CINXE.COM

Search results for: geolocation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: geolocation</title> <meta name="description" content="Search results for: geolocation"> <meta name="keywords" content="geolocation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="geolocation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="geolocation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 24</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: geolocation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Hasni">Sarra Hasni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Faiz"> Sami Faiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20language%20model" title="large language model">large language model</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20hoc%20explainer" title=" post hoc explainer"> post hoc explainer</a>, <a href="https://publications.waset.org/abstracts/search?q=prompt%20engineering" title=" prompt engineering"> prompt engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20explanation" title=" local explanation"> local explanation</a>, <a href="https://publications.waset.org/abstracts/search?q=tweet%20geolocation" title=" tweet geolocation"> tweet geolocation</a> </p> <a href="https://publications.waset.org/abstracts/190334/exploring-tweet-geolocation-leveraging-large-language-models-for-post-hoc-explanations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Analysis of Urban Population Using Twitter Distribution Data: Case Study of Makassar City, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuyun%20Wabula">Yuyun Wabula</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Dewancker"> B. J. Dewancker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past decade, the social networking app has been growing very rapidly. Geolocation data is one of the important features of social media that can attach the user&#39;s location coordinate in the real world. This paper proposes the use of geolocation data from the Twitter social media application to gain knowledge about urban dynamics, especially on human mobility behavior. This paper aims to explore the relation between geolocation Twitter with the existence of people in the urban area. Firstly, the study will analyze the spread of people in the particular area, within the city using Twitter social media data. Secondly, we then match and categorize the existing place based on the same individuals visiting. Then, we combine the Twitter data from the tracking result and the questionnaire data to catch the Twitter user profile. To do that, we used the distribution frequency analysis to learn the visitors&rsquo; percentage. To validate the hypothesis, we compare it with the local population statistic data and land use mapping released by the city planning department of Makassar local government. The results show that there is the correlation between Twitter geolocation and questionnaire data. Thus, integration the Twitter data and survey data can reveal the profile of the social media users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geolocation" title="geolocation">geolocation</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter"> Twitter</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20analysis" title=" distribution analysis"> distribution analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20mobility" title=" human mobility"> human mobility</a> </p> <a href="https://publications.waset.org/abstracts/55451/analysis-of-urban-population-using-twitter-distribution-data-case-study-of-makassar-city-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Geographic Information System Using Google Fusion Table Technology for the Delivery of Disease Data Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Nyoman%20Mahayasa%20Adiputra">I. Nyoman Mahayasa Adiputra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data in the field of health can be useful for the purposes of data analysis, one example of health data is disease data. Disease data is usually in a geographical plot in accordance with the area. Where the data was collected, in the city of Denpasar, Bali. Disease data report is still published in tabular form, disease information has not been mapped in GIS form. In this research, disease information in Denpasar city will be digitized in the form of a geographic information system with the smallest administrative area in the form of district. Denpasar City consists of 4 districts of North Denpasar, East Denpasar, West Denpasar and South Denpasar. In this research, we use Google fusion table technology for map digitization process, where this technology can facilitate from the administrator and from the recipient information. From the administrator side of the input disease, data can be done easily and quickly. From the receiving end of the information, the resulting GIS application can be published in a website-based application so that it can be accessed anywhere and anytime. In general, the results obtained in this study, divided into two, namely: (1) Geolocation of Denpasar and all of Denpasar districts, the process of digitizing the map of Denpasar city produces a polygon geolocation of each - district of Denpasar city. These results can be utilized in subsequent GIS studies if you want to use the same administrative area. (2) Dengue fever mapping in 2014 and 2015. Disease data used in this study is dengue fever case data taken in 2014 and 2015. Data taken from the profile report Denpasar Health Department 2015 and 2016. This mapping can be useful for the analysis of the spread of dengue hemorrhagic fever in the city of Denpasar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title="geographic information system">geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=Google%20fusion%20table%20technology" title=" Google fusion table technology"> Google fusion table technology</a>, <a href="https://publications.waset.org/abstracts/search?q=delivery%20of%20disease%20data%20information" title=" delivery of disease data information"> delivery of disease data information</a>, <a href="https://publications.waset.org/abstracts/search?q=Denpasar%20city" title=" Denpasar city"> Denpasar city</a> </p> <a href="https://publications.waset.org/abstracts/98879/geographic-information-system-using-google-fusion-table-technology-for-the-delivery-of-disease-data-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Improving the Gain of a Multiband Antenna by Adding an Artificial Magnetic Conductor Metasurface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Bousselmi">Amira Bousselmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a PIFA antenna designed for geolocation applications (GNSS) operating on 1.278 GHz, 2.8 GHz, 5.7 GHz and 10 GHz. To improve the performance of the antenna, an artificial magnetic conductor structure (AMC) was used. Adding the antenna with AMC resulted in a measured gain of 4.78 dBi. The results of simulations and measurements are presented. CST Microwave Studio is used to design and compare antenna performance. An antenna design methodology, design and characterization of the AMC surface are described as well as the simulated and measured performances of the AMC antenna are then discussed. Finally, in Section V, there is a conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20multiband" title="antenna multiband">antenna multiband</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20navigation%20system" title=" global navigation system"> global navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=AMC" title=" AMC"> AMC</a>, <a href="https://publications.waset.org/abstracts/search?q=Galeleo" title=" Galeleo"> Galeleo</a> </p> <a href="https://publications.waset.org/abstracts/150107/improving-the-gain-of-a-multiband-antenna-by-adding-an-artificial-magnetic-conductor-metasurface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> HTML5 Online Learning Application with Offline Web, Location Based, Animated Web, Multithread, and Real-Time Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheetal%20R.