CINXE.COM
EAI Endorsed Transactions on Scalable Information Systems - EUDL
<html><head><title>EAI Endorsed Transactions on Scalable Information Systems - EUDL</title><link rel="icon" href="/images/favicon.ico"><link rel="stylesheet" type="text/css" href="/css/screen.css"><link rel="stylesheet" href="/css/zenburn.css"><meta http-equiv="Content-Type" content="charset=utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="Description" content="Visit the new journal website to submit and consult our contents: https://publications.eai.eu/index.php/sis/index"><script type="text/javascript" src="https://services.eai.eu//load-signup-form/EAI"></script><script type="text/javascript" src="https://services.eai.eu//ujs/forms/signup/sso-client.js"></script><script type="text/javascript">if (!window.EUDL){ window.EUDL={} };EUDL.cas_url="https://account.eai.eu/cas";EUDL.profile_url="https://account.eai.eu";if(window.SSO){SSO.set_mode('eai')};</script><script type="text/javascript" src="/js/jquery.js"></script><script type="text/javascript" src="/js/jquery.cookie.js"></script><script type="text/javascript" src="/js/sso.js"></script><script type="text/javascript" src="/js/jscal2.js"></script><script type="text/javascript" src="/js/lang/en.js"></script><script type="text/javascript" src="/js/jquery.colorbox-min.js"></script><script type="text/javascript" src="/js/eudl.js"></script><script type="text/javascript" src="/js/journal.js"></script><script type="text/javascript" src="/js/tabs.js"></script><link rel="stylesheet" type="text/css" href="/css/jscal/jscal2.css"><link rel="stylesheet" type="text/css" href="/css/jscal/eudl/eudl.css"><link rel="stylesheet" type="text/css" href="/css/colorbox.css"></head><body><div id="eudl-page-head"><div id="eudl-page-header"><section id="user-area"><div><nav id="right-nav"><a href="/about">About</a> | <a href="/contact">Contact Us</a> | <a class="register" href="https://account.eai.eu/register?service=http%3A%2F%2Feudl.eu%2Fissue%2Fsis%2F6%2F21">Register</a> | <a class="login" href="https://account.eai.eu/cas/login?service=http%3A%2F%2Feudl.eu%2Fissue%2Fsis%2F6%2F21">Login</a></nav></div></section></div></div><div id="eudl-page"><header><section id="topbar-ads"><div><a href="https://eudl.eu/"><img class="eudl-logo-top" src="https://eudl.eu/images/eudl-logo.png"></a><a href="https://eai.eu/eai-community/?mtm_campaign=community_membership&mtm_kwd=eudl_community&mtm_source=eudl&mtm_medium=eudl_banner"><img class="eudl-ads-top" src="https://eudl.eu/images/upbanner.png"></a></div></section><section id="menu"><nav><a href="/proceedings" class=""><span>Proceedings</span><span class="icon"></span></a><a href="/series" class=""><span>Series</span><span class="icon"></span></a><a href="/journals" class="current"><span>Journals</span><span class="icon"></span></a><a href="/content" class=""><span>Search</span><span class="icon"></span></a><a href="http://eai.eu/">EAI</a></nav></section></header><div id="eaientran"></div><section id="content"><section id="journal"><form class="search-form" id="article_search" method="get"><section class="cover-and-filters"><section class="cover"><a href="/journal/sis" title="EAI Endorsed Transactions on Scalable Information Systems"><img src="/attachment/32315"></a></section><section class="issn"><strong>ISSN: </strong>2032-9407</section><section class="escripts link"><a href="https://escripts.eai.eu/paper/submit">Submit Article</a></section><section class="instructions link"><a href="/instructions">Submission Instructions</a></section><section class="ethics link"><a href="/ethics">Ethics and Malpractice Statement</a></section><section class="back-to-journal link"><a href="/journal/sis">Back to Journal Page</a></section><section class="browse-filters"><div class="browse-by"><a class="browse-link">2024<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/11/6" class="filter ">Issue 6</a><a href="/issue/sis/11/5" class="filter ">Issue 5</a><a href="/issue/sis/11/4" class="filter ">Issue 4</a><a href="/issue/sis/11/3" class="filter ">Issue 3</a><a href="/issue/sis/11/2" class="filter ">Issue 2</a><a href="/issue/sis/11/1" class="filter ">Issue 1</a></div><a class="browse-link">2023<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/10/6" class="filter ">Issue 6</a><a href="/issue/sis/10/5" class="filter ">Issue 5</a><a href="/issue/sis/10/4" class="filter ">Issue 4</a><a href="/issue/sis/10/3" class="filter ">Issue 3</a><a href="/issue/sis/10/2" class="filter ">Issue 2</a><a href="/issue/sis/10/1" class="filter ">Issue 1</a></div><a class="browse-link">2022<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/9/6" class="filter ">Issue 6</a><a href="/issue/sis/9/5" class="filter ">Issue 5</a><a href="/issue/sis/9/4" class="filter ">Issue 4</a><a href="/issue/sis/9/36" class="filter ">Issue 36</a><a href="/issue/sis/9/35" class="filter ">Issue 35</a><a href="/issue/sis/9/34" class="filter ">Issue 34</a></div><a class="browse-link">2021<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/8/33" class="filter ">Issue 33</a><a href="/issue/sis/8/32" class="filter ">Issue 32</a><a href="/issue/sis/8/31" class="filter ">Issue 31</a><a href="/issue/sis/8/30" class="filter ">Issue 30</a><a href="/issue/sis/8/29" class="filter ">Issue 29</a></div><a class="browse-link">2020<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/7/28" class="filter ">Issue 28</a><a href="/issue/sis/7/27" class="filter ">Issue 27</a><a href="/issue/sis/7/26" class="filter ">Issue 26</a><a href="/issue/sis/7/25" class="filter ">Issue 25</a><a href="/issue/sis/7/24" class="filter ">Issue 24</a></div><a class="browse-link">2019<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/6/23" class="filter ">Issue 23</a><a href="/issue/sis/6/22" class="filter ">Issue 22</a><a href="/issue/sis/6/21" class="filter current">Issue 21</a><a href="/issue/sis/6/20" class="filter ">Issue 20</a></div><a class="browse-link">2018<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/5/19" class="filter ">Issue 19</a><a href="/issue/sis/5/18" class="filter ">Issue 18</a><a href="/issue/sis/5/17" class="filter ">Issue 17</a><a href="/issue/sis/5/16" class="filter ">Issue 16</a></div><a class="browse-link">2017<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/4/15" class="filter ">Issue 15</a><a href="/issue/sis/4/14" class="filter ">Issue 14</a><a href="/issue/sis/4/13" class="filter ">Issue 13</a><a href="/issue/sis/4/12" class="filter ">Issue 12</a></div><a class="browse-link">2016<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/3/11" class="filter ">Issue 11</a><a href="/issue/sis/3/10" class="filter ">Issue 10</a><a href="/issue/sis/3/9" class="filter ">Issue 9</a><a href="/issue/sis/3/8" class="filter ">Issue 8</a></div><a class="browse-link">2015<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/2/7" class="filter ">Issue 7</a><a href="/issue/sis/2/6" class="filter ">Issue 6</a><a href="/issue/sis/2/5" class="filter ">Issue 5</a><a href="/issue/sis/2/4" class="filter ">Issue 4</a></div><a class="browse-link">2014<span class="pointer"></span></a><div class="filters"><a href="/issue/sis/1/3" class="filter ">Issue 3</a><a href="/issue/sis/1/2" class="filter ">Issue 2</a><a href="/issue/sis/1/1" class="filter ">Issue 1</a></div></div></section></section><section class="info-and-search"><div class="manage-menu"></div><a href="/journal/sis"><h1>EAI Endorsed Transactions on Scalable Information Systems</h1></a><section class="issue-number">Issue 21, 2019</section><section class="editors"><strong>Editor(s)-in-Chief: </strong><span class="editor">Hua Wang</span>, <span class="editor">Xiaohua Jia</span> and <span class="editor">Manik Sharma</span></section><section class="issue-tabs"><div class="tabs"><ul><li><a name="articles">Articles</a></li><li><a name="meta">Information</a></li></ul></div><div class="content"><div name="articles"><section id="publications-results" class="search-results"><ul class="results-list"><li class="result-item article-light first"><h3><a href="/doi/10.4108/eai.13-7-2018.158418">New Behavioural Big Data Methods for Predicting Housing Price</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">sis<span class="info-separator"> </span><strong>19</strong><span class="info-separator">(</span>21<span class="info-separator">)</span><span class="info-separator">: </span>e1</dd><br><dt class="title">Authors: </dt><dd class="value">Jiaying Kou, Yashar Gedik</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">Housing market price prediction is a big challenge. The 2008 global recession strongly showed that even the most sophisticated traditional economic models failed to foresee the crisis. New developments of behavioural economic theory indicate that the information from micro-level’s decision making w…</span><span class="full">Housing market price prediction is a big challenge. The 2008 global recession strongly showed that even the most sophisticated traditional economic models failed to foresee the crisis. New developments of behavioural economic theory indicate that the information from micro-level’s decision making will bring new solution to the age-old problem of economic forecasting. Additionally, the information revolution and big data methods have provided a new lens to study economic problems apart from traditional methodologies. <br>This research provides the theoretical link between irrationality and big data methods. Empirically, big data methods will be used in forecasting the housing market cycle in Australia. Specifically, Google trends is included as a new variable in a time series auto-regression model to forecast housing market cycles.