CINXE.COM

Riemann zeta function - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Riemann zeta function - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"5623df1a-f1f8-4ab3-a9e4-64e7604b06ee","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Riemann_zeta_function","wgTitle":"Riemann zeta function","wgCurRevisionId":1267527866,"wgRevisionId":1267527866,"wgArticleId":25809,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 German-language sources (de)","CS1 French-language sources (fr)","CS1: long volume value","Articles with short description","Short description is different from Wikidata","Commons category link from Wikidata","Webarchive template wayback links","Use dmy dates from April 2017","Articles containing video clips","Zeta and L-functions","Analytic number theory","Meromorphic functions","Bernhard Riemann"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en", "wgPageContentModel":"wikitext","wgRelevantPageName":"Riemann_zeta_function","wgRelevantArticleId":25809,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q187235","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness", "fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.tmh.player.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.tmh.player","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js", "ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.tmh.player.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.8"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Cplot_zeta.svg/1200px-Cplot_zeta.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1106"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Cplot_zeta.svg/800px-Cplot_zeta.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="738"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Cplot_zeta.svg/640px-Cplot_zeta.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="590"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Riemann zeta function - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Riemann_zeta_function"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Riemann_zeta_function&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Riemann_zeta_function"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Riemann_zeta_function rootpage-Riemann_zeta_function skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Riemann+zeta+function" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Riemann+zeta+function" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Riemann+zeta+function" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Riemann+zeta+function" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Euler&#039;s_product_formula" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Euler&#039;s_product_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Euler's product formula</span> </div> </a> <ul id="toc-Euler&#039;s_product_formula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Riemann&#039;s_functional_equation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Riemann&#039;s_functional_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Riemann's functional equation</span> </div> </a> <button aria-controls="toc-Riemann&#039;s_functional_equation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Riemann's functional equation subsection</span> </button> <ul id="toc-Riemann&#039;s_functional_equation-sublist" class="vector-toc-list"> <li id="toc-Equivalencies" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Equivalencies"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Equivalencies</span> </div> </a> <ul id="toc-Equivalencies-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Zeros,_the_critical_line,_and_the_Riemann_hypothesis" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Zeros,_the_critical_line,_and_the_Riemann_hypothesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Zeros, the critical line, and the Riemann hypothesis</span> </div> </a> <button aria-controls="toc-Zeros,_the_critical_line,_and_the_Riemann_hypothesis-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Zeros, the critical line, and the Riemann hypothesis subsection</span> </button> <ul id="toc-Zeros,_the_critical_line,_and_the_Riemann_hypothesis-sublist" class="vector-toc-list"> <li id="toc-Number_of_zeros_in_the_critical_strip" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Number_of_zeros_in_the_critical_strip"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Number of zeros in the critical strip</span> </div> </a> <ul id="toc-Number_of_zeros_in_the_critical_strip-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Hardy–Littlewood_conjectures" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Hardy–Littlewood_conjectures"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>The Hardy–Littlewood conjectures</span> </div> </a> <ul id="toc-The_Hardy–Littlewood_conjectures-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zero-free_region" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Zero-free_region"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Zero-free region</span> </div> </a> <ul id="toc-Zero-free_region-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_results" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_results"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Other results</span> </div> </a> <ul id="toc-Other_results-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Specific_values" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Specific_values"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Specific values</span> </div> </a> <ul id="toc-Specific_values-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Various_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Various_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Various properties</span> </div> </a> <button aria-controls="toc-Various_properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Various properties subsection</span> </button> <ul id="toc-Various_properties-sublist" class="vector-toc-list"> <li id="toc-Reciprocal" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reciprocal"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Reciprocal</span> </div> </a> <ul id="toc-Reciprocal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Universality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Universality"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Universality</span> </div> </a> <ul id="toc-Universality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Estimates_of_the_maximum_of_the_modulus_of_the_zeta_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Estimates_of_the_maximum_of_the_modulus_of_the_zeta_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Estimates of the maximum of the modulus of the zeta function</span> </div> </a> <ul id="toc-Estimates_of_the_maximum_of_the_modulus_of_the_zeta_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_argument_of_the_Riemann_zeta_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_argument_of_the_Riemann_zeta_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>The argument of the Riemann zeta function</span> </div> </a> <ul id="toc-The_argument_of_the_Riemann_zeta_function-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Representations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Representations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Representations</span> </div> </a> <button aria-controls="toc-Representations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Representations subsection</span> </button> <ul id="toc-Representations-sublist" class="vector-toc-list"> <li id="toc-Dirichlet_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dirichlet_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Dirichlet series</span> </div> </a> <ul id="toc-Dirichlet_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mellin-type_integrals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mellin-type_integrals"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Mellin-type integrals</span> </div> </a> <ul id="toc-Mellin-type_integrals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Theta_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Theta_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Theta functions</span> </div> </a> <ul id="toc-Theta_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Laurent_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laurent_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Laurent series</span> </div> </a> <ul id="toc-Laurent_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integral" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integral"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Integral</span> </div> </a> <ul id="toc-Integral-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rising_factorial" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rising_factorial"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.6</span> <span>Rising factorial</span> </div> </a> <ul id="toc-Rising_factorial-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hadamard_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hadamard_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7</span> <span>Hadamard product</span> </div> </a> <ul id="toc-Hadamard_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Globally_convergent_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Globally_convergent_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.8</span> <span>Globally convergent series</span> </div> </a> <ul id="toc-Globally_convergent_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rapidly_convergent_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rapidly_convergent_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.9</span> <span>Rapidly convergent series</span> </div> </a> <ul id="toc-Rapidly_convergent_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Series_representation_at_positive_integers_via_the_primorial" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Series_representation_at_positive_integers_via_the_primorial"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.10</span> <span>Series representation at positive integers via the primorial</span> </div> </a> <ul id="toc-Series_representation_at_positive_integers_via_the_primorial-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Series_representation_by_the_incomplete_poly-Bernoulli_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Series_representation_by_the_incomplete_poly-Bernoulli_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.11</span> <span>Series representation by the incomplete poly-Bernoulli numbers</span> </div> </a> <ul id="toc-Series_representation_by_the_incomplete_poly-Bernoulli_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Mellin_transform_of_the_Engel_map" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Mellin_transform_of_the_Engel_map"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.12</span> <span>The Mellin transform of the Engel map</span> </div> </a> <ul id="toc-The_Mellin_transform_of_the_Engel_map-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thue-Morse_sequence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thue-Morse_sequence"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.13</span> <span>Thue-Morse sequence</span> </div> </a> <ul id="toc-Thue-Morse_sequence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_nth_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_nth_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.14</span> <span>In nth dimensions</span> </div> </a> <ul id="toc-In_nth_dimensions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Numerical_algorithms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Numerical_algorithms"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Numerical algorithms</span> </div> </a> <ul id="toc-Numerical_algorithms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Musical_tuning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Musical_tuning"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Musical tuning</span> </div> </a> <ul id="toc-Musical_tuning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Infinite_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Infinite_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Infinite series</span> </div> </a> <ul id="toc-Infinite_series-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Riemann zeta function</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 54 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-54" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">54 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9_%D8%B2%D9%8A%D8%AA%D8%A7_%D9%84%D8%B1%D9%8A%D9%85%D8%A7%D9%86" title="دالة زيتا لريمان – Arabic" lang="ar" hreflang="ar" data-title="دالة زيتا لريمان" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Rieman_zeta_funksiyas%C4%B1" title="Rieman zeta funksiyası – Azerbaijani" lang="az" hreflang="az" data-title="Rieman zeta funksiyası" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9C%E0%A7%87%E0%A6%9F%E0%A6%BE_%E0%A6%AB%E0%A6%BE%E0%A6%82%E0%A6%B6%E0%A6%A8" title="জেটা ফাংশন – Bangla" lang="bn" hreflang="bn" data-title="জেটা ফাংশন" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%94%D0%B7%D1%8D%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%8F_%D0%A0%D1%8B%D0%BC%D0%B0%D0%BD%D0%B0" title="Дзэта-функцыя Рымана – Belarusian" lang="be" hreflang="be" data-title="Дзэта-функцыя Рымана" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%94%D0%B7%D0%B5%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%A0%D0%B8%D0%BC%D0%B0%D0%BD" title="Дзета-функция на Риман – Bulgarian" lang="bg" hreflang="bg" data-title="Дзета-функция на Риман" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Riemannova_zeta-funkcija" title="Riemannova zeta-funkcija – Bosnian" lang="bs" hreflang="bs" data-title="Riemannova zeta-funkcija" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Funci%C3%B3_zeta_de_Riemann" title="Funció zeta de Riemann – Catalan" lang="ca" hreflang="ca" data-title="Funció zeta de Riemann" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Riemannova_funkce_zeta" title="Riemannova funkce zeta – Czech" lang="cs" hreflang="cs" data-title="Riemannova funkce zeta" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Riemanns_zetafunktion" title="Riemanns zetafunktion – Danish" lang="da" hreflang="da" data-title="Riemanns zetafunktion" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://de.wikipedia.org/wiki/Riemannsche_Zeta-Funktion" title="Riemannsche Zeta-Funktion – German" lang="de" hreflang="de" data-title="Riemannsche Zeta-Funktion" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Riemanni_dzeetafunktsioon" title="Riemanni dzeetafunktsioon – Estonian" lang="et" hreflang="et" data-title="Riemanni dzeetafunktsioon" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%85%CE%BD%CE%AC%CF%81%CF%84%CE%B7%CF%83%CE%B7_%CE%B6%CE%AE%CF%84%CE%B1_%CE%A1%CE%AF%CE%BC%CE%B1%CE%BD" title="Συνάρτηση ζήτα Ρίμαν – Greek" lang="el" hreflang="el" data-title="Συνάρτηση ζήτα Ρίμαν" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Funci%C3%B3n_zeta_de_Riemann" title="Función zeta de Riemann – Spanish" lang="es" hreflang="es" data-title="Función zeta de Riemann" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Rimana_%CE%B6_funkcio" title="Rimana ζ funkcio – Esperanto" lang="eo" hreflang="eo" data-title="Rimana ζ funkcio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%A8%D8%B9_%D8%B2%D8%AA%D8%A7%DB%8C_%D8%B1%DB%8C%D9%85%D8%A7%D9%86" title="تابع زتای ریمان – Persian" lang="fa" hreflang="fa" data-title="تابع زتای ریمان" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Fonction_z%C3%AAta_de_Riemann" title="Fonction zêta de Riemann – French" lang="fr" hreflang="fr" data-title="Fonction zêta de Riemann" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Funci%C3%B3n_zeta_de_Riemann" title="Función zeta de Riemann – Galician" lang="gl" hreflang="gl" data-title="Función zeta de Riemann" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A6%AC%EB%A7%8C_%EC%A0%9C%ED%83%80_%ED%95%A8%EC%88%98" title="리만 제타 함수 – Korean" lang="ko" hreflang="ko" data-title="리만 제타 함수" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8C%D5%AB%D5%B4%D5%A1%D5%B6%D5%AB_%D5%A6%D5%A5%D5%BF%D5%A1_%D6%86%D5%B8%D6%82%D5%B6%D5%AF%D6%81%D5%AB%D5%A1" title="Ռիմանի զետա ֆունկցիա – Armenian" lang="hy" hreflang="hy" data-title="Ռիմանի զետա ֆունկցիա" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B0%E0%A5%80%E0%A4%AE%E0%A4%BE%E0%A4%A8_%E0%A4%9C%E0%A5%80%E0%A4%9F%E0%A4%BE_%E0%A4%AB%E0%A4%B2%E0%A4%A8" title="रीमान जीटा फलन – Hindi" lang="hi" hreflang="hi" data-title="रीमान जीटा फलन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Riemannova_zeta-funkcija" title="Riemannova zeta-funkcija – Croatian" lang="hr" hreflang="hr" data-title="Riemannova zeta-funkcija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Fungsi_zeta_Riemann" title="Fungsi zeta Riemann – Indonesian" lang="id" hreflang="id" data-title="Fungsi zeta Riemann" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Zetufall_Riemanns" title="Zetufall Riemanns – Icelandic" lang="is" hreflang="is" data-title="Zetufall Riemanns" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Funzione_zeta_di_Riemann" title="Funzione zeta di Riemann – Italian" lang="it" hreflang="it" data-title="Funzione zeta di Riemann" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%99%D7%AA_%D7%96%D7%98%D7%90_%D7%A9%D7%9C_%D7%A8%D7%99%D7%9E%D7%9F" title="פונקציית זטא של רימן – Hebrew" lang="he" hreflang="he" data-title="פונקציית זטא של רימן" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Fonksyon_zeta_Riemann" title="Fonksyon zeta Riemann – Haitian Creole" lang="ht" hreflang="ht" data-title="Fonksyon zeta Riemann" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Functio_zeta_Riemanniana" title="Functio zeta Riemanniana – Latin" lang="la" hreflang="la" data-title="Functio zeta Riemanniana" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Rymano_dzeta_funkcija" title="Rymano dzeta funkcija – Lithuanian" lang="lt" hreflang="lt" data-title="Rymano dzeta funkcija" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Riemann-f%C3%A9le_z%C3%A9ta-f%C3%BCggv%C3%A9ny" title="Riemann-féle zéta-függvény – Hungarian" lang="hu" hreflang="hu" data-title="Riemann-féle zéta-függvény" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Riemann-z%C3%A8ta-functie" title="Riemann-zèta-functie – Dutch" lang="nl" hreflang="nl" data-title="Riemann-zèta-functie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E3%82%BC%E3%83%BC%E3%82%BF%E9%96%A2%E6%95%B0" title="リーマンゼータ関数 – Japanese" lang="ja" hreflang="ja" data-title="リーマンゼータ関数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Riemanns_zetafunksjon" title="Riemanns zetafunksjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Riemanns zetafunksjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Riemann_zeta_funksiyasi" title="Riemann zeta funksiyasi – Uzbek" lang="uz" hreflang="uz" data-title="Riemann zeta funksiyasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Funkcja_dzeta_Riemanna" title="Funkcja dzeta Riemanna – Polish" lang="pl" hreflang="pl" data-title="Funkcja dzeta Riemanna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_zeta_de_Riemann" title="Função zeta de Riemann – Portuguese" lang="pt" hreflang="pt" data-title="Função zeta de Riemann" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Func%C8%9Bia_zeta_Riemann" title="Funcția zeta Riemann – Romanian" lang="ro" hreflang="ro" data-title="Funcția zeta Riemann" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B7%D0%B5%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D0%A0%D0%B8%D0%BC%D0%B0%D0%BD%D0%B0" title="Дзета-функция Римана – Russian" lang="ru" hreflang="ru" data-title="Дзета-функция Римана" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Zeta_di_Riemann" title="Zeta di Riemann – Sicilian" lang="scn" hreflang="scn" data-title="Zeta di Riemann" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Riemann_zeta_function" title="Riemann zeta function – Simple English" lang="en-simple" hreflang="en-simple" data-title="Riemann zeta function" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Riemannova_zeta_funkcia" title="Riemannova zeta funkcia – Slovak" lang="sk" hreflang="sk" data-title="Riemannova zeta funkcia" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Riemannova_funkcija_zeta" title="Riemannova funkcija zeta – Slovenian" lang="sl" hreflang="sl" data-title="Riemannova funkcija zeta" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A0%D0%B8%D0%BC%D0%B0%D0%BD%D0%BE%D0%B2%D0%B0_%D0%B7%D0%B5%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Риманова зета-функција – Serbian" lang="sr" hreflang="sr" data-title="Риманова зета-функција" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Riemannova_zeta-funkcija" title="Riemannova zeta-funkcija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Riemannova zeta-funkcija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Riemannin_zeeta-funktio" title="Riemannin zeeta-funktio – Finnish" lang="fi" hreflang="fi" data-title="Riemannin zeeta-funktio" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Riemanns_zetafunktion" title="Riemanns zetafunktion – Swedish" lang="sv" hreflang="sv" data-title="Riemanns zetafunktion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B0%E0%AF%80%E0%AE%AE%E0%AE%A9%E0%AF%8D_%E0%AE%87%E0%AE%9A%E0%AF%80%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AE%BE_%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AE%BF%E0%AE%AF%E0%AE%AE%E0%AF%8D" title="ரீமன் இசீட்டா சார்பியம் – Tamil" lang="ta" hreflang="ta" data-title="ரீமன் இசீட்டா சார்பியம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A0%D0%B8%D0%BC%D0%B0%D0%BD_%D0%B7%D0%B5%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F%D1%81%D0%B5" title="Риман зета-функциясе – Tatar" lang="tt" hreflang="tt" data-title="Риман зета-функциясе" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9F%E0%B8%B1%E0%B8%87%E0%B8%81%E0%B9%8C%E0%B8%8A%E0%B8%B1%E0%B8%99%E0%B8%8B%E0%B8%B5%E0%B8%95%E0%B8%B2%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B8%A3%E0%B8%B5%E0%B8%A1%E0%B8%B1%E0%B8%99" title="ฟังก์ชันซีตาของรีมัน – Thai" lang="th" hreflang="th" data-title="ฟังก์ชันซีตาของรีมัน" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Riemann_zeta_i%C5%9Flevi" title="Riemann zeta işlevi – Turkish" lang="tr" hreflang="tr" data-title="Riemann zeta işlevi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B7%D0%B5%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F_%D0%A0%D1%96%D0%BC%D0%B0%D0%BD%D0%B0" title="Дзета-функція Рімана – Ukrainian" lang="uk" hreflang="uk" data-title="Дзета-функція Рімана" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B1%DB%8C%D9%85%D8%A7%D9%86_%D8%B2%DB%8C%D9%B9%D8%A7_%D9%81%D9%86%DA%A9%D8%B4%D9%86" title="ریمان زیٹا فنکشن – Urdu" lang="ur" hreflang="ur" data-title="ریمان زیٹا فنکشن" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%A0m_zeta_Riemann" title="Hàm zeta Riemann – Vietnamese" lang="vi" hreflang="vi" data-title="Hàm zeta Riemann" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%CE%96-%E5%87%BD%E6%95%B8" title="Ζ-函數 – Cantonese" lang="yue" hreflang="yue" data-title="Ζ-函數" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%BB%8E%E6%9B%BC%CE%B6%E5%87%BD%E6%95%B8" title="黎曼ζ函數 – Chinese" lang="zh" hreflang="zh" data-title="黎曼ζ函數" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q187235#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Riemann_zeta_function" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Riemann_zeta_function" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Riemann_zeta_function"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Riemann_zeta_function&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Riemann_zeta_function"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Riemann_zeta_function&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Riemann_zeta_function" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Riemann_zeta_function" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Riemann_zeta_function&amp;oldid=1267527866" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Riemann_zeta_function&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Riemann_zeta_function&amp;id=1267527866&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRiemann_zeta_function"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRiemann_zeta_function"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Riemann_zeta_function&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Riemann_zeta_function&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Riemann_zeta_function" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q187235" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Analytic function in mathematics</div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Cplot_zeta.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Cplot_zeta.svg/250px-Cplot_zeta.svg.png" decoding="async" width="250" height="231" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Cplot_zeta.svg/375px-Cplot_zeta.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Cplot_zeta.svg/500px-Cplot_zeta.svg.png 2x" data-file-width="462" data-file-height="426" /></a><figcaption>The Riemann zeta function <span class="texhtml"><i>ζ</i>(<i>z</i>)</span> plotted with <a href="/wiki/Domain_coloring" title="Domain coloring">domain coloring</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Riemann-Zeta-Detail.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Riemann-Zeta-Detail.png/200px-Riemann-Zeta-Detail.png" decoding="async" width="200" height="462" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Riemann-Zeta-Detail.png/300px-Riemann-Zeta-Detail.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Riemann-Zeta-Detail.png/400px-Riemann-Zeta-Detail.png 2x" data-file-width="2080" data-file-height="4808" /></a><figcaption>The pole at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/078535cde78d90bfa1d9fbb2446204593a921d57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.349ex; height:2.176ex;" alt="{\displaystyle z=1}"></span> and two zeros on the critical line.</figcaption></figure> <p>The <b>Riemann zeta function</b> or <b>Euler–Riemann zeta function</b>, denoted by the <a href="/wiki/Greek_alphabet" title="Greek alphabet">Greek letter</a> <span class="texhtml"><i>ζ</i></span> (<a href="/wiki/Zeta" title="Zeta">zeta</a>), is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">mathematical function</a> of a <a href="/wiki/Complex_variable" class="mw-redirect" title="Complex variable">complex variable</a> defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1^{s}}}+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1^{s}}}+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a171e24fc1c6d990c65e7fe82805613da4645645" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:37.418ex; height:6.843ex;" alt="{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1^{s}}}+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+\cdots }"></span> for <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82e22215d90eb4893d05f9b2bff409094a3451f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;1}"></span>,</span> and its <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a> elsewhere.<sup id="cite_ref-:0_2-0" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Riemann zeta function plays a pivotal role in <a href="/wiki/Analytic_number_theory" title="Analytic number theory">analytic number theory</a> and has applications in <a href="/wiki/Physics" title="Physics">physics</a>, <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, and applied <a href="/wiki/Statistics" title="Statistics">statistics</a>. </p><p><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> first introduced and studied the function over the <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">reals</a> in the first half of the eighteenth century. <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a>'s 1859 article "<a href="/wiki/On_the_Number_of_Primes_Less_Than_a_Given_Magnitude" title="On the Number of Primes Less Than a Given Magnitude">On the Number of Primes Less Than a Given Magnitude</a>" extended the Euler definition to a <a href="/wiki/Complex_number" title="Complex number">complex</a> variable, proved its <a href="/wiki/Meromorphic" class="mw-redirect" title="Meromorphic">meromorphic</a> continuation and <a href="/wiki/Functional_equation" title="Functional equation">functional equation</a>, and established a relation between its <a href="/wiki/Root_of_a_function" class="mw-redirect" title="Root of a function">zeros</a> and <a href="/wiki/Prime_number_theorem" title="Prime number theorem">the distribution of prime numbers</a>. This paper also contained the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a>, a <a href="/wiki/Conjecture" title="Conjecture">conjecture</a> about the distribution of complex zeros of the Riemann zeta function that many mathematicians consider the most important unsolved problem in <a href="/wiki/Pure_mathematics" title="Pure mathematics">pure mathematics</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>The values of the Riemann zeta function at even positive integers were computed by Euler. The first of them, <span class="texhtml"><i>ζ</i>(2)</span>, provides a solution to the <a href="/wiki/Basel_problem" title="Basel problem">Basel problem</a>. In 1979 <a href="/wiki/Roger_Ap%C3%A9ry" title="Roger Apéry">Roger Apéry</a> proved the irrationality of <span class="texhtml"><a href="/wiki/Ap%C3%A9ry%27s_constant" title="Apéry&#39;s constant"><i>ζ</i>(3)</a></span>. The values at negative integer points, also found by Euler, are <a href="/wiki/Rational_number" title="Rational number">rational numbers</a> and play an important role in the theory of <a href="/wiki/Modular_form" title="Modular form">modular forms</a>. Many generalizations of the Riemann zeta function, such as <a href="/wiki/Dirichlet_series" title="Dirichlet series">Dirichlet series</a>, <a href="/wiki/Dirichlet_L-function" title="Dirichlet L-function">Dirichlet <span class="texhtml mvar" style="font-style:italic;">L</span>-functions</a> and <a href="/wiki/L-function" title="L-function"><span class="texhtml mvar" style="font-style:italic;">L</span>-functions</a>, are known. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ueber_die_Anzahl_der_Primzahlen_unter_einer_gegebenen_Gr%C3%B6sse.pdf" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Ueber_die_Anzahl_der_Primzahlen_unter_einer_gegebenen_Gr%C3%B6sse.pdf/page1-170px-Ueber_die_Anzahl_der_Primzahlen_unter_einer_gegebenen_Gr%C3%B6sse.pdf.jpg" decoding="async" width="170" height="284" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Ueber_die_Anzahl_der_Primzahlen_unter_einer_gegebenen_Gr%C3%B6sse.pdf/page1-255px-Ueber_die_Anzahl_der_Primzahlen_unter_einer_gegebenen_Gr%C3%B6sse.pdf.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Ueber_die_Anzahl_der_Primzahlen_unter_einer_gegebenen_Gr%C3%B6sse.pdf/page1-340px-Ueber_die_Anzahl_der_Primzahlen_unter_einer_gegebenen_Gr%C3%B6sse.pdf.jpg 2x" data-file-width="779" data-file-height="1300" /></a><figcaption>Bernhard Riemann's article <i>On the number of primes below a given magnitude</i></figcaption></figure> <p>The Riemann zeta function <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> is a function of a complex variable <span class="texhtml"><i>s</i> = <i>σ</i> + <i>it</i></span>, where <span class="texhtml mvar" style="font-style:italic;">σ</span> and <span class="texhtml mvar" style="font-style:italic;">t</span> are real numbers. (The notation <span class="texhtml mvar" style="font-style:italic;">s</span>, <span class="texhtml mvar" style="font-style:italic;">σ</span>, and <span class="texhtml mvar" style="font-style:italic;">t</span> is used traditionally in the study of the zeta function, following Riemann.) When <span class="texhtml">Re(<i>s</i>) = <i>σ</i> &gt; 1</span>, the function can be written as a converging summation or as an integral: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97dc05324d2b62fe317eeb67a7a742091eed120e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.609ex; height:6.843ex;" alt="{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x\,,}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (s)=\int _{0}^{\infty }x^{s-1}\,e^{-x}\,\mathrm {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (s)=\int _{0}^{\infty }x^{s-1}\,e^{-x}\,\mathrm {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34b496dcab4417e3a8fdfb028115bae2fbad90fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.542ex; height:5.843ex;" alt="{\displaystyle \Gamma (s)=\int _{0}^{\infty }x^{s-1}\,e^{-x}\,\mathrm {d} x}"></span></dd></dl> <p>is the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a>. The Riemann zeta function is defined for other complex values via <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a> of the function defined for <span class="texhtml"><i>σ</i> &gt; 1</span>. </p><p><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> considered the above series in 1740 for positive integer values of <span class="texhtml mvar" style="font-style:italic;">s</span>, and later <a href="/wiki/Chebyshev" class="mw-redirect" title="Chebyshev">Chebyshev</a> extended the definition to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c05b7a57c920e79cf69fec018eeb50fa62627788" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.55ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;1.