Momordica charantia Linn) is a plant that contains flavonoids, and phenolic antioxidant activity. Bitter melon has strong antioxidant activity that can counteract the free radicals.These compounds can prevent free radicals that cause premature aging. Gel masks including depth cleansing is the cosmetics which work in depth and could raise the dead skin cells. Measurement of antioxidant activity of the extract and gel mask is done by using the immersion method of DPPH. IC50 value of ethanol extract of bitter melon fruit of 287.932 ppm. The preparation of gel mask bitter melon fruit extract, necessary to test the effectiveness of antioxidants using DPPH method is done by measuring the inhibition of DPPH and using UV spectrophotometer at the wavelength of maximum DPPH solution. Tests conducted at the beginning and end of the evaluation (day 0 and day 28). The purpose of this study is to determine the antioxidant activity of the bitter melon's extract and to determine the antioxidant activity of ethanol extract gel mask pare in varying concentrations, ie 1xIC100 (0.295%), 2xIC100 (0.590%) and 4xIC100 (1.180%). Evaluation of physical properties of the preparation on (Day-0,7,14,21, and 28) and evaluation of antioxidant activity (day 0 and 28). Data were analyzed using One Way ANOVA to determine differences in the physical properties of each formula. The statistical results showed that differences in the formula and storage time affects the adhesion, dispersive power, dry time and pH it is shown on a significant value of p <0.05, but longer storage does not affect the pH because the significance value p> 0,05. The antioxidant test showed that there are differences in antioxidant activity in all formulas. Measurement of antioxidant activity of bitter melon fruit extract gel mask on day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas day 28 consecutive 130 411, 495 ppm, and 53239.806 95561.645 ppm ppm. The Conclusions drawn that there are antioxidant activity in preparation gel mask of bitter melon fruit extract. The antioxidant activity of bitter melon fruit extract gel mask on the day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas on day 28 of antioxidant activity gel mask bitter melon fruit extract with a concentration of 0.295%, 0.590%, and 1.180% in succession, namely: 130,411.495 ppm, ppm 95561.645 and 53239.806 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxdant" title="antioxdant">antioxdant</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20melon" title=" bitter melon"> bitter melon</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20mask" title=" gel mask"> gel mask</a>, <a href="https://publications.waset.org/abstracts/search?q=IC50" title=" IC50"> IC50</a> </p> <a href="https://publications.waset.org/abstracts/32963/the-antioxidant-gel-mask-supplies-of-bitter-melons-extract-momordica-charantia-linn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Filtration Efficacy of Reusable Full-Face Snorkel Masks for Personal Protective Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Kong">Adrian Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Chang"> William Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolando%20Valdes"> Rolando Valdes</a>, <a href="https://publications.waset.org/abstracts/search?q=Alec%20Rodriguez"> Alec Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Miki"> Roberto Miki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Pneumask consists of a custom snorkel-specific adapter that attaches a snorkel-port of the mask to a 3D-printed filter. This full-face snorkel mask was designed for use as personal protective equipment (PPE) during the COVID-19 pandemic when there was a widespread shortage of PPE for medical personnel. Various clinical validation tests have been conducted, including the sealing capability of the mask, filter performance, CO2 buildup, and clinical usability. However, data regarding the filter efficiencies of Pneumask and multiple filter types have not been determined. Using an experimental system, we evaluated the filtration efficiency across various masks and filters during inhalation. Eighteen combinations of respirator models (5 P100 FFRs, 4 Dolfino Masks) and filters (2091, 7093, 7093CN, BB50T) were evaluated for their exposure to airborne particles sized 0.3 - 10.0 microns using an electronic airborne particle counter. All respirator model combinations provided similar performance levels for 1.0-micron, 3.0-micron, 5.0-micron, 10.0-microns, with the greatest differences in the 0.3-micron and 0.5-micron range. All models provided expected performances against all particle sizes, with Class P100 respirators providing the highest performance levels across all particle size ranges. In conclusion, the modified snorkel mask has the potential to protect providers who care for patients with COVID-19 from increased airborne particle exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=PPE" title=" PPE"> PPE</a>, <a href="https://publications.waset.org/abstracts/search?q=mask" title=" mask"> mask</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/142196/filtration-efficacy-of-reusable-full-face-snorkel-masks-for-personal-protective-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> The Effects of Stoke&#039;s Drag, Electrostatic Force and Charge on Penetration of Nanoparticles through N95 Respirators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Schwartz">Jacob Schwartz</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxim%20Durach"> Maxim Durach</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Mitra"> Aniruddha Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Rashidi"> Abbas Rashidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Glen%20Sage"> Glen Sage</a>, <a href="https://publications.waset.org/abstracts/search?q=Atin%20Adhikari"> Atin Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NIOSH (National Institute