CINXE.COM
Search results for: uncertainty quantification
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: uncertainty quantification</title> <meta name="description" content="Search results for: uncertainty quantification"> <meta name="keywords" content="uncertainty quantification"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="uncertainty quantification" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="uncertainty quantification"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1470</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: uncertainty quantification</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1470</span> A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Gulam%20Kibria">M. Gulam Kibria</a>, <a href="https://publications.waset.org/abstracts/search?q=Shourav%20Ahmed"> Shourav Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kais%20Zaman"> Kais Zaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aleatory%20uncertainty" title="aleatory uncertainty">aleatory uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=epistemic%20uncertainty" title=" epistemic uncertainty"> epistemic uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order%20error%20analysis" title=" first order error analysis"> first order error analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=percentile-based%20optimization" title=" percentile-based optimization"> percentile-based optimization</a> </p> <a href="https://publications.waset.org/abstracts/90749/a-comparative-study-of-sampling-based-uncertainty-propagation-with-first-order-error-analysis-and-percentile-based-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1469</span> Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haonan%20Hu">Haonan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuge%20Lei"> Shuge Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Dasheng%20Sun"> Dasheng Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Huabin%20Zhang"> Huabin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kehong%20Yuan"> Kehong Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Dai"> Jian Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jijun%20Tang"> Jijun Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title="medical imaging">medical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20imaging" title=" ultrasound imaging"> ultrasound imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=XAI" title=" XAI"> XAI</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20measurement" title=" uncertainty measurement"> uncertainty measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=trustworthy%20AI" title=" trustworthy AI"> trustworthy AI</a> </p> <a href="https://publications.waset.org/abstracts/176771/dual-channel-reliable-breast-ultrasound-image-classification-based-on-explainable-attribution-and-uncertainty-quantification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1468</span> Risk and Uncertainty in Aviation: A Thorough Analysis of System Vulnerabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Pietreanu">C. V. Pietreanu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Zaharia"> S. E. Zaharia</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Dinu"> C. Dinu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hazard assessment and risks quantification are key components for estimating the impact of existing regulations. But since regulatory compliance cannot cover all risks in aviation, the authors point out that by studying causal factors and eliminating uncertainty, an accurate analysis can be outlined. The research debuts by making delimitations on notions, as confusion on the terms over time has reflected in less rigorous analysis. Throughout this paper, it will be emphasized the fact that the variation in human performance and organizational factors represent the biggest threat from an operational perspective. Therefore, advanced risk assessment methods analyzed by the authors aim to understand vulnerabilities of the system given by a nonlinear behavior. Ultimately, the mathematical modeling of existing hazards and risks by eliminating uncertainty implies establishing an optimal solution (i.e. risk minimization). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20factor" title=" human factor"> human factor</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/86629/risk-and-uncertainty-in-aviation-a-thorough-analysis-of-system-vulnerabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1467</span> Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imane%20Khalil">Imane Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Quinn%20Pratt"> Quinn Pratt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20nuclear%20fuel" title="spent nuclear fuel">spent nuclear fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a> </p> <a href="https://publications.waset.org/abstracts/86958/two-dimensional-modeling-of-spent-nuclear-fuel-using-fluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1466</span> Mind Your Product-Market Strategy on Selecting Marketing Inputs: An Uncertainty Approach in Indian Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Ghosh">Susmita Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaskar%20Bhowmick"> Bhaskar Bhowmick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Market is an important factor for start-ups to look into during decision-making in product development and related areas. Emerging country markets are more uncertain in terms of information availability and institutional supports. The literature review of market uncertainty reveals the need for identifying factors representing the market uncertainty. This paper identifies factors for market uncertainty using Exploratory Factor Analysis (EFA) and confirms the number of factor retention using an alternative factor retention criterion, ‘Parallel Analysis’. 