CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–18 of 18 results for author: <span class="mathjax">Bell, D C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Bell%2C+D+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bell, D C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bell%2C+D+C&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bell, D C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16771">arXiv:2406.16771</a> <span> [<a href="https://arxiv.org/pdf/2406.16771">pdf</a>, <a href="https://arxiv.org/format/2406.16771">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-024-01219-8">10.1038/s41928-024-01219-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An antiferromagnetic diode effect in even-layered MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shao-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Onishi%2C+Y">Yugo Onishi</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+S">Seunghyun Park</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+T">Tianye Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Yacoby%2C+A">Amir Yacoby</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16771v2-abstract-short" style="display: inline;"> In a PN junction, the separation between positive and negative charges leads to diode transport. In the past few years, the intrinsic diode transport in noncentrosymmetric polar conductors has attracted great interest, because it suggests novel nonlinear applications and provides a symmetry-sensitive probe of Fermi surface. Recently, such studies have been extended to noncentrosymmetric supercondu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16771v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16771v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16771v2-abstract-full" style="display: none;"> In a PN junction, the separation between positive and negative charges leads to diode transport. In the past few years, the intrinsic diode transport in noncentrosymmetric polar conductors has attracted great interest, because it suggests novel nonlinear applications and provides a symmetry-sensitive probe of Fermi surface. Recently, such studies have been extended to noncentrosymmetric superconductors, realizing the superconducting diode effect. Here, we show that, even in a centrosymmetric crystal without directional charge separation, the spins of an antiferromagnet (AFM) can generate a spatial directionality, leading to an AFM diode effect. We observe large second-harmonic transport in a nonlinear electronic device enabled by the compensated AFM state of even-layered MnBi2Te4. We also report a novel electrical sum-frequency generation (SFG), which has been rarely explored in contrast to the well-known optical SFG in wide-gap insulators. We demonstrate that the AFM enables an in-plane field-effect transistor and harvesting of wireless electromagnetic energy. The electrical SFG establishes a powerful method to study nonlinear electronics built by quantum materials. The AFM diode effect paves the way for potential device concepts including AFM logic circuits, self-powered AFM spintronics, and other applications that potentially bridge nonlinear electronics with AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16771v2-abstract-full').style.display = 'none'; document.getElementById('2406.16771v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33+8 pages, 14+2 figures. arXiv admin note: text overlap with arXiv:2306.09575</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Electronics 7, 751-759 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15912">arXiv:2403.15912</a> <span> [<a href="https://arxiv.org/pdf/2403.15912">pdf</a>, <a href="https://arxiv.org/format/2403.15912">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07211-8">10.1038/s41586-024-07211-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the dual quantum spin Hall insulator by density-tuned correlations in a van der Waals monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tang%2C+J">Jian Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+T+S">Thomas Siyuan Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zumeng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+X">Xin Han</a>, <a href="/search/cond-mat?searchtype=author&query=Strasser%2C+A">Alex Strasser</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jiangxu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Geiwitz%2C+M">Michael Geiwitz</a>, <a href="/search/cond-mat?searchtype=author&query=Shehabeldin%2C+M">Mohamed Shehabeldin</a>, <a href="/search/cond-mat?searchtype=author&query=Belosevich%2C+V">Vsevolod Belosevich</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zihan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yiping Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+X">Xiaofeng Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+N">Ni Ni</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15912v1-abstract-short" style="display: inline;"> The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order, not possible in quantum Hall and Chern insulator systems. However, the QSH… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15912v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15912v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15912v1-abstract-full" style="display: none;"> The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order, not possible in quantum Hall and Chern insulator systems. However, the QSH insulator with quantized edge conductance remains rare, let alone that with significant correlations. In this work, we report a novel dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator that aligns with single-particle band structure calculations, manifesting enhanced nonlocal transport and quantized helical edge conductance. Interestingly, upon introducing electrons from charge neutrality, TaIrTe4 only shows metallic behavior in a small range of charge densities but quickly goes into a new insulating state, entirely unexpected based on TaIrTe4's single-particle band structure. This insulating state could arise from a strong electronic instability near the van Hove singularities (VHS), likely leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state, marked by the revival of nonlocal transport and quantized helical edge conduction. Our observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands via CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15912v1-abstract-full').style.display = 'none'; document.getElementById('2403.15912v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 15 figures, submitted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08677">arXiv:2402.08677</a> <span> [<a href="https://arxiv.org/pdf/2402.08677">pdf</a>, <a href="https://arxiv.org/format/2402.08677">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07589-5">10.1038/s41586-024-07589-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Striped