CINXE.COM
Search results for: green algae
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: green algae</title> <meta name="description" content="Search results for: green algae"> <meta name="keywords" content="green algae"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="green algae" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="green algae"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2280</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: green algae</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2280</span> The Influence of Crude Oil on Growth of Freshwater Algae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Saboonchi%20Azhar">Al-Saboonchi Azhar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of Iraqi crude oil on growth of three freshwater algae (Chlorella vulgaris Beij., Scenedesmus acuminatus (Lag.) Chodat. and Oscillatoria princeps Vauch.) were investigated, basing on it's biomass expressed as Chl.a. Growth rate and doubling time of the cell were calculated. Results showed that growth rate and species survival varied with concentrations of crude oil and species type. Chlorella vulgaris and Scenedesmus acuminatus were more sensitive in culture containing crude oil as compared with Oscillatoria princeps cultures. The growth of green algae were significantly inhibited in culture containing (5 mg/l) crude oil, while the growth of Oscillatoria princeps reduced in culture containing (10 mg/l) crude oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20algae" title=" green algae"> green algae</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyanobacteria" title=" Cyanobacteria "> Cyanobacteria </a> </p> <a href="https://publications.waset.org/abstracts/24663/the-influence-of-crude-oil-on-growth-of-freshwater-algae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2279</span> Allergenic Potential of Airborne Algae Isolated from Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chu%20Wan-Loy">Chu Wan-Loy</a>, <a href="https://publications.waset.org/abstracts/search?q=Kok%20Yih-Yih"> Kok Yih-Yih</a>, <a href="https://publications.waset.org/abstracts/search?q=Choong%20Siew-Ling"> Choong Siew-Ling </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human health risks due to poor air quality caused by a wide array of microorganisms have attracted much interest. Airborne algae have been reported as early as 19th century and they can be found in the air of tropic and warm atmospheres. Airborne algae normally originate from water surfaces, soil, trees, buildings and rock surfaces. It is estimated that at least 2880 algal cells are inhaled per day by human. However, there are relatively little data published on airborne algae and its related adverse health effects except sporadic reports of algae associated clinical allergenicity. A collection of airborne algae cultures has been established following a recent survey on the occurrence of airborne algae in indoor and outdoor environments in Kuala Lumpur. The aim of this study was to investigate the allergenic potential of the isolated airborne green and blue-green algae, namely Scenedesmus sp., Cylindrospermum sp. and Hapalosiphon sp.. The suspensions of freeze-dried airborne algae were adminstered into balb-c mice model through intra-nasal route to determine their allergenic potential. Results showed that Scenedesmus sp. (1 mg/mL) increased the systemic Ig E levels in mice by 3-8 fold compared to pre-treatment. On the other hand, Cylindrospermum sp. and Hapalosiphon sp. at similar concentration caused the Ig E to increase by 2-4 fold. The potential of airborne algae causing Ig E mediated type 1 hypersensitivity was elucidated using other immunological markers such as cytokine interleukin (IL)- 4, 5, 6 and interferon-ɣ. When we compared the amount of interleukins in mouse serum between day 0 and day 53 (day of sacrifice), Hapalosiphon sp. (1mg/mL) increased the expression of IL4 and 6 by 8 fold while the Cylindrospermum sp. (1mg/mL) increased the expression of IL4 and IFɣ by 8 and 2 fold respectively. In conclusion, repeated exposure to the three selected airborne algae may stimulate the immune response and generate Ig E in a mouse model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20algae" title="airborne algae">airborne algae</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory" title=" respiratory"> respiratory</a>, <a href="https://publications.waset.org/abstracts/search?q=allergenic" title=" allergenic"> allergenic</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20response" title=" immune response"> immune response</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/41701/allergenic-potential-of-airborne-algae-isolated-from-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2278</span> Monitoring Spatial Distribution of Blue-Green Algae Blooms with Underwater Drones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20L.%20P.%20De%20Lima">R. L. P. De Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20B.%20Boogaard"> F. C. B. Boogaard</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20De%20Graaf-Van%20Dinther"> R. E. De Graaf-Van Dinther</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blue-green algae blooms (cyanobacteria) is currently a relevant ecological problem that is being addressed by most water authorities in the Netherlands. These can affect recreation areas by originating unpleasant smells and toxins that can poison humans and animals (e.g. fish, ducks, dogs). Contamination events usually take place during summer months, and their frequency is increasing with climate change. Traditional monitoring of this bacteria is expensive, labor-intensive and provides only limited (point sampling) information about the spatial distribution of algae concentrations. Recently, a novel handheld sensor allowed water authorities to quicken their algae surveying and alarm systems. This study converted the mentioned algae sensor into a mobile platform, by combining it with an underwater remotely operated vehicle (also equipped with other sensors and cameras). This provides a spatial visualization (mapping) of algae concentrations variations within the area covered with the drone, and also in depth. Measurements took place in different locations in the Netherlands: i) lake with thick silt layers at the bottom, very eutrophic former bottom of the sea and frequent / intense mowing regime; ii) outlet of waste water into large reservoir; iii) urban canal system. Results allowed to identify probable dominant causes of blooms (i), provide recommendations for the placement of an outlet, day-night differences in algae behavior (ii), or the highlight / pinpoint higher algae concentration areas (iii). Although further research is still needed to fully characterize these processes and to optimize the measuring tool (underwater drone developments / improvements), the method here presented can already provide valuable information about algae behavior and spatial / temporal variability and shows potential as an efficient monitoring system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue-green%20algae" title="blue-green algae">blue-green algae</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title=" cyanobacteria"> cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20drones%20%2F%20ROV%20%2F%20AUV" title=" underwater drones / ROV / AUV"> underwater drones / ROV / AUV</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20monitoring" title=" water quality monitoring"> water quality monitoring</a> </p> <a href="https://publications.waset.org/abstracts/71562/monitoring-spatial-distribution-of-blue-green-algae-blooms-with-underwater-drones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2277</span> Effects of Macrophyte Vallisneria asiatica Biomasses on the Algae Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caixia%20Kang">Caixia Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Kuba"> Takahiro Kuba</a>, <a href="https://publications.waset.org/abstracts/search?q=Aimin%20Hao"> Aimin Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasushi%20Iseri"> Yasushi Iseri</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunjie%20Li"> Chunjie Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenjia%20Zhang"> Zhenjia Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve the water quality of lakes and control algae blooms, The effects of Vallisneria asiatica which is one of aquatic plants spread over Lake Taihu. With different biomasses on the water quality and algae communities were researched. The results indicated that V. asiatica could control an excess of Microcystis spp. When the V. asiatica biomass was larger than 50g in the tank with 30L solution in the laboratory, Planktonic and epiphytic algae responded differently to V. asiatica. The presence of macrophyte V. asiatica in eutrophic waters has a positive effect on algae compositions because of different sensitivities of algae species to allelopathic substances released by macrophyte V. asiatica. That is, V. asiatica could inhibit the growth of Microcystis spp. effectively and was benefited to the diatom on the condition in the laboratory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae%20bloom" title="algae bloom">algae bloom</a>, <a href="https://publications.waset.org/abstracts/search?q=algae%20community" title=" algae community"> algae community</a>, <a href="https://publications.waset.org/abstracts/search?q=Microcystis%20spp." title=" Microcystis spp."