}"></span><sup id="cite_ref-devlin_4-0" class="reference"><a href="#cite_note-devlin-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>The above series is a prototypical <a href="/wiki/Dirichlet_series" title="Dirichlet series">Dirichlet series</a> that <a href="/wiki/Absolute_convergence" title="Absolute convergence">converges absolutely</a> to an <a href="/wiki/Analytic_function" title="Analytic function">analytic function</a> for <span class="texhtml mvar" style="font-style:italic;">s</span> such that <span class="texhtml"><i>σ</i> &gt; 1</span> and <a href="/wiki/Divergent_series" title="Divergent series">diverges</a> for all other values of <span class="texhtml mvar" style="font-style:italic;">s</span>. Riemann showed that the function defined by the series on the half-plane of convergence can be continued analytically to all complex values <span class="texhtml"><i>s</i> ≠ 1</span>. For <span class="texhtml"><i>s</i> = 1</span>, the series is the <a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">harmonic series</a> which diverges to <span class="texhtml">+∞</span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{s\to 1}(s-1)\zeta (s)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>1</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{s\to 1}(s-1)\zeta (s)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f618bd444fbcf93ab77acbbb89b07349332c34d0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.041ex; height:4.009ex;" alt="{\displaystyle \lim _{s\to 1}(s-1)\zeta (s)=1.}"></span> Thus the Riemann zeta function is a <a href="/wiki/Meromorphic_function" title="Meromorphic function">meromorphic function</a> on the whole complex plane, which is <a href="/wiki/Holomorphic_function" title="Holomorphic function">holomorphic</a> everywhere except for a <a href="/wiki/Simple_pole" class="mw-redirect" title="Simple pole">simple pole</a> at <span class="texhtml"><i>s</i> = 1</span> with <a href="/wiki/Residue_(complex_analysis)" title="Residue (complex analysis)">residue</a> <span class="texhtml">1</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Euler's_product_formula"><span id="Euler.27s_product_formula"></span>Euler's product formula</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=2" title="Edit section: Euler&#039;s product formula"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1737, the connection between the zeta function and <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> was discovered by Euler, who <a href="/wiki/Proof_of_the_Euler_product_formula_for_the_Riemann_zeta_function" title="Proof of the Euler product formula for the Riemann zeta function">proved the identity</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;prime</mtext> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81cc405085175957d8728c7ef9c9ce020d6a9ffe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:24.921ex; height:7.176ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}},}"></span></dd></dl> <p>where, by definition, the left hand side is <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> and the <a href="/wiki/Infinite_product" title="Infinite product">infinite product</a> on the right hand side extends over all prime numbers <span class="texhtml mvar" style="font-style:italic;">p</span> (such expressions are called <a href="/wiki/Euler_product" title="Euler product">Euler products</a>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}={\frac {1}{1-2^{-s}}}\cdot {\frac {1}{1-3^{-s}}}\cdot {\frac {1}{1-5^{-s}}}\cdot {\frac {1}{1-7^{-s}}}\cdot {\frac {1}{1-11^{-s}}}\cdots {\frac {1}{1-p^{-s}}}\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;prime</mtext> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mn>11</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}={\frac {1}{1-2^{-s}}}\cdot {\frac {1}{1-3^{-s}}}\cdot {\frac {1}{1-5^{-s}}}\cdot {\frac {1}{1-7^{-s}}}\cdot {\frac {1}{1-11^{-s}}}\cdots {\frac {1}{1-p^{-s}}}\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d5d41859f464be21d261f9209946d1e5f117b2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; margin-left: -0.063ex; width:81.555ex; height:6.676ex;" alt="{\displaystyle \prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}={\frac {1}{1-2^{-s}}}\cdot {\frac {1}{1-3^{-s}}}\cdot {\frac {1}{1-5^{-s}}}\cdot {\frac {1}{1-7^{-s}}}\cdot {\frac {1}{1-11^{-s}}}\cdots {\frac {1}{1-p^{-s}}}\cdots }"></span></dd></dl> <p>Both sides of the Euler product formula converge for <span class="texhtml">Re(<i>s</i>) &gt; 1</span>. The <a href="/wiki/Proof_of_the_Euler_product_formula_for_the_Riemann_zeta_function" title="Proof of the Euler product formula for the Riemann zeta function">proof of Euler's identity</a> uses only the formula for the <a href="/wiki/Geometric_series" title="Geometric series">geometric series</a> and the <a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">fundamental theorem of arithmetic</a>. Since the <a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">harmonic series</a>, obtained when <span class="texhtml"><i>s</i> = 1</span>, diverges, Euler's formula (which becomes <span class="texhtml">Π<sub><i>p</i></sub> <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>p</i></span><span class="sr-only">/</span><span class="den"><i>p</i> − 1</span></span>&#8288;</span></span>) implies that there are <a href="/wiki/Euclid%27s_theorem" title="Euclid&#39;s theorem">infinitely many primes</a>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Since the logarithm of <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>p</i></span><span class="sr-only">/</span><span class="den"><i>p</i> − 1</span></span>&#8288;</span></span> is approximately <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>p</i></span></span>&#8288;</span></span>, the formula can also be used to prove the stronger result that the sum of the reciprocals of the primes is infinite. On the other hand, combining that with the <a href="/wiki/Sieve_of_Eratosthenes" title="Sieve of Eratosthenes">sieve of Eratosthenes</a> shows that the density of the set of primes within the set of positive integers is zero. </p><p>The Euler product formula can be used to calculate the <a href="/wiki/Asymptotic_density" class="mw-redirect" title="Asymptotic density">asymptotic probability</a> that <span class="texhtml mvar" style="font-style:italic;">s</span> randomly selected integers are set-wise <a href="/wiki/Coprime" class="mw-redirect" title="Coprime">coprime</a>. Intuitively, the probability that any single number is divisible by a prime (or any integer) <span class="texhtml mvar" style="font-style:italic;">p</span> is <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>p</i></span></span>&#8288;</span></span>. Hence the probability that <span class="texhtml mvar" style="font-style:italic;">s</span> numbers are all divisible by this prime is <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>p</i><span style="padding-left:0.12em;"><sup><i>s</i></sup></span></span></span>&#8288;</span></span>, and the probability that at least one of them is <i>not</i> is <span class="texhtml">1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>p</i><span style="padding-left:0.12em;"><sup><i>s</i></sup></span></span></span>&#8288;</span></span>. Now, for distinct primes, these divisibility events are mutually independent because the candidate divisors are coprime (a number is divisible by coprime divisors <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">m</span> if and only if it is divisible by&#160;<span class="texhtml mvar" style="font-style:italic;">nm</span>, an event which occurs with probability&#160;<span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>nm</i></span></span>&#8288;</span></span>). Thus the asymptotic probability that <span class="texhtml mvar" style="font-style:italic;">s</span> numbers are coprime is given by a product over all primes, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{p{\text{ prime}}}\left(1-{\frac {1}{p^{s}}}\right)=\left(\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}\right)^{-1}={\frac {1}{\zeta (s)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;prime</mtext> </mrow> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;prime</mtext> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{p{\text{ prime}}}\left(1-{\frac {1}{p^{s}}}\right)=\left(\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}\right)^{-1}={\frac {1}{\zeta (s)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8456bf67df8e20dc977ce04034f6e192504b6078" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; margin-left: -0.063ex; width:48.294ex; height:8.176ex;" alt="{\displaystyle \prod _{p{\text{ prime}}}\left(1-{\frac {1}{p^{s}}}\right)=\left(\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}\right)^{-1}={\frac {1}{\zeta (s)}}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Riemann's_functional_equation"><span id="Riemann.27s_functional_equation"></span>Riemann's functional equation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=3" title="Edit section: Riemann&#039;s functional equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This zeta function satisfies the <a href="/wiki/Functional_equation" title="Functional equation">functional equation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s)\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>s</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s)\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7538ced199a6bdd1465e39c45bd590b7684d4d78" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:42.296ex; height:4.843ex;" alt="{\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s)\ ,}"></span> where <span class="texhtml">Γ(<i>s</i>)</span> is the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a>. This is an equality of meromorphic functions valid on the whole <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a>. The equation relates values of the Riemann zeta function at the points <span class="texhtml mvar" style="font-style:italic;">s</span> and <span class="texhtml">1 − <i>s</i></span>, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> has a simple zero at each even negative integer <span class="texhtml"><i>s</i> = −2<i>n</i></span>, known as the <b><a href="/wiki/Triviality_(mathematics)" title="Triviality (mathematics)">trivial</a> zeros</b> of <span class="texhtml"><i>ζ</i>(<i>s</i>)</span>. When <span class="texhtml mvar" style="font-style:italic;">s</span> is an even positive integer, the product <span class="nowrap"><span class="texhtml">sin(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"> <i>&#960; s</i> </span><span class="sr-only">/</span><span class="den"> 2 </span></span>&#8288;</span>) &#915;(1 − <i>s</i>)</span></span> on the right is non-zero because <span class="texhtml">Γ(1 − <i>s</i>)</span> has a simple <a href="/wiki/Pole_(complex_analysis)" class="mw-redirect" title="Pole (complex analysis)">pole</a>, which cancels the simple zero of the sine factor. </p> <style data-mw-deduplicate="TemplateStyles:r1174254338">.mw-parser-output .math_proof{border:thin solid #aaa;margin:1em 2em;padding:0.5em 1em 0.4em}@media(max-width:500px){.mw-parser-output .math_proof{margin:1em 0;padding:0.5em 0.5em 0.4em}}</style><div class="math_proof" style=""><strong>Proof of Riemann's functional equation</strong> <p>A proof of the functional equation proceeds as follows: We observe that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ s&gt;0\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>s</mi> <mo>&gt;</mo> <mn>0</mn> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ s&gt;0\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2391b13f74d677e2e1a239a9dc946a4b572b9e40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.16ex; height:2.509ex;" alt="{\displaystyle \ s&gt;0\ ,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }x^{{\frac {1}{2}}s-1}e^{-n^{2}\pi x}\ \operatorname {d} x\ =\ {\frac {\ \Gamma \!\left({\frac {s}{2}}\right)\ }{\ n^{s}\ \pi ^{\frac {s}{2}}\ }}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> </mrow> </msup> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mrow> <mrow> <mtext>&#xA0;</mtext> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }x^{{\frac {1}{2}}s-1}e^{-n^{2}\pi x}\ \operatorname {d} x\ =\ {\frac {\ \Gamma \!\left({\frac {s}{2}}\right)\ }{\ n^{s}\ \pi ^{\frac {s}{2}}\ }}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/599b0c625c312c5d6f9e276b60b48c92dc969bb9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.468ex; height:7.343ex;" alt="{\displaystyle \int _{0}^{\infty }x^{{\frac {1}{2}}s-1}e^{-n^{2}\pi x}\ \operatorname {d} x\ =\ {\frac {\ \Gamma \!\left({\frac {s}{2}}\right)\ }{\ n^{s}\ \pi ^{\frac {s}{2}}\ }}~.}"></span> </p><p>As a result, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ s&gt;1\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>s</mi> <mo>&gt;</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ s&gt;1\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/058af215387c41d80c387ac3d850aa13b7306afd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.513ex; height:2.176ex;" alt="{\displaystyle \ s&gt;1\ }"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ }{\ \pi ^{\frac {s}{2}}\ }}\ =\ \sum _{n=1}^{\infty }\ \int _{0}^{\infty }\ x^{{s \over 2}-1}\ e^{-n^{2}\pi x}\ \operatorname {d} x\ =\ \int _{0}^{\infty }x^{{s \over 2}-1}\sum _{n=1}^{\infty }e^{-n^{2}\pi x}\ \operatorname {d} x\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mrow> <mrow> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mtext>&#xA0;</mtext> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mtext>&#xA0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> </mrow> </msup> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> </mrow> </msup> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ }{\ \pi ^{\frac {s}{2}}\ }}\ =\ \sum _{n=1}^{\infty }\ \int _{0}^{\infty }\ x^{{s \over 2}-1}\ e^{-n^{2}\pi x}\ \operatorname {d} x\ =\ \int _{0}^{\infty }x^{{s \over 2}-1}\sum _{n=1}^{\infty }e^{-n^{2}\pi x}\ \operatorname {d} x\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bf4caf293a16f2c0e9f41dc319f3ca1e32bf01f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:73.05ex; height:7.343ex;" alt="{\displaystyle {\frac {\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ }{\ \pi ^{\frac {s}{2}}\ }}\ =\ \sum _{n=1}^{\infty }\ \int _{0}^{\infty }\ x^{{s \over 2}-1}\ e^{-n^{2}\pi x}\ \operatorname {d} x\ =\ \int _{0}^{\infty }x^{{s \over 2}-1}\sum _{n=1}^{\infty }e^{-n^{2}\pi x}\ \operatorname {d} x\ ,}"></span> with the inversion of the limiting processes justified by absolute convergence (hence the stricter requirement on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span>). </p><p>For convenience, let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (x)\ :=\ \sum _{n=1}^{\infty }\ e^{-n^{2}\pi x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>:=</mo> <mtext>&#xA0;</mtext> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (x)\ :=\ \sum _{n=1}^{\infty }\ e^{-n^{2}\pi x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30c9fe2c8867ad04e32baad7423182b6967f2dc9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.563ex; height:6.843ex;" alt="{\displaystyle \psi (x)\ :=\ \sum _{n=1}^{\infty }\ e^{-n^{2}\pi x}}"></span> </p><p>which is a special case of the <a href="/wiki/Theta_function" title="Theta function">theta function</a>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)\ =\ {\frac {\pi ^{s \over 2}}{\ \Gamma ({s \over 2})\ }}\ \int _{0}^{\infty }\ x^{{1 \over 2}{s}-1}\ \psi (x)\ \operatorname {d} x~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </msup> <mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mtext>&#xA0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)\ =\ {\frac {\pi ^{s \over 2}}{\ \Gamma ({s \over 2})\ }}\ \int _{0}^{\infty }\ x^{{1 \over 2}{s}-1}\ \psi (x)\ \operatorname {d} x~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eae9d05989a753a68f37d0efb814ceed313d7d60" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:37.822ex; height:7.509ex;" alt="{\displaystyle \zeta (s)\ =\ {\frac {\pi ^{s \over 2}}{\ \Gamma ({s \over 2})\ }}\ \int _{0}^{\infty }\ x^{{1 \over 2}{s}-1}\ \psi (x)\ \operatorname {d} x~.}"></span> </p><p>By the <a href="/wiki/Poisson_summation_formula" title="Poisson summation formula">Poisson summation formula</a> we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=-\infty }^{\infty }\ e^{-n^{2}\pi \ x}\ =\ {\frac {1}{\ {\sqrt {x\ }}\ }}\ \sum _{n=-\infty }^{\infty }\ e^{-{\frac {\ n^{2}\pi \ }{x}}}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03C0;<!-- π --></mi> <mtext>&#xA0;</mtext> <mi>x</mi> </mrow> </msup> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> <mtext>&#xA0;</mtext> </msqrt> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03C0;<!-- π --></mi> <mtext>&#xA0;</mtext> </mrow> <mi>x</mi> </mfrac> </mrow> </mrow> </msup> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=-\infty }^{\infty }\ e^{-n^{2}\pi \ x}\ =\ {\frac {1}{\ {\sqrt {x\ }}\ }}\ \sum _{n=-\infty }^{\infty }\ e^{-{\frac {\ n^{2}\pi \ }{x}}}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83ca8b40775e90630615fa035d68a5bd8bfb6475" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.44ex; height:6.843ex;" alt="{\displaystyle \sum _{n=-\infty }^{\infty }\ e^{-n^{2}\pi \ x}\ =\ {\frac {1}{\ {\sqrt {x\ }}\ }}\ \sum _{n=-\infty }^{\infty }\ e^{-{\frac {\ n^{2}\pi \ }{x}}}\ ,}"></span> </p><p>so that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ 2\ \psi (x)+1\ =\ {\frac {1}{\ {\sqrt {x\ }}\ }}\left(\ 2\ \psi \!\left({\frac {1}{x}}\right)+1\ \right)~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mn>2</mn> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> <mtext>&#xA0;</mtext> </msqrt> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mn>2</mn> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ 2\ \psi (x)+1\ =\ {\frac {1}{\ {\sqrt {x\ }}\ }}\left(\ 2\ \psi \!\left({\frac {1}{x}}\right)+1\ \right)~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aa97ccc698a283a0a196e2b287b9f29a64cea7a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:40.512ex; height:6.509ex;" alt="{\displaystyle \ 2\ \psi (x)+1\ =\ {\frac {1}{\ {\sqrt {x\ }}\ }}\left(\ 2\ \psi \!\left({\frac {1}{x}}\right)+1\ \right)~.}"></span> </p><p>Hence <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{-{\frac {s}{2}}}\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ =\ \int _{0}^{1}\ x^{{\frac {s}{2}}-1}\ \psi (x)\ \operatorname {d} x+\int _{1}^{\infty }x^{{\frac {s}{2}}-1}\psi (x)\ \operatorname {d} x~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mtext>&#xA0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{-{\frac {s}{2}}}\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ =\ \int _{0}^{1}\ x^{{\frac {s}{2}}-1}\ \psi (x)\ \operatorname {d} x+\int _{1}^{\infty }x^{{\frac {s}{2}}-1}\psi (x)\ \operatorname {d} x~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa1eeb004fea641971d3cb2a5de7949c046546e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:62.217ex; height:6.176ex;" alt="{\displaystyle \pi ^{-{\frac {s}{2}}}\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ =\ \int _{0}^{1}\ x^{{\frac {s}{2}}-1}\ \psi (x)\ \operatorname {d} x+\int _{1}^{\infty }x^{{\frac {s}{2}}-1}\psi (x)\ \operatorname {d} x~.}"></span> </p><p>This is equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{1}x^{{\frac {s}{2}}-1}\left({\frac {1}{\ {\sqrt {x\ }}\ }}\ \psi \!\left({\frac {1}{x}}\right)+{\frac {1}{\ 2{\sqrt {x\ }}\ }}-{\frac {1}{2}}\ \right)\ \operatorname {d} x+\int _{1}^{\infty }x^{{s \over 2}-1}\psi (x)\ \operatorname {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> <mtext>&#xA0;</mtext> </msqrt> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> <mtext>&#xA0;</mtext> </msqrt> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{1}x^{{\frac {s}{2}}-1}\left({\frac {1}{\ {\sqrt {x\ }}\ }}\ \psi \!\left({\frac {1}{x}}\right)+{\frac {1}{\ 2{\sqrt {x\ }}\ }}-{\frac {1}{2}}\ \right)\ \operatorname {d} x+\int _{1}^{\infty }x^{{s \over 2}-1}\psi (x)\ \operatorname {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fc95f25a7b473f8f66dca6c9f901c59b24085d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:67.397ex; height:6.676ex;" alt="{\displaystyle \int _{0}^{1}x^{{\frac {s}{2}}-1}\left({\frac {1}{\ {\sqrt {x\ }}\ }}\ \psi \!\left({\frac {1}{x}}\right)+{\frac {1}{\ 2{\sqrt {x\ }}\ }}-{\frac {1}{2}}\ \right)\ \operatorname {d} x+\int _{1}^{\infty }x^{{s \over 2}-1}\psi (x)\ \operatorname {d} x}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\ s-1\ }}-{\frac {1}{\ s\ }}+\int _{0}^{1}\ x^{{\frac {s}{2}}-{\frac {3}{2}}}\ \psi \!\left({\frac {1}{\ x\ }}\right)\ \operatorname {d} x+\int _{1}^{\infty }\ x^{{\frac {s}{2}}-1}\ \psi (x)\ \operatorname {d} x~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mi>s</mi> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>+</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mtext>&#xA0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mtext>&#xA0;</mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\ s-1\ }}-{\frac {1}{\ s\ }}+\int _{0}^{1}\ x^{{\frac {s}{2}}-{\frac {3}{2}}}\ \psi \!\left({\frac {1}{\ x\ }}\right)\ \operatorname {d} x+\int _{1}^{\infty }\ x^{{\frac {s}{2}}-1}\ \psi (x)\ \operatorname {d} x~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d353b74603e90a330efa99d8ee5b9331873c3b70" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:63.15ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{\ s-1\ }}-{\frac {1}{\ s\ }}+\int _{0}^{1}\ x^{{\frac {s}{2}}-{\frac {3}{2}}}\ \psi \!\left({\frac {1}{\ x\ }}\right)\ \operatorname {d} x+\int _{1}^{\infty }\ x^{{\frac {s}{2}}-1}\ \psi (x)\ \operatorname {d} x~.}"></span> </p><p>So <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{-{\frac {s}{2}}}\ \Gamma \!\left({\frac {\ s\ }{2}}\right)\ \zeta (s)\ =\ {\frac {1}{\ s(s-1)\ }}+\int _{1}^{\infty }\ \left(x^{-{\frac {s}{2}}-{\frac {1}{2}}}+x^{{\frac {s}{2}}-1}\right)\ \psi (x)\ \operatorname {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>s</mi> <mtext>&#xA0;</mtext> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mi>s</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>+</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mtext>&#xA0;</mtext> <mrow> <mo>(</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{-{\frac {s}{2}}}\ \Gamma \!\left({\frac {\ s\ }{2}}\right)\ \zeta (s)\ =\ {\frac {1}{\ s(s-1)\ }}+\int _{1}^{\infty }\ \left(x^{-{\frac {s}{2}}-{\frac {1}{2}}}+x^{{\frac {s}{2}}-1}\right)\ \psi (x)\ \operatorname {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e72bf9d902f6eaa17de289d55056dc6f1c40741e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:68.143ex; height:6.343ex;" alt="{\displaystyle \pi ^{-{\frac {s}{2}}}\ \Gamma \!\left({\frac {\ s\ }{2}}\right)\ \zeta (s)\ =\ {\frac {1}{\ s(s-1)\ }}+\int _{1}^{\infty }\ \left(x^{-{\frac {s}{2}}-{\frac {1}{2}}}+x^{{\frac {s}{2}}-1}\right)\ \psi (x)\ \operatorname {d} x}"></span> </p><p>which is convergent for all <span class="texhtml mvar" style="font-style:italic;">s</span>, so holds by analytic continuation. Furthermore, note by inspection that the RHS remains the same if <span class="texhtml mvar" style="font-style:italic;">s</span> is replaced by <span class="nowrap"><span class="texhtml"> 1 − <i>s</i></span> .</span> Hence </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\ \Gamma \!\left(\ {\frac {s}{2}}\ \right)\ \zeta \!\left(\ s\ \right)\ }{\ \pi ^{{\frac {s}{2}}\ }\ }}\ =\ {\frac {\ \Gamma \!\left(\ {\frac {1}{2}}-{\frac {s}{2}}\ \right)\ \zeta \!\left(\ 1-s\ \right)\ }{\ \pi ^{{\frac {1}{2}}-{\frac {s}{2}}}\ }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03B6;<!-- ζ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mi>s</mi> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mrow> <mrow> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03B6;<!-- ζ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mrow> <mrow> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\ \Gamma \!\left(\ {\frac {s}{2}}\ \right)\ \zeta \!\left(\ s\ \right)\ }{\ \pi ^{{\frac {s}{2}}\ }\ }}\ =\ {\frac {\ \Gamma \!\left(\ {\frac {1}{2}}-{\frac {s}{2}}\ \right)\ \zeta \!\left(\ 1-s\ \right)\ }{\ \pi ^{{\frac {1}{2}}-{\frac {s}{2}}}\ }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/907d8a0f36b4cf1022a4f933004811c00c8a8320" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:42.582ex; height:7.843ex;" alt="{\displaystyle {\frac {\ \Gamma \!\left(\ {\frac {s}{2}}\ \right)\ \zeta \!\left(\ s\ \right)\ }{\ \pi ^{{\frac {s}{2}}\ }\ }}\ =\ {\frac {\ \Gamma \!\left(\ {\frac {1}{2}}-{\frac {s}{2}}\ \right)\ \zeta \!\left(\ 1-s\ \right)\ }{\ \pi ^{{\frac {1}{2}}-{\frac {s}{2}}}\ }}}"></span> </p><p>which is the functional equation attributed to <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> The functional equation above can now be obtained using the <a href="/wiki/Multiplication_theorem#Gamma_function–Legendre_formula" title="Multiplication theorem">duplication formula</a> for the gamma function. </p> </div> <p>The functional equation was established by Riemann in his 1859 paper "<a href="/wiki/On_the_Number_of_Primes_Less_Than_a_Given_Magnitude" title="On the Number of Primes Less Than a Given Magnitude">On the Number of Primes Less Than a Given Magnitude</a>" and used to construct the analytic continuation in the first place. </p> <div class="mw-heading mw-heading3"><h3 id="Equivalencies">Equivalencies</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=4" title="Edit section: Equivalencies"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An equivalent relationship had been conjectured by Euler over a hundred years earlier, in 1749, for the <a href="/wiki/Dirichlet_eta_function" title="Dirichlet eta function">Dirichlet eta function</a> (the alternating zeta function): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta (s)\ =\ \sum _{n=1}^{\infty }{\frac {\;(-1)^{n+1}}{\ n^{s}}}=\left(1-{2^{1-s}}\right)\ \zeta (s)~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mtext>&#xA0;</mtext> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta (s)\ =\ \sum _{n=1}^{\infty }{\frac {\;(-1)^{n+1}}{\ n^{s}}}=\left(1-{2^{1-s}}\right)\ \zeta (s)~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff1608984b5a76e49f2c9b3f7cb9270d33c6e9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.726ex; height:7.009ex;" alt="{\displaystyle \eta (s)\ =\ \sum _{n=1}^{\infty }{\frac {\;(-1)^{n+1}}{\ n^{s}}}=\left(1-{2^{1-s}}\right)\ \zeta (s)~.}"></span> </p><p>Incidentally, this relation gives an equation for calculating <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> in the region <span class="nowrap"> <span class="texhtml"> 0 &lt; ℛ<sub>ℯ</sub>(<i>s</i>) &lt; 1</span> ,</span> i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)={\frac {1}{\;1-2^{1-s}\ }}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{\;n^{s}\ }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mspace width="thickmathspace" /> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mspace width="thickmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)={\frac {1}{\;1-2^{1-s}\ }}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{\;n^{s}\ }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1157febfe010c57cc0c7ffd04285410819c04bd3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.489ex; height:7.009ex;" alt="{\displaystyle \zeta (s)={\frac {1}{\;1-2^{1-s}\ }}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{\;n^{s}\ }}}"></span> where the <i>η</i>-series is <a href="/wiki/Convergent_series" title="Convergent series">convergent</a> (albeit <a href="/wiki/Absolute_convergence" title="Absolute convergence">non-absolutely</a>) in the larger half-plane <span class="texhtml"><i>s</i> &gt; 0</span> (for a more detailed survey on the history of the functional equation, see e.g. Blagouchine<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup>). </p><p>Riemann also found a <a href="/wiki/Symmetry" title="Symmetry">symmetric</a> version of the functional equation applying to the <span class="texhtml"><i>ξ</i></span>-function: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi (s)\ =\ {\frac {1}{2}}\pi ^{-{\frac {s}{2}}}\ s(s-1)\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mtext>&#xA0;</mtext> <mi>s</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi (s)\ =\ {\frac {1}{2}}\pi ^{-{\frac {s}{2}}}\ s(s-1)\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd6e84309e83cec06e8c5364b09e027a251cd3ed" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:36.108ex; height:5.176ex;" alt="{\displaystyle \xi (s)\ =\ {\frac {1}{2}}\pi ^{-{\frac {s}{2}}}\ s(s-1)\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ ,}"></span> which satisfies: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi (s)=\xi (1-s)~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi (s)=\xi (1-s)~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0333067155def9c5fda4163779866eeac9613707" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.188ex; height:2.843ex;" alt="{\displaystyle \xi (s)=\xi (1-s)~.}"></span> </p><p>(Riemann's <a href="/wiki/Riemann_%CE%9E_function" class="mw-redirect" title="Riemann Ξ function">original <span class="texhtml"><i>ξ</i>(<i>t</i>)</span></a> was slightly different.) </p><p>The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \pi ^{-s/2}\ \Gamma (s/2)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \pi ^{-s/2}\ \Gamma (s/2)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e496f302d4be9d53af2c66fcb48afcce0b7ede96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.679ex; height:3.343ex;" alt="{\displaystyle \ \pi ^{-s/2}\ \Gamma (s/2)\ }"></span> factor was not well-understood at the time of Riemann, until <a href="/wiki/John_Tate_(mathematician)" title="John Tate (mathematician)">John Tate</a>'s (1950) <a href="/wiki/Tate%27s_thesis" title="Tate&#39;s thesis">thesis</a>, in which it was shown that this so-called "Gamma factor" is in fact the <a href="/w/index.php?title=Local_L-factor&amp;action=edit&amp;redlink=1" class="new" title="Local L-factor (page does not exist)">local L-factor</a> corresponding to the <a href="/wiki/Archimedean_place" class="mw-redirect" title="Archimedean place">Archimedean place</a>, the other factors in the Euler product expansion being the local L-factors of the non-Archimedean places. </p> <div class="mw-heading mw-heading2"><h2 id="Zeros,_the_critical_line,_and_the_Riemann_hypothesis"><span id="Zeros.2C_the_critical_line.2C_and_the_Riemann_hypothesis"></span>Zeros, the critical line, and the Riemann hypothesis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=5" title="Edit section: Zeros, the critical line, and the Riemann hypothesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Riemann0xf4240.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/Riemann0xf4240.png/720px-Riemann0xf4240.png" decoding="async" width="720" height="405" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/Riemann0xf4240.png/1080px-Riemann0xf4240.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/12/Riemann0xf4240.png/1440px-Riemann0xf4240.png 2x" data-file-width="7680" data-file-height="4320" /></a><figcaption>Riemann zeta spiral along the critical line from height 999000 to a million (from red to violet)</figcaption></figure> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Zero-free_region_for_the_Riemann_zeta-function.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Zero-free_region_for_the_Riemann_zeta-function.svg/300px-Zero-free_region_for_the_Riemann_zeta-function.svg.png" decoding="async" width="300" height="276" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Zero-free_region_for_the_Riemann_zeta-function.svg/450px-Zero-free_region_for_the_Riemann_zeta-function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Zero-free_region_for_the_Riemann_zeta-function.svg/600px-Zero-free_region_for_the_Riemann_zeta-function.svg.png 2x" data-file-width="619" data-file-height="569" /></a><figcaption>The Riemann zeta function has no zeros to the right of <span class="texhtml"><i>σ</i> = 1</span> or (apart from the trivial zeros) to the left of <span class="texhtml"><i>σ</i> = 0</span> (nor can the zeros lie too close to those lines). Furthermore, the non-trivial zeros are symmetric about the real axis and the line <span class="texhtml"><i>σ</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span> and, according to the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a>, they all lie on the line <span class="texhtml"><i>σ</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>.</figcaption></figure> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Zeta_polar.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Zeta_polar.svg/300px-Zeta_polar.svg.png" decoding="async" width="300" height="257" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Zeta_polar.svg/450px-Zeta_polar.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Zeta_polar.svg/600px-Zeta_polar.svg.png 2x" data-file-width="560" data-file-height="480" /></a><figcaption>This image shows a plot of the Riemann zeta function along the critical line for real values of <span class="texhtml mvar" style="font-style:italic;">t</span> running from 0 to 34. The first five zeros in the critical strip are clearly visible as the place where the spirals pass through the origin.</figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/File:RiemannCriticalLine.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/RiemannCriticalLine.svg/300px-RiemannCriticalLine.svg.png" decoding="async" width="300" height="140" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/RiemannCriticalLine.svg/450px-RiemannCriticalLine.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/RiemannCriticalLine.svg/600px-RiemannCriticalLine.svg.png 2x" data-file-width="933" data-file-height="434" /></a><figcaption>The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(<i>s</i>) = 1/2. The first non-trivial zeros can be seen at Im(<i>s</i>) = ±14.135, ±21.022 and ±25.011.