%20Jadhwani">Sheetal R. Jadhwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Daisy%20Sang"> Daisy Sang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Shyh%20Peng"> Chang-Shyh Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Web applications are an integral part of modem life. They are mostly based upon the HyperText Markup Language (HTML). While HTML meets the basic needs, there are some shortcomings. For example, applications can cease to work once user goes offline, real-time updates may be lagging, and user interface can freeze on computationally intensive tasks. The latest language specification HTML5 attempts to rectify the situation with new tools and protocols. This paper studies the new Web Storage, Geolocation, Web Worker, Canvas, and Web Socket APIs, and presents applications to test their features and efficiencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HTML5" title="HTML5">HTML5</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20worker" title=" web worker"> web worker</a>, <a href="https://publications.waset.org/abstracts/search?q=canvas" title=" canvas"> canvas</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20socket" title=" web socket"> web socket</a> </p> <a href="https://publications.waset.org/abstracts/43143/html5-online-learning-application-with-offline-web-location-based-animated-web-multithread-and-real-time-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> AS-Geo: Arbitrary-Sized Image Geolocalization with Learnable Geometric Enhancement Resizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huayuan%20Lu">Huayuan Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunfang%20Yang"> Chunfang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Zhu"> Ma Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Baojun%20Qi"> Baojun Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaqiong%20Qiao"> Yaqiong Qiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiangqian%20Xu"> Jiangqian Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image geolocalization has great application prospects in fields such as autonomous driving and virtual/augmented reality. In practical application scenarios, the size of the image to be located is not fixed; it is impractical to train different networks for all possible sizes. When its size does not match the size of the input of the descriptor extraction model, existing image geolocalization methods usually directly scale or crop the image in some common ways. This will result in the loss of some information important to the geolocalization task, thus affecting the performance of the image geolocalization method. For example, excessive down-sampling can lead to blurred building contour, and inappropriate cropping can lead to the loss of key semantic elements, resulting in incorrect geolocation results. To address this problem, this paper designs a learnable image resizer and proposes an arbitrary-sized image geolocation method. (1) The designed learnable image resizer employs the self-attention mechanism to enhance the geometric features of the resized image. Firstly, it applies bilinear interpolation to the input image and its feature maps to obtain the initial resized image and the resized feature maps. Then, SKNet (selective kernel net) is used to approximate the best receptive field, thus keeping the geometric shapes as the original image. And SENet (squeeze and extraction net) is used to automatically select the feature maps with strong contour information, enhancing the geometric features. Finally, the enhanced geometric features are fused with the initial resized image, to obtain the final resized images. (2) The proposed image geolocalization method embeds the above image resizer as a fronting layer of the descriptor extraction network. It not only enables the network to be compatible with arbitrary-sized input images but also enhances the geometric features that are crucial to the image geolocalization task. Moreover, the triplet attention mechanism is added after the first convolutional layer of the backbone network to optimize the utilization of geometric elements extracted by the first convolutional layer. Finally, the local features extracted by the backbone network are aggregated to form image descriptors for image geolocalization. The proposed method was evaluated on several mainstream datasets, such as Pittsburgh30K, Tokyo24/7, and Places365. The results show that the proposed method has excellent size compatibility and compares favorably to recently mainstream geolocalization methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20geolocalization" title="image geolocalization">image geolocalization</a>, <a href="https://publications.waset.org/abstracts/search?q=self-attention%20mechanism" title=" self-attention mechanism"> self-attention mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20resizer" title=" image resizer"> image resizer</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20feature" title=" geometric feature"> geometric feature</a> </p> <a href="https://publications.waset.org/abstracts/152265/as-geo-arbitrary-sized-image-geolocalization-with-learnable-geometric-enhancement-resizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Development of a System for Fitting Clothes and Accessories Using Augmented Reality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinmukhamed%20T.">Dinmukhamed T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Vassiliy%20S."