> Microcystis spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=Vallisneria%20asiatica" title=" Vallisneria asiatica"> Vallisneria asiatica</a> </p> <a href="https://publications.waset.org/abstracts/3589/effects-of-macrophyte-vallisneria-asiatica-biomasses-on-the-algae-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2276</span> Growth Rates of Planktonic Organisms in “Yerevanyan Lich” Reservoir and the Hrazdan River in Yerevan City, Armenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Gevorgyan">G. A. Gevorgyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Mamyan"> A. S. Mamyan</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20G.%20Stepanyan"> L. G. Stepanyan</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20R.%20Hambaryan"> L. R. Hambaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacterio- and phytoplankton growth rates in 'Yerevanyan lich' reservoir and the Hrazdan river in Yerevan city, Armenia were investigated in April and June-August, 2015. Phytoplankton sampling and analysis were performed by the standard methods accepted in hydrobiological studies. The quantitative analysis of aerobic, coliform and E. coli bacteria is done by the 'RIDA COUNT' medium sheets (coated with ready-to-use culture medium). The investigations showed that the insufficient management of household discharges in Yerevan city caused the organic and fecal pollution of the Hrazdan river in this area which in turn resulted in an increase in bacterial count and increased sanitary and pathogenic risks to the environment and human health. During the investigation in April, the representatives of diatom algae prevailed quantitatively in the coastal area of 'Yerevanyan lich' reservoir, nevertheless, a significant change in the phytoplankton community in June occurred: due to green algae bloom in the reservoir, the quantitative parameters of phytoplankton increased significantly. This was probably conditioned by a seasonal increase in the water temperature in the conditions of the sufficient concentration of nutrients. However, a succession in phytoplankton groups during July-August occurred, and a dominant group (according to quantitative parameters) in the phytoplankton community was changed as follows: green algae-diatom algae-blue-green algae. Rapid increase in the quantitative parameters of diatom and blue-green algae in the reservoir may have been conditioned by increased organic matter level resulted from green algae bloom. Algal bloom in 'Yerevanyan lich' reservoir caused changes in phytoplankton community and an increase in bacterioplankton count not only in the reservoir but also in the Hrazdan river sites located in the downstream from the reservoir. Thus, the insufficient management of urban discharges and aquatic ecosystems in Yerevan city led to unfavorable changes in water quality and microbial and phytoplankton communities in “Yerevanyan lich” reservoir and the Hrazdan river which in turn caused increased sanitary and pathogenic risks to the environment and human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algal%20bloom" title="algal bloom">algal bloom</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterioplankton" title=" bacterioplankton"> bacterioplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoplankton" title=" phytoplankton"> phytoplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=Hrazdan%20river" title=" Hrazdan river"> Hrazdan river</a>, <a href="https://publications.waset.org/abstracts/search?q=Yerevanyan%20lich%20reservoir" title=" Yerevanyan lich reservoir"> Yerevanyan lich reservoir</a> </p> <a href="https://publications.waset.org/abstracts/43395/growth-rates-of-planktonic-organisms-in-yerevanyan-lich-reservoir-and-the-hrazdan-river-in-yerevan-city-armenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2275</span> Effects of Alkalinity on the Treatment of Landfill Leachate through Algae Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Imran%20Qureshi">Tahir Imran Qureshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at finding out effects of potential influence of alkalinity on the treatment of landfill leachate through the growth of algae at varying dilution rates and toxicity potential. pH control proved to be an effective factor influencing on algal growth. With the use of algae Scenedesmus sp. for the treatment of leachate, a sharp increase in the growth of algae was recorded until pH 9. However, at pH 9.3 and 25 °C temperature, the growing trend of algae population showed a weakening tendency with the increase of total alkalinity in the leachate solution. Highest growth of algae was recorded in the leachate samples with alkalinity ranged at 1500-2500 mg CaCO3/L under neutral condition at pH 7 after 48 hours of cultivation time. Under the similar conditions, total nitrogen and total phosphorous in the leachate also reduced to 80% and 85%, respectively, however, no significant removal of COD was observed during the course of experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leachate%20treatment" title="leachate treatment">leachate treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20removal" title=" nutrient removal"> nutrient removal</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia%20toxicity" title=" ammonia toxicity"> ammonia toxicity</a> </p> <a href="https://publications.waset.org/abstracts/44061/effects-of-alkalinity-on-the-treatment-of-landfill-leachate-through-algae-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2274</span> Absorption Capability Examination of Heavy Metals by Spirogyra Alga in Ahvaz Water Treatment Plant </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Fakheri%20Raof">F. Fakheri Raof</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zobeidizadeh"> F. Zobeidizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study examined the potential capability of Spirogyra algae remove heavy metals Zn, Pb, Cu, and Cr from the water. For this purpose, the water treatment No. 3 of Ahvaz County in Khuzestan Province of Iran was selected as a case study. From 8 sampling stations, 4 stations were dedicated to the water samples and 4 stations to the algae samples. According to the obtained results, the concentration of the heavy metals Cr, Cu, Pb, and Zn in water samples were within the ranges of 1.98-19.53, 0.67-13.45, 1-23.18, and 2.12-83.04 µg/L. Besides, the concentration of heavy metal Cr, Pb, Cu, and Zn in spirogyra algae samples varied between the ranges 2.30-3.61, 2.06-3.43, 2.29-2.56, and 9.88-10.84 µg/L. The highest amount of metal absorption in spirogyra algae samples was related to the zinc. The obtained results also indicated that the last spirogyra algae sample which was at the inlet of Tank 4 absorbed the lowest concentration of metals. This would be due to the treatment process along the course of ponds resulted in completely pure water at the outlet without the existence of algae on the sides. The paper also provides some useful recommendations on this issue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahvaz" title=" Ahvaz"> Ahvaz</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=spirogyra%20algae" title=" spirogyra algae"> spirogyra algae</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20plants" title=" water treatment plants"> water treatment plants</a> </p> <a href="https://publications.waset.org/abstracts/30901/absorption-capability-examination-of-heavy-metals-by-spirogyra-alga-in-ahvaz-water-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2273</span> Fungal Flocculation of Single Algae Species and Mixed Algal Communities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Digby%20Wrede">Digby Wrede</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Gray"> Stephen Gray</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Hussainy"> Syed Hussainy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae are extremely useful organisms but notoriously hard to harvest. The use of fungal pellets has been found to be an efficient way to flocculate numerous species of algae. However, only the flocculation of single species of algae has been investigated. Algae are generally found in complex communities in the environment comprising of numerous species of algae ranging from simple single cell algae such as Chlorella to more complex or communal algae such as Dictyosphaerium. This study investigated the flocculation