CINXE.COM

Search

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> <title>Search</title> <meta id="meta-title" property="citation_title" content="Search"/> <meta id="og-title" property="og:title" content="Search"/> <meta name="twitter:widgets:autoload" content="off"/> <meta name="twitter:dnt" content="on"/> <meta name="twitter:widgets:csp" content="on"/> <meta name="google-site-verification" content="lQbRRf0vgPqMbnbCsgELjAjIIyJjiIWo917M7hBshvI"/> <meta id="og-image" property="og:image" content="https://escholarship.org/images/escholarship-facebook2.jpg"/> <meta id="og-image-width" property="og:image:width" content="1242"/> <meta id="og-image-height" property="og:image:height" content="1242"/> <link rel="stylesheet" href="/css/main-6e346ed4504727cd.css"> <link rel="resource" type="application/l10n" href="/node_modules/pdfjs-embed2/dist/locale/locale.properties"> <noscript><style> .jsonly { display: none } </style></noscript> <!-- Matomo --> <!-- TBD Configure Matomo for SPA https://developer.matomo.org/guides/spa-tracking --> <script type="text/plain" data-type="application/javascript" data-name="matomo"> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.cdlib.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '7']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); console.log('*** MATOMO LOADED ***'); })(); </script> <!-- End Matomo Code --> </head> <body> <div id="main"><div data-reactroot=""><div class="body"><a href="#maincontent" class="c-skipnav">Skip to main content</a><div class="l_search"><div><div style="margin-top:-10px"></div><header id="#top" class="c-header"><a class="c-header__logo2" href="/"><picture><source srcSet="/images/logo_eschol-small.svg" media="(min-width: 870px)"/><img src="/images/logo_eschol-mobile.svg" alt="eScholarship"/></picture><div class="c-header__logo2-tagline">Open Access Publications from the University of California</div></a><div class="c-header__search"><form class="c-search1"><label class="c-search1__label" for="c-search1__field">search</label><input type="search" id="c-search1__field" name="q" class="c-search1__field" placeholder="Search over 500,000 items" autoCapitalize="off" value="author:Statum, Sheronda"/><button type="submit" class="c-search1__submit-button" aria-label="submit search"></button><button type="button" class="c-search1__search-close-button" aria-label="close search field"></button></form></div><button class="c-header__search-open-button" aria-label="open search field"></button></header></div><div class="c-navbar"><nav class="c-nav"><details open="" class="c-nav__main"><summary class="c-nav__main-button">Menu</summary><ul class="c-nav__main-items"><li><details class="c-nav__sub"><summary class="c-nav__sub-button">About eScholarship</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/repository">eScholarship Repository</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/policies">Site policies</a></li><li><a href="/terms">Terms of Use and Copyright Information</a></li><li><a href="/privacyPolicy">Privacy statement</a></li></ul></div></details></li><li><details class="c-nav__sub"><summary class="c-nav__sub-button">Campus Sites</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/uc/ucb">UC Berkeley</a></li><li><a href="/uc/ucd">UC Davis</a></li><li><a href="/uc/uci">UC Irvine</a></li><li><a href="/uc/ucla">UCLA</a></li><li><a href="/uc/ucm">UC Merced</a></li><li><a href="/uc/ucr">UC Riverside</a></li><li><a href="/uc/ucsd">UC San Diego</a></li><li><a href="/uc/ucsf">UCSF</a></li><li><a href="/uc/ucsb">UC Santa Barbara</a></li><li><a href="/uc/ucsc">UC Santa Cruz</a></li><li><a href="/uc/ucop">UC Office of the President</a></li><li><a href="/uc/lbnl">Lawrence Berkeley National Laboratory</a></li><li><a href="/uc/anrcs">UC Agriculture &amp; Natural Resources</a></li></ul></div></details></li><li><a href="/ucoapolicies">UC Open Access Policies</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/ucpubs">UCPUBS</a></li></ul></details></nav></div><form id="facetForm" class="c-columns"><aside><div><div class="c-filter"><h1 class="c-filter__heading">Your search: "author:Statum, Sheronda"</h1><input type="hidden" name="q" value="author:Statum, Sheronda"/><div class="c-filter__results">28<!-- --> results</div><div class="c-filter__inactive-note">No filters applied</div><details class="c-filter__active" open=""><summary><span><strong></strong> filter<!-- -->s<!-- --> applied</span></summary><button class="c-filter__clear-all">clear all</button><ul class="c-filter__active-list"></ul></details><a href="https://help.escholarship.org/support/solutions/articles/9000148939-using-advanced-search-beta-" class="c-filter__tips">Search tips</a></div><div class="c-refine--has-drawer"><button class="c-refine__button--open">Refine Results</button><button class="c-refine__button--close" hidden="">Back to Results</button><div class="c-refine__drawer--closed"><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox0">Type of Work</span></summary><fieldset aria-labelledby="facetbox0"><ul class="c-checkbox"><li class=""><input type="checkbox" id="type_of_work-article" class="c-checkbox__input" name="type_of_work" value="article"/><label for="type_of_work-article" class="c-checkbox__label">Article<!