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><span><video id="mwe_player_0" poster="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Zeta1000_1005.webm/220px--Zeta1000_1005.webm.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="220" height="220" data-durationhint="51" data-mwtitle="Zeta1000_1005.webm" data-mwprovider="wikimediacommons" resource="/wiki/File:Zeta1000_1005.webm"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9a/Zeta1000_1005.webm/Zeta1000_1005.webm.480p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="480p.vp9.webm" data-width="480" data-height="480" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9a/Zeta1000_1005.webm/Zeta1000_1005.webm.720p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="720p.vp9.webm" data-width="720" data-height="720" /><source src="//upload.wikimedia.org/wikipedia/commons/9/9a/Zeta1000_1005.webm" type="video/webm; codecs=&quot;vp8&quot;" data-width="2000" data-height="2000" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9a/Zeta1000_1005.webm/Zeta1000_1005.webm.1080p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="1080p.vp9.webm" data-width="1080" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9a/Zeta1000_1005.webm/Zeta1000_1005.webm.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="240" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9a/Zeta1000_1005.webm/Zeta1000_1005.webm.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="360" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9a/Zeta1000_1005.webm/Zeta1000_1005.webm.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="360" data-height="360" /></video></span><figcaption>Animation showing the Riemann zeta function along the critical line. Zeta(1/2 + I y) for y ranging from 1000 to 1005.</figcaption></figure> <p>The functional equation shows that the Riemann zeta function has zeros at <span class="nowrap">−2, −4,...</span>. These are called the <b>trivial zeros</b>. They are trivial in the sense that their existence is relatively easy to prove, for example, from <span class="texhtml">sin <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">π<i>s</i></span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span> being 0 in the functional equation. The non-trivial zeros have captured far more attention because their distribution not only is far less understood but, more importantly, their study yields important results concerning prime numbers and related objects in number theory. It is known that any non-trivial zero lies in the open strip <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{s\in \mathbb {C} :0&lt;\operatorname {Re} (s)&lt;1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>:</mo> <mn>0</mn> <mo>&lt;</mo> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{s\in \mathbb {C} :0&lt;\operatorname {Re} (s)&lt;1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bd2e09ccf28288b6a9bc02acff20047afeb7454" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.036ex; height:2.843ex;" alt="{\displaystyle \{s\in \mathbb {C} :0&lt;\operatorname {Re} (s)&lt;1\}}"></span>, which is called the <b>critical strip</b>. The set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{s\in \mathbb {C} :\operatorname {Re} (s)=1/2\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>:</mo> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{s\in \mathbb {C} :\operatorname {Re} (s)=1/2\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f83774c1d820095a11751431fe11345673ef87b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.1ex; height:2.843ex;" alt="{\displaystyle \{s\in \mathbb {C} :\operatorname {Re} (s)=1/2\}}"></span> is called the <b>critical line</b>. The <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a>, considered one of the greatest unsolved problems in mathematics, asserts that all non-trivial zeros are on the critical line. In 1989, Conrey proved that more than 40% of the non-trivial zeros of the Riemann zeta function are on the critical line.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>For the Riemann zeta function on the critical line, see <a href="/wiki/Z_function" title="Z function"><span class="texhtml mvar" style="font-style:italic;">Z</span>-function</a>. </p> <table class="wikitable"> <caption>First few nontrivial zeros<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </caption> <tbody><tr> <th>Zero </th></tr> <tr> <td>1/2 ± 14.134725 <i>i</i> </td></tr> <tr> <td>1/2 ± 21.022040 <i>i</i> </td></tr> <tr> <td>1/2 ± 25.010858 <i>i</i> </td></tr> <tr> <td>1/2 ± 30.424876 <i>i</i> </td></tr> <tr> <td>1/2 ± 32.935062 <i>i</i> </td></tr> <tr> <td>1/2 ± 37.586178 <i>i</i> </td></tr> <tr> <td>1/2 ± 40.918719 <i>i</i> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Number_of_zeros_in_the_critical_strip">Number of zeros in the critical strip</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=6" title="Edit section: Number of zeros in the critical strip"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N(T)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N(T)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/891f08bfa8e782f2db0a06b00aa11668b1614537" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.509ex; height:2.843ex;" alt="{\displaystyle N(T)}"></span> be the number of zeros of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd45922057e4d7a5718ce5ed703ab493c63897a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.995ex; height:2.843ex;" alt="{\displaystyle \zeta (s)}"></span> in the critical strip <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\operatorname {Re} (s)&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;\operatorname {Re} (s)&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32b9718e606940f63859292d9607b611a545b9d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.165ex; height:2.843ex;" alt="{\displaystyle 0&lt;\operatorname {Re} (s)&lt;1}"></span>, whose imaginary parts are in the interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\operatorname {Im} (s)&lt;T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;\operatorname {Im} (s)&lt;T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6f120c4a75cf6bb318f96e345d62005a60dfa8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.671ex; height:2.843ex;" alt="{\displaystyle 0&lt;\operatorname {Im} (s)&lt;T}"></span>. Trudgian proved that, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T&gt;e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&gt;</mo> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T&gt;e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4177c581663e58522b046e394e064040d09c6071" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.818ex; height:2.176ex;" alt="{\displaystyle T&gt;e}"></span>, then<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|N(T)-{\frac {T}{2\pi }}\log {\frac {T}{2\pi e}}\right|\leq 0.112\log T+0.278\log \log T+3.385+{\frac {0.2}{T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi>N</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>T</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>T</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>e</mi> </mrow> </mfrac> </mrow> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mn>0.112</mn> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>T</mi> <mo>+</mo> <mn>0.278</mn> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>T</mi> <mo>+</mo> <mn>3.385</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>0.2</mn> <mi>T</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|N(T)-{\frac {T}{2\pi }}\log {\frac {T}{2\pi e}}\right|\leq 0.112\log T+0.278\log \log T+3.385+{\frac {0.2}{T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/375e5d6b6af31718215474d76d5dc700980a9973" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:66.575ex; height:5.509ex;" alt="{\displaystyle \left|N(T)-{\frac {T}{2\pi }}\log {\frac {T}{2\pi e}}\right|\leq 0.112\log T+0.278\log \log T+3.385+{\frac {0.2}{T}}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="The_Hardy–Littlewood_conjectures"><span id="The_Hardy.E2.80.93Littlewood_conjectures"></span>The Hardy–Littlewood conjectures</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=7" title="Edit section: The Hardy–Littlewood conjectures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1914, <a href="/wiki/G._H._Hardy" title="G. H. Hardy">G. H. Hardy</a> proved that <span class="texhtml"><i>ζ</i> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> + <i>it</i>)</span> has infinitely many real zeros.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>Hardy and <a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">J. E. Littlewood</a> formulated two conjectures on the density and distance between the zeros of <span class="texhtml"><i>ζ</i> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> + <i>it</i>)</span> on intervals of large positive real numbers. In the following, <span class="texhtml"><i>N</i>(<i>T</i>)</span> is the total number of real zeros and <span class="texhtml"><i>N</i><sub>0</sub>(<i>T</i>)</span> the total number of zeros of odd order of the function <span class="texhtml"><i>ζ</i> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> + <i>it</i>)</span> lying in the interval <span class="texhtml">(0, <i>T</i>]</span>. </p> <div><ol><li>For any <span class="texhtml"><i>ε</i> &gt; 0</span>, there exists a <span class="texhtml"><i>T</i><sub>0</sub>(<i>ε</i>) &gt; 0</span> such that when <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\geq T_{0}(\varepsilon )\quad {\text{ and }}\quad H=T^{{\frac {1}{4}}+\varepsilon },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mi>H</mi> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\geq T_{0}(\varepsilon )\quad {\text{ and }}\quad H=T^{{\frac {1}{4}}+\varepsilon },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b72a56f6b0bc1ad48948ae4087520a5649224474" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.903ex; height:4.009ex;" alt="{\displaystyle T\geq T_{0}(\varepsilon )\quad {\text{ and }}\quad H=T^{{\frac {1}{4}}+\varepsilon },}"></span></dd></dl> the interval <span class="texhtml">(<i>T</i>, <i>T</i> + <i>H</i>]</span> contains a zero of odd order.</li><li>For any <span class="texhtml"><i>ε</i> &gt; 0</span>, there exists a <span class="texhtml"><i>T</i><sub>0</sub>(<i>ε</i>) &gt; 0</span> and <span class="texhtml"><i>c<sub>ε</sub></i> &gt; 0</span> such that the inequality <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N_{0}(T+H)-N_{0}(T)\geq c_{\varepsilon }H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>T</mi> <mo>+</mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B5;<!-- ε --></mi> </mrow> </msub> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N_{0}(T+H)-N_{0}(T)\geq c_{\varepsilon }H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cb3f056dd54fb9048ccdb162de032e8f5b86ca4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.644ex; height:2.843ex;" alt="{\displaystyle N_{0}(T+H)-N_{0}(T)\geq c_{\varepsilon }H}"></span></dd></dl> holds when <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\geq T_{0}(\varepsilon )\quad {\text{ and }}\quad H=T^{{\frac {1}{2}}+\varepsilon }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mi>H</mi> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\geq T_{0}(\varepsilon )\quad {\text{ and }}\quad H=T^{{\frac {1}{2}}+\varepsilon }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e546a591646c3a6e0a8bb464f6852877c55aad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.903ex; height:4.009ex;" alt="{\displaystyle T\geq T_{0}(\varepsilon )\quad {\text{ and }}\quad H=T^{{\frac {1}{2}}+\varepsilon }.}"></span></dd></dl></li></ol></div><p> These two conjectures opened up new directions in the investigation of the Riemann zeta function. </p><div class="mw-heading mw-heading3"><h3 id="Zero-free_region">Zero-free region</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=8" title="Edit section: Zero-free region"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The location of the Riemann zeta function's zeros is of great importance in number theory. The <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a> is equivalent to the fact that there are no zeros of the zeta function on the <span class="texhtml">Re(<i>s</i>) = 1</span> line.<sup id="cite_ref-Diamond1982_15-0" class="reference"><a href="#cite_note-Diamond1982-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> A better result<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> that follows from an effective form of <a href="/wiki/Vinogradov%27s_mean-value_theorem" title="Vinogradov&#39;s mean-value theorem">Vinogradov's mean-value theorem</a> is that <span class="texhtml"><i>ζ</i> (<i>σ</i> + <i>it</i>) ≠ 0</span> whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma \geq 1-{\frac {1}{57.54(\log {|t|})^{\frac {2}{3}}(\log {\log {|t|}})^{\frac {1}{3}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>57.54</mn> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </msup> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma \geq 1-{\frac {1}{57.54(\log {|t|})^{\frac {2}{3}}(\log {\log {|t|}})^{\frac {1}{3}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/070e5d70379dd28aafbf8671116b61070abda82b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:35.997ex; height:7.176ex;" alt="{\displaystyle \sigma \geq 1-{\frac {1}{57.54(\log {|t|})^{\frac {2}{3}}(\log {\log {|t|}})^{\frac {1}{3}}}}}"></span> and <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>t</i></span>&#124; ≥ 3</span>. </p><p>In 2015, Mossinghoff and Trudgian proved<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> that zeta has no zeros in the region </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma \geq 1-{\frac {1}{5.573412\log |t|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>5.573412</mn> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma \geq 1-{\frac {1}{5.573412\log |t|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2858ec99d012142fe009fa2da224426062f9fb62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.93ex; height:6.009ex;" alt="{\displaystyle \sigma \geq 1-{\frac {1}{5.573412\log |t|}}}"></span></dd></dl> <p>for <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>t</i></span>&#124; ≥ 2</span>. This is the largest known zero-free region in the critical strip for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3.06\cdot 10^{10}&lt;|t|&lt;\exp(10151.5)\approx 5.5\cdot 10^{4408}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3.06</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>10151.5</mn> <mo stretchy="false">)</mo> <mo>&#x2248;<!-- ≈ --></mo> <mn>5.5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4408</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3.06\cdot 10^{10}&lt;|t|&lt;\exp(10151.5)\approx 5.5\cdot 10^{4408}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d52a848aef22bbf86f863eb6aa0c32f358103589" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.922ex; height:3.176ex;" alt="{\displaystyle 3.06\cdot 10^{10}&lt;|t|&lt;\exp(10151.5)\approx 5.5\cdot 10^{4408}}"></span>. </p><p>The strongest result of this kind one can hope for is the truth of the Riemann hypothesis, which would have many profound <a href="/wiki/Riemann_hypothesis#Consequences" title="Riemann hypothesis">consequences</a> in the theory of numbers. </p> <div class="mw-heading mw-heading3"><h3 id="Other_results">Other results</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=9" title="Edit section: Other results"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is known that there are infinitely many zeros on the critical line. <a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">Littlewood</a> showed that if the sequence (<span class="texhtml"><i>γ<sub>n</sub></i></span>) contains the imaginary parts of all zeros in the <a href="/wiki/Upper_half-plane" title="Upper half-plane">upper half-plane</a> in ascending order, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\rightarrow \infty }\left(\gamma _{n+1}-\gamma _{n}\right)=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\rightarrow \infty }\left(\gamma _{n+1}-\gamma _{n}\right)=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e3005b4211360d5f3053b8885baf0a7449baee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.163ex; height:3.843ex;" alt="{\displaystyle \lim _{n\rightarrow \infty }\left(\gamma _{n+1}-\gamma _{n}\right)=0.}"></span></dd></dl> <p>The <a href="/wiki/Critical_line_theorem" class="mw-redirect" title="Critical line theorem">critical line theorem</a> asserts that a positive proportion of the nontrivial zeros lies on the critical line. (The Riemann hypothesis would imply that this proportion is 1.) </p><p>In the critical strip, the zero with smallest non-negative imaginary part is <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> + 14.13472514...<i>i</i></span> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A058303" class="extiw" title="oeis:A058303">A058303</a></span>). The fact that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)={\overline {\zeta ({\overline {s}})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)={\overline {\zeta ({\overline {s}})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8b09034e8f5f6df4406385816e4a6f7109e19cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.318ex; height:3.676ex;" alt="{\displaystyle \zeta (s)={\overline {\zeta ({\overline {s}})}}}"></span></dd></dl> <p>for all complex <span class="texhtml"><i>s</i> ≠ 1</span> implies that the zeros of the Riemann zeta function are symmetric about the real axis. Combining this symmetry with the functional equation, furthermore, one sees that the non-trivial zeros are symmetric about the critical line <span class="texhtml">Re(<i>s</i>) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>. </p><p>It is also known that no zeros lie on the line with real part 1. </p> <div class="mw-heading mw-heading2"><h2 id="Specific_values">Specific values</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=10" title="Edit section: Specific values"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Particular_values_of_the_Riemann_zeta_function" title="Particular values of the Riemann zeta function">Particular values of the Riemann zeta function</a></div> <p>For any positive even integer <span class="texhtml">2<i>n</i></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2n)={\frac {|{B_{2n}}|(2\pi )^{2n}}{2(2n)!}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2n)={\frac {|{B_{2n}}|(2\pi )^{2n}}{2(2n)!}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7603e9f4c7ce96528feb82f7a3b2b50358a91256" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.485ex; height:6.676ex;" alt="{\displaystyle \zeta (2n)={\frac {|{B_{2n}}|(2\pi )^{2n}}{2(2n)!}},}"></span> where <span class="texhtml"><i>B</i><sub>2<i>n</i></sub></span> is the <span class="texhtml">2<i>n</i></span>-th <a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli number</a>. For odd positive integers, no such simple expression is known, although these values are thought to be related to the algebraic <span class="texhtml mvar" style="font-style:italic;">K</span>-theory of the integers; see <a href="/wiki/Special_values_of_L-functions" title="Special values of L-functions">Special values of <span class="texhtml mvar" style="font-style:italic;">L</span>-functions</a>. </p><p>For nonpositive integers, one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (-n)=-{\frac {B_{n+1}}{n+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (-n)=-{\frac {B_{n+1}}{n+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/745d83a9305e85e80ee607b2d1778f08488584ae" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.248ex; height:5.509ex;" alt="{\displaystyle \zeta (-n)=-{\frac {B_{n+1}}{n+1}}}"></span> for <span class="texhtml"><i>n</i> ≥ 0</span> (using the convention that <span class="texhtml"><i>B</i><sub>1</sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>). In particular, <span class="texhtml mvar" style="font-style:italic;">ζ</span> vanishes at the negative even integers because <span class="texhtml"><i>B</i><sub><i>m</i></sub> = 0</span> for all odd <span class="texhtml mvar" style="font-style:italic;">m</span> other than&#160;1. These are the so-called "trivial zeros" of the zeta function. </p><p>Via <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a>, one can show that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (-1)=-{\tfrac {1}{12}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (-1)=-{\tfrac {1}{12}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/242b35184f3c25d8af6a1fa0e992a015ca8b07f8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.262ex; height:3.509ex;" alt="{\displaystyle \zeta (-1)=-{\tfrac {1}{12}}}"></span> This gives a pretext for assigning a finite value to the divergent series <a href="/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯">1 + 2 + 3 + 4 + ⋯</a>, which has been used in certain contexts (<a href="/wiki/Ramanujan_summation" title="Ramanujan summation">Ramanujan summation</a>) such as <a href="/wiki/String_theory" title="String theory">string theory</a>.<sup id="cite_ref-polchinski_18-0" class="reference"><a href="#cite_note-polchinski-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> Analogously, the particular value <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (0)=-{\tfrac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (0)=-{\tfrac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f12d5ccd326048205102bbe612a2d639d52c7f3b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.632ex; height:3.509ex;" alt="{\displaystyle \zeta (0)=-{\tfrac {1}{2}}}"></span> can be viewed as assigning a finite result to the divergent series <a href="/wiki/1_%2B_1_%2B_1_%2B_1_%2B_%E2%8B%AF" title="1 + 1 + 1 + 1 + ⋯">1 + 1 + 1 + 1 + ⋯</a>. </p><p>The value <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta {\bigl (}{\tfrac {1}{2}}{\bigr )}=-1.46035450880958681288\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1.46035450880958681288</mn> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta {\bigl (}{\tfrac {1}{2}}{\bigr )}=-1.46035450880958681288\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/530578bc4b4fe11508d90842bf6fc369e3a8eb5f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:37.958ex; height:3.509ex;" alt="{\displaystyle \zeta {\bigl (}{\tfrac {1}{2}}{\bigr )}=-1.46035450880958681288\ldots }"></span> is employed in calculating kinetic boundary layer problems of linear kinetic equations.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>Although <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (1)=1+{\tfrac {1}{2}}+{\tfrac {1}{3}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (1)=1+{\tfrac {1}{2}}+{\tfrac {1}{3}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e80a209099a8bac2fe5d5f80e5183b9cf5c0ee4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:22.888ex; height:3.676ex;" alt="{\displaystyle \zeta (1)=1+{\tfrac {1}{2}}+{\tfrac {1}{3}}+\cdots }"></span> diverges, its <a href="/wiki/Cauchy_principal_value" title="Cauchy principal value">Cauchy principal value</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\varepsilon \to 0}{\frac {\zeta (1+\varepsilon )+\zeta (1-\varepsilon )}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\varepsilon \to 0}{\frac {\zeta (1+\varepsilon )+\zeta (1-\varepsilon )}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abe362a14970085cef83fab635bd8f487f92a7c9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:23.276ex; height:5.843ex;" alt="{\displaystyle \lim _{\varepsilon \to 0}{\frac {\zeta (1+\varepsilon )+\zeta (1-\varepsilon )}{2}}}"></span> exists and is equal to the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler–Mascheroni constant</a> <span class="texhtml"><i>γ</i> = 0.5772...</span>.<sup id="cite_ref-Sondow1998_21-0" class="reference"><a href="#cite_note-Sondow1998-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p>The demonstration of the particular value <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2)=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2)=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c47997aa5335da52ab90564eed52075417910256" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.001ex; height:6.176ex;" alt="{\displaystyle \zeta (2)=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}}"></span> is known as the <a href="/wiki/Basel_problem" title="Basel problem">Basel problem</a>. The reciprocal of this sum answers the question: <i>What is the probability that two numbers selected at random are <a href="/wiki/Coprime" class="mw-redirect" title="Coprime">relatively prime</a>?</i><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> The value <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (3)=1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+\cdots =1.202056903159594285399...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mn>1.202056903159594285399...</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (3)=1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+\cdots =1.202056903159594285399...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b34718e242d38fc199c25e009a393cf3184d1de2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:56.938ex; height:5.676ex;" alt="{\displaystyle \zeta (3)=1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+\cdots =1.202056903159594285399...}"></span> is <a href="/wiki/Ap%C3%A9ry%27s_constant" title="Apéry&#39;s constant">Apéry's constant</a>. </p><p>Taking the limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\rightarrow +\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo>+</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\rightarrow +\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a97aa3ada267c5151057ba9d4ce99bb2872c566" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.836ex; height:2.176ex;" alt="{\displaystyle s\rightarrow +\infty }"></span> through the real numbers, one obtains <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (+\infty )=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>+</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (+\infty )=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71422328c935dd7551a76a947bcc3526bb569fdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.297ex; height:2.843ex;" alt="{\displaystyle \zeta (+\infty )=1}"></span>. But at <a href="/wiki/Complex_infinity" class="mw-redirect" title="Complex infinity">complex infinity</a> on the <a href="/wiki/Riemann_sphere" title="Riemann sphere">Riemann sphere</a> the zeta function has an <a href="/wiki/Essential_singularity" title="Essential singularity">essential singularity</a>.<sup id="cite_ref-:0_2-1" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Various_properties">Various properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=11" title="Edit section: Various properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For sums involving the zeta function at integer and half-integer values, see <a href="/wiki/Rational_zeta_series" title="Rational zeta series">rational zeta series</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Reciprocal">Reciprocal</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=12" title="Edit section: Reciprocal"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The reciprocal of the zeta function may be expressed as a <a href="/wiki/Dirichlet_series" title="Dirichlet series">Dirichlet series</a> over the <a href="/wiki/M%C3%B6bius_function" title="Möbius function">Möbius function</a> <span class="texhtml"><i>μ</i>(<i>n</i>)</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\zeta (s)}}=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\zeta (s)}}=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44321887183e072812ddd22b8ed103e08ced1e0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.113ex; height:6.843ex;" alt="{\displaystyle {\frac {1}{\zeta (s)}}=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}}}"></span></dd></dl> <p>for every complex number <span class="texhtml mvar" style="font-style:italic;">s</span> with real part greater than 1. There are a number of similar relations involving various well-known <a href="/wiki/Multiplicative_function" title="Multiplicative function">multiplicative functions</a>; these are given in the article on the <a href="/wiki/Dirichlet_series" title="Dirichlet series">Dirichlet series</a>. </p><p>The Riemann hypothesis is equivalent to the claim that this expression is valid when the real part of <span class="texhtml mvar" style="font-style:italic;">s</span> is greater than <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Universality">Universality</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=13" title="Edit section: Universality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The critical strip of the Riemann zeta function has the remarkable property of <b>universality</b>. This <a href="/wiki/Zeta_function_universality" title="Zeta function universality">zeta function universality</a> states that there exists some location on the critical strip that approximates any <a href="/wiki/Holomorphic_function" title="Holomorphic function">holomorphic function</a> arbitrarily well. Since holomorphic functions are very general, this property is quite remarkable. The first proof of universality was provided by Sergei Mikhailovitch Voronin in 1975.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> More recent work has included <a href="/wiki/Zeta_function_universality#Effective_universality" title="Zeta function universality">effective</a> versions of Voronin's theorem<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Zeta_function_universality#Universality_of_other_zeta_functions" title="Zeta function universality">extending</a> it to <a href="/wiki/Dirichlet_L-function" title="Dirichlet L-function">Dirichlet L-functions</a>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Estimates_of_the_maximum_of_the_modulus_of_the_zeta_function">Estimates of the maximum of the modulus of the zeta function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=14" title="Edit section: Estimates of the maximum of the modulus of the zeta function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let the functions <span class="texhtml"><i>F</i>(<i>T</i>;<i>H</i>)</span> and <span class="texhtml"><i>G</i>(<i>s</i><sub>0</sub>;Δ)</span> be defined by the equalities </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(T;H)=\max _{|t-T|\leq H}\left|\zeta \left({\tfrac {1}{2}}+it\right)\right|,\qquad G(s_{0};\Delta )=\max _{|s-s_{0}|\leq \Delta }|\zeta (s)|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo>;</mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>H</mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mi>i</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>G</mi> <mo stretchy="false">(</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>;</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(T;H)=\max _{|t-T|\leq H}\left|\zeta \left({\tfrac {1}{2}}+it\right)\right|,\qquad G(s_{0};\Delta )=\max _{|s-s_{0}|\leq \Delta }|\zeta (s)|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a20a242960523633d776be2041a97279d8dbe02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:60.95ex; height:4.843ex;" alt="{\displaystyle F(T;H)=\max _{|t-T|\leq H}\left|\zeta \left({\tfrac {1}{2}}+it\right)\right|,\qquad G(s_{0};\Delta )=\max _{|s-s_{0}|\leq \Delta }|\zeta (s)|.}"></span></dd></dl> <p>Here <span class="texhtml mvar" style="font-style:italic;">T</span> is a sufficiently large positive number, <span class="texhtml">0 &lt; <i>H</i> ≪ log log <i>T</i></span>, <span class="texhtml"><i>s</i><sub>0</sub> = <i>σ</i><sub>0</sub> + <i>iT</i></span>, <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> ≤ <i>σ</i><sub>0</sub> ≤ 1</span>, <span class="texhtml">0 &lt; Δ &lt; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>&#8288;</span></span>. Estimating the values <span class="texhtml mvar" style="font-style:italic;">F</span> and <span class="texhtml mvar" style="font-style:italic;">G</span> from below shows, how large (in modulus) values <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> can take on short intervals of the critical line or in small neighborhoods of points lying in the critical strip <span class="texhtml">0 ≤ Re(<i>s</i>) ≤ 1</span>. </p><p>The case <span class="texhtml"><i>H</i> ≫ log log <i>T</i></span> was studied by <a href="/wiki/Kanakanahalli_Ramachandra" title="Kanakanahalli Ramachandra">Kanakanahalli Ramachandra</a>; the case <span class="texhtml">Δ &gt; <i>c</i></span>, where <span class="texhtml"><i>c</i></span> is a sufficiently large constant, is trivial. </p><p><a href="/wiki/Anatolii_Alexeevitch_Karatsuba" class="mw-redirect" title="Anatolii Alexeevitch Karatsuba">Anatolii Karatsuba</a> proved,<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> in particular, that if the values <span class="texhtml mvar" style="font-style:italic;">H</span> and <span class="texhtml">Δ</span> exceed certain sufficiently small constants, then the estimates </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(T;H)\geq T^{-c_{1}},\qquad G(s_{0};\Delta )\geq T^{-c_{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo>;</mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>,</mo> <mspace width="2em" /> <mi>G</mi> <mo stretchy="false">(</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>;</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(T;H)\geq T^{-c_{1}},\qquad G(s_{0};\Delta )\geq T^{-c_{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c01506233e6725116b2bb19cfb60c99635deb5e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.106ex; height:3.009ex;" alt="{\displaystyle F(T;H)\geq T^{-c_{1}},\qquad G(s_{0};\Delta )\geq T^{-c_{2}},}"></span></dd></dl> <p>hold, where <span class="texhtml"><i>c</i><sub>1</sub></span> and <span class="texhtml"><i>c</i><sub>2</sub></span> are certain absolute constants. </p> <div class="mw-heading mw-heading3"><h3 id="The_argument_of_the_Riemann_zeta_function">The argument of the Riemann zeta function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=15" title="Edit section: The argument of the Riemann zeta function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(t)={\frac {1}{\pi }}\arg {\zeta \left({\tfrac {1}{2}}+it\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mrow> <mi>arg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B6;<!