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.13-7-2018.158419">Role and Performance of Different Traditional Classification and Nature-Inspired Computing Techniques in Major Research Areas</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">sis<span class="info-separator"> </span><strong>19</strong><span class="info-separator">(</span>21<span class="info-separator">)</span><span class="info-separator">: </span>e2</dd><br><dt class="title">Authors: </dt><dd class="value">Samriti Sharma, Gurvinder Singh, Dhanpreet Singh</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">In the last few years, different machine learning techniques such as supervised, unsupervised, and reinforcement learning have been effectively employed to solve distinct real-life multidisciplinary problems. These techniques have been effectively applied to accurately predict the problems related …</span><span class="full">In the last few years, different machine learning techniques such as supervised, unsupervised, and reinforcement learning have been effectively employed to solve distinct real-life multidisciplinary problems. These techniques have been effectively applied to accurately predict the problems related to stock values, disease diagnosis, sentiment analysis, text processing, gene classification, crop prediction, and weather forecasting. The objective of this manuscript is to present the systematic review on the use of these techniques in five major domains i.e. agriculture, finance, healthcare, education and engineering. A standard review methodology has been adapted to include and exclude the related literature. The performance of different supervised and nature-inspired computing techniques have been accessed on the basis of different performance metrics. The publication trend on the use of machine learning techniques in these five research areas has been also explored. Finally, the gaps in the study have been identified that will assist prospective researchers who want to pursue their research in these areas.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.19-3-2019.158527">Knowledge Discovery for Scalable Data Mining</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">sis<span class="info-separator"> </span><strong>19</strong><span class="info-separator">(</span>21<span class="info-separator">)</span><span class="info-separator">: </span>e3</dd><br><dt class="title">Authors: </dt><dd class="value">Indu Chhabra, Gunmala Suri</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">The scalable diverse data and increasing levels of complexity in engineering and management science have given a boost to Data mining technology. The purpose of the proposed research is to evaluate the rule-based technique to develop solutions for analyzing customer Post Purchase behavior through k…</span><span class="full">The scalable diverse data and increasing levels of complexity in engineering and management science have given a boost to Data mining technology. The purpose of the proposed research is to evaluate the rule-based technique to develop solutions for analyzing customer Post Purchase behavior through knowledge discovery paradigm of Association rule mining. Over the years, it has proved a good tool to predict because of the incorporation of actual mined patterns. The current work is focused on extracting knowledge about the customer purchasing psychology and behaviour for the most frequent item combinations. For the purchase implementation, association rule framework is assessed for its performance analysis. The inferences of this automated intelligent system are based on of real life data set of 120 item-set combinations of five computer peripherals. This knowledge will help in framing and executing the most appropriate market laws and rules for the overall business growth. <br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.13-7-2018.158528">An Adaptive Fault Tolerant Scheduling System for Desktop Grid</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">sis<span class="info-separator"> </span><strong>19</strong><span class="info-separator">(</span>21<span class="info-separator">)</span><span class="info-separator">: </span>e4</dd><br><dt class="title">Authors: </dt><dd class="value">Jyoti Bansal, Geeta Rani</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">In Desktop Grid, managing faults is very crucial and challenging job. So a fault tolerant system is mandatory