for Occupational Safety and Health) approved N95 respirators are commonly used by workers in construction sites where there is a large amount of dust being produced from sawing, grinding, blasting, welding, etc., both electrostatically charged and not. A significant portion of airborne particles in construction sites could be nanoparticles created beside coarse particles. The penetration of the particles through the masks may differ depending on the size and charge of the individual particle. In field experiments relevant to this current study, we found that nanoparticles of medium size ranges are penetrating more frequently than nanoparticles of smaller and larger sizes. For example, penetration percentages of nanoparticles of 11.5 – 27.4 nm into a sealed N95 respirator on a manikin head ranged from 0.59 to 6.59%, whereas nanoparticles of 36.5 – 86.6 nm ranged from 7.34 to 16.04%. The possible causes behind this increased penetration of mid-size nanoparticles through mask filters are not yet explored. The objective of this study is to identify causes behind this unusual behavior of mid-size nanoparticles. We have considered such physical factors as Boltzmann distribution of the particles in thermal equilibrium with the air, kinetic energy of the particles at impact on the mask, Stoke’s drag force, and electrostatic forces in the mask stopping the particles. When the particles collide with the mask, only the particles that have enough kinetic energy to overcome the energy loss due to the electrostatic forces and the Stokes’ drag in the mask can pass through the mask. To understand this process, the following assumptions were made: (1) the effect of Stoke’s drag depends on the particles’ velocity at entry into the mask; (2) the electrostatic force is proportional to the charge on the particles, which in turn is proportional to the surface area of the particles; (3) the general dependence on electrostatic charge and thickness means that for stronger electrostatic resistance in the masks and thicker the masks’ fiber layers the penetration of particles is reduced, which is a sensible conclusion. In sampling situations where one mask was soaked in alcohol eliminating electrostatic interaction the penetration was much larger in the mid-range than the same mask with electrostatic interaction. The smaller nanoparticles showed almost zero penetration most likely because of the small kinetic energy, while the larger sized nanoparticles showed almost negligible penetration most likely due to the interaction of the particle with its own drag force. If there is no electrostatic force the fraction for larger particles grows. But if the electrostatic force is added the fraction for larger particles goes down, so diminished penetration for larger particles should be due to increased electrostatic repulsion, may be due to increased surface area and therefore larger charge on average. We have also explored the effect of ambient temperature on nanoparticle penetrations and determined that the dependence of the penetration of particles on the temperature is weak in the range of temperatures in the measurements 37-42°C, since the factor changes in the range from 3.17 10-3K-1 to 3.22 10-3K-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=respiratory%20protection" title="respiratory protection">respiratory protection</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20hygiene" title=" industrial hygiene"> industrial hygiene</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol" title=" aerosol"> aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20force" title=" electrostatic force"> electrostatic force</a> </p> <a href="https://publications.waset.org/abstracts/84457/the-effects-of-stokes-drag-electrostatic-force-and-charge-on-penetration-of-nanoparticles-through-n95-respirators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Association Between Type of Face Mask and Visual Analog Scale Scores During Pain Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merav%20Ben%20Natan">Merav Ben Natan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaniv%20Steinfeld"> Yaniv Steinfeld</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Badash"> Sara Badash</a>, <a href="https://publications.waset.org/abstracts/search?q=Galina%20Shmilov"> Galina Shmilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Milena%20Abramov"> Milena Abramov</a>, <a href="https://publications.waset.org/abstracts/search?q=Danny%20Epstein"> Danny Epstein</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaniv%20Yonai"> Yaniv Yonai</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyal%20Berbalek"> Eyal Berbalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaron%20Berkovich"> Yaron Berkovich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Postoperative pain management is crucial for effective rehabilitation, with the Visual Analog Scale (VAS) being a common tool for assessing pain intensity due to its sensitivity and accuracy. However, challenges such as misunderstanding of instructions and discrepancies in pain reporting can affect its reliability. Additionally, the mandatory use of face masks during the COVID-19 pandemic may impair nonverbal and verbal communication, potentially impacting pain assessment and overall care quality. Aims: This study examines the association between the type of mask worn by health care professionals and the assessment of pain intensity in patients after orthopedic surgery using the visual analog scale (VAS). Design: A nonrandomized controlled trial was conducted among 176 patients hospitalized in an orthopedic department of a hospital located in northern-central Israel from January to March 2021. Methods: In the intervention group (n = 83), pain assessment using the VAS was performed by a healthcare professional wearing a transparent face mask, while in the control group (n = 93), pain assessment was performed