electronic phases in an incommensurately modulated van der Waals superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Devarakonda%2C+A">Aravind Devarakonda</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+A">Alan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+S">Shiang Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&query=Kriener%2C+M">Markus Kriener</a>, <a href="/search/cond-mat?searchtype=author&query=Akey%2C+A+J">Austin J. Akey</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Suzuki%2C+T">Takehito Suzuki</a>, <a href="/search/cond-mat?searchtype=author&query=Checkelsky%2C+J+G">Joseph G. Checkelsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08677v1-abstract-short" style="display: inline;"> Electronic properties of crystals can be manipulated using spatially periodic modulations. Long-wavelength, incommensurate modulations are of particular interest, exemplified recently by moir茅 patterned van der Waals (vdW) heterostructures. Bulk vdW superlattices hosting interfaces between clean 2D layers represent scalable bulk analogs of vdW heterostructures and present a complementary venue to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08677v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08677v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08677v1-abstract-full" style="display: none;"> Electronic properties of crystals can be manipulated using spatially periodic modulations. Long-wavelength, incommensurate modulations are of particular interest, exemplified recently by moir茅 patterned van der Waals (vdW) heterostructures. Bulk vdW superlattices hosting interfaces between clean 2D layers represent scalable bulk analogs of vdW heterostructures and present a complementary venue to explore incommensurately modulated 2D states. Here we report the bulk vdW superlattice SrTa$_2$S$_5$ realizing an incommensurate 1D modulation of 2D transition metal dichalcogenide (TMD) $H$-TaS$_2$ layers. High-quality electronic transport in the $H$-TaS$_2$ layers, evidenced by quantum oscillations, is made anisotropic by the modulation and shows commensurability oscillations akin to lithographically modulated 2D systems. We also find unconventional, clean-limit superconductivity (SC) in SrTa$_2$S$_5$ with a pronounced suppression of interlayer coherence relative to intralayer coherence. Such a hierarchy can arise from pair-density wave (PDW) SC with mismatched spatial arrangement in adjacent superconducting layers. Examining the in-plane magnetic field $H_{ab}$ dependence of interlayer critical current density $J_c$, we find anisotropy with respect to $H_{ab}$ orientation: $J_c$ is maximized (minimized) when $H_{ab}$ is perpendicular (parallel) to the stripes, consistent with 1D PDW SC. From diffraction we find the structural modulation is shifted between adjacent $H$-TaS$_2$ layers, suggesting mismatched 1D PDW is seeded by the striped structure. With a high-mobility Fermi liquid in a coherently modulated structure, SrTa$_2$S$_5$ is a promising host for novel phenomena anticipated in clean, striped metals and superconductors. More broadly, SrTa$_2$S$_5$ establishes bulk vdW superlattices as macroscopic platforms to address long-standing predictions for modulated electronic phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08677v1-abstract-full').style.display = 'none'; document.getElementById('2402.08677v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15028">arXiv:2312.15028</a> <span> [<a href="https://arxiv.org/pdf/2312.15028">pdf</a>, <a href="https://arxiv.org/format/2312.15028">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Ferromagnetism in Monolayer Cr2Te3 via Topological Insulator Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ou%2C+Y">Yunbo Ou</a>, <a href="/search/cond-mat?searchtype=author&query=Mirzhalilov%2C+M">Murod Mirzhalilov</a>, <a href="/search/cond-mat?searchtype=author&query=Nemes%2C+N+M">Norbert M. Nemes</a>, <a href="/search/cond-mat?searchtype=author&query=Martinez%2C+J+L">Jose L. Martinez</a>, <a href="/search/cond-mat?searchtype=author&query=Rocci%2C+M">Mirko Rocci</a>, <a href="/search/cond-mat?searchtype=author&query=Duong%2C+A">Alexander Duong</a>, <a href="/search/cond-mat?searchtype=author&query=Akey%2C+A">Austin Akey</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+W">Wenbo Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Suri%2C+D">Dhavala Suri</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yiping Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ambaye%2C+H">Haile Ambaye</a>, <a href="/search/cond-mat?searchtype=author&query=Keum%2C+J">Jong Keum</a>, <a href="/search/cond-mat?searchtype=author&query=Randeria%2C+M">Mohit Randeria</a>, <a href="/search/cond-mat?searchtype=author&query=Trivedi%2C+N">Nandini Trivedi</a>, <a href="/search/cond-mat?searchtype=author&query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Weida Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Heiman%2C+D">Don Heiman</a>, <a href="/search/cond-mat?searchtype=author&query=Lauter%2C+V">Valeria Lauter</a>, <a href="/search/cond-mat?searchtype=author&query=Moodera%2C+J+S">Jagadeesh S. Moodera</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+H">Hang Chi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15028v2-abstract-short" style="display: inline;"> Exchange-coupled interfaces are pivotal in exploiting two-dimensional (2D) ferromagnetism. Due to the extraordinary correlations among charge, spin, orbital and lattice degrees of freedom, layered magnetic transition metal chalcogenides (TMCs) bode well for exotic topological phenomena. Here we report the realization of wafer-scale Cr2Te3 down to monolayer (ML) on insulating SrTiO3(111) and/or Al2… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15028v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15028v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15028v2-abstract-full" style="display: none;"> Exchange-coupled interfaces are pivotal in exploiting two-dimensional (2D) ferromagnetism. Due to the extraordinary correlations among charge, spin, orbital and lattice degrees of freedom, layered magnetic transition metal chalcogenides (TMCs) bode well for exotic topological phenomena. Here we report the realization of wafer-scale Cr2Te3 down to monolayer (ML) on insulating SrTiO3(111) and/or Al2O3(001) substrates using molecular beam epitaxy. Robust ferromagnetism persists in the 2D limit. In particular, the Curie temperature TC of 2 ML Cr2Te3 increases from 100 K to ~ 120 K when proximitized to topological insulator (TI) (Bi,Sb)2Te3, with substantially boosted magnetization as observed via polarized neutron reflectometry. Our experiments and theory strongly indicate that the Bloembergen-Rowland interaction is likely universal