500 entrepreneurs, engaged in start-ups from all over India participated in the study. This paper concludes with the factor structure of ‘market uncertainty’ having dimensions of uncertainty in industry orientation, uncertainty in customer orientation and uncertainty in marketing orientation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title="uncertainty">uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=market" title=" market"> market</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=competitor" title=" competitor"> competitor</a>, <a href="https://publications.waset.org/abstracts/search?q=demand" title=" demand "> demand </a> </p> <a href="https://publications.waset.org/abstracts/24877/mind-your-product-market-strategy-on-selecting-marketing-inputs-an-uncertainty-approach-in-indian-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1465</span> Uncertainty Quantification of Fuel Compositions on Premixed Bio-Syngas Combustion at High-Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Zhang">Kai Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xi%20Jiang"> Xi Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of fuel variabilities on premixed combustion of bio-syngas mixtures is of great importance in bio-syngas utilisation. The uncertainties of concentrations of fuel constituents such as H2, CO and CH4 may lead to unpredictable combustion performances, combustion instabilities and hot spots which may deteriorate and damage the combustion hardware. Numerical modelling and simulations can assist in understanding the behaviour of bio-syngas combustion with pre-defined species concentrations, while the evaluation of variabilities of concentrations is expensive. To be more specific, questions such as ‘what is the burning velocity of bio-syngas at specific equivalence ratio?’ have been answered either experimentally or numerically, while questions such as ‘what is the likelihood of burning velocity when precise concentrations of bio-syngas compositions are unknown, but the concentration ranges are pre-described?’ have not yet been answered. Uncertainty quantification (UQ) methods can be used to tackle such questions and assess the effects of fuel compositions. An efficient probabilistic UQ method based on Polynomial Chaos Expansion (PCE) techniques is employed in this study. The method relies on representing random variables (combustion performances) with orthogonal polynomials such as Legendre or Gaussian polynomials. The constructed PCE via Galerkin Projection provides easy access to global sensitivities such as main, joint and total Sobol indices. In this study, impacts of fuel compositions on combustion (adiabatic flame temperature and laminar flame speed) of bio-syngas fuel mixtures are presented invoking this PCE technique at several equivalence ratios. High-pressure effects on bio-syngas combustion instability are obtained using detailed chemical mechanism - the San Diego Mechanism. Guidance on reducing combustion instability from upstream biomass gasification process is provided by quantifying the significant contributions of composition variations to variance of physicochemical properties of bio-syngas combustion. It was found that flame speed is very sensitive to hydrogen variability in bio-syngas, and reducing hydrogen uncertainty from upstream biomass gasification processes can greatly reduce bio-syngas combustion instability. Variation of methane concentration, although thought to be important, has limited impacts on laminar flame instabilities especially for lean combustion. Further studies on the UQ of percentage concentration of hydrogen in bio-syngas can be conducted to guide the safer use of bio-syngas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-syngas%20combustion" title="bio-syngas combustion">bio-syngas combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20energy%20utilisation" title=" clean energy utilisation"> clean energy utilisation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20variability" title=" fuel variability"> fuel variability</a>, <a href="https://publications.waset.org/abstracts/search?q=PCE" title=" PCE"> PCE</a>, <a href="https://publications.waset.org/abstracts/search?q=targeted%20uncertainty%20reduction" title=" targeted uncertainty reduction"> targeted uncertainty reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a> </p> <a href="https://publications.waset.org/abstracts/84559/uncertainty-quantification-of-fuel-compositions-on-premixed-bio-syngas-combustion-at-high-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1464</span> Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajai%20Singh">Ajai Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SWAT" title="SWAT">SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=RBNN" title=" RBNN"> RBNN</a>, <a href="https://publications.waset.org/abstracts/search?q=SUFI%202" title=" SUFI 2"> SUFI 2</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrap%20technique" title=" bootstrap technique"> bootstrap technique</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20flow" title=" stream flow"> stream flow</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/21788/modeling-stream-flow-with-prediction-uncertainty-by-using-swat-hydrologic-and-rbnn-neural-network-models-for-agricultural-watershed-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1463</span> Consideration of Uncertainty in Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammadi">A. Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moghimi"> M. Moghimi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohammadi"> S. Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title="uncertainty">uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulated" title=" Monte Carlo simulated"> Monte Carlo simulated</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20programming" title=" stochastic programming"> stochastic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario%20method" title=" scenario method"> scenario method</a> </p> <a href="https://publications.waset.org/abstracts/7164/consideration-of-uncertainty-in-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1462</span> Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-Time Quaternion Offset Linear Canonical Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Younus%20Bhat">Mohammad Younus Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quaternion offset linear canonical transform (QOLCT), which isa time-shifted and frequency-modulated version of the quaternion linear canonical transform (QLCT), provides a more general framework of most existing signal processing tools. For the generalized QOLCT, the classical Heisenberg’s and Lieb’s uncertainty principles have been studied recently. In this paper, we