by a healthcare professional wearing a standard nontransparent face mask. The initial assessment was performed by a nurse, and 15 minutes later, an additional assessment was performed by a physician. Results: Healthcare professionals wearing a standard non-transparent mask obtained higher VAS scores than healthcare professionals wearing a transparent mask. In addition, nurses obtained lower VAS scores than physicians. The discrepancy in VAS scores between nurses and physicians was found in 50% of cases. This discrepancy was more prevalent among female patients, patients after knee replacement or spinal surgery, and when health care professionals were wearing a standard nontransparent mask. Conclusions: This study supports the use of transparent face masks by healthcare professionals in an orthopedic department, particularly by nurses. In addition, this study supports the assumption of problems involving the reliability of VAS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postoperative%20pain%20management" title="postoperative pain management">postoperative pain management</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20analog%20scale" title=" visual analog scale"> visual analog scale</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20masks" title=" face masks"> face masks</a>, <a href="https://publications.waset.org/abstracts/search?q=orthopedic%20surgery" title=" orthopedic surgery"> orthopedic surgery</a> </p> <a href="https://publications.waset.org/abstracts/189299/association-between-type-of-face-mask-and-visual-analog-scale-scores-during-pain-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> A Basic Understanding of Viral Disease and Education Level Influences Disease Risk Perception, Disease Severity Perception, and Mask Wearing Behavior During the COVID-19 Pandemic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilse%20Kreme">Ilse Kreme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To the best of this author’s knowledge, no studies have been identified on the connection between a refusal to engage in health-protective behaviors and a basic understanding of viral biology among community college students, faculty, and staff during the COVID-19 pandemic. Lack of scientific knowledge could prevent understanding of why these behaviors are important to prevent the community spread of COVID-19, even when they are not shown to offer much individual protection. In this study, a possible correlation was examined between a basic knowledge level of viral disease that comes from having taken a college biology course and disease perceptions of COVID-19. In particular, disease risk perception, disease severity percept and mask-wearing behaviors were examined as they correlated with having taken an undergraduate biology course. The effect of covariates of age, gender, and education level were investigated along with the main dependent variables. A representative sample of the population included students, faculty, and staff at Paradise Valley Community College (PVCC) in Phoenix, Arizona. Participants were recruited by an email sent to all students, faculty, and staff at PVCC using an all-college email distribution. Disease risk and severity perception were assessed with the Brief Illness Perception Questionnaire 5 (BIP-Q5), which was modified to include questions measuring participant age, education level, and whether they took or ever took a college biology course. Two additional questions measured compliance of willingness to wear a face mask. The results showed an effect of gender on mask-wearing behavior and a correlation between having taken a biology course and disease severity perception. No differences were seen in mask-wearing behavior and disease risk perception as a result of having taken a biology course. These findings suggest that taking an undergraduate biology course leads to a greater awareness of COVID-19 disease severity through an understanding of the basic biological principles of viral disease transmission. The results can be used to modify existing health education strategies. Further research is needed on how to best reach target audiences in all education brackets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=mask%20wearing" title=" mask wearing"> mask wearing</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20risk%20perception" title=" disease risk perception"> disease risk perception</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20severity%20perception" title=" disease severity perception"> disease severity perception</a> </p> <a href="https://publications.waset.org/abstracts/148339/a-basic-understanding-of-viral-disease-and-education-level-influences-disease-risk-perception-disease-severity-perception-and-mask-wearing-behavior-during-the-covid-19-pandemic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Balancing Aesthetics, Sustainability, and Safety in Handmade Fabric Face Masks: A Testimony of Creativity and Adaptability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anne%20Mastamet-Mason">Anne Mastamet-Mason</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatosin%20Onakoya"> Oluwatosin Onakoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Karla%20Tissiman"> Karla Tissiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 pandemic that ravaged the world in 2020 brought about the need for handmade fabric face masks in South Africa and beyond. These masks showcased individuality and environmental responsibility and effectively aided our battle against the virus. These practical masks held significant meaning, representing human creativity, resilience, and commitment to sustainability in adversity. This paper examines how aesthetics, sustainability, and safety were achieved in the Handmade Fabric Face Masks. It analyses how their integration signified human agility and resilience to the pandemic while promoting dignity and environmental