capabilities of Aspergillus oryzae to flocculate four species of algae; Chlorella vulgaris, Scenedesmus quadricauda, Scenedesmus acuminatus and Dictyosphaerium sp., and the algal communities in four different types of domestic effluent from a lagoon-based treatment plant; primary effluent, secondary effluent and the high rate algal pond effluent at a natural and at a lowered pH level. Spectrophotometry was used to measure the changes in algal population. C. vulgaris, S. acuminatus and S. quadricauda, had over 90% reduction of algal in suspension after 24 hours. Dictyosphaerium sp. showed a little to no removal after 24 hours. The primary, secondary, and natural pH level HRAP had roughly a 50% removal after 24 hours, the HRAP which was grown at a lower pH level had over a 90% removal after 24 hours. pH has been shown previously to affect fungal flocculation. Fungal and algae pellets have been shown to be able to treat wastewater and can be converted to biofuels in a very similar method to how algae are currently converted. The mixture of both fungi and algae has also been shown to provide a higher yield of oils then separately and are able to more efficiently treat wastewater then algae or fungi by themselves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae%20harvesting" title="algae harvesting">algae harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20oryzae" title=" Aspergillus oryzae"> Aspergillus oryzae</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20flocculation" title=" fungal flocculation"> fungal flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/87064/fungal-flocculation-of-single-algae-species-and-mixed-algal-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2272</span> Impact of Gases Derived from Sargassum Algae Biodegradation on Copper Atmospheric Corrosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Said%20Ahmed">M. Said Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lebrini"> M. Lebrini</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pell%C3%A9"> J. Pellé</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rioual"> S. Rioual</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lescop"> B. Lescop</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Roos"> C. Roos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corrosion behavior of copper exposed in a marine atmosphere polluted and unpolluted by gases, mainly hydrogen sulphide (H2S), from the decomposition of Sargassum algae was studied using the mass loss method and electrochemical measurements. MEB/EDX and XRD were also used for the observation of morphology and surface analysis. To study the impact of this on copper corrosion, four sites more or less impacted by Sargassum algae strandings were selected. The samples were exposed for up to six months. The mass loss results showed that the average corrosion rate of copper was 528 µm/year for the site most affected by Sargassum algae and 9.4 µm/year for the least impacted site after three months of exposure, implying that the presence of Sargassum algae caused an important copper degradation. The morphological structures and properties of the corrosion products obtained at the impacted and non-impacted sites differed significantly. In the absence of Sargassum algae, we obtained mainly Cu2O and Cu2Cl(OH)3. Whereas in the atmosphere with Sargassum algae, CuS product is the main corrosion product obtained. Electrochemical analyses showed that the protection offered by the corrosion product layer was more important and improved with time for the non-impacted sites, whereas on the impacted sites, this protection deteriorated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric-corrosion" title="atmospheric-corrosion">atmospheric-corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sargassum%20algae" title=" sargassum algae"> sargassum algae</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20techniques" title=" electrochemical techniques"> electrochemical techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%2FEDX%20and%20XRD" title=" SEM/EDX and XRD"> SEM/EDX and XRD</a> </p> <a href="https://publications.waset.org/abstracts/152998/impact-of-gases-derived-from-sargassum-algae-biodegradation-on-copper-atmospheric-corrosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2271</span> Alternative Biocides to Reduce Algal Fouling in Seawater Industrial Cooling Towers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Al-Bloushi">Mohammed Al-Bloushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghyun%20Jeong"> Sanghyun Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Torove%20Leiknes"> Torove Leiknes </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consummation and lower heat exchange efficiencies of the cooling tower. Seawater cooling towers are prone to biofouling due to the presences of organic and inorganic compounds in the seawater. The availability of organic and inorganic nutrients, along with sunlight and continuous aeration of the cooling tower contributes to an environment that is ideal for microbial growth. Various microorganisms (algae, fungi, and bacteria) can grow in a cooling tower system under certain environmental conditions. The most commonly being used method to control the biofouling in the cooling tower is the addition of biocides such as chlorination. In this study, algae containing diatom and green algae were added to the cooling tower basin, and its viability was monitored in the recirculating cooling seawater loop as well as in the cooling tower basin. Continuous addition of biocides was employed in pilot-scale seawater cooling towers, and it was operated continuously for 2 months. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide and ozone, were tested. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biocide" title=" biocide"> biocide</a>, <a href="https://publications.waset.org/abstracts/search?q=biofouling" title=" biofouling"> biofouling</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater%20cooling%20tower" title=" seawater cooling tower"> seawater cooling tower</a> </p> <a href="https://publications.waset.org/abstracts/74335/alternative-biocides-to-reduce-algal-fouling-in-seawater-industrial-cooling-towers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2270</span> Bioremoval of Malachite Green Dye from Aqueous Solution Using Marine Algae: Isotherm, Kinetic and Mechanistic Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jerold">M. Jerold</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sivasubramanian"> V. Sivasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports the removal of Malachite Green (MG) from simulated wastewater by using marine macro algae Ulva lactuca. Batch biosorption experiments were carried out to determine the biosorption capacity. The biosorption capacity was found to be maximum at pH 10. The effect of various other operation parameters such as biosorbent dosage, initial dye concentration, contact time and agitation was also investigated. The equilibrium attained at 120 min with 0.1 g/L of biosorbent. The isotherm experimental data fitted well with Langmuir Model with R² value of 0.994. The maximum Langmuir biosorption capacity was found to be 76.92 mg/g. Further, Langmuir separation factor RL value was found to be 0.004. Therefore, the adsorption is favorable. The biosorption kinetics of MG was found to follow pseudo second-order kinetic model. The mechanistic study revealed that the biosorption of malachite onto Ulva lactuca was controlled by film diffusion. The solute transfer in a solid-liquid adsorption process is characterized by the film diffusion and/or particle diffusion. Thermodynamic study shows ΔG° is negative indicates the feasibility and spontaneous nature for the biosorption of malachite green. The biosorbent was characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and elemental analysis (CHNS: Carbon, Hydrogen, Nitrogen, Sulphur). This study showed that Ulva lactuca can be used as promising biosorbent for the removal of MG from wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulva%20lactuca" title=" Ulva lactuca"> Ulva lactuca</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title=" malachite green"> malachite green</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics "> kinetics </a> </p> <a href="https://publications.waset.org/abstracts/114326/bioremoval-of-malachite-green-dye-from-aqueous-solution-using-marine-algae-isotherm-kinetic-and-mechanistic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2269</span> Analysis and Study of Phytoplankton and the Environmental Characteristics of Tarkwa Bay, Lagos, South-Western, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bukola%20Dawodu">Bukola Dawodu</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Onyema"> Charles Onyema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phytoplankton and environmental characteristics of Tarkwa Bay, Lagos