requirement in desktop grid for fault identification and their resolution. A fault tolerant system allows applications to continue execution despite having faults without termination. In th…</span><span class="full">In Desktop Grid, managing faults is very crucial and challenging job. So a fault tolerant system is mandatory requirement in desktop grid for fault identification and their resolution. A fault tolerant system allows applications to continue execution despite having faults without termination. In this paper,an adaptive fault tolerant scheduling system is presented that combines dynamic replication with rescheduling. The system initially schedules jobs depending upon the completion time and fault rate of resources and then fault-tolerant strategies are applied depending upon availability of resources. To measure the performance,experiments has been carried out and it has been observed that proposed scheduling system outperforms by a factor of 4.8% w.r.t. Average task response time and 0.02% w.r.t. Average flowtime as compared to existing system. On the other hand, there is no significant improvement is observed when BoT completion time and average execution time are compared to existing system.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.13-7-2018.158529">Email Phishing: An Enhanced Classification Model to Detect Malicious URLs</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">sis<span class="info-separator"> </span><strong>19</strong><span class="info-separator">(</span>21<span class="info-separator">)</span><span class="info-separator">: </span>e5</dd><br><dt class="title">Authors: </dt><dd class="value">Shweta Sankhwar, Dhirendra Pandey, R.A Khan</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">Phishing is the process of enticing people into visiting fraudulent websites and persuading them to enter their personal information. Number in phishing email are spread with the aim of making web users believe that they are communicating with a trusted entity or organization. Phishing is deployed …</span><span class="full">Phishing is the process of enticing people into visiting fraudulent websites and persuading them to enter their personal information. Number in phishing email are spread with the aim of making web users believe that they are communicating with a trusted entity or organization. Phishing is deployed by the use of advanced and harmful tactics like malicious or phishing URLs. So, it becomes necessary to detect malicious or phishing URLs in the present scenario. Numerous anti- phishing techniques are in vogue to discriminate fake and the authentic website but are not effective. This research, focuses on the relevant URLs features that discriminate between legitimate and malicious/phishing URLs. The impact of email phishing can be largely reduced by adopting an appropriate combination of all these features with classification techniques. Therefore, an Enhanced Malicious URLs Detection (EMUD) model is developed with machine learning techniques for better classification and accurate results.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.10-6-2019.159097">An Experimental Study with Tensor Flow for Characteristic mining of Mathematical Formulae from a Document</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">sis<span class="info-separator"> </span><strong>19</strong><span class="info-separator">(</span>21<span class="info-separator">)</span><span class="info-separator">: </span>e6</dd><br><dt class="title">Authors: </dt><dd class="value">K. N. Brahmaji Rao, G. Srinivas, P. V. G. D. Prasad Reddy</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">Through this article a deep learning technique is proposed for the extraction and classification of mathematical keywords from textual documents. Extraction of math keywords from textual data is predominant problem as textual documents contain a culmination of mathematical symbols and literals from…</span><span class="full">Through this article a deep learning technique is proposed for the extraction and classification of mathematical keywords from textual documents. Extraction of math keywords from textual data is predominant problem as textual documents contain a culmination of mathematical symbols and literals from natural language such as alphabets and words. Separation of these textual words embedded in the mathematical formulae is a complex task. Our proposed technique solves this critical problem of extracting mathematical keywords from textual documents using techniques such as stemming, <br>tokenization and clustering mathematical keywords based on a training set of mathematical keyword and formulae pairs. The performance of the proposed technique is measured using the metrics such as retrieval time, Sensitivity, Accuracy, FPR, FNR, and FDR are used for appraisal of the proposed technique.