welfare. The research conducted a qualitative analysis to choose handmade fabric face masks and assess their aesthetic, sustainable, and safety features. The study involved interviewing a group of mask designers and users who evaluated the masks' efficacy in providing protection, aesthetics, and environmental sustainability. Although the designers demonstrated a high level of knowledge in the design aspects, the results indicated a need for more information regarding the functional safety measures and some environmental factors in mask selection and production. The mask analysis also revealed that the masks available in the market combined aesthetics and environmental protection but had limited safety measures. Despite the lack of balance of aesthetics, sustainability, and safety among the designers and the users of hand-fabric masks, functional aspects of fabrics and sustainability literacy are essential <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20fashion" title="sustainable fashion">sustainable fashion</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20mask" title=" fabric mask"> fabric mask</a>, <a href="https://publications.waset.org/abstracts/search?q=aesthetics" title=" aesthetics"> aesthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20measures" title=" safety measures"> safety measures</a> </p> <a href="https://publications.waset.org/abstracts/179688/balancing-aesthetics-sustainability-and-safety-in-handmade-fabric-face-masks-a-testimony-of-creativity-and-adaptability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Antioxidant Face Mask from Purple Sweet Potato (Ipomea Batatas) with Oleum Cytrus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilis%20Kistriyani">Lilis Kistriyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Dine%20Olisvia"> Dine Olisvia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutfa%20Rahmawati"> Lutfa Rahmawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial mask is an important part of every beauty treatment because it will give a smooth and gentle effect on the face. This research is done to make edible film that will be applied for face mask. The main ingredient in making this edible film is purple sweet potato powder with the addition of glycerol as plasticizer. One of the ingredients in purple sweet potato is a flavonoid compound. The purpose of this study was to determine the effect of increasing the amount of glycerol to flavonoids release and the effect on the physical properties and biological properties of edible film produced. The stages of this research are the making of edible film, then perform some analysis, among others, spectrophotometer UV-vis analysis to find out how many flavonoids can be released into facial skin, tensile strength and elongation of break analysis, biodegradability analysis, and microbiological analysis. The variation of edible film is the volume of glycerol that is 1 ml, 2 ml, 3 ml. The results of spectrophotometer UV-vis analysis showed that the most flavonoid release concentration is 20.33 ppm in the 2 ml glycerol variation. The best tensile strength value is 8,502 N, and the greatest elongation of break value is 14% in 1 ml glycerol variation. In the biodegradability test, the more volume of glycerol added the faster the edible film is degraded. The results of microbiological analysis showed that purple sweet potato extract has the ability to inhibit the growth of Propionibacterium acnes seen in the presence of inhibiting zone which is 18.9 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20mask" title="face mask">face mask</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid" title=" flavonoid"> flavonoid</a> </p> <a href="https://publications.waset.org/abstracts/89490/antioxidant-face-mask-from-purple-sweet-potato-ipomea-batatas-with-oleum-cytrus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Comparison of Remifentanil EC50 for Facilitating I-Gel and Laryngeal Mask Airway Insertion with Propofol Anesthesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Yeop%20Kim">Jong Yeop Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Bum%20Choi"> Jong Bum Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Jeong%20Kwak"> Hyun Jeong Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sook%20Young%20Lee"> Sook Young Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Each supraglottic airway requires different anesthetic depth because it has a specific structure and different compressive force in the oropharyngeal cavity. We designed the study to investigate remifentanil effect-site concentration (Ce) in 50% of patients (EC50) for successful insertion of i- gel, and to compare it with that for laryngeal mask airway (LMA) insertion during propofol target-controlled infusion (TCI). Methods: Forty-one female patients were randomized to the i-gel group (n=20) or the LMA group (n=21). Anesthesia induction was performed using propofol Ce of 5 μg/ml and the predetermined remifentanil Ce, and i-gel or LMA insertion was attempted 5 min later. The remifentanil Ce was estimated by modified Dixon's up-and-down method (initial concentration: 3.0 ng/ml, step size: 0.5 ng/ml). The patient’s response to device insertion was classified as either ‘success (no movement)’ or ‘failure (movement)’. Results: Using the Dixon’s up and down method, EC50 of remifentanil Ce for i-gel (1.58 ± 0.41 ng/ml) was significantly lower than that for LMA (2.25 ± 0.55 ng/ml) (p=0.038). Using isotonic regression, EC50 (83% CI) of remifentanil in the i-gel group [1.50 (1.37-1.80) ng/ml] was statistically lower than that in the LMA group [2.00 (1.82-2.34) ng/ml]. EC95 (95% CI) of remifentanil in the i-gel group [2.38 (1.48-2.50) ng/ml] was statistically lower than that in the LMA group [3.35 (2.58-3.48) ng/ml]. Conclusion: We found that EC50 of remifentanil Ce for i-gel insertion (1.58 ng/ml) was significantly lower than that for LMA