underlying TC enhancement in TI-coupled magnetic heterostructures. The topological-surface-enhanced magnetism in 2D TMC enables further exchange coupling physics and quantu <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15028v2-abstract-full').style.display = 'none'; document.getElementById('2312.15028v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 7 pages, 3 figures, 1 table; SI: 6 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09575">arXiv:2306.09575</a> <span> [<a href="https://arxiv.org/pdf/2306.09575">pdf</a>, <a href="https://arxiv.org/format/2306.09575">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adf1506">10.1126/science.adf1506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Trevisan%2C+T+V">Tha铆s V. Trevisan</a>, <a href="/search/cond-mat?searchtype=author&query=Onishi%2C+Y">Yugo Onishi</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shao-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09575v2-abstract-short" style="display: inline;"> Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferroma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09575v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09575v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09575v2-abstract-full" style="display: none;"> Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferromagnets. However, in contrast to Berry curvature, the quantum metric has rarely been explored. Here, we report a new nonlinear Hall effect induced by quantum metric by interfacing even-layered MnBi2Te4 (a PT-symmetric antiferromagnet (AFM)) with black phosphorus. This novel nonlinear Hall effect switches direction upon reversing the AFM spins and exhibits distinct scaling that suggests a non-dissipative nature. Like the AHE brought Berry curvature under the spotlight, our results open the door to discovering quantum metric responses. Moreover, we demonstrate that the AFM can harvest wireless electromagnetic energy via the new nonlinear Hall effect, therefore enabling intriguing applications that bridges nonlinear electronics with AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09575v2-abstract-full').style.display = 'none'; document.getElementById('2306.09575v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures and a Supplementary Materials with 66 pages, 4 figures and 3 tables. Originally submitted to Science on Oct. 5, 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 381, 181-186 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05451">arXiv:2303.05451</a> <span> [<a href="https://arxiv.org/pdf/2303.05451">pdf</a>, <a href="https://arxiv.org/format/2303.05451">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-023-01493-5">10.1038/s41563-023-01493-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion optical induction of antiferromagnetic order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&query=Ahn%2C+J">Junyeong Ahn</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xin-Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yu-Xuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+Z">Zhenhao Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+B+B">Brian B. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Q">Qiong Ma</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05451v1-abstract-short" style="display: inline;"> Using circularly-polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of spatial chirality and magnetization $M$. The former is central for asymmetric synthesis in chemistry and homochirality in bio-molecules, while the latter is of great interest for ferromagnetic spintronics… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05451v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05451v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05451v1-abstract-full" style="display: none;"> Using circularly-polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of spatial chirality and magnetization $M$. The former is central for asymmetric synthesis in chemistry and homochirality in bio-molecules, while the latter is of great interest for ferromagnetic spintronics. In this paper, we report the surprising observation of helicity-dependent optical control of fully-compensated antiferromagnetic (AFM) order in 2D even-layered MnBi$_2$Te$_4$, a topological Axion insulator with neither chirality nor $M$. We further demonstrate helicity-dependent optical creation of AFM domain walls by double induction beams and the direct reversal of AFM domains by ultrafast pulses. The control and reversal of AFM domains and domain walls by light helicity have never been achieved in any fully-compensated AFM. To understand this optical control, we study a novel type of circular dichroism (CD) proportional to the AFM order, which only appears in reflection but is absent in transmission. We show that the optical control and CD both arise from the optical Axion electrodynamics, which can be visualized as a Berry curvature real space dipole. Our Axion induction provides the possibility to optically control a family of $\mathcal{PT}$-symmetric AFMs such as Cr$_2$O$_3$, CrI$_3$ and possibly novel states in cuprates. In MnBi$_2$Te$_4$, this further opens the door for optical writing of dissipationless circuit formed by topological edge states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05451v1-abstract-full').style.display = 'none'; document.getElementById('2303.05451v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 22, 583-590 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.04254">arXiv:2203.04254</a> <span> [<a href="https://arxiv.org/pdf/2203.04254">pdf</a>, <a href="https://arxiv.org/format/2203.04254">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Field-dependent Shubnikov-de Haas oscillations in ferromagnetic Weyl semimetal Co3Sn2S2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Facio%2C+J+I">Jorge I. Facio</a>, <a href="/search/cond-mat?searchtype=author&query=Ghimire%2C+M+P">Madhav P. Ghimire</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+M+K">Mun K. Chan</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+J">Jhih-Shih You</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Richter%2C+M">Manuel Richter</a>, <a href="/search/cond-mat?searchtype=author&query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&query=Checkelsky%2C+J+G">Joseph G. Checkelsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.04254v1-abstract-short" style="display: inline;"> We report a study of Shubnikov-de Haas oscillations in high quality single crystals of ferromagnetic Weyl semimetal Co$_3$Sn$_2$S$_2$. The Fermi surfaces resolved in our experiments are three-dimensional and reflect an underlying trigonal crystallographic symmetry. Combined with density functional theoretical calculations, we identify that the majority of the Fermi surfaces in the system -- of