in South-western Nigeria were investigated from January to June 2012. Environmental characteristics within the Bay were largely determined by floodwater inflow in the wet months (April – June) and increased tidal marine conditions in the dry months (January – March). Similarly, rainfall distribution and possibly tidal seawater inflow were the key factors that govern the variation in phytoplankton distribution, species diversity, chlorophyll a concentration and environmental characteristics of the bay. Values for physico-chemical parameters were indicative of high levels of fluctuations inwards from the East mole towards Tarkwa Bay (e.g. T.S.S > 11mg/L, T.D.S > 33541.0mg/L, D.O. < 5.4). Chlorophyll A values did not show any discernable pattern and correlated negatively with total dissolved solids and total suspended solids (r = -0.27 and -0.04) as both were inconsistent throughout the study period. Four phytoplankton divisions were observed throughout the sampling period with the Bacillariophyta (diatoms) being the dominant group followed by Dinophyta (dinoflagellates), Cyanophyta (the blue-green algae) and Chlorophyta (the green algae). A total of twenty-one species from nine genera were recorded during the period of study. Diatoms formed the most abundant group making fifteen species from five genera. The centric forms dominated over the pennates in the diatom group with Skeletonema sp. Chaetoceros spp. and Coscinodiscus spp. being the dominant centric diatoms while Navicula spp. was the more dominant pennate form. The Dinoflagellates were represented by six species from one genus, the blue-green algae with five species from two genera while the green algae had one species from one genus. Comparatively, total biomass was more in the dry months (Jan. - Mar.) and decreased in the 'wet months' (Apr. – Jun.). Species diversity (S), Shannon Wiener index (Hs), Margalef Index (d) and Equitability Index (j) values were higher during the dry months while reduced value marked the wet months possibly as a result of dilution of rain effects. Outcomes of bio-indices variations were reflections of the degree of occurrence and abundance of species linked to seasons operating in the study site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20waters" title="coastal waters">coastal waters</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoplankton" title=" phytoplankton"> phytoplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20abundance" title=" species abundance"> species abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystems" title=" ecosystems"> ecosystems</a> </p> <a href="https://publications.waset.org/abstracts/75259/analysis-and-study-of-phytoplankton-and-the-environmental-characteristics-of-tarkwa-bay-lagos-south-western-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2268</span> Levels of Microcystin in the Coastal Waters of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medina%20Kadiri">Medina Kadiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blue-green otherwise called cyanobacteria, produce an array of biotoxins grouped into five categories notably hapatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins. Microcystins which are examples of hepatotoxins produced by blue-green algae Microcystins comprise the most common group of the cyanobacterial toxins. Blue-green algae flourish in aquatic environments, whether marine, brackish or freshwater, producing blooms in different forms such as microscopic, mats, or unsightly odoriferous scums. Microcystins biotoxins cause a plethora of animal and human hazards such as liver damage/cirrhosis and cancer, kidney damage, dermatitis, tinnitus, gastroenteritis, sore throat, nausea, myalgia, neurological problems, respiratory irritation and death. Water samples were collected from coastal regions of Nigeria in March 2014, June 2014, October 2014 and January 2015 and analyzed with Enzyme Linked Immunosorbent Assay (ELISA) kits. Microcystin biotoxin was recorded in all sites both during dry and wet seasons. The range of microcystins found was 0.000041-There was a seasonal trend of increasing microcystin concentrations from March till Octobers and a decrease thereafter. Generally in the oceanic waters, microcystin levels were highest at Cross Rivers in March and January, Barbeach in June and Lekki in October. In the adjoining riverine ecosystems, on the other hand, the highest concentrations of microcystin were observed at Akwa Ibom in March, June and October and in Bayelsa in January. Continuous monitoring and screening of coastal water bodies is suggested to minimize the health risks of cyanobacterial biotoxins to coastal communities of Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotoxins" title="biotoxins">biotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=harmful%20algae" title=" harmful algae"> harmful algae</a>, <a href="https://publications.waset.org/abstracts/search?q=marine" title=" marine"> marine</a>, <a href="https://publications.waset.org/abstracts/search?q=microcystin" title=" microcystin"> microcystin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/48090/levels-of-microcystin-in-the-coastal-waters-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2267</span> Phytochemical Composition and Characterization of Bioactive Compounds of the Green Seaweed Ulva lactuca: A Phytotherapeutic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariame%20Taibi">Mariame Taibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marouane%20Aouiji"> Marouane Aouiji</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Bengueddour"> Rachid Bengueddour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Moroccan coastline is particularly rich in algae and constitutes a reserve of species with considerable economic, social and ecological potential. This work focuses on the research and characterization of algae bioactive compounds that can be used in pharmacology or phytopathology. The biochemical composition of the green alga Ulva lactuca (Ulvophyceae) was studied by determining the content of moisture, ash, phenols, flavonoids, total tannins, and chlorophyll. Seven solvents: distilled water, methanol, ethyl acetate, chloroform, benzene, petroleum ether, and hexane, were tested for their effectiveness in recovering chemical compounds. The identification of functional groupings, as well as the bioactive chemical compounds, was determined by FT-IR and GC-MS. The moisture content of the alga was 77%, while the ash content was 15%. Phenol content differed from one solvent studied to another, while chlorophyll a, b, and total chlorophyll were determined at 14%, 9.52%, and 25%, respectively. Carotenoid was present in a considerable amount (8.17%). The experimental results show that methanol is the most effective solvent for recovering bioactive compounds, followed by water. Moreover, the green alga Ulva lactuca is characterized by a high level of total polyphenols (45±3.24 mg GAE/gDM), average levels of total tannins and flavonoids (22.52±8.23 mg CE/gDM, 15.49±0.064 mg QE/gDM) respectively. The results of Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of alcohol/phenol and amide functions in Ulva lactuca. The GC-MS analysis gave precisely the compounds contained in the various extracts, such as phenolic compounds, fatty acids, terpenoids, alcohols, alkanes, hydrocarbons, and steroids. All these results represent only a first step in the search for biologically active natural substances from seaweed. Additional tests are envisaged to confirm the bioactivity of seaweed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulva%20lactuca" title=" Ulva lactuca"> Ulva lactuca</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/156936/phytochemical-composition-and-characterization-of-bioactive-compounds-of-the-green-seaweed-ulva-lactuca-a-phytotherapeutic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2266</span> Process for Production of Added-Value Water–Extract from Liquid Biomass </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lozano%20Paul">Lozano Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupled Membrane Separation Technology (CMST), including Cross Flow Microfiltration (CFM) and Reverse Osmosis (RO), are used to concentrate microalgae biomass or/and to extract and concentrate water-soluble metabolites produced during micro-algae production cycle, as well as water recycling. Micro-algae biomass was produced using different feeding mixtures of ingredients: pure chemical origin compounds and natural/ecological water-extracted components from available local plants. Micro-algae was grown either in conventional plastic bags (100L/unit) or in small-scale innovative bioreactors (75L). Biomass was concentrated as CFM retentate using a P19-60 ceramic membrane (0.2μm pore size), and water-soluble micro-algae metabolites left in the CFM filtrate were concentrated by RO. Large volumes of water (micro-algae culture