insertion (2.25 ng/ml), in female patients during propofol TCI without neuromuscular blockade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=i-gel" title="i-gel">i-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=laryngeal%20mask%20airway" title=" laryngeal mask airway"> laryngeal mask airway</a>, <a href="https://publications.waset.org/abstracts/search?q=propofol" title=" propofol"> propofol</a>, <a href="https://publications.waset.org/abstracts/search?q=remifentanil" title=" remifentanil"> remifentanil</a> </p> <a href="https://publications.waset.org/abstracts/42987/comparison-of-remifentanil-ec50-for-facilitating-i-gel-and-laryngeal-mask-airway-insertion-with-propofol-anesthesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Improving the Compaction Properties and Shear Resistance of Sand Reinforced with COVID-19 Waste Mask Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samah%20Said">Samah Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhsin%20Elie%20Rahhal"> Muhsin Elie Rahhal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the COVID-19 pandemic, disposable plastic-based face masks were excessively used worldwide. Therefore, the production and consumption rates of these masks were significantly brought up, which led to severe environmental problems. The main purpose of this research is to test the possibility of reinforcing soil deposits with mask fibers to reuse pandemic-generated waste materials. When testing the compaction properties, the sand was reinforced with a fiber content that increased from 0% to 0.5%, with successive small increments of 0.1%. The optimum content of 0.1% remarkably increased the maximum dry density of the soil and dropped its optimum moisture content. Add to that, it was noticed that 15 mm and rectangular chips were, respectively, the optimum fiber length and shape to maximize the improvement of the sand compaction properties. Regarding the shear strength, fiber contents of 0.1%, 0.25%, and 0.5% were adopted. The direct shear tests have shown that the highest enhancement was observed for the optimum fiber content of 0.25%. Similarly to compaction tests, 15 mm and rectangular chips were respectively the optimum fiber length and shape to extremely enhance the shear resistance of the tested sand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=mask%20fibers" title=" mask fibers"> mask fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction%20properties" title=" compaction properties"> compaction properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20reinforcement" title=" soil reinforcement"> soil reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20resistance" title=" shear resistance"> shear resistance</a> </p> <a href="https://publications.waset.org/abstracts/150371/improving-the-compaction-properties-and-shear-resistance-of-sand-reinforced-with-covid-19-waste-mask-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Experimental Study of Tunable Layout Printed Fresnel Lens Structure Based on Dye Doped Liquid Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Javadzadeh">M. Javadzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khoshsima"> H. Khoshsima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we present a layout printing way for producing Fresnel zone on 1294-1b doped liquid crystal with Methyl-Red azo dye. We made a Fresnel zone mask with 25 zones and radius of 5 mm using lithography technique. With layout printing way, we recorded mask&rsquo;s pattern on cell with &lambda;=532 nm solid-state diode pump laser. By recording Fresnel zone pattern on cell and making Fresnel pattern on the surface of cell, odd and even zones, will form. The printed pattern, because of Azo dye&rsquo;s photoisomerization, was permanent. Experimentally, we saw focal length tunability from 32 cm to 43 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title="liquid crystal">liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=Fresnel%20zone" title=" Fresnel zone"> Fresnel zone</a>, <a href="https://publications.waset.org/abstracts/search?q=diffraction" title=" diffraction"> diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Fresnel%20lens" title=" Fresnel lens"> Fresnel lens</a> </p> <a href="https://publications.waset.org/abstracts/78419/experimental-study-of-tunable-layout-printed-fresnel-lens-structure-based-on-dye-doped-liquid-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Image Denoising Using Spatial Adaptive Mask Filter for Medical Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sumalatha">R. Sumalatha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Subramanyam"> M. V. Subramanyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In medical image processing the quality of the image is degraded in the presence of noise. Especially in ultra sound imaging and Magnetic resonance imaging the data was corrupted by signal dependent noise known as salt and pepper noise. Removal of noise from the medical images is a critical issue for researchers. In this paper, a new type of technique Adaptive Spatial Mask Filter (ASMF) has been proposed. The proposed filter is used to increase the quality of MRI and ultra sound images. Experimental results show that the proposed filter outperforms the implementation of mean, median, adaptive median filters in terms of MSE and PSNR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt%20and%20pepper%20noise" title="salt and pepper noise">salt and pepper noise</a>, <a href="https://publications.waset.org/abstracts/search?q=ASMF" title=" ASMF"> ASMF</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=MSE" title=" MSE"> MSE</a> </p> <a href="https://publications.waset.org/abstracts/3843/image-denoising-using-spatial-adaptive-mask-filter-for-medical-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Luxa">Jan Luxa</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlastimil%20Mazanek"> Vlastimil