-- --> (<!-- -->28<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-monograph" class="c-checkbox__input" name="type_of_work" value="monograph"/><label for="type_of_work-monograph" class="c-checkbox__label">Book<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-dissertation" class="c-checkbox__input" name="type_of_work" value="dissertation"/><label for="type_of_work-dissertation" class="c-checkbox__label">Theses<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-multimedia" class="c-checkbox__input" name="type_of_work" value="multimedia"/><label for="type_of_work-multimedia" class="c-checkbox__label">Multimedia<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox1">Peer Review</span></summary><fieldset aria-labelledby="facetbox1"><ul class="c-checkbox"><li class=""><input type="checkbox" id="peer_reviewed-1" class="c-checkbox__input" name="peer_reviewed" value="1"/><label for="peer_reviewed-1" class="c-checkbox__label">Peer-reviewed only<!-- --> (<!-- -->28<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox2">Supplemental Material</span></summary><fieldset aria-labelledby="facetbox2"><ul class="c-checkbox--2column"><li class=""><input type="checkbox" id="supp_file_types-video" class="c-checkbox__input" name="supp_file_types" value="video"/><label for="supp_file_types-video" class="c-checkbox__label">Video<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-audio" class="c-checkbox__input" name="supp_file_types" value="audio"/><label for="supp_file_types-audio" class="c-checkbox__label">Audio<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-images" class="c-checkbox__input" name="supp_file_types" value="images"/><label for="supp_file_types-images" class="c-checkbox__label">Images<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-zip" class="c-checkbox__input" name="supp_file_types" value="zip"/><label for="supp_file_types-zip" class="c-checkbox__label">Zip<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-other_files" class="c-checkbox__input" name="supp_file_types" value="other files"/><label for="supp_file_types-other_files" class="c-checkbox__label">Other files<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox3">Publication Year</span></summary><fieldset aria-labelledby="facetbox3"><div class="c-pubyear"><div class="c-pubyear__field"><label for="c-pubyear__textfield1">From:</label><input type="text" id="c-pubyear__textfield1" name="pub_year_start" maxLength="4" placeholder="1900" value=""/></div><div class="c-pubyear__field"><label for="c-pubyear__textfield2">To:</label><input type="text" id="c-pubyear__textfield2" name="pub_year_end" maxLength="4" placeholder="2025" value=""/></div><button class="c-pubyear__button">Apply</button></div></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox4">Campus</span></summary><fieldset aria-labelledby="facetbox4"><ul class="c-checkbox"><li class=""><input type="checkbox" id="campuses-ucb" class="c-checkbox__input" name="campuses" value="ucb"/><label for="campuses-ucb" class="c-checkbox__label">UC Berkeley<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucd" class="c-checkbox__input" name="campuses" value="ucd"/><label for="campuses-ucd" class="c-checkbox__label">UC Davis<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-uci" class="c-checkbox__input" name="campuses" value="uci"/><label for="campuses-uci" class="c-checkbox__label">UC Irvine<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucla" class="c-checkbox__input" name="campuses" value="ucla"/><label for="campuses-ucla" class="c-checkbox__label">UCLA<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucm" class="c-checkbox__input" name="campuses" value="ucm"/><label for="campuses-ucm" class="c-checkbox__label">UC Merced<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucr" class="c-checkbox__input" name="campuses" value="ucr"/><label for="campuses-ucr" class="c-checkbox__label">UC Riverside<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsd" class="c-checkbox__input" name="campuses" value="ucsd"/><label for="campuses-ucsd" class="c-checkbox__label">UC San Diego<!-- --> (<!