CINXE.COM

Search results for: Sharon Gray

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sharon Gray</title> <meta name="description" content="Search results for: Sharon Gray"> <meta name="keywords" content="Sharon Gray"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sharon Gray" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sharon Gray"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 232</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sharon Gray</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> A Simple Recursive Framework to Generate Gray Codes for Weak Orders in Constant Amortized Time </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marsden%20Jacques">Marsden Jacques</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20Wong"> Dennis Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A weak order is a way to rank n objects where ties are allowed. In this talk, we present a recursive framework to generate Gray codes for weak orders. We then describe a simple algorithm based on the framework that generates 2-Gray codes for weak orders in constant amortized time per string. This framework can easily be modified to generate other Gray codes for weak orders. We provide an example on using the framework to generate the first Shift Gray code for weak orders, also in constant amortized time, where consecutive strings differ by a shift or a symbol change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weak%20order" title="weak order">weak order</a>, <a href="https://publications.waset.org/abstracts/search?q=Cayley%20permutation" title=" Cayley permutation"> Cayley permutation</a>, <a href="https://publications.waset.org/abstracts/search?q=Gray%20code" title=" Gray code"> Gray code</a>, <a href="https://publications.waset.org/abstracts/search?q=shift%20Gray%20code" title=" shift Gray code"> shift Gray code</a> </p> <a href="https://publications.waset.org/abstracts/118752/a-simple-recursive-framework-to-generate-gray-codes-for-weak-orders-in-constant-amortized-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Cherifi">Mohammed Cherifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Benbrik"> Abderrahmane Benbrik</a>, <a href="https://publications.waset.org/abstracts/search?q=Siham%20Laouar-Meftah"> Siham Laouar-Meftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Lemonnier"> Denis Lemonnier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=opposed%20mixed%20convection" title="opposed mixed convection">opposed mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=non-gray-gas%20radiation" title=" non-gray-gas radiation"> non-gray-gas radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=two-sided%20lid-driven%20cavity" title=" two-sided lid-driven cavity"> two-sided lid-driven cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20ordinate%20method" title=" discrete ordinate method"> discrete ordinate method</a>, <a href="https://publications.waset.org/abstracts/search?q=SLW%20model" title=" SLW model"> SLW model</a> </p> <a href="https://publications.waset.org/abstracts/45398/interaction-of-non-gray-gas-radiation-with-opposed-mixed-convection-in-a-lid-driven-square-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Skew Cyclic Codes over Fq+uFq+…+uk-1Fq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Li">Jing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuli%20Li"> Xiuli Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a special class of linear codes, called skew cyclic codes, over the ring <em>R</em>= <em>F<sub>q</sub></em>+<em>uF<sub>q</sub></em>+&hellip;+<em>u<sup>k-</sup></em><sup>1</sup><em>F<sub>q</sub></em>, where <em>q</em> is a prime power. A Gray map <em>ɸ</em> from <em>R</em> to <em>F<sub>q</sub></em> and a Gray map <em>ɸ&#39;</em> from <em>R<sup>n</sup></em> to <em>F<sup>n</sup><sub>q</sub></em> are defined, as well as an automorphism <em>&Theta;</em> over <em>R</em>. It is proved that the images of skew cyclic codes over <em>R</em> under map <em>ɸ&#39;</em> and <em>&Theta;</em> are cyclic codes over <em>F<sub>q</sub></em>, and they still keep the dual relation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skew%20cyclic%20code" title="skew cyclic code">skew cyclic code</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20map" title=" gray map"> gray map</a>, <a href="https://publications.waset.org/abstracts/search?q=automorphism" title=" automorphism"> automorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20code" title=" cyclic code"> cyclic code</a> </p> <a href="https://publications.waset.org/abstracts/70707/skew-cyclic-codes-over-fqufquk-1fq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Optimization of Commercial Gray Space along the Street from the Perspective of Vitality Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengjiao%20Hu">Mengjiao Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, China's consumption pattern is entering the "experience era"; people's consumption behavior is no longer simply "buy, buy, buy" but the transition from "consumption in space" to "consumption of space". The street is a basic public product and an important public space in the city, and commerce along the street is an important space for people to consume in the "experience era". Therefore, in this way, it is particularly important to create the vitality of the gray space along the street. From the perspective of vitality construction, this paper takes Sha Zheng Street in Chongqing as the empirical object, combined with the theoretical knowledge of behavioral architecture, and based on the current situation of the commercial gray space along Sha Zheng Street, this paper explores the influence factors and the constraints behind the spatial vitality and then puts forward a general strategy to improve the spatial vitality of the commercial gray space along the street. The author hopes that through the exploration of the vitality of commercial gray space along the street, environmental design can be introduced into the integrated design vision of the urban public environment, and the urban designers can be inspired to create a street environment with a living atmosphere with a small start. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vitality%20creation" title="vitality creation">vitality creation</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20space" title=" gray space"> gray space</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20commerce" title=" street commerce"> street commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=sha%20zheng%20street" title=" sha zheng street"> sha zheng street</a> </p> <a href="https://publications.waset.org/abstracts/170660/optimization-of-commercial-gray-space-along-the-street-from-the-perspective-of-vitality-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Assessing Relationships between Glandularity and Gray Level by Using Breast Phantoms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun-Xuan%20Tang">Yun-Xuan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Yuan%20Liu"> Pei-Yuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun-Mu%20Lu"> Kun-Mu Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Tsung%20Tseng"> Min-Tsung Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Kuang%20Chen"> Liang-Kuang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuh-Feng%20Tsai"> Yuh-Feng Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Wen%20Lee"> Ching-Wen Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Wu"> Jay Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is predominant of malignant tumors in females. The increase in the glandular density increases the risk of breast cancer. BI-RADS is a frequently used density indicator in mammography; however, it significantly overestimates the glandularity. Therefore, it is very important to accurately and quantitatively assess the glandularity by mammography. In this study, 20%, 30% and 50% glandularity phantoms were exposed using a mammography machine at 28, 30 and 31 kVp, and 30, 55, 80 and 105 mAs, respectively. The regions of interest (ROIs) were drawn to assess the gray level. The relationship between the glandularity and gray level under various compression thicknesses, kVp, and mAs was established by the multivariable linear regression. A phantom verification was performed with automatic exposure control (AEC). The regression equation was obtained with an R-square value of 0.928. The average gray levels of the verification phantom were 8708, 8660 and 8434 for 0.952, 0.963 and 0.985 g/cm3, respectively. The percent differences of glandularity to the regression equation were 3.24%, 2.75% and 13.7%. We concluded that the proposed method could be clinically applied in mammography to improve the glandularity estimation and further increase the importance of breast cancer screening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mammography" title="mammography">mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=glandularity" title=" glandularity"> glandularity</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20value" title=" gray value"> gray value</a>, <a href="https://publications.waset.org/abstracts/search?q=BI-RADS" title=" BI-RADS"> BI-RADS</a> </p> <a href="https://publications.waset.org/abstracts/60797/assessing-relationships-between-glandularity-and-gray-level-by-using-breast-phantoms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Time Efficient Color Coding for Structured-Light 3D Scanner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Hao%20Huang">Po-Hao Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Ju%20Chiang"> Pei-Ju Chiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structured light 3D scanner is commonly used for measuring the 3D shape of an object. Through projecting designed light patterns on the object, deformed patterns can be obtained and used for the geometric shape reconstruction. At present, Gray code is the most reliable and commonly used light pattern in the structured light 3D scanner. However, the trade-off between scanning efficiency and accuracy is a long-standing and challenging problem. The design of light patterns plays a significant role in the scanning efficiency and accuracy. Thereby, we proposed a novel encoding method integrating color information and Gray-code to improve the scanning efficiency. We will demonstrate that with the proposed method, the scanning time can be reduced to approximate half of the one needed by Gray-code without reduction of precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gray-code" title="gray-code">gray-code</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20light%20scanner" title=" structured light scanner"> structured light scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20shape%20acquisition" title=" 3D shape acquisition"> 3D shape acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title=" 3D reconstruction"> 3D reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/33773/time-efficient-color-coding-for-structured-light-3d-scanner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Conceptualizing Conflict in the Gray Zone: A Comparative Analysis of Diplomatic, Military and Political Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Hardy">John Hardy</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Lushenko"> Paul Lushenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> he twenty-first century international security order has been fraught with challenges to the credibility and stability of the post-Cold War status quo. Although the American-led international system has rarely been threatened directly by dissatisfied states, an underlying challenge to the international security order has emerged in the form of a slow-burning abnegation of small but significant aspects of the status quo. Meanwhile, those security challenges which have threatened to destabilize order in the international system have not clearly belonged to the traditional notions of diplomacy and armed conflict. Instead, the main antagonists have been both states and non-state actors, the issues have crossed national and international boundaries, and contestation has occurred in a ‘gray zone’ between peace and war. Gray zone conflicts are not easily categorized as military operations, national security policies or political strategies, because they often include elements of diplomacy, military operations, and statecraft in complex combinations. This study applies three approaches to conceptualizing the gray zone in which many contemporary conflicts take place. The first approach frames gray zone conflicts as a form of coercive diplomacy, in which armed force is used to add credibility and commitment to political threats. The second approach frames gray zone conflicts as a form of discrete military operation, in which armed force is used sparingly and is limited to a specific issue. The third approach frames gray zones conflicts as a form of proxy war, in which armed force is used by or through third parties, rather than directly between belligerents. The study finds that each approach to conceptualizing the gray zone accounts for only a narrow range of issues which fall within the gap between traditional notions of peace and war. However, in combination, all three approaches are useful in explicating the gray zone and understanding the character of contemporary security challenges which defy simple categorization. These findings suggest that coercive diplomacy, discrete military operations, and proxy warfare provide three overlapping lenses for conceptualizing the gray zone and for understanding the gray zone conflicts which threaten international security in the early twenty-first century. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gray%20zone" title="gray zone">gray zone</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20security" title=" international security"> international security</a>, <a href="https://publications.waset.org/abstracts/search?q=military%20operations" title=" military operations"> military operations</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20security" title=" national security"> national security</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a> </p> <a href="https://publications.waset.org/abstracts/95592/conceptualizing-conflict-in-the-gray-zone-a-comparative-analysis-of-diplomatic-military-and-political-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Multilevel Gray Scale Image Encryption through 2D Cellular Automata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupali%20Bhardwaj">Rupali Bhardwaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cryptography is the science of using mathematics to encrypt and decrypt data; the data are converted into some other gibberish form, and then the encrypted data are transmitted. The primary purpose of this paper is to provide two levels of security through a two-step process, rather than transmitted the message bits directly, first encrypted it using 2D cellular automata and then scrambled with Arnold Cat Map transformation; it provides an additional layer of protection and reduces the chance of the transmitted message being detected. A comparative analysis on effectiveness of scrambling technique is provided by scrambling degree measurement parameters i.e. Gray Difference Degree (GDD) and Correlation Coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scrambling" title="scrambling">scrambling</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata" title=" cellular automata"> cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnold%20cat%20map" title=" Arnold cat map"> Arnold cat map</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20of%20life" title=" game of life"> game of life</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20difference%20degree" title=" gray difference degree"> gray difference degree</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20coefficient" title=" correlation coefficient"> correlation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/41177/multilevel-gray-scale-image-encryption-through-2d-cellular-automata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Data Hiding in Gray Image Using ASCII Value and Scanning Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Pateriya">R. K. Pateriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Bharti"> Jyoti Bharti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASCII%20value" title="ASCII value">ASCII value</a>, <a href="https://publications.waset.org/abstracts/search?q=cover%20image" title=" cover image"> cover image</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel%20value" title=" pixel value"> pixel value</a>, <a href="https://publications.waset.org/abstracts/search?q=stego%20image" title=" stego image"> stego image</a>, <a href="https://publications.waset.org/abstracts/search?q=secret%20message" title=" secret message"> secret message</a> </p> <a href="https://publications.waset.org/abstracts/50472/data-hiding-in-gray-image-using-ascii-value-and-scanning-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Exploiting JPEG2000 into Reversible Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Te-Jen%20Chang">Te-Jen Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Hui%20Pan"> I-Hui Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuang-Hsiung%20Tan"> Kuang-Hsiung Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shan-Jen%20Cheng"> Shan-Jen Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Wu%20Lan"> Chien-Wu Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chan%20Hu"> Chih-Chan Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the event of multimedia age in order to protect data not to be tampered, damaged, and faked, information hiding technologies are proposed. Information hiding means important secret information is hidden into cover multimedia and then camouflaged media is produced. This camouflaged media has the characteristic of natural protection. Under the undoubted situation, important secret information is transmitted out.Reversible information hiding technologies for high capacity is proposed in this paper. The gray images are as cover media in this technology. We compress gray images and compare with the original image to produce the estimated differences. By using the estimated differences, expression information hiding is used, and higher information capacity can be achieved. According to experimental results, the proposed technology can be approved. For these experiments, the whole capacity of information payload and image quality can be satisfied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cover%20media" title="cover media">cover media</a>, <a href="https://publications.waset.org/abstracts/search?q=camouflaged%20media" title=" camouflaged media"> camouflaged media</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20information%20hiding" title=" reversible information hiding"> reversible information hiding</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20image" title=" gray image"> gray image</a> </p> <a href="https://publications.waset.org/abstracts/58909/exploiting-jpeg2000-into-reversible-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Bitplanes Gray-Level Image Encryption Approach Using Arnold Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abdrhman%20M.%20Ukasha">Ali Abdrhman M. Ukasha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSPCE%20method" title="SSPCE method">SSPCE method</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20compression-salt-%20peppers%20attacks" title=" image compression-salt- peppers attacks"> image compression-salt- peppers attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=bitplanes%20decomposition" title=" bitplanes decomposition"> bitplanes decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnold%20transform" title=" Arnold transform"> Arnold transform</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20image%20encryption" title=" lossless image encryption"> lossless image encryption</a> </p> <a href="https://publications.waset.org/abstracts/14573/bitplanes-gray-level-image-encryption-approach-using-arnold-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> The Gray Dance - An Analysis of Ageism in Dance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paula%20Higa">Paula Higa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper briefly examines age and its impact on a dancer’s performance career. An investigation into the possible reasons why audiences don’t regularly see veteran dancers on stage (termed as the Gray Dancer) supports the research. This analysis reflects some of the social dynamics that shape perceptions of the aging body in the U.S., as well as the correlation between the meaning of old and decay in Western culture. The primary question addressed in this research asks, who has the prerogative to determine when a dancer should stop dancing - society or the dancer themselves The aging process can significantly shorten a performer's professional career. The body has less endurance and is more susceptible to injuries, fatigue, etc. It also becomes less flexible and loses muscular strength and tone. A reduction in physical skills may usher gray dancers to embrace an ideology of shorter careers. However, in today’s age of diversity, equity, and inclusion, the realm of dance performance should reflect the times in which it is rooted; a