bot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04254v1-abstract-full').style.display = 'inline'; document.getElementById('2203.04254v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.04254v1-abstract-full" style="display: none;"> We report a study of Shubnikov-de Haas oscillations in high quality single crystals of ferromagnetic Weyl semimetal Co$_3$Sn$_2$S$_2$. The Fermi surfaces resolved in our experiments are three-dimensional and reflect an underlying trigonal crystallographic symmetry. Combined with density functional theoretical calculations, we identify that the majority of the Fermi surfaces in the system -- of both electron and hole nature -- arise from the strong energy dispersion of the (spin-orbit gapped) mirror-protected nodal rings. We observe that an in-plane magnetic field induces a continuous evolution of Fermi surfaces, in contrast to field perpendicular to the kagome lattice planes which has little effect. Viewed alongside the easy-axis anisotropy of the system, our observation reveals an evolution of the electronic structure of Co$_3$Sn$_2$S$_2$ -- including the Weyl points -- with the ferromagnetic moment orientation. Through the case study of Co$_3$Sn$_2$S$_2$, our results provide concrete experimental evidence of an anisotropic interplay via spin-orbit coupling between the magnetic degrees of freedom and electronic band singularities, which has long been expected in semimetallic and metallic magnetic topological systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04254v1-abstract-full').style.display = 'none'; document.getElementById('2203.04254v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10233">arXiv:2107.10233</a> <span> [<a href="https://arxiv.org/pdf/2107.10233">pdf</a>, <a href="https://arxiv.org/format/2107.10233">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03679-w">10.1038/s41586-021-03679-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Layer Hall effect in a 2D topological Axion antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+H">Haipeng Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhaowei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xin-Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yu-Xuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zumeng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+A">Amit Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+T">Thomas Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&query=Akey%2C+A">Austin Akey</a>, <a href="/search/cond-mat?searchtype=author&query=Gardener%2C+J">Jules Gardener</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Burch%2C+K+S">Kenneth S. Burch</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10233v1-abstract-short" style="display: inline;"> While ferromagnets have been known and exploited for millennia, antiferromagnets (AFMs) were only discovered in the 1930s. The elusive nature indicates AFMs' unique properties: At large scale, due to the absence of global magnetization, AFMs may appear to behave like any non-magnetic material; However, such a seemingly mundane macroscopic magnetic property is highly nontrivial at microscopic level… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10233v1-abstract-full').style.display = 'inline'; document.getElementById('2107.10233v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10233v1-abstract-full" style="display: none;"> While ferromagnets have been known and exploited for millennia, antiferromagnets (AFMs) were only discovered in the 1930s. The elusive nature indicates AFMs' unique properties: At large scale, due to the absence of global magnetization, AFMs may appear to behave like any non-magnetic material; However, such a seemingly mundane macroscopic magnetic property is highly nontrivial at microscopic level, where opposite spin alignment within the AFM unit cell forms a rich internal structure. In topological AFMs, such an internal structure leads to a new possibility, where topology and Berry phase can acquire distinct spatial textures. Here, we study this exciting possibility in an AFM Axion insulator, even-layered MnBi$_2$Te$_4$ flakes, where spatial degrees of freedom correspond to different layers. Remarkably, we report the observation of a new type of Hall effect, the layer Hall effect, where electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under no net electric field, even-layered MnBi$_2$Te$_4$ shows no anomalous Hall effect (AHE); However, applying an electric field isolates the response from one layer and leads to the surprising emergence of a large layer-polarized AHE (~50%$\frac{e^2}{h}$). Such a layer Hall effect uncovers a highly rare layer-locked Berry curvature, which serves as a unique character of the space-time $\mathcal{PT}$-symmetric AFM topological insulator state. Moreover, we found that the layer-locked Berry curvature can be manipulated by the Axion field, E$\cdot$B, which drives the system between the opposite AFM states. Our results achieve previously unavailable pathways to detect and manipulate the rich internal spatial structure of fully-compensated topological AFMs. The layer-locked Berry curvature represents a first step towards spatial engineering of Berry phase, such as through layer-specific moir茅 potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10233v1-abstract-full').style.display = 'none'; document.getElementById('2107.10233v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A revised version of this article is published in Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.10824">arXiv:2106.10824</a> <span> [<a href="https://arxiv.org/pdf/2106.10824">pdf</a>, <a href="https://arxiv.org/format/2106.10824">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02360-5">10.1038/s41567-023-02360-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A flat band-induced correlated kagome metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+S">Shiang Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Kang%2C+M+G">Min Gu Kang</a>, <a href="/search/cond-mat?searchtype=author&query=Kaufmann%2C+J">Josef Kaufmann</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Kaxiras%2C+E">Efthimios Kaxiras</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Janson%2C+O">Oleg Janson</a>, <a href="/search/cond-mat?searchtype=author&query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&query=Checkelsky%2C+J+G">Joseph G. Checkelsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.10824v1-abstract-short" style="display: inline;"> The notion of an electronic flat band refers to a collectively degenerate set of quantum mechanical eigenstates in periodic solids. The vanishing kinetic energy of flat bands relative to the electron-electron interaction is expected to result in a variety of many-body quantum phases of matter. Despite intense theoretical interest, systematic design and