-- -->28<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsf" class="c-checkbox__input" name="campuses" value="ucsf"/><label for="campuses-ucsf" class="c-checkbox__label">UCSF<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsb" class="c-checkbox__input" name="campuses" value="ucsb"/><label for="campuses-ucsb" class="c-checkbox__label">UC Santa Barbara<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsc" class="c-checkbox__input" name="campuses" value="ucsc"/><label for="campuses-ucsc" class="c-checkbox__label">UC Santa Cruz<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucop" class="c-checkbox__input" name="campuses" value="ucop"/><label for="campuses-ucop" class="c-checkbox__label">UC Office of the President<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-lbnl" class="c-checkbox__input" name="campuses" value="lbnl"/><label for="campuses-lbnl" class="c-checkbox__label">Lawrence Berkeley National Laboratory<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-anrcs" class="c-checkbox__input" name="campuses" value="anrcs"/><label for="campuses-anrcs" class="c-checkbox__label">UC Agriculture &amp; Natural Resources<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox5">Department</span></summary><fieldset aria-labelledby="facetbox5"><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-ucsdsom" class="c-checkbox__input" name="departments" value="ucsdsom"/><label for="departments-ucsdsom" class="c-checkbox__label">School of Medicine<!-- --> (<!-- -->28<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox6">Journal</span></summary><fieldset aria-labelledby="facetbox6"><ul class="c-checkbox"></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox7">Discipline</span></summary><fieldset aria-labelledby="facetbox7"><ul class="c-checkbox"></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox8">Reuse License</span></summary><fieldset aria-labelledby="facetbox8"><ul class="c-checkbox"><li class="c-checkbox__attrib-cc-by"><input type="checkbox" id="rights-CC_BY" class="c-checkbox__input" name="rights" value="CC BY"/><label for="rights-CC_BY" class="c-checkbox__label">BY - Attribution required<!-- --> (<!-- -->11<!-- -->)</label></li><li class="c-checkbox__attrib-cc-by-nc-nd"><input type="checkbox" id="rights-CC_BY-NC-ND" class="c-checkbox__input" name="rights" value="CC BY-NC-ND"/><label for="rights-CC_BY-NC-ND" class="c-checkbox__label">BY-NC-ND - Attribution; NonCommercial use; No derivatives<!-- --> (<!-- -->3<!-- -->)</label></li></ul></fieldset></details></div></div><button type="submit" id="facet-form-submit" style="display:none">Search</button></div></aside><main id="maincontent"><section class="o-columnbox1"><header><h2 class="o-columnbox1__heading" aria-live="polite">Scholarly Works (<!-- -->28 results<!-- -->)</h2></header><div class="c-sortpagination"><div class="c-sort"><div class="o-input__droplist1"><label for="c-sort1">Sort By:</label><select name="sort" id="c-sort1" form="facetForm"><option selected="" value="rel">Relevance</option><option value="a-title">A-Z By Title</option><option value="z-title">Z-A By Title</option><option value="a-author">A-Z By Author</option><option value="z-author">Z-A By Author</option><option value="asc">Date Ascending</option><option value="desc">Date Descending</option></select></div><div class="o-input__droplist1 c-sort__page-input"><label for="c-sort2">Show:</label><select name="rows" id="c-sort2" form="facetForm"><option selected="" value="10">10</option><option value="20">20</option><option value="30">30</option></select></div></div><input type="hidden" name="start" form="facetForm" value="0"/><nav class="c-pagination"><ul><li><a href="" aria-label="you are on result set 1" class="c-pagination__item--current">1</a></li><li><a href="" aria-label="go to result set 2" class="c-pagination__item">2</a></li><li><a href="" aria-label="go to result set 3" class="c-pagination__item">3</a></li></ul></nav></div><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/5hd7q09j"><div class="c-clientmarkup">Advanced MRI Techniques for the Ankle.</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ASiriwanarangsun%2C%20Palanan">Siriwanarangsun, Palanan</a>; </li><li><a href="/search/?q=author%3ABae%2C%20Won%20C">Bae, Won C</a>; </li><li><a href="/search/?q=author%3AStatum%2C%20Sheronda">Statum, Sheronda</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AChung%2C%20Christine%20B">Chung, Christine B</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2017<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Objective</h3>The purposes of this article are to present a state-of-the-art routine protocol for MRI of the ankle, to provide problem-solving tools based on specific clinical indications, and to introduce principles for the implementation of ultrashort echo time MRI of the ankle, including morphologic and quantitative assessment.<h3>Conclusion</h3>Ankle injury is common among both athletes and the general population, and MRI is the established noninvasive means of evaluation. The design of an ankle protocol depends on various factors. Higher magnetic field improves signal-to-noise ratio but increases metal artifact. Specialized imaging planes are useful but prolong acquisition times. MR neurography is useful, but metal reduction techniques are needed whenever a metal prosthesis is present. An ultrashort echo time sequence is a valuable tool for both structural and quantitative evaluation.