first define the short-time quaternion offset linear canonical transform (ST-QOLCT) and drive its relationship with the quaternion Fourier transform (QFT). The crux of the paper lies in the generalization of several well-known uncertainty principles for the ST-QOLCT, including Donoho-Stark’s uncertainty principle, Hardy’s uncertainty principle, Beurling’s uncertainty principle, and the logarithmic uncertainty principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform" title="Quaternion Fourier transform">Quaternion Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Quaternion%20offset%20linear%20canonical%20transform" title=" Quaternion offset linear canonical transform"> Quaternion offset linear canonical transform</a>, <a href="https://publications.waset.org/abstracts/search?q=short-time%20quaternion%20offset%20linear%20canonical%20transform" title=" short-time quaternion offset linear canonical transform"> short-time quaternion offset linear canonical transform</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20principle" title=" uncertainty principle"> uncertainty principle</a> </p> <a href="https://publications.waset.org/abstracts/142375/donoho-starks-and-hardys-uncertainty-principles-for-the-short-time-quaternion-offset-linear-canonical-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1461</span> Inter Laboratory Comparison with Coordinate Measuring Machine and Uncertainty Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugrul%20%20Torun">Tugrul Torun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihsan%20A.%20Yuksel"> Ihsan A. Yuksel</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%CC%87nem%20On%20Aktan"> Si̇nem On Aktan</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20K.%20Vezi%CC%87roglu"> Taha K. Vezi̇roglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the quality control processes in some industries, the usage of CMM has increased in recent years. Consequently, the CMMs play important roles in the acceptance or rejection of manufactured parts. For parts, it’s important to be able to make decisions by performing fast measurements. According to related technical drawing and its tolerances, measurement uncertainty should also be considered during assessment. Since uncertainty calculation is difficult and time-consuming, most companies ignore the uncertainty value in their routine inspection method. Although studies on measurement uncertainty have been carried out on CMM’s in recent years, there is still no applicable method for analyzing task-specific measurement uncertainty. There are some standard series for calculating measurement uncertainty (ISO-15530); it is not possible to use it in industrial measurement because it is not a practical method for standard measurement routine. In this study, the inter-laboratory comparison test has been carried out in the ROKETSAN A.Ş. with all dimensional inspection units. The reference part that we used is traceable to the national metrology institute TUBİTAK UME. Each unit has measured reference parts according to related technical drawings, and the task-specific measuring uncertainty has been calculated with related parameters. According to measurement results and uncertainty values, the En values have been calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate%20measurement" title="coordinate measurement">coordinate measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=CMM" title=" CMM"> CMM</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/136496/inter-laboratory-comparison-with-coordinate-measuring-machine-and-uncertainty-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1460</span> Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Queen%20Suraajini%20Rajendran">Queen Suraajini Rajendran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Hung%20Cheung"> Sai Hung Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20downscaling" title="statistical downscaling">statistical downscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20climate%20model" title=" global climate model"> global climate model</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/18056/statistical-classification-downscaling-and-uncertainty-assessment-for-global-climate-model-outputs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1459</span> Epistemic Uncertainty Analysis of Queue with Vacations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baya%20Takhedmit">Baya Takhedmit</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Abbas"> Karim Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Ouazine"> Sofiane Ouazine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vacations queues are often employed to model many real situations such as computer systems, communication networks, manufacturing and production systems, transportation systems and so forth. These queueing models are solved at fixed parameters values. However, the parameter values themselves are determined from a finite number of observations and hence have uncertainty associated with them (epistemic uncertainty). In this paper, we consider the M/G/1/N queue with server vacation and exhaustive discipline where we assume that the vacation parameter values have uncertainty. We use the Taylor series expansions approach to estimate the expectation and variance of model output, due to epistemic uncertainties in the model input parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epistemic%20uncertainty" title="epistemic uncertainty">epistemic uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=M%2FG%2F1%2FN%20queue%20with%20vacations" title=" M/G/1/N queue with vacations"> M/G/1/N queue with vacations</a>, <a href="https://publications.waset.org/abstracts/search?q=non-parametric%20sensitivity%20analysis" title=" non-parametric sensitivity analysis"> non-parametric sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20series%20expansion" title=" Taylor series expansion"> Taylor series expansion</a> </p> <a href="https://publications.waset.org/abstracts/63375/epistemic-uncertainty-analysis-of-queue-with-vacations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1458</span> Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Esmaeilpour">Mohammad Esmaeilpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20neuroimaging" title="magnetic resonance