> Vassiliy S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article suggests the idea of fitting clothes and accessories based on augmented reality. A logical data model has been developed, taking into account the decision-making module (colors, style, type, material, popularity, etc.) based on personal data (age, gender, weight, height, leg size, hoist length, geolocation, photogrammetry, number of purchases of certain types of clothing, etc.) and statistical data of the purchase history (number of items, price, size, color, style, etc.). Also, in order to provide information to the user, it is planned to develop an augmented reality system using a QR code. This system of selection and fitting of clothing and accessories based on augmented reality will be used in stores to reduce the time for the buyer to make a decision on the choice of clothes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20store" title=" online store"> online store</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-making%20module" title=" decision-making module"> decision-making module</a>, <a href="https://publications.waset.org/abstracts/search?q=like%20QR%20code" title=" like QR code"> like QR code</a>, <a href="https://publications.waset.org/abstracts/search?q=clothing%20store" title=" clothing store"> clothing store</a>, <a href="https://publications.waset.org/abstracts/search?q=queue" title=" queue"> queue</a> </p> <a href="https://publications.waset.org/abstracts/156928/development-of-a-system-for-fitting-clothes-and-accessories-using-augmented-reality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Design and Implementation of an AI-Enabled Task Assistance and Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Prasad%20Jaganathan">Arun Prasad Jaganathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper introduces an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20allocation" title=" task allocation"> task allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20efficiency" title=" operational efficiency"> operational efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20optimization" title=" resource optimization"> resource optimization</a> </p> <a href="https://publications.waset.org/abstracts/185813/design-and-implementation-of-an-ai-enabled-task-assistance-and-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Using a Robot Companion to Detect and Visualize the Indicators of Dementia Progression and Quality of Life of People Aged 65 and Older</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeoffrey%20Oostrom">Jeoffrey Oostrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Robbert%20James%20Schlingmann"> Robbert James Schlingmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Hani%20Alers"> Hani Alers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This document depicts the research into the indicators of dementia progression, the automation of quality of life assignments, and the visualization of it. To do this, the Smart Teddy project was initiated to make a smart companion that both monitors the senior citizen as well as processing the captured data into an insightful dashboard. With around 50 million diagnoses worldwide, dementia proves again and again to be a bothersome strain on the lives of many individuals, their relatives, and society as a whole. In 2015 it was estimated that dementia care cost 818 billion U.S Dollars globally. The Smart Teddy project aims to take away a portion of the burden from caregivers by automating the collection of certain data, like movement, geolocation, and sound-levels. This paper proves that the Smart Teddy has the potential to become a useful tool for caregivers but won’t pose as a solution. The Smart Teddy still faces some problems in terms of emotional privacy, but its non-intrusive nature, as well as diversity in usability, can make up for it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dementia%20care" title="dementia care">dementia care</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20data%20visualization" title=" medical data visualization"> medical data visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20companion" title=" smart companion"> smart companion</a> </p> <a href="https://publications.waset.org/abstracts/134677/using-a-robot-companion-to-detect-and-visualize-the-indicators-of-dementia-progression-and-quality-of-life-of-people-aged-65-and-older" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Personalized Intervention through Causal Inference in mHealth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Guitart%20Atienza">Anna Guitart Atienza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Fern%C3%A1ndez%20del%20R%C3%ADo"> Ana Fernández del Río</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhav%20Nekkar"> Madhav Nekkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Ljubicic"> Jelena Ljubicic</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81frica%20Peri%C3%A1%C3%B1ez"> África Periáñez</a>, <a href="https://publications.waset.org/abstracts/search?q=Eura%20Shin"> Eura Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauren%20Bellhouse"> Lauren Bellhouse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of digital devices in healthcare or mobile health (mHealth) has increased in recent years due to the advances in digital technology, making it possible to nudge healthy behaviors through individual interventions. In addition, mHealth is becoming essential in poor-resource settings due to the widespread use of smartphones in areas where access to professional healthcare is limited. In this work, we evaluate mHealth interventions in low-income countries with a focus on causal inference. Counterfactuals estimation and other causal computations are key to determining intervention success and assisting in empirical decision-making. Our main purpose is to personalize treatment recommendations and triage patients at the individual level in order to maximize the entire intervention's impact on the desired outcome. For this study, collected data includes mHealth individual logs from front-line healthcare workers, electronic health records (EHR), and external variables data such as environmental, demographic, and geolocation information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20inference" title="causal inference">causal inference</a>, <a href="https://publications.waset.org/abstracts/search?q=mHealth" title=" mHealth"> mHealth</a>, <a href="https://publications.waset.org/abstracts/search?q=intervention" title=" intervention"> intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=personalization" title=" personalization"> personalization</a> </p> <a href="https://publications.waset.org/abstracts/133558/personalized-intervention-through-causal-inference-in-mhealth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Quantifying Mobility of Urban Inhabitant Based on Social Media Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuyun">Yuyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Fritz%20Akhmad%20Nuzir"> Fritz Akhmad Nuzir</a>, <a href="https://publications.waset.org/abstracts/search?q=Bart%20Julien%20Dewancker"> Bart Julien Dewancker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Check-in locations on social media provide information about an individual&rsquo;s location. The millions of units of data generated from these sites provide knowledge for human activity. In this research, we used a geolocation service and users&rsquo; texts posted on Twitter social media to analyze human mobility. Our research will answer the questions; what are the movement patterns of a citizen? And, how far do people travel in the city? We explore the people trajectory of 201,118 check-ins and 22,318 users over a period of one month in Makassar city, Indonesia. To accommodate individual mobility, the authors only analyze the users with check-in activity greater than 30 times. We used sampling method with a systematic sampling approach to assign the research sample. The study found that the individual movement shows a high degree of regularity and intensity in certain places. The other finding found that the average distance an urban inhabitant can travel per day is as far as 9.6 km. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobility" title="mobility">mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=check-in" title=" check-in"> check-in</a>, <a href="https://publications.waset.org/abstracts/search?q=distance" title=" distance"> distance</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter"> Twitter</a> </p> <a href="https://publications.waset.org/abstracts/94562/quantifying-mobility-of-urban-inhabitant-based-on-social-media-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Biomorphological Characteristics, Habitats, Role in Plant Communities and Raw Reserves of Ayuga Turkestanica (Regel) Briq. (Lamiaceae) In Uzbekistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akmal%20E.%20Egamberdiev">Akmal E. Egamberdiev</a>, <a href="https://publications.waset.org/abstracts/search?q=Alim%20M.%20Nigmatullaev"> Alim M. Nigmatullaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Trobjon%20Kh.%20Makhkamov"> Trobjon Kh. Makhkamov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results of scientific research on the biomorphological features of Ajuga turkestanica (Regel) Brig., its role in plant communities, modern distribution areas, and raw material reserves are presented. Plant ontogeny is divided into 3 periods and 9 growth stages. Information on its seasonal and diurnal flowering and seed productivity is provided. As a result of the research, the participation of the studied species in plant communities, its place, the structure and floristic composition of communities were determined, and as a result, for the first time, the description of 11 new associations in 7 formations of Ajuga turkestanica, and a schematic map of the geolocation of formations and associations of plants in Uzbekistan is given. A. turkestanica (within the range) are divided into 3 categories and 21 massifs. Its current biological reserve is 93.5±35.3 tons, its usable reserve is 46.2±13.8 tons, and the reserve that can be prepared in 1 year is 28.4±5.42 tons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ontogeny" title="ontogeny">ontogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20productivity" title=" seed productivity"> seed productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20flowering" title=" seasonal flowering"> seasonal flowering</a>, <a href="https://publications.waset.org/abstracts/search?q=formation" title=" formation"> formation</a>, <a href="https://publications.waset.org/abstracts/search?q=association" title=" association"> association</a>, <a href="https://publications.waset.org/abstracts/search?q=dominant" title=" dominant"> dominant</a>, <a href="https://publications.waset.org/abstracts/search?q=subdominant" title=" subdominant"> subdominant</a>, <a href="https://publications.waset.org/abstracts/search?q=areal" title=" areal"> areal</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20reserve" title=" biological reserve"> biological reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20reserve" title=" operational reserve"> operational reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20reserve" title=" annual reserve"> annual reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20map" title=" GIS map"> GIS map</a> </p> <a href="https://publications.waset.org/abstracts/160629/biomorphological-characteristics-habitats-role-in-plant-communities-and-raw-reserves-of-ayuga-turkestanica-regel-briq-lamiaceae-in-uzbekistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Recovery of the Demolition and Construction Waste, Casablanca (Morocco)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morsli%20Mourad">Morsli Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahiri%20Mohamed"> Tahiri Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Samdi%20Azzeddine"> Samdi Azzeddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Casablanca is the biggest city in Morocco. It concentrates more than 60% of the economic and industrial activity of the kingdom. Its building and public works (BTP) sector is the leading source of inert waste scattered in open areas. This inert waste is a major challenge for the city of Casablanca, as it is not properly managed, thus causing a significant nuisance for the environment and the health of the population. Hence the vision of our project is to recycle and valorize concrete waste. In this work, we present concrete results in the exploitation of this abundant and permanent deposit. Typical wastes are concrete, clay and concrete bricks, ceramic tiles, marble panels, gypsum, scrap metal, wood . The work performed included: geolocation with a combination of artificial intelligence and Google Earth, estimation of the amount of waste per site, sorting, crushing, grinding, and physicochemical characterization of the samples. Then, we proceeded to the exploitation of the types of substrates to be developed: light cement, coating, and glue for ceramics... The said products were tested and characterized by X-ray fluorescence, specific surface, resistance to bending and crushing, etc. We will present in detail the main results of our research work and also describe the specific properties of each material developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=d%C3%A9chets%20de%20d%C3%A9molition%20et%20des%20chantiers%20de%20construction" title="déchets de démolition et des chantiers de construction">déchets de démolition et des chantiers de construction</a>, <a href="https://publications.waset.org/abstracts/search?q=logiciels%20de%20combinaison%20SIG" title=" logiciels de combinaison SIG"> logiciels de combinaison SIG</a>, <a href="https://publications.waset.org/abstracts/search?q=valorisation%20de%20d%C3%A9chets%20inertes" title=" valorisation de déchets inertes"> valorisation de déchets inertes</a>, <a href="https://publications.waset.org/abstracts/search?q=enduits" title=" enduits"> enduits</a>, <a href="https://publications.waset.org/abstracts/search?q=ciment%20leger" title=" ciment leger"> ciment leger</a>, <a href="https://publications.waset.org/abstracts/search?q=casablanca" title=" casablanca"> casablanca</a> </p> <a href="https://publications.waset.org/abstracts/153706/recovery-of-the-demolition-and-construction-waste-casablanca-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Graph-Oriented Summary for Optimized Resource Description Framework Graphs Streams Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amadou%20Fall%20Dia">Amadou Fall Dia</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurras%20Ulbricht%20Togbe"> Maurras Ulbricht Togbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliou%20Boly"> Aliou