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/5hd7q09j"><img src="/cms-assets/2b797e7c96ead6ca813643f6987340ff5974deb01c70104f1d2d5d3f7e980542" alt="Cover page: Advanced MRI Techniques for the Ankle."/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/12q6m3hm"><div class="c-clientmarkup">T1rho MR properties of human patellar cartilage: correlation with indentation stiffness and biochemical contents</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ABae%2C%20Won%20C">Bae, Won C</a>; </li><li><a href="/search/?q=author%3AStatum%2C%20Sheronda">Statum, Sheronda</a>; </li><li><a href="/search/?q=author%3AMasuda%2C%20Koichi">Masuda, Koichi</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AChung%2C%20Christine%20B">Chung, Christine B</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2024<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Objective</h3>Cartilage degeneration involves structural, compositional, and biomechanical alterations that may be detected non-invasively using quantitative MRI. The goal of this study was to determine if topographical variation in T1rho values correlates with indentation stiffness and biochemical contents of human patellar cartilage.<h3>Design</h3>Cadaveric patellae from unilateral knees of 5 donors with moderate degeneration were imaged at 3-Telsa with spiral chopped magnetization preparation T1rho sequence. Indentation testing was performed, followed by biochemical analyses to determine water and sulfated glycosaminoglycan contents. T1rho values were compared to indentation stiffness, using semi-circular regions of interest (ROIs) of varying sizes at each indentation site. ROIs matching the resected tissues were analyzed, and univariate and multivariate regression analyses were performed to compare T1rho values to biochemical contents.<h3>Results</h3>Grossly, superficial degenerative change of the cartilage (i.e., roughened texture and erosion) corresponded with regions of high T1rho values. High T1rho values correlated with low indentation stiffness, and the strength of correlation varied slightly with the ROI size. Spatial variations in T1rho values correlated positively with that of the water content (R<sup>2</sup> = 0.10, p &lt; 0.05) and negatively with the variations in the GAG content (R<sup>2</sup> = 0.13, p &lt; 0.01). Multivariate correlation (R<sup>2</sup> = 0.23, p &lt; 0.01) was stronger than either of the univariate correlations.<h3>Conclusion</h3>These results demonstrate the sensitivity of T1rho values to spatially varying function and composition of cartilage and that the strength of correlation depends on the method of data analysis and consideration of multiple variables.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/12q6m3hm"><img src="/cms-assets/415e4cf7dce018e310b8f171c2bb8a08787157f1408b217c544df41e417b8818" alt="Cover page: T1rho MR properties of human patellar cartilage: correlation with indentation stiffness and biochemical contents"/></a><a href="https://creativecommons.org/licenses/by-nc-nd/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-nc-nd-small.svg" alt="Creative Commons &#x27;BY-NC-ND&#x27; version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/024911g5"><div class="c-clientmarkup">Time‐Resolved Noncontrast Magnetic Resonance Perfusion Imaging of Paraspinal Muscles</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AMiyazaki%2C%20Mitsue">Miyazaki, Mitsue</a>; </li><li><a href="/search/?q=author%3AYamamoto%2C%20Asako">Yamamoto, Asako</a>; </li><li><a href="/search/?q=author%3AMalis%2C%20Vadim">Malis, Vadim</a>; </li><li><a href="/search/?q=author%3AStatum%2C%20Sheronda">Statum, Sheronda</a>; </li><li><a href="/search/?q=author%3AChung%2C%20Christine%20B">Chung, Christine B</a>; </li><li><a href="/search/?q=author%3ASozanski%2C%20Jesse">Sozanski, Jesse</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ABae%2C%20Won%20C">Bae, Won C</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2022<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Background</h3>While evaluation of blood perfusion in lumbar paraspinal muscles is of interest in low back pain, it has not been performed using noncontrast magnetic resonance (MR) techniques.<h3>Purpose</h3>To introduce a novel application of a time-resolved, noncontrast MR perfusion technique for paraspinal muscles and demonstrate effect of exercise on perfusion parameters.<h3>Study type</h3>Longitudinal.<h3>Subjects</h3>Six healthy subjects (27-48 years old, two females) and two subjects with acute low back pain (46 and 65 years old females, one with diabetes/obesity).<h3>Field strength/sequence</h3>3-T, MR perfusion sequence.<h3>Assessment</h3>Lumbar spines of healthy subjects were imaged axially at L3 level with a tag-on and tag-off alternating inversion recovery arterial spin labeling technique that suppresses background signal and acquires signal increase ratio (SIR) from the in-flow blood at varying inversion times (TI) from 0.12&nbsp;seconds to 3.5 seconds. SIR vs. TI data were fit to determine the perfusion metrics of peak height (PH), time to peak (TTP), mean transit time, apparent muscle blood volume (MBV), and apparent muscle blood flow (MBF) in iliocostal, longissimus, and multifidus. Imaging was repeated immediately after healthy subjects performed a 20-minute walk, to determine the effect of exercise.