experimental realization of such flat band-dr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10824v1-abstract-full').style.display = 'inline'; document.getElementById('2106.10824v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.10824v1-abstract-full" style="display: none;"> The notion of an electronic flat band refers to a collectively degenerate set of quantum mechanical eigenstates in periodic solids. The vanishing kinetic energy of flat bands relative to the electron-electron interaction is expected to result in a variety of many-body quantum phases of matter. Despite intense theoretical interest, systematic design and experimental realization of such flat band-driven correlated states in natural crystals have remained a challenge. Here we report the realization of a partially filled flat band in a new single crystalline kagome metal Ni$_3$In. This flat band is found to arise from the Ni $3d$-orbital wave functions localized at triangular motifs within the kagome lattice plane, where an underlying destructive interference among hopping paths flattens the dispersion. We observe unusual metallic and thermodynamic responses suggestive of the presence of local fluctuating magnetic moments originating from the flat band states, which together with non-Fermi liquid behavior indicate proximity to quantum criticality. These results demonstrate a lattice and orbital engineering approach to designing flat band-based many-body phenomena that may be applied to integrate correlation with topology and as a novel means to construct quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10824v1-abstract-full').style.display = 'none'; document.getElementById('2106.10824v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics, 20, 610-614 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.02167">arXiv:1906.02167</a> <span> [<a href="https://arxiv.org/pdf/1906.02167">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-019-0531-0">10.1038/s41563-019-0531-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dirac fermions and flat bands in the ideal kagome metal FeSn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kang%2C+M">Mingu Kang</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+S">Shiang Fang</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+J">Jhih-Shih You</a>, <a href="/search/cond-mat?searchtype=author&query=Levitan%2C+A">Abe Levitan</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+M">Minyong Han</a>, <a href="/search/cond-mat?searchtype=author&query=Facio%2C+J+I">Jorge I. Facio</a>, <a href="/search/cond-mat?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+M+K">Mun K. Chan</a>, <a href="/search/cond-mat?searchtype=author&query=McDonald%2C+R+D">Ross D. McDonald</a>, <a href="/search/cond-mat?searchtype=author&query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&query=Kaznatcheev%2C+K">Konstantine Kaznatcheev</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Kaxiras%2C+E">Efthimios Kaxiras</a>, <a href="/search/cond-mat?searchtype=author&query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&query=Richter%2C+M">Manuel Richter</a>, <a href="/search/cond-mat?searchtype=author&query=Ghimire%2C+M+P">Madhav Prasad Ghimire</a>, <a href="/search/cond-mat?searchtype=author&query=Checkelsky%2C+J+G">Joseph G. Checkelsky</a>, <a href="/search/cond-mat?searchtype=author&query=Comin%2C+R">Riccardo Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.02167v1-abstract-short" style="display: inline;"> The kagome lattice based on 3d transition metals is a versatile platform for novel topological phases hosting symmetry-protected electronic excitations and exotic magnetic ground states. However, the paradigmatic states of the idealized two-dimensional (2D) kagome lattice - Dirac fermions and topological flat bands - have not been simultaneously observed, partly owing to the complex stacking struc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02167v1-abstract-full').style.display = 'inline'; document.getElementById('1906.02167v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.02167v1-abstract-full" style="display: none;"> The kagome lattice based on 3d transition metals is a versatile platform for novel topological phases hosting symmetry-protected electronic excitations and exotic magnetic ground states. However, the paradigmatic states of the idealized two-dimensional (2D) kagome lattice - Dirac fermions and topological flat bands - have not been simultaneously observed, partly owing to the complex stacking structure of the kagome compounds studied to date. Here, we take the approach of examining FeSn, an antiferromagnetic single-layer kagome metal with spatially-decoupled kagome planes. Using polarization- and termination-dependent angle-resolved photoemission spectroscopy (ARPES), we detect the momentum-space signatures of coexisting flat bands and Dirac fermions in the vicinity of the Fermi energy. Intriguingly, when complemented with bulk-sensitive de Haas-van Alphen (dHvA) measurements, our data reveal an even richer electronic structure that exhibits robust surface Dirac fermions on specific crystalline terminations. Through band structure calculations and matrix element simulations, we demonstrate that the bulk Dirac bands arise from in-plane localized Fe-3d orbitals under kagome symmetry, while the surface state realizes a rare example of fully spin-polarized 2D Dirac fermions when combined with spin-layer locking in FeSn. These results highlight FeSn as a prototypical host for the emergent excitations of the kagome lattice. The prospect to harness these excitations for novel topological phases and spintronic devices is a frontier of great promise at the confluence of topology, magnetism, and strongly-correlated electron physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02167v1-abstract-full').style.display = 'none'; document.getElementById('1906.02167v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials, 19, 163-169 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.02065">arXiv:1906.02065</a> <span> [<a href="https://arxiv.org/pdf/1906.02065">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaz6643">10.1126/science.aaz6643 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Clean 2D superconductivity in a bulk van der Waals superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Devarakonda%2C+A">Aravind Devarakonda</a>, <a href="/search/cond-mat?searchtype=author&query=Inoue%2C+H">Hisashi Inoue</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+S">Shiang Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Ozsoy-Keskinbora%2C+C">Cigdem Ozsoy-Keskinbora</a>, <a href="/search/cond-mat?searchtype=author&query=Suzuki%2C+T">Takehito Suzuki</a>, <a href="/search/cond-mat?searchtype=author&query=Kriener%2C+M">Markus Kriener</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Kaxiras%2C+E">Efthimios Kaxiras</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Checkelsky%2C+J+G">Joseph G. Checkelsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.02065v2-abstract-short" style="display: inline;"> Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. Here, we report the devel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02065v2-abstract-full').style.display = 'inline'; document.getElementById('1906.02065v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.02065v2-abstract-full" style="display: none;"> Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. Here, we report the development of a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2$H$-niobium disulfide (2$H$-NbS$_2$) and a commensurate block layer that yields dramatically enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02065v2-abstract-full').style.display = 'none'; document.getElementById('1906.02065v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version with revised title, discussion, structure, and figures. 