neuroimaging">magnetic resonance neuroimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=subtle%20change%20detection%20and%20quantification" title=" subtle change detection and quantification"> subtle change detection and quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=algebraic%20decomposition" title=" algebraic decomposition"> algebraic decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=basis%20functions" title=" basis functions"> basis functions</a> </p> <a href="https://publications.waset.org/abstracts/32372/toward-subtle-change-detection-and-quantification-in-magnetic-resonance-neuroimaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1457</span> On the Added Value of Probabilistic Forecasts Applied to the Optimal Scheduling of a PV Power Plant with Batteries in French Guiana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Alvarenga">Rafael Alvarenga</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Herbaux"> Hubert Herbaux</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Linguet"> Laurent Linguet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The uncertainty concerning the power production of intermittent renewable energy is one of the main barriers to the integration of such assets into the power grid. Efforts have thus been made to develop methods to quantify this uncertainty, allowing producers to ensure more reliable and profitable engagements related to their future power delivery. Even though a diversity of probabilistic approaches was proposed in the literature giving promising results, the added value of adopting such methods for scheduling intermittent power plants is still unclear. In this study, the profits obtained by a decision-making model used to optimally schedule an existing PV power plant connected to batteries are compared when the model is fed with deterministic and probabilistic forecasts generated with two of the most recent methods proposed in the literature. Moreover, deterministic forecasts with different accuracy levels were used in the experiments, testing the utility and the capability of probabilistic methods of modeling the progressively increasing uncertainty. Even though probabilistic approaches are unquestionably developed in the recent literature, the results obtained through a study case show that deterministic forecasts still provide the best performance if accurate, ensuring a gain of 14% on final profits compared to the average performance of probabilistic models conditioned to the same forecasts. When the accuracy of deterministic forecasts progressively decreases, probabilistic approaches start to become competitive options until they completely outperform deterministic forecasts when these are very inaccurate, generating 73% more profits in the case considered compared to the deterministic approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20power%20forecasting" title="PV power forecasting">PV power forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20scheduling" title=" optimal scheduling"> optimal scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20systems" title=" power systems"> power systems</a> </p> <a href="https://publications.waset.org/abstracts/162797/on-the-added-value-of-probabilistic-forecasts-applied-to-the-optimal-scheduling-of-a-pv-power-plant-with-batteries-in-french-guiana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1456</span> Uncertainty in Risk Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mueller%20Jann">Mueller Jann</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoffmann%20Christian%20Hugo"> Hoffmann Christian Hugo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional quantitative risk management in banking is a risk factor of its own, because it rests on assumptions such as independence and availability of data which do not hold when rare events of extreme consequences are involved. There is a growing recognition of the need for alternative risk measures that do not make these assumptions. We propose a novel method for modeling the risk associated with investment products, in particular derivatives, by using a formal language for specifying financial contracts. Expressions in this language are interpreted in the category of values annotated with (a formal representation of) uncertainty. The choice of uncertainty formalism thus becomes a parameter of the model, so it can be adapted to the particular application and it is not constrained to classical probabilities. We demonstrate our approach using a simple logic-based uncertainty model and a case study in which we assess the risk of counter party default in a portfolio of collateralized loans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk%20model" title="risk model">risk model</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20monad" title=" uncertainty monad"> uncertainty monad</a>, <a href="https://publications.waset.org/abstracts/search?q=derivatives" title=" derivatives"> derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=contract%20algebra" title=" contract algebra"> contract algebra</a> </p> <a href="https://publications.waset.org/abstracts/28143/uncertainty-in-risk-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1455</span> Theater Metaphor in Event Quantification: A Corpus Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Jing-Schmidt">Zhuo Jing-Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Lang"> Jun Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numeral classifiers are common in Asian languages. Research on numeral classifiers primarily focuses on noun classifiers that quantify and individuate nominal referents. There is a scarcity of research on event quantification using verb classifiers. This study aims to understand the semantic and conceptual basis of event quantification in Chinese. From a usage-based Construction Grammar perspective, this study presents a corpus analysis of event quantification in Chinese. Drawing on a large balanced corpus of contemporary Chinese, we analyze 667 NOUN col-lexemes totaling 31136 tokens of a productive numeral classifier construction in Chinese. Using collostructional analysis of the collexemes, the results show that the construction quantifies and classifies dramatic events using a theater-based conceptual metaphor. We argue that the usage patterns