<h3>Statistical tests</h3>Repeated measures analysis of variance.<h3>Results</h3>SIR vs. TI data showed well-defined leading and trailing edges, with sharply increasing SIR to TI of approximately 500 msec subsiding quickly to near zero around TI of 1500 msec. After exercise, the mean SIR at every TI increased markedly, resulting in significantly higher PH, MBV, and MBF (each P &lt; 0.001 and F &gt; 28.9), and a lower TTP (P &lt; 0.05, F&nbsp;=&nbsp;4.5), regardless of the muscle. MBF increased 2- to 2.5-fold after exercise, similar to the expected increase in cardiac output, given the intensity of the exercise.<h3>Data conclusions</h3>Feasibility of an MR perfusion technique for muscle perfusion imaging was demonstrated, successfully detecting significantly increased perfusion after exercise.<h3>Level of evidence</h3>1 TECHNICAL EFFICACY STAGE: 1.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/024911g5"><img src="/cms-assets/8ebcf512598682bd141294980243036baf7d5ca82e9d9f4bb1fdea946831ff8f" alt="Cover page: Time‐Resolved Noncontrast Magnetic Resonance Perfusion Imaging of Paraspinal Muscles"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/836011d0"><div class="c-clientmarkup">Quantitative bi-component T2* analysis of histologically normal Achilles tendons.</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChang%2C%20Eric%20Y">Chang, Eric Y</a>; </li><li><a href="/search/?q=author%3ADu%2C%20Jiang">Du, Jiang</a>; </li><li><a href="/search/?q=author%3AStatum%2C%20Sheronda">Statum, Sheronda</a>; </li><li><a href="/search/?q=author%3APauli%2C%20Chantal">Pauli, Chantal</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AChung%2C%20Christine%20B">Chung, Christine B</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2015<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Introduction</h3>the aim of this pilot study was to implement ultrashort echo time (UTE) MRI with bi-component analysis on grossly normal Achilles tendons with histologic correlation.<h3>Materials and methods</h3>six tendon samples which were grossly normal on visual inspection and palpation were harvested. A 2D UTE pulse sequence was implemented on a 3T MR scanner and bi-component and single-component T2* analysis was performed. Tendon samples were histologically processed and evaluated.<h3>Results</h3>mean short T2* fraction was 79.2% (95% confidence interval [CI], 70.1 - 88.3%), mean short T2* was 1.8 ms (95% CI, 1.3 - 2.3 ms), mean long T2* fraction was 20.8% (95% CI, 11.7 - 29.9%), mean long T2* was 9.2 ms (95% CI, 5.1 - 13.3 ms), and mean single-component T2* was 2.5 ms (95% CI, 1.8 - 3.1 ms).<h3>Discussion</h3>2D UTE MRI with bi-component and single-component T2* analysis was successfully implemented. Inter-individual variation can be demonstrated in grossly and histologically normal Achilles tendons.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/836011d0"><img src="/cms-assets/324b14a51cc50f33d38960f215c4b1007f8ba1623422d596f6bb39f84714ab85" alt="Cover page: Quantitative bi-component T2* analysis of histologically normal Achilles tendons."/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons &#x27;BY&#x27; version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/82s2v9b4"><div class="c-clientmarkup">Ultrashort time to echo magnetic resonance techniques for the musculoskeletal system</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ASiriwanarangsun%2C%20Palanan">Siriwanarangsun, Palanan</a>; </li><li><a href="/search/?q=author%3AStatum%2C%20Sheronda">Statum, Sheronda</a>; </li><li><a href="/search/?q=author%3ABiswas%2C%20Reni">Biswas, Reni</a>; </li><li><a href="/search/?q=author%3ABae%2C%20Won%20C">Bae, Won C</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AChung%2C%20Christine%20B">Chung, Christine B</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2016<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Magnetic resonance (MR) imaging has been widely implemented as a non-invasive modality to investigate musculoskeletal (MSK) tissue disease, injury, and pathology. Advancements in MR sequences provide not only enhanced morphologic contrast for soft tissues, but also quantitative biochemical evaluation. Ultrashort time to echo (UTE) sequence, in particular, enables novel morphologic and quantitative evaluation of previously unseen MSK tissues. By using short minimum echo times (TE) below 1 msec, the UTE sequence can unveil short T2 properties of tissues including the deepest layers of the articular cartilage, cartilaginous endplate at the discovertebral junction, the meniscus, and the cortical bone. This article will discuss the application of UTE to evaluate these MSK tissues, starting with tissue structure, MR imaging appearance on standard versus short and ultrashort TE sequences, and provide the range of quantitative MR values found in literature.