Mazanek</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Malinsky"> Petr Malinsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Romanenko"> Alexander Romanenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariapompea%20Cutroneo"> Mariapompea Cutroneo</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Havranek"> Vladimir Havranek</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Novak"> Josef Novak</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Stepanovska"> Eva Stepanovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Mackova"> Anna Mackova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdenek%20Sofer"> Zdenek Sofer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polyimide" title=" polyimide"> polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20implantation" title=" ion implantation"> ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/174278/ion-beam-writing-and-implantation-in-graphene-oxide-reduced-graphene-oxide-and-polyimide-through-polymer-mask-for-sensorics-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Mask-Prompt-Rerank: An Unsupervised Method for Text Sentiment Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yufen%20Qin">Yufen Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text sentiment transfer is an important branch of text style transfer. The goal is to generate text with another sentiment attribute based on a text with a specific sentiment attribute while maintaining the content and semantic information unrelated to sentiment unchanged in the process. There are currently two main challenges in this field: no parallel corpus and text attribute entanglement. In response to the above problems, this paper proposed a novel solution: Mask-Prompt-Rerank. Use the method of masking the sentiment words and then using prompt regeneration to transfer the sentence sentiment. Experiments on two sentiment benchmark datasets and one formality transfer benchmark dataset show that this approach makes the performance of small pre-trained language models comparable to that of the most advanced large models, while consuming two orders of magnitude less computing and memory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=language%20model" title="language model">language model</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=prompt" title=" prompt"> prompt</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20sentiment%20transfer" title=" text sentiment transfer"> text sentiment transfer</a> </p> <a href="https://publications.waset.org/abstracts/173904/mask-prompt-rerank-an-unsupervised-method-for-text-sentiment-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Technological Exploitation and User Experience in Product Innovation: The Case Study of the High-Tech Mask</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venere%20Ferraro">Venere Ferraro</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20%20Ferraris"> Silvia Ferraris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We live in a world pervaded by new advanced technologies that have been changing the way we live and experience the surrounded. Besides, new technologies enable product innovation at different levels. Nevertheless, innovation does not lie just in the technological development and in its hard aspects but also in the meaningful use of it for the final user. In order to generate innovative products, a new perspective is needed: The shift from an instrument-oriented view of the technology towards a broader view that includes aspects like aesthetics, acceptance, comfort, and sociability. In many businesses, the user experience of the product is considered the key battlefield to achieve product innovation. (Holland 2011) The use of new technologies is indeed useless without paying attention to the user experience. This paper presents a workshop activity conducted at Design School of Politecnico di Milano in collaboration with Chiba University and aimed at generating innovative design concepts of high-tech mask. The students were asked to design the user experience of a new mask by exploiting emerging technologies such as wearable sensors and information communication technology (ICT) for a chosen field of application: safety or sport. When it comes to the user experience, the mask is a very challenging design product, because it covers aspects of product interaction and, most important, psychological and cultural aspects related to the impact on the facial expression. Furthermore, since the mask affects the face expression quite a lot, it could be a barrier to hide with, or it could be a mean to enhance user’s communication to others. The main request for the students was to take on a user-centered approach: To go beyond the instrumental aspects of product use and usability and focus on the user experience by shaping the technology in a desirable and meaningful way for the user reasoning on the metaphorical and cultural level of the product. During the one-week workshop students were asked to face the design process through (i) the research phase: an in-deep analysis of the user and field of application (safety or sport) to set design spaces (brief) and user scenario; (ii) the idea generation, (iii) the idea development. This text will shortly go through the meaning of the product innovation, the use and application of wearable technologies and will then focus on the user experience design in contrast with the technology-driven approach in the field of product innovation. Finally authors will describe the workshop activity and the concepts developed by the students stressing the important role of the user experience design in new product development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=product%20innovation" title="product innovation">product innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20experience" title=" user experience"> user