Boly</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakia%20Kazi%20Aoul"> Zakia Kazi Aoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabeth%20Metais"> Elisabeth Metais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Existing RDF (Resource Description Framework) Stream Processing (RSP) systems allow continuous processing of RDF data issued from different application domains such as weather station measuring phenomena, geolocation, IoT applications, drinking water distribution management, and so on. However, processing window phase often expires before finishing the entire session and RSP systems immediately delete data streams after each processed window. Such mechanism does not allow optimized exploitation of the RDF data streams as the most relevant and pertinent information of the data is often not used in a due time and almost impossible to be exploited for further analyzes. It should be better to keep the most informative part of data within streams while minimizing the memory storage space. In this work, we propose an RDF graph summarization system based on an explicit and implicit expressed needs through three main approaches: (1) an approach for user queries (SPARQL) in order to extract their needs and group them into a more global query, (2) an extension of the closeness centrality measure issued from Social Network Analysis (SNA) to determine the most informative parts of the graph and (3) an RDF graph summarization technique combining extracted user query needs and the extended centrality measure. Experiments and evaluations show efficient results in terms of memory space storage and the most expected approximate query results on summarized graphs compared to the source ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrality%20measures" title="centrality measures">centrality measures</a>, <a href="https://publications.waset.org/abstracts/search?q=RDF%20graphs%20summary" title=" RDF graphs summary"> RDF graphs summary</a>, <a href="https://publications.waset.org/abstracts/search?q=RDF%20graphs%20stream" title=" RDF graphs stream"> RDF graphs stream</a>, <a href="https://publications.waset.org/abstracts/search?q=SPARQL%20query" title=" SPARQL query"> SPARQL query</a> </p> <a href="https://publications.waset.org/abstracts/88106/graph-oriented-summary-for-optimized-resource-description-framework-graphs-streams-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Modeling Route Selection Using Real-Time Information and GPS Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Albeiro%20Alvarez">William Albeiro Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Patricia%20Jaramillo"> Gloria Patricia Jaramillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Reinaldo%20Sarmiento"> Ivan Reinaldo Sarmiento</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the behavior of individuals and the different human factors that influence the choice when faced with a complex system such as transportation is one of the most complicated aspects of measuring in the components that constitute the modeling of route choice due to that various behaviors and driving mode directly or indirectly affect the choice. During the last two decades, with the development of information and communications technologies, new data collection techniques have emerged such as GPS, geolocation with mobile phones, apps for choosing the route between origin and destination, individual service transport applications among others, where an interest has been generated to improve discrete choice models when considering the incorporation of these developments as well as psychological factors that affect decision making. This paper implements a discrete choice model that proposes and estimates a hybrid model that integrates route choice models and latent variables based on the observation on the route of a sample of public taxi drivers from the city of Medellín, Colombia in relation to its behavior, personality, socioeconomic characteristics, and driving mode. The set of choice options includes the routes generated by the individual service transport applications versus the driver's choice. The hybrid model consists of measurement equations that relate latent variables with measurement indicators and utilities with choice indicators along with structural equations that link the observable characteristics of drivers with latent variables and explanatory variables with utilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior%20choice%20model" title="behavior choice model">behavior choice model</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20factors" title=" human factors"> human factors</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20model" title=" hybrid model"> hybrid model</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20data" title=" real time data"> real time data</a> </p> <a href="https://publications.waset.org/abstracts/119103/modeling-route-selection-using-real-time-information-and-gps-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Munaf">Samuel Munaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Swingler"> Kevin Swingler</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Br%C3%BClisauer"> Franz Brülisauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20O%E2%80%99Hare"> Anthony O’Hare</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Gunn"> George Gunn</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Reeves"> Aaron Reeves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=veterinary%20epidemiology" title="veterinary epidemiology">veterinary epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20surveillance" title=" disease surveillance"> disease surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=infodemiology" title=" infodemiology"> infodemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=infoveillance" title=" infoveillance"> infoveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=smallholding" title=" smallholding"> smallholding</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20scraping" title=" web scraping"> web scraping</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geolocation" title=" geolocation"> geolocation</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a> </p> <a href="https://publications.waset.org/abstracts/159869/text-mining-of-veterinary-forums-for-epidemiological-surveillance-supplementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Morsli">Mourad Morsli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Tahiri"> Mohamed Tahiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzedine%20Samdi"> Azzedine Samdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demolition%20and%20construction%20waste" title="demolition and construction waste">demolition and construction waste</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20combination%20software" title=" GIS combination software"> GIS combination software</a>, <a href="https://publications.waset.org/abstracts/search?q=inert%20waste%20recovery" title=" inert waste recovery"> inert waste recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20materials" title=" ecological materials"> ecological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Casablanca" title=" Casablanca"> Casablanca</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a> </p> <a href="https://publications.waset.org/abstracts/154004/design-and-characterization-of-ecological-materials-based-on-demolition-and-concrete-waste-casablanca-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Mnemotopic Perspectives: Communication Design as Stabilizer for the Memory of Places </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Galasso">C. Galasso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ancestral relationship between humans and geographical environment has long been at the center of an interdisciplinary dialogue, which sees one of its main research nodes in the relationship between memory and places. Given its deep complexity, this symbiotic connection continues to look for a proper definition that appears increasingly negotiated by different disciplines. Numerous fields of knowledge are involved, from anthropology to semiotics of space, from photography to architecture, up to subjects traditionally far from these reasonings. This is the case of Design of Communication, a young discipline, now confident in itself and its objectives, aimed at finding and investigating original forms of visualization and representation, between sedimented knowledge and new technologies. In particular, Design of Communication for the Territory offers an alternative perspective to the debate, encouraging the reactivation and reconstruction of the memory of places. Recognizing <em>mnemotopes</em> as a cultural object of vertical interpretation of the memory-place relationship, design can become a real mediator of the territorial fixation of memories, making them increasingly accessible and perceptible, contributing to build a topography of memory. According to a mnemotopic vision, Communication Design can support the passage from a memory in which the observer participates only as an individual to a collective form of memory. A mnemotopic form of Communication Design can, through geolocation and content map-based systems, make chronology a topography rooted in the territory and practicable; it can be useful to understand how the perception of the memory of places changes over time, considering how to insert them in the contemporary world. <em>Mnemotopes</em> can be materialized in different format of translation, editing and narration and then involved in complex systems of communication. The memory of places, therefore, if stabilized by the tools offered by Communication Design, can make visible ruins and territorial stratifications, illuminating them with new communicative interests that can be shared and participated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=memory%20of%20places" title="memory of places">memory of places</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20communication" title=" design of communication"> design of communication</a>, <a href="https://publications.waset.org/abstracts/search?q=territory" title=" territory"> territory</a>, <a href="https://publications.waset.org/abstracts/search?q=mnemotope" title=" mnemotope"> mnemotope</a>, <a href="https://publications.waset.org/abstracts/search?q=topography%20of%20memory" title=" topography of memory"> topography of memory</a> </p> <a href="https://publications.waset.org/abstracts/132198/mnemotopic-perspectives-communication-design-as-stabilizer-for-the-memory-of-places" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Phylogenetic Differential Separation of Environmental Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amber%20C.%20W.%20Vandepoele">Amber C. W. Vandepoele</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20A.%20Marciano"> Michael A. Marciano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20isolation" title="DNA isolation">DNA isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=geolocation" title=" geolocation"> geolocation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-human" title=" non-human"> non-human</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20separation" title=" phylogenetic separation"> phylogenetic separation</a> </p> <a href="https://publications.waset.org/abstracts/122792/phylogenetic-differential-separation-of-environmental-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Save Lives: The Application of Geolocation-Awareness Service in Iranian Pre-hospital EMS Information Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Abedian">Somayeh Abedian</a>, <a href="https://publications.waset.org/abstracts/search?q=Pirhossein%20Kolivand"> Pirhossein Kolivand</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Lornejad"> Hamid Reza Lornejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Karampour"> Amin Karampour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Keshavarz%20Safari"> Ebrahim Keshavarz Safari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For emergency and relief service providers such as pre-hospital emergencies, quick arrival at the scene of an accident or any EMS mission is one of the most important requirements of effective service delivery. Response time (the interval between the time of the call and the time of arrival on scene) is a critical factor in determining the quality of pre-hospital Emergency Medical Services (EMS). This is especially important for heart attack, stroke, or accident patients. Location-based e-services can be broadly defined as any service that provides information pertinent to the current location of an active mobile handset or precise address of landline phone call at a specific time window, regardless of the underlying delivery technology used to convey the information. According to research, one of the effective methods of meeting this goal is determining the location of the caller via the cooperation of landline and mobile phone operators in the country. The follow-up of the Communications Regulatory Authority (CRA) organization has resulted in the receipt of two separate secured electronic web services. Thus, to ensure human privacy, a secure technical architecture was required for launching the services in the pre-hospital EMS information management system. In addition, to quicken medics’ arrival at the patient's bedside, rescue vehicles should make use of an intelligent transportation system to estimate road traffic using a GPS-based mobile navigation system independent of the Internet. This paper seeks to illustrate the architecture of the practical national model used by the Iranian EMS organization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20time" title="response time">response time</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20location%20inquiry%20service%20%28GLIS%29" title=" geographic location inquiry service (GLIS)"> geographic location inquiry service (GLIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=location-based%20service%20%28LBS%29" title=" location-based service (LBS)"> location-based service (LBS)</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20medical%20services%20information%20system%20%28EMSIS%29" title=" emergency medical services information system (EMSIS)"> emergency medical services information system (EMSIS)</a> </p> <a href="https://publications.waset.org/abstracts/141683/save-lives-the-application-of-geolocation-awareness-service-in-iranian-pre-hospital-ems-information-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacques%20Cuenca">Jacques Cuenca</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Colangeli"> Claudio Colangeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Mroz"> Agnieszka Mroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl%20Janssens"> Karl Janssens</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Riexinger"> Gunther Riexinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20D%27Antuono"> Antonio D&#039;Antuono</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Pandarese"> Giuseppe Pandarese</a>, <a href="https://publications.waset.org/abstracts/search?q=Milena%20Martarelli"> Milena Martarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gian%20Marco%20Revel"> Gian Marco Revel</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Barcena%20Martin"> Carlos Barcena Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20inspection" title="acoustic inspection">acoustic inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20building%20components" title=" prefabricated building components"> prefabricated building components</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20source%20localization" title=" sound source localization"> sound source localization</a> </p> <a href="https://publications.waset.org/abstracts/80668/sound-source-localisation-and-augmented-reality-for-on-site-inspection-of-prefabricated-building-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Dual-use UAVs in Armed Conflicts: Opportunities and Risks for Cyber and Electronic Warfare</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piret%20Pernik">Piret Pernik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on strategic, operational, and technical analysis of the ongoing armed conflict in Ukraine, this paper will examine the opportunities and risks of using small commercial drones (dual-use unmanned aerial vehicles, UAV) for military purposes. The paper discusses the opportunities and risks in the information domain, encompassing both cyber and electromagnetic interference and attacks. The paper will draw conclusions on a possible strategic impact to the battlefield outcomes in the modern armed conflicts by the widespread use of dual-use UAVs. This article will contribute to filling the gap in the literature by examining based on empirical data cyberattacks and electromagnetic interference. Today, more than one hundred states and non-state actors possess UAVs ranging from low cost commodity models, widely are dual-use, available and affordable to anyone, to high-cost combat UAVs (UCAV) with lethal kinetic strike capabilities, which can be enhanced with Artificial Intelligence (AI) and Machine Learning (ML). Dual-use UAVs have been used by various actors for intelligence, reconnaissance, surveillance, situational awareness, geolocation, and kinetic targeting. Thus they function as force multipliers enabling kinetic and electronic warfare attacks and provide comparative and asymmetric operational and tactical advances. Some go as far as argue that automated (or semi-automated) systems can change the character of warfare, while others observe that the use of small drones has not changed the balance of power or battlefield outcomes. UAVs give considerable opportunities for commanders, for example, because they can be operated without GPS navigation, makes them less vulnerable and dependent on satellite communications. They can and have been used to conduct cyberattacks, electromagnetic interference, and kinetic attacks. However, they are highly vulnerable to those attacks themselves. So far, strategic studies, literature, and expert commentary have overlooked cybersecurity and electronic interference dimension of the use of dual use UAVs. The studies that link technical analysis of opportunities and risks with strategic battlefield outcomes is missing. It is expected that dual use commercial UAV proliferation in armed and hybrid conflicts will continue and accelerate in the future. Therefore, it is important to understand specific opportunities and risks related to the crowdsourced use of dual-use UAVs, which can have kinetic effects. Technical countermeasures to protect UAVs differ depending on a type of UAV (small, midsize, large, stealth combat), and this paper will offer a unique analysis of small UAVs both from the view of opportunities and risks for commanders and other actors in armed conflict. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual-use%20technology" title="dual-use technology">dual-use technology</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20attacks" title=" cyber attacks"> cyber attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20warfare" title=" electromagnetic warfare"> electromagnetic warfare</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20studies%20of%20cyberattacks%20in%20armed%20conflicts" title=" case studies of cyberattacks in armed conflicts"> case studies of cyberattacks in armed conflicts</a> </p> <a href="https://publications.waset.org/abstracts/159847/dual-use-uavs-in-armed-conflicts-opportunities-and-risks-for-cyber-and-electronic-warfare" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Learning the History of a Tuscan Village: A Serious Game Using Geolocation Augmented Reality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irene%20Capecchi">Irene Capecchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tommaso%20Borghini"> Tommaso Borghini</a>, <a href="https://publications.waset.org/abstracts/search?q=Iacopo%20Bernetti"> Iacopo Bernetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important tool for the enhancement of cultural sites is serious games (SG), i.e., games designed for educational purposes; SG is applied in cultural sites through trivia, puzzles, and mini-games for participation in interactive exhibitions, mobile applications, and simulations of past events. The combination of Augmented Reality (AR) and digital cultural content has also produced examples of cultural heritage recovery and revitalization around the world. Through AR, the user perceives the information of the visited place in a more real and interactive way. Another interesting technological development for the revitalization of cultural sites is the combination of AR and Global Positioning System (GPS), which integrated have the ability to enhance the user's perception of reality by providing historical and architectural information linked to specific locations organized on a route. To the author’s best knowledge, there are currently no applications that combine GPS AR and SG for cultural heritage revitalization. The present research focused on the development of an SG based on GPS and