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/82s2v9b4"><img src="/cms-assets/398b0a71449a83c469f487ab4f6cefc59fa6cfb3b3a79539718d99533e363679" alt="Cover page: Ultrashort time to echo magnetic resonance techniques for the musculoskeletal system"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/3pj0f9bt"><div class="c-clientmarkup">MR imaging pattern of tibial subchondral bone structure: considerations of meniscal coverage and integrity</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AAriyachaipanich%2C%20Aticha">Ariyachaipanich, Aticha</a>; </li><li><a href="/search/?q=author%3AKaya%2C%20Emel">Kaya, Emel</a>; </li><li><a href="/search/?q=author%3AStatum%2C%20Sheronda">Statum, Sheronda</a>; </li><li><a href="/search/?q=author%3ABiswas%2C%20Reni">Biswas, Reni</a>; </li><li><a href="/search/?q=author%3ATran%2C%20Betty">Tran, Betty</a>; </li><li><a href="/search/?q=author%3ABae%2C%20Won%20C">Bae, Won C</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AChung%2C%20Christine%20B">Chung, Christine B</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2020<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Objectives</h3>To compare regional differences in subchondral trabecular structure using high-resolution MRI in meniscus-covered/meniscus-uncovered tibia in cadaveric knees with intact/torn menisci.<h3>Materials and methods</h3>3D proton density CUBE MRI of 6 cadaveric knees without significant osteoarthritis (OA) was acquired, 0.25-mm resolution. Menisci were evaluated and classified intact or torn. MR data were transferred to ImageJ program to segment tibial 3D volume of interest (VOI). Data was subdivided into meniscus-covered/meniscus-uncovered regions. Segmented VOI was classified into binary data, trabeculae/bone marrow. The trabecular bone data was used to measure MR biomarkers (apparent subchondral plate-connected bone density (adapted from spine MR), apparent trabecular bone volume fraction, apparent mean trabecular thickness, apparent connectivity density, and structure model index (SMI)). Mean value of parameters was analyzed for the effects of meniscal tear/tibial coverage.<h3>Results</h3>Nine torn menisci and 3 intact menisci were present. MR measures of bone varied significantly due to meniscal coverage/tear. Subchondral plate-connected bone density under covered meniscus regions increased from 10.9 to 23.5% with meniscal tear. Values increased in uncovered regions, 19.3% (intact) and 32.4% (torn). This reflects higher density when uncovered (p = 0.048) with meniscal tear (p = 0.007). Similar patterns were found for trabecular bone fraction (coverage p &lt; 0.001, tear p = 0.047), trabecular thickness (coverage p = 0.03), connectivity density (coverage p = 0.002), and SMI (coverage p = 0.015).<h3>Conclusion</h3>Quantitative trabecular bone evaluation emphasizes intrinsic structural differences between meniscus-covered/meniscus-uncovered tibias. Results offer insight into bone adaptation with meniscal tear and support the hypothesis that subchondral bone plate-connected bone density could be important in early subchondral bone adaptation.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/3pj0f9bt"><img src="/cms-assets/cd895f2755d0ac65fc279df08bc7406e39326d45b4045f980a020ad1e5d52c58" alt="Cover page: MR imaging pattern of tibial subchondral bone structure: considerations of meniscal coverage and integrity"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/23j7438q"><div class="c-clientmarkup">Effects of achilles tendon immersion in saline and perfluorochemicals on T2 and T2*</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChang%2C%20Eric%20Y">Chang, Eric Y</a>; </li><li><a href="/search/?q=author%3ADu%2C%20Jiang">Du, Jiang</a>; </li><li><a href="/search/?q=author%3ABae%2C%20Won%20C">Bae, Won C</a>; </li><li><a href="/search/?q=author%3AStatum%2C%20Sheronda">Statum, Sheronda</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AChung%2C%20Christine%20B">Chung, Christine B</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2014<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Purpose</h3>To determine if immersion of Achilles tendon segments into various solutions improved qualitative delineation of tendon and affected quantitative MR values of T2 and T2*.<h3>Materials and methods</h3>Six Achilles tendons were dissected, sectioned (proximal, midportion, and distal tensile pieces) and imaged at 3T both at baseline in air and after immersion into saline, Fomblin, and perfluorooctyl bromide (PFOB), respectively, for 24 h. Blinded readers qualitatively assessed the delineation of tendon boundaries and quantitatively Carr-Purcell-Meiboom-Gill (CPMG) T2 and ultrashort echo time (UTE) T2* was calculated. Comparison between images obtained in air and in solution was made.