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.10-6-2019.159098">Load Balancing Policies of Web Servers: Research Analysis, Classification and Perspectives</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">sis<span class="info-separator"> </span><strong>19</strong><span class="info-separator">(</span>21<span class="info-separator">)</span><span class="info-separator">: </span>e7</dd><br><dt class="title">Authors: </dt><dd class="value">Prabu U, Malarvizhi N, Amudhavel J, Sriram R, Ravisasthiri P</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">The usage of the internet has increased rapidly from the past few years. Thus it automatically increases the internet traffic. In the internet, a web server always responds to the client or web browser's requests. The major feature of a web server is to be available, scalable and predictable. So th…</span><span class="full">The usage of the internet has increased rapidly from the past few years. Thus it automatically increases the internet traffic. In the internet, a web server always responds to the client or web browser's requests. The major feature of a web server is to be available, scalable and predictable. So the core part to be concentrated is web server load balancing. Load balancing plays a vital role in allocating the jobs to the web server based on its status. There are various policies available for web server load balancing. Each of these policies came into existence based on the certain needs. In this paper, we have examined the latest policies of web server load balancing.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li><li class="result-item article-light"><h3><a href="/doi/10.4108/eai.10-6-2019.159099">EODVGA: An Enhanced ODV Based Genetic Algorithm for Multi-Depot Vehicle Routing Problem</a></h3><dl class="metadata"><dt class="title">Appears in: </dt><dd class="value">sis<span class="info-separator"> </span><strong>19</strong><span class="info-separator">(</span>21<span class="info-separator">)</span><span class="info-separator">: </span>e8</dd><br><dt class="title">Authors: </dt><dd class="value">Prabu U, Ravisasthiri P, Sriram R, Malarvizhi N, Amudhavel J</dd><br><dt class="title">Abstract: </dt><dd class="value abstract"><span class="shortened">Multi-Depot Vehicle Routing Problem (MDVRP) is a familiar combinative optimization problem that simultaneously determines the direction for different vehicles from over one depot to a collection of consumers. Researchers have suggested variety of meta-heuristic and heuristic algorithms to elucidate…</span><span class="full">Multi-Depot Vehicle Routing Problem (MDVRP) is a familiar combinative optimization problem that simultaneously determines the direction for different vehicles from over one depot to a collection of consumers. Researchers have suggested variety of meta-heuristic and heuristic algorithms to elucidate MDVRP, but none of the existing technique has <br>improved the fitness of the solution at the time of initial population generation. This motivates to propose an enhanced ODV based population initialization for Genetic Algorithm (GA) to solve MDVRP effectively. The Ordered Distance Vector (ODV) based population seeding method is a current and effective population initialization method for Genetic Algorithm to produce an early population with quality, individual diversity and randomness. In the proposed model, the customers are first grouped based on distance to their nearest depots and then routes are scheduled and optimized using <br>enhanced ODV based GA. The experiments are performed based on different types of instances of Cordeau. From the experimental results, it is very clear that the proposed technique outperforms the existing techniques in terms of convergence rate, error rate and convergence diversity.<br></span> <span class="expander more"><a class="trigger">more »</a></span></dd></dl></li></ul></section></div><div name="meta"><h2>Scope</h2><div class="abstract"><div class="shortened"><p>As the data volumes continue to increase and the ways of information dispersion across the globe continue to diversify, new scalable methods and structures are needed for efficiently processing those distributed and autonomous data. Grid computing, P2P technology, distributed information retrieval …</p></div><div class="full"><p>As the data volumes continue to increase and the ways of information dispersion across the globe continue to diversify, new scalable methods and structures are needed for efficiently processing those distributed and autonomous data. Grid computing, P2P technology, distributed information retrieval technology and networking technology all must be merged to address the scalability concern.