multi-generational environment where people interact and participate in all of life's events. Overall, this study champions the inclusion of gray dancers as representations of mastery and wisdom akin to those traits associated with age and experience across various professions. Dance is an art form that transcends the assumptions of youthful beauty and physical ability. It serves as a conduit for conveying a lifetime of experiences, emotions, and ideas through the expressive vehicle of the body. Furthermore, it presents audiences with a medium to perceive and comprehend both themselves and life itself, echoing Noverre's insightful contemplation. The essay underscores the importance of valuing, sensing, and appreciating the richness that gray dancers bring to the stage by delving into segments of dance history and analyzing the possible influence of curators, directors, audiences, and society in general on ageism in dance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dance" title="dance">dance</a>, <a href="https://publications.waset.org/abstracts/search?q=ageism" title=" ageism"> ageism</a>, <a href="https://publications.waset.org/abstracts/search?q=politics%20in%20dance" title=" politics in dance"> politics in dance</a>, <a href="https://publications.waset.org/abstracts/search?q=curatorial%20process" title=" curatorial process"> curatorial process</a> </p> <a href="https://publications.waset.org/abstracts/173294/the-gray-dance-an-analysis-of-ageism-in-dance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Enhancing the Network Security with Gray Code</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Adi%20Purnomo%20Sidhi">Thomas Adi Purnomo Sidhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, network is an essential need in almost every part of human daily activities. People now can seamlessly connect to others through the Internet. With advanced technology, our personal data now can be more easily accessed. One of many components we are concerned for delivering the best network is a security issue. This paper is proposing a method that provides more options for security. This research aims to improve network security by focusing on the physical layer which is the first layer of the OSI model. The layer consists of the basic networking hardware transmission technologies of a network. With the use of observation method, the research produces a schematic design for enhancing the network security through the gray code converter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=network" title="network">network</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20security" title=" network security"> network security</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20code" title=" grey code"> grey code</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20layer" title=" physical layer"> physical layer</a> </p> <a href="https://publications.waset.org/abstracts/41361/enhancing-the-network-security-with-gray-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> A Way of Converting Color Images to Gray Scale Ones for the Color-Blind: Applying to the part of the Tokyo Subway Map</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katsuhiro%20Narikiyo">Katsuhiro Narikiyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shota%20Hashikawa"> Shota Hashikawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a way of removing noises and reducing the number of colors contained in a JPEG image. Main purpose of this project is to convert color images to monochrome images for the color-blind. We treat the crispy color images like the Tokyo subway map. Each color in the image has an important information. But for the color blinds, similar colors cannot be distinguished. If we can convert those colors to different gray values, they can distinguish them. Therefore we try to convert color images to monochrome images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color-blind" title="color-blind">color-blind</a>, <a href="https://publications.waset.org/abstracts/search?q=JPEG" title=" JPEG"> JPEG</a>, <a href="https://publications.waset.org/abstracts/search?q=monochrome%20image" title=" monochrome image"> monochrome image</a>, <a href="https://publications.waset.org/abstracts/search?q=denoise" title=" denoise"> denoise</a> </p> <a href="https://publications.waset.org/abstracts/2968/a-way-of-converting-color-images-to-gray-scale-ones-for-the-color-blind-applying-to-the-part-of-the-tokyo-subway-map" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Effect of Depth on Texture Features of Ultrasound Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Alqahtani">M. A. Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Coleman"> D. P. Coleman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20D.%20Pugh"> N. D. Pugh</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20D.%20M.%20Nokes"> L. D. M. Nokes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In diagnostic ultrasound, the echo graphic B-scan texture is an important area of investigation since it can be analyzed to characterize the histological state of internal tissues. An important factor requiring consideration when evaluating ultrasonic tissue texture is the depth. The effect of attenuation with depth of ultrasound, the size of the region of interest, gain, and dynamic range are important variables to consider as they can influence the analysis of texture features. These sources of variability have to be considered carefully when evaluating image texture as different settings might influence the resultant image. The aim of this study is to investigate the effect of depth on the texture features in-vivo using a 3D ultrasound probe. The left leg medial head of the gastrocnemius muscle of 10 healthy subjects were scanned. Two regions A and B were defined at different depth within the gastrocnemius muscle boundary. The size of both ROI’s was 280*20 pixels and the distance between region A and B was kept constant at 5 mm. Texture parameters include gray level, variance, skewness, kurtosis, co-occurrence matrix; run length matrix, gradient, autoregressive (AR) model and wavelet transform were extracted from the images. The paired t –test was used to test the depth effect for the normally distributed data and the Wilcoxon–Mann-Whitney test was used for the non-normally distributed data. The gray level, variance, and run length matrix were significantly lowered when the depth increased. The other texture parameters showed similar values at different depth. All the texture parameters showed no significant difference between depths A and B (p > 0.05) except for gray level, variance and run length matrix (p < 0.05). This indicates that gray level, variance, and run length matrix are depth dependent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20image" title="ultrasound image">ultrasound image</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20parameters" title=" texture parameters"> texture parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20biology" title=" computational biology"> computational biology</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20engineering" title=" biomedical