<h3>Results</h3>On qualitative evaluation, all images obtained in air had larger air-tissue susceptibility effects. Mean T2 values of saline, Fomblin, and PFOB groups were 16.1 ± 3.7, 16.6 ± 2.9, and 18.8 ± 2.6 ms at baseline in air, and 14.8 ± 4.6, 15.9 ± 3.0, and 17.7 ± 3.0 ms after immersion in the fluid, respectively. Mean T2* values of saline, Fomblin, and PFOB groups were 2.0 ± 0.8, 1.6 ± 0.5, and 1.5 ± 0.5 ms at baseline in air, and 2.1 ± 0.5, 1.6 ± 0.5, and 1.4 ± 0.5 ms after immersion in the fluid, respectively. There was no significant effect of immersion or fluid type on measured T2 or T2* (P &gt; 0.1).<h3>Conclusion</h3>These results validate the continued use of these solutions to prevent tendon specimen dehydration and to minimize susceptibility effects.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/23j7438q"><img src="/cms-assets/e7626fedd8548d6dd282a01fa3d57fb9f200ef060d5f0055ee0ab04f138801aa" alt="Cover page: Effects of achilles tendon immersion in saline and perfluorochemicals on T2 and T2*"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons &#x27;BY&#x27; version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/5dw347tb"><div class="c-clientmarkup">Quantitative magnetic resonance imaging of meniscal pathology ex vivo</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ABae%2C%20Won%20C">Bae, Won C</a>; </li><li><a href="/search/?q=author%3ATadros%2C%20Anthony%20S">Tadros, Anthony S</a>; </li><li><a href="/search/?q=author%3AFinkenstaedt%2C%20Tim">Finkenstaedt, Tim</a>; </li><li><a href="/search/?q=author%3ADu%2C%20Jiang">Du, Jiang</a>; </li><li><a href="/search/?q=author%3AStatum%2C%20Sheronda">Statum, Sheronda</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AChung%2C%20Christine%20B">Chung, Christine B</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2021<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Objective</h3>To determine the ability of conventional spin echo (SE) T2 and ultrashort echo time (UTE) T2* relaxation times to characterize pathology in cadaveric meniscus samples.<h3>Materials and methods</h3>From 10 human donors, 54 triangular (radially cut) meniscus samples were harvested. Meniscal pathology was classified as normal (n = 17), intrasubstance degenerated (n = 33), or torn (n = 4) using a modified arthroscopic grading system. Using a 3-T MR system, SE T2 and UTE T2* values of the menisci were determined, followed by histopathology. Effect of meniscal pathology on relaxation times and histology scores were determined, along with correlation between relaxation times and histology scores.<h3>Results</h3>Mean ± standard deviation UTE T2* values for normal, degenerated, and torn menisci were 3.6 ± 1.3&nbsp;ms, 7.4 ± 2.5&nbsp;ms, and 9.8 ± 5.7&nbsp;ms, respectively, being significantly higher in degenerated (p &lt; 0.0001) and torn (p = 0.0002) menisci compared to that in normal. In contrast, the respective mean SE T2 values were 27.7 ± 9.5&nbsp;ms, 25.9 ± 7.0&nbsp;ms, and 35.7 ± 10.4&nbsp;ms, without significant differences between groups (all p &gt; 0.14). In terms of histology, we found significant group-wise differences (each p &lt; 0.05) in fiber organization and inner-tip surface integrity sub-scores, as well as the total score. Finally, we found a significant weak correlation between UTE T2* and histology total score (p = 0.007, R<sub>s</sub><sup>2</sup> = 0.19), unlike the correlation between SE T2 and histology (p = 0.09, R<sub>s</sub><sup>2</sup> = 0.05).<h3>Conclusion</h3>UTE T2* values were found to distinguish normal from both degenerated and torn menisci and correlated significantly with histopathology.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/5dw347tb"><img src="/cms-assets/7f63dc538cd4bf704c6ef9c18b9fdef21066759d26bdeddb378b7d4da3dd2147" alt="Cover page: Quantitative magnetic resonance imaging of meniscal pathology ex vivo"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons &#x27;BY&#x27; version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/0781321h"><div class="c-clientmarkup">ZTE segmentation of glenohumeral bone structure using deep learning</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ACarl%2C%20Michael">Carl, Michael</a>; </li><li><a href="/search/?q=author%3ALall%2C%20Kaustaub">Lall, Kaustaub</a>; </li><li><a href="/search/?q=author%3AJamshidi%2C%20Armin">Jamshidi, Armin</a>; </li><li><a href="/search/?q=author%3AChang%2C%20Eric">Chang, Eric</a>; </li><li><a href="/search/?q=author%3AStatum%2C%20Sheronda">Statum, Sheronda</a>; </li><li><a href="/search/?q=author%3ABrau%2C%20Anja">Brau, Anja</a>; </li><li><a href="/search/?q=author%3AChung%2C%20Christine">Chung, Christine</a>; </li><li><a href="/search/?q=author%3AFung%2C%20Maggie">Fung, Maggie</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ABae%2C%20Won">Bae, Won</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2023<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Evaluation of 3D bone morphology of the glenohumeral joint is necessary for pre-surgical planning. Zero echo time (ZTE) MRI provides excellent bone contrast, and we developed a deep learning model to perform automated segmentation of major bones (i.e., humerus and others) from ZTE to aid evaluation. Axial ZTE images of normal shoulders (n=31) acquired at 3T were annotated for training with a 2D U-Net, and the trained model was validated with testing data (n=10 normal shoulder, n=6 symptomatic). Testing accuracy was around 80 to 90% (Dice score) for either cohort, except for a few failed cases with very low scores.