</p></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Topics</h2><div class="abstract"><div class="shortened"><p>The scope of the journal includes:</p> <ul> <li>Scalable distributed information systems</li> <li>Scalable grid information systems</li> <li>Parallel information processing and systems</li> <li>Web information searching and retrieval</li> <li>Data mining</li> <li>Content delivery networks (CDN)</li> <li>VLDB</li> <li>P2P systems</li> <li>Scalable mobile…</li> </ul></div><div class="full"><p>The scope of the journal includes:</p> <ul> <li>Scalable distributed information systems</li> <li>Scalable grid information systems</li> <li>Parallel information processing and systems</li> <li>Web information searching and retrieval</li> <li>Data mining</li> <li>Content delivery networks (CDN)</li> <li>VLDB</li> <li>P2P systems</li> <li>Scalable mobile and wireless database systems</li> <li>Large scale sensor network systems</li> <li>Index compression methods</li> <li>Architectures for scalability</li> <li>Scalable information system applications</li> <li>Evaluation metrics for scalability</li> <li>Information security</li> </ul></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Indexing</h2><div class="abstract"><div class="shortened"><ul> <li><a href="https://mjl.clarivate.com/home">Web of Science Core Collection</a></li> <li><a href="https://www.engineeringvillage.com/home.url">Ei Compendex</a></li> <li><a href="https://doaj.org/toc/2032-9407">DOAJ</a></li> <li><a href="https://search.crossref.org/?q=2032-9407">CrossRef</a></li> <li>[EBSCO Discovery Service](https://www.ebsco.com/products/ebsco-disco…</li> </ul></div><div class="full"><ul> <li><a href="https://mjl.clarivate.com/home">Web of Science Core Collection</a></li> <li><a href="https://www.engineeringvillage.com/home.url">Ei Compendex</a></li> <li><a href="https://doaj.org/toc/2032-9407">DOAJ</a></li> <li><a href="https://search.crossref.org/?q=2032-9407">CrossRef</a></li> <li><a href="https://www.ebsco.com/products/ebsco-discovery-service">EBSCO Discovery Service</a></li> <li><a href="https://www.worldcat.org/title/eai-endorsed-transactions-on-scalable-information-systems/oclc/913714002&referer=brief_results">OCLC Discovery Services</a></li> <li><a href="https://europub.co.uk/journals/8124">EuroPub</a></li> <li><a href="http://miar.ub.edu/issn/2032-9407">MIAR</a></li> <li><a href="https://rzblx1.uni-regensburg.de/ezeit/detail.phtml?bibid=AAAAA&colors=7&lang=de&jour_id=237211">Elektronische Zeitschriftenbibliothek</a></li> <li><a href="https://publons.com/journal/37157/icst-transactions-on-scalable-information-systems">Publons</a></li> <li><a href="http://ulrichsweb.serialssolutions.com/login">UlrichsWEB</a></li> <li><a href="https://www.heal-link.gr/en/home-2/">Hellenic Academic Libraries Link</a></li> <li><a href="https://www.ingentaconnect.com/content/doaj/20329407">Ingenta Connect</a></li> <li><a href="https://www.proquest.com/products-services/Publicly-Available-Content-Database.html#overviewlinkSection">Publicly Available Content Database (ProQuest)</a></li> <li><a href="https://www.proquest.com/products-services/adv_tech_aero.html">Advanced Technologies & Aerospace Database (ProQuest)</a></li> <li><a href="https://www.proquest.com/products-services/databases/pq_scitech.html">SciTech Premium Collection (ProQuest)</a></li> <li><a href="https://scholar.google.sk/scholar?start=0&q=source:eai+source:endorsed+source:transactions+source:on+source:scalable+source:information+source:systems&hl=es&as_sdt=0,5&as_ylo=2018">Google Scholar</a></li> </ul></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Special Issues</h2><div class="abstract"><div class="shortened"><p><em>Call for Papers:</em> <a href="https://escripts.eai.eu/publication/366">Special issue on: Real-time image information processing with deep neural networks and data mining technologies</a> (Manuscript submission deadline: 2022-02-28; Notification of acceptance: 2022-04-15; Submission of final revised paper: 2022-…</p></div><div class="full"><p><em>Call for Papers:</em> <a href="https://escripts.eai.eu/publication/366">Special issue on: Real-time image information processing with deep neural networks and data mining technologies</a> (Manuscript submission deadline: 2022-02-28; Notification of acceptance: 2022-04-15; Submission of final revised paper: 2022-05-15; Publication of special issue (tentative): 2022-06-15)</p> <p><em>Guest Editor:</em> Dr. Prof. Hang Li (Northeastern University, China) <em>Guest