media) of were recycled by the CMTS for another biomass production cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20process" title=" membrane process"> membrane process</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20compound" title=" natural compound"> natural compound</a> </p> <a href="https://publications.waset.org/abstracts/74151/process-for-production-of-added-value-water-extract-from-liquid-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2265</span> Sea Protection: Using Marine Algae as a Natural Method of Absorbing Dye Textile Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ariana%20Kilic">Ariana Kilic</a>, <a href="https://publications.waset.org/abstracts/search?q=Serena%20Arapyan"> Serena Arapyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pollution is a serious concern in all seas around the world and one major cause of it is dye textile wastes mixing with seawater. This common incident alters aquatic life, putting organisms’ lives in danger and deteriorating the water's nature. There is a significant need for a natural approach to reduce the amount of dye textile waste in seawater and ensure marine organisms' safety. Consequently, using marine algae is a viable solution since it can eliminate the excess waste by absorbing the dye. Also, marine algae are non-vascular that absorb water and nutrients, meaning that having them as absorbers is a natural process and no inorganic matters will be added to the seawater that could result in further pollution. To test the efficiency of this approach, the optical absorbance of the seawater samples was measured before and after the addition of marine algae by utilizing colorimetry. A colorimeter is used to find the concentration of a chemical compound in a solution by measuring the absorbance of the compound at a specific wavelength. Samples of seawater that have equal amounts of water were used and textile dye was added as the constant variables. The initial and final absorbances, the dependent variable, of the water were measured before and after the addition of marine algae, the independent variable, and observed. The lower the absorbance showed us that there is lower dye concentration and therefore, the marine algae had done its job by using and absorbing the dye. The same experiment was repeated with same amount of water but with different concentrations of dye in order to determine the maximum concentration of dye the marine algae can completely absorb. The diminished concentration of dye demonstrated that pollution caused by factories’ dye wastes could be prevented with the natural method of marine algae. The involvement of marine algae is an optimal strategy for having an organic solution to absorbing the dye wastes in seas and obstructing water pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title="water pollution">water pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20textile%20waste" title=" dye textile waste"> dye textile waste</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20algae" title=" marine algae"> marine algae</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbance" title=" absorbance"> absorbance</a>, <a href="https://publications.waset.org/abstracts/search?q=colorimetry" title=" colorimetry"> colorimetry</a> </p> <a href="https://publications.waset.org/abstracts/189308/sea-protection-using-marine-algae-as-a-natural-method-of-absorbing-dye-textile-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2264</span> Trophic Ecology of Sarotherodon Melanotheron Heudelotii and Tilapia Guineensis from the Banc D'Arguin National Park, Mauritania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N%C3%A9n%C3%A9%20Gall%C3%A9%20Kide">Néné Gallé Kide</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamadou%20Dia"> Mamadou Dia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemhaba%20Ould%20Yarba"> Lemhaba Ould Yarba</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssouf%20Kone"> Youssouf Kone</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatimetou%20Mint%20Khalil"> Fatimetou Mint Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajar%20Bouksir"> Hajar Bouksir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghislane%20Salhi"> Ghislane Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Youn%C3%A8s%20Saoud"> Younès Saoud </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diet of Sarotherodon melanotheron and Tilapia guineensis were investigated in the National Park of Banc d'Arguin (PNBA) from September 2012 to October 2013. A total of 499 individuals ranging in size between 219 and 400 mm total length of S. melanotheron (253 males and 246 females), and 280 individuals of T.guineensis (229 males and 51 females) ranged between 180 and 424mm total length. We used for studying the feeding habits of both two species the frequency of occurrence method. The coefficient of emptiness was 40.88% for S. melanotheron and 38.57% for T. guineensis. Both two species were herbivorous and very close feedings. Their diet consists of Seagrass, green, red, blue, and brown algae, diatoms, gastropods, bivalves, Crustaceans, and mud. The Seagrass and green algae were prey preference of these two species. The diet feeding showed that the composition varies slightly depending on the season and size of individuals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cichlidae" title="Cichlidae">Cichlidae</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20ecology" title=" trophic ecology"> trophic ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=National%20park" title=" National park"> National park</a>, <a href="https://publications.waset.org/abstracts/search?q=Banc%20d%27Arguin" title=" Banc d'Arguin"> Banc d'Arguin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauritania" title=" Mauritania"> Mauritania</a> </p> <a href="https://publications.waset.org/abstracts/16683/trophic-ecology-of-sarotherodon-melanotheron-heudelotii-and-tilapia-guineensis-from-the-banc-darguin-national-park-mauritania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">795</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2263</span> Extraction of Nutraceutical Bioactive Compounds from the Native Algae Using Solvents with a Deep Natural Eutectic Point and Ultrasonic-assisted Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Bahar%20Hashemi">Seyedeh Bahar Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Rahimi"> Alireza Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Arjmand"> Mehdi Arjmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food is the source of energy and growth through the breakdown of its vital components and plays a vital role in human health and nutrition. Many natural compounds found in plant and animal materials play a special role in biological systems and the origin of many such compounds directly or indirectly is algae. Algae is an enormous source of polysaccharides and have gained much interest in human flourishing. In this study, algae biomass extraction is conducted using deep eutectic-based solvents (NADES) and Ultrasound-assisted extraction (UAE). The aim of this research is to extract bioactive compounds including total carotenoid, antioxidant activity, and polyphenolic contents. For this purpose, the influence of three important extraction parameters namely, biomass-to-solvent ratio, temperature, and time are studied with respect to their impact on the recovery of carotenoids, and phenolics, and on the extracts’ antioxidant activity. Here we employ the Response Surface Methodology for the process optimization. The influence of the independent parameters on each dependent is determined through Analysis of Variance. Our results show that Ultrasound-assisted extraction (UAE) for 50 min is the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts show the highest total phenolic contents (50.00 ± 0.70 mgGAE/gdw) and antioxidant activity [60.00 ± 1.70 mgTE/gdw, 70.00 ± 0.90 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)]. Our results confirm that the combination of UAE and NADES provides an excellent alternative to organic solvents for sustainable and green extraction and has huge potential for use in industrial applications involving the extraction of bioactive compounds from algae. This study is among the first attempts to optimize the effects of ultrasonic-assisted extraction, ultrasonic devices, and deep natural eutectic point and investigate their application in bioactive compounds extraction from algae. We also study the future perspective of ultrasound technology which helps to understand the complex mechanism of ultrasonic-assisted extraction and further guide its application in algae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20deep%20eutectic%20solvents" title="natural deep eutectic solvents">natural deep eutectic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=algae" title=" algae"> algae</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title=" carotenoids"> carotenoids</a> </p> <a