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons &#x27;BY&#x27; version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/9fw8s4jd"><div class="c-clientmarkup">Single‐ and Bi‐component T2* analysis of tendon before and during tensile loading, using UTE sequences</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AChang%2C%20Eric%20Y">Chang, Eric Y</a>; </li><li><a href="/search/?q=author%3ADu%2C%20Jiang">Du, Jiang</a>; </li><li><a href="/search/?q=author%3AIwasaki%2C%20Kenyu">Iwasaki, Kenyu</a>; </li><li><a href="/search/?q=author%3ABiswas%2C%20Reni">Biswas, Reni</a>; </li><li><a href="/search/?q=author%3AStatum%2C%20Sheronda">Statum, Sheronda</a>; </li><li><a href="/search/?q=author%3AHe%2C%20Qun">He, Qun</a>; </li><li><a href="/search/?q=author%3ABae%2C%20Won%20C">Bae, Won C</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AChung%2C%20Christine%20B">Chung, Christine B</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2015<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><h3>Background</h3>To determine if the application of tensile force alters the single- or bi-component T2* values of human tendons as measured on a clinical MRI scanner with ultrashort echo time (UTE sequences and if single- or bi-component T2* values differ when measured with 2D-UTE, 3D-UTE, or 3D-UTE-Cones sequences.<h3>Methods</h3>Ten tendons were imaged before and during the application of tension using various UTE sequences at 3 Tesla. Single and bi-component T2* analysis was performed pre- and posttension and compared with Bonferroni-corrected paired Wilcoxon tests.<h3>Results</h3>Range of mean pre- and posttension T2* analysis values were: short T2* fraction (78.6-79.7% and 77.3-79.7%, respectively; P = 1.0 for all sequences), long T2* fraction (20.3-21.4% and 20.3-22.7%, respectively; P = 1.0 for all sequences), short T2* (0.9-1.0 ms and 0.9 ms, respectively; P = 1.0 for all sequences), long T2* (19.9-20.4 ms and 21.9-24.0 ms, respectively; P = 0.9 for 2D-UTE and P = 1.0 for 3D-UTE and 3D-UTE-Cones), and single-component T2* (2.3-2.5 ms and 2.5-3.2 ms, respectively; P = 1.0 for all sequences).<h3>Conclusion</h3>No significant difference in single- or bi-component results was found after the application of tension to tendons. Results are similar regardless of UTE sequence used for acquisition.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/9fw8s4jd"><img src="/cms-assets/a0ee6f886ac0ce58ca1c1632447c5c023292bef8d895ce6c8d16c65e4e1993b8" alt="Cover page: Single‐ and Bi‐component T2* analysis of tendon before and during tensile loading, using UTE sequences"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons &#x27;BY&#x27; version 4.0 license"/></a></div></section><nav class="c-pagination"><ul><li><a href="" aria-label="you are on result set 1" class="c-pagination__item--current">1</a></li><li><a href="" aria-label="go to result set 2" class="c-pagination__item">2</a></li><li><a href="" aria-label="go to result set 3" class="c-pagination__item">3</a></li></ul></nav></section></main></form></div><div><div class="c-toplink"><a href="javascript:window.scrollTo(0, 0)">Top</a></div><footer class="c-footer"><nav class="c-footer__nav"><ul><li><a href="/">Home</a></li><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/campuses">Campus Sites</a></li><li><a href="/ucoapolicies">UC Open Access Policy</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="https://www.cdlib.org/about/accessibility.html">Accessibility</a></li><li><a href="/privacypolicy">Privacy Statement</a></li><li><a href="/policies">Site Policies</a></li><li><a href="/terms">Terms of Use</a></li><li><a href="/login"><strong>Admin Login</strong></a></li><li><a href="https://help.escholarship.org"><strong>Help</strong></a></li></ul></nav><div class="c-footer__logo"><a href="/"><img class="c-lazyimage" data-src="/images/logo_footer-eschol.svg" alt="eScholarship, University of California"/></a></div><div class="c-footer__copyright">Powered by the<br/><a href="http://www.cdlib.org">California Digital Library</a><br/>Copyright © 2017<br/>The Regents of the University of California</div></footer></div></div></div></div> <script src="/js/vendors~app-bundle-2aefc956e545366a5d4e.js"></script> <script src="/js/app-bundle-3c8ebc2ec05dcc3202fd.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10