experience</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20exploitation" title=" technological exploitation"> technological exploitation</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20technologies" title=" wearable technologies"> wearable technologies</a> </p> <a href="https://publications.waset.org/abstracts/51783/technological-exploitation-and-user-experience-in-product-innovation-the-case-study-of-the-high-tech-mask" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Fast Tumor Extraction Method Based on Nl-Means Filter and Expectation Maximization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandabad%20Sara">Sandabad Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayd%20Tahri%20Yassine"> Sayd Tahri Yassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammouch%20Ahmed"> Hammouch Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of science has allowed computer scientists to touch the medicine and bring aid to radiologists as we are presenting it in our article. Our work focuses on the detection and localization of tumors areas in the human brain; this will be a completely automatic without any human intervention. In front of the huge volume of MRI to be treated per day, the radiologist can spend hours and hours providing a tremendous effort. This burden has become less heavy with the automation of this step. In this article we present an automatic and effective tumor detection, this work consists of two steps: the first is the image filtering using the filter Nl-means, then applying the expectation maximization algorithm (EM) for retrieving the tumor mask from the brain MRI and extracting the tumor area using the mask obtained from the second step. To prove the effectiveness of this method multiple evaluation criteria will be used, so that we can compare our method to frequently extraction methods used in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MRI" title="MRI">MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=Em%20algorithm" title=" Em algorithm"> Em algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=brain" title=" brain"> brain</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor" title=" tumor"> tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nl-means" title=" Nl-means"> Nl-means</a> </p> <a href="https://publications.waset.org/abstracts/56745/fast-tumor-extraction-method-based-on-nl-means-filter-and-expectation-maximization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Materials and Techniques of Anonymous Egyptian Polychrome Cartonnage Mummy Mask: A Multiple Analytical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20A.%20Al-Gaoudi">Hanaa A. Al-Gaoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Ebeid"> Hassan Ebeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research investigates the materials and processes used in the manufacturing of an Egyptian polychrome cartonnage mummy mask with the aim of dating this object and establishing trade patterns of certain materials that were used and available at the time of ancient Egypt. This anonymous-source object was held in the basement storage of the Egyptian Museum in Cairo (EMC) and has never been on display. Furthermore, there is no information available regarding its owner, provenance, date, and even the time of its possession by the museum. Moreover, the object is in a very poor condition where almost two-thirds of the mask was bent and has never received any previous conservation treatment. This research has utilized well-established multi-analytical methods to identify the considerable diversity of materials that have been used in the manufacturing of this object. These methods include Computed Tomography Scan (CT scan) to acquire detailed pictures of the inside physical structure and condition of the bended layers. Dino-Lite portable digital microscope, scanning electron microscopy with energy dispersive X-ray spectrometer (SEM-EDX), and the non-invasive imaging technique of multispectral imaging (MSI) to obtain information about the physical characteristics and condition of the painted layers and to examine the microstructure of the materials. Portable XRF Spectrometer (PXRF) and X-Ray powder diffraction (XRD) to identify mineral phases and the bulk element composition in the gilded layer, ground, and pigments; Fourier-transform infrared (FTIR) to identify organic compounds and their molecular characterization; accelerator mass spectrometry (AMS 14C) to date the object. Preliminary results suggest that there are no human remains inside the object, and the textile support is linen fibres with tabby weave 1/1 and these fibres are in a very bad condition. Several pigments have been identified, such as Egyptian blue, Magnetite, Egyptian green frit, Hematite, Calcite, and Cinnabar; moreover, the gilded layers are pure gold and the binding media in the pigments is Arabic gum and animal glue in the textile support layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20methods" title="analytical methods">analytical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20museum" title=" Egyptian museum"> Egyptian museum</a>, <a href="https://publications.waset.org/abstracts/search?q=mummy%20mask" title=" mummy mask"> mummy mask</a>, <a href="https://publications.waset.org/abstracts/search?q=pigments" title=" pigments"> pigments</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a> </p> <a href="https://publications.waset.org/abstracts/115089/materials-and-techniques-of-anonymous-egyptian-polychrome-cartonnage-mummy-mask-a-multiple-analytical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Using Heat-Mask in the Thermoforming Machine for Component Positioning in Thermoformed Electronics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Madadnia">Behnam Madadnia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For several years, 3D-shaped electronics have been rising, with many uses in home