engineering"> biomedical engineering</a> </p> <a href="https://publications.waset.org/abstracts/2991/effect-of-depth-on-texture-features-of-ultrasound-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Evaluating the Performance of Color Constancy Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damanjit%20Kaur">Damanjit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Avani%20Bhatia"> Avani Bhatia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Color constancy is significant for human vision since color is a pictorial cue that helps in solving different visions tasks such as tracking, object recognition, or categorization. Therefore, several computational methods have tried to simulate human color constancy abilities to stabilize machine color representations. Two different kinds of methods have been used, i.e., normalization and constancy. While color normalization creates a new representation of the image by canceling illuminant effects, color constancy directly estimates the color of the illuminant in order to map the image colors to a canonical version. Color constancy is the capability to determine colors of objects independent of the color of the light source. This research work studies the most of the well-known color constancy algorithms like white point and gray world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20constancy" title="color constancy">color constancy</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20world" title=" gray world"> gray world</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20patch" title=" white patch"> white patch</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20white%20patch" title=" modified white patch "> modified white patch </a> </p> <a href="https://publications.waset.org/abstracts/4799/evaluating-the-performance-of-color-constancy-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Diesel Fault Prediction Based on Optimized Gray Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Bing">Han Bing</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Zhenjie"> Yin Zhenjie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20prediction" title="fault prediction">fault prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=GM%281" title=" GM(1"> GM(1</a>, <a href="https://publications.waset.org/abstracts/search?q=5%29%20genetic%20algorithm" title="5) genetic algorithm">5) genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=GBPGA" title=" GBPGA"> GBPGA</a> </p> <a href="https://publications.waset.org/abstracts/48844/diesel-fault-prediction-based-on-optimized-gray-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Speeding-up Gray-Scale FIC by Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Al-Hilo">Eman A. Al-Hilo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawraa%20H.%20Al-Waelly"> Hawraa H. Al-Waelly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20gray%20level%20image" title="fractal gray level image">fractal gray level image</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20compression%20technique" title=" fractal compression technique"> fractal compression technique</a>, <a href="https://publications.waset.org/abstracts/search?q=iterated%20function%20system" title=" iterated function system"> iterated function system</a>, <a href="https://publications.waset.org/abstracts/search?q=moments%20feature" title=" moments feature"> moments feature</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-mean%20range-domain%20block" title=" zero-mean range-domain block"> zero-mean range-domain block</a> </p> <a href="https://publications.waset.org/abstracts/19903/speeding-up-gray-scale-fic-by-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Analysis of Spectral Radiative Entropy Generation in a Non-Gray Participating Medium with Heat Source (Furnaces)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asadollah%20Bahrami">Asadollah Bahrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, spectral radiative entropy generation is analyzed in a furnace filled with a mixture of H₂O, CO₂ and soot at radiative equilibrium. For the angular and spatial discretization of the radiative transfer equation and radiative entropy generation equations, the discrete ordinates method and the finite volume method are used, respectively. Spectral radiative properties are obtained using the correlated-k (CK) non-gray model with updated parameters based on the HITEMP2010 high-resolution database. In order to evaluate the effects of the location of the heat source, boundary condition and wall emissivity on radiative entropy generation, five cases are considered with different conditions. The spectral and total radiative entropy generation in the system are calculated for all cases and the effects of mentioned parameters on radiative entropy generation are attentively analyzed and finally, the optimum condition is especially presented. The most important results can be stated as follows: Results demonstrate that the wall emissivity has a considerable effect on the radiative entropy generation. Also, irreversible radiative transfer at the wall with lower temperatures is the main source of radiative entropy generation in the furnaces. In addition, the effect of the location of the heat source on total radiative entropy generation is less than other factors. Eventually, it can be said that characterizing the effective parameters of radiative entropy generation provides an approach to minimizing the radiative entropy generation and enhancing the furnace's performance practicality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20radiative%20entropy%20generation" title="spectral radiative entropy generation">spectral radiative entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-gray%20medium" title=" non-gray medium"> non-gray medium</a>, <a href="https://publications.waset.org/abstracts/search?q=correlated%20k%28CK%29%20model" title=" correlated k(CK) model"> correlated k(CK) model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source" title=" heat source"> heat source</a> </p> <a href="https://publications.waset.org/abstracts/169050/analysis-of-spectral-radiative-entropy-generation-in-a-non-gray-participating-medium-with-heat-source-furnaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Assessing the Blood-Brain Barrier (BBB) Permeability in PEA-15 Mutant Cat Brain using Magnetization Transfer (MT) Effect at 7T</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Z.%20Mahmud">Sultan Z. Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20C.