Editor:</em> Dr. Prof. Jochen Schiewe (HafenCity Universität Hamburg, Germany)</p></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Editorial Board</h2><div class="abstract"><div class="shortened"><ul> <li>Editors-in-Chief</li> <li>Hua Wang, Victoria University, Australia</li> <li>Xiaohua Jia, City University of Hong Kong</li> <li>Editorial board</li> <li>Manik Sharma, DAV University, India</li> <li>Ajay Kattepur (Tata Consultancy Services)</li> <li>Aniello Castiglione (University of Salerno)</li> <li>Chang Choi (Chosun University)</li> <li>Cho-…</li> </ul></div><div class="full"><ul> <li>Editors-in-Chief</li> <li>Hua Wang, Victoria University, Australia</li> <li>Xiaohua Jia, City University of Hong Kong</li> <li>Editorial board</li> <li>Manik Sharma, DAV University, India</li> <li>Ajay Kattepur (Tata Consultancy Services)</li> <li>Aniello Castiglione (University of Salerno)</li> <li>Chang Choi (Chosun University)</li> <li>Cho-Li Wang (University of Hong Kong)</li> <li>Daniel S. Katz (University of Chicago)</li> <li>Fabrizio Silvestri (ISTI – CNR, Italy)</li> <li>Hamed Taherdoost (Hamta Business Solution Snd)</li> <li>Heng Tao Shen (University of Queensland)</li> <li>Houbing Song (Embry-Riddle Aeronautical University)</li> <li>José Manuel Machado (University of Minho, Portugal)</li> <li>Jose Merseguer (Universidad de Zaragoza)</li> <li>Jie Li (University of Tsukuba)</li> <li>Lin Yun (Harbin Engineering University)</li> <li>Phan Cong Vinh (Nguyen Tat Thanh University)</li> <li>Raj Gururajan (University of Southern Queensland)</li> <li>Sherman Chow (Chinese University of Hong Kong)</li> <li>Silva Fábio (University of Minho, Portugal)</li> <li>Steve Beitzel (Telcordia)</li> <li>Tzung-Pei Hong (National University of Kaohsiung, Kaohsing City, Taiwan)</li> <li>Wang-Chien Lee (The Pennsylvania State University)</li> <li>Weili Wu (The University of Texas at Dallas)</li> <li>Xueyan Tang (Nanyang Technological University)</li> <li>Vijayakumar Ponnusamy (SRM University, India)</li> <li>J Amudhavel (KL University, India)</li> <li>Yingshu Li (Georgia State University)</li> <li>Jerry Chun-Wei Lin (Western Norway University of Applied Sciences, Norway)</li> <li>Karolj Skala (Ruđer Bošković Institute, Croatia)</li> <li>Xiao-Zhi Gao (University of Eastern Finland, Finland)</li> <li>Thaier Hayajneh (Fordham University, USA)</li> <li>Chin-Ling Chen (Chaoyang University of Technology, Taiwan)</li> <li>Nuno M. Garcia (Faculty of Sciences, University of Lisbon, Portugal)</li> <li>Arianna D'Ulizia (Consiglio Nazionale delle Ricerche (CNR), Italy)</li> <li>Robertas Damaševičius (Kaunas University of Technology (KTU), Lithuania)</li> <li>Hiep Xuan Huynh (Can Tho University, VietNam)</li> <li>Ji Zhang (University of Southern Queensland, Australia)</li> <li>Xiaohui Tao (University of Southern Queensland, Australia)</li> <li>Ye Wang (National University of Defense Technology, China)</li> <li>Nageswara Rao Moparthi (KL University, India)</li> <li>Shuai Liu (Hunan Normal University, China)</li> <li>Prof Xiaoming Fu (Georg-August-University of Goettingen, Germany)</li> <li>Prof Zhisheng Huang (Vrije University of Amsterdam)</li> <li>Prof Rose Quan (Northumbria University, UK)</li> <li>Prof Shi Dong (Zhoukou Normal University, China)</li> <li>Dr Limei Peng (Kyungpook National University, South Korea)</li> <li>Prof Hui Ma( Victoria University of Wellington, New Zealand)</li> <li>Dr. Venkatesan Subramanian (Indian Institute of Information Technology – Allahabad, India)</li> <li>Dr Pon Harshavardhanan (VIT Bhopal University, India)</li> <li>Dr. Manish Kumar (The Indian Institute of Information Technology, Allahabad, India)</li> <li>Muzammil Hussain, University of Management and Technology, Lahore, Pakistan</li> <li>Michael Bewong, Charles Sturt University, Australia</li> <li>Shabir Ahmad, Gachon University, Korea</li> <li>Vu Nguyen, University of Science, Vietnam</li> <li>Xiaodi Huang, Charles Sturt University, Australia</li> <li>Jianming Yong, University of Southern Queensland, Australia</li> <li>Yogeshwar Vijayakumar Navandar; National Institute of Technology, Indian.</li> <li>Zhengyi Chai, Tiangong University in China, China</li> <li>Chuanlong Wang, Taiyuan Normal University, China</li> <li>Chin-Feng Lee, Chaoyang University of Technology, Taiwan</li> <li>Hsing-Chung Chen (Jack Chen), Asia University, Taiwan</li> <li>Wen-Yang Lin, National University of Kaohsiung, Taiwan</li> <li>Chun-Hao Chen, National Kaohsiung University of Science and Technology, Taiwan</li> <li>Mudasir Mohd, University of Kashmir, India.</li> <li>BalaAnand Muthu, INTI International University, Malaysia.</li> <li>Md Rafiqul Islam, Australian Institute of Higher Education, Australia.