-- ζ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mi>i</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(t)={\frac {1}{\pi }}\arg {\zeta \left({\tfrac {1}{2}}+it\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/114f40b882f5f7cb1c5709ac5ce5bcbf848dc4f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.178ex; height:5.176ex;" alt="{\displaystyle S(t)={\frac {1}{\pi }}\arg {\zeta \left({\tfrac {1}{2}}+it\right)}}"></span></dd></dl> <p>is called the <a href="/wiki/Complex_argument" class="mw-redirect" title="Complex argument">argument</a> of the Riemann zeta function. Here <span class="texhtml">arg <i>ζ</i>(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> + <i>it</i>)</span> is the increment of an arbitrary continuous branch of <span class="texhtml">arg <i>ζ</i>(<i>s</i>)</span> along the broken line joining the points <span class="texhtml">2</span>, <span class="texhtml">2 + <i>it</i></span> and <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> + <i>it</i></span>. </p><p>There are some theorems on properties of the function <span class="texhtml"><i>S</i>(<i>t</i>)</span>. Among those results<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> are the <a href="/wiki/Mean_value_theorems_for_definite_integrals" class="mw-redirect" title="Mean value theorems for definite integrals">mean value theorems</a> for <span class="texhtml"><i>S</i>(<i>t</i>)</span> and its first integral </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1}(t)=\int _{0}^{t}S(u)\,\mathrm {d} u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mi>S</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1}(t)=\int _{0}^{t}S(u)\,\mathrm {d} u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8680a253ffbb7a376bdd76b07c696bd984c0201" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.551ex; height:6.176ex;" alt="{\displaystyle S_{1}(t)=\int _{0}^{t}S(u)\,\mathrm {d} u}"></span></dd></dl> <p>on intervals of the real line, and also the theorem claiming that every interval <span class="texhtml">(<i>T</i>, <i>T</i> + <i>H</i>]</span> for </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H\geq T^{{\frac {27}{82}}+\varepsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>&#x2265;<!-- ≥ --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>27</mn> <mn>82</mn> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H\geq T^{{\frac {27}{82}}+\varepsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deb900d659d59ff997c06e31da1601b3a66d1ccf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.33ex; height:3.843ex;" alt="{\displaystyle H\geq T^{{\frac {27}{82}}+\varepsilon }}"></span></dd></dl> <p>contains at least </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H{\sqrt[{3}]{\ln T}}e^{-c{\sqrt {\ln \ln T}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>T</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>T</mi> </msqrt> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H{\sqrt[{3}]{\ln T}}e^{-c{\sqrt {\ln \ln T}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2a08b909b3fbdc065cdc21c25e4469fb8136817" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.311ex; height:3.343ex;" alt="{\displaystyle H{\sqrt[{3}]{\ln T}}e^{-c{\sqrt {\ln \ln T}}}}"></span></dd></dl> <p>points where the function <span class="texhtml"><i>S</i>(<i>t</i>)</span> changes sign. Earlier similar results were obtained by <a href="/wiki/Atle_Selberg" title="Atle Selberg">Atle Selberg</a> for the case </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H\geq T^{{\frac {1}{2}}+\varepsilon }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>&#x2265;<!-- ≥ --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H\geq T^{{\frac {1}{2}}+\varepsilon }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e53e06ac6d1832b6c40070c4582ec495a38a6678" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.309ex; height:3.676ex;" alt="{\displaystyle H\geq T^{{\frac {1}{2}}+\varepsilon }.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Representations">Representations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=16" title="Edit section: Representations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Dirichlet_series">Dirichlet series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=17" title="Edit section: Dirichlet series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An extension of the area of convergence can be obtained by rearranging the original series.<sup id="cite_ref-Knopp_31-0" class="reference"><a href="#cite_note-Knopp-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> The series </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=1}^{\infty }\left({\frac {n}{(n+1)^{s}}}-{\frac {n-s}{n^{s}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=1}^{\infty }\left({\frac {n}{(n+1)^{s}}}-{\frac {n-s}{n^{s}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d536ef583045ec0efbb1d4b5bdf478125e79440c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.622ex; height:6.843ex;" alt="{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=1}^{\infty }\left({\frac {n}{(n+1)^{s}}}-{\frac {n-s}{n^{s}}}\right)}"></span></dd></dl> <p>converges for <span class="texhtml">Re(<i>s</i>) &gt; 0</span>, while </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=1}^{\infty }{\frac {n(n+1)}{2}}\left({\frac {2n+3+s}{(n+1)^{s+2}}}-{\frac {2n-1-s}{n^{s+2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mi>s</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=1}^{\infty }{\frac {n(n+1)}{2}}\left({\frac {2n+3+s}{(n+1)^{s+2}}}-{\frac {2n-1-s}{n^{s+2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2f44909dd2c6e7378b7bcbd6baa45fcd978fa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:55.892ex; height:6.843ex;" alt="{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=1}^{\infty }{\frac {n(n+1)}{2}}\left({\frac {2n+3+s}{(n+1)^{s+2}}}-{\frac {2n-1-s}{n^{s+2}}}\right)}"></span></dd></dl> <p>converge even for <span class="texhtml">Re(<i>s</i>) &gt; −1</span>. In this way, the area of convergence can be extended to <span class="texhtml">Re(<i>s</i>) &gt; −<i>k</i></span> for any negative integer <span class="texhtml">−<i>k</i></span>. </p><p>The recurrence connection is clearly visible from the expression valid for <span class="texhtml">Re(<i>s</i>) &gt; −2</span> enabling further expansion by integration by parts. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\zeta (s)=&amp;1+{\frac {1}{s-1}}-{\frac {s}{2!}}[\zeta (s+1)-1]\\-&amp;{\frac {s(s+1)}{3!}}[\zeta (s+2)-1]\\&amp;-{\frac {s(s+1)(s+2)}{3!}}\sum _{n=1}^{\infty }\int _{0}^{1}{\frac {t^{3}dt}{(n+t)^{s+3}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> </mtd> <mtd> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">[</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">]</mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">[</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">]</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>d</mi> <mi>t</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>+</mo> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\zeta (s)=&amp;1+{\frac {1}{s-1}}-{\frac {s}{2!}}[\zeta (s+1)-1]\\-&amp;{\frac {s(s+1)}{3!}}[\zeta (s+2)-1]\\&amp;-{\frac {s(s+1)(s+2)}{3!}}\sum _{n=1}^{\infty }\int _{0}^{1}{\frac {t^{3}dt}{(n+t)^{s+3}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86c83010f166d68a4a9811dfd6e4e8cb5f1d746d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.426ex; margin-bottom: -0.245ex; width:44.63ex; height:18.509ex;" alt="{\displaystyle {\begin{aligned}\zeta (s)=&amp;1+{\frac {1}{s-1}}-{\frac {s}{2!}}[\zeta (s+1)-1]\\-&amp;{\frac {s(s+1)}{3!}}[\zeta (s+2)-1]\\&amp;-{\frac {s(s+1)(s+2)}{3!}}\sum _{n=1}^{\infty }\int _{0}^{1}{\frac {t^{3}dt}{(n+t)^{s+3}}}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Mellin-type_integrals">Mellin-type integrals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=18" title="Edit section: Mellin-type integrals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Mellin_transform" title="Mellin transform">Mellin transform</a> of a function <span class="texhtml"><i>f</i>(<i>x</i>)</span> is defined as<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }f(x)x^{s}\,{\frac {\mathrm {d} x}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }f(x)x^{s}\,{\frac {\mathrm {d} x}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/344cfac0b7930a589e58108fca36373f17ff49ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.323ex; height:5.843ex;" alt="{\displaystyle \int _{0}^{\infty }f(x)x^{s}\,{\frac {\mathrm {d} x}{x}}}"></span></dd></dl> <p>in the region where the integral is defined. There are various expressions for the zeta function as Mellin transform-like integrals. If the real part of <span class="texhtml mvar" style="font-style:italic;">s</span> is greater than one, we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (s)\zeta (s)=\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (s)\zeta (s)=\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcc429c7ed111fc5e6cf297033c2400c755b0ecf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.599ex; height:6.176ex;" alt="{\displaystyle \Gamma (s)\zeta (s)=\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x\quad }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \Gamma (s)\zeta (s)={\frac {1}{2s}}\int _{0}^{\infty }{\frac {x^{s}}{\cosh(x)-1}}\,\mathrm {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>s</mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mrow> <mi>cosh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \Gamma (s)\zeta (s)={\frac {1}{2s}}\int _{0}^{\infty }{\frac {x^{s}}{\cosh(x)-1}}\,\mathrm {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa5c83e1676b0ef3aca0598b9e9818c60fe660f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:37.362ex; height:6.176ex;" alt="{\displaystyle \quad \Gamma (s)\zeta (s)={\frac {1}{2s}}\int _{0}^{\infty }{\frac {x^{s}}{\cosh(x)-1}}\,\mathrm {d} x}"></span>,</dd></dl> <p>where <span class="texhtml">Γ</span> denotes the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a>. By modifying the <a href="/wiki/Contour_integration" title="Contour integration">contour</a>, Riemann showed that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\sin(\pi s)\Gamma (s)\zeta (s)=i\oint _{H}{\frac {(-x)^{s-1}}{e^{x}-1}}\,\mathrm {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>s</mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\sin(\pi s)\Gamma (s)\zeta (s)=i\oint _{H}{\frac {(-x)^{s-1}}{e^{x}-1}}\,\mathrm {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12e9b4961a587907e5dfb7f3a038dc4a45ad5750" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:36.54ex; height:6.343ex;" alt="{\displaystyle 2\sin(\pi s)\Gamma (s)\zeta (s)=i\oint _{H}{\frac {(-x)^{s-1}}{e^{x}-1}}\,\mathrm {d} x}"></span></dd></dl> <p>for all <span class="texhtml mvar" style="font-style:italic;">s</span><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> (where <span class="texhtml mvar" style="font-style:italic;">H</span> denotes the <a href="/wiki/Hankel_contour" title="Hankel contour">Hankel contour</a>). </p><p>We can also find expressions which relate to prime numbers and the <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a>. If <span class="texhtml"><i>π</i>(<i>x</i>)</span> is the <a href="/wiki/Prime-counting_function" title="Prime-counting function">prime-counting function</a>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \zeta (s)=s\int _{0}^{\infty }{\frac {\pi (x)}{x(x^{s}-1)}}\,\mathrm {d} x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>s</mi> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln \zeta (s)=s\int _{0}^{\infty }{\frac {\pi (x)}{x(x^{s}-1)}}\,\mathrm {d} x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/074401bd612660c0cbcd7e1be8b236cc6c0b5cfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.591ex; height:6.509ex;" alt="{\displaystyle \ln \zeta (s)=s\int _{0}^{\infty }{\frac {\pi (x)}{x(x^{s}-1)}}\,\mathrm {d} x,}"></span></dd></dl> <p>for values with <span class="texhtml">Re(<i>s</i>) &gt; 1</span>. </p><p>A similar Mellin transform involves the Riemann function <span class="texhtml"><i>J</i>(<i>x</i>)</span>, which counts prime powers <span class="texhtml"><i>p</i><sup><i>n</i></sup></span> with a weight of <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>n</i></span></span>&#8288;</span></span>, so that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J(x)=\sum {\frac {\pi \left(x^{\frac {1}{n}}\right)}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J(x)=\sum {\frac {\pi \left(x^{\frac {1}{n}}\right)}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70582fd1083256a6afe4721a587ccd6a07e2696c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.627ex; height:7.509ex;" alt="{\displaystyle J(x)=\sum {\frac {\pi \left(x^{\frac {1}{n}}\right)}{n}}.}"></span></dd></dl> <p>Now </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \zeta (s)=s\int _{0}^{\infty }J(x)x^{-s-1}\,\mathrm {d} x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>s</mi> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>J</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln \zeta (s)=s\int _{0}^{\infty }J(x)x^{-s-1}\,\mathrm {d} x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8deff64d533ad55a038ffc9363dcc032f6a104a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:29.603ex; height:5.843ex;" alt="{\displaystyle \ln \zeta (s)=s\int _{0}^{\infty }J(x)x^{-s-1}\,\mathrm {d} x.}"></span></dd></dl> <p>These expressions can be used to prove the prime number theorem by means of the inverse Mellin transform. Riemann's <a href="/wiki/Prime-counting_function" title="Prime-counting function">prime-counting function</a> is easier to work with, and <span class="texhtml"><i>π</i>(<i>x</i>)</span> can be recovered from it by <a href="/wiki/M%C3%B6bius_inversion_formula" title="Möbius inversion formula">Möbius inversion</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Theta_functions">Theta functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=19" title="Edit section: Theta functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Riemann zeta function can be given by a Mellin transform<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)=\int _{0}^{\infty }{\bigl (}\theta (it)-1{\bigr )}t^{{\frac {s}{2}}-1}\,\mathrm {d} t,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">(</mo> <mi>i</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)=\int _{0}^{\infty }{\bigl (}\theta (it)-1{\bigr )}t^{{\frac {s}{2}}-1}\,\mathrm {d} t,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77a56045601292ab75636e75b68c025c72ab6d60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:42.848ex; height:5.843ex;" alt="{\displaystyle 2\pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)=\int _{0}^{\infty }{\bigl (}\theta (it)-1{\bigr )}t^{{\frac {s}{2}}-1}\,\mathrm {d} t,}"></span></dd></dl> <p>in terms of <a href="/wiki/Theta_function" title="Theta function">Jacobi's theta function</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta (\tau )=\sum _{n=-\infty }^{\infty }e^{\pi in^{2}\tau }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03C4;<!-- τ --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta (\tau )=\sum _{n=-\infty }^{\infty }e^{\pi in^{2}\tau }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ccf80b5b6ef1916a9af8b64dac367a893c0042f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.913ex; height:6.843ex;" alt="{\displaystyle \theta (\tau )=\sum _{n=-\infty }^{\infty }e^{\pi in^{2}\tau }.}"></span></dd></dl> <p>However, this integral only converges if the real part of <span class="texhtml mvar" style="font-style:italic;">s</span> is greater than 1, but it can be regularized. This gives the following expression for the zeta function, which is well defined for all <span class="texhtml mvar" style="font-style:italic;">s</span> except 0 and 1: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)={\frac {1}{s-1}}-{\frac {1}{s}}+{\frac {1}{2}}\int _{0}^{1}\left(\theta (it)-t^{-{\frac {1}{2}}}\right)t^{{\frac {s}{2}}-1}\,\mathrm {d} t+{\frac {1}{2}}\int _{1}^{\infty }{\bigl (}\theta (it)-1{\bigr )}t^{{\frac {s}{2}}-1}\,\mathrm {d} t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">(</mo> <mi>i</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">(</mo> <mi>i</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)={\frac {1}{s-1}}-{\frac {1}{s}}+{\frac {1}{2}}\int _{0}^{1}\left(\theta (it)-t^{-{\frac {1}{2}}}\right)t^{{\frac {s}{2}}-1}\,\mathrm {d} t+{\frac {1}{2}}\int _{1}^{\infty }{\bigl (}\theta (it)-1{\bigr )}t^{{\frac {s}{2}}-1}\,\mathrm {d} t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1142d3bb76ef71a97b927db0a3af93724393abe4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:89.051ex; height:6.343ex;" alt="{\displaystyle \pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)={\frac {1}{s-1}}-{\frac {1}{s}}+{\frac {1}{2}}\int _{0}^{1}\left(\theta (it)-t^{-{\frac {1}{2}}}\right)t^{{\frac {s}{2}}-1}\,\mathrm {d} t+{\frac {1}{2}}\int _{1}^{\infty }{\bigl (}\theta (it)-1{\bigr )}t^{{\frac {s}{2}}-1}\,\mathrm {d} t.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Laurent_series">Laurent series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=20" title="Edit section: Laurent series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Riemann zeta function is <a href="/wiki/Meromorphic" class="mw-redirect" title="Meromorphic">meromorphic</a> with a single <a href="/wiki/Pole_(complex_analysis)" class="mw-redirect" title="Pole (complex analysis)">pole</a> of order one at <span class="texhtml"><i>s</i> = 1</span>. It can therefore be expanded as a <a href="/wiki/Laurent_series" title="Laurent series">Laurent series</a> about <span class="texhtml"><i>s</i> = 1</span>; the series development is then<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)={\frac {1}{s-1}}+\sum _{n=0}^{\infty }{\frac {\gamma _{n}}{n!}}(1-s)^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)={\frac {1}{s-1}}+\sum _{n=0}^{\infty }{\frac {\gamma _{n}}{n!}}(1-s)^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31fe1655e279add165b580ced26b44cb0a5782f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.632ex; height:6.843ex;" alt="{\displaystyle \zeta (s)={\frac {1}{s-1}}+\sum _{n=0}^{\infty }{\frac {\gamma _{n}}{n!}}(1-s)^{n}.}"></span></dd></dl> <p>The constants <span class="texhtml"><i>γ</i><sub><i>n</i></sub></span> here are called the <a href="/wiki/Stieltjes_constants" title="Stieltjes constants">Stieltjes constants</a> and can be defined by the <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">limit</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{n}=\lim _{m\rightarrow \infty }{\left(\left(\sum _{k=1}^{m}{\frac {(\ln k)^{n}}{k}}\right)-{\frac {(\ln m)^{n+1}}{n+1}}\right)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>k</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mi>k</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>m</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{n}=\lim _{m\rightarrow \infty }{\left(\left(\sum _{k=1}^{m}{\frac {(\ln k)^{n}}{k}}\right)-{\frac {(\ln m)^{n+1}}{n+1}}\right)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5b36ba52ffe381add0f832e92aa3b02e25ed712" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.962ex; height:7.509ex;" alt="{\displaystyle \gamma _{n}=\lim _{m\rightarrow \infty }{\left(\left(\sum _{k=1}^{m}{\frac {(\ln k)^{n}}{k}}\right)-{\frac {(\ln m)^{n+1}}{n+1}}\right)}.}"></span></dd></dl> <p>The constant term <span class="texhtml"><i>γ</i><sub>0</sub></span> is the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler–Mascheroni constant</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Integral">Integral</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=21" title="Edit section: Integral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For all <span class="texhtml"><i>s</i> ∈ ℂ</span>, <span class="texhtml"><i>s</i> ≠ 1</span>, the integral relation (cf. <a href="/wiki/Abel%E2%80%93Plana_formula" title="Abel–Plana formula">Abel–Plana formula</a>) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \zeta (s)\ =\ {\frac {1}{\ s-1\ }}+{\frac {\ 1\ }{2}}+2\int _{0}^{\infty }{\frac {\sin(\ s\ \arctan t\ )}{\ \left(1+t^{2}\right)^{s/2}\left(e^{2\pi t}-1\right)\ }}\ \operatorname {d} t\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mn>1</mn> <mtext>&#xA0;</mtext> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mtext>&#xA0;</mtext> <mi>s</mi> <mtext>&#xA0;</mtext> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> <mtext>&#xA0;</mtext> <mo stretchy="false">)</mo> </mrow> <mrow> <mtext>&#xA0;</mtext> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \zeta (s)\ =\ {\frac {1}{\ s-1\ }}+{\frac {\ 1\ }{2}}+2\int _{0}^{\infty }{\frac {\sin(\ s\ \arctan t\ )}{\ \left(1+t^{2}\right)^{s/2}\left(e^{2\pi t}-1\right)\ }}\ \operatorname {d} t\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d689e777b0294c32ef6e625daf6cee795228984" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:57.721ex; height:7.009ex;" alt="{\displaystyle \ \zeta (s)\ =\ {\frac {1}{\ s-1\ }}+{\frac {\ 1\ }{2}}+2\int _{0}^{\infty }{\frac {\sin(\ s\ \arctan t\ )}{\ \left(1+t^{2}\right)^{s/2}\left(e^{2\pi t}-1\right)\ }}\ \operatorname {d} t\ }"></span></dd></dl> <p>holds true, which may be used for a numerical evaluation of the zeta function. </p> <div class="mw-heading mw-heading3"><h3 id="Rising_factorial">Rising factorial</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=22" title="Edit section: Rising factorial"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another series development using the <a href="/wiki/Pochhammer_symbol" class="mw-redirect" title="Pochhammer symbol">rising factorial</a> valid for the entire complex plane is <sup id="cite_ref-Knopp_31-1" class="reference"><a href="#cite_note-Knopp-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)={\frac {s}{s-1}}-\sum _{n=1}^{\infty }{\bigl (}\zeta (s+n)-1{\bigr )}{\frac {s(s+1)\cdots (s+n-1)}{(n+1)!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)={\frac {s}{s-1}}-\sum _{n=1}^{\infty }{\bigl (}\zeta (s+n)-1{\bigr )}{\frac {s(s+1)\cdots (s+n-1)}{(n+1)!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aef05d982557fc2f960946305d17f1c2ee31f48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:58.079ex; height:6.843ex;" alt="{\displaystyle \zeta (s)={\frac {s}{s-1}}-\sum _{n=1}^{\infty }{\bigl (}\zeta (s+n)-1{\bigr )}{\frac {s(s+1)\cdots (s+n-1)}{(n+1)!}}.}"></span></dd></dl> <p>This can be used recursively to extend the Dirichlet series definition to all complex numbers. </p><p>The Riemann zeta function also appears in a form similar to the Mellin transform in an integral over the <a href="/wiki/Gauss%E2%80%93Kuzmin%E2%80%93Wirsing_operator" title="Gauss–Kuzmin–Wirsing operator">Gauss–Kuzmin–Wirsing operator</a> acting on <span class="texhtml"><i>x</i><sup><i>s</i> − 1</sup></span>; that context gives rise to a series expansion in terms of the <a href="/wiki/Falling_factorial" class="mw-redirect" title="Falling factorial">falling factorial</a>.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Hadamard_product">Hadamard product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=23" title="Edit section: Hadamard product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On the basis of <a href="/wiki/Weierstrass_factorization_theorem" title="Weierstrass factorization theorem">Weierstrass's factorization theorem</a>, <a href="/wiki/Hadamard" class="mw-redirect" title="Hadamard">Hadamard</a> gave the <a href="/wiki/Infinite_product" title="Infinite product">infinite product</a> expansion </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)={\frac {e^{\left(\log(2\pi )-1-{\frac {\gamma }{2}}\right)s}}{2(s-1)\Gamma \left(1+{\frac {s}{2}}\right)}}\prod _{\rho }\left(1-{\frac {s}{\rho }}\right)e^{\frac {s}{\rho }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mi>s</mi> </mrow> </msup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mi>&#x03C1;<!-- ρ --></mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mi>&#x03C1;<!-- ρ --></mi> </mfrac> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)={\frac {e^{\left(\log(2\pi )-1-{\frac {\gamma }{2}}\right)s}}{2(s-1)\Gamma \left(1+{\frac {s}{2}}\right)}}\prod _{\rho }\left(1-{\frac {s}{\rho }}\right)e^{\frac {s}{\rho }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d40cc4315011346c4af33c07cdfef83c509df1f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:42.707ex; height:8.343ex;" alt="{\displaystyle \zeta (s)={\frac {e^{\left(\log(2\pi )-1-{\frac {\gamma }{2}}\right)s}}{2(s-1)\Gamma \left(1+{\frac {s}{2}}\right)}}\prod _{\rho }\left(1-{\frac {s}{\rho }}\right)e^{\frac {s}{\rho }},}"></span></dd></dl> <p>where the product is over the non-trivial zeros <span class="texhtml mvar" style="font-style:italic;">ρ</span> of <span class="texhtml"><i>ζ</i></span> and the letter <span class="texhtml mvar" style="font-style:italic;">γ</span> again denotes the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler–Mascheroni constant</a>. A simpler <a href="/wiki/Infinite_product" title="Infinite product">infinite product</a> expansion is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)=\pi ^{\frac {s}{2}}{\frac {\prod _{\rho }\left(1-{\frac {s}{\rho }}\right)}{2(s-1)\Gamma \left(1+{\frac {s}{2}}\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mi>&#x03C1;<!-- ρ --></mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)=\pi ^{\frac {s}{2}}{\frac {\prod _{\rho }\left(1-{\frac {s}{\rho }}\right)}{2(s-1)\Gamma \left(1+{\frac {s}{2}}\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/308e0c0b2db471d9d4eaf38da2b1ab6e4898b297" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:29.342ex; height:8.843ex;" alt="{\displaystyle \zeta (s)=\pi ^{\frac {s}{2}}{\frac {\prod _{\rho }\left(1-{\frac {s}{\rho }}\right)}{2(s-1)\Gamma \left(1+{\frac {s}{2}}\right)}}.}"></span></dd></dl> <p>This form clearly displays the simple pole at <span class="texhtml"><i>s</i> = 1</span>, the trivial zeros at −2,&#160;−4,&#160;... due to the gamma function term in the denominator, and the non-trivial zeros at <span class="texhtml"><i>s</i> = <i>ρ</i></span>. (To ensure convergence in the latter formula, the product should be taken over "matching pairs" of zeros, i.e. the factors for a pair of zeros of the form <span class="texhtml mvar" style="font-style:italic;">ρ</span> and <span class="texhtml">1 − <i>ρ</i></span> should be combined.) </p> <div class="mw-heading mw-heading3"><h3 id="Globally_convergent_series">Globally convergent series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=24" title="Edit section: Globally convergent series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A globally convergent series for the zeta function, valid for all complex numbers <span class="texhtml mvar" style="font-style:italic;">s</span> except <span class="texhtml"><i>s</i> = 1 + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">2π<i>i</i></span><span class="sr-only">/</span><span class="den">ln 2</span></span>&#8288;</span><i>n</i></span> for some integer <span class="texhtml mvar" style="font-style:italic;">n</span>, was conjectured by <a href="/wiki/Konrad_Knopp" title="Konrad Knopp">Konrad Knopp</a> in 1926 <sup id="cite_ref-blag2018_37-0" class="reference"><a href="#cite_note-blag2018-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> and proven by <a href="/wiki/Helmut_Hasse" title="Helmut Hasse">Helmut Hasse</a> in 1930<sup id="cite_ref-Hasse1930_38-0" class="reference"><a href="#cite_note-Hasse1930-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> (cf. <a href="/wiki/Euler_summation" title="Euler summation">Euler summation</a>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)={\frac {1}{1-2^{1-s}}}\sum _{n=0}^{\infty }{\frac {1}{2^{n+1}}}\sum _{k=0}^{n}{\binom {n}{k}}{\frac {(-1)^{k}}{(k+1)^{s}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)={\frac {1}{1-2^{1-s}}}\sum _{n=0}^{\infty }{\frac {1}{2^{n+1}}}\sum _{k=0}^{n}{\binom {n}{k}}{\frac {(-1)^{k}}{(k+1)^{s}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e8083dd600ae6b8f056a638d4f140b47abc8011" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:44.1ex; height:7.176ex;" alt="{\displaystyle \zeta (s)={\frac {1}{1-2^{1-s}}}\sum _{n=0}^{\infty }{\frac {1}{2^{n+1}}}\sum _{k=0}^{n}{\binom {n}{k}}{\frac {(-1)^{k}}{(k+1)^{s}}}.}"></span></dd></dl> <p>The series appeared in an appendix to Hasse's paper, and was published for the second time by Jonathan Sondow in 1994.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p><p>Hasse also proved the globally converging series </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=0}^{\infty }{\frac {1}{n+1}}\sum _{k=0}^{n}{\binom {n}{k}}{\frac {(-1)^{k}}{(k+1)^{s-1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=0}^{\infty }{\frac {1}{n+1}}\sum _{k=0}^{n}{\binom {n}{k}}{\frac {(-1)^{k}}{(k+1)^{s-1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02a8e399f217daa6ccbf79ca537540bfb367e692" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:43.294ex; height:7.176ex;" alt="{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=0}^{\infty }{\frac {1}{n+1}}\sum _{k=0}^{n}{\binom {n}{k}}{\frac {(-1)^{k}}{(k+1)^{s-1}}}}"></span></dd></dl> <p>in the same publication.<sup id="cite_ref-Hasse1930_38-1" class="reference"><a href="#cite_note-Hasse1930-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> Research by Iaroslav Blagouchine<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-blag2018_37-1" class="reference"><a href="#cite_note-blag2018-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> has found that a similar, equivalent series was published by <a href="/wiki/Joseph_Ser" title="Joseph Ser">Joseph Ser</a> in 1926.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1997 K. Maślanka gave another globally convergent (except <span class="texhtml">s = 1</span>) series for the Riemann zeta function: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{k=0}^{\infty }{\biggl (}\prod _{i=1}^{k}(i-{\frac {s}{2}}){\biggl )}{\frac {A_{k}}{k!}}={\frac {1}{s-1}}\sum _{k=0}^{\infty }{\biggl (}1-{\frac {s}{2}}{\biggl )}_{k}{\frac {A_{k}}{k!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{k=0}^{\infty }{\biggl (}\prod _{i=1}^{k}(i-{\frac {s}{2}}){\biggl )}{\frac {A_{k}}{k!}}={\frac {1}{s-1}}\sum _{k=0}^{\infty }{\biggl (}1-{\frac {s}{2}}{\biggl )}_{k}{\frac {A_{k}}{k!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/471084c94afec842efa2eececae28e012df5a6f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:62.385ex; height:7.509ex;" alt="{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{k=0}^{\infty }{\biggl (}\prod _{i=1}^{k}(i-{\frac {s}{2}}){\biggl )}{\frac {A_{k}}{k!}}={\frac {1}{s-1}}\sum _{k=0}^{\infty }{\biggl (}1-{\frac {s}{2}}{\biggl )}_{k}{\frac {A_{k}}{k!}}}"></span></dd></dl> <p>where real coefficients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72095229db907e86eb4343cb4736429fcc56507d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.832ex; height:2.509ex;" alt="{\displaystyle A_{k}}"></span> are given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{k}=\sum _{j=0}^{k}(-1)^{j}{\binom {k}{j}}(2j+1)\zeta (2j+2)=\sum _{j=0}^{k}{\binom {k}{j}}{\frac {B_{2j+2}\pi ^{2j+2}}{\left(2\right)_{j}\left({\frac {1}{2}}\right)_{j}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>j</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>j</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{k}=\sum _{j=0}^{k}(-1)^{j}{\binom {k}{j}}(2j+1)\zeta (2j+2)=\sum _{j=0}^{k}{\binom {k}{j}}{\frac {B_{2j+2}\pi ^{2j+2}}{\left(2\right)_{j}\left({\frac {1}{2}}\right)_{j}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bab78583646f7a680093d11e692b9bab82595af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:59.639ex; height:8.176ex;" alt="{\displaystyle A_{k}=\sum _{j=0}^{k}(-1)^{j}{\binom {k}{j}}(2j+1)\zeta (2j+2)=\sum _{j=0}^{k}{\binom {k}{j}}{\frac {B_{2j+2}\pi ^{2j+2}}{\left(2\right)_{j}\left({\frac {1}{2}}\right)_{j}}}}"></span></dd></dl> <p>Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f568bf6d34e97b9fdda0dc7e276d6c4501d2045" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.982ex; height:2.509ex;" alt="{\displaystyle B_{n}}"></span> are the Bernoulli numbers and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x)_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x)_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cd9ea305ea82c2adc62bee97f7178226f2940bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.228ex; height:2.843ex;" alt="{\displaystyle (x)_{k}}"></span> denotes the Pochhammer symbol.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p><p>Note that this representation of the zeta function is essentially an interpolation with nodes, where the nodes are points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=2,4,6,\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=2,4,6,\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61cb4a2621b1e87066f876921729538d349b9f82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.501ex; height:2.509ex;" alt="{\displaystyle s=2,4,6,\ldots }"></span>, i.e. exactly those where the zeta values are precisely known, as Euler showed. An elegant and very short proof of this representation of the zeta function, based on Carlson's theorem, was presented by Philippe Flajolet in 2006.