38 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 370, 231-236 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.10007">arXiv:1709.10007</a> <span> [<a href="https://arxiv.org/pdf/1709.10007">pdf</a>, <a href="https://arxiv.org/format/1709.10007">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature25987">10.1038/nature25987 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Massive Dirac fermions in a ferromagnetic kagome metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Kang%2C+M">Mingu Kang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=von+Cube%2C+F">Felix von Cube</a>, <a href="/search/cond-mat?searchtype=author&query=Wicker%2C+C+R">Christina R. Wicker</a>, <a href="/search/cond-mat?searchtype=author&query=Suzuki%2C+T">Takehito Suzuki</a>, <a href="/search/cond-mat?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&query=Checkelsky%2C+J+G">Joseph G. Checkelsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.10007v1-abstract-short" style="display: inline;"> The kagome lattice is a two-dimensional network of corner-sharing triangles known as a platform for exotic quantum magnetic states. Theoretical work has predicted that the kagome lattice may also host Dirac electronic states that could lead to topological and Chern insulating phases, but these have evaded experimental detection to date. Here we study the d-electron kagome metal Fe$_3$Sn$_2$ design… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10007v1-abstract-full').style.display = 'inline'; document.getElementById('1709.10007v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.10007v1-abstract-full" style="display: none;"> The kagome lattice is a two-dimensional network of corner-sharing triangles known as a platform for exotic quantum magnetic states. Theoretical work has predicted that the kagome lattice may also host Dirac electronic states that could lead to topological and Chern insulating phases, but these have evaded experimental detection to date. Here we study the d-electron kagome metal Fe$_3$Sn$_2$ designed to support bulk massive Dirac fermions in the presence of ferromagnetic order. We observe a temperature independent intrinsic anomalous Hall conductivity persisting above room temperature suggestive of prominent Berry curvature from the time-reversal breaking electronic bands of the kagome plane. Using angle-resolved photoemission, we discover a pair of quasi-2D Dirac cones near the Fermi level with a 30 meV mass gap that accounts for the Berry curvature-induced Hall conductivity. We show this behavior is a consequence of the underlying symmetry properties of the bilayer kagome lattice in the ferromagnetic state with atomic spin-orbit coupling. This report provides the first evidence for a ferromagnetic kagome metal and an example of emergent topological electronic properties in a correlated electron system. This offers insight into recent discoveries of exotic electronic behavior in kagome lattice antiferromagnets and may provide a stepping stone toward lattice model realizations of fractional topological quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10007v1-abstract-full').style.display = 'none'; document.getElementById('1709.10007v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 555, 638-642 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02874">arXiv:1607.02874</a> <span> [<a href="https://arxiv.org/pdf/1607.02874">pdf</a>, <a href="https://arxiv.org/format/1607.02874">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10404-016-1767-5">10.1007/s10404-016-1767-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mapping Reactive Flow Patterns in Monolithic Nanoporous Catalysts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Falcucci%2C+G">Giacomo Falcucci</a>, <a href="/search/cond-mat?searchtype=author&query=Succi%2C+S">Sauro Succi</a>, <a href="/search/cond-mat?searchtype=author&query=Montessori%2C+A">Andrea Montessori</a>, <a href="/search/cond-mat?searchtype=author&query=Melchionna%2C+S">Simone Melchionna</a>, <a href="/search/cond-mat?searchtype=author&query=Prestininzi%2C+P">Pietro Prestininzi</a>, <a href="/search/cond-mat?searchtype=author&query=Barroo%2C+C">Cedric Barroo</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Biener%2C+M+M">Monika M. Biener</a>, <a href="/search/cond-mat?searchtype=author&query=Biener%2C+J">Juergen Biener</a>, <a href="/search/cond-mat?searchtype=author&query=Zugic%2C+B">Branko Zugic</a>, <a href="/search/cond-mat?searchtype=author&query=Kaxiras%2C+E">Efthimios Kaxiras</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02874v1-abstract-short" style="display: inline;"> The development of high-efficiency porous catalyst membranes critically depends on our understanding of where the majority of the chemical conversions occur within the porous structure. This requires mapping of chemical reactions and mass transport inside the complex nano-scale architecture of porous catalyst membranes which is a multiscale problem in both the temporal and spatial domain. To addre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02874v1-abstract-full').style.display = 'inline'; document.getElementById('1607.02874v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02874v1-abstract-full" style="display: none;"> The development of high-efficiency porous catalyst membranes critically depends on our understanding of where the majority of the chemical conversions occur within the porous structure. This requires mapping of chemical reactions and mass transport inside the complex nano-scale architecture of porous catalyst membranes which is a multiscale problem in both the temporal and spatial domain. To address this problem, we developed a multi-scale mass transport computational framework based on the Lattice Boltzmann Method (LBM) that allows us to account for catalytic