href="https://publications.waset.org/abstracts/162294/extraction-of-nutraceutical-bioactive-compounds-from-the-native-algae-using-solvents-with-a-deep-natural-eutectic-point-and-ultrasonic-assisted-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2262</span> NENU2PHAR: PHA-Based Materials from Micro-Algae for High-Volume Consumer Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Moliner">Enrique Moliner</a>, <a href="https://publications.waset.org/abstracts/search?q=Alba%20Lafarga"> Alba Lafarga</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Herraiz"> Isaac Herraiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Evelina%20Castellana"> Evelina Castellana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20Mirea"> Mihaela Mirea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NENU2PHAR (GA 887474) is an EU-funded project aimed at the development of polyhydroxyalkanoates (PHAs) from micro-algae. These biobased and biodegradable polymers are being tested and validated in different high-volume market applications including food packaging, cosmetic packaging, 3D printing filaments, agro-textiles and medical devices, counting on the support of key players like Danone, BEL Group, Sofradim or IFG. At the moment the project has achieved to produce PHAs from micro-algae with a cumulated yield around 17%, i.e. 1 kg PHAs produced from 5.8 kg micro-algae biomass, which in turn capture 11 kg CO₂ for growing up. These algae-based plastics can therefore offer the same environmental benefits than current bio-based plastics (reduction of greenhouse gas emissions and fossil resource depletion), using a 3rd generation biomass feedstock that avoids the competition with food and the environmental impacts of agricultural practices. The project is also dealing with other sustainability aspects like the ecodesign and life cycle assessment of the plastic products targeted, considering not only the use of the biobased plastics but also many other ecodesign strategies. This paper will present the main progresses and results achieved to date in the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NENU2PHAR" title="NENU2PHAR">NENU2PHAR</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyhydroxyalkanoates" title=" Polyhydroxyalkanoates"> Polyhydroxyalkanoates</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-algae" title=" micro-algae"> micro-algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=ecodesign" title=" ecodesign"> ecodesign</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a> </p> <a href="https://publications.waset.org/abstracts/157868/nenu2phar-pha-based-materials-from-micro-algae-for-high-volume-consumer-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2261</span> Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20F.%20Ejim">I. F. Ejim</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20L.%20Kamen"> F. L. Kamen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae%20oil" title="algae oil">algae oil</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Box-Bohnken" title=" Box-Bohnken"> Box-Bohnken</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a> </p> <a href="https://publications.waset.org/abstracts/5831/modeling-and-optimization-of-algae-oil-extraction-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2260</span> Recovery and Εncapsulation of Μarine Derived Antifouling Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Stramarkou">Marina Stramarkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Papadaki"> Sofia Papadaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Kaloupi"> Maria Kaloupi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Batzakas"> Ioannis Batzakas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofouling is a complex problem of the aquaculture industry, as it reduces the efficiency of the equipment and causes significant losses of cultured organisms. Nowadays, the current antifouling methods are proved to be labor intensive, have limited lifetime and use toxic substances that result in fish mortality. Several species of marine algae produce a wide variety of biogenic compounds with antibacterial and antifouling properties, which are effective in the prevention and control of biofouling and can be incorporated in antifouling coatings. In the present work, Fucus spiralis, a species of macro algae, and Chlorella vulgaris, a well-known species of microalgae, were used for the isolation and recovery of bioactive compounds, belonging to groups of fatty acids, lipopeptides and amides. The recovery of the compounds was achieved through the application of the ultrasound- assisted extraction, an environmentally friendly method, using green, non-toxic solvents. Moreover, the coating of the antifouling agents was done by innovative encapsulation and coating methods, such as electro-hydrodynamic process. For the encapsulation of the bioactive compounds natural matrices were used, such as polysaccharides and proteins. Water extracts that were incorporated in protein matrices were considered the most efficient antifouling coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/69052/recovery-and-encapsulation-of-marine-derived-antifouling-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2259</span> Green Construction in EGYPT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Anwar">Hanan A. Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces green building construction in Egypt with different concepts and practices. The following study includes green building applied definition, guidelines, regulations and Standards. Evaluation of cost/benefit of green construction methods and green construction rating systems are presented. Relevant case studies will be reviewed. Four sites will be included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20construction" title="green construction">green construction</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofreindly" title=" ecofreindly"> ecofreindly</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficient%20town" title=" self-sufficient town"> self-sufficient town</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutral%20atmosphere" title=" carbon neutral atmosphere"> carbon neutral atmosphere</a> </p> <a href="https://publications.waset.org/abstracts/21630/green-construction-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2258</span> The Application of Green Technology to Residential Architecture in Hangzhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huiru%20Chen">Huiru Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuran%20Zhang"> Xuran Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the residential architecture in China are still causing high energy consumption and high pollution during their whole life cycle, which can be backward compared with the developed countries. The aim of this paper is to discuss the application of green technology to residential architecture in Hangzhou. This article will start with the development of green buildings, then analyzes the use status of green technology in Hangzhou from several specific measures. Analysis of the typical existing green residential buildings in Hangzhou is an attempt to form a preliminary Hangzhou’s green technology application strategy system. Through research, it has been found that the application of green technology in Hangzhou has changed from putting green to the facade, to the combination of the preservation of the traditional green concept and the modern green technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangzhou" title=" Hangzhou"> Hangzhou</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20architecture" title=" residential architecture"> residential architecture</a> </p> <a href="https://publications.waset.org/abstracts/92930/the-application-of-green-technology-to-residential-architecture-in-hangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Development of Carrot Puree with Algae for the Elderly with Dysphagia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obafemi%20Akinwotu">Obafemi Akinwotu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aylin%20Tas"> Aylin Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Tony%20Taylor"> Tony Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Bukola%20Onarinde"> Bukola Onarinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted to explore the methods and tools to improve texture and preserve the total phenolic and antioxidant compounds of dysphagia foods produced from carrot-based puree with decolourised Chlorella algae. Textural properties (Texture profile analysis [TPA]; the International Dysphagia Diet Standardization Initiative, particle size test [PST]) and rheological properties (viscosity and viscoelastic properties) of carrot puree defrosted by different treatments (microwave, steamer, oven), were characterised using hydrocolloids (guar gum, k. carrageenan, and