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p><p>The asymptotic behavior of the coefficients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72095229db907e86eb4343cb4736429fcc56507d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.832ex; height:2.509ex;" alt="{\displaystyle A_{k}}"></span> is rather curious: for growing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> values, we observe regular oscillations with a nearly exponentially decreasing amplitude and slowly decreasing frequency (roughly as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k^{-2/3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k^{-2/3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82a486efbb6c10c3faa9da3a5649ce1ee77f3193" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.188ex; height:2.843ex;" alt="{\displaystyle k^{-2/3}}"></span>). Using the saddle point method, we can show that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{k}\sim {\frac {4\pi ^{3/2}}{\sqrt {3\kappa }}}\exp {\biggl (}-{\frac {3\kappa }{2}}+{\frac {\pi ^{2}}{4\kappa }}{\biggl )}\cos {\biggl (}{\frac {4\pi }{3}}-{\frac {3{\sqrt {3}}\kappa }{2}}+{\frac {{\sqrt {3}}\pi ^{2}}{4\kappa }}{\biggl )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> <msqrt> <mn>3</mn> <mi>&#x03BA;<!-- κ --></mi> </msqrt> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>&#x03BA;<!-- κ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03BA;<!-- κ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mi>&#x03BA;<!-- κ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>4</mn> <mi>&#x03BA;<!-- κ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{k}\sim {\frac {4\pi ^{3/2}}{\sqrt {3\kappa }}}\exp {\biggl (}-{\frac {3\kappa }{2}}+{\frac {\pi ^{2}}{4\kappa }}{\biggl )}\cos {\biggl (}{\frac {4\pi }{3}}-{\frac {3{\sqrt {3}}\kappa }{2}}+{\frac {{\sqrt {3}}\pi ^{2}}{4\kappa }}{\biggl )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7df591437c6cb6e355468accefa456bc6508d42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:61.142ex; height:6.843ex;" alt="{\displaystyle A_{k}\sim {\frac {4\pi ^{3/2}}{\sqrt {3\kappa }}}\exp {\biggl (}-{\frac {3\kappa }{2}}+{\frac {\pi ^{2}}{4\kappa }}{\biggl )}\cos {\biggl (}{\frac {4\pi }{3}}-{\frac {3{\sqrt {3}}\kappa }{2}}+{\frac {{\sqrt {3}}\pi ^{2}}{4\kappa }}{\biggl )}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BA;<!-- κ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ddec2e922c5caea4e47d04feef86e782dc8e6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:1.676ex;" alt="{\displaystyle \kappa }"></span> stands for: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa :={\sqrt[{3}]{\pi ^{2}k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BA;<!-- κ --></mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa :={\sqrt[{3}]{\pi ^{2}k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0339cf277c68851802c4df552e62d4b84e031820" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.008ex; height:3.343ex;" alt="{\displaystyle \kappa :={\sqrt[{3}]{\pi ^{2}k}}}"></span></dd></dl> <p>(see <sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> for details). </p><p>On the basis of this representation, in 2003 Luis Báez-Duarte provided a new criterion for the Riemann hypothesis.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> Namely, if we define the coefficients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d2f8052630e67b00d04e3487e1d68ed7070470b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.096ex; height:2.009ex;" alt="{\displaystyle c_{k}}"></span> as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{k}:=\sum _{j=0}^{k}(-1)^{j}{\binom {k}{j}}{\frac {1}{\zeta (2j+2)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>j</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{k}:=\sum _{j=0}^{k}(-1)^{j}{\binom {k}{j}}{\frac {1}{\zeta (2j+2)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3e698b5ea1e24ae7ddb8ddc8bdc42889de2d067" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:29.382ex; height:7.676ex;" alt="{\displaystyle c_{k}:=\sum _{j=0}^{k}(-1)^{j}{\binom {k}{j}}{\frac {1}{\zeta (2j+2)}}}"></span></dd></dl> <p>then the Riemann hypothesis is equivalent to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{k}={\mathcal {O}}{\biggl (}k^{-3/4+\varepsilon }{\biggl )}\qquad (\forall \varepsilon &gt;0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>&#x03B5;<!-- ε --></mi> <mo>&gt;</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{k}={\mathcal {O}}{\biggl (}k^{-3/4+\varepsilon }{\biggl )}\qquad (\forall \varepsilon &gt;0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e75c259ad8da6ee3e805b45ede7c7deceb4762" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.789ex; height:6.176ex;" alt="{\displaystyle c_{k}={\mathcal {O}}{\biggl (}k^{-3/4+\varepsilon }{\biggl )}\qquad (\forall \varepsilon &gt;0)}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Rapidly_convergent_series">Rapidly convergent series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=25" title="Edit section: Rapidly convergent series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Peter_Borwein" title="Peter Borwein">Peter Borwein</a> developed an algorithm that applies <a href="/wiki/Chebyshev_polynomial" class="mw-redirect" title="Chebyshev polynomial">Chebyshev polynomials</a> to the <a href="/wiki/Dirichlet_eta_function" title="Dirichlet eta function">Dirichlet eta function</a> to produce a <a href="/wiki/Dirichlet_eta_function#Borwein&#39;s_method" title="Dirichlet eta function">very rapidly convergent series suitable for high precision numerical calculations</a>.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Series_representation_at_positive_integers_via_the_primorial">Series representation at positive integers via the primorial</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=26" title="Edit section: Series representation at positive integers via the primorial"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (k)={\frac {2^{k}}{2^{k}-1}}+\sum _{r=2}^{\infty }{\frac {(p_{r-1}\#)^{k}}{J_{k}(p_{r}\#)}}\qquad k=2,3,\ldots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi mathvariant="normal">&#x0023;<!-- # --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mi mathvariant="normal">&#x0023;<!-- # --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mi>k</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (k)={\frac {2^{k}}{2^{k}-1}}+\sum _{r=2}^{\infty }{\frac {(p_{r-1}\#)^{k}}{J_{k}(p_{r}\#)}}\qquad k=2,3,\ldots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03b43a21967fc389206d243734a9dbefb3514f49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:47.905ex; height:7.009ex;" alt="{\displaystyle \zeta (k)={\frac {2^{k}}{2^{k}-1}}+\sum _{r=2}^{\infty }{\frac {(p_{r-1}\#)^{k}}{J_{k}(p_{r}\#)}}\qquad k=2,3,\ldots .}"></span></dd></dl> <p>Here <span class="texhtml"><i>p<sub>n</sub></i>#</span> is the <a href="/wiki/Primorial" title="Primorial">primorial</a> sequence and <span class="texhtml"><i>J<sub>k</sub></i></span> is <a href="/wiki/Jordan%27s_totient_function" title="Jordan&#39;s totient function">Jordan's totient function</a>.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Series_representation_by_the_incomplete_poly-Bernoulli_numbers">Series representation by the incomplete poly-Bernoulli numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=27" title="Edit section: Series representation by the incomplete poly-Bernoulli numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The function <span class="texhtml mvar" style="font-style:italic;">ζ</span> can be represented, for <span class="texhtml">Re(<i>s</i>) &gt; 1</span>, by the infinite series </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)=\sum _{n=0}^{\infty }B_{n,\geq 2}^{(s)}{\frac {(W_{k}(-1))^{n}}{n!}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mo>&#x2265;<!-- ≥ --></mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)=\sum _{n=0}^{\infty }B_{n,\geq 2}^{(s)}{\frac {(W_{k}(-1))^{n}}{n!}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45b6c460ffb2250ec4fddb5e2977d0cdb2220b11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.949ex; height:6.843ex;" alt="{\displaystyle \zeta (s)=\sum _{n=0}^{\infty }B_{n,\geq 2}^{(s)}{\frac {(W_{k}(-1))^{n}}{n!}},}"></span></dd></dl> <p>where <span class="texhtml"><i>k</i> ∈ {−1, 0}</span>, <span class="texhtml"><i>W<sub>k</sub></i></span> is the <span class="texhtml mvar" style="font-style:italic;">k</span>th branch of the <a href="/wiki/Lambert_W_function" title="Lambert W function">Lambert <span class="texhtml mvar" style="font-style:italic;">W</span>-function</a>, and <span class="texhtml"><i>B</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">(<i>μ</i>)</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i>, ≥2</sub></span></span></span> is an incomplete poly-Bernoulli number.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="The_Mellin_transform_of_the_Engel_map">The Mellin transform of the Engel map</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=28" title="Edit section: The Mellin transform of the Engel map"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)=x\left(1+\left\lfloor x^{-1}\right\rfloor \right)-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <mo>&#x230A;</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x230B;</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)=x\left(1+\left\lfloor x^{-1}\right\rfloor \right)-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f72dfffefdae0069068211e2e6ffb60f46c153eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.063ex; height:3.343ex;" alt="{\displaystyle g(x)=x\left(1+\left\lfloor x^{-1}\right\rfloor \right)-1}"></span> is iterated to find the coefficients appearing in <a href="/wiki/Engel_expansion" title="Engel expansion">Engel expansions</a>.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Mellin_transform" title="Mellin transform">Mellin transform</a> of the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ca91363022bd5e4dcb17e5ef29f78b8ef00b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.255ex; height:2.843ex;" alt="{\displaystyle g(x)}"></span> is related to the Riemann zeta function by the formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{0}^{1}g(x)x^{s-1}\,dx&amp;=\sum _{n=1}^{\infty }\int _{\frac {1}{n+1}}^{\frac {1}{n}}(x(n+1)-1)x^{s-1}\,dx\\[6pt]&amp;=\sum _{n=1}^{\infty }{\frac {n^{-s}(s-1)+(n+1)^{-s-1}(n^{2}+2n+1)+n^{-s-1}s-n^{1-s}}{(s+1)s(n+1)}}\\[6pt]&amp;={\frac {\zeta (s+1)}{s+1}}-{\frac {1}{s(s+1)}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\int _{0}^{1}g(x)x^{s-1}\,dx&amp;=\sum _{n=1}^{\infty }\int _{\frac {1}{n+1}}^{\frac {1}{n}}(x(n+1)-1)x^{s-1}\,dx\\[6pt]&amp;=\sum _{n=1}^{\infty }{\frac {n^{-s}(s-1)+(n+1)^{-s-1}(n^{2}+2n+1)+n^{-s-1}s-n^{1-s}}{(s+1)s(n+1)}}\\[6pt]&amp;={\frac {\zeta (s+1)}{s+1}}-{\frac {1}{s(s+1)}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e030b32f7b471b521e7cc74a30548917e1d5443" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.671ex; width:79.669ex; height:24.509ex;" alt="{\displaystyle {\begin{aligned}\int _{0}^{1}g(x)x^{s-1}\,dx&amp;=\sum _{n=1}^{\infty }\int _{\frac {1}{n+1}}^{\frac {1}{n}}(x(n+1)-1)x^{s-1}\,dx\\[6pt]&amp;=\sum _{n=1}^{\infty }{\frac {n^{-s}(s-1)+(n+1)^{-s-1}(n^{2}+2n+1)+n^{-s-1}s-n^{1-s}}{(s+1)s(n+1)}}\\[6pt]&amp;={\frac {\zeta (s+1)}{s+1}}-{\frac {1}{s(s+1)}}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Thue-Morse_sequence">Thue-Morse sequence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=29" title="Edit section: Thue-Morse sequence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Certain linear combinations of Dirichlet series whose coefficients are terms of the <a href="/wiki/Thue-Morse_sequence" class="mw-redirect" title="Thue-Morse sequence">Thue-Morse sequence</a> give rise to identities involving the Riemann Zeta function (Tóth, 2022 <sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup>). For instance: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{n\geq 1}{\frac {5t_{n-1}+3t_{n}}{n^{2}}}&amp;=4\zeta (2)={\frac {2\pi ^{2}}{3}},\\\sum _{n\geq 1}{\frac {9t_{n-1}+7t_{n}}{n^{3}}}&amp;=8\zeta (3),\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>5</mn> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>4</mn> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>9</mn> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>7</mn> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>8</mn> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{n\geq 1}{\frac {5t_{n-1}+3t_{n}}{n^{2}}}&amp;=4\zeta (2)={\frac {2\pi ^{2}}{3}},\\\sum _{n\geq 1}{\frac {9t_{n-1}+7t_{n}}{n^{3}}}&amp;=8\zeta (3),\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c86839ac7944330fb8b82dbdd6c87ae80f99f6f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:33.172ex; height:13.843ex;" alt="{\displaystyle {\begin{aligned}\sum _{n\geq 1}{\frac {5t_{n-1}+3t_{n}}{n^{2}}}&amp;=4\zeta (2)={\frac {2\pi ^{2}}{3}},\\\sum _{n\geq 1}{\frac {9t_{n-1}+7t_{n}}{n^{3}}}&amp;=8\zeta (3),\end{aligned}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (t_{n})_{n\geq 0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (t_{n})_{n\geq 0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14bd857801110e4b9e904aefe66b16d98536828" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.186ex; height:2.843ex;" alt="{\displaystyle (t_{n})_{n\geq 0}}"></span> is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{\rm {th}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">h</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{\rm {th}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d964c2d57fab47cb34cb1ef2b2c8d96f3e78e7e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.181ex; height:2.676ex;" alt="{\displaystyle n^{\rm {th}}}"></span> term of the Thue-Morse sequence. In fact, for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> with real part greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>, we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2^{s}+1)\sum _{n\geq 1}{\frac {t_{n-1}}{n^{s}}}+(2^{s}-1)\sum _{n\geq 1}{\frac {t_{n}}{n^{s}}}=2^{s}\zeta (s).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2^{s}+1)\sum _{n\geq 1}{\frac {t_{n-1}}{n^{s}}}+(2^{s}-1)\sum _{n\geq 1}{\frac {t_{n}}{n^{s}}}=2^{s}\zeta (s).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b587abde1267f39dd6d25ab6c5fafe217c0b629a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:45.189ex; height:6.509ex;" alt="{\displaystyle (2^{s}+1)\sum _{n\geq 1}{\frac {t_{n-1}}{n^{s}}}+(2^{s}-1)\sum _{n\geq 1}{\frac {t_{n}}{n^{s}}}=2^{s}\zeta (s).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="In_nth_dimensions">In nth dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=30" title="Edit section: In nth dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The zeta function can also be represented as an nth amount of integrals: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (n)=\int _{\cdots }\iint _{[0,1]^{n}}{\frac {dz_{1}\,dz_{2}\ldots \,dz_{n}}{1-z_{1}\,z_{2}\ldots \,z_{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <msub> <mo>&#x222C;<!-- ∬ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <mspace width="thinmathspace" /> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (n)=\int _{\cdots }\iint _{[0,1]^{n}}{\frac {dz_{1}\,dz_{2}\ldots \,dz_{n}}{1-z_{1}\,z_{2}\ldots \,z_{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fdbaeae8149f84d0316c3c4b15a0541e55ee79b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.035ex; height:6.176ex;" alt="{\displaystyle \zeta (n)=\int _{\cdots }\iint _{[0,1]^{n}}{\frac {dz_{1}\,dz_{2}\ldots \,dz_{n}}{1-z_{1}\,z_{2}\ldots \,z_{n}}}}"></span> </p><p>and it only works for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} /\{1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} /\{1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adec1a218419dc35fec8b6503787800d3193030d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.563ex; height:2.843ex;" alt="{\displaystyle n\in \mathbb {N} /\{1\}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Numerical_algorithms">Numerical algorithms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=31" title="Edit section: Numerical algorithms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A classical algorithm, in use prior to about 1930, proceeds by applying the <a href="/wiki/Euler-Maclaurin_formula" class="mw-redirect" title="Euler-Maclaurin formula">Euler-Maclaurin formula</a> to obtain, for <i>n</i> and <i>m</i> positive integers, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)=\sum _{j=1}^{n-1}j^{-s}+{\tfrac {1}{2}}n^{-s}+{\frac {n^{1-s}}{s-1}}+\sum _{k=1}^{m}T_{k,n}(s)+E_{m,n}(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)=\sum _{j=1}^{n-1}j^{-s}+{\tfrac {1}{2}}n^{-s}+{\frac {n^{1-s}}{s-1}}+\sum _{k=1}^{m}T_{k,n}(s)+E_{m,n}(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcedbaa43360a1fd9aece6db06ec6c004c92791a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:54.966ex; height:7.676ex;" alt="{\displaystyle \zeta (s)=\sum _{j=1}^{n-1}j^{-s}+{\tfrac {1}{2}}n^{-s}+{\frac {n^{1-s}}{s-1}}+\sum _{k=1}^{m}T_{k,n}(s)+E_{m,n}(s)}"></span></dd></dl> <p>where, letting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d01575253488226c50dd432a9a4c1992f2990159" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.675ex; height:2.509ex;" alt="{\displaystyle B_{2k}}"></span> denote the indicated <a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli number</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{k,n}(s)={\frac {B_{2k}}{(2k)!}}n^{1-s-2k}\prod _{j=0}^{2k-2}(s+j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>k</mi> </mrow> </msup> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{k,n}(s)={\frac {B_{2k}}{(2k)!}}n^{1-s-2k}\prod _{j=0}^{2k-2}(s+j)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4311a4cac3a221ec90f3338811d50fdd9c318165" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:33.874ex; height:7.676ex;" alt="{\displaystyle T_{k,n}(s)={\frac {B_{2k}}{(2k)!}}n^{1-s-2k}\prod _{j=0}^{2k-2}(s+j)}"></span></dd></dl> <p>and the error satisfies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |E_{m,n}(s)|&lt;\left|{\frac {s+2m+1}{\sigma +2m+1}}T_{m+1,n}(s)\right|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mo>+</mo> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |E_{m,n}(s)|&lt;\left|{\frac {s+2m+1}{\sigma +2m+1}}T_{m+1,n}(s)\right|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/361965b8b53ec77bef0c2bd826a3222285717ac4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:36.142ex; height:5.509ex;" alt="{\displaystyle |E_{m,n}(s)|&lt;\left|{\frac {s+2m+1}{\sigma +2m+1}}T_{m+1,n}(s)\right|,}"></span></dd></dl> <p>with <i>&#963;</i> = Re(<i>s</i>).<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p>A modern numerical algorithm is the <a href="/wiki/Odlyzko%E2%80%93Sch%C3%B6nhage_algorithm" title="Odlyzko–Schönhage algorithm">Odlyzko–Schönhage algorithm</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=32" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The zeta function occurs in applied <a href="/wiki/Statistics" title="Statistics">statistics</a> including <a href="/wiki/Zipf%27s_law" title="Zipf&#39;s law">Zipf's law</a>, <a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="Zipf–Mandelbrot law">Zipf–Mandelbrot law</a>, and <a href="/wiki/Lotka%27s_law" title="Lotka&#39;s law">Lotka's law</a>. </p><p><a href="/wiki/Zeta_function_regularization" title="Zeta function regularization">Zeta function regularization</a> is used as one possible means of <a href="/wiki/Regularization_(physics)" title="Regularization (physics)">regularization</a> of <a href="/wiki/Divergent_series" title="Divergent series">divergent series</a> and <a href="/wiki/Divergent_integral" class="mw-redirect" title="Divergent integral">divergent integrals</a> in <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>. In one notable example, the Riemann zeta function shows up explicitly in one method of calculating the <a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a>. The zeta function is also useful for the analysis of <a href="/wiki/Dynamical_systems" class="mw-redirect" title="Dynamical systems">dynamical systems</a>.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Musical_tuning">Musical tuning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=33" title="Edit section: Musical tuning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the theory of <a href="/wiki/Musical_tuning" title="Musical tuning">musical tunings</a>, the zeta function can be used to find <a href="/wiki/Equal_temperament" title="Equal temperament">equal divisions of the octave</a> (EDOs) that closely approximate the intervals of the <a href="/wiki/Harmonic_series_(music)" title="Harmonic series (music)">harmonic series</a>. For increasing values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/592bced0c39b10fc90e74c6a66223abfbfb029de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.358ex; height:2.176ex;" alt="{\displaystyle t\in \mathbb {R} }"></span>, the value of </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\vert \zeta \left({\frac {1}{2}}+{\frac {2\pi {i}}{\ln {(2)}}}t\right)\right\vert }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </mrow> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mrow> </mfrac> </mrow> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\vert \zeta \left({\frac {1}{2}}+{\frac {2\pi {i}}{\ln {(2)}}}t\right)\right\vert }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6990e640855b94053af469b0ea80b63dce441a7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.01ex; height:6.509ex;" alt="{\displaystyle \left\vert \zeta \left({\frac {1}{2}}+{\frac {2\pi {i}}{\ln {(2)}}}t\right)\right\vert }"></span></dd></dl> <p>peaks near integers that correspond to such EDOs.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> Examples include popular choices such as 12, 19, and 53.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Infinite_series">Infinite series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=34" title="Edit section: Infinite series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The zeta function evaluated at equidistant positive integers appears in infinite series representations of a number of constants.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=2}^{\infty }{\bigl (}\zeta (n)-1{\bigr )}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=2}^{\infty }{\bigl (}\zeta (n)-1{\bigr )}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8fae8dd436dacd8a9f6264c8de78db55b70bbc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.435ex; height:6.843ex;" alt="{\displaystyle \sum _{n=2}^{\infty }{\bigl (}\zeta (n)-1{\bigr )}=1}"></span></li></ul> <p>In fact the even and odd terms give the two sums </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\bigl (}\zeta (2n)-1{\bigr )}={\frac {3}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\bigl (}\zeta (2n)-1{\bigr )}={\frac {3}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59de0623a80e18e1b0a9f081f9c7c86175c29146" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.433ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\bigl (}\zeta (2n)-1{\bigr )}={\frac {3}{4}}}"></span></li></ul> <p>and </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\bigl (}\zeta (2n+1)-1{\bigr )}={\frac {1}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\bigl (}\zeta (2n+1)-1{\bigr )}={\frac {1}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a42c47494e3bfe4d5be6f10ea3c9131b76a2d7b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.436ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\bigl (}\zeta (2n+1)-1{\bigr )}={\frac {1}{4}}}"></span></li></ul> <p>Parametrized versions of the above sums are given by </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }(\zeta (2n)-1)\,t^{2n}={\frac {t^{2}}{t^{2}-1}}+{\frac {1}{2}}\left(1-\pi t\cot(t\pi )\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }(\zeta (2n)-1)\,t^{2n}={\frac {t^{2}}{t^{2}-1}}+{\frac {1}{2}}\left(1-\pi t\cot(t\pi )\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b83308eb216a26952fa784532b72e07f1275fabc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:48.405ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }(\zeta (2n)-1)\,t^{2n}={\frac {t^{2}}{t^{2}-1}}+{\frac {1}{2}}\left(1-\pi t\cot(t\pi )\right)}"></span></li></ul> <p>and </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }(\zeta (2n+1)-1)\,t^{2n}={\frac {t^{2}}{t^{2}-1}}-{\frac {1}{2}}\left(\psi ^{0}(t)+\psi ^{0}(-t)\right)-\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }(\zeta (2n+1)-1)\,t^{2n}={\frac {t^{2}}{t^{2}-1}}-{\frac {1}{2}}\left(\psi ^{0}(t)+\psi ^{0}(-t)\right)-\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7836c087c881ce8782c966fbddf8d51e5a39cf71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:58.27ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }(\zeta (2n+1)-1)\,t^{2n}={\frac {t^{2}}{t^{2}-1}}-{\frac {1}{2}}\left(\psi ^{0}(t)+\psi ^{0}(-t)\right)-\gamma }"></span></li></ul> <p>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |t|&lt;2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |t|&lt;2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61194a1f0eb313fc72639add2d635df5e396d354" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.394ex; height:2.843ex;" alt="{\displaystyle |t|&lt;2}"></span> and where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> are the <a href="/wiki/Polygamma_function" title="Polygamma function">polygamma function</a> and <a href="/wiki/Euler%27s_constant" title="Euler&#39;s constant">Euler's constant</a>, respectively, as well as </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{n}}\,t^{2n}=\log \left({\dfrac {1-t^{2}}{\operatorname {sinc} (\pi \,t)}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi>sinc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mspace width="thinmathspace" /> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{n}}\,t^{2n}=\log \left({\dfrac {1-t^{2}}{\operatorname {sinc} (\pi \,t)}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcb0b7b1eeeede755faf8bf3463a1eef71ff0957" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.893ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{n}}\,t^{2n}=\log \left({\dfrac {1-t^{2}}{\operatorname {sinc} (\pi \,t)}}\right)}"></span></li></ul> <p>all of which are continuous at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/970dea4a5f5ec5355c4cdd62f6396fbc8b1baaa1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t=1}"></span>. Other sums include </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=2}^{\infty }{\frac {\zeta (n)-1}{n}}=1-\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=2}^{\infty }{\frac {\zeta (n)-1}{n}}=1-\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a08241be47efa01f9a27c070380118fcffab37d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.244ex; height:6.843ex;" alt="{\displaystyle \sum _{n=2}^{\infty }{\frac {\zeta (n)-1}{n}}=1-\gamma }"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{n}}=\ln 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{n}}=\ln 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18bf2bd526cb0082a7ab1a68e33a943783c8a1bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.63ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{n}}=\ln 2}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=2}^{\infty }{\frac {\zeta (n)-1}{n}}\left(\left({\tfrac {3}{2}}\right)^{n-1}-1\right)={\frac {1}{3}}\ln \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=2}^{\infty }{\frac {\zeta (n)-1}{n}}\left(\left({\tfrac {3}{2}}\right)^{n-1}-1\right)={\frac {1}{3}}\ln \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5e6f5c48af4dba6bb20b1a012df33894bdcc153" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:37.587ex; height:6.843ex;" alt="{\displaystyle \sum _{n=2}^{\infty }{\frac {\zeta (n)-1}{n}}\left(\left({\tfrac {3}{2}}\right)^{n-1}-1\right)={\frac {1}{3}}\ln \pi }"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\bigl (}\zeta (4n)-1{\bigr )}={\frac {7}{8}}-{\frac {\pi }{4}}\left({\frac {e^{2\pi }+1}{e^{2\pi }-1}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>7</mn> <mn>8</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\bigl (}\zeta (4n)-1{\bigr )}={\frac {7}{8}}-{\frac {\pi }{4}}\left({\frac {e^{2\pi }+1}{e^{2\pi }-1}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/827ac299e8811d4cf0af4648b92e6519f909b12c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.203ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\bigl (}\zeta (4n)-1{\bigr )}={\frac {7}{8}}-{\frac {\pi }{4}}\left({\frac {e^{2\pi }+1}{e^{2\pi }-1}}\right).}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=2}^{\infty }{\frac {\zeta (n)-1}{n}}\Im {\bigl (}(1+i)^{n}-1-i^{n}{\bigr )}={\frac {\pi }{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=2}^{\infty }{\frac {\zeta (n)-1}{n}}\Im {\bigl (}(1+i)^{n}-1-i^{n}{\bigr )}={\frac {\pi }{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd33b640d6c0bf1a7be6f2536f20096c24b7817" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.262ex; height:6.843ex;" alt="{\displaystyle \sum _{n=2}^{\infty }{\frac {\zeta (n)-1}{n}}\Im {\bigl (}(1+i)^{n}-1-i^{n}{\bigr )}={\frac {\pi }{4}}}"></span></li></ul> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Im }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Im }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3e0312a4871a615cbdae168be102907f0a51e95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.288ex; height:2.176ex;" alt="{\displaystyle \Im }"></span> denotes the <a href="/wiki/Imaginary_part" class="mw-redirect" title="Imaginary part">imaginary part</a> of a complex number. </p><p>Another interesting series that relates to the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> of the <a href="/wiki/Lemniscate_constant" title="Lemniscate constant">lemniscate constant</a> is the following </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=2}^{\infty }\left[{\frac {2(-1)^{n}\zeta (n)}{4^{n}n}}-{\frac {(-1)^{n}\zeta (n)}{2^{n}n}}\right]=\ln \left({\frac {\varpi }{2{\sqrt {2}}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>n</mi> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D6;<!-- ϖ --></mi> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=2}^{\infty }\left[{\frac {2(-1)^{n}\zeta (n)}{4^{n}n}}-{\frac {(-1)^{n}\zeta (n)}{2^{n}n}}\right]=\ln \left({\frac {\varpi }{2{\sqrt {2}}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2458d76fa250bf8e6073c0983d369ad65337e9c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:46.023ex; height:6.843ex;" alt="{\displaystyle \sum _{n=2}^{\infty }\left[{\frac {2(-1)^{n}\zeta (n)}{4^{n}n}}-{\frac {(-1)^{n}\zeta (n)}{2^{n}n}}\right]=\ln \left({\frac {\varpi }{2{\sqrt {2}}}}\right)}"></span></li></ul> <p><br /> There are yet more formulas in the article <a href="/wiki/Harmonic_number#Relation_to_the_Riemann_zeta_function" title="Harmonic number">Harmonic number.</a> </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=35" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are a number of related <a href="/wiki/Zeta_function" class="mw-redirect" title="Zeta function">zeta functions</a> that can be considered to be generalizations of the Riemann zeta function. These include the <a href="/wiki/Hurwitz_zeta_function" title="Hurwitz zeta function">Hurwitz zeta function</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s,q)=\sum _{k=0}^{\infty }{\frac {1}{(k+q)^{s}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s,q)=\sum _{k=0}^{\infty }{\frac {1}{(k+q)^{s}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38163e2c24d461276aea2cb59ea13cbc7fceb28d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.709ex; height:7.009ex;" alt="{\displaystyle \zeta (s,q)=\sum _{k=0}^{\infty }{\frac {1}{(k+q)^{s}}}}"></span></dd></dl> <p>(the convergent series representation was given by <a href="/wiki/Helmut_Hasse" title="Helmut Hasse">Helmut Hasse</a> in 1930,<sup id="cite_ref-Hasse1930_38-2" class="reference"><a href="#cite_note-Hasse1930-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> cf. <a href="/wiki/Hurwitz_zeta_function" title="Hurwitz zeta function">Hurwitz zeta function</a>), which coincides with the Riemann zeta function when <span class="texhtml"><i>q</i> = 1</span> (the lower limit of summation in the Hurwitz zeta function is 0, not 1), the <a href="/wiki/Dirichlet_L-function" title="Dirichlet L-function">Dirichlet <span class="texhtml mvar" style="font-style:italic;">L</span>-functions</a> and the <a href="/wiki/Dedekind_zeta_function" title="Dedekind zeta function">Dedekind zeta function</a>. For other related functions see the articles <a href="/wiki/Zeta_function" class="mw-redirect" title="Zeta function">zeta function</a> and <a href="/wiki/L-function" title="L-function"><span class="texhtml mvar" style="font-style:italic;">L</span>-function</a>. </p><p>The <a href="/wiki/Polylogarithm" title="Polylogarithm">polylogarithm</a> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{s}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Li</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{s}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79dcba01f9662ced9021bef451e4dfc11273940f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.892ex; height:6.843ex;" alt="{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{s}}}}"></span></dd></dl> <p>which coincides with the Riemann zeta function when <span class="texhtml"><i>z</i> = 1</span>. The <a href="/wiki/Clausen_function" title="Clausen function">Clausen function</a> <span class="texhtml">Cl<sub><i>s</i></sub>(<i>θ</i>)</span> can be chosen as the real or imaginary part of <span class="texhtml">Li<sub><i>s</i></sub>(<i>e</i><span style="padding-left:0.12em;"><sup><i>iθ</i></sup></span>)</span>. </p><p>The <a href="/wiki/Lerch_transcendent" title="Lerch transcendent">Lerch transcendent</a> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (z,s,q)=\sum _{k=0}^{\infty }{\frac {z^{k}}{(k+q)^{s}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>,</mo> <mi>s</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (z,s,q)=\sum _{k=0}^{\infty }{\frac {z^{k}}{(k+q)^{s}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36c9cbd553de34d677b0a0e3c4ba1b859e83591c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.414ex; height:7.009ex;" alt="{\displaystyle \Phi (z,s,q)=\sum _{k=0}^{\infty }{\frac {z^{k}}{(k+q)^{s}}}}"></span></dd></dl> <p>which coincides with the Riemann zeta function when <span class="texhtml"><i>z</i> = 1</span> and <span class="texhtml"><i>q</i> = 1</span> (the lower limit of summation in the Lerch transcendent is&#160;0, not&#160;1). </p><p>The <a href="/wiki/Multiple_zeta_functions" class="mw-redirect" title="Multiple zeta functions">multiple zeta functions</a> are defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s_{1},s_{2},\ldots ,s_{n})=\sum _{k_{1}&gt;k_{2}&gt;\cdots &gt;k_{n}&gt;0}{k_{1}}^{-s_{1}}{k_{2}}^{-s_{2}}\cdots {k_{n}}^{-s_{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&gt;</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&gt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&gt;</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> </mrow> </munder> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo>&#x22EF;<!