%20Graff"> Emily C. Graff</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Bashir"> Adil Bashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) is a multifunctional adapter protein which is associated with the regulation of apoptotic cell death. Recently it has been discovered that PEA-15 is crucial in normal neurodevelopment of domestic cats, a gyrencephalic animal model, although the exact function of PEA-15 in neurodevelopment is unknown. This study investigates how PEA-15 affects the blood-brain barrier (BBB) permeability in cat brain, which can cause abnormalities in tissue metabolite and energy supplies. Severe polymicrogyria and microcephaly have been observed in cats with a loss of function PEA-15 mutation, affecting the normal neurodevelopment of the cat. This suggests that the vital role of PEA-15 in neurodevelopment is associated with gyrification. Neurodevelopment is a highly energy demanding process. The mammalian brain depends on glucose as its main energy source. PEA-15 plays a very important role in glucose uptake and utilization by interacting with phospholipase D1 (PLD1). Mitochondria also plays a critical role in bioenergetics and essential to supply adequate energy needed for neurodevelopment. Cerebral blood flow regulates adequate metabolite supply and recent findings also showed that blood plasma contains mitochondria as well. So the BBB can play a very important role in regulating metabolite and energy supply in the brain. In this study the blood-brain permeability in cat brain was measured using MRI magnetization transfer (MT) effect on the perfusion signal. Perfusion is the tissue mass normalized supply of blood to the capillary bed. Perfusion also accommodates the supply of oxygen and other metabolites to the tissue. A fraction of the arterial blood can diffuse to the tissue, which depends on the BBB permeability. This fraction is known as water extraction fraction (EF). MT is a process of saturating the macromolecules, which has an effect on the blood that has been diffused into the tissue while having minimal effect on intravascular blood water that has not been exchanged with the tissue. Measurement of perfusion signal with and without MT enables to estimate the microvascular blood flow, EF and permeability surface area product (PS) in the brain. All the experiments were performed with Siemens 7T Magnetom with 32 channel head coil. Three control cats and three PEA-15 mutant cats were used for the study. Average EF in white and gray matter was 0.9±0.1 and 0.86±0.15 respectively, perfusion in white and gray matter was 85±15 mL/100g/min and 97±20 mL/100g/min respectively, PS in white and gray matter was 201±25 mL/100g/min and 225±35 mL/100g/min respectively for control cats. For PEA-15 mutant cats, average EF in white and gray matter was 0.81±0.15 and 0.77±0.2 respectively, perfusion in white and gray matter was 140±25 mL/100g/min and 165±18 mL/100g/min respectively, PS in white and gray matter was 240±30 mL/100g/min and 259±21 mL/100g/min respectively. This results show that BBB is compromised in PEA-15 mutant cat brain, where EF is decreased and perfusion as well as PS are increased in the mutant cats compared to the control cats. This findings might further explain the function of PEA-15 in neurodevelopment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BBB" title="BBB">BBB</a>, <a href="https://publications.waset.org/abstracts/search?q=cat%20brain" title=" cat brain"> cat brain</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization%20transfer" title=" magnetization transfer"> magnetization transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=PEA-15" title=" PEA-15"> PEA-15</a> </p> <a href="https://publications.waset.org/abstracts/128208/assessing-the-blood-brain-barrier-bbb-permeability-in-pea-15-mutant-cat-brain-using-magnetization-transfer-mt-effect-at-7t" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Detection and Identification of Chlamydophila psittaci in Asymptomatic and Symptomatic Parrots in Isfahan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Moradi%20Sarmeidani">Mehdi Moradi Sarmeidani</a>, <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Keyhani"> Peyman Keyhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Momtaz"> Hasan Momtaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chlamydophila psittaci is a avian pathogen that may cause respiratory disorders in humans. Conjunctival and cloacal swabs from 54 captive psittacine birds presented at veterinary clinics were collected to determine the prevalence of C. psittaci in domestic birds in Isfahan. Samples were collected during 2014 from a total of 10 different species of parrots, with African gray(33), Cockatiel lutino(3), Cockatiel gray(2), Cockatiel cinnamon(1), Pearl cockatiel(6), Timneh African grey(1), Ringneck parakeet(2), Melopsittacus undulatus(1), Alexander parakeet(2), Green Parakeet(3) being the most representative species sampled. C. psittaci was detected in 27 (50%) birds using molecular detection (PCR) method. The detection of this bacterium in captive psittacine birds shows that there is a potential risk for human whom has a direct contact and there is a possibility of infecting other birds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlamydophila%20psittaci" title="chlamydophila psittaci">chlamydophila psittaci</a>, <a href="https://publications.waset.org/abstracts/search?q=psittacine%20birds" title=" psittacine birds"> psittacine birds</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Isfahan" title=" Isfahan"> Isfahan</a> </p> <a href="https://publications.waset.org/abstracts/39281/detection-and-identification-of-chlamydophila-psittaci-in-asymptomatic-and-symptomatic-parrots-in-isfahan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Characterization of High Phosphorus Gray Iron for the Stub- Anode Connection in the Aluminium Reduction Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Ali">Mohamed M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Nofal"> Adel Nofal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20Kandil"> Amr Kandil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Agour"> Mahmoud Agour </a> </p> <p class="card-text"><strong>Abstract:</strong></p> High phosphorus gray iron (HPGI) is used to connect the steel stub of an anode rod to a prebaked anode carbon block in the aluminium reduction cells. In this paper, a complete characterization for HPGI was done, includes studying the chemical composition of the HPGI collar, anodic voltage drop, collar temperature over 30 days anode life cycle, microstructure and mechanical properties. During anode life cycle, the carbon content in HPGI was lowed from 3.73 to 3.38%, and different changes in the anodic voltage drop at the stub- collar-anode connection were recorded. The collar temperature increases over the anode life cycle and reaches to 850°C in four weeks after anode changing. Significant changes in the HPGI microstructure were observed after 3 and 30 days from the anode changing. To simulate the actual operating conditions in the steel stub/collar/carbon anode connection, a bench-scale experimental set-up was designed and used for electrical resistance and resistivity respectively. The results showed the current HPGI properties needed to modify or producing new alloys with excellent electrical and mechanical properties. The steel stub and HPGI thermal expansion were measured and studied. Considerable permanent expansion was observed for the HPGI collar after the completion of the heating-cooling cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20phosphorus%20gray%20iron%20%28HPGI%29" title="high phosphorus gray iron (HPGI)">high phosphorus gray