</li> <li>Jin Wang, Institute of Applied Physics and Computational Mathematics, China.</li> <li>Chandu Thota, University of Nicosia, Cyprus.</li> <li>Haris M. Khalid, University of Dubai, UAE.</li> <li>Dr. G. Reza Nasiri, Alzahra University, Tehran, Iran.</li> <li>Siuly Siuly, Victoria University, Australia</li> <li>Bishnu Prasad Gautam, Kanazawa Gakuin University, Japan</li> <li>Sivaparthipan C B, Bharathiar University, India</li> <li>Ting-Chia Hsu, National Taiwan Normal University, Taiwan</li> <li>Punitha Palanisamy, Tagore IET, India</li> <li>Lakshmana Kumar R, Tagore IET, India</li> <li>Weiwei Jiang, Beijing University of Posts and Telecommunications, Taiwan</li> </ul></div> <span class="expander more"><a class="trigger">more »</a></span></div><h2>Journal Blurb</h2><div class="abstract"><div class="shortened"><p>Visit the new journal website to submit and consult our contents: https://publications.eai.eu/index.php/sis/index</p></div><div class="full"><p>Visit the new journal website to submit and consult our contents: https://publications.eai.eu/index.php/sis/index</p></div> <span class="expander more"><a class="trigger">more »</a></span></div></div></div></section><section class="publication-info"><dl class="metadata"><dt class="title">Publisher</dt> <dd class="value">EAI</dd> <dt class="title">ISSN</dt> <dd class="value">2032-9407</dd> <dt class="title">Volume</dt> <dd class="value">6</dd></dl><dl class="metadata"><dt class="title">Published</dt> <dd class="value">2019-06-10</dd></dl></section></section></form></section></section><div class="clear"></div><footer><div class="links"><a href="https://www.ebsco.com/" target="_blank"><img class="logo ebsco-logo" src="/images/ebsco.png" alt="EBSCO"></a><a href="https://www.proquest.com/" target="_blank"><img class="logo proquest-logo" src="/images/proquest.png" alt="ProQuest"></a><a href="https://dblp.uni-trier.de/db/journals/publ/icst.html" target="_blank"><img class="logo dblp-logo" src="/images/dblp.png" alt="DBLP"></a><a href="https://doaj.org/search?source=%7B%22query%22%3A%7B%22filtered%22%3A%7B%22filter%22%3A%7B%22bool%22%3A%7B%22must%22%3A%5B%7B%22term%22%3A%7B%22index.publisher.exact%22%3A%22European%20Alliance%20for%20Innovation%20(EAI)%22%7D%7D%5D%7D%7D%2C%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22european%20alliance%20for%20innovation%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22index.publisher%22%7D%7D%7D%7D%7Dj" target="_blank"><img class="logo doaj-logo" src="/images/doaj.jpg" alt="DOAJ"></a><a href="https://www.portico.org/publishers/eai/" target="_blank"><img class="logo portico-logo" src="/images/portico.png" alt="Portico"></a><a href="http://eai.eu/" target="_blank"><img class="logo eai-logo" src="/images/eai.png"></a></div></footer></div><div class="footer-container"><div class="footer-width"><div class="footer-column logo-column"><a href="https://eai.eu/"><img src="https://eudl.eu/images/logo_new-1-1.png" alt="EAI Logo"></a></div><div class="footer-column"><h4>About EAI</h4><ul><li><a href="https://eai.eu/who-we-are/">Who We Are</a></li><li><a href="https://eai.eu/leadership/">Leadership</a></li><li><a href="https://eai.eu/research-areas/">Research Areas</a></li><li><a href="https://eai.eu/partners/">Partners</a></li><li><a href="https://eai.eu/media-center/">Media Center</a></li></ul></div><div class="footer-column"><h4>Community</h4><ul><li><a href="https://eai.eu/eai-community/">Membership</a></li><li><a href="https://eai.eu/conferences/">Conference</a></li><li><a href="https://eai.eu/recognition/">Recognition</a></li><li><a href="https://eai.eu/corporate-sponsorship">Sponsor Us</a></li></ul></div><div class="footer-column"><h4>Publish with EAI</h4><ul><li><a href="https://eai.eu/publishing">Publishing</a></li><li><a href="https://eai.eu/journals/">Journals</a></li><li><a href="https://eai.eu/proceedings/">Proceedings</a></li><li><a href="https://eai.eu/books/">Books</a></li><li><a href="https://eudl.eu/">EUDL</a></li></ul></div></div></div><script type="text/javascript" src="https://eudl.eu/js/gacode.js"></script><script src="/js/highlight.pack.js"></script><script>hljs.initHighlightingOnLoad();</script><script type="application/ld+json">{"@context":"http://schema.org","@type":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"item":{"@id":"http://eudl.eu","name":"Home","image":null}},{"@type":"ListItem","position":2,"item":{"@id":"http://eudl.eu/journals","name":"Journals","image":null}},{"@type":"ListItem","position":3,"item":{"@id":"http://eudl.eu/journal/sis","name":"sis","image":null}},{"@type":"ListItem","position":4,"item":{"@id":"/issue/sis/6/21","name":"Issue 21","image":null}}]}</script></body></html>