reactions at the gas-solid interface by introducing a new boundary condition. In good agreement with experiments, the simulations reveal that most catalytic reactions occur near the gas-flow facing side of the catalyst membrane if chemical reactions are fast compared to mass transport within the porous catalyst membrane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02874v1-abstract-full').style.display = 'none'; document.getElementById('1607.02874v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Microfluidics and Nanofluidics, 20(7), 1-13, 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.02832">arXiv:1505.02832</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Direct and Scalable Chemical Vapor Deposition of Ultrathin Low-Noise MoS2 Membranes on Apertures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Waduge%2C+P">Pradeep Waduge</a>, <a href="/search/cond-mat?searchtype=author&query=Bilgin%2C+I">Ismail Bilgin</a>, <a href="/search/cond-mat?searchtype=author&query=Larkin%2C+J">Joseph Larkin</a>, <a href="/search/cond-mat?searchtype=author&query=Goodfellow%2C+K">Kenneth Goodfellow</a>, <a href="/search/cond-mat?searchtype=author&query=Graham%2C+A+C">Adam C. Graham</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Vamivakas%2C+N">Nick Vamivakas</a>, <a href="/search/cond-mat?searchtype=author&query=Kar%2C+S">Swastik Kar</a>, <a href="/search/cond-mat?searchtype=author&query=Wanunu%2C+M">Meni Wanunu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.02832v2-abstract-short" style="display: inline;"> We show that atomically thin molybdenum disulfide (MoS2) crystals can grow without any underlying substrates into free-standing atomically-thin layers, maintaining their planar 2D form. Using this property, we present a new mechanism for 2D crystal synthesis, i.e. reagent-limited nucleation near an aperture edge followed by reactions that allow crystal growth into the free-space of the aperture. S… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02832v2-abstract-full').style.display = 'inline'; document.getElementById('1505.02832v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.02832v2-abstract-full" style="display: none;"> We show that atomically thin molybdenum disulfide (MoS2) crystals can grow without any underlying substrates into free-standing atomically-thin layers, maintaining their planar 2D form. Using this property, we present a new mechanism for 2D crystal synthesis, i.e. reagent-limited nucleation near an aperture edge followed by reactions that allow crystal growth into the free-space of the aperture. Such an approach enables us, for the first time, the direct and selective growth of freestanding membranes of atomically thin MoS2 layers across micrometer-scale pre-fabricated solid-state apertures in SiNx membranes. Under optimal conditions, MoS2 grows preferentially across apertures, resulting in sealed membranes that are one to a few atomic layers thick. Since our method involves free-space growth and is devoid of either substrates or transfer, it is conceivably the most contamination-free method for obtaining 2D crystals reported so far. The membrane quality was investigated using atomic-resolution transmission electron microscopy, Raman spectroscopy, photoluminescence spectroscopy, and low-noise ion-current recordings through nanopores fabricated in such membranes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02832v2-abstract-full').style.display = 'none'; document.getElementById('1505.02832v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is withdrawn by the author due to critical errors in the data and incomplete data in the paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.07867">arXiv:1504.07867</a> <span> [<a href="https://arxiv.org/pdf/1504.07867">pdf</a>, <a href="https://arxiv.org/ps/1504.07867">ps</a>, <a href="https://arxiv.org/format/1504.07867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Quantum-Spillover-Enhanced Surface-Plasmonic Absorption at the Interface of Silver and High-Index Dielectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+D">Dafei Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Q">Qing Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Neuhauser%2C+D">Daniel Neuhauser</a>, <a href="/search/cond-mat?searchtype=author&query=von+Cube%2C+F">Felix von Cube</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yingyi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Sachan%2C+R">Ritesh Sachan</a>, <a href="/search/cond-mat?searchtype=author&query=Luk%2C+T+S">Ting S. Luk</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+N+X">Nicholas X. Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.07867v2-abstract-short" style="display: inline;"> We demonstrate an unexpectedly strong surface-plasmonic absorption at the interface of silver and high-index dielectrics based on electron and photon spectroscopy. The measured bandwidth and intensity of absorption deviate significantly from the classical theory. Our density-functional calculation well predicts the occurrence of this phenomenon. It reveals that due to the low metal-to-dielectric w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.07867v2-abstract-full').style.display = 'inline'; document.getElementById('1504.07867v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.07867v2-abstract-full" style="display: none;"> We demonstrate an unexpectedly strong surface-plasmonic absorption at the interface of silver and high-index dielectrics based on electron and photon spectroscopy. The measured bandwidth and intensity of absorption deviate significantly from the classical theory. Our density-functional calculation well predicts the occurrence of this phenomenon. It reveals that due to the low metal-to-dielectric work function at such interfaces, conduction electrons can display a drastic quantum spillover, causing the interfacial electron-hole pair production to dominate the decay of surface plasmons. This finding can be of fundamental importance in understanding and designing quantum nano-plasmonic devices that utilize noble metals and high-index dielectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.07867v2-abstract-full').style.display = 'none'; document.getElementById('1504.07867v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.06883">arXiv:1502.06883</a> <span> [<a href="https://arxiv.org/pdf/1502.06883">pdf</a>, <a href="https://arxiv.org/ps/1502.06883">ps</a>, <a href="https://arxiv.org/format/1502.06883">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4909505">10.1063/1.4909505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accommodation of Tin in Tetragonal ZrO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bell%2C+B+D+C">B. D. C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Murphy%2C+S+T">S. T. Murphy</a>, <a href="/search/cond-mat?searchtype=author&query=Burr%2C+P+A">P. A. Burr</a>, <a