CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 86 results for author: <span class="mathjax">Jahnke, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Jahnke%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jahnke, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jahnke%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jahnke, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jahnke%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jahnke%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jahnke%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14620">arXiv:2411.14620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14620">pdf</a>, <a href="https://arxiv.org/format/2411.14620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental Observation of Non-Exponential Auger-Meitner Decay of Inner-Shell-Excited CO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Goy%2C+C">C. Goy</a>, <a href="/search/physics?searchtype=author&amp;query=Khan%2C+A">A. Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Rauch%2C+C">C. Rauch</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sisourat%2C+N">N. Sisourat</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14620v1-abstract-short" style="display: inline;"> Electronically excited atoms or molecules may deexcite by emission of a secondary electron through an Auger-Meitner decay. This deexcitation process is typically considered to be exponential in time. This is strictly speaking, however, only true for the case of an atom. Here, we present a study experimentally demonstrating the non-exponential time dependence of the decay of an inner-shell hole in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14620v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14620v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14620v1-abstract-full" style="display: none;"> Electronically excited atoms or molecules may deexcite by emission of a secondary electron through an Auger-Meitner decay. This deexcitation process is typically considered to be exponential in time. This is strictly speaking, however, only true for the case of an atom. Here, we present a study experimentally demonstrating the non-exponential time dependence of the decay of an inner-shell hole in a diatomic molecule. In addition, we provide an intuitive explanation for the origin of the observed variation of the molecular lifetimes and their dependence on the kinetic energy of the ionic fragments measured in coincidence with the photoelectrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14620v1-abstract-full').style.display = 'none'; document.getElementById('2411.14620v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11712">arXiv:2411.11712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11712">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Consensus Statement on Brillouin Light Scattering Microscopy of Biological Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bouvet%2C+P">Pierre Bouvet</a>, <a href="/search/physics?searchtype=author&amp;query=Bevilacqua%2C+C">Carlo Bevilacqua</a>, <a href="/search/physics?searchtype=author&amp;query=Ambekar%2C+Y">Yogeshwari Ambekar</a>, <a href="/search/physics?searchtype=author&amp;query=Antonacci%2C+G">Giuseppe Antonacci</a>, <a href="/search/physics?searchtype=author&amp;query=Au%2C+J">Joshua Au</a>, <a href="/search/physics?searchtype=author&amp;query=Caponi%2C+S">Silvia Caponi</a>, <a href="/search/physics?searchtype=author&amp;query=Chagnon-Lessard%2C+S">Sophie Chagnon-Lessard</a>, <a href="/search/physics?searchtype=author&amp;query=Czarske%2C+J">Juergen Czarske</a>, <a href="/search/physics?searchtype=author&amp;query=Dehoux%2C+T">Thomas Dehoux</a>, <a href="/search/physics?searchtype=author&amp;query=Fioretto%2C+D">Daniele Fioretto</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+Y">Yujian Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Guck%2C+J">Jochen Guck</a>, <a href="/search/physics?searchtype=author&amp;query=Hamann%2C+T">Thorsten Hamann</a>, <a href="/search/physics?searchtype=author&amp;query=Heinemann%2C+D">Dag Heinemann</a>, <a href="/search/physics?searchtype=author&amp;query=J%C3%A4hnke%2C+T">Torsten J盲hnke</a>, <a href="/search/physics?searchtype=author&amp;query=Jean-Ruel%2C+H">Hubert Jean-Ruel</a>, <a href="/search/physics?searchtype=author&amp;query=Kabakova%2C+I">Irina Kabakova</a>, <a href="/search/physics?searchtype=author&amp;query=Koski%2C+K">Kristie Koski</a>, <a href="/search/physics?searchtype=author&amp;query=Koukourakis%2C+N">Nektarios Koukourakis</a>, <a href="/search/physics?searchtype=author&amp;query=Krause%2C+D">David Krause</a>, <a href="/search/physics?searchtype=author&amp;query=Cavera%2C+S+L">Salvatore La Cavera III</a>, <a href="/search/physics?searchtype=author&amp;query=Landes%2C+T">Timm Landes</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jinhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Margueritat%2C+J">Jeremie Margueritat</a>, <a href="/search/physics?searchtype=author&amp;query=Mattarelli%2C+M">Maurizio Mattarelli</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11712v1-abstract-short" style="display: inline;"> Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitiv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11712v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11712v1-abstract-full" style="display: none;"> Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions. The aim of this consensus statement is to improve the comparability of BLS studies by providing reporting recommendations for the measured parameters and detailing common artifacts. Given that most BLS studies of biological matter are still at proof-of-concept stages and use different--often self-built--spectrometers, a consensus statement is particularly timely to assure unified advancement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11712v1-abstract-full').style.display = 'none'; document.getElementById('2411.11712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main Text &amp; Supplementary Text: 56 pages, 3 Figures, 2 Supplementary Figures, 1 Supplementary Table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09442">arXiv:2411.09442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09442">pdf</a>, <a href="https://arxiv.org/ps/2411.09442">ps</a>, <a href="https://arxiv.org/format/2411.09442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.183002">10.1103/PhysRevLett.133.183002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of the Coulomb Potential in Compton Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">N. Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">A. Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Kaiser%2C+L">L. Kaiser</a>, <a href="/search/physics?searchtype=author&amp;query=Kruse%2C+J">J. Kruse</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">N. Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Stindl%2C+J">J. Stindl</a>, <a href="/search/physics?searchtype=author&amp;query=Sommerlad%2C+L">L. Sommerlad</a>, <a href="/search/physics?searchtype=author&amp;query=McGinnis%2C+D">D. McGinnis</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M">M. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Nowak%2C+L">L. Nowak</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCgler%2C+A">A. K眉gler</a>, <a href="/search/physics?searchtype=author&amp;query=Dwojak%2C+I">I. Dwojak</a>, <a href="/search/physics?searchtype=author&amp;query=Drnec%2C+J">J. Drnec</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P">L. Ph. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Novikovskiy%2C+N+M">N. M. Novikovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Ph. V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09442v1-abstract-short" style="display: inline;"> We report a fully differential study of ionization of the Ne L-shell by Compton scattering of 20 keV photons. We find two physical mechanisms which modify the Compton-electron emission. Firstly, we observe scattering of the Compton electrons at their parent nucleus. Secondly, we find a distinct maximum in the electron momentum distribution close-to-zero momentum which we attribute to a focusing of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09442v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09442v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09442v1-abstract-full" style="display: none;"> We report a fully differential study of ionization of the Ne L-shell by Compton scattering of 20 keV photons. We find two physical mechanisms which modify the Compton-electron emission. Firstly, we observe scattering of the Compton electrons at their parent nucleus. Secondly, we find a distinct maximum in the electron momentum distribution close-to-zero momentum which we attribute to a focusing of the electrons by the Coulomb potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09442v1-abstract-full').style.display = 'none'; document.getElementById('2411.09442v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 133 (2024) 183002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08389">arXiv:2408.08389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08389">pdf</a>, <a href="https://arxiv.org/format/2408.08389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.123201">10.1103/PhysRevLett.132.123201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Differentiating Three-Dimensional Molecular Structures using Laser-induced Coulomb Explosion Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lam%2C+H+V+S">Huynh Van Sa Lam</a>, <a href="/search/physics?searchtype=author&amp;query=Venkatachalam%2C+A+S">Anbu Selvam Venkatachalam</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharyya%2C+S">Surjendu Bhattacharyya</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">Keyu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Borne%2C+K">Kurtis Borne</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+E">Enliang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Boll%2C+R">Rebecca Boll</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kumarappan%2C+V">Vinod Kumarappan</a>, <a href="/search/physics?searchtype=author&amp;query=Rudenko%2C+A">Artem Rudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Rolles%2C+D">Daniel Rolles</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08389v1-abstract-short" style="display: inline;"> Coulomb explosion imaging (CEI) with x-ray free electron lasers has recently been shown to be a powerful method for obtaining detailed structural information of gas-phase planar ring molecules [R. Boll et al. Nat. Phys. 18, 423-428 (2022)]. In this Letter, we investigate the potential of CEI driven by a tabletop laser and extend this approach to differentiating three-dimensional (3D) structures. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08389v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08389v1-abstract-full" style="display: none;"> Coulomb explosion imaging (CEI) with x-ray free electron lasers has recently been shown to be a powerful method for obtaining detailed structural information of gas-phase planar ring molecules [R. Boll et al. Nat. Phys. 18, 423-428 (2022)]. In this Letter, we investigate the potential of CEI driven by a tabletop laser and extend this approach to differentiating three-dimensional (3D) structures. We study the static CEI patterns of planar and nonplanar organic molecules that resemble the structures of typical products formed in ring-opening reactions. Our results reveal that each molecule exhibits a well-localized and distinctive pattern in 3D fragment-ion momentum space. We find that these patterns yield direct information about the molecular structures and can be qualitatively reproduced using a classical Coulomb explosion simulation. Our findings suggest that laser-induced CEI can serve as a robust method for differentiating molecular structures of organic ring and chain molecules. As such, it holds great promise as a method for following ultrafast structural changes, e.g., during ring-opening reactions, by tracking the motion of individual atoms in pump-probe experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08389v1-abstract-full').style.display = 'none'; document.getElementById('2408.08389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 123201 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03858">arXiv:2408.03858</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03858">pdf</a>, <a href="https://arxiv.org/format/2408.03858">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Capturing Nonlinear Electron Dynamics with Fully Characterised Attosecond X-ray Pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Funke%2C+L">Lars Funke</a>, <a href="/search/physics?searchtype=author&amp;query=Ilchen%2C+M">Markus Ilchen</a>, <a href="/search/physics?searchtype=author&amp;query=Dingel%2C+K">Kristina Dingel</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+T">Tommaso Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=Mullins%2C+T">Terence Mullins</a>, <a href="/search/physics?searchtype=author&amp;query=Otto%2C+T">Thorsten Otto</a>, <a href="/search/physics?searchtype=author&amp;query=Rivas%2C+D+E">Daniel E. Rivas</a>, <a href="/search/physics?searchtype=author&amp;query=Savio%2C+S">Sara Savio</a>, <a href="/search/physics?searchtype=author&amp;query=Serkez%2C+S">Svitozar Serkez</a>, <a href="/search/physics?searchtype=author&amp;query=Walter%2C+P">Peter Walter</a>, <a href="/search/physics?searchtype=author&amp;query=Wieland%2C+N">Niclas Wieland</a>, <a href="/search/physics?searchtype=author&amp;query=W%C3%BClfing%2C+L">Lasse W眉lfing</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+S">Sadia Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Boll%2C+R">Rebecca Boll</a>, <a href="/search/physics?searchtype=author&amp;query=Braune%2C+M">Markus Braune</a>, <a href="/search/physics?searchtype=author&amp;query=Calegari%2C+F">Francesca Calegari</a>, <a href="/search/physics?searchtype=author&amp;query=De+Fanis%2C+A">Alberto De Fanis</a>, <a href="/search/physics?searchtype=author&amp;query=Decking%2C+W">Winfried Decking</a>, <a href="/search/physics?searchtype=author&amp;query=Duensing%2C+A">Andreas Duensing</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%BCsterer%2C+S">Stefan D眉sterer</a>, <a href="/search/physics?searchtype=author&amp;query=Egun%2C+F">Felix Egun</a>, <a href="/search/physics?searchtype=author&amp;query=Ehresmann%2C+A">Arno Ehresmann</a>, <a href="/search/physics?searchtype=author&amp;query=Erk%2C+B">Benjamin Erk</a>, <a href="/search/physics?searchtype=author&amp;query=de+Lima%2C+D+E+F">Danilo Enoque Ferreira de Lima</a>, <a href="/search/physics?searchtype=author&amp;query=Galler%2C+A">Andreas Galler</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03858v3-abstract-short" style="display: inline;"> Attosecond X-ray pulses are the key to studying electron dynamics at their natural timescale in specifically targeted electronic states. They promise to build the conceptual bridge between physical and chemical photo-reaction processes. Free-electron lasers (FELs) have demonstrated their capability of generating intense attosecond X-ray pulses. The use of SASE-based FELs for time-resolving experim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03858v3-abstract-full').style.display = 'inline'; document.getElementById('2408.03858v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03858v3-abstract-full" style="display: none;"> Attosecond X-ray pulses are the key to studying electron dynamics at their natural timescale in specifically targeted electronic states. They promise to build the conceptual bridge between physical and chemical photo-reaction processes. Free-electron lasers (FELs) have demonstrated their capability of generating intense attosecond X-ray pulses. The use of SASE-based FELs for time-resolving experiments and investigations of nonlinear X-ray absorption mechanisms, however, necessitates their full pulse-to-pulse characterisation which remains a cutting-edge challenge. We have characterised X-ray pulses with durations of down to 600 attoseconds and peak powers up to 200 GW at ~1 keV photon energy via angular streaking at the Small Quantum Systems instrument of the European XFEL in Germany. As a direct application, we present results of nonlinear X-ray--matter interaction via time-resolved electron spectroscopy on a transient system, observing single- and double-core-hole generation in neon atoms. Using the derived temporal information about each single X-ray pulse, we reveal an otherwise hidden peak-intensity dependence of the probability for formation of double-core vacancies in neon after primary K-shell ionisation. Our results advance the field of attosecond science with highly intense and fully characterised X-ray pulses to the state-specific investigation of electronic motion in non-stationary media. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03858v3-abstract-full').style.display = 'none'; document.getElementById('2408.03858v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15367">arXiv:2405.15367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15367">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> X-ray Coulomb explosion imaging reveals role of molecular structure in internal conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Mai%2C+S">Sebastian Mai</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharyya%2C+S">Surjendu Bhattacharyya</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">Keyu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Boll%2C+R">Rebecca Boll</a>, <a href="/search/physics?searchtype=author&amp;query=Castellani%2C+M+E">Maria Elena Castellani</a>, <a href="/search/physics?searchtype=author&amp;query=Dold%2C+S">Simon Dold</a>, <a href="/search/physics?searchtype=author&amp;query=Duley%2C+A">Avijit Duley</a>, <a href="/search/physics?searchtype=author&amp;query=Fr%C3%BChling%2C+U">Ulrike Fr眉hling</a>, <a href="/search/physics?searchtype=author&amp;query=Green%2C+A+E">Alice E. Green</a>, <a href="/search/physics?searchtype=author&amp;query=Ilchen%2C+M">Markus Ilchen</a>, <a href="/search/physics?searchtype=author&amp;query=Ingle%2C+R">Rebecca Ingle</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">Gregor Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Lam%2C+H+V+S">Huynh Van Sa Lam</a>, <a href="/search/physics?searchtype=author&amp;query=Lever%2C+F">Fabiano Lever</a>, <a href="/search/physics?searchtype=author&amp;query=Mayer%2C+D">Dennis Mayer</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+T">Tommaso Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=Mullins%2C+T">Terence Mullins</a>, <a href="/search/physics?searchtype=author&amp;query=Ovcharenko%2C+Y">Yevheniy Ovcharenko</a>, <a href="/search/physics?searchtype=author&amp;query=Senfftleben%2C+B">Bj枚rn Senfftleben</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Noor%2C+A+T">Atia Tul Noor</a>, <a href="/search/physics?searchtype=author&amp;query=Usenko%2C+S">Sergey Usenko</a>, <a href="/search/physics?searchtype=author&amp;query=Venkatachalam%2C+A+S">Anbu Selvam Venkatachalam</a>, <a href="/search/physics?searchtype=author&amp;query=Rudenko%2C+A">Artem Rudenko</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15367v1-abstract-short" style="display: inline;"> Molecular photoabsorption results in an electronic excitation/ionization which couples to the rearrangement of the nuclei. The resulting intertwined change of nuclear and electronic degrees of freedom determines the conversion of photoenergy into other molecular energy forms. Nucleobases are excellent candidates for studying such dynamics, and great effort has been taken in the past to observe the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15367v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15367v1-abstract-full" style="display: none;"> Molecular photoabsorption results in an electronic excitation/ionization which couples to the rearrangement of the nuclei. The resulting intertwined change of nuclear and electronic degrees of freedom determines the conversion of photoenergy into other molecular energy forms. Nucleobases are excellent candidates for studying such dynamics, and great effort has been taken in the past to observe the electronic changes induced by the initial excitation in a time-resolved manner using ultrafast electron spectroscopy. The linked geometrical changes during nucleobase photorelaxation have so far not been observed directly in time-resolved experiments. Here, we present a study on a thionucleobase, where we extract comprehensive information on the molecular rearrangement using Coulomb explosion imaging. Our measurement links the extracted deplanarization of the molecular geometry to the previously studied temporal evolution of the electronic properties of the system. In particular, the protons of the exploded molecule are well-suited messengers carrying rich information on the molecule&#39;s geometry at distinct times after the initial electronic excitation. The combination of ultrashort laser pulses to trigger molecular dynamics, intense X-ray free-electron laser pulses for the explosion of the molecule, and multi-particle coincidence detection opens new avenues for time-resolved studies of complex molecules in the gas phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15367v1-abstract-full').style.display = 'none'; document.getElementById('2405.15367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00304">arXiv:2404.00304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00304">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adn1555">10.1126/science.adn1555 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Kapitza-Dirac effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">Kang Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Hao Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Jacob%2C+S">Sina Jacob</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+Q">Qinying Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00304v1-abstract-short" style="display: inline;"> Similar to the optical diffraction of light passing through a material grating, the Kapitza-Dirac effect occurs when an electron is diffracted by a standing light wave. In its original description the effect is time-independent. In the present work, we extend the Kapitza-Dirac concept to the time domain. By tracking the spatiotemporal evolution of a pulsed electron wave packet diffracted by a femt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00304v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00304v1-abstract-full" style="display: none;"> Similar to the optical diffraction of light passing through a material grating, the Kapitza-Dirac effect occurs when an electron is diffracted by a standing light wave. In its original description the effect is time-independent. In the present work, we extend the Kapitza-Dirac concept to the time domain. By tracking the spatiotemporal evolution of a pulsed electron wave packet diffracted by a femtosecond (10 15 second) standing wave pulse in a pump-probe scheme, we observe so far unseen time-dependent diffraction patterns. The fringe spacing in the observed pattern differs from that generated by the conventional Kapitza-Dirac effect, moreover it decreases as the pump-probe delay time increases. By exploiting this time-resolved diffraction scheme, we gather access to the time evolution of the previously inaccessible phase properties of a free electron. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00304v1-abstract-full').style.display = 'none'; document.getElementById('2404.00304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03215">arXiv:2402.03215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.03215">pdf</a>, <a href="https://arxiv.org/format/2402.03215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Sub-cycle resolved strong field ionization of chiral molecules and the origin of chiral photoelectron asymmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">N. Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Kruse%2C+J">J. Kruse</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03215v1-abstract-short" style="display: inline;"> We report on strong field ionization of S- and R-propylene oxide in circularly polarized two-color laser fields. We find that the relative helicity of the two single color laser fields affects the photoelectron circular dichroism (PECD). Further, we observe that PECD is modulated as a function of the sub-cycle release time of the electron. Our experimental observations are successfully described b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03215v1-abstract-full').style.display = 'inline'; document.getElementById('2402.03215v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03215v1-abstract-full" style="display: none;"> We report on strong field ionization of S- and R-propylene oxide in circularly polarized two-color laser fields. We find that the relative helicity of the two single color laser fields affects the photoelectron circular dichroism (PECD). Further, we observe that PECD is modulated as a function of the sub-cycle release time of the electron. Our experimental observations are successfully described by a heuristic model based on electrons in chiral initial states, which are selectively liberated by the laser field and, after tunneling, interact with an achiral Coulomb potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03215v1-abstract-full').style.display = 'none'; document.getElementById('2402.03215v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11519">arXiv:2311.11519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11519">pdf</a>, <a href="https://arxiv.org/format/2311.11519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Opportunities for Gas-Phase Science at Short-Wavelength Free-Electron Lasers with Undulator-Based Polarization Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ilchen%2C+M">Markus Ilchen</a>, <a href="/search/physics?searchtype=author&amp;query=Allaria%2C+E">Enrico Allaria</a>, <a href="/search/physics?searchtype=author&amp;query=Ribi%C4%8D%2C+P+R">Primo啪 Rebernik Ribi膷</a>, <a href="/search/physics?searchtype=author&amp;query=Nuhn%2C+H">Heinz-Dieter Nuhn</a>, <a href="/search/physics?searchtype=author&amp;query=Lutman%2C+A">Alberto Lutman</a>, <a href="/search/physics?searchtype=author&amp;query=Schneidmiller%2C+E">Evgeny Schneidmiller</a>, <a href="/search/physics?searchtype=author&amp;query=Tischer%2C+M">Markus Tischer</a>, <a href="/search/physics?searchtype=author&amp;query=Yurkov%2C+M">Mikail Yurkov</a>, <a href="/search/physics?searchtype=author&amp;query=Calvi%2C+M">Marco Calvi</a>, <a href="/search/physics?searchtype=author&amp;query=Prat%2C+E">Eduard Prat</a>, <a href="/search/physics?searchtype=author&amp;query=Reiche%2C+S">Sven Reiche</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+T">Thomas Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Geloni%2C+G+A">Gianluca Aldo Geloni</a>, <a href="/search/physics?searchtype=author&amp;query=Karabekyan%2C+S">Suren Karabekyan</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+J">Jiawei Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Serkez%2C+S">Svitozar Serkez</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Zhangfeng Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+B">Bangjie Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+C">Chao Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+H">Haixiao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Helml%2C+W">Wolfram Helml</a>, <a href="/search/physics?searchtype=author&amp;query=Funke%2C+L">Lars Funke</a>, <a href="/search/physics?searchtype=author&amp;query=Larsson%2C+M">Mats Larsson</a>, <a href="/search/physics?searchtype=author&amp;query=Vitali"> Vitali</a>, <a href="/search/physics?searchtype=author&amp;query=Zhaunerchyk"> Zhaunerchyk</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11519v1-abstract-short" style="display: inline;"> Free-electron lasers (FELs) are the world&#39;s most brilliant light sources with rapidly evolving technological capabilities in terms of ultrabright and ultrashort pulses over a large range of accessible photon energies. Their revolutionary and innovative developments have opened new fields of science regarding nonlinear light-matter interaction, the investigation of ultrafast processes from specific&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11519v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11519v1-abstract-full" style="display: none;"> Free-electron lasers (FELs) are the world&#39;s most brilliant light sources with rapidly evolving technological capabilities in terms of ultrabright and ultrashort pulses over a large range of accessible photon energies. Their revolutionary and innovative developments have opened new fields of science regarding nonlinear light-matter interaction, the investigation of ultrafast processes from specific observer sites, and approaches to imaging matter with atomic resolution. A core aspect of FEL science is the study of isolated and prototypical systems in the gas phase with the possibility of addressing well-defined electronic transitions or particular atomic sites in molecules. Notably for polarization-controlled short-wavelength FELs, the gas phase offers new avenues for investigations of nonlinear and ultrafast phenomena in spin orientated systems, for decoding the function of the chiral building blocks of life as well as steering reactions and particle emission dynamics in otherwise inaccessible ways. This roadmap comprises descriptions of technological capabilities of facilities worldwide, innovative diagnostics and instrumentation, as well as recent scientific highlights, novel methodology and mathematical modeling. The experimental and theoretical landscape of using polarization controllable FELs for dichroic light-matter interaction in the gas phase will be discussed and comprehensively outlined to stimulate and strengthen global collaborative efforts of all disciplines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11519v1-abstract-full').style.display = 'none'; document.getElementById('2311.11519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05099">arXiv:2311.05099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.05099">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Time-Resolved Coulomb Explosion Imaging Unveils Ultrafast Ring Opening of Furan </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+E">Enliang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharyya%2C+S">Surjendu Bhattacharyya</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">Keyu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Borne%2C+K">Kurtis Borne</a>, <a href="/search/physics?searchtype=author&amp;query=Ziaee%2C+F">Farzaneh Ziaee</a>, <a href="/search/physics?searchtype=author&amp;query=Pathak%2C+S">Shashank Pathak</a>, <a href="/search/physics?searchtype=author&amp;query=Lam%2C+H+V+S">Huynh Van Sa Lam</a>, <a href="/search/physics?searchtype=author&amp;query=Venkatachalam%2C+A+S">Anbu Selvam Venkatachalam</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiangjun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Boll%2C+R">Rebecca Boll</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Rudenko%2C+A">Artem Rudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Rolles%2C+D">Daniel Rolles</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05099v1-abstract-short" style="display: inline;"> Following the changes in molecular structure throughout the entirety of a chemical reaction with atomic resolution is a long-term goal in femtochemistry. Although the development of a plethora of ultrafast technique has enabled detailed investigations of the electronic and nuclear dynamics on femtosecond time scales, direct and unambiguous imaging of the nuclear motion during a reaction is still a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05099v1-abstract-full').style.display = 'inline'; document.getElementById('2311.05099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05099v1-abstract-full" style="display: none;"> Following the changes in molecular structure throughout the entirety of a chemical reaction with atomic resolution is a long-term goal in femtochemistry. Although the development of a plethora of ultrafast technique has enabled detailed investigations of the electronic and nuclear dynamics on femtosecond time scales, direct and unambiguous imaging of the nuclear motion during a reaction is still a major challenge. Here, we apply time-resolved Coulomb explosion imaging with femtosecond near-infrared pulses to visualize the ultraviolet-induced ultrafast molecular dynamics of gas-phase furan. Widely contradicting predictions and observations for this molecule have been reported in the literature. By combining the experimental Coulomb explosion imaging data with ab initio molecular dynamics and Coulomb explosion simulations, we reveal the presence of a strong ultrafast ring-opening pathway upon excitation at 198 nm that occurs within 100 fs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05099v1-abstract-full').style.display = 'none'; document.getElementById('2311.05099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81V55; 92E10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08573">arXiv:2307.08573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.08573">pdf</a>, <a href="https://arxiv.org/format/2307.08573">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Ideal Two-Color Field Ratio for Holographic Angular Streaking of Electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">N. Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08573v1-abstract-short" style="display: inline;"> We study strong field ionization of molecular hydrogen in highly intense co-rotating two-color (CoRTC) laser fields. The measured electron momentum distributions show alternating half-rings (AHR) that are characteristic for sub-cycle interference. We report on the role of the two-color field ratio for the visibility of this sub-cycle interference. The ratio of the peak electric field at 780 nm com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08573v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08573v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08573v1-abstract-full" style="display: none;"> We study strong field ionization of molecular hydrogen in highly intense co-rotating two-color (CoRTC) laser fields. The measured electron momentum distributions show alternating half-rings (AHR) that are characteristic for sub-cycle interference. We report on the role of the two-color field ratio for the visibility of this sub-cycle interference. The ratio of the peak electric field at 780 nm compared to the peak electric field at 390 nm $E_{780}/E_{390}$ is varied from 0.037 to 0.18. We find very good agreement with the results from our semiclassical simulation. We conclude that the AHR pattern is visible if two conditions are fulfilled. First, the amplitudes of the two pathways that lead to the sub-cycle interference have to be similar, which is the case for low two-color field ratios $E_{780}/E_{390}$. Second, the phase difference of the two pathways must be strong enough to allow for destructive interference, which is the case for high two-color field ratios $E_{780}/E_{390}$. For typical experimental conditions, we find that two-color field ratios $E_{780}/E_{390}$ in the range from 0.037 to 0.12 lead to good visibility of the AHR pattern. This guides future experiments to measure the Wigner time delay using holographic angular streaking of electrons (HASE). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08573v1-abstract-full').style.display = 'none'; document.getElementById('2307.08573v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00481">arXiv:2302.00481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.00481">pdf</a>, <a href="https://arxiv.org/ps/2302.00481">ps</a>, <a href="https://arxiv.org/format/2302.00481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.023118">10.1103/PhysRevResearch.5.023118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angular dependence of the Wigner time delay upon strong field ionization from an aligned p-orbital </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">N. Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00481v1-abstract-short" style="display: inline;"> We present experimental data on the strong-field ionization of the argon dimer in a co-rotating two-color (CoRTC) laser field. We observe a sub-cycle interference pattern in the photoelectron momentum distribution and infer the Wigner time delay using holographic angular streaking of electrons (HASE). We find that the Wigner time delay varies by more than 400 attoseconds as a function of the elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00481v1-abstract-full').style.display = 'inline'; document.getElementById('2302.00481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00481v1-abstract-full" style="display: none;"> We present experimental data on the strong-field ionization of the argon dimer in a co-rotating two-color (CoRTC) laser field. We observe a sub-cycle interference pattern in the photoelectron momentum distribution and infer the Wigner time delay using holographic angular streaking of electrons (HASE). We find that the Wigner time delay varies by more than 400 attoseconds as a function of the electron emission direction with respect to the molecular axis. The measured time delay is found to be independent of the parity of the dimer-cation and is in good agreement with our theoretical model based on the ionization of an aligned atomic p-orbital. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00481v1-abstract-full').style.display = 'none'; document.getElementById('2302.00481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5 (2023) 0231189 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01791">arXiv:2211.01791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01791">pdf</a>, <a href="https://arxiv.org/format/2211.01791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.033094">10.1103/PhysRevResearch.5.033094 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental fingerprint of the electron&#39;s longitudinal momentum at the tunnel exit in strong field ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">N. Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01791v1-abstract-short" style="display: inline;"> We present experimental data on the strong field tunnel ionization of argon in a counter-rotating two-color (CRTC) laser field. We find that the initial momentum component along the tunneling direction changes sign comparing the rising and the falling edge of the CRTC field. If the initial momentum at the tunnel exit points in the direction of the ion at the instant of tunneling, this manifests as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01791v1-abstract-full').style.display = 'inline'; document.getElementById('2211.01791v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01791v1-abstract-full" style="display: none;"> We present experimental data on the strong field tunnel ionization of argon in a counter-rotating two-color (CRTC) laser field. We find that the initial momentum component along the tunneling direction changes sign comparing the rising and the falling edge of the CRTC field. If the initial momentum at the tunnel exit points in the direction of the ion at the instant of tunneling, this manifests as an enhanced Coulomb interaction of the outgoing electron with its parent ion. Our conclusions are in accordance with predictions based on strong field approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01791v1-abstract-full').style.display = 'none'; document.getElementById('2211.01791v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5 (2023) 033094 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12885">arXiv:2205.12885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.12885">pdf</a>, <a href="https://arxiv.org/format/2205.12885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Extreme ultraviolet wave packet interferometry of the autoionizing HeNe dimer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Uhl%2C+D">Daniel Uhl</a>, <a href="/search/physics?searchtype=author&amp;query=Wituschek%2C+A">Andreas Wituschek</a>, <a href="/search/physics?searchtype=author&amp;query=Michiels%2C+R">Rupert Michiels</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Allaria%2C+E">Enrico Allaria</a>, <a href="/search/physics?searchtype=author&amp;query=Callegari%2C+C">Carlo Callegari</a>, <a href="/search/physics?searchtype=author&amp;query=Danailov%2C+M">Miltcho Danailov</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Fraia%2C+M">Michele Di Fraia</a>, <a href="/search/physics?searchtype=author&amp;query=Plekan%2C+O">Oksana Plekan</a>, <a href="/search/physics?searchtype=author&amp;query=Bangert%2C+U">Ulrich Bangert</a>, <a href="/search/physics?searchtype=author&amp;query=Dulitz%2C+K">Katrin Dulitz</a>, <a href="/search/physics?searchtype=author&amp;query=Landmesser%2C+F">Friedemann Landmesser</a>, <a href="/search/physics?searchtype=author&amp;query=Michelbach%2C+M">Moritz Michelbach</a>, <a href="/search/physics?searchtype=author&amp;query=Simoncig%2C+A">Alberto Simoncig</a>, <a href="/search/physics?searchtype=author&amp;query=Manfredda%2C+M">Michele Manfredda</a>, <a href="/search/physics?searchtype=author&amp;query=Spampinati%2C+S">Simone Spampinati</a>, <a href="/search/physics?searchtype=author&amp;query=Penco%2C+G">Giuseppe Penco</a>, <a href="/search/physics?searchtype=author&amp;query=Squibb%2C+R+J">Richard James Squibb</a>, <a href="/search/physics?searchtype=author&amp;query=Feifel%2C+R">Raimund Feifel</a>, <a href="/search/physics?searchtype=author&amp;query=Laarmann%2C+T">Tim Laarmann</a>, <a href="/search/physics?searchtype=author&amp;query=Mudrich%2C+M">Marcel Mudrich</a>, <a href="/search/physics?searchtype=author&amp;query=Prince%2C+K+C">Kevin C. Prince</a>, <a href="/search/physics?searchtype=author&amp;query=Cerullo%2C+G">Giulio Cerullo</a>, <a href="/search/physics?searchtype=author&amp;query=Giannessi%2C+L">Luca Giannessi</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12885v2-abstract-short" style="display: inline;"> Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant inter-atomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12885v2-abstract-full').style.display = 'inline'; document.getElementById('2205.12885v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12885v2-abstract-full" style="display: none;"> Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant inter-atomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultrafast decoherence assigned to the ICD process. A Fourier analysis reveals the molecular absorption spectrum with high resolution. The demonstrated experiment shows a promising route for the real-time analysis of ultrafast ICD processes with both high temporal and spectral resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12885v2-abstract-full').style.display = 'none'; document.getElementById('2205.12885v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09831">arXiv:2110.09831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09831">pdf</a>, <a href="https://arxiv.org/format/2110.09831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.053001">10.1103/PhysRevLett.128.053001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ion and Electron Momentum Distributions from Single and Double Ionization of Helium Induced by Compton Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">I. Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Khan%2C+A">A. Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">C. Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Mletzko%2C+T">T. Mletzko</a>, <a href="/search/physics?searchtype=author&amp;query=Kirchner%2C+D">D. Kirchner</a>, <a href="/search/physics?searchtype=author&amp;query=Honkim%C3%A4ki%2C+V">V. Honkim盲ki</a>, <a href="/search/physics?searchtype=author&amp;query=Houamer%2C+S">S. Houamer</a>, <a href="/search/physics?searchtype=author&amp;query=Chuluunbaatar%2C+O">O. Chuluunbaatar</a>, <a href="/search/physics?searchtype=author&amp;query=Popov%2C+Y+V">Yu. V. Popov</a>, <a href="/search/physics?searchtype=author&amp;query=Volobuev%2C+I+P">I. P. Volobuev</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09831v1-abstract-short" style="display: inline;"> We present the momentum distributions of the nucleus and of the electrons from double ionization of the helium atom by Compton scattering of photons with $h谓=40$ keV. We find that the doubly charged ion momentum distribution is very close to the Compton profile of the nucleus in the ground state of the helium atom, and the momentum distribution of the singly charged ion to give a precise image of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09831v1-abstract-full').style.display = 'inline'; document.getElementById('2110.09831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09831v1-abstract-full" style="display: none;"> We present the momentum distributions of the nucleus and of the electrons from double ionization of the helium atom by Compton scattering of photons with $h谓=40$ keV. We find that the doubly charged ion momentum distribution is very close to the Compton profile of the nucleus in the ground state of the helium atom, and the momentum distribution of the singly charged ion to give a precise image of the electron Compton profile. To reproduce these results, non-relativistic calculations require the use of highly correlated initial- and final-state wavefunctions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09831v1-abstract-full').style.display = 'none'; document.getElementById('2110.09831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 053001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.08601">arXiv:2110.08601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.08601">pdf</a>, <a href="https://arxiv.org/format/2110.08601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.023201">10.1103/PhysRevLett.128.023201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic-field effect in high-order above-threshold ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">Kang Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">Simon Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+H">Hongcheng Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+X">Xiao-Min Tong</a>, <a href="/search/physics?searchtype=author&amp;query=Burgd%C3%B6rfer%2C+J">Joachim Burgd枚rfer</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+F">Feng He</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">Manfred Lein</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.08601v1-abstract-short" style="display: inline;"> We experimentally and theoretically investigate the influence of the magnetic component of an electromagnetic field on high-order above-threshold ionization of xenon atoms driven by ultrashort femtosecond laser pulses. The nondipole shift of the electron momentum distribution along the light-propagation direction for high energy electrons beyond the classical cutoff is found to be vastly different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08601v1-abstract-full').style.display = 'inline'; document.getElementById('2110.08601v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.08601v1-abstract-full" style="display: none;"> We experimentally and theoretically investigate the influence of the magnetic component of an electromagnetic field on high-order above-threshold ionization of xenon atoms driven by ultrashort femtosecond laser pulses. The nondipole shift of the electron momentum distribution along the light-propagation direction for high energy electrons beyond the classical cutoff is found to be vastly different from that below the cutoff. A V-shape structure in the momentum dependence of the nondipole shift above the cutoff is identified for the first time. With the help of classical and quantum-orbit analysis, we show that large-angle rescattering of the electrons strongly alters the partitioning of the photon momentum between electron and ion. The sensitivity of the observed nondipole shift to the electronic structure of the target atom is confirmed by three-dimensional time-dependent Schr枚dinger equation simulations for different model potentials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08601v1-abstract-full').style.display = 'none'; document.getElementById('2110.08601v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04027">arXiv:2110.04027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.04027">pdf</a>, <a href="https://arxiv.org/format/2110.04027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Photoelectron energy peaks shift against the radiation pressure in strong field ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">Kang Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04027v1-abstract-short" style="display: inline;"> The photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by the binding energy of the electron and, if strong laser fields are involved, by the ponderomotive potential in addition. It has therefore been widely taken for granted that for atoms and molecules the photoelectr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04027v1-abstract-full').style.display = 'inline'; document.getElementById('2110.04027v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04027v1-abstract-full" style="display: none;"> The photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by the binding energy of the electron and, if strong laser fields are involved, by the ponderomotive potential in addition. It has therefore been widely taken for granted that for atoms and molecules the photoelectron energy does not depend on the electron&#39;s emission direction but theoretical studies have questioned this since 1990. Here we provide experimental evidence, that the energies of photoelectrons emitted against the light-propagation direction are shifted towards higher values while those electrons that are emitted along the light-propagation direction are shifted to lower values. We attribute the energy shift to a nondipole contribution from the interaction of the moving electrons with the incident photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04027v1-abstract-full').style.display = 'none'; document.getElementById('2110.04027v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13844">arXiv:2107.13844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.13844">pdf</a>, <a href="https://arxiv.org/ps/2107.13844">ps</a>, <a href="https://arxiv.org/format/2107.13844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.273201">10.1103/PhysRevLett.127.273201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-adiabatic Strong Field Ionization of Atomic Hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">Nils Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">Simon Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">Manfred Lein</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13844v3-abstract-short" style="display: inline;"> We present experimental data on the non-adiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical solution of the time-dependent Schr枚dinger equation (TDSE). Experiment and TDSE show four above-threshold ionization (ATI) peaks in the electron&#39;s energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13844v3-abstract-full').style.display = 'inline'; document.getElementById('2107.13844v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13844v3-abstract-full" style="display: none;"> We present experimental data on the non-adiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical solution of the time-dependent Schr枚dinger equation (TDSE). Experiment and TDSE show four above-threshold ionization (ATI) peaks in the electron&#39;s energy spectrum. The most probable emission angle (also known as &#39;attoclock-offset angle&#39; or &#39;streaking angle&#39;) is found to increase with energy, a trend that is opposite to standard predictions based on Coulomb interaction with the ion. We show that this increase of deflection-angle can be explained by a model that includes non-adiabatic corrections of the initial momentum distribution at the tunnel exit and non-adiabatic corrections of the tunnel exit position itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13844v3-abstract-full').style.display = 'none'; document.getElementById('2107.13844v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 273201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.05994">arXiv:2107.05994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.05994">pdf</a>, <a href="https://arxiv.org/format/2107.05994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-26994-2">10.1038/s41467-021-26994-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the photoelectron emission delay in the molecular frame </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Klyssek%2C+K">Kim Klyssek</a>, <a href="/search/physics?searchtype=author&amp;query=Novikovskiy%2C+N+M">Nikolay M. Novikovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">Max Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-P%C3%A9rez%2C+I">Isabel Vela-P茅rez</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">Sven Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Tsitsonis%2C+D">Dimitrios Tsitsonis</a>, <a href="/search/physics?searchtype=author&amp;query=Siebert%2C+J">Juliane Siebert</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">Angelina Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">Niklas Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarz%2C+C">Christian Schwarz</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">Nils Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Kaiser%2C+L">Leon Kaiser</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+V+T">Vernon T. Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">Joshua B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Philipp V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.05994v1-abstract-short" style="display: inline;"> If matter absorbs a photon of sufficient energy it emits an electron. The question of the duration of the emission process has intrigued scientists for decades. With the advent of attosecond metrology, experiments addressing such ultrashort intervals became possible. While these types of studies require attosecond experimental precision, we present here a novel measurement approach that avoids tho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05994v1-abstract-full').style.display = 'inline'; document.getElementById('2107.05994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.05994v1-abstract-full" style="display: none;"> If matter absorbs a photon of sufficient energy it emits an electron. The question of the duration of the emission process has intrigued scientists for decades. With the advent of attosecond metrology, experiments addressing such ultrashort intervals became possible. While these types of studies require attosecond experimental precision, we present here a novel measurement approach that avoids those experimental difficulties. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion&#39;s potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The measured emission times depend drastically on the emission direction and exhibit characteristic changes along the shape resonance of the molecule. Our approach can be routinely extended to other electron orbitals and more complex molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05994v1-abstract-full').style.display = 'none'; document.getElementById('2107.05994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 12, 6657 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14170">arXiv:2106.14170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14170">pdf</a>, <a href="https://arxiv.org/format/2106.14170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.103201">10.1103/PhysRevLett.127.103201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fourfold Differential Photoelectron Circular Dichroism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Novikovskiy%2C+N+M">N. M. Novikovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">C. Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Nalin%2C+G">G. Nalin</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Wiegandt%2C+F">F. Wiegandt</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Knie%2C+A">A. Knie</a>, <a href="/search/physics?searchtype=author&amp;query=Hans%2C+A">A. Hans</a>, <a href="/search/physics?searchtype=author&amp;query=Ltaief%2C+L+B">L. Ben Ltaief</a>, <a href="/search/physics?searchtype=author&amp;query=Ehresmann%2C+A">A. Ehresmann</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+R">R. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuzawa%2C+H">H. Fukuzawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ueda%2C+K">K. Ueda</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14170v1-abstract-short" style="display: inline;"> We report on a joint experimental and theoretical study of photoelectron circular dichroism (PECD) in methyloxirane. By detecting O 1s-photoelectrons in coincidence with fragment ions, we deduce the molecule&#39;s orientation and photoelectron emission direction in the laboratory frame. Thereby, we retrieve a fourfold differential PECD clearly beyond 50%. This strong chiral asymmetry is reproduced by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14170v1-abstract-full').style.display = 'inline'; document.getElementById('2106.14170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14170v1-abstract-full" style="display: none;"> We report on a joint experimental and theoretical study of photoelectron circular dichroism (PECD) in methyloxirane. By detecting O 1s-photoelectrons in coincidence with fragment ions, we deduce the molecule&#39;s orientation and photoelectron emission direction in the laboratory frame. Thereby, we retrieve a fourfold differential PECD clearly beyond 50%. This strong chiral asymmetry is reproduced by ab initio electronic structure calculations. Providing such a pronounced contrast makes PECD of fixed-in-space chiral molecules an even more sensitive tool for chiral recognition in the gas phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14170v1-abstract-full').style.display = 'none'; document.getElementById('2106.14170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 103201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08071">arXiv:2106.08071</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.08071">pdf</a>, <a href="https://arxiv.org/format/2106.08071">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D1CP02462K">10.1039/D1CP02462K <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoelectron circular dichroism of O 1$s$-photoelectrons of uniaxially oriented trifluoromethyloxirane: Energy dependence and sensitivity to molecular configuration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nalin%2C+G">G. Nalin</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Novikovskiy%2C+N+M">N. M. Novikovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">N. Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Khan%2C+A">A. Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Tomar%2C+R">R. Tomar</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">I. Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuzawa%2C+H">H. Fukuzawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ueda%2C+K">K. Ueda</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J">J. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Kargin%2C+D">D. Kargin</a>, <a href="/search/physics?searchtype=author&amp;query=Maurer%2C+M">M. Maurer</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCstner-Wetekam%2C+C">C. K眉stner-Wetekam</a>, <a href="/search/physics?searchtype=author&amp;query=Marder%2C+L">L. Marder</a>, <a href="/search/physics?searchtype=author&amp;query=Viehmann%2C+J">J. Viehmann</a>, <a href="/search/physics?searchtype=author&amp;query=Knie%2C+A">A. Knie</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Ilchen%2C+M">M. Ilchen</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08071v1-abstract-short" style="display: inline;"> The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane(TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincidentelectron and fragment ion detection using Cold Target Recoil Ion Momentum Spectroscopy. The corresponding ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08071v1-abstract-full').style.display = 'inline'; document.getElementById('2106.08071v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08071v1-abstract-full" style="display: none;"> The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane(TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincidentelectron and fragment ion detection using Cold Target Recoil Ion Momentum Spectroscopy. The corresponding calculations were performed by means of the Single Center method within the relaxed-core Hartree-Fock approximation. We concentrate on the energy dependence of the differential PECD of uniaxially oriented TFMOx molecules, which is accessible through the employed coincident detection. We also compare results for differential PECD of TFMOx to those obtained for the equivalent fragmentation channel and similar photoelectron kinetic energy of methyloxirane (MOx), studied in our previous work. Thereby, we investigate the influence of the substitution of the methyl-group by the trifluoromethyl-group at the chiral center on the molecular chiral response. Finally, the presently obtained angular distribution parameters are compared to those available in literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08071v1-abstract-full').style.display = 'none'; document.getElementById('2106.08071v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figs</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys. 23, 17248 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.11897">arXiv:2105.11897</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.11897">pdf</a>, <a href="https://arxiv.org/format/2105.11897">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D2CP05942H">10.1039/D2CP05942H <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Energy Molecular-Frame Photoelectron Angular Distributions: A Molecular Bond-Length Ruler </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vela-Per%C3%A9z%2C+I">Isabel Vela-Per茅z</a>, <a href="/search/physics?searchtype=author&amp;query=Ota%2C+F">Fukiko Ota</a>, <a href="/search/physics?searchtype=author&amp;query=Mhamdi%2C+A">Abir Mhamdi</a>, <a href="/search/physics?searchtype=author&amp;query=Tamura%2C+Y">Yoshiaki Tamura</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">Niklas Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Uerken%2C+S">Safak Uerken</a>, <a href="/search/physics?searchtype=author&amp;query=Nalin%2C+G">Giammarco Nalin</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">Nils Anders</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+D">Daehyun You</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">Max Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">Christian Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">Markus Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Guillemin%2C+R">Renaud Guillemin</a>, <a href="/search/physics?searchtype=author&amp;query=Piancastelli%2C+M+N">Maria Novella Piancastelli</a>, <a href="/search/physics?searchtype=author&amp;query=Simon%2C+M">Marc Simon</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+V+T">Vernon T. Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">Joshua B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Hatada%2C+K">Keisuke Hatada</a>, <a href="/search/physics?searchtype=author&amp;query=Yamazaki%2C+K">Kaoru Yamazaki</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Philipp V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Ueda%2C+K">Kiyoshi Ueda</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.11897v1-abstract-short" style="display: inline;"> We present an experimental and theoretical study of core-level ionization of small hetero- and homo-nuclear molecules employing circularly polarized light and address molecular-frame photoelectron angular distributions in the light&#39;s polarization plane (CP-MFPADs). We find that the main forward-scattering peaks of CP-MFPADs are slightly tilted with respect to the molecular axis. We show that this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11897v1-abstract-full').style.display = 'inline'; document.getElementById('2105.11897v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.11897v1-abstract-full" style="display: none;"> We present an experimental and theoretical study of core-level ionization of small hetero- and homo-nuclear molecules employing circularly polarized light and address molecular-frame photoelectron angular distributions in the light&#39;s polarization plane (CP-MFPADs). We find that the main forward-scattering peaks of CP-MFPADs are slightly tilted with respect to the molecular axis. We show that this tilt angle can be directly connected to the molecular bond length by a simple, universal formula. The extraction of the bond length becomes more accurate as the photoelectron energy is increased. We apply the derived formula to several examples of CP-MFPADs of C 1s and O 1s photoelectrons of CO, which have been measured experimentally or obtained by means of ab initio modeling. The photoelectron kinetic energies range from 70 to 1000~eV and the extracted bond lengths agree well with the known bond length of the CO molecule in its ground state. In addition, we discuss the influence of the back-scattering contribution that is superimposed over the analyzed forward-scattering peak in case of homo-nuclear diatomic molecules as N$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11897v1-abstract-full').style.display = 'none'; document.getElementById('2105.11897v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys., 2023, 25, 13784-13791 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02028">arXiv:2105.02028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.02028">pdf</a>, <a href="https://arxiv.org/format/2105.02028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.193001">10.1103/PhysRevLett.123.193001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon-momentum-induced molecular dynamics in photoionization of N$_2$ at $h谓=40$ keV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">N. Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">I. Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Mletzko%2C+T">T. Mletzko</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">A. Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">N. Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Siebert%2C+J">J. Siebert</a>, <a href="/search/physics?searchtype=author&amp;query=Janssen%2C+R">R. Janssen</a>, <a href="/search/physics?searchtype=author&amp;query=Honkim%C3%A4ki%2C+V">V. Honkim盲ki</a>, <a href="/search/physics?searchtype=author&amp;query=Drnec%2C+J">J. Drnec</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Ph. V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02028v1-abstract-short" style="display: inline;"> We investigate K-shell ionization of N$_2$ at 40 keV photon energy. Using a COLTRIMS reaction microscope we determine the vector momenta of the photoelectron, the Auger electron and both N$^+$ fragments. These fully differential data show that the dissociation process of the N$_2^{2+}$ ion is significantly modified not only by the recoil momentum of the photoelectron, but also by the photon moment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02028v1-abstract-full').style.display = 'inline'; document.getElementById('2105.02028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02028v1-abstract-full" style="display: none;"> We investigate K-shell ionization of N$_2$ at 40 keV photon energy. Using a COLTRIMS reaction microscope we determine the vector momenta of the photoelectron, the Auger electron and both N$^+$ fragments. These fully differential data show that the dissociation process of the N$_2^{2+}$ ion is significantly modified not only by the recoil momentum of the photoelectron, but also by the photon momentum and the momentum of the emitted Auger electron. We find that the recoil energy introduced by the photon and the photoelectron momentum is partitioned with a ratio of approximately 30/70 between the Auger electron and fragment ion kinetic energies, respectively. We also observe that the photon momentum induces an additional rotation of the molecular ion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02028v1-abstract-full').style.display = 'none'; document.getElementById('2105.02028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 193001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.01955">arXiv:2105.01955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.01955">pdf</a>, <a href="https://arxiv.org/format/2105.01955">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.243201">10.1103/PhysRevLett.123.243201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recoil-Induced Asymmetry of Nondipole Molecular Frame Photoelectron Angular Distributions in the Hard X-ray Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">N. Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">I. Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Mletzko%2C+T">T. Mletzko</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">A. Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">N. Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Siebert%2C+J">J. Siebert</a>, <a href="/search/physics?searchtype=author&amp;query=Janssen%2C+R">R. Janssen</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Artemyev%2C+A+N">A. N. Artemyev</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Ph. V. Demekhin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.01955v1-abstract-short" style="display: inline;"> We investigate angular emission distributions of the 1s-photoelectrons of N$_2$ ionized by linearly polarized synchrotron radiation at $h 谓=40$ keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured emission distributions. In addition, we observe an unexpected asymmetry with respect to the polarization direction, which depends on the direction of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01955v1-abstract-full').style.display = 'inline'; document.getElementById('2105.01955v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.01955v1-abstract-full" style="display: none;"> We investigate angular emission distributions of the 1s-photoelectrons of N$_2$ ionized by linearly polarized synchrotron radiation at $h 谓=40$ keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured emission distributions. In addition, we observe an unexpected asymmetry with respect to the polarization direction, which depends on the direction of the molecular fragmentation. In particular, photoelectrons are predominantly emitted in the direction of the forward nitrogen atom. This observation cannot be explained via asymmetries introduced by the initial bound and final continuum electronic states of the oriented molecule. The present simulations assign this asymmetry to a novel nontrivial effect of the recoil imposed to the nuclei by the fast photoelectrons and high-energy photons, which results in a propensity for the ions to break up along the axis of the recoil momentum. The results are of particular importance for the interpretation of future experiments at XFELs operating in the few tens of keV regime, where such nondipole and recoil effects will be essential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01955v1-abstract-full').style.display = 'none'; document.getElementById('2105.01955v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 243201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.03375">arXiv:2101.03375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.03375">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D2CP03090J">10.1039/D2CP03090J <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new route for enantio-sensitive structure determination by photoelectron scattering on molecules in the gas phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Novikovskiy%2C+N+M">N. M. Novikovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">Ch. Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Wiegandt%2C+F">F. Wiegandt</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Nalin%2C+G">G. Nalin</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Knie%2C+A">A. Knie</a>, <a href="/search/physics?searchtype=author&amp;query=Hans%2C+A">A. Hans</a>, <a href="/search/physics?searchtype=author&amp;query=Ltaief%2C+L+B">L. Ben Ltaief</a>, <a href="/search/physics?searchtype=author&amp;query=Ehresmann%2C+A">A. Ehresmann</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+R">R. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuzawa%2C+H">H. Fukuzawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ueda%2C+K">K. Ueda</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.03375v2-abstract-short" style="display: inline;"> X-ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas-phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03375v2-abstract-full').style.display = 'inline'; document.getElementById('2101.03375v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.03375v2-abstract-full" style="display: none;"> X-ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas-phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complementary approach, which allows obtaining insight to the structure, handedness and even detailed geometrical features of molecules in the gas phase. Our approach combines Coulomb explosion imaging, the information that is encoded in the molecular frame diffraction pattern of core-shell photoelectrons and ab initio computations. Using a loop-like analysis scheme we are able to deduce specific molecular coordinates with sensitivity even to the handedness of chiral molecules and the positions of individual atoms, as, e.g., protons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03375v2-abstract-full').style.display = 'none'; document.getElementById('2101.03375v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys. 24, 26458-26465 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08554">arXiv:2011.08554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.08554">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.083201">10.1103/PhysRevLett.126.083201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Differential Photoion Circular Dichroism in Strong-Field Ionization of Chiral Molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">C. Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Braun%2C+H">H. Braun</a>, <a href="/search/physics?searchtype=author&amp;query=Baumert%2C+T">T. Baumert</a>, <a href="/search/physics?searchtype=author&amp;query=Stohner%2C+J">J. Stohner</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Ph. V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08554v1-abstract-short" style="display: inline;"> We investigate the differential ionization probability of chiral molecules in the strong field regime as a function of the helicity of the incident light. To this end, we analyze the fourfold ionization of bromochlorofluoromethane (CHBrClF) with subsequent fragmentation into four charged fragments and different dissociation channels of the singly ionized methyloxirane. We observe a variation of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08554v1-abstract-full').style.display = 'inline'; document.getElementById('2011.08554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08554v1-abstract-full" style="display: none;"> We investigate the differential ionization probability of chiral molecules in the strong field regime as a function of the helicity of the incident light. To this end, we analyze the fourfold ionization of bromochlorofluoromethane (CHBrClF) with subsequent fragmentation into four charged fragments and different dissociation channels of the singly ionized methyloxirane. We observe a variation of the differential ionization probability in a range of several percent. Accordingly, we conclude that the helicity of light is a quantity that should be considered for the theoretical description of the strong field ionization rate of chiral molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08554v1-abstract-full').style.display = 'none'; document.getElementById('2011.08554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> v1 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 083201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07032">arXiv:2011.07032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.07032">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-01081-3">10.1038/s41567-020-01081-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Swirling the weakly bound helium dimer from inside </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+Q">Qingze Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Maschkiwitz%2C+H">Holger Maschkiwitz</a>, <a href="/search/physics?searchtype=author&amp;query=Hahnenbruch%2C+J">J枚rg Hahnenbruch</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">Stefan Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">Anton Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Blume%2C+D">D枚rte Blume</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07032v1-abstract-short" style="display: inline;"> Controlling the interactions between atoms with external fields opened up new branches in physics ranging from strongly correlated atomic systems to ideal Bose and Fermi gases and Efimov physics. Such control usually prepares samples that are stationary or evolve adiabatically in time. On the other hand, in molecular physics external ultrashort laser fields are employed to create anisotropic poten&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07032v1-abstract-full').style.display = 'inline'; document.getElementById('2011.07032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07032v1-abstract-full" style="display: none;"> Controlling the interactions between atoms with external fields opened up new branches in physics ranging from strongly correlated atomic systems to ideal Bose and Fermi gases and Efimov physics. Such control usually prepares samples that are stationary or evolve adiabatically in time. On the other hand, in molecular physics external ultrashort laser fields are employed to create anisotropic potentials that launch ultrafast rotational wave packets and align molecules in free space. Here we combine these two regimes of ultrafast times and low energies. We apply a short laser pulse to the helium dimer, a weakly bound and highly delocalized single bound state quantum system. The laser field locally tunes the interaction between two helium atoms, imparting an angular momentum of $2\hbar$ and evoking an initially confined dissociative wave packet. We record a movie of the density and phase of this wave packet as it evolves from the inside out. At large internuclear distances, where the interaction between the two helium atoms is negligible, the wave packet is essentially free. This work paves the way for future tomography of wave packet dynamics and provides the technique for studying exotic and otherwise hardly accessible quantum systems such as halo and Efimov states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07032v1-abstract-full').style.display = 'none'; document.getElementById('2011.07032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, to be published in Nature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 17, 174-178 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08298">arXiv:2010.08298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.08298">pdf</a>, <a href="https://arxiv.org/format/2010.08298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abb9318">10.1126/science.abb9318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zeptosecond Birth Time Delay in Molecular Photoionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">Sven Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">Nico Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">Andreas Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Kaiser%2C+L">Leon Kaiser</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">Max Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">Miriam Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08298v1-abstract-short" style="display: inline;"> Photoionization is one of the fundamental light-matter interaction processes in which the absorption of a photon launches the escape of an electron. The time scale of the process poses many open questions. Experiments found time delays in the attosecond ($10^{-18}$ s) domain between electron ejection from different orbitals, electronic bands, or in different directions. Here, we demonstrate that a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08298v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08298v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08298v1-abstract-full" style="display: none;"> Photoionization is one of the fundamental light-matter interaction processes in which the absorption of a photon launches the escape of an electron. The time scale of the process poses many open questions. Experiments found time delays in the attosecond ($10^{-18}$ s) domain between electron ejection from different orbitals, electronic bands, or in different directions. Here, we demonstrate that across a molecular orbital the electron is not launched at the same time. The birth time rather depends on the travel time of the photon across the molecule, which is 247 zeptoseconds ($10^{-21}$ s) for the average bond length of H$_2$. Using an electron interferometric technique, we resolve this birth time delay between electron emission from the two centers of the hydrogen molecule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08298v1-abstract-full').style.display = 'none'; document.getElementById('2010.08298v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 16 Oct 2020: Vol. 370, Issue 6514, pp. 339-341 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.07638">arXiv:2008.07638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.07638">pdf</a>, <a href="https://arxiv.org/format/2008.07638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.053202">10.1103/PhysRevLett.126.053202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric Nondipole Effect in Strong-Field Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">S. Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">K. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">M. Lein</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.07638v3-abstract-short" style="display: inline;"> Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magnetic component of the light field is known to shift this distribution forward. Here, we show that this magnetic non-dipole effect is not the only non-d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07638v3-abstract-full').style.display = 'inline'; document.getElementById('2008.07638v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.07638v3-abstract-full" style="display: none;"> Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magnetic component of the light field is known to shift this distribution forward. Here, we show that this magnetic non-dipole effect is not the only non-dipole effect in strong-field ionization. We find that an electric non-dipole effect arises that is due to the position dependence of the electric field and which can be understood in analogy to the Doppler effect. This electric non-dipole effect manifests as an increase of the radius of the donut-shaped photoelectron momentum distribution for forward-directed momenta and as a decrease of this radius for backwards-directed electrons. We present experimental data showing this fingerprint of the electric non-dipole effect and compare our findings with a classical model and quantum calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07638v3-abstract-full').style.display = 'none'; document.getElementById('2008.07638v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 053202 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.09584">arXiv:2005.09584</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.09584">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-21845-6">10.1038/s41467-021-21845-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angular dependence of the Wigner time delay upon tunnel ionization of $H_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">Simon Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">Nils Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">Angelina Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">Sven Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.09584v3-abstract-short" style="display: inline;"> More than 100 years after its discovery and its explanation in the energy domain, the duration of the photoelectric effect is still heavily studied. The emission time of a photoelectron can be quantified by the Wigner time delay. Experiments addressing this time delay for single-photon ionization became feasible during the last 10 years. A missing piece, which has not been studied, so far, is the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09584v3-abstract-full').style.display = 'inline'; document.getElementById('2005.09584v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.09584v3-abstract-full" style="display: none;"> More than 100 years after its discovery and its explanation in the energy domain, the duration of the photoelectric effect is still heavily studied. The emission time of a photoelectron can be quantified by the Wigner time delay. Experiments addressing this time delay for single-photon ionization became feasible during the last 10 years. A missing piece, which has not been studied, so far, is the Wigner time delay for strong-field ionization of molecules. Here we show experimental data on the Wigner time delay for tunnel ionization of $H_{2}$ molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the electrons that are due to spatial shifts of the electron&#39;s birth position after tunneling. This introduces an intuitive perspective towards the Wigner time delay in strong-field ionization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09584v3-abstract-full').style.display = 'none'; document.getElementById('2005.09584v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 12, 1697 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.04148">arXiv:2005.04148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.04148">pdf</a>, <a href="https://arxiv.org/format/2005.04148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.043115">10.1103/PhysRevA.102.043115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sideband Modulation by Sub-Cycle Interference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">K. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.04148v4-abstract-short" style="display: inline;"> We experimentally and theoretically show that the electron energy spectra strongly depend on the relative helicity in highly intense, circularly polarized two-color laser fields which is an unexpected finding. The employed counter-rotating two-color (CRTC) fields and the co-rotating two-color (CoRTC) fields are both a superposition of circularly polarized laser pulses at a central wavelength of 39&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04148v4-abstract-full').style.display = 'inline'; document.getElementById('2005.04148v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.04148v4-abstract-full" style="display: none;"> We experimentally and theoretically show that the electron energy spectra strongly depend on the relative helicity in highly intense, circularly polarized two-color laser fields which is an unexpected finding. The employed counter-rotating two-color (CRTC) fields and the co-rotating two-color (CoRTC) fields are both a superposition of circularly polarized laser pulses at a central wavelength of 390 nm and 780 nm (intensitiy ratio $I_{390}/I_{780}\approx 250$). For the CRTC field, the measured electron energy spectrum is dominated by peaks that are spaced by 3.18 eV (corresponds to the photon energy of light at a wavelength of 390 nm). For the CoRTC field, we observe additional energy peaks (sidebands). Using our semi-classical, trajectory-based models, we conclude that the sideband intensity is modulated by a sub-cycle interference, which sensitively depends on the relative helicity in circularly polarized two-color fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04148v4-abstract-full').style.display = 'none'; document.getElementById('2005.04148v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 043115 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.03956">arXiv:2005.03956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.03956">pdf</a>, <a href="https://arxiv.org/format/2005.03956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033209">10.1103/PhysRevResearch.2.033209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral photoelectron angular distributions from ionization of achiral atomic and molecular species </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">Andreas Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">Sven Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">Isabel Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">Nico Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">Max Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Tsitsonis%2C+D">Dimitrios Tsitsonis</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">Joshua B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Senftleben%2C+A">Arne Senftleben</a>, <a href="/search/physics?searchtype=author&amp;query=Baumert%2C+T">Thomas Baumert</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Philipp V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.03956v1-abstract-short" style="display: inline;"> We show that the combination of two achiral components - atomic or molecular target plus a circularly polarized photon - can yield chirally structured photoelectron angular distributions. For photoionization of CO, the angular distribution of carbon K-shell photoelectrons is chiral when the molecular axis is neither perpendicular nor (anti-)parallel to the light propagation axis. In photo-double-i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.03956v1-abstract-full').style.display = 'inline'; document.getElementById('2005.03956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.03956v1-abstract-full" style="display: none;"> We show that the combination of two achiral components - atomic or molecular target plus a circularly polarized photon - can yield chirally structured photoelectron angular distributions. For photoionization of CO, the angular distribution of carbon K-shell photoelectrons is chiral when the molecular axis is neither perpendicular nor (anti-)parallel to the light propagation axis. In photo-double-ionization of He, the distribution of one electron is chiral, if the other electron is oriented like the molecular axis in the former case and if the electrons are distinguishable by their energy. In both scenarios, the circularly polarized photon defines a plane with a sense of rotation and an additional axis is defined by the CO molecule or one electron. This is sufficient to establish an unambiguous coordinate frame of well-defined handedness. To produce a chirally structured electron angular distribution, such a coordinate frame is necessary, but not sufficient. We show that additional electron-electron interaction or scattering processes are needed to create the chiral angular distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.03956v1-abstract-full').style.display = 'none'; document.getElementById('2005.03956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033209 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.10706">arXiv:2003.10706</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.10706">pdf</a>, <a href="https://arxiv.org/format/2003.10706">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.233201">10.1103/PhysRevLett.124.233201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Photoion Backward Emission in Photoionization of He and N2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">Sven Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">Max Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">Isabel Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Nalin%2C+G">Giammarco Nalin</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">Nils Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">Niklas Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">Andreas Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">Nico Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Siebert%2C+J">Juliane Siebert</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Philipp V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Schoeffler%2C+M+S">Markus S. Schoeffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Doerner%2C+R">Reinhard Doerner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.10706v1-abstract-short" style="display: inline;"> We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV $\leq~E_纬~\leq$ 40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the system&#39;s center of mass. Nevertheless, the mean value&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10706v1-abstract-full').style.display = 'inline'; document.getElementById('2003.10706v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.10706v1-abstract-full" style="display: none;"> We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV $\leq~E_纬~\leq$ 40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the system&#39;s center of mass. Nevertheless, the mean value of the ion momentum distribution along the light propagation direction is backward-directed by $-3/5$ times the photon momentum. These results experimentally confirm a 90 year old prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10706v1-abstract-full').style.display = 'none'; document.getElementById('2003.10706v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 233201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07713">arXiv:2001.07713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.07713">pdf</a>, <a href="https://arxiv.org/format/2001.07713">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033080">10.1103/PhysRevResearch.2.033080 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the Two-Electron Cusp in the Ground States of He and H2 via Quasifree Double Photoionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Serov%2C+V">V. Serov</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">N. Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">A. Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Kaiser%2C+L">L. Kaiser</a>, <a href="/search/physics?searchtype=author&amp;query=Bray%2C+A+W">A. W. Bray</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Kheifets%2C+A+S">A. S. Kheifets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07713v2-abstract-short" style="display: inline;"> We report on kinematically complete measurements and ab initio non-perturbative calculations of double ionization of He and H2 by a single 800 eV circularly polarized photon. We confirm the quasifree mechanism of photoionization for H2 and show how it originates from the two-electron cusp in the ground state of a two-electron target. Our approach establishes a new method for mapping electrons rela&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07713v2-abstract-full').style.display = 'inline'; document.getElementById('2001.07713v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07713v2-abstract-full" style="display: none;"> We report on kinematically complete measurements and ab initio non-perturbative calculations of double ionization of He and H2 by a single 800 eV circularly polarized photon. We confirm the quasifree mechanism of photoionization for H2 and show how it originates from the two-electron cusp in the ground state of a two-electron target. Our approach establishes a new method for mapping electrons relative to each other and provides valuable insight into photoionization beyond the electric-dipole approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07713v2-abstract-full').style.display = 'none'; document.getElementById('2001.07713v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033080 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04780">arXiv:1911.04780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.04780">pdf</a>, <a href="https://arxiv.org/format/1911.04780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0880-2">10.1038/s41567-020-0880-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinematically complete experimental study of Compton scattering at helium atoms near the ionization threshold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">Max Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">Sven Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">Isabel Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">Simon Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Eicke%2C+N">Nicolas Eicke</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Houamer%2C+S">Salim Houamer</a>, <a href="/search/physics?searchtype=author&amp;query=Chuluunbaatar%2C+O">Ochbadrakh Chuluunbaatar</a>, <a href="/search/physics?searchtype=author&amp;query=Popov%2C+Y+V">Yuri V. Popov</a>, <a href="/search/physics?searchtype=author&amp;query=Volobuev%2C+I+P">Igor P. Volobuev</a>, <a href="/search/physics?searchtype=author&amp;query=Bagschik%2C+K">Kai Bagschik</a>, <a href="/search/physics?searchtype=author&amp;query=Piancastelli%2C+M+N">Maria Novella Piancastelli</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">Manfred Lein</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04780v2-abstract-short" style="display: inline;"> Compton scattering is one of the fundamental interaction processes of light with matter. Already upon its discovery [1] it was described as a billiard-type collision of a photon kicking a quasi-free electron. With decreasing photon energy, the maximum possible momentum transfer becomes so small that the corresponding energy falls below the binding energy of the electron. Then ionization by Compton&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04780v2-abstract-full').style.display = 'inline'; document.getElementById('1911.04780v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04780v2-abstract-full" style="display: none;"> Compton scattering is one of the fundamental interaction processes of light with matter. Already upon its discovery [1] it was described as a billiard-type collision of a photon kicking a quasi-free electron. With decreasing photon energy, the maximum possible momentum transfer becomes so small that the corresponding energy falls below the binding energy of the electron. Then ionization by Compton scattering becomes an intriguing quantum phenomenon. Here we report a kinematically complete experiment on Compton scattering at helium atoms below that threshold. We determine the momentum correlations of the electron, the recoiling ion, and the scattered photon in a coincidence experiment finding that electrons are not only emitted in the direction of the momentum transfer, but that there is a second peak of ejection to the backward direction. This finding links Compton scattering to processes as ionization by ultrashort optical pulses [2], electron impact ionization [3,4], ion impact ionization [5,6], and neutron scattering [7] where similar momentum patterns occur. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04780v2-abstract-full').style.display = 'none'; document.getElementById('1911.04780v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 16, 756-760 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.01294">arXiv:1911.01294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.01294">pdf</a>, <a href="https://arxiv.org/ps/1911.01294">ps</a>, <a href="https://arxiv.org/format/1911.01294">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.023409">10.1103/PhysRevA.101.023409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orientation Dependent Dissociative Ionization of H$_2$ in Strong Elliptic Laser Fields: Modification of the release time through molecular orientation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khan%2C+A">Arnab Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.01294v2-abstract-short" style="display: inline;"> We investigate the photoelectron angular emission distributions obtained by strong field dissociative ionization of H$_2$ using cold target recoil ion momentum spectroscopy. In case of employing laser light with an ellipticity close to 0.9 and an intensity of 1.0 $\times$ 10$^{14}$ W/cm$^2$, we find that the most probable release-time of the electron does not generally coincide with the time when&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01294v2-abstract-full').style.display = 'inline'; document.getElementById('1911.01294v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.01294v2-abstract-full" style="display: none;"> We investigate the photoelectron angular emission distributions obtained by strong field dissociative ionization of H$_2$ using cold target recoil ion momentum spectroscopy. In case of employing laser light with an ellipticity close to 0.9 and an intensity of 1.0 $\times$ 10$^{14}$ W/cm$^2$, we find that the most probable release-time of the electron does not generally coincide with the time when the laser field maximizes. The release-time is affected by the molecular orientation. In addition, we observe that the width of the release-time distribution depends on molecular orientation. We attribute this observation to the two-center-interference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01294v2-abstract-full').style.display = 'none'; document.getElementById('1911.01294v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 101, 023409 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.03860">arXiv:1908.03860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.03860">pdf</a>, <a href="https://arxiv.org/format/1908.03860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.013109">10.1103/PhysRevA.102.013109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Holographic detection of parity in atomic and molecular orbitals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kang%2C+H">HuiPeng Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+X">XuanYang Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Schoffler%2C+M">Markus Schoffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+X">XueBin Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Dorner%2C+R">Reinhard Dorner</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">Carla Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.03860v2-abstract-short" style="display: inline;"> We introduce a novel and concise methodology to detect the parity of atomic and molecular orbitals based on photoelectron holography, which is more general than the existing schemes. It fully accounts for the Coulomb distortions of electron trajectories, does not require sculpted fields to retrieve phase information and, in principle, is applicable to a broad range of electron momenta. By comparat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03860v2-abstract-full').style.display = 'inline'; document.getElementById('1908.03860v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.03860v2-abstract-full" style="display: none;"> We introduce a novel and concise methodology to detect the parity of atomic and molecular orbitals based on photoelectron holography, which is more general than the existing schemes. It fully accounts for the Coulomb distortions of electron trajectories, does not require sculpted fields to retrieve phase information and, in principle, is applicable to a broad range of electron momenta. By comparatively measuring the differential photoelectron spectra from strong-field ionization of N$_{2}$ molecules and their companion atoms of Ar, some photoelectron holography patterns are found to be dephased for both targets. This is well reproduced by the full-dimensional time-dependent Schr枚dinger equation and the Coulomb quantum-orbit strong-field approximation (CQSFA) simulation. Using the CQSFA, we trace back our observations to different parities of the 3$p$ orbital of Ar and the highest-occupied molecular orbital of N$_{2}$ via interfering Coulomb-distorted quantum orbits carrying different initial phases. This method could in principle be used to extract bound-state phases from any holographic structure, with a wide range of potential applications in recollision physics and spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03860v2-abstract-full').style.display = 'none'; document.getElementById('1908.03860v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 013109 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.07278">arXiv:1902.07278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.07278">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-019-0653-y">10.1038/s41567-019-0653-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic fields alter tunneling in strong-field ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">S. Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">M. Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Sann%2C+H">H. Sann</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">K. Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Hoehl%2C+J">J. Hoehl</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">A. Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">M. Lein</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.07278v1-abstract-short" style="display: inline;"> When a strong laser pulse induces the ionization of an atom, momentum conservation dictates that the absorbed photons transfer their momentum $p_纬=E_纬/c$ to the electron and its parent ion. Even after 30 years of studying strong-field ionization, the sharing of the photon momentum between the two particles and its underlying mechanism are still under debate in theory. Corresponding experiments are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07278v1-abstract-full').style.display = 'inline'; document.getElementById('1902.07278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.07278v1-abstract-full" style="display: none;"> When a strong laser pulse induces the ionization of an atom, momentum conservation dictates that the absorbed photons transfer their momentum $p_纬=E_纬/c$ to the electron and its parent ion. Even after 30 years of studying strong-field ionization, the sharing of the photon momentum between the two particles and its underlying mechanism are still under debate in theory. Corresponding experiments are very challenging due to the extremely small photon momentum ($~10^{-4}$ a.u.) and their precision has been too limited, so far, to ultimately resolve the debate. Here, by utilizing a novel experimental approach of two counter-propagating laser pulses, we present a detailed study on the effects of the photon momentum in strong-field ionization. The high precision and self-referencing of the method allows to unambiguously demonstrate the action of the light&#39;s magnetic field on the electron while it is under the tunnel barrier, confirming theoretical predictions, disproving others. Our results deepen the understanding of, for example, molecular imaging and time-resolved photoelectron holography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07278v1-abstract-full').style.display = 'none'; document.getElementById('1902.07278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.02042">arXiv:1902.02042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.02042">pdf</a>, <a href="https://arxiv.org/format/1902.02042">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpca.9b01822">10.1021/acs.jpca.9b01822 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State-dependent fragmentation of protonated uracil and uridine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">Martin Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Ozga%2C+C">Christian Ozga</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCstner-Wetekam%2C+C">Catmarna K眉stner-Wetekam</a>, <a href="/search/physics?searchtype=author&amp;query=Rei%C3%9F%2C+P">Philipp Rei脽</a>, <a href="/search/physics?searchtype=author&amp;query=Knie%2C+A">Andr茅 Knie</a>, <a href="/search/physics?searchtype=author&amp;query=Ehresmann%2C+A">Arno Ehresmann</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">Alexandre Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Nahon%2C+L">Laurent Nahon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.02042v1-abstract-short" style="display: inline;"> Tandem mass spectroscopy ($\textrm{MS}^2$) combined with single photon excitation in the VUV range (photon energy 4.5-9 eV) was performed on protonated uracil ($\textrm{UraH}^{+}$) and uridine ($\textrm{UrdH}^{+}$). The precursor ions with $m/z\;113$ and $m/z\;245$ respectively were produced by an Electrospray Ionization source (ESI) and accumulated inside a quadrupole ion trap mass spectrometer.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02042v1-abstract-full').style.display = 'inline'; document.getElementById('1902.02042v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.02042v1-abstract-full" style="display: none;"> Tandem mass spectroscopy ($\textrm{MS}^2$) combined with single photon excitation in the VUV range (photon energy 4.5-9 eV) was performed on protonated uracil ($\textrm{UraH}^{+}$) and uridine ($\textrm{UrdH}^{+}$). The precursor ions with $m/z\;113$ and $m/z\;245$ respectively were produced by an Electrospray Ionization source (ESI) and accumulated inside a quadrupole ion trap mass spectrometer. After irradiation with tunable synchrotron radiation, product ion mass spectra were obtained. Fragment yields as a function of exciting energy show several maxima that can be attributed to the photo-excitation into different electronic states. For uracil, vertically excited states were calculated using the equation-of-motion coupled cluster approach (EOM-CCSD) and compared to the observed maxima. This allows to establish correlations between electronic states and resulting fragment masses and can thus help to disentangle the complex deexcitation and fragmentation pathways of nucleic acid building blocks above the first electronically excited state. Photofragmentation of the nucleoside uridine shows a significantly lower variety of fragments, indicating stabilization of the nucleobase by the attached sugar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02042v1-abstract-full').style.display = 'none'; document.getElementById('1902.02042v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">author version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.07415">arXiv:1810.07415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.07415">pdf</a>, <a href="https://arxiv.org/format/1810.07415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.243002">10.1103/PhysRevLett.121.243002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Breakdown of the spectator concept in low-electron-energy resonant decay processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mhamdi%2C+A">A. Mhamdi</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Aslit%C3%BCrk%2C+D">D. Aslit眉rk</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">N. Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">I. Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Siebert%2C+J">J. Siebert</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Khan%2C+A">A. Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Ph. V. Demekhin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.07415v1-abstract-short" style="display: inline;"> We suggest that low energy electrons, released by resonant decay processes, experience substantial scattering on the electron density of excited electrons, which remain a spectator during the decay. As a result, the angular emission distribution is altered significantly. This effect is expected to be a common feature of low energy secondary electron emission. In this letter, we exemplify our idea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07415v1-abstract-full').style.display = 'inline'; document.getElementById('1810.07415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.07415v1-abstract-full" style="display: none;"> We suggest that low energy electrons, released by resonant decay processes, experience substantial scattering on the electron density of excited electrons, which remain a spectator during the decay. As a result, the angular emission distribution is altered significantly. This effect is expected to be a common feature of low energy secondary electron emission. In this letter, we exemplify our idea by examining the spectator resonant interatomic Coulombic decay (sRICD) of Ne dimers. Our theoretical predictions are confirmed by a corresponding coincidence experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.07415v1-abstract-full').style.display = 'none'; document.getElementById('1810.07415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages two figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 243002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.03516">arXiv:1808.03516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.03516">pdf</a>, <a href="https://arxiv.org/format/1808.03516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.043405">10.1103/PhysRevA.98.043405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiphoton Double Ionization of Helium at 394nm - a Fully Differential Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">K. Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Sann%2C+H">H. Sann</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">M. Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+H">H. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.03516v1-abstract-short" style="display: inline;"> We report on a kinematically complete experiment on strong field double ionization of helium using laser pulses with a wavelength of 394\,nm and intensities of $3.5-5.7\times10^{14}\,W/cm^2$. Our experiment reaches the most complete level of detail which previously has only been reached for single photon double ionization. We give an overview over the observables on many levels of integration, sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03516v1-abstract-full').style.display = 'inline'; document.getElementById('1808.03516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.03516v1-abstract-full" style="display: none;"> We report on a kinematically complete experiment on strong field double ionization of helium using laser pulses with a wavelength of 394\,nm and intensities of $3.5-5.7\times10^{14}\,W/cm^2$. Our experiment reaches the most complete level of detail which previously has only been reached for single photon double ionization. We give an overview over the observables on many levels of integration, starting from the ratio of double to single ionization, the individual electron and ion momentum distributions over joint momentum and energy distributions to fully differential cross sections showing the correlated angular momentum distributions. Within the studied intensity range the ratio of double to single ionization changes from $2\times 10^{-4}$ to $1.5\times 10^{-3}$. We find the momentum distributions of the $\rm{He}^{2+}$ ions and the correlated two electron momentum distributions to vary substantially. Only at the highest intensity both electrons are emitted to the same direction while at the lowest intensity back-to-back emission dominates. The joint energy distribution of the electrons shows discrete structures from the energy quantization of the photon field which allows us to count the number of absorbed photons and thus access the parity of the final state. We find the energy of the individual electron to show a peak structure indicating a quantized sharing of the overall energy absorbed from the field. The joint angular momentum distributions of the two electrons show a highly directed emission of both electrons along the polarization axis as well as clear imprints of electron repulsion. They strongly change with the energy sharing between the electrons. The aspect of selection rules in double ionization which are also visible in the presented dataset has been subject to a preceding publication [1]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03516v1-abstract-full').style.display = 'none'; document.getElementById('1808.03516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 13 figures, submitted to PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 043405 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.06276">arXiv:1806.06276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.06276">pdf</a>, <a href="https://arxiv.org/format/1806.06276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.050701">10.1103/PhysRevA.98.050701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frustrated Coulomb explosion of small helium clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kazandjian%2C+S">S. Kazandjian</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Wiegandt%2C+F">F. Wiegandt</a>, <a href="/search/physics?searchtype=author&amp;query=Aslit%C3%BCrk%2C+D">D. Aslit眉rk</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Nalin%2C+G">G. Nalin</a>, <a href="/search/physics?searchtype=author&amp;query=Pitters%2C+D">D. Pitters</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%A9rez%2C+I+V">I. Vela P茅rez</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Schiwietz%2C+G">G. Schiwietz</a>, <a href="/search/physics?searchtype=author&amp;query=Griffin%2C+B">B. Griffin</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">M. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Miteva%2C+T">T. Miteva</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sisourat%2C+N">N. Sisourat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.06276v2-abstract-short" style="display: inline;"> Almost ten years ago, energetic neutral hydrogen atoms were detected after a strong-field double ionization of H$_2$. This process, called &#39;frustrated tunneling ionization&#39;, occurs when an ionized electron is recaptured after being driven back to its parent ion by the electric field of a femtosecond laser. In the present study we demonstrate that a related process naturally occurs in clusters with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.06276v2-abstract-full').style.display = 'inline'; document.getElementById('1806.06276v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.06276v2-abstract-full" style="display: none;"> Almost ten years ago, energetic neutral hydrogen atoms were detected after a strong-field double ionization of H$_2$. This process, called &#39;frustrated tunneling ionization&#39;, occurs when an ionized electron is recaptured after being driven back to its parent ion by the electric field of a femtosecond laser. In the present study we demonstrate that a related process naturally occurs in clusters without the need of an external field: we observe a charge hopping that occurs during a Coulomb explosion of a small helium cluster, which leads to an energetic neutral helium atom. This claim is supported by theoretical evidence. As an analog to &#39;frustrated tunneling ionization&#39;, we term this process &#39;frustrated Coulomb explosion&#39;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.06276v2-abstract-full').style.display = 'none'; document.getElementById('1806.06276v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 050701 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.05214">arXiv:1806.05214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.05214">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.100.022707">10.1103/PhysRevA.100.022707 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of interatomic Coulombic decay and subsequent ion-atom scattering in helium nanodroplets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wiegandt%2C+F">F. Wiegandt</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">K. Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Metz%2C+D">D. Metz</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Maalouf%2C+E+J+a">E. Jabbour al Maalouf</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">C. Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Wechselberger%2C+N">N. Wechselberger</a>, <a href="/search/physics?searchtype=author&amp;query=Miteva%2C+T">T. Miteva</a>, <a href="/search/physics?searchtype=author&amp;query=Kazandjian%2C+S">S. Kazandjian</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">M. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Sisourat%2C+N">N. Sisourat</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.05214v4-abstract-short" style="display: inline;"> We report on the experimental observation of interatomic Coulombic decay (ICD) in pure $^4$He nanoclusters of mean sizes between $N \approx$ 5000 and 30000 and the subsequent scattering of energetic He$^+$ fragments inside the neutral cluster by using cold target recoil ion momentum spectroscopy. ICD is induced in He clusters by using vacuum ultraviolet light of $h谓=$ 67 eV from the BESSY II synch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05214v4-abstract-full').style.display = 'inline'; document.getElementById('1806.05214v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.05214v4-abstract-full" style="display: none;"> We report on the experimental observation of interatomic Coulombic decay (ICD) in pure $^4$He nanoclusters of mean sizes between $N \approx$ 5000 and 30000 and the subsequent scattering of energetic He$^+$ fragments inside the neutral cluster by using cold target recoil ion momentum spectroscopy. ICD is induced in He clusters by using vacuum ultraviolet light of $h谓=$ 67 eV from the BESSY II synchrotron. The electronic decay creates two neighboring ions in the cluster at a well-defined distance. The measured fragment energies and angular correlations show that a main energy loss mechanism of these ions inside the cluster is a single hard binary collision with one atom of the cluster. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05214v4-abstract-full').style.display = 'none'; document.getElementById('1806.05214v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 100, 022707 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05898">arXiv:1805.05898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.05898">pdf</a>, <a href="https://arxiv.org/ps/1805.05898">ps</a>, <a href="https://arxiv.org/format/1805.05898">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.163202">10.1103/PhysRevLett.121.163202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Experimental Access to the Nonadiabatic Initial Momentum Offset upon Tunnel Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Eicke%2C+N">N. Eicke</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">N. Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">A. Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">M. Lein</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05898v2-abstract-short" style="display: inline;"> We report on the non-adiabatic offset of the initial electron momentum distribution in the plane of polarization upon single ionization of argon by strong field tunneling and show how to experimentally control the degree of non-adiabaticity. Two-color counter- and co-rotating fields (390 and 780 nm) are compared to show that the non-adiabatic offset strongly depends on the temporal evolution of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05898v2-abstract-full').style.display = 'inline'; document.getElementById('1805.05898v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05898v2-abstract-full" style="display: none;"> We report on the non-adiabatic offset of the initial electron momentum distribution in the plane of polarization upon single ionization of argon by strong field tunneling and show how to experimentally control the degree of non-adiabaticity. Two-color counter- and co-rotating fields (390 and 780 nm) are compared to show that the non-adiabatic offset strongly depends on the temporal evolution of the laser electric field. We introduce a simple method for the direct access to the non-adiabatic offset using two-color counter- and co-rotating fields. Further, for a single-color circularly polarized field at 780 nm we show that the radius of the experimentally observed donut-like distribution increases for increasing momentum in the light propagation direction. Our observed initial momentum offsets are well reproduced by the strong-field approximation (SFA). A mechanistic picture is introduced that links the measured non-adiabatic offset to the magnetic quantum number of virtually populated intermediate states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05898v2-abstract-full').style.display = 'none'; document.getElementById('1805.05898v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 163202 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.04685">arXiv:1804.04685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.04685">pdf</a>, <a href="https://arxiv.org/ps/1804.04685">ps</a>, <a href="https://arxiv.org/format/1804.04685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.223204">10.1103/PhysRevLett.120.223204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kang%2C+H">H. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">K. Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+X">X. Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Czasch%2C+A">A. Czasch</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Schoffler%2C+M">M. Schoffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Dorner%2C+R">R. Dorner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.04685v1-abstract-short" style="display: inline;"> We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.04685v1-abstract-full').style.display = 'inline'; document.getElementById('1804.04685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.04685v1-abstract-full" style="display: none;"> We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision process. Our work reveals a general physical picture for recollision-impact double ionization with elliptical polarization, and demonstrates the possibility of ultrafast control of the recollision dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.04685v1-abstract-full').style.display = 'none'; document.getElementById('1804.04685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 223204 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.10841">arXiv:1803.10841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.10841">pdf</a>, <a href="https://arxiv.org/ps/1803.10841">ps</a>, <a href="https://arxiv.org/format/1803.10841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.173003">10.1103/PhysRevLett.121.173003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separating Dipole and Quadrupole Contributions to Single-Photon Double Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Bray%2C+A+W">A. W. Bray</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Metz%2C+D">D. Metz</a>, <a href="/search/physics?searchtype=author&amp;query=Klumpp%2C+S">S. Klumpp</a>, <a href="/search/physics?searchtype=author&amp;query=Viefhaus%2C+J">J. Viefhaus</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Kheifets%2C+A+S">A. S. Kheifets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.10841v2-abstract-short" style="display: inline;"> We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10841v2-abstract-full').style.display = 'inline'; document.getElementById('1803.10841v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.10841v2-abstract-full" style="display: none;"> We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show the separation of dipole and quadrupole contributions to photo-double-ionization and provide new insight into the nature of the quasifree mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10841v2-abstract-full').style.display = 'none'; document.getElementById('1803.10841v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages, 3 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 173003 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.08380">arXiv:1803.08380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.08380">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5022564">10.1063/1.5022564 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absolute ion detection efficiencies of microchannel plates and funnel microchannel plates for multi-coincidence detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Trojanowskaja%2C+D">D. Trojanowskaja</a>, <a href="/search/physics?searchtype=author&amp;query=Gatzke%2C+J">J. Gatzke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Stohner%2C+J">J. Stohner</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+R">R. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Czasch%2C+A">A. Czasch</a>, <a href="/search/physics?searchtype=author&amp;query=Jagutzki%2C+O">O. Jagutzki</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.08380v1-abstract-short" style="display: inline;"> Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency e is as high as possible, as the overall efficiency scales with e over n, i.e. the power of the number of detected particles. Here we present measured abs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08380v1-abstract-full').style.display = 'inline'; document.getElementById('1803.08380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.08380v1-abstract-full" style="display: none;"> Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency e is as high as possible, as the overall efficiency scales with e over n, i.e. the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced &#34;funnel MCPs&#34;. Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The &#34;funnel&#34; MCPs exhibit an efficiency of approx. 90 percent, gaining a factor of 24 (as compared to &#34;normal&#34; MCPs) in case of a five-fold ion coincidence detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08380v1-abstract-full').style.display = 'none'; document.getElementById('1803.08380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figues, submitted to Review of Scientific Instruments</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 89, 045112 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.07355">arXiv:1803.07355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.07355">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-07882-8">10.1038/s41467-018-07882-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double-slit photoelectron interference in strong-field ionization of the neon dimer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Eicke%2C+N">Nicolas Eicke</a>, <a href="/search/physics?searchtype=author&amp;query=Huber%2C+P">Pia Huber</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%B6hler%2C+J">Jonas K枚hler</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">Stefan Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Voigtsberger%2C+J">J枚rg Voigtsberger</a>, <a href="/search/physics?searchtype=author&amp;query=Schlott%2C+N">Nikolai Schlott</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">Kevin Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Sann%2C+H">Hendrik Sann</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">Anton Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">Manfred Lein</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.07355v1-abstract-short" style="display: inline;"> Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. In this letter, we report on the observation of two-ce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07355v1-abstract-full').style.display = 'inline'; document.getElementById('1803.07355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.07355v1-abstract-full" style="display: none;"> Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. In this letter, we report on the observation of two-center interference in the molecular frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which were measured in coincidence with electrons, allowed choosing the symmetry of the continuum electronic wave function, leading to observation of both, gerade and ungerade, types of interference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07355v1-abstract-full').style.display = 'none'; document.getElementById('1803.07355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 10, 1 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.06630">arXiv:1802.06630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.06630">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0080-5">10.1038/s41567-018-0080-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Preparation and Detection of Ring Currents in Single Atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">Martin Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Schlott%2C+N">Nikolai Schlott</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">Kevin Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kunlong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Barth%2C+I">Ingo Barth</a>, <a href="/search/physics?searchtype=author&amp;query=Kaushal%2C+J">Jivesh Kaushal</a>, <a href="/search/physics?searchtype=author&amp;query=Morales%2C+F">Felipe Morales</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+M">Misha Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Smirnova%2C+O">Olga Smirnova</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.06630v1-abstract-short" style="display: inline;"> Quantum particles can penetrate potential barriers by tunneling (1). If that barrier is rotating, the tunneling process is modified (2,3). This is typical for electrons in atoms, molecules or solids exposed to strong circularly polarized laser pulses (4,5). Here we measure how the transmission probability through a rotating tunnel depends on the sign of the magnetic quantum number m of the electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06630v1-abstract-full').style.display = 'inline'; document.getElementById('1802.06630v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.06630v1-abstract-full" style="display: none;"> Quantum particles can penetrate potential barriers by tunneling (1). If that barrier is rotating, the tunneling process is modified (2,3). This is typical for electrons in atoms, molecules or solids exposed to strong circularly polarized laser pulses (4,5). Here we measure how the transmission probability through a rotating tunnel depends on the sign of the magnetic quantum number m of the electron and thus on the initial sense of rotation of its quantum phase. We further show that the electron keeps part of that rotary motion on its way through the tunnel by measuring m-dependent modification of the electron emission pattern. These findings are relevant for attosecond metrology as well as for interpretation of strong field electron emission from atoms and molecules (6-13) and directly demonstrates the creation of ring currents in bound states of ions with attosecond precision. In solids, this could open a way to inducing and controlling ring-current related topological phenomena (14). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06630v1-abstract-full').style.display = 'none'; document.getElementById('1802.06630v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures, Nature Physics accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Phys 14, 701-704 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02787">arXiv:1802.02787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02787">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.083002">10.1103/PhysRevLett.121.083002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of the He-He, Ne-Ne, Ar-Ar, and H$_{2}$ interaction potential by wave function imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Voigtsberger%2C+J">J. Voigtsberger</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">A. Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Czasch%2C+A">A. Czasch</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+T">T. Weber</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">M. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02787v1-abstract-short" style="display: inline;"> We report on a direct method to measure the internuclear potential energy curve of diatomic systems. A COLTRIMS reaction microscope was used to measure the squares of the vibrational wave functions of H$_{2}$, He$_{2}$, Ne$_{2}$, and Ar$_{2}$. The Schr枚dinger equation relates the curvature of the wave function to the potential V(R) and therefore offers a simple but elegant way to extract the shape&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02787v1-abstract-full').style.display = 'inline'; document.getElementById('1802.02787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02787v1-abstract-full" style="display: none;"> We report on a direct method to measure the internuclear potential energy curve of diatomic systems. A COLTRIMS reaction microscope was used to measure the squares of the vibrational wave functions of H$_{2}$, He$_{2}$, Ne$_{2}$, and Ar$_{2}$. The Schr枚dinger equation relates the curvature of the wave function to the potential V(R) and therefore offers a simple but elegant way to extract the shape of the potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02787v1-abstract-full').style.display = 'none'; document.getElementById('1802.02787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages with 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 083002 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jahnke%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jahnke%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jahnke%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10