reflect the cultural entrenchment of theater as in Chinese conceptualization and the construal of theatricality in linguistic expression. The study has implications for cognitive semantics and construction grammar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=event%20quantification" title="event quantification">event quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=corpus" title=" corpus"> corpus</a>, <a href="https://publications.waset.org/abstracts/search?q=metaphor" title=" metaphor"> metaphor</a> </p> <a href="https://publications.waset.org/abstracts/171981/theater-metaphor-in-event-quantification-a-corpus-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1454</span> Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saowaluck%20Ukrisdawithid">Saowaluck Ukrisdawithid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach" title="single laboratory validation approach">single laboratory validation approach</a>, <a href="https://publications.waset.org/abstracts/search?q=within-laboratory%20reproducibility" title=" within-laboratory reproducibility"> within-laboratory reproducibility</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20and%20laboratory%20bias" title=" method and laboratory bias"> method and laboratory bias</a>, <a href="https://publications.waset.org/abstracts/search?q=certified%20reference%20material" title=" certified reference material"> certified reference material</a> </p> <a href="https://publications.waset.org/abstracts/115436/estimation-of-uncertainty-of-thermal-conductivity-measurement-with-single-laboratory-validation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1453</span> Airport Investment Risk Assessment under Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20M.%20Capitanul">Elena M. Capitanul</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20Nunes%20Cosenza"> Carlos A. Nunes Cosenza</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20El%20Moudani"> Walid El Moudani</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Mora%20Camino"> Felix Mora Camino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction of a new airport or the extension of an existing one requires massive investments and many times public private partnerships were considered in order to make feasible such projects. One characteristic of these projects is uncertainty with respect to financial and environmental impacts on the medium to long term. Another one is the multistage nature of these types of projects. While many airport development projects have been a success, some others have turned into a nightmare for their promoters. This communication puts forward a new approach for airport investment risk assessment. The approach takes explicitly into account the degree of uncertainty in activity levels prediction and proposes milestones for the different stages of the project for minimizing risk. Uncertainty is represented through fuzzy dual theory and risk management is performed using dynamic programming. An illustration of the proposed approach is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airports" title="airports">airports</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/14093/airport-investment-risk-assessment-under-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1452</span> Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Gomes">D. S. Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Silva"> A. T. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title="logistic regression">logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity-initiated%20accident" title=" reactivity-initiated accident"> reactivity-initiated accident</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20margins" title=" safety margins"> safety margins</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20propagation" title=" uncertainty propagation"> uncertainty propagation</a> </p> <a href="https://publications.waset.org/abstracts/65731/nuclear-fuel-safety-threshold-determined-by-logistic-regression-plus-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1451</span> Decision Making Approach through Generalized Fuzzy Entropy Measure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20D.%20Arora">H. D. Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjali%20Dhiman"> Anjali Dhiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncertainty is found everywhere and its understanding is central to decision making. Uncertainty emerges as one has less information than the total information required describing a system and its environment. Uncertainty and information are so closely associated that the information provided by an experiment for example, is equal to the amount of uncertainty removed. It may be pertinent to point out that uncertainty manifests itself in several forms and various kinds of uncertainties may arise from random fluctuations, incomplete information, imprecise perception, vagueness etc. For instance, one encounters uncertainty due to vagueness in communication through natural language. Uncertainty in this sense is represented by fuzziness resulting from imprecision of meaning of a concept expressed by linguistic terms. Fuzzy set concept provides an appropriate mathematical framework for dealing with the vagueness. Both information theory, proposed by Shannon (1948) and fuzzy set theory given by Zadeh (1965) plays an important role in human intelligence and various practical problems such as image segmentation, medical diagnosis etc. Numerous approaches and theories dealing with inaccuracy and uncertainty have been proposed by different researcher. In the present communication, we generalize fuzzy entropy proposed by De Luca and Termini (1972) corresponding to Shannon entropy(1948). Further, some of the basic properties of the proposed measure were examined. We also applied the proposed measure to the real life decision making problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title=" fuzzy sets"> fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20entropy" title=" fuzzy entropy"> fuzzy entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20fuzzy%20entropy" title=" generalized fuzzy entropy"> generalized fuzzy entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a> </p> <a href="https://publications.waset.org/abstracts/26513/decision-making-approach-through-generalized-fuzzy-entropy-measure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1450</span> Uncertainty Estimation in Neural Networks through Transfer Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20James">Ashish James</a>, <a href="https://publications.waset.org/abstracts/search?q=Anusha%20James"> Anusha James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20estimation" title="uncertainty estimation">uncertainty estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title=" transfer learning"> transfer learning</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/153501/uncertainty-estimation-in-neural-networks-through-transfer-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1449</span> Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Q.