AR. The study area is the village of Caldana in Tuscany, Italy. Caldana is a fortified Renaissance village; the most important architectures are the walls, the church of San Biagio, the rectory, and the marquis' palace. The historical information is derived from extensive research by the Department of Architecture at the University of Florence. The storyboard of the SG is based on the history of the three characters who built the village: marquis Marcello Agostini, who was commissioned by Cosimo I de Medici, Grand Duke of Tuscany, to build the village, his son Ippolito and his architect Lorenzo Pomarelli. The three historical characters were modeled in 3D using the freeware MakeHuman and imported into Blender and Mixamo to associate a skeleton and blend shapes to have gestural animations and reproduce lip movement during speech. The Unity Rhubarb Lip Syncer plugin was used for the lip sync animation. The historical costumes were created by Marvelous Designer. The application was developed using the Unity 3D graphics and game engine. The AR+GPS Location plugin was used to position the 3D historical characters based on GPS coordinates. The ARFoundation library was used to display AR content. The SG is available in two versions: for children and adults. the children's version consists of finding a digital treasure consisting of valuable items and historical rarities. Players must find 9 village locations where 3D AR models of historical figures explaining the history of the village provide clues. To stimulate players, there are 3 levels of rewards for every 3 clues discovered. The rewards consist of AR masks for archaeologist, professor, and explorer. At the adult level, the SG consists of finding the 16 historical landmarks in the village, and learning historical and architectural information interactively and engagingly. The application is being tested on a sample of adults and children. Test subjects will be surveyed on a Likert scale to find out their perceptions of using the app and the learning experience between the guided tour and interaction with the app. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title=" cultural heritage"> cultural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=serious%20game" title=" serious game"> serious game</a> </p> <a href="https://publications.waset.org/abstracts/155664/learning-the-history-of-a-tuscan-village-a-serious-game-using-geolocation-augmented-reality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Guard@Lis: Birdwatching Augmented Reality Mobile Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20A.%20C.%20Venancio">Jose A. C. Venancio</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandrino%20J.%20M.%20Goncalves"> Alexandrino J. M. Goncalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Anabela%20Marto"> Anabela Marto</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuno%20C.%20S.%20Rodrigues"> Nuno C. S. Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20M.%20T.%20Ascenso"> Rita M. T. Ascenso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, it is common to find people who are concerned about getting away from the everyday life routine, looking forward to outcome well-being and pleasant emotions. Trying to disconnect themselves from the usual places of work and residence, they pursue different places, such as tourist destinations, aiming to have unexpected experiences. In order to make this exploration process easier, cities and tourism agencies seek new opportunities and solutions, creating routes with diverse cultural landmarks, including natural landscapes and historic buildings. These offers frequently aspire to the preservation of the local patrimony. In nature and wildlife, birdwatching is an activity that has been increasing, both in cities and in the countryside. This activity seeks to find, observe and identify the diversity of birds that live permanently or temporarily in these places, and it is usually supported by birdwatching guides. Leiria (Portugal) is a well-known city, presenting several historical and natural landmarks, like the Lis river and the castle where King D. Dinis lived in the 13th century. Along the Lis River, a conservation process was carried out and a pedestrian route was created (Polis project). This is considered an excellent spot for birdwatching, especially for the gray heron (Ardea cinerea) and for the kingfisher (Alcedo atthis). There is also a route through the city, from the riverside to the castle, which encloses a characterized variety of species, such as the barn swallow (Hirundo rustica), known for passing through different seasons of the year. Birdwatching is sometimes a difficult task since it is not always possible to see all bird species that inhabit a given place. For this reason, a need to create a technological solution was found to ease this activity. This project aims to encourage people to learn about the various species of birds that live along the Lis River and to promote the preservation of nature in a conscious way. This work is being conducted in collaboration with Leiria Municipal Council and with the Environmental Interpretation Centre. It intends to show the majesty of the Lis River, a place visited daily by several people, such as children and families, who use it for didactic and recreational activities. We are developing a mobile multi-platform application (Guard@Lis) that allows bird species to be observed along a given route, using representative digital 3D models through the integration of augmented reality technologies. Guard@Lis displays a route with points of interest for birdwatching and a list of species for each point of interest, along with scientific information, images and sounds for every species. For some birds, to ensure their observation, the user can watch them in loco, in their real and natural environment, with their mobile device by means of augmented reality, giving the sensation of presence of these birds, even if they cannot be seen in that place at that moment. The augmented reality feature is being developed with Vuforia SDK, using a hybrid approach to recognition and tracking processes, combining marks and geolocation techniques. This application proposes routes and notifies users with alerts for the possibility of viewing models of augmented reality birds. The final Guard@Lis prototype will be tested by volunteers in-situ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=birdwatching%20route" title=" birdwatching route"> birdwatching route</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20application" title=" mobile application"> mobile application</a>, <a href="https://publications.waset.org/abstracts/search?q=nature%20tourism" title=" nature tourism"> nature tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=watch%20birds%20using%20augmented%20reality" title=" watch birds using augmented reality"> watch birds using augmented reality</a> </p> <a href="https://publications.waset.org/abstracts/102264/guard-at-lis-birdwatching-augmented-reality-mobile-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10