-- ⋯ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s_{1},s_{2},\ldots ,s_{n})=\sum _{k_{1}&gt;k_{2}&gt;\cdots &gt;k_{n}&gt;0}{k_{1}}^{-s_{1}}{k_{2}}^{-s_{2}}\cdots {k_{n}}^{-s_{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/599ae2f60b54ef2a1bfa8579459ad841d246f0ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:52.838ex; height:5.843ex;" alt="{\displaystyle \zeta (s_{1},s_{2},\ldots ,s_{n})=\sum _{k_{1}&gt;k_{2}&gt;\cdots &gt;k_{n}&gt;0}{k_{1}}^{-s_{1}}{k_{2}}^{-s_{2}}\cdots {k_{n}}^{-s_{n}}.}"></span></dd></dl> <p>One can analytically continue these functions to the <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional complex space. The special values taken by these functions at positive integer arguments are called <a href="/wiki/Multiple_zeta_values" class="mw-redirect" title="Multiple zeta values">multiple zeta values</a> by number theorists and have been connected to many different branches in mathematics and physics. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=36" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%C2%B7%C2%B7%C2%B7" class="mw-redirect" title="1 + 2 + 3 + 4 + ···">1 + 2 + 3 + 4 + ···</a></li> <li><a href="/wiki/Arithmetic_zeta_function" title="Arithmetic zeta function">Arithmetic zeta function</a></li> <li><a href="/wiki/Generalized_Riemann_hypothesis" title="Generalized Riemann hypothesis">Generalized Riemann hypothesis</a></li> <li><a href="/wiki/Lehmer_pair" title="Lehmer pair">Lehmer pair</a></li> <li><a href="/wiki/Prime_zeta_function" title="Prime zeta function">Prime zeta function</a></li> <li><a href="/wiki/Riemann_Xi_function" class="mw-redirect" title="Riemann Xi function">Riemann Xi function</a></li> <li><a href="/wiki/Renormalization" title="Renormalization">Renormalization</a></li> <li><a href="/wiki/Riemann%E2%80%93Siegel_theta_function" title="Riemann–Siegel theta function">Riemann–Siegel theta function</a></li> <li><a href="/wiki/ZetaGrid" title="ZetaGrid">ZetaGrid</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=37" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 25em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://nbviewer.ipython.org/github/empet/Math/blob/master/DomainColoring.ipynb">"Jupyter Notebook Viewer"</a>. <i>Nbviewer.ipython.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">4 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Nbviewer.ipython.org&amp;rft.atitle=Jupyter+Notebook+Viewer&amp;rft_id=http%3A%2F%2Fnbviewer.ipython.org%2Fgithub%2Fempet%2FMath%2Fblob%2Fmaster%2FDomainColoring.ipynb&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-:0-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteudingSuriajaya2020" class="citation journal cs1">Steuding, Jörn; Suriajaya, Ade Irma (1 November 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs40315-020-00316-x">"Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines"</a>. <i>Computational Methods and Function Theory</i>. <b>20</b> (3): <span class="nowrap">389–</span>401. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs40315-020-00316-x">10.1007/s40315-020-00316-x</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2324%2F4483207">2324/4483207</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2195-3724">2195-3724</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:216323223">216323223</a>. <q>Theorem 2 implies that ζ has an essential singularity at infinity</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computational+Methods+and+Function+Theory&amp;rft.atitle=Value-Distribution+of+the+Riemann+Zeta-Function+Along+Its+Julia+Lines&amp;rft.volume=20&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E389-%3C%2Fspan%3E401&amp;rft.date=2020-11-01&amp;rft_id=info%3Ahdl%2F2324%2F4483207&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A216323223%23id-name%3DS2CID&amp;rft.issn=2195-3724&amp;rft_id=info%3Adoi%2F10.1007%2Fs40315-020-00316-x&amp;rft.aulast=Steuding&amp;rft.aufirst=J%C3%B6rn&amp;rft.au=Suriajaya%2C+Ade+Irma&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs40315-020-00316-x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBombieri" class="citation web cs1">Bombieri, Enrico. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151222090027/http://www.claymath.org/sites/default/files/official_problem_description.pdf">"The Riemann Hypothesis – official problem description"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/Clay_Mathematics_Institute" title="Clay Mathematics Institute">Clay Mathematics Institute</a>. Archived from <a rel="nofollow" class="external text" href="http://www.claymath.org/sites/default/files/official_problem_description.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 22 December 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">8 August</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Riemann+Hypothesis+%E2%80%93+official+problem+description&amp;rft.pub=Clay+Mathematics+Institute&amp;rft.aulast=Bombieri&amp;rft.aufirst=Enrico&amp;rft_id=http%3A%2F%2Fwww.claymath.org%2Fsites%2Fdefault%2Ffiles%2Fofficial_problem_description.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-devlin-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-devlin_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevlin2002" class="citation book cs1"><a href="/wiki/Keith_Devlin" title="Keith Devlin">Devlin, Keith</a> (2002). <i>The Millennium Problems: The seven greatest unsolved mathematical puzzles of our time</i>. New York: Barnes &amp; Noble. pp.&#160;<span class="nowrap">43–</span>47. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7607-8659-8" title="Special:BookSources/978-0-7607-8659-8"><bdi>978-0-7607-8659-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Millennium+Problems%3A+The+seven+greatest+unsolved+mathematical+puzzles+of+our+time&amp;rft.place=New+York&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E43-%3C%2Fspan%3E47&amp;rft.pub=Barnes+%26+Noble&amp;rft.date=2002&amp;rft.isbn=978-0-7607-8659-8&amp;rft.aulast=Devlin&amp;rft.aufirst=Keith&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSandifer2007" class="citation book cs1">Sandifer, Charles Edward (2007). <i>How Euler Did It</i>. Mathematical Association of America. p.&#160;193. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-88385-563-8" title="Special:BookSources/978-0-88385-563-8"><bdi>978-0-88385-563-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=How+Euler+Did+It&amp;rft.pages=193&amp;rft.pub=Mathematical+Association+of+America&amp;rft.date=2007&amp;rft.isbn=978-0-88385-563-8&amp;rft.aulast=Sandifer&amp;rft.aufirst=Charles+Edward&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTitchmarsh1986" class="citation book cs1">Titchmarsh, E.C. (1986). <i>The Theory of the Riemann Zeta Function</i> (2nd&#160;ed.). <a href="/wiki/Oxford" title="Oxford">Oxford</a>, UK: Oxford Science Publications. pp.&#160;<span class="nowrap">21–</span>22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-19-853369-1" title="Special:BookSources/0-19-853369-1"><bdi>0-19-853369-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+the+Riemann+Zeta+Function&amp;rft.place=Oxford%2C+UK&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E21-%3C%2Fspan%3E22&amp;rft.edition=2nd&amp;rft.pub=Oxford+Science+Publications&amp;rft.date=1986&amp;rft.isbn=0-19-853369-1&amp;rft.aulast=Titchmarsh&amp;rft.aufirst=E.C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlagouchine2018" class="citation conference cs1">Blagouchine, I.V. (1 March 2018). <a rel="nofollow" class="external text" href="https://www.mathnet.ru/php/seminars.phtml?&amp;presentid=19339&amp;option_lang=eng"><i>The history of the functional equation of the zeta-function</i></a>. Seminar on the History of Mathematics. St.&#160;Petersburg, RU: Steklov Institute of Mathematics;</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=The+history+of+the+functional+equation+of+the+zeta-function&amp;rft.place=St.+Petersburg%2C+RU&amp;rft.pub=Steklov+Institute+of+Mathematics&amp;rft.date=2018-03-01&amp;rft.aulast=Blagouchine&amp;rft.aufirst=I.V.&amp;rft_id=http%3A%2F%2Fwww.mathnet.ru%2Fphp%2Fseminars.phtml%3F%26presentid%3D19339%26option_lang%3Deng&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180502212646/https://iblagouchine.perso.centrale-marseille.fr/Blagouchine-The-history-of-the-functional-equation-of-the-zeta-function-(1-March-2018).php">"online PDF"</a>. Archived from <a rel="nofollow" class="external text" href="https://iblagouchine.perso.centrale-marseille.fr/Blagouchine-The-history-of-the-functional-equation-of-the-zeta-function-(1-March-2018).php">the original</a> on 2 May 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">2 May</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=online+PDF&amp;rft_id=https%3A%2F%2Fiblagouchine.perso.centrale-marseille.fr%2FBlagouchine-The-history-of-the-functional-equation-of-the-zeta-function-%281-March-2018%29.php&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlagouchine2014" class="citation journal cs1">Blagouchine, I.V. (2014). <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/s11139-013-9528-5">"Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results"</a>. <i>The Ramanujan Journal</i>. <b>35</b> (1): <span class="nowrap">21–</span>110. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11139-013-9528-5">10.1007/s11139-013-9528-5</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120943474">120943474</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Ramanujan+Journal&amp;rft.atitle=Rediscovery+of+Malmsten%27s+integrals%2C+their+evaluation+by+contour+integration+methods+and+some+related+results&amp;rft.volume=35&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E21-%3C%2Fspan%3E110&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1007%2Fs11139-013-9528-5&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120943474%23id-name%3DS2CID&amp;rft.aulast=Blagouchine&amp;rft.aufirst=I.V.&amp;rft_id=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11139-013-9528-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span> <br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlagouchine2017" class="citation journal cs1">Blagouchine, I.V. (2017). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180502212749/https://iblagouchine.perso.centrale-marseille.fr/Blagouchine-Malmsten-integrals-and-their-evaluation-by-contour-integration-methods-(Ramanujan-J-2014).php">"Addendum"</a>. <i>The Ramanujan Journal</i>. <b>42</b>: <span class="nowrap">777–</span>781. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11139-015-9763-z">10.1007/s11139-015-9763-z</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125198685">125198685</a>. Archived from <a rel="nofollow" class="external text" href="https://iblagouchine.perso.centrale-marseille.fr/Blagouchine-Malmsten-integrals-and-their-evaluation-by-contour-integration-methods-(Ramanujan-J-2014).php">the original</a> on 2 May 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">2 May</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Ramanujan+Journal&amp;rft.atitle=Addendum&amp;rft.volume=42&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E777-%3C%2Fspan%3E781&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1007%2Fs11139-015-9763-z&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125198685%23id-name%3DS2CID&amp;rft.aulast=Blagouchine&amp;rft.aufirst=I.V.&amp;rft_id=https%3A%2F%2Fiblagouchine.perso.centrale-marseille.fr%2FBlagouchine-Malmsten-integrals-and-their-evaluation-by-contour-integration-methods-%28Ramanujan-J-2014%29.php&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConrey1989" class="citation journal cs1"><a href="/wiki/Brian_Conrey" title="Brian Conrey">Conrey, J. B.</a> (1989). <a rel="nofollow" class="external text" href="http://www.digizeitschriften.de/resolveppn/GDZPPN002206781">"More than two fifths of the zeros of the Riemann zeta function are on the critical line"</a>. <i>J. Reine Angew. Math</i>. <b>1989</b> (399): <span class="nowrap">1–</span>26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fcrll.1989.399.1">10.1515/crll.1989.399.1</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1004130">1004130</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:115910600">115910600</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Reine+Angew.+Math.&amp;rft.atitle=More+than+two+fifths+of+the+zeros+of+the+Riemann+zeta+function+are+on+the+critical+line&amp;rft.volume=1989&amp;rft.issue=399&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E26&amp;rft.date=1989&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1004130%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A115910600%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1515%2Fcrll.1989.399.1&amp;rft.aulast=Conrey&amp;rft.aufirst=J.+B.&amp;rft_id=http%3A%2F%2Fwww.digizeitschriften.de%2Fresolveppn%2FGDZPPN002206781&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEric_Weisstein" class="citation web cs1"><a href="/wiki/Eric_Weisstein" class="mw-redirect" title="Eric Weisstein">Eric Weisstein</a>. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/RiemannZetaFunctionZeros.html">"Riemann Zeta Function Zeros"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">24 April</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Riemann+Zeta+Function+Zeros&amp;rft.au=Eric+Weisstein&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FRiemannZetaFunctionZeros.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThe_L-functions_and_Modular_Forms_Database" class="citation web cs1">The L-functions and Modular Forms Database. <a rel="nofollow" class="external text" href="https://www.lmfdb.org/zeros/zeta/">"Zeros of &#950;(<i>s</i>)"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Zeros+of+%26zeta%3B%28s%29&amp;rft.au=The+L-functions+and+Modular+Forms+Database&amp;rft_id=https%3A%2F%2Fwww.lmfdb.org%2Fzeros%2Fzeta%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrudgian2014" class="citation journal cs1">Trudgian, Timothy S. (2014). "An improved upper bound for the argument of the Riemann zeta function on the critical line II". <i>J. Number Theory</i>. <b>134</b>: <span class="nowrap">280–</span>292. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1208.5846">1208.5846</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jnt.2013.07.017">10.1016/j.jnt.2013.07.017</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Number+Theory&amp;rft.atitle=An+improved+upper+bound+for+the+argument+of+the+Riemann+zeta+function+on+the+critical+line+II&amp;rft.volume=134&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E280-%3C%2Fspan%3E292&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1208.5846&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jnt.2013.07.017&amp;rft.aulast=Trudgian&amp;rft.aufirst=Timothy+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardy1914" class="citation journal cs1">Hardy, G.H. (1914). "Sur les zeros de la fonction ζ(s)". <i>Comptes rendus de l'Académie des Sciences</i>. <b>158</b>. <a href="/wiki/French_Academy_of_Sciences" title="French Academy of Sciences">French Academy of Sciences</a>: <span class="nowrap">1012–</span>1014.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Comptes+rendus+de+l%27Acad%C3%A9mie+des+Sciences&amp;rft.atitle=Sur+les+zeros+de+la+fonction+%CE%B6%28s%29&amp;rft.volume=158&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1012-%3C%2Fspan%3E1014&amp;rft.date=1914&amp;rft.aulast=Hardy&amp;rft.aufirst=G.H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardyFeketeLittlewood1921" class="citation journal cs1">Hardy, G. H.; Fekete, M.; Littlewood, J. E. (1 September 1921). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1447415">"The Zeros of Riemann's Zeta-Function on the Critical Line"</a>. <i>Journal of the London Mathematical Society</i>. <b>s1-1</b>: <span class="nowrap">15–</span>19. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fjlms%2Fs1-1.1.15">10.1112/jlms/s1-1.1.15</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+London+Mathematical+Society&amp;rft.atitle=The+Zeros+of+Riemann%27s+Zeta-Function+on+the+Critical+Line&amp;rft.volume=s1-1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E15-%3C%2Fspan%3E19&amp;rft.date=1921-09-01&amp;rft_id=info%3Adoi%2F10.1112%2Fjlms%2Fs1-1.1.15&amp;rft.aulast=Hardy&amp;rft.aufirst=G.+H.&amp;rft.au=Fekete%2C+M.&amp;rft.au=Littlewood%2C+J.+E.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1447415&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-Diamond1982-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Diamond1982_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDiamond1982" class="citation journal cs1">Diamond, Harold G. (1982). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-1982-15057-1">"Elementary methods in the study of the distribution of prime numbers"</a>. <i>Bulletin of the American Mathematical Society</i>. <b>7</b> (3): <span class="nowrap">553–</span>89. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-1982-15057-1">10.1090/S0273-0979-1982-15057-1</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0670132">0670132</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+American+Mathematical+Society&amp;rft.atitle=Elementary+methods+in+the+study+of+the+distribution+of+prime+numbers&amp;rft.volume=7&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E553-%3C%2Fspan%3E89&amp;rft.date=1982&amp;rft_id=info%3Adoi%2F10.1090%2FS0273-0979-1982-15057-1&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D670132%23id-name%3DMR&amp;rft.aulast=Diamond&amp;rft.aufirst=Harold+G.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0273-0979-1982-15057-1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFord2002" class="citation journal cs1">Ford, K. (2002). "Vinogradov's integral and bounds for the Riemann zeta function". <i>Proc. London Math. Soc</i>. <b>85</b> (3): <span class="nowrap">565–</span>633. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1910.08209">1910.08209</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2FS0024611502013655">10.1112/S0024611502013655</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121144007">121144007</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proc.+London+Math.+Soc.&amp;rft.atitle=Vinogradov%27s+integral+and+bounds+for+the+Riemann+zeta+function&amp;rft.volume=85&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E565-%3C%2Fspan%3E633&amp;rft.date=2002&amp;rft_id=info%3Aarxiv%2F1910.08209&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121144007%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1112%2FS0024611502013655&amp;rft.aulast=Ford&amp;rft.aufirst=K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMossinghoffTrudgian2015" class="citation journal cs1">Mossinghoff, Michael J.; Trudgian, Timothy S. (2015). "Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function". <i>J. Number Theory</i>. <b>157</b>: <span class="nowrap">329–</span>349. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1410.3926">1410.3926</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FJ.JNT.2015.05.010">10.1016/J.JNT.2015.05.010</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117968965">117968965</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Number+Theory&amp;rft.atitle=Nonnegative+trigonometric+polynomials+and+a+zero-free+region+for+the+Riemann+zeta-function&amp;rft.volume=157&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E329-%3C%2Fspan%3E349&amp;rft.date=2015&amp;rft_id=info%3Aarxiv%2F1410.3926&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117968965%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2FJ.JNT.2015.05.010&amp;rft.aulast=Mossinghoff&amp;rft.aufirst=Michael+J.&amp;rft.au=Trudgian%2C+Timothy+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-polchinski-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-polchinski_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPolchinski1998" class="citation book cs1"><a href="/wiki/Joseph_Polchinski" title="Joseph Polchinski">Polchinski, Joseph</a> (1998). <i>An Introduction to the Bosonic String</i>. String Theory. Vol.&#160;I. Cambridge University Press. p.&#160;22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-63303-1" title="Special:BookSources/978-0-521-63303-1"><bdi>978-0-521-63303-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Bosonic+String&amp;rft.series=String+Theory&amp;rft.pages=22&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1998&amp;rft.isbn=978-0-521-63303-1&amp;rft.aulast=Polchinski&amp;rft.aufirst=Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKainzTitulaer1992" class="citation journal cs1">Kainz, A. J.; Titulaer, U. M. (1992). "An accurate two-stream moment method for kinetic boundary layer problems of linear kinetic equations". <i>J. Phys. A: Math. Gen</i>. <b>25</b> (7): <span class="nowrap">1855–</span>1874. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992JPhA...25.1855K">1992JPhA...25.1855K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0305-4470%2F25%2F7%2F026">10.1088/0305-4470/25/7/026</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Phys.+A%3A+Math.+Gen.&amp;rft.atitle=An+accurate+two-stream+moment+method+for+kinetic+boundary+layer+problems+of+linear+kinetic+equations&amp;rft.volume=25&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1855-%3C%2Fspan%3E1874&amp;rft.date=1992&amp;rft_id=info%3Adoi%2F10.1088%2F0305-4470%2F25%2F7%2F026&amp;rft_id=info%3Abibcode%2F1992JPhA...25.1855K&amp;rft.aulast=Kainz&amp;rft.aufirst=A.+J.&amp;rft.au=Titulaer%2C+U.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">Further digits and references for this constant are available at <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>:&#160;<a href="//oeis.org/A059750" class="extiw" title="oeis:A059750">A059750</a></span>.</span> </li> <li id="cite_note-Sondow1998-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sondow1998_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSondow1998" class="citation journal cs1">Sondow, Jonathan (1998). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110604123534/http://home.earthlink.net/~jsondow/id8.html">"An antisymmetric formula for Euler's constant"</a>. <i>Mathematics Magazine</i>. <b>71</b> (3): <span class="nowrap">219–</span>220. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F0025570X.1998.11996638">10.1080/0025570X.1998.11996638</a>. Archived from <a rel="nofollow" class="external text" href="https://home.earthlink.net/~jsondow/id8.html">the original</a> on 4 June 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">29 May</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+Magazine&amp;rft.atitle=An+antisymmetric+formula+for+Euler%27s+constant&amp;rft.volume=71&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E219-%3C%2Fspan%3E220&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.1080%2F0025570X.1998.11996638&amp;rft.aulast=Sondow&amp;rft.aufirst=Jonathan&amp;rft_id=http%3A%2F%2Fhome.earthlink.net%2F~jsondow%2Fid8.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOgilvyAnderson1988" class="citation book cs1"><a href="/wiki/C._Stanley_Ogilvy" title="C. Stanley Ogilvy">Ogilvy, C. S.</a>; Anderson, J. T. (1988). <i>Excursions in Number Theory</i>. Dover Publications. pp.&#160;<span class="nowrap">29–</span>35. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-25778-9" title="Special:BookSources/0-486-25778-9"><bdi>0-486-25778-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Excursions+in+Number+Theory&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E29-%3C%2Fspan%3E35&amp;rft.pub=Dover+Publications&amp;rft.date=1988&amp;rft.isbn=0-486-25778-9&amp;rft.aulast=Ogilvy&amp;rft.aufirst=C.+S.&amp;rft.au=Anderson%2C+J.+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVoronin1975" class="citation journal cs1">Voronin, S. M. (1975). "Theorem on the Universality of the Riemann Zeta Function". <i>Izv. Akad. Nauk SSSR, Ser. Matem</i>. <b>39</b>: <span class="nowrap">475–</span>486.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Izv.+Akad.+Nauk+SSSR%2C+Ser.+Matem.&amp;rft.atitle=Theorem+on+the+Universality+of+the+Riemann+Zeta+Function&amp;rft.volume=39&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E475-%3C%2Fspan%3E486&amp;rft.date=1975&amp;rft.aulast=Voronin&amp;rft.aufirst=S.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span> Reprinted in <i>Math. USSR Izv.</i> (1975) <b>9</b>: 443–445.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRamūnas_GarunkštisAntanas_LaurinčikasKohji_MatsumotoJörn_Steuding2010" class="citation journal cs1">Ramūnas Garunkštis; Antanas Laurinčikas; Kohji Matsumoto; Jörn Steuding; Rasa Steuding (2010). <a rel="nofollow" class="external text" href="http://ddd.uab.cat/record/52304">"Effective uniform approximation by the Riemann zeta-function"</a>. <i>Publicacions Matemàtiques</i>. <b>54</b> (1): <span class="nowrap">209–</span>219. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5565%2FPUBLMAT_54110_12">10.5565/PUBLMAT_54110_12</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/43736941">43736941</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Publicacions+Matem%C3%A0tiques&amp;rft.atitle=Effective+uniform+approximation+by+the+Riemann+zeta-function&amp;rft.volume=54&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E209-%3C%2Fspan%3E219&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.5565%2FPUBLMAT_54110_12&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F43736941%23id-name%3DJSTOR&amp;rft.au=Ram%C5%ABnas+Garunk%C5%A1tis&amp;rft.au=Antanas+Laurin%C4%8Dikas&amp;rft.au=Kohji+Matsumoto&amp;rft.au=J%C3%B6rn+Steuding&amp;rft.au=Rasa+Steuding&amp;rft_id=http%3A%2F%2Fddd.uab.cat%2Frecord%2F52304&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBhaskar_Bagchi1982" class="citation journal cs1">Bhaskar Bagchi (1982). "A Joint Universality Theorem for Dirichlet L-Functions". <i>Mathematische Zeitschrift</i>. <b>181</b> (3): <span class="nowrap">319–</span>334. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01161980">10.1007/bf01161980</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-5874">0025-5874</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120930513">120930513</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Zeitschrift&amp;rft.atitle=A+Joint+Universality+Theorem+for+Dirichlet+L-Functions&amp;rft.volume=181&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E319-%3C%2Fspan%3E334&amp;rft.date=1982&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120930513%23id-name%3DS2CID&amp;rft.issn=0025-5874&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01161980&amp;rft.au=Bhaskar+Bagchi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteuding2007" class="citation book cs1">Steuding, Jörn (2007). <i>Value-Distribution of L-Functions</i>. Lecture Notes in Mathematics. Vol.&#160;1877. Berlin: Springer. p.&#160;19. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1711.06671">1711.06671</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-540-44822-8">10.1007/978-3-540-44822-8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-26526-9" title="Special:BookSources/978-3-540-26526-9"><bdi>978-3-540-26526-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Value-Distribution+of+L-Functions&amp;rft.place=Berlin&amp;rft.series=Lecture+Notes+in+Mathematics&amp;rft.pages=19&amp;rft.pub=Springer&amp;rft.date=2007&amp;rft_id=info%3Aarxiv%2F1711.06671&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-540-44822-8&amp;rft.isbn=978-3-540-26526-9&amp;rft.aulast=Steuding&amp;rft.aufirst=J%C3%B6rn&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaratsuba2001" class="citation journal cs1">Karatsuba, A. A. (2001). "Lower bounds for the maximum modulus of <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> in small domains of the critical strip". <i>Mat. Zametki</i>. <b>70</b> (5): <span class="nowrap">796–</span>798.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mat.+Zametki&amp;rft.atitle=Lower+bounds+for+the+maximum+modulus+of+%3Cspan+class%3D%22texhtml+%22+%3E%CE%B6%28s%29%3C%2Fspan%3E+in+small+domains+of+the+critical+strip&amp;rft.volume=70&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E796-%3C%2Fspan%3E798&amp;rft.date=2001&amp;rft.aulast=Karatsuba&amp;rft.aufirst=A.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaratsuba2004" class="citation journal cs1">Karatsuba, A. A. (2004). "Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line". <i>Izv. Ross. Akad. Nauk, Ser. Mat</i>. <b>68</b> (8): <span class="nowrap">99–</span>104. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004IzMat..68.1157K">2004IzMat..68.1157K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1070%2FIM2004v068n06ABEH000513">10.1070/IM2004v068n06ABEH000513</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250796539">250796539</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Izv.+Ross.+Akad.+Nauk%2C+Ser.+Mat.&amp;rft.atitle=Lower+bounds+for+the+maximum+modulus+of+the+Riemann+zeta+function+on+short+segments+of+the+critical+line&amp;rft.volume=68&amp;rft.issue=8&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E99-%3C%2Fspan%3E104&amp;rft.date=2004&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250796539%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1070%2FIM2004v068n06ABEH000513&amp;rft_id=info%3Abibcode%2F2004IzMat..68.1157K&amp;rft.aulast=Karatsuba&amp;rft.aufirst=A.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaratsuba1996" class="citation journal cs1">Karatsuba, A. A. (1996). "Density theorem and the behavior of the argument of the Riemann zeta function". <i>Mat. Zametki</i> (60): <span class="nowrap">448–</span>449.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mat.+Zametki&amp;rft.atitle=Density+theorem+and+the+behavior+of+the+argument+of+the+Riemann+zeta+function&amp;rft.issue=60&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E448-%3C%2Fspan%3E449&amp;rft.date=1996&amp;rft.aulast=Karatsuba&amp;rft.aufirst=A.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaratsuba1996" class="citation journal cs1">Karatsuba, A. A. (1996). "On the function <span class="texhtml"><i>S</i>(<i>t</i>)</span>". <i>Izv. Ross. Akad. Nauk, Ser. Mat</i>. <b>60</b> (5): <span class="nowrap">27–</span>56.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Izv.+Ross.+Akad.+Nauk%2C+Ser.+Mat.&amp;rft.atitle=On+the+function+%3Cspan+class%3D%22texhtml+%22+%3ES%28t%29%3C%2Fspan%3E&amp;rft.volume=60&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E27-%3C%2Fspan%3E56&amp;rft.date=1996&amp;rft.aulast=Karatsuba&amp;rft.aufirst=A.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-Knopp-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-Knopp_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Knopp_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnopp1947" class="citation book cs1">Knopp, Konrad (1947). <a rel="nofollow" class="external text" href="https://archive.org/details/in.ernet.dli.2015.212186"><i>Theory of Functions, Part Two</i></a>. New York, Dover publications. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/in.ernet.dli.2015.212186/page/n57/mode/2up">51–55</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Functions%2C+Part+Two&amp;rft.pages=51-55&amp;rft.pub=New+York%2C+Dover+publications&amp;rft.date=1947&amp;rft.aulast=Knopp&amp;rft.aufirst=Konrad&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fin.ernet.dli.2015.212186&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiemann1859" class="citation journal cs1">Riemann, Bernhard (1859). "<a href="/wiki/On_the_number_of_primes_less_than_a_given_magnitude" class="mw-redirect" title="On the number of primes less than a given magnitude">On the number of primes less than a given magnitude</a>". <i>Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monatsberichte+der+K%C3%B6niglich+Preu%C3%9Fischen+Akademie+der+Wissenschaften+zu+Berlin&amp;rft.atitle=On+the+number+of+primes+less+than+a+given+magnitude&amp;rft.date=1859&amp;rft.aulast=Riemann&amp;rft.aufirst=Bernhard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span> translated and reprinted in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdwards1974" class="citation book cs1"><a href="/wiki/Harold_Edwards_(mathematician)" title="Harold Edwards (mathematician)">Edwards, H. M.