href="/search/cond-mat?searchtype=author&query=Grimes%2C+R+W">R. W. Grimes</a>, <a href="/search/cond-mat?searchtype=author&query=Wenman%2C+M+R">M. R. Wenman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.06883v1-abstract-short" style="display: inline;"> Atomic scale computer simulations using density functional theory were used to investigate the behaviour of tin in the tetragonal phase oxide layer on Zr-based alloys. The $Sn_{Zr}^{\times}$ site defect was shown to be dominant across most oxygen partial pressures, with $Sn_{Zr}^{"}$ charge compensated by fully charged oxygen vacancies occurring at partial pressures below $10^{-31}$ atm. Insertion… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.06883v1-abstract-full').style.display = 'inline'; document.getElementById('1502.06883v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.06883v1-abstract-full" style="display: none;"> Atomic scale computer simulations using density functional theory were used to investigate the behaviour of tin in the tetragonal phase oxide layer on Zr-based alloys. The $Sn_{Zr}^{\times}$ site defect was shown to be dominant across most oxygen partial pressures, with $Sn_{Zr}^{"}$ charge compensated by fully charged oxygen vacancies occurring at partial pressures below $10^{-31}$ atm. Insertion of additional positive charge into the system was shown to significantly increase the critical partial pressure at which $Sn_{Zr}^{"}$ is stable. Recently developed low-Sn nuclear fuel cladding alloys have demonstrated an improved corrosion resistance and a delayed transition compared to Sn-containing alloys, such as Zircaloy-4. The interaction between the positive charge and the tin defect is discussed in the context of alloying additions, such as niobium and their influence on corrosion of cladding alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.06883v1-abstract-full').style.display = 'none'; document.getElementById('1502.06883v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics 117, 084901 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0905.4409">arXiv:0905.4409</a> <span> [<a href="https://arxiv.org/pdf/0905.4409">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nn900744z">10.1021/nn900744z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Etching of Graphene Devices with a Helium Ion Beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lemme%2C+M+C">M. C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">D. C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Williams%2C+J+R">J. R. Williams</a>, <a href="/search/cond-mat?searchtype=author&query=Stern%2C+L+A">L. A. Stern</a>, <a href="/search/cond-mat?searchtype=author&query=Baugher%2C+B+W+H">B. W. H. Baugher</a>, <a href="/search/cond-mat?searchtype=author&query=Jarillo-Herrero%2C+P">P. Jarillo-Herrero</a>, <a href="/search/cond-mat?searchtype=author&query=Marcus%2C+C+M">C. M. Marcus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0905.4409v2-abstract-short" style="display: inline;"> We report on the etching of graphene devices with a helium ion beam, including in situ electrical measurement during lithography. The etching process can be used to nanostructure and electrically isolate different regions in a graphene device, as demonstrated by etching a channel in a suspended graphene device with etched gaps down to about 10 nm. Graphene devices on silicon dioxide (SiO2) subst… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.4409v2-abstract-full').style.display = 'inline'; document.getElementById('0905.4409v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0905.4409v2-abstract-full" style="display: none;"> We report on the etching of graphene devices with a helium ion beam, including in situ electrical measurement during lithography. The etching process can be used to nanostructure and electrically isolate different regions in a graphene device, as demonstrated by etching a channel in a suspended graphene device with etched gaps down to about 10 nm. Graphene devices on silicon dioxide (SiO2) substrates etch with lower He ion doses and are found to have a residual conductivity after etching, which we attribute to contamination by hydrocarbons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.4409v2-abstract-full').style.display = 'none'; document.getElementById('0905.4409v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACSNano 3, 2674 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0905.4407">arXiv:0905.4407</a> <span> [<a href="https://arxiv.org/pdf/0905.4407">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0957-4484/20/45/455301">10.1088/0957-4484/20/45/455301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision Cutting and Patterning of Graphene with Helium Ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bell%2C+D+C">D. C. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Lemme%2C+M+C">M. C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&query=Stern%2C+L+A">L. A. Stern</a>, <a href="/search/cond-mat?searchtype=author&query=Williams%2C+J+R">J. R. Williams</a>, <a href="/search/cond-mat?searchtype=author&query=Marcus%2C+C+M">C. M. Marcus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0905.4407v2-abstract-short" style="display: inline;"> We report nanoscale patterning of graphene using a helium ion microscope configured for lithography. Helium ion lithography is a direct-write lithography process, comparable to conventional focused ion beam patterning, with no resist or other material contacting the sample surface. In the present application, graphene samples on Si/SiO2 substrates are cut using helium ions, with computer control… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.4407v2-abstract-full').style.display = 'inline'; document.getElementById('0905.4407v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0905.4407v2-abstract-full" style="display: none;"> We report nanoscale patterning of graphene using a helium ion microscope configured for lithography. Helium ion lithography is a direct-write lithography process, comparable to conventional focused ion beam patterning, with no resist or other material contacting the sample surface. In the present application, graphene samples on Si/SiO2 substrates are cut using helium ions, with computer controlled alignment, patterning, and exposure. Once suitable beam doses are determined, sharp edge profiles and clean etching are obtained, with little evident damage or doping to the sample. This technique provides fast lithography compatible with graphene, with ~15 nm feature sizes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.4407v2-abstract-full').style.display = 'none'; document.getElementById('0905.4407v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanotechnology 20, 455301 (2009) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>