appliances, automotive, and manufacturing. One of the biggest challenges in the fabrication of 3D shape electronics, which are made by thermoforming, is repeatable and accurate component positioning, and typically there is no control over the final position of the component. This paper aims to address this issue and present a reliable approach for guiding the electronic components in the desired place during thermoforming. We have proposed a heat-control mask in the thermoforming machine to control the heating of the polymer, not allowing specific parts to be formable, which can assure the conductive traces' mechanical stability during thermoforming of the substrate. We have verified our approach's accuracy by applying our method on a real industrial semi-sphere mold for positioning 7 LEDs and one touch sensor. We measured the LEDs' position after thermoforming to prove the process's repeatability. The experiment results demonstrate that the proposed method is capable of positioning electronic components in thermoformed 3D electronics with high precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D-shaped%20electronics" title="3D-shaped electronics">3D-shaped electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20components" title=" electronic components"> electronic components</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoforming" title=" thermoforming"> thermoforming</a>, <a href="https://publications.waset.org/abstracts/search?q=component%20positioning" title=" component positioning"> component positioning</a> </p> <a href="https://publications.waset.org/abstracts/158377/using-heat-mask-in-the-thermoforming-machine-for-component-positioning-in-thermoformed-electronics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Effectiveness of the New Perilaryngeal Airway (CobraPLA™) in Comparison with the Laryngeal Mask Airway (LMA™) to Improve Airway Sealing Pressures among Obese and Overweight Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Yaghoubi">Siamak Yaghoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Abootorabi"> Mohammad Reza Abootorabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Kayalha"> Hamid Kayalha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The study was aimed to evaluate the applicability of the Cobra Perilaryngeal Airway (Cobra PLATM) for patients under general anesthesia and also compare result with the Laryngeal Mask Airway (LMA). Methods: Seventy three obese and overweight patients were included in the study. The patients were randomly assigned to either LMA or Cobra PLATM. Time required for intubation, successful intubation attempt, airway sealing pressure, the incidences of complications including blood staining, sore throat and dysphagia were assessed and noted. Results: Thirty six and thirty seven patients were allocated randomly to either LMA or Cobra PLATM, respectively. Most of the patients were male and were in Mallampati Class II airway in both groups. The first attempt and overall insertion success for the Cobra PLATM was significantly more frequent compared to the LMA (p<0.05). Tube insertion was more successful (Cobra PLATM, 94%; LMA™, 77%; P = 0.027) with the Cobra PLATM. The insertion times were similar with the Cobra PLATM and LMA™ (Cobra PLATM, 29.94±16.35s; LMA™, 27.00±7.88s). The airway sealing pressure in the Cobra PLATM (24.80±0.90 H2O) was significantly more than LMA™ (19.13 ±0.58 H2O, p<0.001). Sore throat was more frequent in the LMA™ groups that did not reach statistical significance (Fisher’s exact test, P = 0.33). Incidences of blood staining on airway tube were seen for both groups that was higher in the Cobra PLATM group (Fisher’s exact test, P = 0.02). Incidence of dysphagia was not different between the two groups. Conclusion: The CobraPLA™ was found to be safe and low complications, better airway sealing and high rate of the first insertion success for suing in obese and overweight patients. The study recommended using the CobraPLA™ as a rescue device in an emergency situation among obese and overweight patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CobraPLA%E2%84%A2" title="CobraPLA™">CobraPLA™</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20laryngeal%20mask%20airway" title=" flexible laryngeal mask airway"> flexible laryngeal mask airway</a>, <a href="https://publications.waset.org/abstracts/search?q=obese%20patients" title=" obese patients"> obese patients</a>, <a href="https://publications.waset.org/abstracts/search?q=perilaryngeal%20airway" title=" perilaryngeal airway"> perilaryngeal airway</a> </p> <a href="https://publications.waset.org/abstracts/10146/effectiveness-of-the-new-perilaryngeal-airway-cobrapla-in-comparison-with-the-laryngeal-mask-airway-lma-to-improve-airway-sealing-pressures-among-obese-and-overweight-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> A Dynamic Neural Network Model for Accurate Detection of Masked Faces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oladapo%20Tolulope%20Ibitoye">Oladapo Tolulope Ibitoye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20detection" title=" face detection"> face detection</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20mask" title=" face mask"> face mask</a>, <a href="https://publications.waset.org/abstracts/search?q=masked%20faces" title=" masked faces"> masked faces</a> </p> <a href="https://publications.waset.org/abstracts/163866/a-dynamic-neural-network-model-for-accurate-detection-of-masked-faces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gel%20mask&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gel%20mask&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gel%20mask&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gel%20mask&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gel%20mask&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gel%20mask&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10