iron (HPGI)</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20reduction%20cells" title=" aluminium reduction cells"> aluminium reduction cells</a>, <a href="https://publications.waset.org/abstracts/search?q=anodic%20voltage%20drop" title=" anodic voltage drop"> anodic voltage drop</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20and%20electrical%20properties" title=" mechanical and electrical properties"> mechanical and electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/11906/characterization-of-high-phosphorus-gray-iron-for-the-stub-anode-connection-in-the-aluminium-reduction-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Bitplanes Image Encryption/Decryption Using Edge Map (SSPCE Method) and Arnold Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Ukasha">Ali A. Ukasha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSPCE%20method" title="SSPCE method">SSPCE method</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title=" image compression"> image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20and%0D%0Apeppers%20attacks" title=" salt and peppers attacks"> salt and peppers attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=bitplanes%20decomposition" title=" bitplanes decomposition"> bitplanes decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnold%20transform" title=" Arnold transform"> Arnold transform</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20image%20encryption" title=" lossless image encryption"> lossless image encryption</a> </p> <a href="https://publications.waset.org/abstracts/14570/bitplanes-image-encryptiondecryption-using-edge-map-sspce-method-and-arnold-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Taleb">Samira Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakina%20Aoun"> Sakina Aoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Slimane%20Ziani"> Slimane Ziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoheir%20Mentouri"> Zoheir Mentouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Boudiaf"> Adel Boudiaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=defect" title=" defect"> defect</a>, <a href="https://publications.waset.org/abstracts/search?q=surface" title=" surface"> surface</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=hole" title=" hole"> hole</a> </p> <a href="https://publications.waset.org/abstracts/193037/surface-hole-defect-detection-of-rolled-sheets-based-on-pixel-classification-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atanu%20K%20Samanta">Atanu K Samanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Ali%20Khan"> Asim Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor" title="brain tumor">brain tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20diagnostic%20%28CAD%29%20system" title=" computer-aided diagnostic (CAD) system"> computer-aided diagnostic (CAD) system</a>, <a href="https://publications.waset.org/abstracts/search?q=gray-level%20co-occurrence%20matrix%20%28GLCM%29" title=" gray-level co-occurrence matrix (GLCM)"> gray-level co-occurrence matrix (GLCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20segmentation" title=" tumor segmentation"> tumor segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set%20method" title=" level set method"> level set method</a> </p> <a href="https://publications.waset.org/abstracts/61237/computer-aided-diagnostic-system-for-detection-and-classification-of-a-brain-tumor-through-mri-using-level-set-based-segmentation-technique-and-ann-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Jong%20Yang">Wei-Jong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Hau%20Du"> Wei-Hau Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Pau-Choo%20Chang"> Pau-Choo Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jar-Ferr%20Yang"> Jar-Ferr Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pi-Hsia%20Hung"> Pi-Hsia Hung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20moments" title="color moments">color moments</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20thing%20recognition%20system" title=" visual thing recognition system"> visual thing recognition system</a>, <a href="https://publications.waset.org/abstracts/search?q=SIFT" title=" SIFT"> SIFT</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20SIFT" title=" color SIFT"> color SIFT</a> </p> <a href="https://publications.waset.org/abstracts/62857/visual-thing-recognition-with-binary-scale-invariant-feature-transform-and-support-vector-machine-classifiers-using-color-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Improvement of Bone Scintography Image Using Image Texture Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousif%20Mohamed%20Y.%20Abdallah">Yousif Mohamed Y. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Eltayeb%20Wagallah"> Eltayeb Wagallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image enhancement allows the observer to see details in images that may not be immediately observable in the original image. Image enhancement is the transformation or mapping of one image to another. The enhancement of certain features in images is accompanied by undesirable effects. To achieve maximum image quality after denoising, a new, low order, local adaptive Gaussian scale mixture model and median filter were presented, which accomplishes nonlinearities from scattering a new nonlinear approach for contrast enhancement of bones in bone scan images using both gamma correction and negative transform methods. The usual assumption of a distribution of gamma and Poisson statistics only lead to overestimation of the noise variance in regions of low intensity but to underestimation in regions of high intensity and therefore to non-optional results. The contrast enhancement results were obtained and evaluated using MatLab program in nuclear medicine images of the bones. The optimal number of bins, in particular the number of gray-levels, is chosen automatically using entropy and average distance between the histogram of the original gray-level distribution and the contrast enhancement function’s curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20scan" title="bone scan">bone scan</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20medicine" title=" nuclear medicine"> nuclear medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing%20technique" title=" image processing technique"> image processing technique</a> </p> <a href="https://publications.waset.org/abstracts/13956/improvement-of-bone-scintography-image-using-image-texture-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Landmark Based Catch Trends Assessment of Gray Eel Catfish (Plotosus canius) at Mangrove Estuary in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rabby">Ahmad Rabby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study emphasizing the catch trends assessment of Gray eel catfish (Plotosus canius) that was scrutinized on the basis of monthly length frequency data collected from mangrove estuary, Bangladesh during January 2017 to December 2018. A total amount of 1298 specimens were collected to estimate the total length (TL) and weight (W) of P. canius ranged from 13.3 