xanthan gum), and the results were compared to a level 4 commercial sample. DPPH (2,2-diphenyl-1-picrylhydrazyl) antiradical scavenging radicals and total phenolic contents were employed to evaluate the total phenolics, and radical scavenging properties of defrosted carrot puree sonicated carrot puree (20 Hz, 30 min, 60 oC), and vacuum-dried carrot powder with the addition of algae. Results show that the viscosity, viscoelasticity test, TPA, and PST of the commercial sample were comparable to those of guar gum and xanthan gum containing puree, suggesting that they could be used as dysphagia diets. There was no noticeable decolourisation of the Chlorella pigment. Additionally, the use of the microwave, stemmer, and oven for defrosting treatment had an impact on the textural characteristics of the moulded samples upon cooling and also contributed to the reduction in the total phenolic and antioxidant properties of the samples. Sonication treatments of algae exposure reduced the cloudiness of the green pigment and lightened the colour of the samples containing algae, and they also reduced the drying time from 2.5 to 1.5 hours during the preliminary work. The low-temperature vacuum- and freeze-dried samples increased the concentration of the powder and resulted in an increase in the total phenolic content of the dry samples. The dried products may therefore have the potential to become more nutrient-dense to benefit the health of individuals with dysphagia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dysphagia" title="dysphagia">dysphagia</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocolloids" title=" hydrocolloids"> hydrocolloids</a>, <a href="https://publications.waset.org/abstracts/search?q=carrot%20puree" title=" carrot puree"> carrot puree</a> </p> <a href="https://publications.waset.org/abstracts/161676/development-of-carrot-puree-with-algae-for-the-elderly-with-dysphagia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Compost Enriched with Actinomyces and Bacillus Polymyxa Algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Sheba%20Abdelrahman">Abdelaziz Sheba Abdelrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compost enriched with actinomyces and Bacillus polymyxa algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards Organic fertiliser, compost enriched with actinomyces, and the biofertilizer Bacillus polymyxa algae were used as a partial replacement for mineral N fertiliser in Ewaise mango orchards during the 2019 and 2020 seasons. When compared to using mineral N alone, the results showed that reducing the percentage of mineral N fertiliser from 100 to 50% and using compost enriched with actinomyces at 25 to 50% and Bacillus polymyxa had an announced promotion on leaf area, total chlorophylls, leaf N, P, and K, yield, and fruit quality. The use of compost enriched with actinomyces and Bacillus polymyxa, as well as mineral N, resulted in a significant decrease in nitrite in the pulp. Reducing mineral N to 25% of the suitable N had a negative impact on yield. The application of appropriate N via 50% inorganic N + compost enriched with actinomyces at 50% + Bacillus polymyxa algae increased yield quantitatively and qualitatively in Ewaise mango orchards. This promised treatment significantly reduced nitrite levels in the pulp fruit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacillus%20polymyxa%20algae" title="bacillus polymyxa algae">bacillus polymyxa algae</a>, <a href="https://publications.waset.org/abstracts/search?q=fertiliser" title=" fertiliser"> fertiliser</a>, <a href="https://publications.waset.org/abstracts/search?q=biofertilizer" title=" biofertilizer"> biofertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=ewaise%20mango" title=" ewaise mango"> ewaise mango</a> </p> <a href="https://publications.waset.org/abstracts/155019/compost-enriched-with-actinomyces-and-bacillus-polymyxa-algae-as-a-partial-substitute-for-mineral-n-in-ewaise-mango-orchards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> The Potential Effectiveness of Marine Algae in Removal of Heavy Metal from Aqueous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wed%20Albalawi">Wed Albalawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebtihaj%20Jambi"> Ebtihaj Jambi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Albazi"> Maha Albazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shareefa%20AlGhamdi"> Shareefa AlGhamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal pollution has become a hard threat to marine ecosystems alongside extremely industrialized and urban (urbanized) zones because of their toxicity, resolution, and non-biodegradable nature. Great interest has been given to a new technique -biosorption- which exploits the cell envelopes of organisms to remove metals from water solutions. The main objective of the present study is to explore the potential of marine algae from the Red Sea for the removal of heavy metals from an aqueous medium. The subsequent objective is to study the effect of pH and agitation time on the adsorption capacity of marine algae. Randomly chosen algae from the Red Sea (Jeddah) with known altitude and depth were collected. Analysis of heavy metal ion concentration was measured by ICP-OES (Inductively coupled plasma - optical emission spectrometry) using air argon gas. A standard solution of heavy metal ions was prepared by diluting the original standard solution with ultrapure water. Types of seaweed were used to study the effect of pH on the biosorption of different heavy metals. The biosorption capacity of Cr is significantly lower in Padina Pavonica (P.P) compared to the biosorption capacity in Sargassum Muticum (S.M). The S.M exhibited significantly higher in Cr removal than the P.P at pH 2 and pH 7. However, the P.P exhibited significantly higher in Cr removal than the S.M at pH 3, pH 4, pH 5, pH 6, and pH 8. In conclusion, the dried cells of algae can be used as an effective tool for the removal of heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20value" title=" pH value"> pH value</a>, <a href="https://publications.waset.org/abstracts/search?q=brown%20algae" title=" brown algae"> brown algae</a> </p> <a href="https://publications.waset.org/abstracts/175803/the-potential-effectiveness-of-marine-algae-in-removal-of-heavy-metal-from-aqueous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> Mass Production of Endemic Diatoms in Polk County, Florida Concomitant with Biofuel Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melba%20D.%20Horton">Melba D. Horton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algae are identified as an alternative source of biofuel because of their ubiquitous distribution in aquatic environments. Diatoms are unique forms of algae characterized by silicified cell walls which have gained prominence in various technological applications. Polk County is home to a multitude of ponds and lakes but has not been explored for the presence of diatoms. Considering the condition of the waters brought about by predominant phosphate mining activities in the area, this research was conducted to determine if endemic diatoms are present and explore their potential for low-cost mass production. Using custom-built photobioreactors, water samples from various lakes provided by the Polk County Parks and Recreation and from nearby ponds were used as the source of diatoms together with other algae obtained during collection. Results of the initial culture cycles were successful, but later an overgrowth of other algae crashed the diatom population. Experiments were conducted in the laboratory to tease out some factors possibly contributing to the die-off. Generally, the total biomass declines after two culture cycles and the causative factors need further investigation. The lipid yield is minimum; however, the high frustule production after die-off adds value to the overall benefit of the harvest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diatoms" title="diatoms">diatoms</a>, <a href="https://publications.waset.org/abstracts/search?q=algae" title=" algae"> algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=photobioreactor" title=" photobioreactor"> photobioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=frustule" title=" frustule"> frustule</a> </p> <a href="https://publications.waset.org/abstracts/141873/mass-production-of-endemic-diatoms-in-polk-county-florida-concomitant-with-biofuel-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Efficiency of an Algae-Zinc Complex Compared to Inorganic Zinc Sulfate on Broilers Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Boulmane">R. Boulmane</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Alleno"> C. Alleno</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Marzin"> D. Marzin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trace minerals play an essential role in vital processes and are essential to many