%20Yuan">L. Q. Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Yang"> J. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Siddiqui"> A. Siddiqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CHF%20experiment" title="CHF experiment">CHF experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=CHF%20correlation" title=" CHF correlation"> CHF correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20uncertainty" title=" regression uncertainty"> regression uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20Method" title=" Monte Carlo Method"> Monte Carlo Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20Series%20Method" title=" Taylor Series Method"> Taylor Series Method</a> </p> <a href="https://publications.waset.org/abstracts/77556/establishment-of-the-regression-uncertainty-of-the-critical-heat-flux-power-correlation-for-an-advanced-fuel-bundle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1448</span> Decision Making under Strict Uncertainty: Case Study in Sewer Network Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhen%20Wu">Zhen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Lupien%20St-Pierre"> David Lupien St-Pierre</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Abdul-Nour"> Georges Abdul-Nour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In decision making under strict uncertainty, decision makers have to choose a decision without any information about the states of nature. The classic criteria of Laplace, Wald, Savage, Hurwicz and Starr are introduced and compared in a case study of sewer network planning. Furthermore, results from different criteria are discussed and analyzed. Moreover, this paper discusses the idea that decision making under strict uncertainty (DMUSU) can be viewed as a two-player game and thus be solved by a solution concept in game theory: Nash equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20criteria" title="decision criteria">decision criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=sewer%20network%20planning" title=" sewer network planning"> sewer network planning</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=strict%20uncertainty" title=" strict uncertainty"> strict uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/64139/decision-making-under-strict-uncertainty-case-study-in-sewer-network-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1447</span> Competition and Cooperation of Prosumers in Cournot Games with Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Heng%20Shi">Yong-Heng Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Hao"> Peng Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bai-Chen%20Xie"> Bai-Chen Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar prosumers are playing increasingly prominent roles in the power system. However, its uncertainty affects the outcomes and functions of the power market, especially in the asymmetric information environment. Therefore, an important issue is how to take effective measures to reduce the impact of uncertainty on market equilibrium. We propose a two-level stochastic differential game model to explore the Cournot decision problem of prosumers. In particular, we study the impact of punishment and cooperation mechanisms on the efficiency of the Cournot game in which prosumers face uncertainty. The results show that under the penalty mechanism of fixed and variable rates, producers and consumers tend to take conservative actions to hedge risks, and the variable rates mechanism is more reasonable. Compared with non-cooperative situations, prosumers can improve the efficiency of the game through cooperation, which we attribute to the superposition of market power and uncertainty reduction. In addition, the market environment of asymmetric information intensifies the role of uncertainty. It reduces social welfare but increases the income of prosumers. For regulators, promoting alliances is an effective measure to realize the integration, optimization, and stable grid connection of producers and consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cournot%20games" title="Cournot games">Cournot games</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20market" title=" power market"> power market</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=prosumer%20cooperation" title=" prosumer cooperation"> prosumer cooperation</a> </p> <a href="https://publications.waset.org/abstracts/163232/competition-and-cooperation-of-prosumers-in-cournot-games-with-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1446</span> Method Validation for Determining Platinum and Palladium in Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marin%20Senila">Marin Senila</a>, <a href="https://publications.waset.org/abstracts/search?q=Oana%20Cadar"> Oana Cadar</a>, <a href="https://publications.waset.org/abstracts/search?q=Thorsten%20Janisch"> Thorsten Janisch</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Lacroix-Desmazes"> Patrick Lacroix-Desmazes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study presents the analytical capability and validation of a method based on microwave-assisted acid digestion for quantitative determination of platinum and palladium in catalysts using inductively coupled plasma optical emission spectrometry (ICP-OES). In order to validate the method, the main figures of merit such as limit of detection and limit of quantification, precision and accuracy were considered and the measurement uncertainty was estimated based on the bottom-up