cm to 87.4 cm and 28 g to 5200 g, respectively. The length-weight relationship was W=0.006 L2.95 with R2=0.972 for both sexes. The von Bertalanffy growth function parameters were L∞=93.25 cm and K=0.28 yr-1, hypothetical age at zero length of t0=0.059 years and goodness of the fit of Rn=0.494. The growth performances indices for L∞ and W∞ were computed as Φ'=3.386 and Φ=1.84, respectively. The size at first sexual maturity was estimated in TL as 48.8 cm for pool sexes. The natural mortality was 0.51 yr-1 at average annual water surface temperature as 22 0C. The total instantaneous mortality was 1.24 yr-1 at CI95% of 0.105–1.42 (r2=0.986). While fishing mortality was 0.73 yr-1 and the current exploitation ratio as 0.59. The recruitment was continued throughout the year with one major peak during May-June was 17.20-17.96%. The Beverton-Holt yield per recruit model was analyzed by FiSAT-II, when tc was at 1.43 yr, the Fmax was estimated as 0.6 yr-1 and F0.1 was 0.33 yr-1. Current age at the first capture was approximately 0.6 year, however Fcurrent = 0.73 yr-1 which is beyond the F0.1 indicated that the current stock of P. canius of Bangladesh was overexploited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Plotosus%20canius" title="Plotosus canius">Plotosus canius</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20estuary" title=" mangrove estuary"> mangrove estuary</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20length" title=" asymptotic length"> asymptotic length</a>, <a href="https://publications.waset.org/abstracts/search?q=FiSAT-II" title=" FiSAT-II"> FiSAT-II</a> </p> <a href="https://publications.waset.org/abstracts/121199/landmark-based-catch-trends-assessment-of-gray-eel-catfish-plotosus-canius-at-mangrove-estuary-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Additive Manufacturing Optimization Via Integrated Taguchi-Gray Relation Methodology for Oil and Gas Component Fabrication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meshal%20Alsaiari">Meshal Alsaiari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused Deposition Modeling is one of the additive manufacturing technologies the industry is shifting to nowadays due to its simplicity and low affordable cost. The fabrication processing parameters predominantly influence FDM part strength and mechanical properties. This presentation will demonstrate the influences of the two manufacturing parameters on the tensile testing evaluation indexes, infill density, and Printing Orientation, which were analyzed to create a piping spacer suitable for oil and gas applications. The tensile specimens are made of two polymers, Acrylonitrile Styrene Acrylate (ASA) and High high-impact polystyrene (HIPS), to characterize the mechanical properties performance for creating the final product. The mechanical testing was carried out per the ASTM D638 testing standard, following Type IV requirements. Taguchi's experiment design using an L-9 orthogonal array was used to evaluate the performance output and identify the optimal manufacturing factors. The experimental results demonstrate that the tensile test is more pronounced with 100% infill for ASA and HIPS samples. However, the printing orientations varied in reactions; ASA is maximum at 0 degrees while HIPS shows almost similar percentages between 45 and 90 degrees. Taguchi-Gray integrated methodology was adopted to minimize the response and recognize optimal fabrication factors combinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDM" title="FDM">FDM</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTM%20D638" title=" ASTM D638"> ASTM D638</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20testing" title=" tensile testing"> tensile testing</a>, <a href="https://publications.waset.org/abstracts/search?q=acrylonitrile%20styrene%20acrylate" title=" acrylonitrile styrene acrylate"> acrylonitrile styrene acrylate</a> </p> <a href="https://publications.waset.org/abstracts/171454/additive-manufacturing-optimization-via-integrated-taguchi-gray-relation-methodology-for-oil-and-gas-component-fabrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> A Hybrid Normalized Gradient Correlation Based Thermal Image Registration for Morphoea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20I.%20Izhar">L. I. Izhar</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Stathaki"> T. Stathaki</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Howell"> K. Howell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analyzing and interpreting of thermograms have been increasingly employed in the diagnosis and monitoring of diseases thanks to its non-invasive, non-harmful nature and low cost. In this paper, a novel system is proposed to improve diagnosis and monitoring of morphoea skin disorder based on integration with the published lines of Blaschko. In the proposed system, image registration based on global and local registration methods are found inevitable. This paper presents a modified normalized gradient cross-correlation (NGC) method to reduce large geometrical differences between two multimodal images that are represented by smooth gray edge maps is proposed for the global registration approach. This method is improved further by incorporating an iterative-based normalized cross-correlation coefficient (NCC) method. It is found that by replacing the final registration part of the NGC method where translational differences are solved in the spatial Fourier domain with the NCC method performed in the spatial domain, the performance and robustness of the NGC method can be greatly improved. It is shown in this paper that the hybrid NGC method not only outperforms phase correlation (PC) method but also improved misregistration due to translation, suffered by the modified NGC method alone for thermograms with ill-defined jawline. This also demonstrates that by using the gradients of the gray edge maps and a hybrid technique, the performance of the PC based image registration method can be greatly improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blaschko%E2%80%99s%20lines" title="Blaschko’s lines">Blaschko’s lines</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20registration" title=" image registration"> image registration</a>, <a href="https://publications.waset.org/abstracts/search?q=morphoea" title=" morphoea"> morphoea</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a> </p> <a href="https://publications.waset.org/abstracts/44663/a-hybrid-normalized-gradient-correlation-based-thermal-image-registration-for-morphoea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharon%20Gray&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharon%20Gray&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharon%20Gray&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharon%20Gray&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharon%20Gray&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharon%20Gray&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharon%20Gray&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sharon%20Gray&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10