biological and physiological functions of the animal. They are usually incorporated in the form of inorganic salts such as sulfates and oxides. Most of these inorganic salts are excreted undigested by the animal causing economic losses as well as environmental pollution. In this context, the use of alternative organic trace minerals with higher bioavailability is emerging. This study was set up to evaluate the effect of using an algae-zinc complex in replacement of zinc sulfate in the feed, on growth performance of broiler chickens. One-thousand-two-hundred 1-day-old chicks were randomly distributed to 30 pens, allocated to 1 of 3 groups receiving different diets: the standard diet containing 35ppm of inorganic zinc sulfate (C+), a test diet containing 35ppm of algae-based zinc (T+), and a test diet containing half dose (16ppm) of algae-based zinc (T-). Three different feeds were distributed from D0-D11, D11-D21 and D21-D35. Individual weighing of the animals (D21 and D35), feed consumption (D11, D21 and D35) and pododermatitis occurrence (D35) were monitored. Data were submitted to analysis of variance. Results show that in finishing period the ADWG of the T+ and T- groups are significantly higher than the control C+ (+6%, P = 0.03). On the other hand, the FCR for the total period is lower for both the T+ and T- groups than the control C+ (-1.2%, P = 0.04). Pododermatitis scoring also shows less lesions for the test groups with algae-based zinc compared to the control group receiving inorganic one. In the end, this study shows a positive effect of the algae zinc-complex on growth performance of broilers compared to inorganic zinc, both when using full dose (35 ppm) or half dose (16 ppm). The use of algae-zinc complex in the premix shows to be a good alternative to reduce zinc excretion while maintaining performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae-zinc%20complex" title="algae-zinc complex">algae-zinc complex</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20performance" title=" broiler performance"> broiler performance</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20trace%20minerals" title=" organic trace minerals"> organic trace minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20sulfate" title=" zinc sulfate"> zinc sulfate</a> </p> <a href="https://publications.waset.org/abstracts/93314/efficiency-of-an-algae-zinc-complex-compared-to-inorganic-zinc-sulfate-on-broilers-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> Effect of Different Concentrations of Polluted Water on Growth and Physiological Parameters of Two Green Algae Scenedesmus obliquus and Cosmarium leave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Mosleh">Yahia Mosleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both Scenedesmus obliquus and Cosmarium leave were subjected to different concentrations (5, 10, 20, 50, and 80 %) of highly polluted water collected from Haddows drainage, which receives high amount of domestic sewage, and also the increasing agriculture run off and industrial effluent, then disbursed it in El-Salam fresh water canal. The water in that canal dramatically used as drinking water alongside using in irrigation. A total of 25 physicochemical parameters were determined within the drainage polluted water and also up-stream of El-Salam fresh water canal's water. The effect of five concentrations of the tested polluted water were determined on growth density, dry algal biomass, net photosynthetic oxygen production, catalase activity and ascorbic acid content on the two algae "Scenedesmus obliquus and Cosmarium leave". The result reveal that, low concentration support the growth and the physiological activities of both algae. However, the situation is different in the case of high concentrations, where it encourage the growth of Scenedesmus obliquus , meanwhile the same concentration were inhibited the growth and physiological activities of Cosmarium leave. Which indicated that, Scenedesmus obliquus tolerated high pollution better than Cosmarium leave. Finally it can be concluded that, different organisms, however, have different sensitivities to the same pollutants and the same organisms may be more or less damaged by different pollutant. Also, the inhibitory and stimulatory effects of different species varied with concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalase%20activity" title="catalase activity">catalase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid%20content" title=" ascorbic acid content"> ascorbic acid content</a>, <a href="https://publications.waset.org/abstracts/search?q=Scenedesmus" title=" Scenedesmus"> Scenedesmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Cosmarium" title=" Cosmarium"> Cosmarium</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/58194/effect-of-different-concentrations-of-polluted-water-on-growth-and-physiological-parameters-of-two-green-algae-scenedesmus-obliquus-and-cosmarium-leave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> The Potential of Edaphic Algae for Bioremediation of the Diesel-Contaminated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Tien">C. J. Tien</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Chen"> C. S. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Huang"> S. F. Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20X.%20Wang"> Z. X. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algae in soil ecosystems can produce organic matters and oxygen by photosynthesis. Heterocyst-forming cyanobacteria can fix nitrogen to increase soil nitrogen contents. Secretion of mucilage by some algae increases the soil water content and soil aggregation. These actions will improve soil quality and fertility, and further increase abundance and diversity of soil microorganisms. In addition, some mixotrophic and heterotrophic algae are able to degrade petroleum hydrocarbons. Therefore, the objectives of this study were to analyze the effects of algal addition on the degradation of total petroleum hydrocarbons (TPH), diversity and activity of bacteria and algae in the diesel-contaminated soil under different nutrient contents and frequency of plowing and irrigation in order to assess the potential bioremediation technique using edaphic algae. The known amount of diesel was added into the farmland soil. This diesel-contaminated soil was subject to five settings, experiment-1 with algal addition by plowing and irrigation every two weeks, experiment-2 with algal addition by plowing and irrigation every four weeks, experiment-3 with algal and nutrient addition by plowing and irrigation every two weeks, experiment-4 with algal and nutrient addition by plowing and irrigation every four weeks, and the control without algal addition. Soil samples were taken every two weeks to analyze TPH concentrations, diversity of bacteria and algae, and catabolic genes encoding functional degrading enzymes. The results show that the TPH removal rates of five settings after the two-month experimental period were in the order: experiment-2 > expermient-4 > experiment-3 > experiment-1 > control. It indicated that algal addition enhanced the degradation of TPH in the diesel-contaminated soil, but not for nutrient addition. Plowing and irrigation every four weeks resulted in more TPH removal than that every two weeks. The banding patterns of denaturing gradient gel electrophoresis (DGGE) revealed an increase in diversity of bacteria and algae after algal addition. Three petroleum hydrocarbon-degrading algae (Anabaena sp., Oscillatoria sp. and Nostoc sp.) and two added algal strains (Leptolyngbya sp. and Synechococcus sp.) were sequenced from DGGE prominent bands. The four hydrocarbon-degrading bacteria Gordonia sp., Mycobacterium sp., Rodococcus sp. and Alcanivorax sp. were abundant in the treated soils. These results suggested that growth of indigenous bacteria and algae were improved after adding edaphic algae. Real-time polymerase chain reaction results showed that relative amounts of four catabolic genes encoding catechol 2, 3-dioxygenase, toluene monooxygenase, xylene monooxygenase and phenol monooxygenase were appeared and expressed in the treated soil. The addition of algae increased the expression of these genes at the end of experiments to biodegrade petroleum hydrocarbons. This study demonstrated that edaphic algae were suitable biomaterials for bioremediating diesel-contaminated soils with plowing and irrigation every four weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catabolic%20gene" title="catabolic gene">catabolic gene</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=edaphic%20algae" title=" edaphic algae"> edaphic algae</a> </p> <a href="https://publications.waset.org/abstracts/50030/the-potential-of-edaphic-algae-for-bioremediation-of-the-diesel-contaminated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20algae&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>