approach according to the international guidelines of ISO/IEC 17025. Limit of detections, estimated from blank signal using 3 s criterion, were 3.0 mg/kg for Pt and respectively 3.6 mg/kg for Pd, while limits of quantification were 9.0 mg/kg for Pt and respectively 10.8 mg/kg for Pd. Precisions, evaluated as standard deviations of repeatability (n=5 parallel samples), were less than 10% for both precious metals. Accuracies of the method, verified by recovery estimation certified reference material NIST SRM 2557 - pulverized recycled monolith, were 99.4 % for Pt and 101% for Pd. The obtained limit of quantifications and accuracy were satisfactory for the intended purpose. The paper offers all the steps necessary to validate the determination method for Pt and Pd in catalysts using inductively coupled plasma optical emission spectrometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst%20analysis" title="catalyst analysis">catalyst analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ICP-OES" title=" ICP-OES"> ICP-OES</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20validation" title=" method validation"> method validation</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=palladium" title=" palladium"> palladium</a> </p> <a href="https://publications.waset.org/abstracts/102238/method-validation-for-determining-platinum-and-palladium-in-catalysts-using-inductively-coupled-plasma-optical-emission-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1445</span> Uncertainty and Optimization Analysis Using PETREL RE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Sachan">Ankur Sachan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to make quick yet intelligent and value-added decisions to develop new fields has always been of great significance. In situations where the capital expenses and subsurface risk are high, carefully analyzing the inherent uncertainties in the reservoir and how they impact the predicted hydrocarbon accumulation and production becomes a daunting task. The problem is compounded in offshore environments, especially in the presence of heavy oils and disconnected sands where the margin for error is small. Uncertainty refers to the degree to which the data set may be in error or stray from the predicted values. To understand and quantify the uncertainties in reservoir model is important when estimating the reserves. Uncertainty parameters can be geophysical, geological, petrophysical etc. Identification of these parameters is necessary to carry out the uncertainty analysis. With so many uncertainties working at different scales, it becomes essential to have a consistent and efficient way of incorporating them into our analysis. Ranking the uncertainties based on their impact on reserves helps to prioritize/ guide future data gathering and uncertainty reduction efforts. Assigning probabilistic ranges to key uncertainties also enables the computation of probabilistic reserves. With this in mind, this paper, with the help the uncertainty and optimization process in petrel RE shows how the most influential uncertainties can be determined efficiently and how much impact so they have on the reservoir model thus helping in determining a cost effective and accurate model of the reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title="uncertainty">uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20model" title=" reservoir model"> reservoir model</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20analysis" title=" optimization analysis"> optimization analysis</a> </p> <a href="https://publications.waset.org/abstracts/21057/uncertainty-and-optimization-analysis-using-petrel-re" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">652</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1444</span> CO2 Emissions Quantification of the Modular Bridge Superstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanhyuck%20Jeon">Chanhyuck Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park"> Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoong%20Choi"> Jinwoong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many industries put emphasis on environmentally-friendliness as environmental problems are on the rise all over the world. Among themselves, the Modular Bridge research is going on. Also performing cross-section optimization and duration reducing, this research aims at developing the modular bridge with Environment-Friendliness and economic feasibility. However, the difficulty lies in verifying environmental effectiveness because there are no field applications of the modular bridge until now. Therefore, this thesis is categorized according to the form of the modular bridge superstructure and assessed CO₂ emission quantification per work types and materials according to each form to verify the environmental effectiveness of the modular bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modular%20bridge" title="modular bridge">modular bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly" title=" environmentally friendly"> environmentally friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification" title=" quantification"> quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20factor" title=" carbon emission factor"> carbon emission factor</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA%20%28Life%20Cycle%20Assessment%29" title=" LCA (Life Cycle Assessment)"> LCA (Life Cycle Assessment)</a> </p> <a href="https://publications.waset.org/abstracts/28224/co2-emissions-quantification-of-the-modular-bridge-superstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1443</span> Quantifying Parallelism of Vectors Is the Quantification of Distributed N-Party Entanglement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Banerjee">Shreya Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20K.