</a> (1974). <i>Riemann's Zeta Function</i>. New York: Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-12-232750-0" title="Special:BookSources/0-12-232750-0"><bdi>0-12-232750-0</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0315.10035">0315.10035</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Riemann%27s+Zeta+Function&amp;rft.place=New+York&amp;rft.pub=Academic+Press&amp;rft.date=1974&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0315.10035%23id-name%3DZbl&amp;rft.isbn=0-12-232750-0&amp;rft.aulast=Edwards&amp;rft.aufirst=H.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Trivial exceptions of values of <span class="texhtml mvar" style="font-style:italic;">s</span> that cause removable singularities are not taken into account throughout this article.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeukirch1999" class="citation book cs1">Neukirch, Jürgen (1999). <i>Algebraic number theory</i>. Springer. p.&#160;422. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-65399-6" title="Special:BookSources/3-540-65399-6"><bdi>3-540-65399-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebraic+number+theory&amp;rft.pages=422&amp;rft.pub=Springer&amp;rft.date=1999&amp;rft.isbn=3-540-65399-6&amp;rft.aulast=Neukirch&amp;rft.aufirst=J%C3%BCrgen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHashimotoIijimaKurokawaWakayama2004" class="citation journal cs1">Hashimoto, Yasufumi; Iijima, Yasuyuki; Kurokawa, Nobushige; Wakayama, Masato (2004). <a rel="nofollow" class="external text" href="https://projecteuclid.org/euclid.bbms/1102689119">"Euler's constants for the Selberg and the Dedekind zeta functions"</a>. <i><a href="/wiki/Simon_Stevin_(journal)" title="Simon Stevin (journal)">Bulletin of the Belgian Mathematical Society, Simon Stevin</a></i>. <b>11</b> (4): <span class="nowrap">493–</span>516. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.36045%2Fbbms%2F1102689119">10.36045/bbms/1102689119</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2115723">2115723</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+Belgian+Mathematical+Society%2C+Simon+Stevin&amp;rft.atitle=Euler%27s+constants+for+the+Selberg+and+the+Dedekind+zeta+functions&amp;rft.volume=11&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E493-%3C%2Fspan%3E516&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.36045%2Fbbms%2F1102689119&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2115723%23id-name%3DMR&amp;rft.aulast=Hashimoto&amp;rft.aufirst=Yasufumi&amp;rft.au=Iijima%2C+Yasuyuki&amp;rft.au=Kurokawa%2C+Nobushige&amp;rft.au=Wakayama%2C+Masato&amp;rft_id=https%3A%2F%2Fprojecteuclid.org%2Feuclid.bbms%2F1102689119&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://linas.org/math/poch-zeta.pdf">"A series representation for the Riemann Zeta derived from the Gauss-Kuzmin-Wirsing Operator"</a> <span class="cs1-format">(PDF)</span>. <i>Linas.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">4 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Linas.org&amp;rft.atitle=A+series+representation+for+the+Riemann+Zeta+derived+from+the+Gauss-Kuzmin-Wirsing+Operator&amp;rft_id=http%3A%2F%2Flinas.org%2Fmath%2Fpoch-zeta.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-blag2018-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-blag2018_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-blag2018_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlagouchine2018" class="citation journal cs1">Blagouchine, Iaroslav V. (2018). <a rel="nofollow" class="external text" href="http://math.colgate.edu/~integers/vol18a.html">"Three Notes on Ser's and Hasse's Representations for the Zeta-functions"</a>. <i>INTEGERS: The Electronic Journal of Combinatorial Number Theory</i>. <b>18A</b>: <span class="nowrap">1–</span>45. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1606.02044">1606.02044</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016arXiv160602044B">2016arXiv160602044B</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=INTEGERS%3A+The+Electronic+Journal+of+Combinatorial+Number+Theory&amp;rft.atitle=Three+Notes+on+Ser%27s+and+Hasse%27s+Representations+for+the+Zeta-functions&amp;rft.volume=18A&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E45&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1606.02044&amp;rft_id=info%3Abibcode%2F2016arXiv160602044B&amp;rft.aulast=Blagouchine&amp;rft.aufirst=Iaroslav+V.&amp;rft_id=http%3A%2F%2Fmath.colgate.edu%2F~integers%2Fvol18a.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-Hasse1930-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hasse1930_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hasse1930_38-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Hasse1930_38-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHasse1930" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Helmut_Hasse" title="Helmut Hasse">Hasse, Helmut</a> (1930). "Ein Summierungsverfahren für die Riemannsche <span class="texhtml mvar" style="font-style:italic;">ζ</span>-Reihe" &#91;A summation method for the Riemann ζ series&#93;. <i><a href="/wiki/Mathematische_Zeitschrift" title="Mathematische Zeitschrift">Mathematische Zeitschrift</a></i> (in German). <b>32</b> (1): <span class="nowrap">458–</span>464. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01194645">10.1007/BF01194645</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120392534">120392534</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Zeitschrift&amp;rft.atitle=Ein+Summierungsverfahren+f%C3%BCr+die+Riemannsche+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3E%CE%B6%3C%2Fspan%3E-Reihe&amp;rft.volume=32&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E458-%3C%2Fspan%3E464&amp;rft.date=1930&amp;rft_id=info%3Adoi%2F10.1007%2FBF01194645&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120392534%23id-name%3DS2CID&amp;rft.aulast=Hasse&amp;rft.aufirst=Helmut&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSondow1994" class="citation journal cs1">Sondow, Jonathan (1994). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/proc/1994-120-02/S0002-9939-1994-1172954-7/S0002-9939-1994-1172954-7.pdf">"Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Proceedings_of_the_American_Mathematical_Society" title="Proceedings of the American Mathematical Society">Proceedings of the American Mathematical Society</a></i>. <b>120</b> (2): <span class="nowrap">421–</span>424. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-1994-1172954-7">10.1090/S0002-9939-1994-1172954-7</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+American+Mathematical+Society&amp;rft.atitle=Analytic+continuation+of+Riemann%27s+zeta+function+and+values+at+negative+integers+via+Euler%27s+transformation+of+series&amp;rft.volume=120&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E421-%3C%2Fspan%3E424&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.1090%2FS0002-9939-1994-1172954-7&amp;rft.aulast=Sondow&amp;rft.aufirst=Jonathan&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fproc%2F1994-120-02%2FS0002-9939-1994-1172954-7%2FS0002-9939-1994-1172954-7.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlagouchine2016" class="citation journal cs1">Blagouchine, Iaroslav V. (2016). "Expansions of generalized Euler's constants into the series of polynomials in <span class="texhtml mvar" style="font-style:italic;">π</span><sup>&#8722;2</sup> and into the formal enveloping series with rational coefficients only". <i><a href="/wiki/Journal_of_Number_Theory" title="Journal of Number Theory">Journal of Number Theory</a></i>. <b>158</b>: <span class="nowrap">365–</span>396. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1501.00740">1501.00740</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jnt.2015.06.012">10.1016/j.jnt.2015.06.012</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Number+Theory&amp;rft.atitle=Expansions+of+generalized+Euler%27s+constants+into+the+series+of+polynomials+in+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3E%CF%80%3C%2Fspan%3E%3Csup%3E%26minus%3B2%3C%2Fsup%3E+and+into+the+formal+enveloping+series+with+rational+coefficients+only&amp;rft.volume=158&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E365-%3C%2Fspan%3E396&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1501.00740&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jnt.2015.06.012&amp;rft.aulast=Blagouchine&amp;rft.aufirst=Iaroslav+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSer1926" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Joseph_Ser" title="Joseph Ser">Ser, Joseph</a> (1926). "Sur une expression de la fonction ζ(s) de Riemann" &#91;Upon an expression for Riemann's ζ function&#93;. <i><a href="/wiki/Comptes_rendus_hebdomadaires_des_s%C3%A9ances_de_l%27Acad%C3%A9mie_des_Sciences" class="mw-redirect" title="Comptes rendus hebdomadaires des séances de l&#39;Académie des Sciences">Comptes rendus hebdomadaires des séances de l'Académie des Sciences</a></i> (in French). <b>182</b>: <span class="nowrap">1075–</span>1077.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Comptes+rendus+hebdomadaires+des+s%C3%A9ances+de+l%27Acad%C3%A9mie+des+Sciences&amp;rft.atitle=Sur+une+expression+de+la+fonction+%CE%B6%28s%29+de+Riemann&amp;rft.volume=182&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1075-%3C%2Fspan%3E1077&amp;rft.date=1926&amp;rft.aulast=Ser&amp;rft.aufirst=Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaślanka1997" class="citation journal cs1 cs1-prop-long-vol">Maślanka, Krzysztof (1997). "The Beauty of Nothingness". <i>Acta Cosmologica</i>. <span class="nowrap">XXIII–</span>I: <span class="nowrap">13–</span>17.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Cosmologica&amp;rft.atitle=The+Beauty+of+Nothingness&amp;rft.volume=XXIII-I&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E13-%3C%2Fspan%3E17&amp;rft.date=1997&amp;rft.aulast=Ma%C5%9Blanka&amp;rft.aufirst=Krzysztof&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBáez-Duarte2010" class="citation journal cs1">Báez-Duarte, Luis (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2010%2F714147">"On Maslanka's Representation for the Riemann Zeta Function"</a>. <i><a href="/wiki/International_Journal_of_Mathematics_and_Mathematical_Sciences" title="International Journal of Mathematics and Mathematical Sciences">International Journal of Mathematics and Mathematical Sciences</a></i>. <b>2010</b>: <span class="nowrap">1–</span>9. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0307214">math/0307214</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2010%2F714147">10.1155/2010/714147</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Mathematics+and+Mathematical+Sciences&amp;rft.atitle=On+Maslanka%27s+Representation+for+the+Riemann+Zeta+Function&amp;rft.volume=2010&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E9&amp;rft.date=2010&amp;rft_id=info%3Aarxiv%2Fmath%2F0307214&amp;rft_id=info%3Adoi%2F10.1155%2F2010%2F714147&amp;rft.aulast=B%C3%A1ez-Duarte&amp;rft.aufirst=Luis&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2010%252F714147&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlajoletVepstas2008" class="citation journal cs1">Flajolet, Philippe; Vepstas, Linas (2008). "On Differences of Zeta Values". <i><a href="/wiki/Journal_of_Computational_and_Applied_Mathematics" title="Journal of Computational and Applied Mathematics">Journal of Computational and Applied Mathematics</a></i>. <b>220</b> (1-2 October): <span class="nowrap">58–</span>73. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0611332">math/0611332</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008JCoAM.220...58F">2008JCoAM.220...58F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cam.2007.07.040">10.1016/j.cam.2007.07.040</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Computational+and+Applied+Mathematics&amp;rft.atitle=On+Differences+of+Zeta+Values&amp;rft.volume=220&amp;rft.issue=1-2+October&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E58-%3C%2Fspan%3E73&amp;rft.date=2008&amp;rft_id=info%3Aarxiv%2Fmath%2F0611332&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cam.2007.07.040&amp;rft_id=info%3Abibcode%2F2008JCoAM.220...58F&amp;rft.aulast=Flajolet&amp;rft.aufirst=Philippe&amp;rft.au=Vepstas%2C+Linas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaślankaKoleżyński2022" class="citation journal cs1">Maślanka, Krzysztof; Koleżyński, Andrzej (2022). "The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm". <i>Computational Methods in Science and Technology</i>. <b>28</b> (2): <span class="nowrap">47–</span>59. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2210.04609">2210.04609</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.12921%2Fcmst.2022.0000014">10.12921/cmst.2022.0000014</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252780397">252780397</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computational+Methods+in+Science+and+Technology&amp;rft.atitle=The+High+Precision+Numerical+Calculation+of+Stieltjes+Constants.+Simple+and+Fast+Algorithm&amp;rft.volume=28&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E47-%3C%2Fspan%3E59&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2210.04609&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252780397%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.12921%2Fcmst.2022.0000014&amp;rft.aulast=Ma%C5%9Blanka&amp;rft.aufirst=Krzysztof&amp;rft.au=Kole%C5%BCy%C5%84ski%2C+Andrzej&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBáez-Duarte2003" class="citation journal cs1">Báez-Duarte, Luis (2003). "A New Necessary and Sufficient Condition for the Riemann Hypothesis". <i>Number Theory</i>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0307215">math/0307215</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003math......7215B">2003math......7215B</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Number+Theory&amp;rft.atitle=A+New+Necessary+and+Sufficient+Condition+for+the+Riemann+Hypothesis&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fmath%2F0307215&amp;rft_id=info%3Abibcode%2F2003math......7215B&amp;rft.aulast=B%C3%A1ez-Duarte&amp;rft.aufirst=Luis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaślanka2006" class="citation journal cs1">Maślanka, Krzysztof (2006). "Báez-Duarte's Criterion for the Riemann Hypothesis and Rice's Integrals". <i>Number Theory</i>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0603713v2">math/0603713v2</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006math......3713M">2006math......3713M</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Number+Theory&amp;rft.atitle=B%C3%A1ez-Duarte%27s+Criterion+for+the+Riemann+Hypothesis+and+Rice%27s+Integrals&amp;rft.date=2006&amp;rft_id=info%3Aarxiv%2Fmath%2F0603713v2&amp;rft_id=info%3Abibcode%2F2006math......3713M&amp;rft.aulast=Ma%C5%9Blanka&amp;rft.aufirst=Krzysztof&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolf2014" class="citation journal cs1">Wolf, Marek (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.12921%2Fcmst.2014.20.02.39-47">"Some remarks on the Báez-Duarte criterion for the Riemann Hypothesis"</a>. <i>Computational Methods in Science and Technology</i>. <b>20</b> (2): <span class="nowrap">39–</span>47. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.12921%2Fcmst.2014.20.02.39-47">10.12921/cmst.2014.20.02.39-47</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computational+Methods+in+Science+and+Technology&amp;rft.atitle=Some+remarks+on+the+B%C3%A1ez-Duarte+criterion+for+the+Riemann+Hypothesis&amp;rft.volume=20&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E39-%3C%2Fspan%3E47&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.12921%2Fcmst.2014.20.02.39-47&amp;rft.aulast=Wolf&amp;rft.aufirst=Marek&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.12921%252Fcmst.2014.20.02.39-47&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorwein2000" class="citation book cs1"><a href="/wiki/Peter_Borwein" title="Peter Borwein">Borwein, Peter</a> (2000). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110726090927/http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf">"An Efficient Algorithm for the Riemann Zeta Function"</a> <span class="cs1-format">(PDF)</span>. In Théra, Michel A. (ed.). <i>Constructive, Experimental, and Nonlinear Analysis</i>. Conference Proceedings, Canadian Mathematical Society. Vol.&#160;27. Providence, RI: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, on behalf of the <a href="/wiki/Canadian_Mathematical_Society" title="Canadian Mathematical Society">Canadian Mathematical Society</a>. pp.&#160;<span class="nowrap">29–</span>34. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-2167-1" title="Special:BookSources/978-0-8218-2167-1"><bdi>978-0-8218-2167-1</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 26 July 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">25 November</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=An+Efficient+Algorithm+for+the+Riemann+Zeta+Function&amp;rft.btitle=Constructive%2C+Experimental%2C+and+Nonlinear+Analysis&amp;rft.place=Providence%2C+RI&amp;rft.series=Conference+Proceedings%2C+Canadian+Mathematical+Society&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E29-%3C%2Fspan%3E34&amp;rft.pub=American+Mathematical+Society%2C+on+behalf+of+the+Canadian+Mathematical+Society&amp;rft.date=2000&amp;rft.isbn=978-0-8218-2167-1&amp;rft.aulast=Borwein&amp;rft.aufirst=Peter&amp;rft_id=http%3A%2F%2Fwww.cecm.sfu.ca%2Fpersonal%2Fpborwein%2FPAPERS%2FP155.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMező2013" class="citation journal cs1">Mező, István (2013). "The primorial and the Riemann zeta function". <i>The American Mathematical Monthly</i>. <b>120</b> (4): 321.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=The+primorial+and+the+Riemann+zeta+function&amp;rft.volume=120&amp;rft.issue=4&amp;rft.pages=321&amp;rft.date=2013&amp;rft.aulast=Mez%C5%91&amp;rft.aufirst=Istv%C3%A1n&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKomatsuMező2016" class="citation journal cs1">Komatsu, Takao; Mező, István (2016). "Incomplete poly-Bernoulli numbers associated with incomplete Stirling numbers". <i>Publicationes Mathematicae Debrecen</i>. <b>88</b> (<span class="nowrap">3–</span>4): <span class="nowrap">357–</span>368. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1510.05799">1510.05799</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5486%2Fpmd.2016.7361">10.5486/pmd.2016.7361</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55741906">55741906</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Publicationes+Mathematicae+Debrecen&amp;rft.atitle=Incomplete+poly-Bernoulli+numbers+associated+with+incomplete+Stirling+numbers&amp;rft.volume=88&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E3%E2%80%93%3C%2Fspan%3E4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E357-%3C%2Fspan%3E368&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1510.05799&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55741906%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.5486%2Fpmd.2016.7361&amp;rft.aulast=Komatsu&amp;rft.aufirst=Takao&amp;rft.au=Mez%C5%91%2C+Istv%C3%A1n&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://oeis.org/A220335">"A220335 - OEIS"</a>. <i>oeis.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">17 April</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=oeis.org&amp;rft.atitle=A220335+-+OEIS&amp;rft_id=http%3A%2F%2Foeis.org%2FA220335&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTóth2022" class="citation journal cs1"><a href="/wiki/T%C3%B3th" title="Tóth">Tóth, László</a> (2022). "Linear Combinations of Dirichlet Series Associated with the Thue-Morse Sequence". <i>Integers</i>. <b>22</b> (article 98). <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2211.13570">2211.13570</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Integers&amp;rft.atitle=Linear+Combinations+of+Dirichlet+Series+Associated+with+the+Thue-Morse+Sequence&amp;rft.volume=22&amp;rft.issue=article+98&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2211.13570&amp;rft.aulast=T%C3%B3th&amp;rft.aufirst=L%C3%A1szl%C3%B3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOdlyzkoSchönhage1988" class="citation journal cs1"><a href="/wiki/Odlyzko" class="mw-redirect" title="Odlyzko">Odlyzko, A. M.</a>; <a href="/wiki/Sch%C3%B6nhage" class="mw-redirect" title="Schönhage">Schönhage, A.</a> (1988). <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2000939">"Fast algorithms for multiple evaluations of the Riemann zeta function"</a>. <i>Trans. Amer. Math. Soc</i>. <b>309</b> (2): <span class="nowrap">797–</span>809. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2000939">10.2307/2000939</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2000939">2000939</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0961614">0961614</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Trans.+Amer.+Math.+Soc.&amp;rft.atitle=Fast+algorithms+for+multiple+evaluations+of+the+Riemann+zeta+function&amp;rft.volume=309&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E797-%3C%2Fspan%3E809&amp;rft.date=1988&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0961614%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2000939%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2000939&amp;rft.aulast=Odlyzko&amp;rft.aufirst=A.+M.&amp;rft.au=Sch%C3%B6nhage%2C+A.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.2307%252F2000939&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span>.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/spinchains.htm">"Work on spin-chains by A. Knauf, et. al"</a>. <i>Empslocal.ex.ac.uk</i><span class="reference-accessdate">. Retrieved <span class="nowrap">4 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Empslocal.ex.ac.uk&amp;rft.atitle=Work+on+spin-chains+by+A.+Knauf%2C+et.+al&amp;rft_id=http%3A%2F%2Fempslocal.ex.ac.uk%2Fpeople%2Fstaff%2Fmrwatkin%2Fzeta%2Fspinchains.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGene_Ward_Smith" class="citation web cs1">Gene Ward Smith. <a rel="nofollow" class="external text" href="https://oeis.org/A117536">"Nearest integer to locations of increasingly large peaks of abs(zeta(0.5 + i*2*Pi/log(2)*t)) for increasing real t"</a>. <i>The On-Line Encyclopedia of Integer Sequences</i><span class="reference-accessdate">. Retrieved <span class="nowrap">4 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+On-Line+Encyclopedia+of+Integer+Sequences&amp;rft.atitle=Nearest+integer+to+locations+of+increasingly+large+peaks+of+abs%28zeta%280.5+%2B+i%2A2%2APi%2Flog%282%29%2At%29%29+for+increasing+real+t&amp;rft.au=Gene+Ward+Smith&amp;rft_id=https%3A%2F%2Foeis.org%2FA117536&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliam_A._Sethares2005" class="citation book cs1">William A. Sethares (2005). <i>Tuning, Timbre, Spectrum, Scale</i> (2nd&#160;ed.). Springer-Verlag London. p.&#160;74. <q>...there are many different ways to evaluate the goodness, reasonableness, fitness, or quality of a scale...Under some measures, 12-tet is the winner, under others 19-tet appears best, 53-tet often appears among the victors...</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tuning%2C+Timbre%2C+Spectrum%2C+Scale&amp;rft.pages=74&amp;rft.edition=2nd&amp;rft.pub=Springer-Verlag+London&amp;rft.date=2005&amp;rft.au=William+A.+Sethares&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text">Most of the formulas in this section are from § 4 of J. M. Borwein et al. (2000)</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Sources">Sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=38" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 25em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol2010" class="citation cs1">Apostol, T.M. (2010). <a rel="nofollow" class="external text" href="http://dlmf.nist.gov/25">"Zeta and Related Functions"</a>. In <a href="/wiki/Frank_W._J._Olver" title="Frank W. J. Olver">Olver, Frank W. J.</a>; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.). <i><a href="/wiki/Digital_Library_of_Mathematical_Functions" title="Digital Library of Mathematical Functions">NIST Handbook of Mathematical Functions</a></i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-19225-5" title="Special:BookSources/978-0-521-19225-5"><bdi>978-0-521-19225-5</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2723248">2723248</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Zeta+and+Related+Functions&amp;rft.btitle=NIST+Handbook+of+Mathematical+Functions&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-0-521-19225-5&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2723248%23id-name%3DMR&amp;rft.aulast=Apostol&amp;rft.aufirst=T.M.&amp;rft_id=http%3A%2F%2Fdlmf.nist.gov%2F25&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorweinBradleyCrandall2000" class="citation journal cs1"><a href="/wiki/Jonathan_Borwein" title="Jonathan Borwein">Borwein, Jonathan</a>; Bradley, David M.; <a href="/wiki/Richard_Crandall" title="Richard Crandall">Crandall, Richard</a> (2000). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131213171642/http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/borwein1.pdf">"Computational Strategies for the Riemann Zeta Function"</a> <span class="cs1-format">(PDF)</span>. <i>J. Comput. Appl. Math</i>. <b>121</b> (<span class="nowrap">1–</span>2): <span class="nowrap">247–</span>296. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000JCoAM.121..247B">2000JCoAM.121..247B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0377-0427%2800%2900336-8">10.1016/S0377-0427(00)00336-8</a></span>. Archived from <a rel="nofollow" class="external text" href="http://www.maths.ex.ac.uk/~mwatkins/zeta/borwein1.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 13 December 2013 &#8211; via University of Exeter (maths.ex.ac.uk).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Comput.+Appl.+Math.&amp;rft.atitle=Computational+Strategies+for+the+Riemann+Zeta+Function&amp;rft.volume=121&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E247-%3C%2Fspan%3E296&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1016%2FS0377-0427%2800%2900336-8&amp;rft_id=info%3Abibcode%2F2000JCoAM.121..247B&amp;rft.aulast=Borwein&amp;rft.aufirst=Jonathan&amp;rft.au=Bradley%2C+David+M.&amp;rft.au=Crandall%2C+Richard&amp;rft_id=http%3A%2F%2Fwww.maths.ex.ac.uk%2F~mwatkins%2Fzeta%2Fborwein1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCvijovićKlinowski2002" class="citation journal cs1">Cvijović, Djurdje; Klinowski, Jacek (2002). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0377-0427%2802%2900358-8">"Integral representations of the Riemann zeta function for odd-integer arguments"</a>. <i>J. Comput. Appl. Math</i>. <b>142</b> (2): <span class="nowrap">435–</span>439. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002JCoAM.142..435C">2002JCoAM.142..435C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0377-0427%2802%2900358-8">10.1016/S0377-0427(02)00358-8</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1906742">1906742</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Comput.+Appl.+Math.&amp;rft.atitle=Integral+representations+of+the+Riemann+zeta+function+for+odd-integer+arguments&amp;rft.volume=142&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E435-%3C%2Fspan%3E439&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1906742%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1016%2FS0377-0427%2802%2900358-8&amp;rft_id=info%3Abibcode%2F2002JCoAM.142..435C&amp;rft.aulast=Cvijovi%C4%87&amp;rft.aufirst=Djurdje&amp;rft.au=Klinowski%2C+Jacek&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0377-0427%252802%252900358-8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCvijovićKlinowski1997" class="citation journal cs1">Cvijović, Djurdje; Klinowski, Jacek (1997). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-97-04102-6">"Continued-fraction expansions for the Riemann zeta function and polylogarithms"</a>. <i>Proc. Amer. Math. Soc</i>. <b>125</b> (9): <span class="nowrap">2543–</span>2550. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-97-04102-6">10.1090/S0002-9939-97-04102-6</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proc.+Amer.+Math.+Soc.&amp;rft.atitle=Continued-fraction+expansions+for+the+Riemann+zeta+function+and+polylogarithms&amp;rft.volume=125&amp;rft.issue=9&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2543-%3C%2Fspan%3E2550&amp;rft.date=1997&amp;rft_id=info%3Adoi%2F10.1090%2FS0002-9939-97-04102-6&amp;rft.aulast=Cvijovi%C4%87&amp;rft.aufirst=Djurdje&amp;rft.au=Klinowski%2C+Jacek&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0002-9939-97-04102-6&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdwards1974" class="citation book cs1"><a href="/wiki/Harold_Edwards_(mathematician)" title="Harold Edwards (mathematician)">Edwards, H.M.</a> (1974). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/riemannszetafunc00edwa_0"><i>Riemann's Zeta Function</i></a></span>. Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-41740-9" title="Special:BookSources/0-486-41740-9"><bdi>0-486-41740-9</bdi></a> &#8211; via archive.org.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Riemann%27s+Zeta+Function&amp;rft.pub=Academic+Press&amp;rft.date=1974&amp;rft.isbn=0-486-41740-9&amp;rft.aulast=Edwards&amp;rft.aufirst=H.M.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Friemannszetafunc00edwa_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span> Has an English translation of Riemann's paper.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHadamard1896" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Jacques_Hadamard" title="Jacques Hadamard">Hadamard, Jacques</a> (1896). <a rel="nofollow" class="external text" href="https://doi.org/10.24033%2Fbsmf.545">"Sur la distribution des zéros de la fonction <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> et ses conséquences arithmétiques"</a> &#91;Regarding the distribution of the zeros of the function <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> and the arithmetical consequences&#93;. <i>Bulletin de la Société Mathématique de France</i> (in French). <b>14</b>: <span class="nowrap">199–</span>220. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.24033%2Fbsmf.545">10.24033/bsmf.545</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+de+la+Soci%C3%A9t%C3%A9+Math%C3%A9matique+de+France&amp;rft.atitle=Sur+la+distribution+des+z%C3%A9ros+de+la+fonction+%3Cspan+class%3D%22texhtml+%22+%3E%CE%B6%28s%29%3C%2Fspan%3E+et+ses+cons%C3%A9quences+arithm%C3%A9tiques&amp;rft.volume=14&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E199-%3C%2Fspan%3E220&amp;rft.date=1896&amp;rft_id=info%3Adoi%2F10.24033%2Fbsmf.545&amp;rft.aulast=Hadamard&amp;rft.aufirst=Jacques&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.24033%252Fbsmf.545&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardy1949" class="citation book cs1"><a href="/wiki/G._H._Hardy" title="G. H. Hardy">Hardy, G.H.</a> (1949). <i>Divergent Series</i>. Oxford, UK: Clarendon Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Divergent+Series&amp;rft.place=Oxford%2C+UK&amp;rft.pub=Clarendon+Press&amp;rft.date=1949&amp;rft.aulast=Hardy&amp;rft.aufirst=G.H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHasse1930" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Helmut_Hasse" title="Helmut Hasse">Hasse, Helmut</a> (1930). "Ein Summierungsverfahren für die Riemannsche <span class="texhtml mvar" style="font-style:italic;">ζ</span>-Reihe" &#91;A summation method for the Riemann <span class="texhtml mvar" style="font-style:italic;">ζ</span> series&#93;. <i>Math. Z.</i> (in German). <b>32</b>: <span class="nowrap">458–</span>464. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01194645">10.1007/BF01194645</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1545177">1545177</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120392534">120392534</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Math.+Z.&amp;rft.atitle=Ein+Summierungsverfahren+f%C3%BCr+die+Riemannsche+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3E%CE%B6%3C%2Fspan%3E-Reihe&amp;rft.volume=32&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E458-%3C%2Fspan%3E464&amp;rft.date=1930&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1545177%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120392534%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01194645&amp;rft.aulast=Hasse&amp;rft.aufirst=Helmut&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span> (Globally convergent series expression.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIvic1985" class="citation book cs1"><a href="/wiki/Aleksandar_Ivi%C4%87" title="Aleksandar Ivić">Ivic, Aleksandar</a> (1985). <i>The Riemann Zeta Function</i>. John Wiley &amp; Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-80634-X" title="Special:BookSources/0-471-80634-X"><bdi>0-471-80634-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Riemann+Zeta+Function&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1985&amp;rft.isbn=0-471-80634-X&amp;rft.aulast=Ivic&amp;rft.aufirst=Aleksandar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMotohashi1997" class="citation book cs1">Motohashi, Y. (1997). <i>Spectral Theory of the Riemann Zeta-Function</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0521445205" title="Special:BookSources/0521445205"><bdi>0521445205</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spectral+Theory+of+the+Riemann+Zeta-Function&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1997&amp;rft.isbn=0521445205&amp;rft.aulast=Motohashi&amp;rft.aufirst=Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaratsubaVoronin1992" class="citation book cs1"><a href="/wiki/A._A._Karatsuba" class="mw-redirect" title="A. A. Karatsuba">Karatsuba, A.A.