%20Panigrahi"> Prasanta K. Panigrahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The three-way distributive entanglement is shown to be related to the parallelism of vectors. Using a measurement-based approach a set of 2−dimensional vectors is formed, representing the post-measurement states of one of the parties. These vectors originate at the same point and have an angular distance between them. The area spanned by a pair of such vectors is a measure of the entanglement of formation. This leads to a geometrical manifestation of the 3−tangle in 2−dimensions, from inequality in the area which generalizes for n− qubits to reveal that the n− tangle also has a planar structure. Quantifying the genuine n−party entanglement in every 1|(n − 1) bi-partition it is shown that the genuine n−way entanglement does not manifest in n− tangle. A new quantity geometrically similar to 3−tangle is then introduced that represents the genuine n− way entanglement. Extending the formalism to 3− qutrits, the nonlocality without entanglement can be seen to arise from a condition under which the post-measurement state vectors of a separable state show parallelism. A connection to nontrivial sum uncertainty relation analogous to Maccone and Pati uncertainty relation is then presented using decomposition of post-measurement state vectors along parallel and perpendicular direction of the pre-measurement state vectors. This study opens a novel way to understand multiparty entanglement in qubit and qudit systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geometry%20of%20quantum%20entanglement" title="Geometry of quantum entanglement">Geometry of quantum entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=Multipartite%20and%20distributive%20entanglement" title=" Multipartite and distributive entanglement"> Multipartite and distributive entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=Parallelism%20of%20vectors" title=" Parallelism of vectors "> Parallelism of vectors </a>, <a href="https://publications.waset.org/abstracts/search?q=Tangle" title=" Tangle"> Tangle</a> </p> <a href="https://publications.waset.org/abstracts/121889/quantifying-parallelism-of-vectors-is-the-quantification-of-distributed-n-party-entanglement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1442</span> Simultaneous Quantification of Glycols in New and Recycled Anti-Freeze Liquids by GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Madalin%20Danila">George Madalin Danila</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaiella%20Cretu"> Mihaiella Cretu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Puscasu"> Cristian Puscasu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycol-based anti-freeze liquids, commonly composed of ethylene glycol or propylene glycol, have important uses in automotive cooling, but they should be handled with care due to their toxicity; ethylene glycol is highly toxic to humans and animals. A fast, accurate, precise, and robust method was developed for the simultaneous quantification of 7 most important glycols and their isomers. Glycols were analyzed from diluted sample solution of coolants using gas-chromatography coupled with mass spectrometry in single ion monitoring mode. Results: The method was developed and validated for 7 individual glycols (ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol and tripropylene glycol). Limits of detection (1-2 μg/mL) and limit of quantification (10 μg/mL) obtained were appropriate. The present method was applied for the determination of glycols in 10 different anti-freeze liquids commercially available on the Romanian market, proving to be reliable. A method that requires only a two-step dilution of anti-freeze samples combined with direct liquid injection GC-MS was validated for the simultaneous quantification of 7 glycols (and their isomers) in 10 different types of anti-freeze liquids. The results obtained in the validation procedure proved that the GC-MS method is sensitive and precise for the quantification of glycols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycols" title="glycols">glycols</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-freeze" title=" anti-freeze"> anti-freeze</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-chromatography" title=" gas-chromatography"> gas-chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle" title=" recycle"> recycle</a> </p> <a href="https://publications.waset.org/abstracts/178902/simultaneous-quantification-of-glycols-in-new-and-recycled-anti-freeze-liquids-by-gc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1441</span> Temporal Myopia in Sustainable Behavior under Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arianne%20Van%20Der%20Wal">Arianne Van Der Wal</a>, <a href="https://publications.waset.org/abstracts/search?q=Femke%20Van%20Horen"> Femke Van Horen</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Grinstein"> Amir Grinstein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Consumers in today’s world are confronted with the alarming consequences of unsustainable behavior such as pollution and resource degradation. In addition, they are facing an increase in uncertainty due to, for instance, economic instability and terror attacks. Although these two problems are central to consumers’ lives, occur on a global scale, and have significant impact on the world’s political, economic, environmental, and social landscapes, they have not been systematically studied in tandem before. Contributing to research on persuasion and pro-social behavior, this paper shows in five studies (three experimental studies and one field study) that the two problems are intertwined. We demonstrate that uncertainty leads to lower sustainable behavior in comparison to certainty (Studies 1 and 2) and that this is due to consumers displaying higher levels of temporal discounting (i.e., adopting a more immediate orientation; Study 2). Finally, providing valuable implications for policy makers and responsible marketers, we show that emphasizing the immediate benefits of sustainable behavior during uncertainty buffers the negative effect (Studies 3 and 4). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20behavior" title="sustainable behavior">sustainable behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20discounting" title=" temporal discounting"> temporal discounting</a>, <a href="https://publications.waset.org/abstracts/search?q=framing" title=" framing"> framing</a> </p> <a href="https://publications.waset.org/abstracts/81356/temporal-myopia-in-sustainable-behavior-under-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=48">48</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=49">49</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>