</a>; Voronin, S.M. (1992). <i>The Riemann Zeta-Function</i>. Berlin, DE: W. de Gruyter.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Riemann+Zeta-Function&amp;rft.place=Berlin%2C+DE&amp;rft.pub=W.+de+Gruyter&amp;rft.date=1992&amp;rft.aulast=Karatsuba&amp;rft.aufirst=A.A.&amp;rft.au=Voronin%2C+S.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMezőDil2010" class="citation journal cs1">Mező, István; Dil, Ayhan (2010). "Hyperharmonic series involving Hurwitz zeta function". <i>Journal of Number Theory</i>. <b>130</b> (2): <span class="nowrap">360–</span>369. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jnt.2009.08.005">10.1016/j.jnt.2009.08.005</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2437%2F90539">2437/90539</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2564902">2564902</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122707401">122707401</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Number+Theory&amp;rft.atitle=Hyperharmonic+series+involving+Hurwitz+zeta+function&amp;rft.volume=130&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E360-%3C%2Fspan%3E369&amp;rft.date=2010&amp;rft_id=info%3Ahdl%2F2437%2F90539&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2564902%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122707401%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jnt.2009.08.005&amp;rft.aulast=Mez%C5%91&amp;rft.aufirst=Istv%C3%A1n&amp;rft.au=Dil%2C+Ayhan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMontgomeryVaughan2007" class="citation book cs1"><a href="/wiki/Hugh_Montgomery_(mathematician)" class="mw-redirect" title="Hugh Montgomery (mathematician)">Montgomery, Hugh L.</a>; <a href="/wiki/Robert_Charles_Vaughan_(mathematician)" class="mw-redirect" title="Robert Charles Vaughan (mathematician)">Vaughan, Robert C.</a> (2007). <i>Multiplicative Number Theory. I. Classical theory</i>. Cambridge tracts in advanced mathematics. Vol.&#160;97. Cambridge University Press. Chapter&#160;10. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-84903-6" title="Special:BookSources/978-0-521-84903-6"><bdi>978-0-521-84903-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Multiplicative+Number+Theory.+I.+Classical+theory&amp;rft.series=Cambridge+tracts+in+advanced+mathematics&amp;rft.pages=Chapter-10&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2007&amp;rft.isbn=978-0-521-84903-6&amp;rft.aulast=Montgomery&amp;rft.aufirst=Hugh+L.&amp;rft.au=Vaughan%2C+Robert+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNewman1998" class="citation book cs1"><a href="/wiki/Donald_J._Newman" title="Donald J. Newman">Newman, Donald J.</a> (1998). <i>Analytic Number Theory</i>. <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>. Vol.&#160;177. Springer-Verlag. Ch. 6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-98308-2" title="Special:BookSources/0-387-98308-2"><bdi>0-387-98308-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analytic+Number+Theory&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pages=Ch.+6&amp;rft.pub=Springer-Verlag&amp;rft.date=1998&amp;rft.isbn=0-387-98308-2&amp;rft.aulast=Newman&amp;rft.aufirst=Donald+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaoh1996" class="citation journal cs1 cs1-prop-long-vol">Raoh, Guo (1996). "The distribution of the logarithmic derivative of the Riemann zeta function". <i>Proceedings of the London Mathematical Society</i>. S3–72: <span class="nowrap">1–</span>27. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fplms%2Fs3-72.1.1">10.1112/plms/s3-72.1.1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+London+Mathematical+Society&amp;rft.atitle=The+distribution+of+the+logarithmic+derivative+of+the+Riemann+zeta+function&amp;rft.volume=S3%E2%80%9372&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E27&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1112%2Fplms%2Fs3-72.1.1&amp;rft.aulast=Raoh&amp;rft.aufirst=Guo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiemann1859" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Riemann, Bernhard</a> (1859). <a rel="nofollow" class="external text" href="http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/">"Über die Anzahl der Primzahlen unter einer gegebenen Grösse"</a>. <i>Monatsberichte der Berliner Akademie</i> (in German and English) &#8211; via <a href="/wiki/Trinity_College,_Dublin" class="mw-redirect" title="Trinity College, Dublin">Trinity College, Dublin</a> (maths.tcd.ie).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monatsberichte+der+Berliner+Akademie&amp;rft.atitle=%C3%9Cber+die+Anzahl+der+Primzahlen+unter+einer+gegebenen+Gr%C3%B6sse&amp;rft.date=1859&amp;rft.aulast=Riemann&amp;rft.aufirst=Bernhard&amp;rft_id=http%3A%2F%2Fwww.maths.tcd.ie%2Fpub%2FHistMath%2FPeople%2FRiemann%2FZeta%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span> Also available in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiemann1953" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Riemann, Bernhard</a> (1953) [1892]. <i>Gesammelte Werke</i> &#91;<i>Collected Works</i>&#93; (in German) (reprint&#160;ed.). New York, NY / Leipzig, DE: Dover (1953) / Teubner (1892).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gesammelte+Werke&amp;rft.place=New+York%2C+NY+%2F+Leipzig%2C+DE&amp;rft.edition=reprint&amp;rft.pub=Dover+%281953%29+%2F+Teubner+%281892%29&amp;rft.date=1953&amp;rft.aulast=Riemann&amp;rft.aufirst=Bernhard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSondow1994" class="citation journal cs1">Sondow, Jonathan (1994). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/proc/1994-120-02/S0002-9939-1994-1172954-7/S0002-9939-1994-1172954-7.pdf">"Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Proceedings_of_the_American_Mathematical_Society" title="Proceedings of the American Mathematical Society">Proceedings of the American Mathematical Society</a></i>. <b>120</b> (2): <span class="nowrap">421–</span>424. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-1994-1172954-7">10.1090/S0002-9939-1994-1172954-7</a></span> &#8211; via <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a> (ams.org).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+American+Mathematical+Society&amp;rft.atitle=Analytic+continuation+of+Riemann%27s+zeta+function+and+values+at+negative+integers+via+Euler%27s+transformation+of+series&amp;rft.volume=120&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E421-%3C%2Fspan%3E424&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.1090%2FS0002-9939-1994-1172954-7&amp;rft.aulast=Sondow&amp;rft.aufirst=Jonathan&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fproc%2F1994-120-02%2FS0002-9939-1994-1172954-7%2FS0002-9939-1994-1172954-7.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTitchmarsh1986" class="citation book cs1"><a href="/wiki/Edward_Charles_Titchmarsh" title="Edward Charles Titchmarsh">Titchmarsh, E.C.</a> (1986). Heath-Brown (ed.). <i>The Theory of the Riemann Zeta Function</i> (2nd rev.&#160;ed.). Oxford University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+the+Riemann+Zeta+Function&amp;rft.edition=2nd+rev.&amp;rft.pub=Oxford+University+Press&amp;rft.date=1986&amp;rft.aulast=Titchmarsh&amp;rft.aufirst=E.C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhittakerWatson1927" class="citation book cs1"><a href="/wiki/E._T._Whittaker" title="E. T. Whittaker">Whittaker, E.T.</a>; <a href="/wiki/G._N._Watson" title="G. N. Watson">Watson, G.N.</a> (1927). <i>A Course in Modern Analysis</i> (4th&#160;ed.). Cambridge University Press. Chapter&#160;13.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Course+in+Modern+Analysis&amp;rft.pages=Chapter-13&amp;rft.edition=4th&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1927&amp;rft.aulast=Whittaker&amp;rft.aufirst=E.T.&amp;rft.au=Watson%2C+G.N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhao1999" class="citation journal cs1">Zhao, Jianqiang (1999). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-99-05398-8">"Analytic continuation of multiple zeta functions"</a>. <i><a href="/wiki/Proceedings_of_the_American_Mathematical_Society" title="Proceedings of the American Mathematical Society">Proceedings of the American Mathematical Society</a></i>. <b>128</b> (5): <span class="nowrap">1275–</span>1283. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-99-05398-8">10.1090/S0002-9939-99-05398-8</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1670846">1670846</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+American+Mathematical+Society&amp;rft.atitle=Analytic+continuation+of+multiple+zeta+functions&amp;rft.volume=128&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1275-%3C%2Fspan%3E1283&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.1090%2FS0002-9939-99-05398-8&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1670846%23id-name%3DMR&amp;rft.aulast=Zhao&amp;rft.aufirst=Jianqiang&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0002-9939-99-05398-8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_zeta_function&amp;action=edit&amp;section=39" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Riemann_zeta_function" class="extiw" title="commons:Category:Riemann zeta function">Riemann zeta function</a> at Wikimedia Commons</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs1"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Zeta-function">"Zeta-function"</a>. <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>. <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>. 2001 [1994].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Zeta-function&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DZeta-function&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function, in Wolfram Mathworld</a> — an explanation with a more mathematical approach</li> <li><a rel="nofollow" class="external text" href="http://dtc.umn.edu/~odlyzko/zeta_tables">Tables of selected zeros</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090517003700/http://dtc.umn.edu/~odlyzko/zeta_tables/">Archived</a> 17 May 2009 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080721030342/http://seedmagazine.com/news/2006/03/prime_numbers_get_hitched.php">Prime Numbers Get Hitched</a> A general, non-technical description of the significance of the zeta function in relation to prime numbers.</li> <li><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0309433v1">X-Ray of the Zeta Function</a> Visually oriented investigation of where zeta is real or purely imaginary.</li> <li><a rel="nofollow" class="external text" href="http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta/">Formulas and identities for the Riemann Zeta function</a> functions.wolfram.com</li> <li><a rel="nofollow" class="external text" href="http://www.math.sfu.ca/~cbm/aands/page_807.htm">Riemann Zeta Function and Other Sums of Reciprocal Powers</a>, section 23.2 of <a href="/wiki/Abramowitz_and_Stegun" title="Abramowitz and Stegun">Abramowitz and Stegun</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrenkel" class="citation web cs1"><a href="/wiki/Edward_Frenkel" title="Edward Frenkel">Frenkel, Edward</a>. <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=d6c6uIyieoo">"Million Dollar Math Problem"</a> <span class="cs1-format">(video)</span>. <a href="/wiki/Brady_Haran" title="Brady Haran">Brady Haran</a>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211211/d6c6uIyieoo">Archived</a> from the original on 11 December 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">11 March</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Million+Dollar+Math+Problem&amp;rft.pub=Brady+Haran&amp;rft.aulast=Frenkel&amp;rft.aufirst=Edward&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dd6c6uIyieoo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+zeta+function" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://www.mathematik.uni-stuttgart.de/~riedelmo/papers/rfeq.pdf">Mellin transform and the functional equation of the Riemann Zeta function</a>—Computational examples of Mellin transform methods involving the Riemann Zeta Function</li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=sD0NjbwqlYw">Visualizing the Riemann zeta function and analytic continuation</a> a video from <a href="/wiki/3Blue1Brown" title="3Blue1Brown">3Blue1Brown</a></li></ul> <p class="mw-empty-elt"> </p> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="L-functions_in_number_theory" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:L-functions-footer" title="Template:L-functions-footer"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:L-functions-footer" title="Template talk:L-functions-footer"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:L-functions-footer" title="Special:EditPage/Template:L-functions-footer"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="L-functions_in_number_theory" style="font-size:114%;margin:0 4em"><a href="/wiki/L-function" title="L-function"><i>L</i>-functions</a> in <a href="/wiki/Number_theory" title="Number theory">number theory</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Analytic examples</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Riemann zeta function</a></li> <li><a href="/wiki/Dirichlet_L-function" title="Dirichlet L-function">Dirichlet <i>L</i>-functions</a></li> <li><a href="/wiki/L-function_with_Gr%C3%B6ssencharakter" class="mw-redirect" title="L-function with Grössencharakter"><i>L</i>-functions of Hecke characters</a></li> <li><a href="/wiki/Automorphic_L-function" title="Automorphic L-function">Automorphic <i>L</i>-functions</a></li> <li><a href="/wiki/Selberg_class" title="Selberg class">Selberg class</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Algebraic examples</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dedekind_zeta_function" title="Dedekind zeta function">Dedekind zeta functions</a></li> <li><a href="/wiki/Artin_L-function" title="Artin L-function">Artin <i>L</i>-functions</a></li> <li><a href="/wiki/Hasse%E2%80%93Weil_zeta_function" title="Hasse–Weil zeta function">Hasse–Weil <i>L</i>-functions</a></li> <li><a href="/wiki/Motivic_L-function" title="Motivic L-function">Motivic <i>L</i>-functions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Class_number_formula" title="Class number formula">Analytic class number formula</a></li> <li><a href="/wiki/Riemann%E2%80%93von_Mangoldt_formula" title="Riemann–von Mangoldt formula">Riemann–von Mangoldt formula</a></li> <li><a href="/wiki/Weil_conjectures" title="Weil conjectures">Weil conjectures</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Analytic conjectures</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></li> <li><a href="/wiki/Generalized_Riemann_hypothesis" title="Generalized Riemann hypothesis">Generalized Riemann hypothesis</a></li> <li><a href="/wiki/Lindel%C3%B6f_hypothesis" title="Lindelöf hypothesis">Lindelöf hypothesis</a></li> <li><a href="/wiki/Ramanujan%E2%80%93Petersson_conjecture" title="Ramanujan–Petersson conjecture">Ramanujan–Petersson conjecture</a></li> <li><a href="/wiki/Artin_conjecture_(L-functions)" class="mw-redirect" title="Artin conjecture (L-functions)">Artin conjecture</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Algebraic conjectures</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Birch_and_Swinnerton-Dyer_conjecture" title="Birch and Swinnerton-Dyer conjecture">Birch and Swinnerton-Dyer conjecture</a></li> <li><a href="/wiki/Special_values_of_L-functions" title="Special values of L-functions">Deligne's conjecture</a></li> <li><a href="/wiki/Beilinson_conjectures" class="mw-redirect" title="Beilinson conjectures">Beilinson conjectures</a></li> <li><a href="/wiki/Bloch%E2%80%93Kato_conjecture_(L-functions)" class="mw-redirect" title="Bloch–Kato conjecture (L-functions)">Bloch–Kato conjecture</a></li> <li><a href="/wiki/Langlands_program" title="Langlands program">Langlands conjecture</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/P-adic_L-function" title="P-adic L-function"><i>p</i>-adic <i>L</i>-functions</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Main_conjecture_of_Iwasawa_theory" title="Main conjecture of Iwasawa theory">Main conjecture of Iwasawa theory</a></li> <li><a href="/wiki/Selmer_group" title="Selmer group">Selmer group</a></li> <li><a href="/wiki/Euler_system" title="Euler system">Euler system</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Sequences_and_series" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Series_(mathematics)" title="Template:Series (mathematics)"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Series_(mathematics)" title="Template talk:Series (mathematics)"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Series_(mathematics)" title="Special:EditPage/Template:Series (mathematics)"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Sequences_and_series" style="font-size:114%;margin:0 4em"><a href="/wiki/Sequence" title="Sequence">Sequences</a> and <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Integer_sequence" title="Integer sequence">Integer sequences</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Basic</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetic_progression" title="Arithmetic progression">Arithmetic progression</a></li> <li><a href="/wiki/Geometric_progression" title="Geometric progression">Geometric progression</a></li> <li><a href="/wiki/Harmonic_progression_(mathematics)" title="Harmonic progression (mathematics)">Harmonic progression</a></li> <li><a href="/wiki/Square_number" title="Square number">Square number</a></li> <li><a href="/wiki/Cube_(algebra)" title="Cube (algebra)">Cubic number</a></li> <li><a href="/wiki/Factorial" title="Factorial">Factorial</a></li> <li><a href="/wiki/Power_of_two" title="Power of two">Powers of two</a></li> <li><a href="/wiki/Power_of_three" title="Power of three">Powers of three</a></li> <li><a href="/wiki/Power_of_10" title="Power of 10">Powers of 10</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Advanced <span class="nobold">(<a href="/wiki/List_of_OEIS_sequences" class="mw-redirect" title="List of OEIS sequences">list</a>)</span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Complete_sequence" title="Complete sequence">Complete sequence</a></li> <li><a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence">Fibonacci sequence</a></li> <li><a href="/wiki/Figurate_number" title="Figurate number">Figurate number</a></li> <li><a href="/wiki/Heptagonal_number" title="Heptagonal number">Heptagonal number</a></li> <li><a href="/wiki/Hexagonal_number" title="Hexagonal number">Hexagonal number</a></li> <li><a href="/wiki/Lucas_number" title="Lucas number">Lucas number</a></li> <li><a href="/wiki/Pell_number" title="Pell number">Pell number</a></li> <li><a href="/wiki/Pentagonal_number" title="Pentagonal number">Pentagonal number</a></li> <li><a href="/wiki/Polygonal_number" title="Polygonal number">Polygonal number</a></li> <li><a href="/wiki/Triangular_number" title="Triangular number">Triangular number</a> <ul><li><a href="/wiki/Triangular_array" title="Triangular array">array</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence"><img alt="Fibonacci spiral with square sizes up to 34." src="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Fibonacci_spiral_34.svg/80px-Fibonacci_spiral_34.svg.png" decoding="async" width="80" height="51" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Fibonacci_spiral_34.svg/120px-Fibonacci_spiral_34.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/93/Fibonacci_spiral_34.svg/160px-Fibonacci_spiral_34.svg.png 2x" data-file-width="915" data-file-height="579" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties of sequences</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequence</a></li> <li><a href="/wiki/Monotonic_function" title="Monotonic function">Monotonic function</a></li> <li><a href="/wiki/Periodic_sequence" title="Periodic sequence">Periodic sequence</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties of series</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Series</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Convergent_series" title="Convergent series">Convergent</a></li> <li><a href="/wiki/Divergent_series" title="Divergent series">Divergent</a></li> <li><a href="/wiki/Telescoping_series" title="Telescoping series">Telescoping</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Convergence</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolute_convergence" title="Absolute convergence">Absolute</a></li> <li><a href="/wiki/Conditional_convergence" title="Conditional convergence">Conditional</a></li> <li><a href="/wiki/Uniform_convergence" title="Uniform convergence">Uniform</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Explicit series</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Convergent</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/1/2_%E2%88%92_1/4_%2B_1/8_%E2%88%92_1/16_%2B_%E2%8B%AF" title="1/2 − 1/4 + 1/8 − 1/16 + ⋯">1/2 − 1/4 + 1/8 − 1/16 + ⋯</a></li> <li><a href="/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/16_%2B_%E2%8B%AF" title="1/2 + 1/4 + 1/8 + 1/16 + ⋯">1/2 + 1/4 + 1/8 + 1/16 + ⋯</a></li> <li><a href="/wiki/1/4_%2B_1/16_%2B_1/64_%2B_1/256_%2B_%E2%8B%AF" title="1/4 + 1/16 + 1/64 + 1/256 + ⋯">1/4 + 1/16 + 1/64 + 1/256 + ⋯</a></li> <li><a class="mw-selflink selflink">1 + 1/2<sup><i>s</i></sup> + 1/3<sup><i>s</i></sup> + ... (Riemann zeta function)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Divergent</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/1_%2B_1_%2B_1_%2B_1_%2B_%E2%8B%AF" title="1 + 1 + 1 + 1 + ⋯">1 + 1 + 1 + 1 + ⋯</a></li> <li><a href="/wiki/Grandi%27s_series" title="Grandi&#39;s series">1 − 1 + 1 − 1 + ⋯ (Grandi's series)</a></li> <li><a href="/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯">1 + 2 + 3 + 4 + ⋯</a></li> <li><a href="/wiki/1_%E2%88%92_2_%2B_3_%E2%88%92_4_%2B_%E2%8B%AF" title="1 − 2 + 3 − 4 + ⋯">1 − 2 + 3 − 4 + ⋯</a></li> <li><a href="/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E2%8B%AF" title="1 + 2 + 4 + 8 + ⋯">1 + 2 + 4 + 8 + ⋯</a></li> <li><a href="/wiki/1_%E2%88%92_2_%2B_4_%E2%88%92_8_%2B_%E2%8B%AF" title="1 − 2 + 4 − 8 + ⋯">1 − 2 + 4 − 8 + ⋯</a></li> <li><a href="/wiki/Infinite_arithmetic_series" class="mw-redirect" title="Infinite arithmetic series">Infinite arithmetic series</a></li> <li><a href="/wiki/1_%E2%88%92_1_%2B_2_%E2%88%92_6_%2B_24_%E2%88%92_120_%2B_..." class="mw-redirect" title="1 − 1 + 2 − 6 + 24 − 120 + ...">1 − 1 + 2 − 6 + 24 − 120 + ⋯ (alternating factorials)</a></li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">1 + 1/2 + 1/3 + 1/4 + ⋯ (harmonic series)</a></li> <li><a href="/wiki/Divergence_of_the_sum_of_the_reciprocals_of_the_primes" title="Divergence of the sum of the reciprocals of the primes">1/2 + 1/3 + 1/5 + 1/7 + 1/11 + ⋯ (inverses of primes)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Kinds of series</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a></li> <li><a href="/wiki/Power_series" title="Power series">Power series</a></li> <li><a href="/wiki/Formal_power_series" title="Formal power series">Formal power series</a></li> <li><a href="/wiki/Laurent_series" title="Laurent series">Laurent series</a></li> <li><a href="/wiki/Puiseux_series" title="Puiseux series">Puiseux series</a></li> <li><a href="/wiki/Dirichlet_series" title="Dirichlet series">Dirichlet series</a></li> <li><a href="/wiki/Trigonometric_series" title="Trigonometric series">Trigonometric series</a></li> <li><a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a></li> <li><a href="/wiki/Generating_series" class="mw-redirect" title="Generating series">Generating series</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hypergeometric_function" title="Hypergeometric function">Hypergeometric series</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_hypergeometric_series" class="mw-redirect" title="Generalized hypergeometric series">Generalized hypergeometric series</a></li> <li><a href="/wiki/Hypergeometric_function_of_a_matrix_argument" title="Hypergeometric function of a matrix argument">Hypergeometric function of a matrix argument</a></li> <li><a href="/wiki/Lauricella_hypergeometric_series" title="Lauricella hypergeometric series">Lauricella hypergeometric series</a></li> <li><a href="/wiki/Modular_hypergeometric_series" class="mw-redirect" title="Modular hypergeometric series">Modular hypergeometric series</a></li> <li><a href="/wiki/Riemann%27s_differential_equation" title="Riemann&#39;s differential equation">Riemann's differential equation</a></li> <li><a href="/wiki/Theta_hypergeometric_series" class="mw-redirect" title="Theta hypergeometric series">Theta hypergeometric series</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Mathematical_series" title="Category:Mathematical series">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Bernhard_Riemann" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Bernhard_Riemann" title="Template:Bernhard Riemann"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Bernhard_Riemann" title="Template talk:Bernhard Riemann"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Bernhard_Riemann" title="Special:EditPage/Template:Bernhard Riemann"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Bernhard_Riemann" style="font-size:114%;margin:0 4em"><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy%E2%80%93Riemann_equations" title="Cauchy–Riemann equations">Cauchy–Riemann equations</a></li> <li><a href="/wiki/Generalized_Riemann_hypothesis" title="Generalized Riemann hypothesis">Generalized Riemann hypothesis</a></li> <li><a href="/wiki/Grand_Riemann_hypothesis" title="Grand Riemann hypothesis">Grand Riemann hypothesis</a></li> <li><a href="/wiki/Grothendieck%E2%80%93Riemann%E2%80%93Roch_theorem" title="Grothendieck–Riemann–Roch theorem">Grothendieck–Hirzebruch–Riemann–Roch theorem</a></li> <li><a href="/wiki/Hirzebruch%E2%80%93Riemann%E2%80%93Roch_theorem" title="Hirzebruch–Riemann–Roch theorem">Hirzebruch–Riemann–Roch theorem</a></li> <li><a href="/wiki/Local_zeta_function" title="Local zeta function">Local zeta function</a></li> <li><a href="/wiki/Measurable_Riemann_mapping_theorem" title="Measurable Riemann mapping theorem">Measurable Riemann mapping theorem</a></li> <li><a href="/wiki/Riemann_(crater)" title="Riemann (crater)">Riemann (crater)</a></li> <li><a href="/wiki/Riemann_Xi_function" class="mw-redirect" title="Riemann Xi function">Riemann Xi function</a></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Riemann_invariant" title="Riemann invariant">Riemann invariant</a></li> <li><a href="/wiki/Riemann_mapping_theorem" title="Riemann mapping theorem">Riemann mapping theorem</a></li> <li><a href="/wiki/Riemann_form" title="Riemann form">Riemann form</a></li> <li><a href="/wiki/Riemann_problem" title="Riemann problem">Riemann problem</a></li> <li><a href="/wiki/Riemann_series_theorem" title="Riemann series theorem">Riemann series theorem</a></li> <li><a href="/wiki/Riemann_solver" title="Riemann solver">Riemann solver</a></li> <li><a href="/wiki/Riemann_sphere" title="Riemann sphere">Riemann sphere</a></li> <li><a href="/wiki/Riemann_sum" title="Riemann sum">Riemann sum</a></li> <li><a href="/wiki/Riemann_surface" title="Riemann surface">Riemann surface</a></li> <li><a class="mw-selflink selflink">Riemann zeta function</a></li> <li><a href="/wiki/Riemann%27s_differential_equation" title="Riemann&#39;s differential equation">Riemann's differential equation</a></li> <li><a href="/wiki/Riemann%27s_minimal_surface" title="Riemann&#39;s minimal surface">Riemann's minimal surface</a></li> <li><a href="/wiki/Riemannian_circle" class="mw-redirect" title="Riemannian circle">Riemannian circle</a></li> <li><a href="/wiki/Riemannian_connection_on_a_surface" title="Riemannian connection on a surface">Riemannian connection on a surface</a></li> <li><a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a></li> <li><a href="/wiki/Riemann%E2%80%93Hilbert_correspondence" title="Riemann–Hilbert correspondence">Riemann–Hilbert correspondence</a></li> <li><a href="/wiki/Riemann%E2%80%93Hilbert_problem" title="Riemann–Hilbert problem">Riemann–Hilbert problems</a></li> <li><a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue lemma</a></li> <li><a href="/wiki/Riemann%E2%80%93Liouville_integral" title="Riemann–Liouville integral">Riemann–Liouville integral</a></li> <li><a href="/wiki/Riemann%E2%80%93Roch_theorem" title="Riemann–Roch theorem">Riemann–Roch theorem</a></li> <li><a href="/wiki/Riemann%E2%80%93Roch_theorem_for_smooth_manifolds" title="Riemann–Roch theorem for smooth manifolds">Riemann–Roch theorem for smooth manifolds</a></li> <li><a href="/wiki/Riemann%E2%80%93Siegel_formula" title="Riemann–Siegel formula">Riemann–Siegel formula</a></li> <li><a href="/wiki/Riemann%E2%80%93Siegel_theta_function" title="Riemann–Siegel theta function">Riemann–Siegel theta function</a></li> <li><a href="/wiki/Riemann%E2%80%93Silberstein_vector" title="Riemann–Silberstein vector">Riemann–Silberstein vector</a></li> <li><a href="/wiki/Riemann%E2%80%93Stieltjes_integral" title="Riemann–Stieltjes integral">Riemann–Stieltjes integral</a></li> <li><a href="/wiki/Riemann%E2%80%93von_Mangoldt_formula" title="Riemann–von Mangoldt formula">Riemann–von Mangoldt formula</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Bernhard_Riemann" title="Category:Bernhard Riemann">Category</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q187235#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q187235#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q187235#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/936136/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4308419-9">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12287377j">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb12287377j">BnF data</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00574618">Japan</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&amp;authority_id=XX533372">Spain</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.idref.fr/031709117">IdRef</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐86bb5c9646‐kpf94 Cached time: 20250105143816 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.362 seconds Real time usage: 1.809 seconds Preprocessor visited node count: 12847/1000000 Post‐expand include size: 269121/2097152 bytes Template argument size: 20353/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 315964/5000000 bytes Lua time usage: 0.729/10.000 seconds Lua memory usage: 5832699/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1183.109 1 -total 35.90% 424.776 1 Template:Reflist 23.06% 272.840 47 Template:Cite_journal 15.44% 182.633 135 Template:Math 10.63% 125.812 6 Template:Navbox 9.57% 113.240 10 Template:Cite_web 9.16% 108.381 1 Template:Short_description 8.93% 105.610 21 Template:Cite_book 8.09% 95.697 1 Template:L-functions-footer 6.96% 82.317 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:25809:|#|:idhash:canonical and timestamp 20250105143816 and revision id 1267527866. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Riemann_zeta_function&amp;oldid=1267527866">https://en.wikipedia.org/w/index.php?title=Riemann_zeta_function&amp;oldid=1267527866</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Zeta_and_L-functions" title="Category:Zeta and L-functions">Zeta and L-functions</a></li><li><a href="/wiki/Category:Analytic_number_theory" title="Category:Analytic number theory">Analytic number theory</a></li><li><a href="/wiki/Category:Meromorphic_functions" title="Category:Meromorphic functions">Meromorphic functions</a></li><li><a href="/wiki/Category:Bernhard_Riemann" title="Category:Bernhard Riemann">Bernhard Riemann</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_April_2017" title="Category:Use dmy dates from April 2017">Use dmy dates from April 2017</a></li><li><a href="/wiki/Category:Articles_containing_video_clips" title="Category:Articles containing video clips">Articles containing video clips</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 5 January 2025, at 14:37<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Riemann_zeta_function&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-59ccf9db48-r9xz8","wgBackendResponseTime":186,"wgPageParseReport":{"limitreport":{"cputime":"1.362","walltime":"1.809","ppvisitednodes":{"value":12847,"limit":1000000},"postexpandincludesize":{"value":269121,"limit":2097152},"templateargumentsize":{"value":20353,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":315964,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1183.109 1 -total"," 35.90% 424.776 1 Template:Reflist"," 23.06% 272.840 47 Template:Cite_journal"," 15.44% 182.633 135 Template:Math"," 10.63% 125.812 6 Template:Navbox"," 9.57% 113.240 10 Template:Cite_web"," 9.16% 108.381 1 Template:Short_description"," 8.93% 105.610 21 Template:Cite_book"," 8.09% 95.697 1 Template:L-functions-footer"," 6.96% 82.317 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.729","limit":"10.000"},"limitreport-memusage":{"value":5832699,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-86bb5c9646-kpf94","timestamp":"20250105143816","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Riemann zeta function","url":"https:\/\/en.wikipedia.org\/wiki\/Riemann_zeta_function","sameAs":"http:\/\/www.wikidata.org\/entity\/Q187235","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q187235","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-01T15:21:15Z","dateModified":"2025-01-05T14:37:56Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/2\/2e\/Cplot_zeta.svg","headline":"analytic function"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10